SelectionDAGISel.cpp revision f99fdc666e16255e15d8ab0888a49bddbb96aa2d
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57static cl::opt<bool>
58ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
59          cl::desc("Pop up a window to show SUnit dags after they are processed"));
60#else
61static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
62#endif
63
64//===---------------------------------------------------------------------===//
65///
66/// RegisterScheduler class - Track the registration of instruction schedulers.
67///
68//===---------------------------------------------------------------------===//
69MachinePassRegistry RegisterScheduler::Registry;
70
71//===---------------------------------------------------------------------===//
72///
73/// ISHeuristic command line option for instruction schedulers.
74///
75//===---------------------------------------------------------------------===//
76namespace {
77  cl::opt<RegisterScheduler::FunctionPassCtor, false,
78          RegisterPassParser<RegisterScheduler> >
79  ISHeuristic("pre-RA-sched",
80              cl::init(&createDefaultScheduler),
81              cl::desc("Instruction schedulers available (before register allocation):"));
82
83  static RegisterScheduler
84  defaultListDAGScheduler("default", "  Best scheduler for the target",
85                          createDefaultScheduler);
86} // namespace
87
88namespace { struct AsmOperandInfo; }
89
90namespace {
91  /// RegsForValue - This struct represents the physical registers that a
92  /// particular value is assigned and the type information about the value.
93  /// This is needed because values can be promoted into larger registers and
94  /// expanded into multiple smaller registers than the value.
95  struct VISIBILITY_HIDDEN RegsForValue {
96    /// Regs - This list holds the register (for legal and promoted values)
97    /// or register set (for expanded values) that the value should be assigned
98    /// to.
99    std::vector<unsigned> Regs;
100
101    /// RegVT - The value type of each register.
102    ///
103    MVT::ValueType RegVT;
104
105    /// ValueVT - The value type of the LLVM value, which may be promoted from
106    /// RegVT or made from merging the two expanded parts.
107    MVT::ValueType ValueVT;
108
109    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
110
111    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
112      : RegVT(regvt), ValueVT(valuevt) {
113        Regs.push_back(Reg);
114    }
115    RegsForValue(const std::vector<unsigned> &regs,
116                 MVT::ValueType regvt, MVT::ValueType valuevt)
117      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
118    }
119
120    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
121    /// this value and returns the result as a ValueVT value.  This uses
122    /// Chain/Flag as the input and updates them for the output Chain/Flag.
123    /// If the Flag pointer is NULL, no flag is used.
124    SDOperand getCopyFromRegs(SelectionDAG &DAG,
125                              SDOperand &Chain, SDOperand *Flag) const;
126
127    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
128    /// specified value into the registers specified by this object.  This uses
129    /// Chain/Flag as the input and updates them for the output Chain/Flag.
130    /// If the Flag pointer is NULL, no flag is used.
131    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
132                       SDOperand &Chain, SDOperand *Flag) const;
133
134    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
135    /// operand list.  This adds the code marker and includes the number of
136    /// values added into it.
137    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
138                              std::vector<SDOperand> &Ops) const;
139  };
140}
141
142namespace llvm {
143  //===--------------------------------------------------------------------===//
144  /// createDefaultScheduler - This creates an instruction scheduler appropriate
145  /// for the target.
146  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
147                                      SelectionDAG *DAG,
148                                      MachineBasicBlock *BB) {
149    TargetLowering &TLI = IS->getTargetLowering();
150
151    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
152      return createTDListDAGScheduler(IS, DAG, BB);
153    } else {
154      assert(TLI.getSchedulingPreference() ==
155           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
156      return createBURRListDAGScheduler(IS, DAG, BB);
157    }
158  }
159
160
161  //===--------------------------------------------------------------------===//
162  /// FunctionLoweringInfo - This contains information that is global to a
163  /// function that is used when lowering a region of the function.
164  class FunctionLoweringInfo {
165  public:
166    TargetLowering &TLI;
167    Function &Fn;
168    MachineFunction &MF;
169    SSARegMap *RegMap;
170
171    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
172
173    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
174    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
175
176    /// ValueMap - Since we emit code for the function a basic block at a time,
177    /// we must remember which virtual registers hold the values for
178    /// cross-basic-block values.
179    DenseMap<const Value*, unsigned> ValueMap;
180
181    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
182    /// the entry block.  This allows the allocas to be efficiently referenced
183    /// anywhere in the function.
184    std::map<const AllocaInst*, int> StaticAllocaMap;
185
186#ifndef NDEBUG
187    SmallSet<Instruction*, 8> CatchInfoLost;
188    SmallSet<Instruction*, 8> CatchInfoFound;
189#endif
190
191    unsigned MakeReg(MVT::ValueType VT) {
192      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
193    }
194
195    /// isExportedInst - Return true if the specified value is an instruction
196    /// exported from its block.
197    bool isExportedInst(const Value *V) {
198      return ValueMap.count(V);
199    }
200
201    unsigned CreateRegForValue(const Value *V);
202
203    unsigned InitializeRegForValue(const Value *V) {
204      unsigned &R = ValueMap[V];
205      assert(R == 0 && "Already initialized this value register!");
206      return R = CreateRegForValue(V);
207    }
208  };
209}
210
211/// isSelector - Return true if this instruction is a call to the
212/// eh.selector intrinsic.
213static bool isSelector(Instruction *I) {
214  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
215    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
216            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
217  return false;
218}
219
220/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
221/// PHI nodes or outside of the basic block that defines it, or used by a
222/// switch instruction, which may expand to multiple basic blocks.
223static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
224  if (isa<PHINode>(I)) return true;
225  BasicBlock *BB = I->getParent();
226  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
227    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
228        // FIXME: Remove switchinst special case.
229        isa<SwitchInst>(*UI))
230      return true;
231  return false;
232}
233
234/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
235/// entry block, return true.  This includes arguments used by switches, since
236/// the switch may expand into multiple basic blocks.
237static bool isOnlyUsedInEntryBlock(Argument *A) {
238  BasicBlock *Entry = A->getParent()->begin();
239  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
240    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
241      return false;  // Use not in entry block.
242  return true;
243}
244
245FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
246                                           Function &fn, MachineFunction &mf)
247    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
248
249  // Create a vreg for each argument register that is not dead and is used
250  // outside of the entry block for the function.
251  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
252       AI != E; ++AI)
253    if (!isOnlyUsedInEntryBlock(AI))
254      InitializeRegForValue(AI);
255
256  // Initialize the mapping of values to registers.  This is only set up for
257  // instruction values that are used outside of the block that defines
258  // them.
259  Function::iterator BB = Fn.begin(), EB = Fn.end();
260  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
261    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
262      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
263        const Type *Ty = AI->getAllocatedType();
264        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
265        unsigned Align =
266          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
267                   AI->getAlignment());
268
269        TySize *= CUI->getZExtValue();   // Get total allocated size.
270        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
271        StaticAllocaMap[AI] =
272          MF.getFrameInfo()->CreateStackObject(TySize, Align);
273      }
274
275  for (; BB != EB; ++BB)
276    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
277      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
278        if (!isa<AllocaInst>(I) ||
279            !StaticAllocaMap.count(cast<AllocaInst>(I)))
280          InitializeRegForValue(I);
281
282  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
283  // also creates the initial PHI MachineInstrs, though none of the input
284  // operands are populated.
285  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
286    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
287    MBBMap[BB] = MBB;
288    MF.getBasicBlockList().push_back(MBB);
289
290    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
291    // appropriate.
292    PHINode *PN;
293    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
294      if (PN->use_empty()) continue;
295
296      MVT::ValueType VT = TLI.getValueType(PN->getType());
297      unsigned NumRegisters = TLI.getNumRegisters(VT);
298      unsigned PHIReg = ValueMap[PN];
299      assert(PHIReg && "PHI node does not have an assigned virtual register!");
300      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
301      for (unsigned i = 0; i != NumRegisters; ++i)
302        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
303    }
304  }
305}
306
307/// CreateRegForValue - Allocate the appropriate number of virtual registers of
308/// the correctly promoted or expanded types.  Assign these registers
309/// consecutive vreg numbers and return the first assigned number.
310unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
311  MVT::ValueType VT = TLI.getValueType(V->getType());
312
313  unsigned NumRegisters = TLI.getNumRegisters(VT);
314  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
315
316  unsigned R = MakeReg(RegisterVT);
317  for (unsigned i = 1; i != NumRegisters; ++i)
318    MakeReg(RegisterVT);
319
320  return R;
321}
322
323//===----------------------------------------------------------------------===//
324/// SelectionDAGLowering - This is the common target-independent lowering
325/// implementation that is parameterized by a TargetLowering object.
326/// Also, targets can overload any lowering method.
327///
328namespace llvm {
329class SelectionDAGLowering {
330  MachineBasicBlock *CurMBB;
331
332  DenseMap<const Value*, SDOperand> NodeMap;
333
334  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
335  /// them up and then emit token factor nodes when possible.  This allows us to
336  /// get simple disambiguation between loads without worrying about alias
337  /// analysis.
338  std::vector<SDOperand> PendingLoads;
339
340  /// Case - A struct to record the Value for a switch case, and the
341  /// case's target basic block.
342  struct Case {
343    Constant* Low;
344    Constant* High;
345    MachineBasicBlock* BB;
346
347    Case() : Low(0), High(0), BB(0) { }
348    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
349      Low(low), High(high), BB(bb) { }
350    uint64_t size() const {
351      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
352      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
353      return (rHigh - rLow + 1ULL);
354    }
355  };
356
357  struct CaseBits {
358    uint64_t Mask;
359    MachineBasicBlock* BB;
360    unsigned Bits;
361
362    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
363      Mask(mask), BB(bb), Bits(bits) { }
364  };
365
366  typedef std::vector<Case>           CaseVector;
367  typedef std::vector<CaseBits>       CaseBitsVector;
368  typedef CaseVector::iterator        CaseItr;
369  typedef std::pair<CaseItr, CaseItr> CaseRange;
370
371  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
372  /// of conditional branches.
373  struct CaseRec {
374    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
375    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
376
377    /// CaseBB - The MBB in which to emit the compare and branch
378    MachineBasicBlock *CaseBB;
379    /// LT, GE - If nonzero, we know the current case value must be less-than or
380    /// greater-than-or-equal-to these Constants.
381    Constant *LT;
382    Constant *GE;
383    /// Range - A pair of iterators representing the range of case values to be
384    /// processed at this point in the binary search tree.
385    CaseRange Range;
386  };
387
388  typedef std::vector<CaseRec> CaseRecVector;
389
390  /// The comparison function for sorting the switch case values in the vector.
391  /// WARNING: Case ranges should be disjoint!
392  struct CaseCmp {
393    bool operator () (const Case& C1, const Case& C2) {
394      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
395      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
396      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
397      return CI1->getValue().slt(CI2->getValue());
398    }
399  };
400
401  struct CaseBitsCmp {
402    bool operator () (const CaseBits& C1, const CaseBits& C2) {
403      return C1.Bits > C2.Bits;
404    }
405  };
406
407  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
408
409public:
410  // TLI - This is information that describes the available target features we
411  // need for lowering.  This indicates when operations are unavailable,
412  // implemented with a libcall, etc.
413  TargetLowering &TLI;
414  SelectionDAG &DAG;
415  const TargetData *TD;
416  AliasAnalysis &AA;
417
418  /// SwitchCases - Vector of CaseBlock structures used to communicate
419  /// SwitchInst code generation information.
420  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
421  /// JTCases - Vector of JumpTable structures used to communicate
422  /// SwitchInst code generation information.
423  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
424  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
425
426  /// FuncInfo - Information about the function as a whole.
427  ///
428  FunctionLoweringInfo &FuncInfo;
429
430  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
431                       AliasAnalysis &aa,
432                       FunctionLoweringInfo &funcinfo)
433    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
434      FuncInfo(funcinfo) {
435  }
436
437  /// getRoot - Return the current virtual root of the Selection DAG.
438  ///
439  SDOperand getRoot() {
440    if (PendingLoads.empty())
441      return DAG.getRoot();
442
443    if (PendingLoads.size() == 1) {
444      SDOperand Root = PendingLoads[0];
445      DAG.setRoot(Root);
446      PendingLoads.clear();
447      return Root;
448    }
449
450    // Otherwise, we have to make a token factor node.
451    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
452                                 &PendingLoads[0], PendingLoads.size());
453    PendingLoads.clear();
454    DAG.setRoot(Root);
455    return Root;
456  }
457
458  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
459
460  void visit(Instruction &I) { visit(I.getOpcode(), I); }
461
462  void visit(unsigned Opcode, User &I) {
463    // Note: this doesn't use InstVisitor, because it has to work with
464    // ConstantExpr's in addition to instructions.
465    switch (Opcode) {
466    default: assert(0 && "Unknown instruction type encountered!");
467             abort();
468      // Build the switch statement using the Instruction.def file.
469#define HANDLE_INST(NUM, OPCODE, CLASS) \
470    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
471#include "llvm/Instruction.def"
472    }
473  }
474
475  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
476
477  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
478                        const Value *SV, SDOperand Root,
479                        bool isVolatile, unsigned Alignment);
480
481  SDOperand getIntPtrConstant(uint64_t Val) {
482    return DAG.getConstant(Val, TLI.getPointerTy());
483  }
484
485  SDOperand getValue(const Value *V);
486
487  void setValue(const Value *V, SDOperand NewN) {
488    SDOperand &N = NodeMap[V];
489    assert(N.Val == 0 && "Already set a value for this node!");
490    N = NewN;
491  }
492
493  void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
494                            std::set<unsigned> &OutputRegs,
495                            std::set<unsigned> &InputRegs);
496
497  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
498                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
499                            unsigned Opc);
500  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
501  void ExportFromCurrentBlock(Value *V);
502  void LowerCallTo(Instruction &I,
503                   const Type *CalledValueTy, unsigned CallingConv,
504                   bool IsTailCall, SDOperand Callee, unsigned OpIdx,
505                   MachineBasicBlock *LandingPad = NULL);
506
507  // Terminator instructions.
508  void visitRet(ReturnInst &I);
509  void visitBr(BranchInst &I);
510  void visitSwitch(SwitchInst &I);
511  void visitUnreachable(UnreachableInst &I) { /* noop */ }
512
513  // Helpers for visitSwitch
514  bool handleSmallSwitchRange(CaseRec& CR,
515                              CaseRecVector& WorkList,
516                              Value* SV,
517                              MachineBasicBlock* Default);
518  bool handleJTSwitchCase(CaseRec& CR,
519                          CaseRecVector& WorkList,
520                          Value* SV,
521                          MachineBasicBlock* Default);
522  bool handleBTSplitSwitchCase(CaseRec& CR,
523                               CaseRecVector& WorkList,
524                               Value* SV,
525                               MachineBasicBlock* Default);
526  bool handleBitTestsSwitchCase(CaseRec& CR,
527                                CaseRecVector& WorkList,
528                                Value* SV,
529                                MachineBasicBlock* Default);
530  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
531  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
532  void visitBitTestCase(MachineBasicBlock* NextMBB,
533                        unsigned Reg,
534                        SelectionDAGISel::BitTestCase &B);
535  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
536  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
537                            SelectionDAGISel::JumpTableHeader &JTH);
538
539  // These all get lowered before this pass.
540  void visitInvoke(InvokeInst &I);
541  void visitUnwind(UnwindInst &I);
542
543  void visitBinary(User &I, unsigned OpCode);
544  void visitShift(User &I, unsigned Opcode);
545  void visitAdd(User &I) {
546    if (I.getType()->isFPOrFPVector())
547      visitBinary(I, ISD::FADD);
548    else
549      visitBinary(I, ISD::ADD);
550  }
551  void visitSub(User &I);
552  void visitMul(User &I) {
553    if (I.getType()->isFPOrFPVector())
554      visitBinary(I, ISD::FMUL);
555    else
556      visitBinary(I, ISD::MUL);
557  }
558  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
559  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
560  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
561  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
562  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
563  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
564  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
565  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
566  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
567  void visitShl (User &I) { visitShift(I, ISD::SHL); }
568  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
569  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
570  void visitICmp(User &I);
571  void visitFCmp(User &I);
572  // Visit the conversion instructions
573  void visitTrunc(User &I);
574  void visitZExt(User &I);
575  void visitSExt(User &I);
576  void visitFPTrunc(User &I);
577  void visitFPExt(User &I);
578  void visitFPToUI(User &I);
579  void visitFPToSI(User &I);
580  void visitUIToFP(User &I);
581  void visitSIToFP(User &I);
582  void visitPtrToInt(User &I);
583  void visitIntToPtr(User &I);
584  void visitBitCast(User &I);
585
586  void visitExtractElement(User &I);
587  void visitInsertElement(User &I);
588  void visitShuffleVector(User &I);
589
590  void visitGetElementPtr(User &I);
591  void visitSelect(User &I);
592
593  void visitMalloc(MallocInst &I);
594  void visitFree(FreeInst &I);
595  void visitAlloca(AllocaInst &I);
596  void visitLoad(LoadInst &I);
597  void visitStore(StoreInst &I);
598  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
599  void visitCall(CallInst &I);
600  void visitInlineAsm(CallInst &I);
601  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
602  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
603
604  void visitVAStart(CallInst &I);
605  void visitVAArg(VAArgInst &I);
606  void visitVAEnd(CallInst &I);
607  void visitVACopy(CallInst &I);
608
609  void visitMemIntrinsic(CallInst &I, unsigned Op);
610
611  void visitUserOp1(Instruction &I) {
612    assert(0 && "UserOp1 should not exist at instruction selection time!");
613    abort();
614  }
615  void visitUserOp2(Instruction &I) {
616    assert(0 && "UserOp2 should not exist at instruction selection time!");
617    abort();
618  }
619};
620} // end namespace llvm
621
622
623/// getCopyFromParts - Create a value that contains the
624/// specified legal parts combined into the value they represent.
625static SDOperand getCopyFromParts(SelectionDAG &DAG,
626                                  const SDOperand *Parts,
627                                  unsigned NumParts,
628                                  MVT::ValueType PartVT,
629                                  MVT::ValueType ValueVT,
630                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
631  if (!MVT::isVector(ValueVT) || NumParts == 1) {
632    SDOperand Val = Parts[0];
633
634    // If the value was expanded, copy from the top part.
635    if (NumParts > 1) {
636      assert(NumParts == 2 &&
637             "Cannot expand to more than 2 elts yet!");
638      SDOperand Hi = Parts[1];
639      if (!DAG.getTargetLoweringInfo().isLittleEndian())
640        std::swap(Val, Hi);
641      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
642    }
643
644    // Otherwise, if the value was promoted or extended, truncate it to the
645    // appropriate type.
646    if (PartVT == ValueVT)
647      return Val;
648
649    if (MVT::isVector(PartVT)) {
650      assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
651      return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
652    }
653
654    if (MVT::isVector(ValueVT)) {
655      assert(NumParts == 1 &&
656             MVT::getVectorElementType(ValueVT) == PartVT &&
657             MVT::getVectorNumElements(ValueVT) == 1 &&
658             "Only trivial scalar-to-vector conversions should get here!");
659      return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
660    }
661
662    if (MVT::isInteger(PartVT) &&
663        MVT::isInteger(ValueVT)) {
664      if (ValueVT < PartVT) {
665        // For a truncate, see if we have any information to
666        // indicate whether the truncated bits will always be
667        // zero or sign-extension.
668        if (AssertOp != ISD::DELETED_NODE)
669          Val = DAG.getNode(AssertOp, PartVT, Val,
670                            DAG.getValueType(ValueVT));
671        return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
672      } else {
673        return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
674      }
675    }
676
677    if (MVT::isFloatingPoint(PartVT) &&
678        MVT::isFloatingPoint(ValueVT))
679      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
680
681    if (MVT::getSizeInBits(PartVT) ==
682        MVT::getSizeInBits(ValueVT))
683      return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
684
685    assert(0 && "Unknown mismatch!");
686  }
687
688  // Handle a multi-element vector.
689  MVT::ValueType IntermediateVT, RegisterVT;
690  unsigned NumIntermediates;
691  unsigned NumRegs =
692    DAG.getTargetLoweringInfo()
693      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
694                              RegisterVT);
695
696  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
697  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
698  assert(RegisterVT == Parts[0].getValueType() &&
699         "Part type doesn't match part!");
700
701  // Assemble the parts into intermediate operands.
702  SmallVector<SDOperand, 8> Ops(NumIntermediates);
703  if (NumIntermediates == NumParts) {
704    // If the register was not expanded, truncate or copy the value,
705    // as appropriate.
706    for (unsigned i = 0; i != NumParts; ++i)
707      Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
708                                PartVT, IntermediateVT);
709  } else if (NumParts > 0) {
710    // If the intermediate type was expanded, build the intermediate operands
711    // from the parts.
712    assert(NumParts % NumIntermediates == 0 &&
713           "Must expand into a divisible number of parts!");
714    unsigned Factor = NumParts / NumIntermediates;
715    for (unsigned i = 0; i != NumIntermediates; ++i)
716      Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
717                                PartVT, IntermediateVT);
718  }
719
720  // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
721  // operands.
722  return DAG.getNode(MVT::isVector(IntermediateVT) ?
723                       ISD::CONCAT_VECTORS :
724                       ISD::BUILD_VECTOR,
725                     ValueVT, &Ops[0], NumIntermediates);
726}
727
728/// getCopyToParts - Create a series of nodes that contain the
729/// specified value split into legal parts.
730static void getCopyToParts(SelectionDAG &DAG,
731                           SDOperand Val,
732                           SDOperand *Parts,
733                           unsigned NumParts,
734                           MVT::ValueType PartVT) {
735  TargetLowering &TLI = DAG.getTargetLoweringInfo();
736  MVT::ValueType PtrVT = TLI.getPointerTy();
737  MVT::ValueType ValueVT = Val.getValueType();
738
739  if (!MVT::isVector(ValueVT) || NumParts == 1) {
740    // If the value was expanded, copy from the parts.
741    if (NumParts > 1) {
742      for (unsigned i = 0; i != NumParts; ++i)
743        Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
744                               DAG.getConstant(i, PtrVT));
745      if (!DAG.getTargetLoweringInfo().isLittleEndian())
746        std::reverse(Parts, Parts + NumParts);
747      return;
748    }
749
750    // If there is a single part and the types differ, this must be
751    // a promotion.
752    if (PartVT != ValueVT) {
753      if (MVT::isVector(PartVT)) {
754        assert(MVT::isVector(ValueVT) &&
755               "Not a vector-vector cast?");
756        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
757      } else if (MVT::isVector(ValueVT)) {
758        assert(NumParts == 1 &&
759               MVT::getVectorElementType(ValueVT) == PartVT &&
760               MVT::getVectorNumElements(ValueVT) == 1 &&
761               "Only trivial vector-to-scalar conversions should get here!");
762        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
763                          DAG.getConstant(0, PtrVT));
764      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
765        if (PartVT < ValueVT)
766          Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
767        else
768          Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
769      } else if (MVT::isFloatingPoint(PartVT) &&
770                 MVT::isFloatingPoint(ValueVT)) {
771        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
772      } else if (MVT::getSizeInBits(PartVT) ==
773                 MVT::getSizeInBits(ValueVT)) {
774        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
775      } else {
776        assert(0 && "Unknown mismatch!");
777      }
778    }
779    Parts[0] = Val;
780    return;
781  }
782
783  // Handle a multi-element vector.
784  MVT::ValueType IntermediateVT, RegisterVT;
785  unsigned NumIntermediates;
786  unsigned NumRegs =
787    DAG.getTargetLoweringInfo()
788      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
789                              RegisterVT);
790  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
791
792  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
793  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
794
795  // Split the vector into intermediate operands.
796  SmallVector<SDOperand, 8> Ops(NumIntermediates);
797  for (unsigned i = 0; i != NumIntermediates; ++i)
798    if (MVT::isVector(IntermediateVT))
799      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
800                           IntermediateVT, Val,
801                           DAG.getConstant(i * (NumElements / NumIntermediates),
802                                           PtrVT));
803    else
804      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
805                           IntermediateVT, Val,
806                           DAG.getConstant(i, PtrVT));
807
808  // Split the intermediate operands into legal parts.
809  if (NumParts == NumIntermediates) {
810    // If the register was not expanded, promote or copy the value,
811    // as appropriate.
812    for (unsigned i = 0; i != NumParts; ++i)
813      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
814  } else if (NumParts > 0) {
815    // If the intermediate type was expanded, split each the value into
816    // legal parts.
817    assert(NumParts % NumIntermediates == 0 &&
818           "Must expand into a divisible number of parts!");
819    unsigned Factor = NumParts / NumIntermediates;
820    for (unsigned i = 0; i != NumIntermediates; ++i)
821      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
822  }
823}
824
825
826SDOperand SelectionDAGLowering::getValue(const Value *V) {
827  SDOperand &N = NodeMap[V];
828  if (N.Val) return N;
829
830  const Type *VTy = V->getType();
831  MVT::ValueType VT = TLI.getValueType(VTy);
832  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
833    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
834      visit(CE->getOpcode(), *CE);
835      SDOperand N1 = NodeMap[V];
836      assert(N1.Val && "visit didn't populate the ValueMap!");
837      return N1;
838    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
839      return N = DAG.getGlobalAddress(GV, VT);
840    } else if (isa<ConstantPointerNull>(C)) {
841      return N = DAG.getConstant(0, TLI.getPointerTy());
842    } else if (isa<UndefValue>(C)) {
843      if (!isa<VectorType>(VTy))
844        return N = DAG.getNode(ISD::UNDEF, VT);
845
846      // Create a BUILD_VECTOR of undef nodes.
847      const VectorType *PTy = cast<VectorType>(VTy);
848      unsigned NumElements = PTy->getNumElements();
849      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
850
851      SmallVector<SDOperand, 8> Ops;
852      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
853
854      // Create a VConstant node with generic Vector type.
855      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
856      return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
857                             &Ops[0], Ops.size());
858    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
859      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
860    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
861      unsigned NumElements = PTy->getNumElements();
862      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
863
864      // Now that we know the number and type of the elements, push a
865      // Constant or ConstantFP node onto the ops list for each element of
866      // the vector constant.
867      SmallVector<SDOperand, 8> Ops;
868      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
869        for (unsigned i = 0; i != NumElements; ++i)
870          Ops.push_back(getValue(CP->getOperand(i)));
871      } else {
872        assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
873        SDOperand Op;
874        if (MVT::isFloatingPoint(PVT))
875          Op = DAG.getConstantFP(0, PVT);
876        else
877          Op = DAG.getConstant(0, PVT);
878        Ops.assign(NumElements, Op);
879      }
880
881      // Create a BUILD_VECTOR node.
882      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
883      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
884                                      Ops.size());
885    } else {
886      // Canonicalize all constant ints to be unsigned.
887      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
888    }
889  }
890
891  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
892    std::map<const AllocaInst*, int>::iterator SI =
893    FuncInfo.StaticAllocaMap.find(AI);
894    if (SI != FuncInfo.StaticAllocaMap.end())
895      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
896  }
897
898  unsigned InReg = FuncInfo.ValueMap[V];
899  assert(InReg && "Value not in map!");
900
901  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
902  unsigned NumRegs = TLI.getNumRegisters(VT);
903
904  std::vector<unsigned> Regs(NumRegs);
905  for (unsigned i = 0; i != NumRegs; ++i)
906    Regs[i] = InReg + i;
907
908  RegsForValue RFV(Regs, RegisterVT, VT);
909  SDOperand Chain = DAG.getEntryNode();
910
911  return RFV.getCopyFromRegs(DAG, Chain, NULL);
912}
913
914
915void SelectionDAGLowering::visitRet(ReturnInst &I) {
916  if (I.getNumOperands() == 0) {
917    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
918    return;
919  }
920  SmallVector<SDOperand, 8> NewValues;
921  NewValues.push_back(getRoot());
922  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
923    SDOperand RetOp = getValue(I.getOperand(i));
924
925    // If this is an integer return value, we need to promote it ourselves to
926    // the full width of a register, since getCopyToParts and Legalize will use
927    // ANY_EXTEND rather than sign/zero.
928    // FIXME: C calling convention requires the return type to be promoted to
929    // at least 32-bit. But this is not necessary for non-C calling conventions.
930    if (MVT::isInteger(RetOp.getValueType()) &&
931        RetOp.getValueType() < MVT::i64) {
932      MVT::ValueType TmpVT;
933      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
934        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
935      else
936        TmpVT = MVT::i32;
937      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
938      const ParamAttrsList *Attrs = FTy->getParamAttrs();
939      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
940      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt))
941        ExtendKind = ISD::SIGN_EXTEND;
942      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::ZExt))
943        ExtendKind = ISD::ZERO_EXTEND;
944      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
945      NewValues.push_back(RetOp);
946      NewValues.push_back(DAG.getConstant(false, MVT::i32));
947    } else {
948      MVT::ValueType VT = RetOp.getValueType();
949      unsigned NumParts = TLI.getNumRegisters(VT);
950      MVT::ValueType PartVT = TLI.getRegisterType(VT);
951      SmallVector<SDOperand, 4> Parts(NumParts);
952      getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT);
953      for (unsigned i = 0; i < NumParts; ++i) {
954        NewValues.push_back(Parts[i]);
955        NewValues.push_back(DAG.getConstant(false, MVT::i32));
956      }
957    }
958  }
959  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
960                          &NewValues[0], NewValues.size()));
961}
962
963/// ExportFromCurrentBlock - If this condition isn't known to be exported from
964/// the current basic block, add it to ValueMap now so that we'll get a
965/// CopyTo/FromReg.
966void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
967  // No need to export constants.
968  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
969
970  // Already exported?
971  if (FuncInfo.isExportedInst(V)) return;
972
973  unsigned Reg = FuncInfo.InitializeRegForValue(V);
974  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
975}
976
977bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
978                                                    const BasicBlock *FromBB) {
979  // The operands of the setcc have to be in this block.  We don't know
980  // how to export them from some other block.
981  if (Instruction *VI = dyn_cast<Instruction>(V)) {
982    // Can export from current BB.
983    if (VI->getParent() == FromBB)
984      return true;
985
986    // Is already exported, noop.
987    return FuncInfo.isExportedInst(V);
988  }
989
990  // If this is an argument, we can export it if the BB is the entry block or
991  // if it is already exported.
992  if (isa<Argument>(V)) {
993    if (FromBB == &FromBB->getParent()->getEntryBlock())
994      return true;
995
996    // Otherwise, can only export this if it is already exported.
997    return FuncInfo.isExportedInst(V);
998  }
999
1000  // Otherwise, constants can always be exported.
1001  return true;
1002}
1003
1004static bool InBlock(const Value *V, const BasicBlock *BB) {
1005  if (const Instruction *I = dyn_cast<Instruction>(V))
1006    return I->getParent() == BB;
1007  return true;
1008}
1009
1010/// FindMergedConditions - If Cond is an expression like
1011void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1012                                                MachineBasicBlock *TBB,
1013                                                MachineBasicBlock *FBB,
1014                                                MachineBasicBlock *CurBB,
1015                                                unsigned Opc) {
1016  // If this node is not part of the or/and tree, emit it as a branch.
1017  Instruction *BOp = dyn_cast<Instruction>(Cond);
1018
1019  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1020      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1021      BOp->getParent() != CurBB->getBasicBlock() ||
1022      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1023      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1024    const BasicBlock *BB = CurBB->getBasicBlock();
1025
1026    // If the leaf of the tree is a comparison, merge the condition into
1027    // the caseblock.
1028    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1029        // The operands of the cmp have to be in this block.  We don't know
1030        // how to export them from some other block.  If this is the first block
1031        // of the sequence, no exporting is needed.
1032        (CurBB == CurMBB ||
1033         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1034          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1035      BOp = cast<Instruction>(Cond);
1036      ISD::CondCode Condition;
1037      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1038        switch (IC->getPredicate()) {
1039        default: assert(0 && "Unknown icmp predicate opcode!");
1040        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1041        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1042        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1043        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1044        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1045        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1046        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1047        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1048        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1049        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1050        }
1051      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1052        ISD::CondCode FPC, FOC;
1053        switch (FC->getPredicate()) {
1054        default: assert(0 && "Unknown fcmp predicate opcode!");
1055        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1056        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1057        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1058        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1059        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1060        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1061        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1062        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1063        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1064        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1065        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1066        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1067        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1068        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1069        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1070        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1071        }
1072        if (FiniteOnlyFPMath())
1073          Condition = FOC;
1074        else
1075          Condition = FPC;
1076      } else {
1077        Condition = ISD::SETEQ; // silence warning.
1078        assert(0 && "Unknown compare instruction");
1079      }
1080
1081      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1082                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1083      SwitchCases.push_back(CB);
1084      return;
1085    }
1086
1087    // Create a CaseBlock record representing this branch.
1088    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1089                                   NULL, TBB, FBB, CurBB);
1090    SwitchCases.push_back(CB);
1091    return;
1092  }
1093
1094
1095  //  Create TmpBB after CurBB.
1096  MachineFunction::iterator BBI = CurBB;
1097  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1098  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1099
1100  if (Opc == Instruction::Or) {
1101    // Codegen X | Y as:
1102    //   jmp_if_X TBB
1103    //   jmp TmpBB
1104    // TmpBB:
1105    //   jmp_if_Y TBB
1106    //   jmp FBB
1107    //
1108
1109    // Emit the LHS condition.
1110    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1111
1112    // Emit the RHS condition into TmpBB.
1113    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1114  } else {
1115    assert(Opc == Instruction::And && "Unknown merge op!");
1116    // Codegen X & Y as:
1117    //   jmp_if_X TmpBB
1118    //   jmp FBB
1119    // TmpBB:
1120    //   jmp_if_Y TBB
1121    //   jmp FBB
1122    //
1123    //  This requires creation of TmpBB after CurBB.
1124
1125    // Emit the LHS condition.
1126    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1127
1128    // Emit the RHS condition into TmpBB.
1129    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1130  }
1131}
1132
1133/// If the set of cases should be emitted as a series of branches, return true.
1134/// If we should emit this as a bunch of and/or'd together conditions, return
1135/// false.
1136static bool
1137ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1138  if (Cases.size() != 2) return true;
1139
1140  // If this is two comparisons of the same values or'd or and'd together, they
1141  // will get folded into a single comparison, so don't emit two blocks.
1142  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1143       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1144      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1145       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1146    return false;
1147  }
1148
1149  return true;
1150}
1151
1152void SelectionDAGLowering::visitBr(BranchInst &I) {
1153  // Update machine-CFG edges.
1154  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1155
1156  // Figure out which block is immediately after the current one.
1157  MachineBasicBlock *NextBlock = 0;
1158  MachineFunction::iterator BBI = CurMBB;
1159  if (++BBI != CurMBB->getParent()->end())
1160    NextBlock = BBI;
1161
1162  if (I.isUnconditional()) {
1163    // If this is not a fall-through branch, emit the branch.
1164    if (Succ0MBB != NextBlock)
1165      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1166                              DAG.getBasicBlock(Succ0MBB)));
1167
1168    // Update machine-CFG edges.
1169    CurMBB->addSuccessor(Succ0MBB);
1170
1171    return;
1172  }
1173
1174  // If this condition is one of the special cases we handle, do special stuff
1175  // now.
1176  Value *CondVal = I.getCondition();
1177  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1178
1179  // If this is a series of conditions that are or'd or and'd together, emit
1180  // this as a sequence of branches instead of setcc's with and/or operations.
1181  // For example, instead of something like:
1182  //     cmp A, B
1183  //     C = seteq
1184  //     cmp D, E
1185  //     F = setle
1186  //     or C, F
1187  //     jnz foo
1188  // Emit:
1189  //     cmp A, B
1190  //     je foo
1191  //     cmp D, E
1192  //     jle foo
1193  //
1194  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1195    if (BOp->hasOneUse() &&
1196        (BOp->getOpcode() == Instruction::And ||
1197         BOp->getOpcode() == Instruction::Or)) {
1198      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1199      // If the compares in later blocks need to use values not currently
1200      // exported from this block, export them now.  This block should always
1201      // be the first entry.
1202      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1203
1204      // Allow some cases to be rejected.
1205      if (ShouldEmitAsBranches(SwitchCases)) {
1206        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1207          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1208          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1209        }
1210
1211        // Emit the branch for this block.
1212        visitSwitchCase(SwitchCases[0]);
1213        SwitchCases.erase(SwitchCases.begin());
1214        return;
1215      }
1216
1217      // Okay, we decided not to do this, remove any inserted MBB's and clear
1218      // SwitchCases.
1219      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1220        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1221
1222      SwitchCases.clear();
1223    }
1224  }
1225
1226  // Create a CaseBlock record representing this branch.
1227  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1228                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1229  // Use visitSwitchCase to actually insert the fast branch sequence for this
1230  // cond branch.
1231  visitSwitchCase(CB);
1232}
1233
1234/// visitSwitchCase - Emits the necessary code to represent a single node in
1235/// the binary search tree resulting from lowering a switch instruction.
1236void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1237  SDOperand Cond;
1238  SDOperand CondLHS = getValue(CB.CmpLHS);
1239
1240  // Build the setcc now.
1241  if (CB.CmpMHS == NULL) {
1242    // Fold "(X == true)" to X and "(X == false)" to !X to
1243    // handle common cases produced by branch lowering.
1244    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1245      Cond = CondLHS;
1246    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1247      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1248      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1249    } else
1250      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1251  } else {
1252    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1253
1254    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1255    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1256
1257    SDOperand CmpOp = getValue(CB.CmpMHS);
1258    MVT::ValueType VT = CmpOp.getValueType();
1259
1260    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1261      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1262    } else {
1263      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1264      Cond = DAG.getSetCC(MVT::i1, SUB,
1265                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1266    }
1267
1268  }
1269
1270  // Set NextBlock to be the MBB immediately after the current one, if any.
1271  // This is used to avoid emitting unnecessary branches to the next block.
1272  MachineBasicBlock *NextBlock = 0;
1273  MachineFunction::iterator BBI = CurMBB;
1274  if (++BBI != CurMBB->getParent()->end())
1275    NextBlock = BBI;
1276
1277  // If the lhs block is the next block, invert the condition so that we can
1278  // fall through to the lhs instead of the rhs block.
1279  if (CB.TrueBB == NextBlock) {
1280    std::swap(CB.TrueBB, CB.FalseBB);
1281    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1282    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1283  }
1284  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1285                                 DAG.getBasicBlock(CB.TrueBB));
1286  if (CB.FalseBB == NextBlock)
1287    DAG.setRoot(BrCond);
1288  else
1289    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1290                            DAG.getBasicBlock(CB.FalseBB)));
1291  // Update successor info
1292  CurMBB->addSuccessor(CB.TrueBB);
1293  CurMBB->addSuccessor(CB.FalseBB);
1294}
1295
1296/// visitJumpTable - Emit JumpTable node in the current MBB
1297void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1298  // Emit the code for the jump table
1299  assert(JT.Reg != -1U && "Should lower JT Header first!");
1300  MVT::ValueType PTy = TLI.getPointerTy();
1301  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1302  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1303  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1304                          Table, Index));
1305  return;
1306}
1307
1308/// visitJumpTableHeader - This function emits necessary code to produce index
1309/// in the JumpTable from switch case.
1310void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1311                                         SelectionDAGISel::JumpTableHeader &JTH) {
1312  // Subtract the lowest switch case value from the value being switched on
1313  // and conditional branch to default mbb if the result is greater than the
1314  // difference between smallest and largest cases.
1315  SDOperand SwitchOp = getValue(JTH.SValue);
1316  MVT::ValueType VT = SwitchOp.getValueType();
1317  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1318                              DAG.getConstant(JTH.First, VT));
1319
1320  // The SDNode we just created, which holds the value being switched on
1321  // minus the the smallest case value, needs to be copied to a virtual
1322  // register so it can be used as an index into the jump table in a
1323  // subsequent basic block.  This value may be smaller or larger than the
1324  // target's pointer type, and therefore require extension or truncating.
1325  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1326    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1327  else
1328    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1329
1330  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1331  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1332  JT.Reg = JumpTableReg;
1333
1334  // Emit the range check for the jump table, and branch to the default
1335  // block for the switch statement if the value being switched on exceeds
1336  // the largest case in the switch.
1337  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1338                               DAG.getConstant(JTH.Last-JTH.First,VT),
1339                               ISD::SETUGT);
1340
1341  // Set NextBlock to be the MBB immediately after the current one, if any.
1342  // This is used to avoid emitting unnecessary branches to the next block.
1343  MachineBasicBlock *NextBlock = 0;
1344  MachineFunction::iterator BBI = CurMBB;
1345  if (++BBI != CurMBB->getParent()->end())
1346    NextBlock = BBI;
1347
1348  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1349                                 DAG.getBasicBlock(JT.Default));
1350
1351  if (JT.MBB == NextBlock)
1352    DAG.setRoot(BrCond);
1353  else
1354    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1355                            DAG.getBasicBlock(JT.MBB)));
1356
1357  return;
1358}
1359
1360/// visitBitTestHeader - This function emits necessary code to produce value
1361/// suitable for "bit tests"
1362void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1363  // Subtract the minimum value
1364  SDOperand SwitchOp = getValue(B.SValue);
1365  MVT::ValueType VT = SwitchOp.getValueType();
1366  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1367                              DAG.getConstant(B.First, VT));
1368
1369  // Check range
1370  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1371                                    DAG.getConstant(B.Range, VT),
1372                                    ISD::SETUGT);
1373
1374  SDOperand ShiftOp;
1375  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1376    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1377  else
1378    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1379
1380  // Make desired shift
1381  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1382                                    DAG.getConstant(1, TLI.getPointerTy()),
1383                                    ShiftOp);
1384
1385  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1386  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1387  B.Reg = SwitchReg;
1388
1389  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1390                                  DAG.getBasicBlock(B.Default));
1391
1392  // Set NextBlock to be the MBB immediately after the current one, if any.
1393  // This is used to avoid emitting unnecessary branches to the next block.
1394  MachineBasicBlock *NextBlock = 0;
1395  MachineFunction::iterator BBI = CurMBB;
1396  if (++BBI != CurMBB->getParent()->end())
1397    NextBlock = BBI;
1398
1399  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1400  if (MBB == NextBlock)
1401    DAG.setRoot(BrRange);
1402  else
1403    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1404                            DAG.getBasicBlock(MBB)));
1405
1406  CurMBB->addSuccessor(B.Default);
1407  CurMBB->addSuccessor(MBB);
1408
1409  return;
1410}
1411
1412/// visitBitTestCase - this function produces one "bit test"
1413void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1414                                            unsigned Reg,
1415                                            SelectionDAGISel::BitTestCase &B) {
1416  // Emit bit tests and jumps
1417  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1418
1419  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1420                                SwitchVal,
1421                                DAG.getConstant(B.Mask,
1422                                                TLI.getPointerTy()));
1423  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1424                                  DAG.getConstant(0, TLI.getPointerTy()),
1425                                  ISD::SETNE);
1426  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1427                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1428
1429  // Set NextBlock to be the MBB immediately after the current one, if any.
1430  // This is used to avoid emitting unnecessary branches to the next block.
1431  MachineBasicBlock *NextBlock = 0;
1432  MachineFunction::iterator BBI = CurMBB;
1433  if (++BBI != CurMBB->getParent()->end())
1434    NextBlock = BBI;
1435
1436  if (NextMBB == NextBlock)
1437    DAG.setRoot(BrAnd);
1438  else
1439    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1440                            DAG.getBasicBlock(NextMBB)));
1441
1442  CurMBB->addSuccessor(B.TargetBB);
1443  CurMBB->addSuccessor(NextMBB);
1444
1445  return;
1446}
1447
1448void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1449  // Retrieve successors.
1450  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1451  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1452
1453  LowerCallTo(I, I.getCalledValue()->getType(),
1454              I.getCallingConv(),
1455              false,
1456              getValue(I.getOperand(0)),
1457              3, LandingPad);
1458
1459  // If the value of the invoke is used outside of its defining block, make it
1460  // available as a virtual register.
1461  if (!I.use_empty()) {
1462    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1463    if (VMI != FuncInfo.ValueMap.end())
1464      DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1465  }
1466
1467  // Drop into normal successor.
1468  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1469                          DAG.getBasicBlock(Return)));
1470
1471  // Update successor info
1472  CurMBB->addSuccessor(Return);
1473  CurMBB->addSuccessor(LandingPad);
1474}
1475
1476void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1477}
1478
1479/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1480/// small case ranges).
1481bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1482                                                  CaseRecVector& WorkList,
1483                                                  Value* SV,
1484                                                  MachineBasicBlock* Default) {
1485  Case& BackCase  = *(CR.Range.second-1);
1486
1487  // Size is the number of Cases represented by this range.
1488  unsigned Size = CR.Range.second - CR.Range.first;
1489  if (Size > 3)
1490    return false;
1491
1492  // Get the MachineFunction which holds the current MBB.  This is used when
1493  // inserting any additional MBBs necessary to represent the switch.
1494  MachineFunction *CurMF = CurMBB->getParent();
1495
1496  // Figure out which block is immediately after the current one.
1497  MachineBasicBlock *NextBlock = 0;
1498  MachineFunction::iterator BBI = CR.CaseBB;
1499
1500  if (++BBI != CurMBB->getParent()->end())
1501    NextBlock = BBI;
1502
1503  // TODO: If any two of the cases has the same destination, and if one value
1504  // is the same as the other, but has one bit unset that the other has set,
1505  // use bit manipulation to do two compares at once.  For example:
1506  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1507
1508  // Rearrange the case blocks so that the last one falls through if possible.
1509  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1510    // The last case block won't fall through into 'NextBlock' if we emit the
1511    // branches in this order.  See if rearranging a case value would help.
1512    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1513      if (I->BB == NextBlock) {
1514        std::swap(*I, BackCase);
1515        break;
1516      }
1517    }
1518  }
1519
1520  // Create a CaseBlock record representing a conditional branch to
1521  // the Case's target mbb if the value being switched on SV is equal
1522  // to C.
1523  MachineBasicBlock *CurBlock = CR.CaseBB;
1524  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1525    MachineBasicBlock *FallThrough;
1526    if (I != E-1) {
1527      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1528      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1529    } else {
1530      // If the last case doesn't match, go to the default block.
1531      FallThrough = Default;
1532    }
1533
1534    Value *RHS, *LHS, *MHS;
1535    ISD::CondCode CC;
1536    if (I->High == I->Low) {
1537      // This is just small small case range :) containing exactly 1 case
1538      CC = ISD::SETEQ;
1539      LHS = SV; RHS = I->High; MHS = NULL;
1540    } else {
1541      CC = ISD::SETLE;
1542      LHS = I->Low; MHS = SV; RHS = I->High;
1543    }
1544    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1545                                   I->BB, FallThrough, CurBlock);
1546
1547    // If emitting the first comparison, just call visitSwitchCase to emit the
1548    // code into the current block.  Otherwise, push the CaseBlock onto the
1549    // vector to be later processed by SDISel, and insert the node's MBB
1550    // before the next MBB.
1551    if (CurBlock == CurMBB)
1552      visitSwitchCase(CB);
1553    else
1554      SwitchCases.push_back(CB);
1555
1556    CurBlock = FallThrough;
1557  }
1558
1559  return true;
1560}
1561
1562static inline bool areJTsAllowed(const TargetLowering &TLI) {
1563  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1564          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1565}
1566
1567/// handleJTSwitchCase - Emit jumptable for current switch case range
1568bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1569                                              CaseRecVector& WorkList,
1570                                              Value* SV,
1571                                              MachineBasicBlock* Default) {
1572  Case& FrontCase = *CR.Range.first;
1573  Case& BackCase  = *(CR.Range.second-1);
1574
1575  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1576  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1577
1578  uint64_t TSize = 0;
1579  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1580       I!=E; ++I)
1581    TSize += I->size();
1582
1583  if (!areJTsAllowed(TLI) || TSize <= 3)
1584    return false;
1585
1586  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1587  if (Density < 0.4)
1588    return false;
1589
1590  DOUT << "Lowering jump table\n"
1591       << "First entry: " << First << ". Last entry: " << Last << "\n"
1592       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1593
1594  // Get the MachineFunction which holds the current MBB.  This is used when
1595  // inserting any additional MBBs necessary to represent the switch.
1596  MachineFunction *CurMF = CurMBB->getParent();
1597
1598  // Figure out which block is immediately after the current one.
1599  MachineBasicBlock *NextBlock = 0;
1600  MachineFunction::iterator BBI = CR.CaseBB;
1601
1602  if (++BBI != CurMBB->getParent()->end())
1603    NextBlock = BBI;
1604
1605  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1606
1607  // Create a new basic block to hold the code for loading the address
1608  // of the jump table, and jumping to it.  Update successor information;
1609  // we will either branch to the default case for the switch, or the jump
1610  // table.
1611  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1612  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1613  CR.CaseBB->addSuccessor(Default);
1614  CR.CaseBB->addSuccessor(JumpTableBB);
1615
1616  // Build a vector of destination BBs, corresponding to each target
1617  // of the jump table. If the value of the jump table slot corresponds to
1618  // a case statement, push the case's BB onto the vector, otherwise, push
1619  // the default BB.
1620  std::vector<MachineBasicBlock*> DestBBs;
1621  int64_t TEI = First;
1622  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1623    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1624    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1625
1626    if ((Low <= TEI) && (TEI <= High)) {
1627      DestBBs.push_back(I->BB);
1628      if (TEI==High)
1629        ++I;
1630    } else {
1631      DestBBs.push_back(Default);
1632    }
1633  }
1634
1635  // Update successor info. Add one edge to each unique successor.
1636  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1637  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1638         E = DestBBs.end(); I != E; ++I) {
1639    if (!SuccsHandled[(*I)->getNumber()]) {
1640      SuccsHandled[(*I)->getNumber()] = true;
1641      JumpTableBB->addSuccessor(*I);
1642    }
1643  }
1644
1645  // Create a jump table index for this jump table, or return an existing
1646  // one.
1647  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1648
1649  // Set the jump table information so that we can codegen it as a second
1650  // MachineBasicBlock
1651  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1652  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1653                                        (CR.CaseBB == CurMBB));
1654  if (CR.CaseBB == CurMBB)
1655    visitJumpTableHeader(JT, JTH);
1656
1657  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1658
1659  return true;
1660}
1661
1662/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1663/// 2 subtrees.
1664bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1665                                                   CaseRecVector& WorkList,
1666                                                   Value* SV,
1667                                                   MachineBasicBlock* Default) {
1668  // Get the MachineFunction which holds the current MBB.  This is used when
1669  // inserting any additional MBBs necessary to represent the switch.
1670  MachineFunction *CurMF = CurMBB->getParent();
1671
1672  // Figure out which block is immediately after the current one.
1673  MachineBasicBlock *NextBlock = 0;
1674  MachineFunction::iterator BBI = CR.CaseBB;
1675
1676  if (++BBI != CurMBB->getParent()->end())
1677    NextBlock = BBI;
1678
1679  Case& FrontCase = *CR.Range.first;
1680  Case& BackCase  = *(CR.Range.second-1);
1681  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1682
1683  // Size is the number of Cases represented by this range.
1684  unsigned Size = CR.Range.second - CR.Range.first;
1685
1686  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1687  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1688  double FMetric = 0;
1689  CaseItr Pivot = CR.Range.first + Size/2;
1690
1691  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1692  // (heuristically) allow us to emit JumpTable's later.
1693  uint64_t TSize = 0;
1694  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1695       I!=E; ++I)
1696    TSize += I->size();
1697
1698  uint64_t LSize = FrontCase.size();
1699  uint64_t RSize = TSize-LSize;
1700  DOUT << "Selecting best pivot: \n"
1701       << "First: " << First << ", Last: " << Last <<"\n"
1702       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1703  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1704       J!=E; ++I, ++J) {
1705    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1706    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1707    assert((RBegin-LEnd>=1) && "Invalid case distance");
1708    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1709    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1710    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1711    // Should always split in some non-trivial place
1712    DOUT <<"=>Step\n"
1713         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1714         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1715         << "Metric: " << Metric << "\n";
1716    if (FMetric < Metric) {
1717      Pivot = J;
1718      FMetric = Metric;
1719      DOUT << "Current metric set to: " << FMetric << "\n";
1720    }
1721
1722    LSize += J->size();
1723    RSize -= J->size();
1724  }
1725  if (areJTsAllowed(TLI)) {
1726    // If our case is dense we *really* should handle it earlier!
1727    assert((FMetric > 0) && "Should handle dense range earlier!");
1728  } else {
1729    Pivot = CR.Range.first + Size/2;
1730  }
1731
1732  CaseRange LHSR(CR.Range.first, Pivot);
1733  CaseRange RHSR(Pivot, CR.Range.second);
1734  Constant *C = Pivot->Low;
1735  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1736
1737  // We know that we branch to the LHS if the Value being switched on is
1738  // less than the Pivot value, C.  We use this to optimize our binary
1739  // tree a bit, by recognizing that if SV is greater than or equal to the
1740  // LHS's Case Value, and that Case Value is exactly one less than the
1741  // Pivot's Value, then we can branch directly to the LHS's Target,
1742  // rather than creating a leaf node for it.
1743  if ((LHSR.second - LHSR.first) == 1 &&
1744      LHSR.first->High == CR.GE &&
1745      cast<ConstantInt>(C)->getSExtValue() ==
1746      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1747    TrueBB = LHSR.first->BB;
1748  } else {
1749    TrueBB = new MachineBasicBlock(LLVMBB);
1750    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1751    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1752  }
1753
1754  // Similar to the optimization above, if the Value being switched on is
1755  // known to be less than the Constant CR.LT, and the current Case Value
1756  // is CR.LT - 1, then we can branch directly to the target block for
1757  // the current Case Value, rather than emitting a RHS leaf node for it.
1758  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1759      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1760      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1761    FalseBB = RHSR.first->BB;
1762  } else {
1763    FalseBB = new MachineBasicBlock(LLVMBB);
1764    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1765    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1766  }
1767
1768  // Create a CaseBlock record representing a conditional branch to
1769  // the LHS node if the value being switched on SV is less than C.
1770  // Otherwise, branch to LHS.
1771  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1772                                 TrueBB, FalseBB, CR.CaseBB);
1773
1774  if (CR.CaseBB == CurMBB)
1775    visitSwitchCase(CB);
1776  else
1777    SwitchCases.push_back(CB);
1778
1779  return true;
1780}
1781
1782/// handleBitTestsSwitchCase - if current case range has few destination and
1783/// range span less, than machine word bitwidth, encode case range into series
1784/// of masks and emit bit tests with these masks.
1785bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1786                                                    CaseRecVector& WorkList,
1787                                                    Value* SV,
1788                                                    MachineBasicBlock* Default){
1789  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1790
1791  Case& FrontCase = *CR.Range.first;
1792  Case& BackCase  = *(CR.Range.second-1);
1793
1794  // Get the MachineFunction which holds the current MBB.  This is used when
1795  // inserting any additional MBBs necessary to represent the switch.
1796  MachineFunction *CurMF = CurMBB->getParent();
1797
1798  unsigned numCmps = 0;
1799  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1800       I!=E; ++I) {
1801    // Single case counts one, case range - two.
1802    if (I->Low == I->High)
1803      numCmps +=1;
1804    else
1805      numCmps +=2;
1806  }
1807
1808  // Count unique destinations
1809  SmallSet<MachineBasicBlock*, 4> Dests;
1810  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1811    Dests.insert(I->BB);
1812    if (Dests.size() > 3)
1813      // Don't bother the code below, if there are too much unique destinations
1814      return false;
1815  }
1816  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1817       << "Total number of comparisons: " << numCmps << "\n";
1818
1819  // Compute span of values.
1820  Constant* minValue = FrontCase.Low;
1821  Constant* maxValue = BackCase.High;
1822  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1823                   cast<ConstantInt>(minValue)->getSExtValue();
1824  DOUT << "Compare range: " << range << "\n"
1825       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1826       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1827
1828  if (range>=IntPtrBits ||
1829      (!(Dests.size() == 1 && numCmps >= 3) &&
1830       !(Dests.size() == 2 && numCmps >= 5) &&
1831       !(Dests.size() >= 3 && numCmps >= 6)))
1832    return false;
1833
1834  DOUT << "Emitting bit tests\n";
1835  int64_t lowBound = 0;
1836
1837  // Optimize the case where all the case values fit in a
1838  // word without having to subtract minValue. In this case,
1839  // we can optimize away the subtraction.
1840  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1841      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1842    range = cast<ConstantInt>(maxValue)->getSExtValue();
1843  } else {
1844    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1845  }
1846
1847  CaseBitsVector CasesBits;
1848  unsigned i, count = 0;
1849
1850  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1851    MachineBasicBlock* Dest = I->BB;
1852    for (i = 0; i < count; ++i)
1853      if (Dest == CasesBits[i].BB)
1854        break;
1855
1856    if (i == count) {
1857      assert((count < 3) && "Too much destinations to test!");
1858      CasesBits.push_back(CaseBits(0, Dest, 0));
1859      count++;
1860    }
1861
1862    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1863    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1864
1865    for (uint64_t j = lo; j <= hi; j++) {
1866      CasesBits[i].Mask |=  1ULL << j;
1867      CasesBits[i].Bits++;
1868    }
1869
1870  }
1871  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1872
1873  SelectionDAGISel::BitTestInfo BTC;
1874
1875  // Figure out which block is immediately after the current one.
1876  MachineFunction::iterator BBI = CR.CaseBB;
1877  ++BBI;
1878
1879  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1880
1881  DOUT << "Cases:\n";
1882  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1883    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1884         << ", BB: " << CasesBits[i].BB << "\n";
1885
1886    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1887    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1888    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1889                                                CaseBB,
1890                                                CasesBits[i].BB));
1891  }
1892
1893  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1894                                     -1U, (CR.CaseBB == CurMBB),
1895                                     CR.CaseBB, Default, BTC);
1896
1897  if (CR.CaseBB == CurMBB)
1898    visitBitTestHeader(BTB);
1899
1900  BitTestCases.push_back(BTB);
1901
1902  return true;
1903}
1904
1905
1906// Clusterify - Transform simple list of Cases into list of CaseRange's
1907unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1908                                          const SwitchInst& SI) {
1909  unsigned numCmps = 0;
1910
1911  // Start with "simple" cases
1912  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1913    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1914    Cases.push_back(Case(SI.getSuccessorValue(i),
1915                         SI.getSuccessorValue(i),
1916                         SMBB));
1917  }
1918  sort(Cases.begin(), Cases.end(), CaseCmp());
1919
1920  // Merge case into clusters
1921  if (Cases.size()>=2)
1922    // Must recompute end() each iteration because it may be
1923    // invalidated by erase if we hold on to it
1924    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
1925      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1926      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1927      MachineBasicBlock* nextBB = J->BB;
1928      MachineBasicBlock* currentBB = I->BB;
1929
1930      // If the two neighboring cases go to the same destination, merge them
1931      // into a single case.
1932      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1933        I->High = J->High;
1934        J = Cases.erase(J);
1935      } else {
1936        I = J++;
1937      }
1938    }
1939
1940  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1941    if (I->Low != I->High)
1942      // A range counts double, since it requires two compares.
1943      ++numCmps;
1944  }
1945
1946  return numCmps;
1947}
1948
1949void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1950  // Figure out which block is immediately after the current one.
1951  MachineBasicBlock *NextBlock = 0;
1952  MachineFunction::iterator BBI = CurMBB;
1953
1954  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1955
1956  // If there is only the default destination, branch to it if it is not the
1957  // next basic block.  Otherwise, just fall through.
1958  if (SI.getNumOperands() == 2) {
1959    // Update machine-CFG edges.
1960
1961    // If this is not a fall-through branch, emit the branch.
1962    if (Default != NextBlock)
1963      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1964                              DAG.getBasicBlock(Default)));
1965
1966    CurMBB->addSuccessor(Default);
1967    return;
1968  }
1969
1970  // If there are any non-default case statements, create a vector of Cases
1971  // representing each one, and sort the vector so that we can efficiently
1972  // create a binary search tree from them.
1973  CaseVector Cases;
1974  unsigned numCmps = Clusterify(Cases, SI);
1975  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1976       << ". Total compares: " << numCmps << "\n";
1977
1978  // Get the Value to be switched on and default basic blocks, which will be
1979  // inserted into CaseBlock records, representing basic blocks in the binary
1980  // search tree.
1981  Value *SV = SI.getOperand(0);
1982
1983  // Push the initial CaseRec onto the worklist
1984  CaseRecVector WorkList;
1985  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1986
1987  while (!WorkList.empty()) {
1988    // Grab a record representing a case range to process off the worklist
1989    CaseRec CR = WorkList.back();
1990    WorkList.pop_back();
1991
1992    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1993      continue;
1994
1995    // If the range has few cases (two or less) emit a series of specific
1996    // tests.
1997    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1998      continue;
1999
2000    // If the switch has more than 5 blocks, and at least 40% dense, and the
2001    // target supports indirect branches, then emit a jump table rather than
2002    // lowering the switch to a binary tree of conditional branches.
2003    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2004      continue;
2005
2006    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2007    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2008    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2009  }
2010}
2011
2012
2013void SelectionDAGLowering::visitSub(User &I) {
2014  // -0.0 - X --> fneg
2015  const Type *Ty = I.getType();
2016  if (isa<VectorType>(Ty)) {
2017    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2018      const VectorType *DestTy = cast<VectorType>(I.getType());
2019      const Type *ElTy = DestTy->getElementType();
2020      if (ElTy->isFloatingPoint()) {
2021        unsigned VL = DestTy->getNumElements();
2022        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2023        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2024        if (CV == CNZ) {
2025          SDOperand Op2 = getValue(I.getOperand(1));
2026          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2027          return;
2028        }
2029      }
2030    }
2031  }
2032  if (Ty->isFloatingPoint()) {
2033    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2034      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2035        SDOperand Op2 = getValue(I.getOperand(1));
2036        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2037        return;
2038      }
2039  }
2040
2041  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2042}
2043
2044void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2045  SDOperand Op1 = getValue(I.getOperand(0));
2046  SDOperand Op2 = getValue(I.getOperand(1));
2047
2048  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2049}
2050
2051void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2052  SDOperand Op1 = getValue(I.getOperand(0));
2053  SDOperand Op2 = getValue(I.getOperand(1));
2054
2055  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2056      MVT::getSizeInBits(Op2.getValueType()))
2057    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2058  else if (TLI.getShiftAmountTy() > Op2.getValueType())
2059    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2060
2061  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2062}
2063
2064void SelectionDAGLowering::visitICmp(User &I) {
2065  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2066  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2067    predicate = IC->getPredicate();
2068  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2069    predicate = ICmpInst::Predicate(IC->getPredicate());
2070  SDOperand Op1 = getValue(I.getOperand(0));
2071  SDOperand Op2 = getValue(I.getOperand(1));
2072  ISD::CondCode Opcode;
2073  switch (predicate) {
2074    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2075    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2076    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2077    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2078    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2079    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2080    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2081    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2082    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2083    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2084    default:
2085      assert(!"Invalid ICmp predicate value");
2086      Opcode = ISD::SETEQ;
2087      break;
2088  }
2089  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2090}
2091
2092void SelectionDAGLowering::visitFCmp(User &I) {
2093  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2094  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2095    predicate = FC->getPredicate();
2096  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2097    predicate = FCmpInst::Predicate(FC->getPredicate());
2098  SDOperand Op1 = getValue(I.getOperand(0));
2099  SDOperand Op2 = getValue(I.getOperand(1));
2100  ISD::CondCode Condition, FOC, FPC;
2101  switch (predicate) {
2102    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2103    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2104    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2105    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2106    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2107    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2108    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2109    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2110    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2111    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2112    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2113    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2114    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2115    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2116    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2117    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2118    default:
2119      assert(!"Invalid FCmp predicate value");
2120      FOC = FPC = ISD::SETFALSE;
2121      break;
2122  }
2123  if (FiniteOnlyFPMath())
2124    Condition = FOC;
2125  else
2126    Condition = FPC;
2127  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2128}
2129
2130void SelectionDAGLowering::visitSelect(User &I) {
2131  SDOperand Cond     = getValue(I.getOperand(0));
2132  SDOperand TrueVal  = getValue(I.getOperand(1));
2133  SDOperand FalseVal = getValue(I.getOperand(2));
2134  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2135                           TrueVal, FalseVal));
2136}
2137
2138
2139void SelectionDAGLowering::visitTrunc(User &I) {
2140  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2141  SDOperand N = getValue(I.getOperand(0));
2142  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2143  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2144}
2145
2146void SelectionDAGLowering::visitZExt(User &I) {
2147  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2148  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2149  SDOperand N = getValue(I.getOperand(0));
2150  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2151  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2152}
2153
2154void SelectionDAGLowering::visitSExt(User &I) {
2155  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2156  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2157  SDOperand N = getValue(I.getOperand(0));
2158  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2159  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2160}
2161
2162void SelectionDAGLowering::visitFPTrunc(User &I) {
2163  // FPTrunc is never a no-op cast, no need to check
2164  SDOperand N = getValue(I.getOperand(0));
2165  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2166  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2167}
2168
2169void SelectionDAGLowering::visitFPExt(User &I){
2170  // FPTrunc is never a no-op cast, no need to check
2171  SDOperand N = getValue(I.getOperand(0));
2172  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2173  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2174}
2175
2176void SelectionDAGLowering::visitFPToUI(User &I) {
2177  // FPToUI is never a no-op cast, no need to check
2178  SDOperand N = getValue(I.getOperand(0));
2179  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2180  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2181}
2182
2183void SelectionDAGLowering::visitFPToSI(User &I) {
2184  // FPToSI is never a no-op cast, no need to check
2185  SDOperand N = getValue(I.getOperand(0));
2186  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2187  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2188}
2189
2190void SelectionDAGLowering::visitUIToFP(User &I) {
2191  // UIToFP is never a no-op cast, no need to check
2192  SDOperand N = getValue(I.getOperand(0));
2193  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2194  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2195}
2196
2197void SelectionDAGLowering::visitSIToFP(User &I){
2198  // UIToFP is never a no-op cast, no need to check
2199  SDOperand N = getValue(I.getOperand(0));
2200  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2201  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2202}
2203
2204void SelectionDAGLowering::visitPtrToInt(User &I) {
2205  // What to do depends on the size of the integer and the size of the pointer.
2206  // We can either truncate, zero extend, or no-op, accordingly.
2207  SDOperand N = getValue(I.getOperand(0));
2208  MVT::ValueType SrcVT = N.getValueType();
2209  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2210  SDOperand Result;
2211  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2212    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2213  else
2214    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2215    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2216  setValue(&I, Result);
2217}
2218
2219void SelectionDAGLowering::visitIntToPtr(User &I) {
2220  // What to do depends on the size of the integer and the size of the pointer.
2221  // We can either truncate, zero extend, or no-op, accordingly.
2222  SDOperand N = getValue(I.getOperand(0));
2223  MVT::ValueType SrcVT = N.getValueType();
2224  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2225  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2226    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2227  else
2228    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2229    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2230}
2231
2232void SelectionDAGLowering::visitBitCast(User &I) {
2233  SDOperand N = getValue(I.getOperand(0));
2234  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2235
2236  // BitCast assures us that source and destination are the same size so this
2237  // is either a BIT_CONVERT or a no-op.
2238  if (DestVT != N.getValueType())
2239    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2240  else
2241    setValue(&I, N); // noop cast.
2242}
2243
2244void SelectionDAGLowering::visitInsertElement(User &I) {
2245  SDOperand InVec = getValue(I.getOperand(0));
2246  SDOperand InVal = getValue(I.getOperand(1));
2247  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2248                                getValue(I.getOperand(2)));
2249
2250  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2251                           TLI.getValueType(I.getType()),
2252                           InVec, InVal, InIdx));
2253}
2254
2255void SelectionDAGLowering::visitExtractElement(User &I) {
2256  SDOperand InVec = getValue(I.getOperand(0));
2257  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2258                                getValue(I.getOperand(1)));
2259  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2260                           TLI.getValueType(I.getType()), InVec, InIdx));
2261}
2262
2263void SelectionDAGLowering::visitShuffleVector(User &I) {
2264  SDOperand V1   = getValue(I.getOperand(0));
2265  SDOperand V2   = getValue(I.getOperand(1));
2266  SDOperand Mask = getValue(I.getOperand(2));
2267
2268  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2269                           TLI.getValueType(I.getType()),
2270                           V1, V2, Mask));
2271}
2272
2273
2274void SelectionDAGLowering::visitGetElementPtr(User &I) {
2275  SDOperand N = getValue(I.getOperand(0));
2276  const Type *Ty = I.getOperand(0)->getType();
2277
2278  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2279       OI != E; ++OI) {
2280    Value *Idx = *OI;
2281    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2282      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2283      if (Field) {
2284        // N = N + Offset
2285        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2286        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2287                        getIntPtrConstant(Offset));
2288      }
2289      Ty = StTy->getElementType(Field);
2290    } else {
2291      Ty = cast<SequentialType>(Ty)->getElementType();
2292
2293      // If this is a constant subscript, handle it quickly.
2294      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2295        if (CI->getZExtValue() == 0) continue;
2296        uint64_t Offs =
2297            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2298        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2299        continue;
2300      }
2301
2302      // N = N + Idx * ElementSize;
2303      uint64_t ElementSize = TD->getABITypeSize(Ty);
2304      SDOperand IdxN = getValue(Idx);
2305
2306      // If the index is smaller or larger than intptr_t, truncate or extend
2307      // it.
2308      if (IdxN.getValueType() < N.getValueType()) {
2309        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2310      } else if (IdxN.getValueType() > N.getValueType())
2311        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2312
2313      // If this is a multiply by a power of two, turn it into a shl
2314      // immediately.  This is a very common case.
2315      if (isPowerOf2_64(ElementSize)) {
2316        unsigned Amt = Log2_64(ElementSize);
2317        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2318                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2319        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2320        continue;
2321      }
2322
2323      SDOperand Scale = getIntPtrConstant(ElementSize);
2324      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2325      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2326    }
2327  }
2328  setValue(&I, N);
2329}
2330
2331void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2332  // If this is a fixed sized alloca in the entry block of the function,
2333  // allocate it statically on the stack.
2334  if (FuncInfo.StaticAllocaMap.count(&I))
2335    return;   // getValue will auto-populate this.
2336
2337  const Type *Ty = I.getAllocatedType();
2338  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2339  unsigned Align =
2340    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2341             I.getAlignment());
2342
2343  SDOperand AllocSize = getValue(I.getArraySize());
2344  MVT::ValueType IntPtr = TLI.getPointerTy();
2345  if (IntPtr < AllocSize.getValueType())
2346    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2347  else if (IntPtr > AllocSize.getValueType())
2348    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2349
2350  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2351                          getIntPtrConstant(TySize));
2352
2353  // Handle alignment.  If the requested alignment is less than or equal to
2354  // the stack alignment, ignore it.  If the size is greater than or equal to
2355  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2356  unsigned StackAlign =
2357    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2358  if (Align <= StackAlign)
2359    Align = 0;
2360
2361  // Round the size of the allocation up to the stack alignment size
2362  // by add SA-1 to the size.
2363  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2364                          getIntPtrConstant(StackAlign-1));
2365  // Mask out the low bits for alignment purposes.
2366  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2367                          getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2368
2369  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2370  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2371                                                    MVT::Other);
2372  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2373  setValue(&I, DSA);
2374  DAG.setRoot(DSA.getValue(1));
2375
2376  // Inform the Frame Information that we have just allocated a variable-sized
2377  // object.
2378  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2379}
2380
2381void SelectionDAGLowering::visitLoad(LoadInst &I) {
2382  SDOperand Ptr = getValue(I.getOperand(0));
2383
2384  SDOperand Root;
2385  if (I.isVolatile())
2386    Root = getRoot();
2387  else {
2388    // Do not serialize non-volatile loads against each other.
2389    Root = DAG.getRoot();
2390  }
2391
2392  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2393                           Root, I.isVolatile(), I.getAlignment()));
2394}
2395
2396SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2397                                            const Value *SV, SDOperand Root,
2398                                            bool isVolatile,
2399                                            unsigned Alignment) {
2400  SDOperand L =
2401    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2402                isVolatile, Alignment);
2403
2404  if (isVolatile)
2405    DAG.setRoot(L.getValue(1));
2406  else
2407    PendingLoads.push_back(L.getValue(1));
2408
2409  return L;
2410}
2411
2412
2413void SelectionDAGLowering::visitStore(StoreInst &I) {
2414  Value *SrcV = I.getOperand(0);
2415  SDOperand Src = getValue(SrcV);
2416  SDOperand Ptr = getValue(I.getOperand(1));
2417  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2418                           I.isVolatile(), I.getAlignment()));
2419}
2420
2421/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
2422/// access memory and has no other side effects at all.
2423static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
2424#define GET_NO_MEMORY_INTRINSICS
2425#include "llvm/Intrinsics.gen"
2426#undef GET_NO_MEMORY_INTRINSICS
2427  return false;
2428}
2429
2430// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
2431// have any side-effects or if it only reads memory.
2432static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
2433#define GET_SIDE_EFFECT_INFO
2434#include "llvm/Intrinsics.gen"
2435#undef GET_SIDE_EFFECT_INFO
2436  return false;
2437}
2438
2439/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2440/// node.
2441void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2442                                                unsigned Intrinsic) {
2443  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
2444  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
2445
2446  // Build the operand list.
2447  SmallVector<SDOperand, 8> Ops;
2448  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2449    if (OnlyLoad) {
2450      // We don't need to serialize loads against other loads.
2451      Ops.push_back(DAG.getRoot());
2452    } else {
2453      Ops.push_back(getRoot());
2454    }
2455  }
2456
2457  // Add the intrinsic ID as an integer operand.
2458  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2459
2460  // Add all operands of the call to the operand list.
2461  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2462    SDOperand Op = getValue(I.getOperand(i));
2463    assert(TLI.isTypeLegal(Op.getValueType()) &&
2464           "Intrinsic uses a non-legal type?");
2465    Ops.push_back(Op);
2466  }
2467
2468  std::vector<MVT::ValueType> VTs;
2469  if (I.getType() != Type::VoidTy) {
2470    MVT::ValueType VT = TLI.getValueType(I.getType());
2471    if (MVT::isVector(VT)) {
2472      const VectorType *DestTy = cast<VectorType>(I.getType());
2473      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2474
2475      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2476      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2477    }
2478
2479    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2480    VTs.push_back(VT);
2481  }
2482  if (HasChain)
2483    VTs.push_back(MVT::Other);
2484
2485  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2486
2487  // Create the node.
2488  SDOperand Result;
2489  if (!HasChain)
2490    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2491                         &Ops[0], Ops.size());
2492  else if (I.getType() != Type::VoidTy)
2493    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2494                         &Ops[0], Ops.size());
2495  else
2496    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2497                         &Ops[0], Ops.size());
2498
2499  if (HasChain) {
2500    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2501    if (OnlyLoad)
2502      PendingLoads.push_back(Chain);
2503    else
2504      DAG.setRoot(Chain);
2505  }
2506  if (I.getType() != Type::VoidTy) {
2507    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2508      MVT::ValueType VT = TLI.getValueType(PTy);
2509      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2510    }
2511    setValue(&I, Result);
2512  }
2513}
2514
2515/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2516static GlobalVariable *ExtractTypeInfo (Value *V) {
2517  V = IntrinsicInst::StripPointerCasts(V);
2518  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2519  assert (GV || isa<ConstantPointerNull>(V) &&
2520          "TypeInfo must be a global variable or NULL");
2521  return GV;
2522}
2523
2524/// addCatchInfo - Extract the personality and type infos from an eh.selector
2525/// call, and add them to the specified machine basic block.
2526static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2527                         MachineBasicBlock *MBB) {
2528  // Inform the MachineModuleInfo of the personality for this landing pad.
2529  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2530  assert(CE->getOpcode() == Instruction::BitCast &&
2531         isa<Function>(CE->getOperand(0)) &&
2532         "Personality should be a function");
2533  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2534
2535  // Gather all the type infos for this landing pad and pass them along to
2536  // MachineModuleInfo.
2537  std::vector<GlobalVariable *> TyInfo;
2538  unsigned N = I.getNumOperands();
2539
2540  for (unsigned i = N - 1; i > 2; --i) {
2541    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2542      unsigned FilterLength = CI->getZExtValue();
2543      unsigned FirstCatch = i + FilterLength + !FilterLength;
2544      assert (FirstCatch <= N && "Invalid filter length");
2545
2546      if (FirstCatch < N) {
2547        TyInfo.reserve(N - FirstCatch);
2548        for (unsigned j = FirstCatch; j < N; ++j)
2549          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2550        MMI->addCatchTypeInfo(MBB, TyInfo);
2551        TyInfo.clear();
2552      }
2553
2554      if (!FilterLength) {
2555        // Cleanup.
2556        MMI->addCleanup(MBB);
2557      } else {
2558        // Filter.
2559        TyInfo.reserve(FilterLength - 1);
2560        for (unsigned j = i + 1; j < FirstCatch; ++j)
2561          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2562        MMI->addFilterTypeInfo(MBB, TyInfo);
2563        TyInfo.clear();
2564      }
2565
2566      N = i;
2567    }
2568  }
2569
2570  if (N > 3) {
2571    TyInfo.reserve(N - 3);
2572    for (unsigned j = 3; j < N; ++j)
2573      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2574    MMI->addCatchTypeInfo(MBB, TyInfo);
2575  }
2576}
2577
2578/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2579/// we want to emit this as a call to a named external function, return the name
2580/// otherwise lower it and return null.
2581const char *
2582SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2583  switch (Intrinsic) {
2584  default:
2585    // By default, turn this into a target intrinsic node.
2586    visitTargetIntrinsic(I, Intrinsic);
2587    return 0;
2588  case Intrinsic::vastart:  visitVAStart(I); return 0;
2589  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2590  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2591  case Intrinsic::returnaddress:
2592    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2593                             getValue(I.getOperand(1))));
2594    return 0;
2595  case Intrinsic::frameaddress:
2596    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2597                             getValue(I.getOperand(1))));
2598    return 0;
2599  case Intrinsic::setjmp:
2600    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2601    break;
2602  case Intrinsic::longjmp:
2603    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2604    break;
2605  case Intrinsic::memcpy_i32:
2606  case Intrinsic::memcpy_i64:
2607    visitMemIntrinsic(I, ISD::MEMCPY);
2608    return 0;
2609  case Intrinsic::memset_i32:
2610  case Intrinsic::memset_i64:
2611    visitMemIntrinsic(I, ISD::MEMSET);
2612    return 0;
2613  case Intrinsic::memmove_i32:
2614  case Intrinsic::memmove_i64:
2615    visitMemIntrinsic(I, ISD::MEMMOVE);
2616    return 0;
2617
2618  case Intrinsic::dbg_stoppoint: {
2619    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2620    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2621    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2622      SDOperand Ops[5];
2623
2624      Ops[0] = getRoot();
2625      Ops[1] = getValue(SPI.getLineValue());
2626      Ops[2] = getValue(SPI.getColumnValue());
2627
2628      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2629      assert(DD && "Not a debug information descriptor");
2630      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2631
2632      Ops[3] = DAG.getString(CompileUnit->getFileName());
2633      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2634
2635      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2636    }
2637
2638    return 0;
2639  }
2640  case Intrinsic::dbg_region_start: {
2641    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2642    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2643    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2644      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2645      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2646                              DAG.getConstant(LabelID, MVT::i32)));
2647    }
2648
2649    return 0;
2650  }
2651  case Intrinsic::dbg_region_end: {
2652    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2653    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2654    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2655      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2656      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2657                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2658    }
2659
2660    return 0;
2661  }
2662  case Intrinsic::dbg_func_start: {
2663    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2664    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2665    if (MMI && FSI.getSubprogram() &&
2666        MMI->Verify(FSI.getSubprogram())) {
2667      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2668      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2669                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2670    }
2671
2672    return 0;
2673  }
2674  case Intrinsic::dbg_declare: {
2675    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2676    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2677    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2678      SDOperand AddressOp  = getValue(DI.getAddress());
2679      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2680        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2681    }
2682
2683    return 0;
2684  }
2685
2686  case Intrinsic::eh_exception: {
2687    if (ExceptionHandling) {
2688      if (!CurMBB->isLandingPad()) {
2689        // FIXME: Mark exception register as live in.  Hack for PR1508.
2690        unsigned Reg = TLI.getExceptionAddressRegister();
2691        if (Reg) CurMBB->addLiveIn(Reg);
2692      }
2693      // Insert the EXCEPTIONADDR instruction.
2694      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2695      SDOperand Ops[1];
2696      Ops[0] = DAG.getRoot();
2697      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2698      setValue(&I, Op);
2699      DAG.setRoot(Op.getValue(1));
2700    } else {
2701      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2702    }
2703    return 0;
2704  }
2705
2706  case Intrinsic::eh_selector_i32:
2707  case Intrinsic::eh_selector_i64: {
2708    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2709    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2710                         MVT::i32 : MVT::i64);
2711
2712    if (ExceptionHandling && MMI) {
2713      if (CurMBB->isLandingPad())
2714        addCatchInfo(I, MMI, CurMBB);
2715      else {
2716#ifndef NDEBUG
2717        FuncInfo.CatchInfoLost.insert(&I);
2718#endif
2719        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
2720        unsigned Reg = TLI.getExceptionSelectorRegister();
2721        if (Reg) CurMBB->addLiveIn(Reg);
2722      }
2723
2724      // Insert the EHSELECTION instruction.
2725      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2726      SDOperand Ops[2];
2727      Ops[0] = getValue(I.getOperand(1));
2728      Ops[1] = getRoot();
2729      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2730      setValue(&I, Op);
2731      DAG.setRoot(Op.getValue(1));
2732    } else {
2733      setValue(&I, DAG.getConstant(0, VT));
2734    }
2735
2736    return 0;
2737  }
2738
2739  case Intrinsic::eh_typeid_for_i32:
2740  case Intrinsic::eh_typeid_for_i64: {
2741    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2742    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2743                         MVT::i32 : MVT::i64);
2744
2745    if (MMI) {
2746      // Find the type id for the given typeinfo.
2747      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2748
2749      unsigned TypeID = MMI->getTypeIDFor(GV);
2750      setValue(&I, DAG.getConstant(TypeID, VT));
2751    } else {
2752      // Return something different to eh_selector.
2753      setValue(&I, DAG.getConstant(1, VT));
2754    }
2755
2756    return 0;
2757  }
2758
2759  case Intrinsic::eh_return: {
2760    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2761
2762    if (MMI && ExceptionHandling) {
2763      MMI->setCallsEHReturn(true);
2764      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2765                              MVT::Other,
2766                              getRoot(),
2767                              getValue(I.getOperand(1)),
2768                              getValue(I.getOperand(2))));
2769    } else {
2770      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2771    }
2772
2773    return 0;
2774  }
2775
2776   case Intrinsic::eh_unwind_init: {
2777     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2778       MMI->setCallsUnwindInit(true);
2779     }
2780
2781     return 0;
2782   }
2783
2784   case Intrinsic::eh_dwarf_cfa: {
2785     if (ExceptionHandling) {
2786       MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
2787       SDOperand CfaArg;
2788       if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2789         CfaArg = DAG.getNode(ISD::TRUNCATE,
2790                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2791       else
2792         CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2793                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2794
2795       SDOperand Offset = DAG.getNode(ISD::ADD,
2796                                      TLI.getPointerTy(),
2797                                      DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
2798                                                  TLI.getPointerTy()),
2799                                      CfaArg);
2800       setValue(&I, DAG.getNode(ISD::ADD,
2801                                TLI.getPointerTy(),
2802                                DAG.getNode(ISD::FRAMEADDR,
2803                                            TLI.getPointerTy(),
2804                                            DAG.getConstant(0,
2805                                                            TLI.getPointerTy())),
2806                                Offset));
2807     } else {
2808       setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2809     }
2810
2811     return 0;
2812  }
2813
2814  case Intrinsic::sqrt:
2815    setValue(&I, DAG.getNode(ISD::FSQRT,
2816                             getValue(I.getOperand(1)).getValueType(),
2817                             getValue(I.getOperand(1))));
2818    return 0;
2819  case Intrinsic::powi:
2820    setValue(&I, DAG.getNode(ISD::FPOWI,
2821                             getValue(I.getOperand(1)).getValueType(),
2822                             getValue(I.getOperand(1)),
2823                             getValue(I.getOperand(2))));
2824    return 0;
2825  case Intrinsic::sin:
2826    setValue(&I, DAG.getNode(ISD::FSIN,
2827                             getValue(I.getOperand(1)).getValueType(),
2828                             getValue(I.getOperand(1))));
2829    return 0;
2830  case Intrinsic::cos:
2831    setValue(&I, DAG.getNode(ISD::FCOS,
2832                             getValue(I.getOperand(1)).getValueType(),
2833                             getValue(I.getOperand(1))));
2834    return 0;
2835  case Intrinsic::pow:
2836    setValue(&I, DAG.getNode(ISD::FPOW,
2837                             getValue(I.getOperand(1)).getValueType(),
2838                             getValue(I.getOperand(1)),
2839                             getValue(I.getOperand(2))));
2840    return 0;
2841  case Intrinsic::pcmarker: {
2842    SDOperand Tmp = getValue(I.getOperand(1));
2843    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2844    return 0;
2845  }
2846  case Intrinsic::readcyclecounter: {
2847    SDOperand Op = getRoot();
2848    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2849                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2850                                &Op, 1);
2851    setValue(&I, Tmp);
2852    DAG.setRoot(Tmp.getValue(1));
2853    return 0;
2854  }
2855  case Intrinsic::part_select: {
2856    // Currently not implemented: just abort
2857    assert(0 && "part_select intrinsic not implemented");
2858    abort();
2859  }
2860  case Intrinsic::part_set: {
2861    // Currently not implemented: just abort
2862    assert(0 && "part_set intrinsic not implemented");
2863    abort();
2864  }
2865  case Intrinsic::bswap:
2866    setValue(&I, DAG.getNode(ISD::BSWAP,
2867                             getValue(I.getOperand(1)).getValueType(),
2868                             getValue(I.getOperand(1))));
2869    return 0;
2870  case Intrinsic::cttz: {
2871    SDOperand Arg = getValue(I.getOperand(1));
2872    MVT::ValueType Ty = Arg.getValueType();
2873    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2874    setValue(&I, result);
2875    return 0;
2876  }
2877  case Intrinsic::ctlz: {
2878    SDOperand Arg = getValue(I.getOperand(1));
2879    MVT::ValueType Ty = Arg.getValueType();
2880    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2881    setValue(&I, result);
2882    return 0;
2883  }
2884  case Intrinsic::ctpop: {
2885    SDOperand Arg = getValue(I.getOperand(1));
2886    MVT::ValueType Ty = Arg.getValueType();
2887    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2888    setValue(&I, result);
2889    return 0;
2890  }
2891  case Intrinsic::stacksave: {
2892    SDOperand Op = getRoot();
2893    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2894              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2895    setValue(&I, Tmp);
2896    DAG.setRoot(Tmp.getValue(1));
2897    return 0;
2898  }
2899  case Intrinsic::stackrestore: {
2900    SDOperand Tmp = getValue(I.getOperand(1));
2901    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2902    return 0;
2903  }
2904  case Intrinsic::prefetch:
2905    // FIXME: Currently discarding prefetches.
2906    return 0;
2907
2908  case Intrinsic::var_annotation:
2909    // Discard annotate attributes
2910    return 0;
2911
2912  case Intrinsic::init_trampoline: {
2913    const Function *F =
2914      cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
2915
2916    SDOperand Ops[6];
2917    Ops[0] = getRoot();
2918    Ops[1] = getValue(I.getOperand(1));
2919    Ops[2] = getValue(I.getOperand(2));
2920    Ops[3] = getValue(I.getOperand(3));
2921    Ops[4] = DAG.getSrcValue(I.getOperand(1));
2922    Ops[5] = DAG.getSrcValue(F);
2923
2924    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
2925                                DAG.getNodeValueTypes(TLI.getPointerTy(),
2926                                                      MVT::Other), 2,
2927                                Ops, 6);
2928
2929    setValue(&I, Tmp);
2930    DAG.setRoot(Tmp.getValue(1));
2931    return 0;
2932  }
2933  }
2934}
2935
2936
2937void SelectionDAGLowering::LowerCallTo(Instruction &I,
2938                                       const Type *CalledValueTy,
2939                                       unsigned CallingConv,
2940                                       bool IsTailCall,
2941                                       SDOperand Callee, unsigned OpIdx,
2942                                       MachineBasicBlock *LandingPad) {
2943  const PointerType *PT = cast<PointerType>(CalledValueTy);
2944  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2945  const ParamAttrsList *Attrs = FTy->getParamAttrs();
2946  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2947  unsigned BeginLabel = 0, EndLabel = 0;
2948
2949  TargetLowering::ArgListTy Args;
2950  TargetLowering::ArgListEntry Entry;
2951  Args.reserve(I.getNumOperands());
2952  for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2953    Value *Arg = I.getOperand(i);
2954    SDOperand ArgNode = getValue(Arg);
2955    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2956
2957    unsigned attrInd = i - OpIdx + 1;
2958    Entry.isSExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt);
2959    Entry.isZExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt);
2960    Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg);
2961    Entry.isSRet  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet);
2962    Entry.isNest  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::Nest);
2963    Entry.isByVal = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ByVal);
2964    Args.push_back(Entry);
2965  }
2966
2967  if (ExceptionHandling && MMI && LandingPad) {
2968    // Insert a label before the invoke call to mark the try range.  This can be
2969    // used to detect deletion of the invoke via the MachineModuleInfo.
2970    BeginLabel = MMI->NextLabelID();
2971    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2972                            DAG.getConstant(BeginLabel, MVT::i32)));
2973  }
2974
2975  std::pair<SDOperand,SDOperand> Result =
2976    TLI.LowerCallTo(getRoot(), I.getType(),
2977                    Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2978                    FTy->isVarArg(), CallingConv, IsTailCall,
2979                    Callee, Args, DAG);
2980  if (I.getType() != Type::VoidTy)
2981    setValue(&I, Result.first);
2982  DAG.setRoot(Result.second);
2983
2984  if (ExceptionHandling && MMI && LandingPad) {
2985    // Insert a label at the end of the invoke call to mark the try range.  This
2986    // can be used to detect deletion of the invoke via the MachineModuleInfo.
2987    EndLabel = MMI->NextLabelID();
2988    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2989                            DAG.getConstant(EndLabel, MVT::i32)));
2990
2991    // Inform MachineModuleInfo of range.
2992    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2993  }
2994}
2995
2996
2997void SelectionDAGLowering::visitCall(CallInst &I) {
2998  const char *RenameFn = 0;
2999  if (Function *F = I.getCalledFunction()) {
3000    if (F->isDeclaration()) {
3001      if (unsigned IID = F->getIntrinsicID()) {
3002        RenameFn = visitIntrinsicCall(I, IID);
3003        if (!RenameFn)
3004          return;
3005      }
3006    }
3007
3008    // Check for well-known libc/libm calls.  If the function is internal, it
3009    // can't be a library call.
3010    unsigned NameLen = F->getNameLen();
3011    if (!F->hasInternalLinkage() && NameLen) {
3012      const char *NameStr = F->getNameStart();
3013      if (NameStr[0] == 'c' &&
3014          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3015           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3016        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3017            I.getOperand(1)->getType()->isFloatingPoint() &&
3018            I.getType() == I.getOperand(1)->getType() &&
3019            I.getType() == I.getOperand(2)->getType()) {
3020          SDOperand LHS = getValue(I.getOperand(1));
3021          SDOperand RHS = getValue(I.getOperand(2));
3022          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3023                                   LHS, RHS));
3024          return;
3025        }
3026      } else if (NameStr[0] == 'f' &&
3027                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3028                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3029                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3030        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3031            I.getOperand(1)->getType()->isFloatingPoint() &&
3032            I.getType() == I.getOperand(1)->getType()) {
3033          SDOperand Tmp = getValue(I.getOperand(1));
3034          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3035          return;
3036        }
3037      } else if (NameStr[0] == 's' &&
3038                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3039                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3040                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3041        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3042            I.getOperand(1)->getType()->isFloatingPoint() &&
3043            I.getType() == I.getOperand(1)->getType()) {
3044          SDOperand Tmp = getValue(I.getOperand(1));
3045          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3046          return;
3047        }
3048      } else if (NameStr[0] == 'c' &&
3049                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3050                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3051                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3052        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3053            I.getOperand(1)->getType()->isFloatingPoint() &&
3054            I.getType() == I.getOperand(1)->getType()) {
3055          SDOperand Tmp = getValue(I.getOperand(1));
3056          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3057          return;
3058        }
3059      }
3060    }
3061  } else if (isa<InlineAsm>(I.getOperand(0))) {
3062    visitInlineAsm(I);
3063    return;
3064  }
3065
3066  SDOperand Callee;
3067  if (!RenameFn)
3068    Callee = getValue(I.getOperand(0));
3069  else
3070    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3071
3072  LowerCallTo(I, I.getCalledValue()->getType(),
3073              I.getCallingConv(),
3074              I.isTailCall(),
3075              Callee,
3076              1);
3077}
3078
3079
3080/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3081/// this value and returns the result as a ValueVT value.  This uses
3082/// Chain/Flag as the input and updates them for the output Chain/Flag.
3083/// If the Flag pointer is NULL, no flag is used.
3084SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3085                                        SDOperand &Chain, SDOperand *Flag)const{
3086  // Copy the legal parts from the registers.
3087  unsigned NumParts = Regs.size();
3088  SmallVector<SDOperand, 8> Parts(NumParts);
3089  for (unsigned i = 0; i != NumParts; ++i) {
3090    SDOperand Part = Flag ?
3091                     DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3092                     DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3093    Chain = Part.getValue(1);
3094    if (Flag)
3095      *Flag = Part.getValue(2);
3096    Parts[i] = Part;
3097  }
3098
3099  // Assemble the legal parts into the final value.
3100  return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
3101}
3102
3103/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3104/// specified value into the registers specified by this object.  This uses
3105/// Chain/Flag as the input and updates them for the output Chain/Flag.
3106/// If the Flag pointer is NULL, no flag is used.
3107void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3108                                 SDOperand &Chain, SDOperand *Flag) const {
3109  // Get the list of the values's legal parts.
3110  unsigned NumParts = Regs.size();
3111  SmallVector<SDOperand, 8> Parts(NumParts);
3112  getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3113
3114  // Copy the parts into the registers.
3115  for (unsigned i = 0; i != NumParts; ++i) {
3116    SDOperand Part = Flag ?
3117                     DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3118                     DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3119    Chain = Part.getValue(0);
3120    if (Flag)
3121      *Flag = Part.getValue(1);
3122  }
3123}
3124
3125/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3126/// operand list.  This adds the code marker and includes the number of
3127/// values added into it.
3128void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3129                                        std::vector<SDOperand> &Ops) const {
3130  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3131  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3132  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3133    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3134}
3135
3136/// isAllocatableRegister - If the specified register is safe to allocate,
3137/// i.e. it isn't a stack pointer or some other special register, return the
3138/// register class for the register.  Otherwise, return null.
3139static const TargetRegisterClass *
3140isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3141                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
3142  MVT::ValueType FoundVT = MVT::Other;
3143  const TargetRegisterClass *FoundRC = 0;
3144  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3145       E = MRI->regclass_end(); RCI != E; ++RCI) {
3146    MVT::ValueType ThisVT = MVT::Other;
3147
3148    const TargetRegisterClass *RC = *RCI;
3149    // If none of the the value types for this register class are valid, we
3150    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3151    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3152         I != E; ++I) {
3153      if (TLI.isTypeLegal(*I)) {
3154        // If we have already found this register in a different register class,
3155        // choose the one with the largest VT specified.  For example, on
3156        // PowerPC, we favor f64 register classes over f32.
3157        if (FoundVT == MVT::Other ||
3158            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3159          ThisVT = *I;
3160          break;
3161        }
3162      }
3163    }
3164
3165    if (ThisVT == MVT::Other) continue;
3166
3167    // NOTE: This isn't ideal.  In particular, this might allocate the
3168    // frame pointer in functions that need it (due to them not being taken
3169    // out of allocation, because a variable sized allocation hasn't been seen
3170    // yet).  This is a slight code pessimization, but should still work.
3171    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3172         E = RC->allocation_order_end(MF); I != E; ++I)
3173      if (*I == Reg) {
3174        // We found a matching register class.  Keep looking at others in case
3175        // we find one with larger registers that this physreg is also in.
3176        FoundRC = RC;
3177        FoundVT = ThisVT;
3178        break;
3179      }
3180  }
3181  return FoundRC;
3182}
3183
3184
3185namespace {
3186/// AsmOperandInfo - This contains information for each constraint that we are
3187/// lowering.
3188struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3189  /// ConstraintCode - This contains the actual string for the code, like "m".
3190  std::string ConstraintCode;
3191
3192  /// ConstraintType - Information about the constraint code, e.g. Register,
3193  /// RegisterClass, Memory, Other, Unknown.
3194  TargetLowering::ConstraintType ConstraintType;
3195
3196  /// CallOperand/CallOperandval - If this is the result output operand or a
3197  /// clobber, this is null, otherwise it is the incoming operand to the
3198  /// CallInst.  This gets modified as the asm is processed.
3199  SDOperand CallOperand;
3200  Value *CallOperandVal;
3201
3202  /// ConstraintVT - The ValueType for the operand value.
3203  MVT::ValueType ConstraintVT;
3204
3205  /// AssignedRegs - If this is a register or register class operand, this
3206  /// contains the set of register corresponding to the operand.
3207  RegsForValue AssignedRegs;
3208
3209  AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3210    : InlineAsm::ConstraintInfo(info),
3211      ConstraintType(TargetLowering::C_Unknown),
3212      CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3213  }
3214
3215  void ComputeConstraintToUse(const TargetLowering &TLI);
3216
3217  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3218  /// busy in OutputRegs/InputRegs.
3219  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3220                         std::set<unsigned> &OutputRegs,
3221                         std::set<unsigned> &InputRegs) const {
3222     if (isOutReg)
3223       OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3224     if (isInReg)
3225       InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3226   }
3227};
3228} // end anon namespace.
3229
3230/// getConstraintGenerality - Return an integer indicating how general CT is.
3231static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3232  switch (CT) {
3233    default: assert(0 && "Unknown constraint type!");
3234    case TargetLowering::C_Other:
3235    case TargetLowering::C_Unknown:
3236      return 0;
3237    case TargetLowering::C_Register:
3238      return 1;
3239    case TargetLowering::C_RegisterClass:
3240      return 2;
3241    case TargetLowering::C_Memory:
3242      return 3;
3243  }
3244}
3245
3246void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3247  assert(!Codes.empty() && "Must have at least one constraint");
3248
3249  std::string *Current = &Codes[0];
3250  TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3251  if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
3252    ConstraintCode = *Current;
3253    ConstraintType = CurType;
3254    return;
3255  }
3256
3257  unsigned CurGenerality = getConstraintGenerality(CurType);
3258
3259  // If we have multiple constraints, try to pick the most general one ahead
3260  // of time.  This isn't a wonderful solution, but handles common cases.
3261  for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3262    TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3263    unsigned ThisGenerality = getConstraintGenerality(ThisType);
3264    if (ThisGenerality > CurGenerality) {
3265      // This constraint letter is more general than the previous one,
3266      // use it.
3267      CurType = ThisType;
3268      Current = &Codes[j];
3269      CurGenerality = ThisGenerality;
3270    }
3271  }
3272
3273  ConstraintCode = *Current;
3274  ConstraintType = CurType;
3275}
3276
3277
3278void SelectionDAGLowering::
3279GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3280                     std::set<unsigned> &OutputRegs,
3281                     std::set<unsigned> &InputRegs) {
3282  // Compute whether this value requires an input register, an output register,
3283  // or both.
3284  bool isOutReg = false;
3285  bool isInReg = false;
3286  switch (OpInfo.Type) {
3287  case InlineAsm::isOutput:
3288    isOutReg = true;
3289
3290    // If this is an early-clobber output, or if there is an input
3291    // constraint that matches this, we need to reserve the input register
3292    // so no other inputs allocate to it.
3293    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3294    break;
3295  case InlineAsm::isInput:
3296    isInReg = true;
3297    isOutReg = false;
3298    break;
3299  case InlineAsm::isClobber:
3300    isOutReg = true;
3301    isInReg = true;
3302    break;
3303  }
3304
3305
3306  MachineFunction &MF = DAG.getMachineFunction();
3307  std::vector<unsigned> Regs;
3308
3309  // If this is a constraint for a single physreg, or a constraint for a
3310  // register class, find it.
3311  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3312    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3313                                     OpInfo.ConstraintVT);
3314
3315  unsigned NumRegs = 1;
3316  if (OpInfo.ConstraintVT != MVT::Other)
3317    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3318  MVT::ValueType RegVT;
3319  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3320
3321
3322  // If this is a constraint for a specific physical register, like {r17},
3323  // assign it now.
3324  if (PhysReg.first) {
3325    if (OpInfo.ConstraintVT == MVT::Other)
3326      ValueVT = *PhysReg.second->vt_begin();
3327
3328    // Get the actual register value type.  This is important, because the user
3329    // may have asked for (e.g.) the AX register in i32 type.  We need to
3330    // remember that AX is actually i16 to get the right extension.
3331    RegVT = *PhysReg.second->vt_begin();
3332
3333    // This is a explicit reference to a physical register.
3334    Regs.push_back(PhysReg.first);
3335
3336    // If this is an expanded reference, add the rest of the regs to Regs.
3337    if (NumRegs != 1) {
3338      TargetRegisterClass::iterator I = PhysReg.second->begin();
3339      TargetRegisterClass::iterator E = PhysReg.second->end();
3340      for (; *I != PhysReg.first; ++I)
3341        assert(I != E && "Didn't find reg!");
3342
3343      // Already added the first reg.
3344      --NumRegs; ++I;
3345      for (; NumRegs; --NumRegs, ++I) {
3346        assert(I != E && "Ran out of registers to allocate!");
3347        Regs.push_back(*I);
3348      }
3349    }
3350    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3351    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3352    return;
3353  }
3354
3355  // Otherwise, if this was a reference to an LLVM register class, create vregs
3356  // for this reference.
3357  std::vector<unsigned> RegClassRegs;
3358  const TargetRegisterClass *RC = PhysReg.second;
3359  if (RC) {
3360    // If this is an early clobber or tied register, our regalloc doesn't know
3361    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3362    // and let the regalloc do the right thing.
3363    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3364        // If there is some other early clobber and this is an input register,
3365        // then we are forced to pre-allocate the input reg so it doesn't
3366        // conflict with the earlyclobber.
3367        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3368      RegVT = *PhysReg.second->vt_begin();
3369
3370      if (OpInfo.ConstraintVT == MVT::Other)
3371        ValueVT = RegVT;
3372
3373      // Create the appropriate number of virtual registers.
3374      SSARegMap *RegMap = MF.getSSARegMap();
3375      for (; NumRegs; --NumRegs)
3376        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3377
3378      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3379      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3380      return;
3381    }
3382
3383    // Otherwise, we can't allocate it.  Let the code below figure out how to
3384    // maintain these constraints.
3385    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3386
3387  } else {
3388    // This is a reference to a register class that doesn't directly correspond
3389    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3390    // registers from the class.
3391    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3392                                                         OpInfo.ConstraintVT);
3393  }
3394
3395  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3396  unsigned NumAllocated = 0;
3397  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3398    unsigned Reg = RegClassRegs[i];
3399    // See if this register is available.
3400    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3401        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3402      // Make sure we find consecutive registers.
3403      NumAllocated = 0;
3404      continue;
3405    }
3406
3407    // Check to see if this register is allocatable (i.e. don't give out the
3408    // stack pointer).
3409    if (RC == 0) {
3410      RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3411      if (!RC) {        // Couldn't allocate this register.
3412        // Reset NumAllocated to make sure we return consecutive registers.
3413        NumAllocated = 0;
3414        continue;
3415      }
3416    }
3417
3418    // Okay, this register is good, we can use it.
3419    ++NumAllocated;
3420
3421    // If we allocated enough consecutive registers, succeed.
3422    if (NumAllocated == NumRegs) {
3423      unsigned RegStart = (i-NumAllocated)+1;
3424      unsigned RegEnd   = i+1;
3425      // Mark all of the allocated registers used.
3426      for (unsigned i = RegStart; i != RegEnd; ++i)
3427        Regs.push_back(RegClassRegs[i]);
3428
3429      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3430                                         OpInfo.ConstraintVT);
3431      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3432      return;
3433    }
3434  }
3435
3436  // Otherwise, we couldn't allocate enough registers for this.
3437  return;
3438}
3439
3440
3441/// visitInlineAsm - Handle a call to an InlineAsm object.
3442///
3443void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
3444  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
3445
3446  /// ConstraintOperands - Information about all of the constraints.
3447  std::vector<AsmOperandInfo> ConstraintOperands;
3448
3449  SDOperand Chain = getRoot();
3450  SDOperand Flag;
3451
3452  std::set<unsigned> OutputRegs, InputRegs;
3453
3454  // Do a prepass over the constraints, canonicalizing them, and building up the
3455  // ConstraintOperands list.
3456  std::vector<InlineAsm::ConstraintInfo>
3457    ConstraintInfos = IA->ParseConstraints();
3458
3459  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3460  // constraint.  If so, we can't let the register allocator allocate any input
3461  // registers, because it will not know to avoid the earlyclobbered output reg.
3462  bool SawEarlyClobber = false;
3463
3464  unsigned OpNo = 1;   // OpNo - The operand of the CallInst.
3465  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3466    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3467    AsmOperandInfo &OpInfo = ConstraintOperands.back();
3468
3469    MVT::ValueType OpVT = MVT::Other;
3470
3471    // Compute the value type for each operand.
3472    switch (OpInfo.Type) {
3473    case InlineAsm::isOutput:
3474      if (!OpInfo.isIndirect) {
3475        // The return value of the call is this value.  As such, there is no
3476        // corresponding argument.
3477        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3478        OpVT = TLI.getValueType(I.getType());
3479      } else {
3480        OpInfo.CallOperandVal = I.getOperand(OpNo++);
3481      }
3482      break;
3483    case InlineAsm::isInput:
3484      OpInfo.CallOperandVal = I.getOperand(OpNo++);
3485      break;
3486    case InlineAsm::isClobber:
3487      // Nothing to do.
3488      break;
3489    }
3490
3491    // If this is an input or an indirect output, process the call argument.
3492    if (OpInfo.CallOperandVal) {
3493      OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3494      const Type *OpTy = OpInfo.CallOperandVal->getType();
3495      // If this is an indirect operand, the operand is a pointer to the
3496      // accessed type.
3497      if (OpInfo.isIndirect)
3498        OpTy = cast<PointerType>(OpTy)->getElementType();
3499
3500      // If OpTy is not a first-class value, it may be a struct/union that we
3501      // can tile with integers.
3502      if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3503        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3504        switch (BitSize) {
3505        default: break;
3506        case 1:
3507        case 8:
3508        case 16:
3509        case 32:
3510        case 64:
3511          OpTy = IntegerType::get(BitSize);
3512          break;
3513        }
3514      }
3515
3516      OpVT = TLI.getValueType(OpTy, true);
3517    }
3518
3519    OpInfo.ConstraintVT = OpVT;
3520
3521    // Compute the constraint code and ConstraintType to use.
3522    OpInfo.ComputeConstraintToUse(TLI);
3523
3524    // Keep track of whether we see an earlyclobber.
3525    SawEarlyClobber |= OpInfo.isEarlyClobber;
3526
3527    // If this is a memory input, and if the operand is not indirect, do what we
3528    // need to to provide an address for the memory input.
3529    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3530        !OpInfo.isIndirect) {
3531      assert(OpInfo.Type == InlineAsm::isInput &&
3532             "Can only indirectify direct input operands!");
3533
3534      // Memory operands really want the address of the value.  If we don't have
3535      // an indirect input, put it in the constpool if we can, otherwise spill
3536      // it to a stack slot.
3537
3538      // If the operand is a float, integer, or vector constant, spill to a
3539      // constant pool entry to get its address.
3540      Value *OpVal = OpInfo.CallOperandVal;
3541      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3542          isa<ConstantVector>(OpVal)) {
3543        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3544                                                 TLI.getPointerTy());
3545      } else {
3546        // Otherwise, create a stack slot and emit a store to it before the
3547        // asm.
3548        const Type *Ty = OpVal->getType();
3549        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
3550        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3551        MachineFunction &MF = DAG.getMachineFunction();
3552        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3553        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3554        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3555        OpInfo.CallOperand = StackSlot;
3556      }
3557
3558      // There is no longer a Value* corresponding to this operand.
3559      OpInfo.CallOperandVal = 0;
3560      // It is now an indirect operand.
3561      OpInfo.isIndirect = true;
3562    }
3563
3564    // If this constraint is for a specific register, allocate it before
3565    // anything else.
3566    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3567      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3568  }
3569  ConstraintInfos.clear();
3570
3571
3572  // Second pass - Loop over all of the operands, assigning virtual or physregs
3573  // to registerclass operands.
3574  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3575    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3576
3577    // C_Register operands have already been allocated, Other/Memory don't need
3578    // to be.
3579    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3580      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3581  }
3582
3583  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3584  std::vector<SDOperand> AsmNodeOperands;
3585  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3586  AsmNodeOperands.push_back(
3587          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3588
3589
3590  // Loop over all of the inputs, copying the operand values into the
3591  // appropriate registers and processing the output regs.
3592  RegsForValue RetValRegs;
3593
3594  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3595  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3596
3597  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3598    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3599
3600    switch (OpInfo.Type) {
3601    case InlineAsm::isOutput: {
3602      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3603          OpInfo.ConstraintType != TargetLowering::C_Register) {
3604        // Memory output, or 'other' output (e.g. 'X' constraint).
3605        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3606
3607        // Add information to the INLINEASM node to know about this output.
3608        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3609        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3610                                                        TLI.getPointerTy()));
3611        AsmNodeOperands.push_back(OpInfo.CallOperand);
3612        break;
3613      }
3614
3615      // Otherwise, this is a register or register class output.
3616
3617      // Copy the output from the appropriate register.  Find a register that
3618      // we can use.
3619      if (OpInfo.AssignedRegs.Regs.empty()) {
3620        cerr << "Couldn't allocate output reg for contraint '"
3621             << OpInfo.ConstraintCode << "'!\n";
3622        exit(1);
3623      }
3624
3625      if (!OpInfo.isIndirect) {
3626        // This is the result value of the call.
3627        assert(RetValRegs.Regs.empty() &&
3628               "Cannot have multiple output constraints yet!");
3629        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3630        RetValRegs = OpInfo.AssignedRegs;
3631      } else {
3632        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3633                                                      OpInfo.CallOperandVal));
3634      }
3635
3636      // Add information to the INLINEASM node to know that this register is
3637      // set.
3638      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3639                                               AsmNodeOperands);
3640      break;
3641    }
3642    case InlineAsm::isInput: {
3643      SDOperand InOperandVal = OpInfo.CallOperand;
3644
3645      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3646        // If this is required to match an output register we have already set,
3647        // just use its register.
3648        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3649
3650        // Scan until we find the definition we already emitted of this operand.
3651        // When we find it, create a RegsForValue operand.
3652        unsigned CurOp = 2;  // The first operand.
3653        for (; OperandNo; --OperandNo) {
3654          // Advance to the next operand.
3655          unsigned NumOps =
3656            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3657          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3658                  (NumOps & 7) == 4 /*MEM*/) &&
3659                 "Skipped past definitions?");
3660          CurOp += (NumOps>>3)+1;
3661        }
3662
3663        unsigned NumOps =
3664          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3665        if ((NumOps & 7) == 2 /*REGDEF*/) {
3666          // Add NumOps>>3 registers to MatchedRegs.
3667          RegsForValue MatchedRegs;
3668          MatchedRegs.ValueVT = InOperandVal.getValueType();
3669          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3670          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3671            unsigned Reg =
3672              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3673            MatchedRegs.Regs.push_back(Reg);
3674          }
3675
3676          // Use the produced MatchedRegs object to
3677          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3678          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3679          break;
3680        } else {
3681          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3682          assert(0 && "matching constraints for memory operands unimp");
3683        }
3684      }
3685
3686      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3687        assert(!OpInfo.isIndirect &&
3688               "Don't know how to handle indirect other inputs yet!");
3689
3690        std::vector<SDOperand> Ops;
3691        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3692                                         Ops, DAG);
3693        if (Ops.empty()) {
3694          cerr << "Invalid operand for inline asm constraint '"
3695               << OpInfo.ConstraintCode << "'!\n";
3696          exit(1);
3697        }
3698
3699        // Add information to the INLINEASM node to know about this input.
3700        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
3701        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3702                                                        TLI.getPointerTy()));
3703        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
3704        break;
3705      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3706        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3707        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3708               "Memory operands expect pointer values");
3709
3710        // Add information to the INLINEASM node to know about this input.
3711        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3712        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3713                                                        TLI.getPointerTy()));
3714        AsmNodeOperands.push_back(InOperandVal);
3715        break;
3716      }
3717
3718      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3719              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3720             "Unknown constraint type!");
3721      assert(!OpInfo.isIndirect &&
3722             "Don't know how to handle indirect register inputs yet!");
3723
3724      // Copy the input into the appropriate registers.
3725      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3726             "Couldn't allocate input reg!");
3727
3728      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3729
3730      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3731                                               AsmNodeOperands);
3732      break;
3733    }
3734    case InlineAsm::isClobber: {
3735      // Add the clobbered value to the operand list, so that the register
3736      // allocator is aware that the physreg got clobbered.
3737      if (!OpInfo.AssignedRegs.Regs.empty())
3738        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3739                                                 AsmNodeOperands);
3740      break;
3741    }
3742    }
3743  }
3744
3745  // Finish up input operands.
3746  AsmNodeOperands[0] = Chain;
3747  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3748
3749  Chain = DAG.getNode(ISD::INLINEASM,
3750                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3751                      &AsmNodeOperands[0], AsmNodeOperands.size());
3752  Flag = Chain.getValue(1);
3753
3754  // If this asm returns a register value, copy the result from that register
3755  // and set it as the value of the call.
3756  if (!RetValRegs.Regs.empty()) {
3757    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3758
3759    // If the result of the inline asm is a vector, it may have the wrong
3760    // width/num elts.  Make sure to convert it to the right type with
3761    // bit_convert.
3762    if (MVT::isVector(Val.getValueType())) {
3763      const VectorType *VTy = cast<VectorType>(I.getType());
3764      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3765
3766      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3767    }
3768
3769    setValue(&I, Val);
3770  }
3771
3772  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3773
3774  // Process indirect outputs, first output all of the flagged copies out of
3775  // physregs.
3776  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3777    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3778    Value *Ptr = IndirectStoresToEmit[i].second;
3779    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3780    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3781  }
3782
3783  // Emit the non-flagged stores from the physregs.
3784  SmallVector<SDOperand, 8> OutChains;
3785  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3786    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3787                                    getValue(StoresToEmit[i].second),
3788                                    StoresToEmit[i].second, 0));
3789  if (!OutChains.empty())
3790    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3791                        &OutChains[0], OutChains.size());
3792  DAG.setRoot(Chain);
3793}
3794
3795
3796void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3797  SDOperand Src = getValue(I.getOperand(0));
3798
3799  MVT::ValueType IntPtr = TLI.getPointerTy();
3800
3801  if (IntPtr < Src.getValueType())
3802    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3803  else if (IntPtr > Src.getValueType())
3804    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3805
3806  // Scale the source by the type size.
3807  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
3808  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3809                    Src, getIntPtrConstant(ElementSize));
3810
3811  TargetLowering::ArgListTy Args;
3812  TargetLowering::ArgListEntry Entry;
3813  Entry.Node = Src;
3814  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3815  Args.push_back(Entry);
3816
3817  std::pair<SDOperand,SDOperand> Result =
3818    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3819                    DAG.getExternalSymbol("malloc", IntPtr),
3820                    Args, DAG);
3821  setValue(&I, Result.first);  // Pointers always fit in registers
3822  DAG.setRoot(Result.second);
3823}
3824
3825void SelectionDAGLowering::visitFree(FreeInst &I) {
3826  TargetLowering::ArgListTy Args;
3827  TargetLowering::ArgListEntry Entry;
3828  Entry.Node = getValue(I.getOperand(0));
3829  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3830  Args.push_back(Entry);
3831  MVT::ValueType IntPtr = TLI.getPointerTy();
3832  std::pair<SDOperand,SDOperand> Result =
3833    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3834                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3835  DAG.setRoot(Result.second);
3836}
3837
3838// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3839// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3840// instructions are special in various ways, which require special support to
3841// insert.  The specified MachineInstr is created but not inserted into any
3842// basic blocks, and the scheduler passes ownership of it to this method.
3843MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3844                                                       MachineBasicBlock *MBB) {
3845  cerr << "If a target marks an instruction with "
3846       << "'usesCustomDAGSchedInserter', it must implement "
3847       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3848  abort();
3849  return 0;
3850}
3851
3852void SelectionDAGLowering::visitVAStart(CallInst &I) {
3853  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3854                          getValue(I.getOperand(1)),
3855                          DAG.getSrcValue(I.getOperand(1))));
3856}
3857
3858void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3859  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3860                             getValue(I.getOperand(0)),
3861                             DAG.getSrcValue(I.getOperand(0)));
3862  setValue(&I, V);
3863  DAG.setRoot(V.getValue(1));
3864}
3865
3866void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3867  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3868                          getValue(I.getOperand(1)),
3869                          DAG.getSrcValue(I.getOperand(1))));
3870}
3871
3872void SelectionDAGLowering::visitVACopy(CallInst &I) {
3873  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3874                          getValue(I.getOperand(1)),
3875                          getValue(I.getOperand(2)),
3876                          DAG.getSrcValue(I.getOperand(1)),
3877                          DAG.getSrcValue(I.getOperand(2))));
3878}
3879
3880/// TargetLowering::LowerArguments - This is the default LowerArguments
3881/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3882/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3883/// integrated into SDISel.
3884std::vector<SDOperand>
3885TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3886  const FunctionType *FTy = F.getFunctionType();
3887  const ParamAttrsList *Attrs = FTy->getParamAttrs();
3888  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3889  std::vector<SDOperand> Ops;
3890  Ops.push_back(DAG.getRoot());
3891  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3892  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3893
3894  // Add one result value for each formal argument.
3895  std::vector<MVT::ValueType> RetVals;
3896  unsigned j = 1;
3897  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3898       I != E; ++I, ++j) {
3899    MVT::ValueType VT = getValueType(I->getType());
3900    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3901    unsigned OriginalAlignment =
3902      getTargetData()->getABITypeAlignment(I->getType());
3903
3904    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3905    // that is zero extended!
3906    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ZExt))
3907      Flags &= ~(ISD::ParamFlags::SExt);
3908    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::SExt))
3909      Flags |= ISD::ParamFlags::SExt;
3910    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::InReg))
3911      Flags |= ISD::ParamFlags::InReg;
3912    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::StructRet))
3913      Flags |= ISD::ParamFlags::StructReturn;
3914    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ByVal)) {
3915      Flags |= ISD::ParamFlags::ByVal;
3916      const PointerType *Ty = cast<PointerType>(I->getType());
3917      const StructType *STy = cast<StructType>(Ty->getElementType());
3918      unsigned StructAlign =
3919          Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
3920      unsigned StructSize  = getTargetData()->getABITypeSize(STy);
3921      Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
3922      Flags |= (StructSize  << ISD::ParamFlags::ByValSizeOffs);
3923    }
3924    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::Nest))
3925      Flags |= ISD::ParamFlags::Nest;
3926    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3927
3928    switch (getTypeAction(VT)) {
3929    default: assert(0 && "Unknown type action!");
3930    case Legal:
3931      RetVals.push_back(VT);
3932      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3933      break;
3934    case Promote:
3935      RetVals.push_back(getTypeToTransformTo(VT));
3936      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3937      break;
3938    case Expand: {
3939      // If this is an illegal type, it needs to be broken up to fit into
3940      // registers.
3941      MVT::ValueType RegisterVT = getRegisterType(VT);
3942      unsigned NumRegs = getNumRegisters(VT);
3943      for (unsigned i = 0; i != NumRegs; ++i) {
3944        RetVals.push_back(RegisterVT);
3945        // if it isn't first piece, alignment must be 1
3946        if (i > 0)
3947          Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3948            (1 << ISD::ParamFlags::OrigAlignmentOffs);
3949        Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3950      }
3951      break;
3952    }
3953    }
3954  }
3955
3956  RetVals.push_back(MVT::Other);
3957
3958  // Create the node.
3959  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3960                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3961                               &Ops[0], Ops.size()).Val;
3962  unsigned NumArgRegs = Result->getNumValues() - 1;
3963  DAG.setRoot(SDOperand(Result, NumArgRegs));
3964
3965  // Set up the return result vector.
3966  Ops.clear();
3967  unsigned i = 0;
3968  unsigned Idx = 1;
3969  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3970      ++I, ++Idx) {
3971    MVT::ValueType VT = getValueType(I->getType());
3972
3973    switch (getTypeAction(VT)) {
3974    default: assert(0 && "Unknown type action!");
3975    case Legal:
3976      Ops.push_back(SDOperand(Result, i++));
3977      break;
3978    case Promote: {
3979      SDOperand Op(Result, i++);
3980      if (MVT::isInteger(VT)) {
3981        if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt))
3982          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3983                           DAG.getValueType(VT));
3984        else if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::ZExt))
3985          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3986                           DAG.getValueType(VT));
3987        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3988      } else {
3989        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3990        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3991      }
3992      Ops.push_back(Op);
3993      break;
3994    }
3995    case Expand: {
3996      MVT::ValueType PartVT = getRegisterType(VT);
3997      unsigned NumParts = getNumRegisters(VT);
3998      SmallVector<SDOperand, 4> Parts(NumParts);
3999      for (unsigned j = 0; j != NumParts; ++j)
4000        Parts[j] = SDOperand(Result, i++);
4001      Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT));
4002      break;
4003    }
4004    }
4005  }
4006  assert(i == NumArgRegs && "Argument register count mismatch!");
4007  return Ops;
4008}
4009
4010
4011/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4012/// implementation, which just inserts an ISD::CALL node, which is later custom
4013/// lowered by the target to something concrete.  FIXME: When all targets are
4014/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4015std::pair<SDOperand, SDOperand>
4016TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4017                            bool RetTyIsSigned, bool isVarArg,
4018                            unsigned CallingConv, bool isTailCall,
4019                            SDOperand Callee,
4020                            ArgListTy &Args, SelectionDAG &DAG) {
4021  SmallVector<SDOperand, 32> Ops;
4022  Ops.push_back(Chain);   // Op#0 - Chain
4023  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4024  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4025  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4026  Ops.push_back(Callee);
4027
4028  // Handle all of the outgoing arguments.
4029  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4030    MVT::ValueType VT = getValueType(Args[i].Ty);
4031    SDOperand Op = Args[i].Node;
4032    unsigned Flags = ISD::ParamFlags::NoFlagSet;
4033    unsigned OriginalAlignment =
4034      getTargetData()->getABITypeAlignment(Args[i].Ty);
4035
4036    if (Args[i].isSExt)
4037      Flags |= ISD::ParamFlags::SExt;
4038    if (Args[i].isZExt)
4039      Flags |= ISD::ParamFlags::ZExt;
4040    if (Args[i].isInReg)
4041      Flags |= ISD::ParamFlags::InReg;
4042    if (Args[i].isSRet)
4043      Flags |= ISD::ParamFlags::StructReturn;
4044    if (Args[i].isByVal) {
4045      Flags |= ISD::ParamFlags::ByVal;
4046      const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4047      const StructType *STy = cast<StructType>(Ty->getElementType());
4048      unsigned StructAlign =
4049          Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
4050      unsigned StructSize  = getTargetData()->getABITypeSize(STy);
4051      Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
4052      Flags |= (StructSize  << ISD::ParamFlags::ByValSizeOffs);
4053    }
4054    if (Args[i].isNest)
4055      Flags |= ISD::ParamFlags::Nest;
4056    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
4057
4058    switch (getTypeAction(VT)) {
4059    default: assert(0 && "Unknown type action!");
4060    case Legal:
4061      Ops.push_back(Op);
4062      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4063      break;
4064    case Promote:
4065      if (MVT::isInteger(VT)) {
4066        unsigned ExtOp;
4067        if (Args[i].isSExt)
4068          ExtOp = ISD::SIGN_EXTEND;
4069        else if (Args[i].isZExt)
4070          ExtOp = ISD::ZERO_EXTEND;
4071        else
4072          ExtOp = ISD::ANY_EXTEND;
4073        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
4074      } else {
4075        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
4076        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
4077      }
4078      Ops.push_back(Op);
4079      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4080      break;
4081    case Expand: {
4082      MVT::ValueType PartVT = getRegisterType(VT);
4083      unsigned NumParts = getNumRegisters(VT);
4084      SmallVector<SDOperand, 4> Parts(NumParts);
4085      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT);
4086      for (unsigned i = 0; i != NumParts; ++i) {
4087        // if it isn't first piece, alignment must be 1
4088        unsigned MyFlags = Flags;
4089        if (i != 0)
4090          MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
4091            (1 << ISD::ParamFlags::OrigAlignmentOffs);
4092
4093        Ops.push_back(Parts[i]);
4094        Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
4095      }
4096      break;
4097    }
4098    }
4099  }
4100
4101  // Figure out the result value types.
4102  MVT::ValueType VT = getValueType(RetTy);
4103  MVT::ValueType RegisterVT = getRegisterType(VT);
4104  unsigned NumRegs = getNumRegisters(VT);
4105  SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
4106  for (unsigned i = 0; i != NumRegs; ++i)
4107    RetTys[i] = RegisterVT;
4108
4109  RetTys.push_back(MVT::Other);  // Always has a chain.
4110
4111  // Create the CALL node.
4112  SDOperand Res = DAG.getNode(ISD::CALL,
4113                              DAG.getVTList(&RetTys[0], NumRegs + 1),
4114                              &Ops[0], Ops.size());
4115  Chain = Res.getValue(NumRegs);
4116
4117  // Gather up the call result into a single value.
4118  if (RetTy != Type::VoidTy) {
4119    ISD::NodeType AssertOp = ISD::AssertSext;
4120    if (!RetTyIsSigned)
4121      AssertOp = ISD::AssertZext;
4122    SmallVector<SDOperand, 4> Results(NumRegs);
4123    for (unsigned i = 0; i != NumRegs; ++i)
4124      Results[i] = Res.getValue(i);
4125    Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
4126  }
4127
4128  return std::make_pair(Res, Chain);
4129}
4130
4131SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4132  assert(0 && "LowerOperation not implemented for this target!");
4133  abort();
4134  return SDOperand();
4135}
4136
4137std::pair<SDOperand,SDOperand>
4138TargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
4139  assert(0 && "ExpandOperation not implemented for this target!");
4140  abort();
4141  return std::pair<SDOperand,SDOperand>();
4142}
4143
4144
4145SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4146                                                 SelectionDAG &DAG) {
4147  assert(0 && "CustomPromoteOperation not implemented for this target!");
4148  abort();
4149  return SDOperand();
4150}
4151
4152/// getMemsetValue - Vectorized representation of the memset value
4153/// operand.
4154static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4155                                SelectionDAG &DAG) {
4156  MVT::ValueType CurVT = VT;
4157  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4158    uint64_t Val   = C->getValue() & 255;
4159    unsigned Shift = 8;
4160    while (CurVT != MVT::i8) {
4161      Val = (Val << Shift) | Val;
4162      Shift <<= 1;
4163      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4164    }
4165    return DAG.getConstant(Val, VT);
4166  } else {
4167    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4168    unsigned Shift = 8;
4169    while (CurVT != MVT::i8) {
4170      Value =
4171        DAG.getNode(ISD::OR, VT,
4172                    DAG.getNode(ISD::SHL, VT, Value,
4173                                DAG.getConstant(Shift, MVT::i8)), Value);
4174      Shift <<= 1;
4175      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4176    }
4177
4178    return Value;
4179  }
4180}
4181
4182/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4183/// used when a memcpy is turned into a memset when the source is a constant
4184/// string ptr.
4185static SDOperand getMemsetStringVal(MVT::ValueType VT,
4186                                    SelectionDAG &DAG, TargetLowering &TLI,
4187                                    std::string &Str, unsigned Offset) {
4188  uint64_t Val = 0;
4189  unsigned MSB = MVT::getSizeInBits(VT) / 8;
4190  if (TLI.isLittleEndian())
4191    Offset = Offset + MSB - 1;
4192  for (unsigned i = 0; i != MSB; ++i) {
4193    Val = (Val << 8) | (unsigned char)Str[Offset];
4194    Offset += TLI.isLittleEndian() ? -1 : 1;
4195  }
4196  return DAG.getConstant(Val, VT);
4197}
4198
4199/// getMemBasePlusOffset - Returns base and offset node for the
4200static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4201                                      SelectionDAG &DAG, TargetLowering &TLI) {
4202  MVT::ValueType VT = Base.getValueType();
4203  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4204}
4205
4206/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4207/// to replace the memset / memcpy is below the threshold. It also returns the
4208/// types of the sequence of  memory ops to perform memset / memcpy.
4209static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4210                                     unsigned Limit, uint64_t Size,
4211                                     unsigned Align, TargetLowering &TLI) {
4212  MVT::ValueType VT;
4213
4214  if (TLI.allowsUnalignedMemoryAccesses()) {
4215    VT = MVT::i64;
4216  } else {
4217    switch (Align & 7) {
4218    case 0:
4219      VT = MVT::i64;
4220      break;
4221    case 4:
4222      VT = MVT::i32;
4223      break;
4224    case 2:
4225      VT = MVT::i16;
4226      break;
4227    default:
4228      VT = MVT::i8;
4229      break;
4230    }
4231  }
4232
4233  MVT::ValueType LVT = MVT::i64;
4234  while (!TLI.isTypeLegal(LVT))
4235    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4236  assert(MVT::isInteger(LVT));
4237
4238  if (VT > LVT)
4239    VT = LVT;
4240
4241  unsigned NumMemOps = 0;
4242  while (Size != 0) {
4243    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4244    while (VTSize > Size) {
4245      VT = (MVT::ValueType)((unsigned)VT - 1);
4246      VTSize >>= 1;
4247    }
4248    assert(MVT::isInteger(VT));
4249
4250    if (++NumMemOps > Limit)
4251      return false;
4252    MemOps.push_back(VT);
4253    Size -= VTSize;
4254  }
4255
4256  return true;
4257}
4258
4259void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4260  SDOperand Op1 = getValue(I.getOperand(1));
4261  SDOperand Op2 = getValue(I.getOperand(2));
4262  SDOperand Op3 = getValue(I.getOperand(3));
4263  SDOperand Op4 = getValue(I.getOperand(4));
4264  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4265  if (Align == 0) Align = 1;
4266
4267  // If the source and destination are known to not be aliases, we can
4268  // lower memmove as memcpy.
4269  if (Op == ISD::MEMMOVE) {
4270    uint64_t Size = -1ULL;
4271    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4272      Size = C->getValue();
4273    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4274        AliasAnalysis::NoAlias)
4275      Op = ISD::MEMCPY;
4276  }
4277
4278  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4279    std::vector<MVT::ValueType> MemOps;
4280
4281    // Expand memset / memcpy to a series of load / store ops
4282    // if the size operand falls below a certain threshold.
4283    SmallVector<SDOperand, 8> OutChains;
4284    switch (Op) {
4285    default: break;  // Do nothing for now.
4286    case ISD::MEMSET: {
4287      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4288                                   Size->getValue(), Align, TLI)) {
4289        unsigned NumMemOps = MemOps.size();
4290        unsigned Offset = 0;
4291        for (unsigned i = 0; i < NumMemOps; i++) {
4292          MVT::ValueType VT = MemOps[i];
4293          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4294          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4295          SDOperand Store = DAG.getStore(getRoot(), Value,
4296                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4297                                         I.getOperand(1), Offset);
4298          OutChains.push_back(Store);
4299          Offset += VTSize;
4300        }
4301      }
4302      break;
4303    }
4304    case ISD::MEMCPY: {
4305      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4306                                   Size->getValue(), Align, TLI)) {
4307        unsigned NumMemOps = MemOps.size();
4308        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4309        GlobalAddressSDNode *G = NULL;
4310        std::string Str;
4311        bool CopyFromStr = false;
4312
4313        if (Op2.getOpcode() == ISD::GlobalAddress)
4314          G = cast<GlobalAddressSDNode>(Op2);
4315        else if (Op2.getOpcode() == ISD::ADD &&
4316                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4317                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4318          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4319          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4320        }
4321        if (G) {
4322          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4323          if (GV && GV->isConstant()) {
4324            Str = GV->getStringValue(false);
4325            if (!Str.empty()) {
4326              CopyFromStr = true;
4327              SrcOff += SrcDelta;
4328            }
4329          }
4330        }
4331
4332        for (unsigned i = 0; i < NumMemOps; i++) {
4333          MVT::ValueType VT = MemOps[i];
4334          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4335          SDOperand Value, Chain, Store;
4336
4337          if (CopyFromStr) {
4338            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4339            Chain = getRoot();
4340            Store =
4341              DAG.getStore(Chain, Value,
4342                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4343                           I.getOperand(1), DstOff);
4344          } else {
4345            Value = DAG.getLoad(VT, getRoot(),
4346                                getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4347                                I.getOperand(2), SrcOff, false, Align);
4348            Chain = Value.getValue(1);
4349            Store =
4350              DAG.getStore(Chain, Value,
4351                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4352                           I.getOperand(1), DstOff, false, Align);
4353          }
4354          OutChains.push_back(Store);
4355          SrcOff += VTSize;
4356          DstOff += VTSize;
4357        }
4358      }
4359      break;
4360    }
4361    }
4362
4363    if (!OutChains.empty()) {
4364      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4365                  &OutChains[0], OutChains.size()));
4366      return;
4367    }
4368  }
4369
4370  SDOperand AlwaysInline = DAG.getConstant(0, MVT::i1);
4371  SDOperand Node;
4372  switch(Op) {
4373    default:
4374      assert(0 && "Unknown Op");
4375    case ISD::MEMCPY:
4376      Node = DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4377      break;
4378    case ISD::MEMMOVE:
4379      Node = DAG.getMemmove(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4380      break;
4381    case ISD::MEMSET:
4382      Node = DAG.getMemset(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4383      break;
4384  }
4385  DAG.setRoot(Node);
4386}
4387
4388//===----------------------------------------------------------------------===//
4389// SelectionDAGISel code
4390//===----------------------------------------------------------------------===//
4391
4392unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4393  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4394}
4395
4396void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4397  AU.addRequired<AliasAnalysis>();
4398  AU.setPreservesAll();
4399}
4400
4401
4402
4403bool SelectionDAGISel::runOnFunction(Function &Fn) {
4404  // Get alias analysis for load/store combining.
4405  AA = &getAnalysis<AliasAnalysis>();
4406
4407  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4408  RegMap = MF.getSSARegMap();
4409  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4410
4411  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4412
4413  if (ExceptionHandling)
4414    for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4415      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4416        // Mark landing pad.
4417        FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4418
4419  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4420    SelectBasicBlock(I, MF, FuncInfo);
4421
4422  // Add function live-ins to entry block live-in set.
4423  BasicBlock *EntryBB = &Fn.getEntryBlock();
4424  BB = FuncInfo.MBBMap[EntryBB];
4425  if (!MF.livein_empty())
4426    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4427           E = MF.livein_end(); I != E; ++I)
4428      BB->addLiveIn(I->first);
4429
4430#ifndef NDEBUG
4431  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4432         "Not all catch info was assigned to a landing pad!");
4433#endif
4434
4435  return true;
4436}
4437
4438SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4439                                                           unsigned Reg) {
4440  SDOperand Op = getValue(V);
4441  assert((Op.getOpcode() != ISD::CopyFromReg ||
4442          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4443         "Copy from a reg to the same reg!");
4444
4445  MVT::ValueType SrcVT = Op.getValueType();
4446  MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4447  unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4448  SmallVector<SDOperand, 8> Regs(NumRegs);
4449  SmallVector<SDOperand, 8> Chains(NumRegs);
4450
4451  // Copy the value by legal parts into sequential virtual registers.
4452  getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4453  for (unsigned i = 0; i != NumRegs; ++i)
4454    Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4455  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4456}
4457
4458void SelectionDAGISel::
4459LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4460               std::vector<SDOperand> &UnorderedChains) {
4461  // If this is the entry block, emit arguments.
4462  Function &F = *LLVMBB->getParent();
4463  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4464  SDOperand OldRoot = SDL.DAG.getRoot();
4465  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4466
4467  unsigned a = 0;
4468  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4469       AI != E; ++AI, ++a)
4470    if (!AI->use_empty()) {
4471      SDL.setValue(AI, Args[a]);
4472
4473      // If this argument is live outside of the entry block, insert a copy from
4474      // whereever we got it to the vreg that other BB's will reference it as.
4475      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4476      if (VMI != FuncInfo.ValueMap.end()) {
4477        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4478        UnorderedChains.push_back(Copy);
4479      }
4480    }
4481
4482  // Finally, if the target has anything special to do, allow it to do so.
4483  // FIXME: this should insert code into the DAG!
4484  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4485}
4486
4487static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4488                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4489  assert(!FLI.MBBMap[SrcBB]->isLandingPad() &&
4490         "Copying catch info out of a landing pad!");
4491  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4492    if (isSelector(I)) {
4493      // Apply the catch info to DestBB.
4494      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4495#ifndef NDEBUG
4496      FLI.CatchInfoFound.insert(I);
4497#endif
4498    }
4499}
4500
4501/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
4502/// DAG and fixes their tailcall attribute operand.
4503static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4504                                           TargetLowering& TLI) {
4505  SDNode * Ret = NULL;
4506  SDOperand Terminator = DAG.getRoot();
4507
4508  // Find RET node.
4509  if (Terminator.getOpcode() == ISD::RET) {
4510    Ret = Terminator.Val;
4511  }
4512
4513  // Fix tail call attribute of CALL nodes.
4514  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
4515         BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
4516    if (BI->getOpcode() == ISD::CALL) {
4517      SDOperand OpRet(Ret, 0);
4518      SDOperand OpCall(static_cast<SDNode*>(BI), 0);
4519      bool isMarkedTailCall =
4520        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
4521      // If CALL node has tail call attribute set to true and the call is not
4522      // eligible (no RET or the target rejects) the attribute is fixed to
4523      // false. The TargetLowering::IsEligibleForTailCallOptimization function
4524      // must correctly identify tail call optimizable calls.
4525      if (isMarkedTailCall &&
4526          (Ret==NULL ||
4527           !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) {
4528        SmallVector<SDOperand, 32> Ops;
4529        unsigned idx=0;
4530        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
4531              E=OpCall.Val->op_end(); I!=E; I++, idx++) {
4532          if (idx!=3)
4533            Ops.push_back(*I);
4534          else
4535            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
4536        }
4537        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4538      }
4539    }
4540  }
4541}
4542
4543void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4544       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4545                                         FunctionLoweringInfo &FuncInfo) {
4546  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo);
4547
4548  std::vector<SDOperand> UnorderedChains;
4549
4550  // Lower any arguments needed in this block if this is the entry block.
4551  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4552    LowerArguments(LLVMBB, SDL, UnorderedChains);
4553
4554  BB = FuncInfo.MBBMap[LLVMBB];
4555  SDL.setCurrentBasicBlock(BB);
4556
4557  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4558
4559  if (ExceptionHandling && MMI && BB->isLandingPad()) {
4560    // Add a label to mark the beginning of the landing pad.  Deletion of the
4561    // landing pad can thus be detected via the MachineModuleInfo.
4562    unsigned LabelID = MMI->addLandingPad(BB);
4563    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4564                            DAG.getConstant(LabelID, MVT::i32)));
4565
4566    // Mark exception register as live in.
4567    unsigned Reg = TLI.getExceptionAddressRegister();
4568    if (Reg) BB->addLiveIn(Reg);
4569
4570    // Mark exception selector register as live in.
4571    Reg = TLI.getExceptionSelectorRegister();
4572    if (Reg) BB->addLiveIn(Reg);
4573
4574    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4575    // function and list of typeids logically belong to the invoke (or, if you
4576    // like, the basic block containing the invoke), and need to be associated
4577    // with it in the dwarf exception handling tables.  Currently however the
4578    // information is provided by an intrinsic (eh.selector) that can be moved
4579    // to unexpected places by the optimizers: if the unwind edge is critical,
4580    // then breaking it can result in the intrinsics being in the successor of
4581    // the landing pad, not the landing pad itself.  This results in exceptions
4582    // not being caught because no typeids are associated with the invoke.
4583    // This may not be the only way things can go wrong, but it is the only way
4584    // we try to work around for the moment.
4585    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4586
4587    if (Br && Br->isUnconditional()) { // Critical edge?
4588      BasicBlock::iterator I, E;
4589      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4590        if (isSelector(I))
4591          break;
4592
4593      if (I == E)
4594        // No catch info found - try to extract some from the successor.
4595        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4596    }
4597  }
4598
4599  // Lower all of the non-terminator instructions.
4600  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4601       I != E; ++I)
4602    SDL.visit(*I);
4603
4604  // Ensure that all instructions which are used outside of their defining
4605  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4606  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4607    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4608      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4609      if (VMI != FuncInfo.ValueMap.end())
4610        UnorderedChains.push_back(
4611                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4612    }
4613
4614  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4615  // ensure constants are generated when needed.  Remember the virtual registers
4616  // that need to be added to the Machine PHI nodes as input.  We cannot just
4617  // directly add them, because expansion might result in multiple MBB's for one
4618  // BB.  As such, the start of the BB might correspond to a different MBB than
4619  // the end.
4620  //
4621  TerminatorInst *TI = LLVMBB->getTerminator();
4622
4623  // Emit constants only once even if used by multiple PHI nodes.
4624  std::map<Constant*, unsigned> ConstantsOut;
4625
4626  // Vector bool would be better, but vector<bool> is really slow.
4627  std::vector<unsigned char> SuccsHandled;
4628  if (TI->getNumSuccessors())
4629    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4630
4631  // Check successor nodes' PHI nodes that expect a constant to be available
4632  // from this block.
4633  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4634    BasicBlock *SuccBB = TI->getSuccessor(succ);
4635    if (!isa<PHINode>(SuccBB->begin())) continue;
4636    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4637
4638    // If this terminator has multiple identical successors (common for
4639    // switches), only handle each succ once.
4640    unsigned SuccMBBNo = SuccMBB->getNumber();
4641    if (SuccsHandled[SuccMBBNo]) continue;
4642    SuccsHandled[SuccMBBNo] = true;
4643
4644    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4645    PHINode *PN;
4646
4647    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4648    // nodes and Machine PHI nodes, but the incoming operands have not been
4649    // emitted yet.
4650    for (BasicBlock::iterator I = SuccBB->begin();
4651         (PN = dyn_cast<PHINode>(I)); ++I) {
4652      // Ignore dead phi's.
4653      if (PN->use_empty()) continue;
4654
4655      unsigned Reg;
4656      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4657
4658      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4659        unsigned &RegOut = ConstantsOut[C];
4660        if (RegOut == 0) {
4661          RegOut = FuncInfo.CreateRegForValue(C);
4662          UnorderedChains.push_back(
4663                           SDL.CopyValueToVirtualRegister(C, RegOut));
4664        }
4665        Reg = RegOut;
4666      } else {
4667        Reg = FuncInfo.ValueMap[PHIOp];
4668        if (Reg == 0) {
4669          assert(isa<AllocaInst>(PHIOp) &&
4670                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4671                 "Didn't codegen value into a register!??");
4672          Reg = FuncInfo.CreateRegForValue(PHIOp);
4673          UnorderedChains.push_back(
4674                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4675        }
4676      }
4677
4678      // Remember that this register needs to added to the machine PHI node as
4679      // the input for this MBB.
4680      MVT::ValueType VT = TLI.getValueType(PN->getType());
4681      unsigned NumRegisters = TLI.getNumRegisters(VT);
4682      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4683        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4684    }
4685  }
4686  ConstantsOut.clear();
4687
4688  // Turn all of the unordered chains into one factored node.
4689  if (!UnorderedChains.empty()) {
4690    SDOperand Root = SDL.getRoot();
4691    if (Root.getOpcode() != ISD::EntryToken) {
4692      unsigned i = 0, e = UnorderedChains.size();
4693      for (; i != e; ++i) {
4694        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4695        if (UnorderedChains[i].Val->getOperand(0) == Root)
4696          break;  // Don't add the root if we already indirectly depend on it.
4697      }
4698
4699      if (i == e)
4700        UnorderedChains.push_back(Root);
4701    }
4702    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4703                            &UnorderedChains[0], UnorderedChains.size()));
4704  }
4705
4706  // Lower the terminator after the copies are emitted.
4707  SDL.visit(*LLVMBB->getTerminator());
4708
4709  // Copy over any CaseBlock records that may now exist due to SwitchInst
4710  // lowering, as well as any jump table information.
4711  SwitchCases.clear();
4712  SwitchCases = SDL.SwitchCases;
4713  JTCases.clear();
4714  JTCases = SDL.JTCases;
4715  BitTestCases.clear();
4716  BitTestCases = SDL.BitTestCases;
4717
4718  // Make sure the root of the DAG is up-to-date.
4719  DAG.setRoot(SDL.getRoot());
4720
4721  // Check whether calls in this block are real tail calls. Fix up CALL nodes
4722  // with correct tailcall attribute so that the target can rely on the tailcall
4723  // attribute indicating whether the call is really eligible for tail call
4724  // optimization.
4725  CheckDAGForTailCallsAndFixThem(DAG, TLI);
4726}
4727
4728void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4729  DOUT << "Lowered selection DAG:\n";
4730  DEBUG(DAG.dump());
4731
4732  // Run the DAG combiner in pre-legalize mode.
4733  DAG.Combine(false, *AA);
4734
4735  DOUT << "Optimized lowered selection DAG:\n";
4736  DEBUG(DAG.dump());
4737
4738  // Second step, hack on the DAG until it only uses operations and types that
4739  // the target supports.
4740#if 0  // Enable this some day.
4741  DAG.LegalizeTypes();
4742  // Someday even later, enable a dag combine pass here.
4743#endif
4744  DAG.Legalize();
4745
4746  DOUT << "Legalized selection DAG:\n";
4747  DEBUG(DAG.dump());
4748
4749  // Run the DAG combiner in post-legalize mode.
4750  DAG.Combine(true, *AA);
4751
4752  DOUT << "Optimized legalized selection DAG:\n";
4753  DEBUG(DAG.dump());
4754
4755  if (ViewISelDAGs) DAG.viewGraph();
4756
4757  // Third, instruction select all of the operations to machine code, adding the
4758  // code to the MachineBasicBlock.
4759  InstructionSelectBasicBlock(DAG);
4760
4761  DOUT << "Selected machine code:\n";
4762  DEBUG(BB->dump());
4763}
4764
4765void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4766                                        FunctionLoweringInfo &FuncInfo) {
4767  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4768  {
4769    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4770    CurDAG = &DAG;
4771
4772    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4773    // types that are not supported by the target.
4774    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4775
4776    // Second step, emit the lowered DAG as machine code.
4777    CodeGenAndEmitDAG(DAG);
4778  }
4779
4780  DOUT << "Total amount of phi nodes to update: "
4781       << PHINodesToUpdate.size() << "\n";
4782  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4783          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4784               << ", " << PHINodesToUpdate[i].second << ")\n";);
4785
4786  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4787  // PHI nodes in successors.
4788  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4789    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4790      MachineInstr *PHI = PHINodesToUpdate[i].first;
4791      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4792             "This is not a machine PHI node that we are updating!");
4793      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4794      PHI->addMachineBasicBlockOperand(BB);
4795    }
4796    return;
4797  }
4798
4799  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4800    // Lower header first, if it wasn't already lowered
4801    if (!BitTestCases[i].Emitted) {
4802      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4803      CurDAG = &HSDAG;
4804      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
4805      // Set the current basic block to the mbb we wish to insert the code into
4806      BB = BitTestCases[i].Parent;
4807      HSDL.setCurrentBasicBlock(BB);
4808      // Emit the code
4809      HSDL.visitBitTestHeader(BitTestCases[i]);
4810      HSDAG.setRoot(HSDL.getRoot());
4811      CodeGenAndEmitDAG(HSDAG);
4812    }
4813
4814    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4815      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4816      CurDAG = &BSDAG;
4817      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo);
4818      // Set the current basic block to the mbb we wish to insert the code into
4819      BB = BitTestCases[i].Cases[j].ThisBB;
4820      BSDL.setCurrentBasicBlock(BB);
4821      // Emit the code
4822      if (j+1 != ej)
4823        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4824                              BitTestCases[i].Reg,
4825                              BitTestCases[i].Cases[j]);
4826      else
4827        BSDL.visitBitTestCase(BitTestCases[i].Default,
4828                              BitTestCases[i].Reg,
4829                              BitTestCases[i].Cases[j]);
4830
4831
4832      BSDAG.setRoot(BSDL.getRoot());
4833      CodeGenAndEmitDAG(BSDAG);
4834    }
4835
4836    // Update PHI Nodes
4837    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4838      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4839      MachineBasicBlock *PHIBB = PHI->getParent();
4840      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4841             "This is not a machine PHI node that we are updating!");
4842      // This is "default" BB. We have two jumps to it. From "header" BB and
4843      // from last "case" BB.
4844      if (PHIBB == BitTestCases[i].Default) {
4845        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4846        PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4847        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4848        PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4849      }
4850      // One of "cases" BB.
4851      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4852        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4853        if (cBB->succ_end() !=
4854            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4855          PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4856          PHI->addMachineBasicBlockOperand(cBB);
4857        }
4858      }
4859    }
4860  }
4861
4862  // If the JumpTable record is filled in, then we need to emit a jump table.
4863  // Updating the PHI nodes is tricky in this case, since we need to determine
4864  // whether the PHI is a successor of the range check MBB or the jump table MBB
4865  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4866    // Lower header first, if it wasn't already lowered
4867    if (!JTCases[i].first.Emitted) {
4868      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4869      CurDAG = &HSDAG;
4870      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
4871      // Set the current basic block to the mbb we wish to insert the code into
4872      BB = JTCases[i].first.HeaderBB;
4873      HSDL.setCurrentBasicBlock(BB);
4874      // Emit the code
4875      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4876      HSDAG.setRoot(HSDL.getRoot());
4877      CodeGenAndEmitDAG(HSDAG);
4878    }
4879
4880    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4881    CurDAG = &JSDAG;
4882    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo);
4883    // Set the current basic block to the mbb we wish to insert the code into
4884    BB = JTCases[i].second.MBB;
4885    JSDL.setCurrentBasicBlock(BB);
4886    // Emit the code
4887    JSDL.visitJumpTable(JTCases[i].second);
4888    JSDAG.setRoot(JSDL.getRoot());
4889    CodeGenAndEmitDAG(JSDAG);
4890
4891    // Update PHI Nodes
4892    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4893      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4894      MachineBasicBlock *PHIBB = PHI->getParent();
4895      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4896             "This is not a machine PHI node that we are updating!");
4897      // "default" BB. We can go there only from header BB.
4898      if (PHIBB == JTCases[i].second.Default) {
4899        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4900        PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4901      }
4902      // JT BB. Just iterate over successors here
4903      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4904        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4905        PHI->addMachineBasicBlockOperand(BB);
4906      }
4907    }
4908  }
4909
4910  // If the switch block involved a branch to one of the actual successors, we
4911  // need to update PHI nodes in that block.
4912  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4913    MachineInstr *PHI = PHINodesToUpdate[i].first;
4914    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4915           "This is not a machine PHI node that we are updating!");
4916    if (BB->isSuccessor(PHI->getParent())) {
4917      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4918      PHI->addMachineBasicBlockOperand(BB);
4919    }
4920  }
4921
4922  // If we generated any switch lowering information, build and codegen any
4923  // additional DAGs necessary.
4924  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4925    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4926    CurDAG = &SDAG;
4927    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo);
4928
4929    // Set the current basic block to the mbb we wish to insert the code into
4930    BB = SwitchCases[i].ThisBB;
4931    SDL.setCurrentBasicBlock(BB);
4932
4933    // Emit the code
4934    SDL.visitSwitchCase(SwitchCases[i]);
4935    SDAG.setRoot(SDL.getRoot());
4936    CodeGenAndEmitDAG(SDAG);
4937
4938    // Handle any PHI nodes in successors of this chunk, as if we were coming
4939    // from the original BB before switch expansion.  Note that PHI nodes can
4940    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4941    // handle them the right number of times.
4942    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4943      for (MachineBasicBlock::iterator Phi = BB->begin();
4944           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4945        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4946        for (unsigned pn = 0; ; ++pn) {
4947          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4948          if (PHINodesToUpdate[pn].first == Phi) {
4949            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4950            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4951            break;
4952          }
4953        }
4954      }
4955
4956      // Don't process RHS if same block as LHS.
4957      if (BB == SwitchCases[i].FalseBB)
4958        SwitchCases[i].FalseBB = 0;
4959
4960      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4961      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4962      SwitchCases[i].FalseBB = 0;
4963    }
4964    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4965  }
4966}
4967
4968
4969//===----------------------------------------------------------------------===//
4970/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4971/// target node in the graph.
4972void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4973  if (ViewSchedDAGs) DAG.viewGraph();
4974
4975  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4976
4977  if (!Ctor) {
4978    Ctor = ISHeuristic;
4979    RegisterScheduler::setDefault(Ctor);
4980  }
4981
4982  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4983  BB = SL->Run();
4984
4985  if (ViewSUnitDAGs) SL->viewGraph();
4986
4987  delete SL;
4988}
4989
4990
4991HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4992  return new HazardRecognizer();
4993}
4994
4995//===----------------------------------------------------------------------===//
4996// Helper functions used by the generated instruction selector.
4997//===----------------------------------------------------------------------===//
4998// Calls to these methods are generated by tblgen.
4999
5000/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5001/// the dag combiner simplified the 255, we still want to match.  RHS is the
5002/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5003/// specified in the .td file (e.g. 255).
5004bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
5005                                    int64_t DesiredMaskS) const {
5006  uint64_t ActualMask = RHS->getValue();
5007  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
5008
5009  // If the actual mask exactly matches, success!
5010  if (ActualMask == DesiredMask)
5011    return true;
5012
5013  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5014  if (ActualMask & ~DesiredMask)
5015    return false;
5016
5017  // Otherwise, the DAG Combiner may have proven that the value coming in is
5018  // either already zero or is not demanded.  Check for known zero input bits.
5019  uint64_t NeededMask = DesiredMask & ~ActualMask;
5020  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5021    return true;
5022
5023  // TODO: check to see if missing bits are just not demanded.
5024
5025  // Otherwise, this pattern doesn't match.
5026  return false;
5027}
5028
5029/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5030/// the dag combiner simplified the 255, we still want to match.  RHS is the
5031/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5032/// specified in the .td file (e.g. 255).
5033bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
5034                                    int64_t DesiredMaskS) const {
5035  uint64_t ActualMask = RHS->getValue();
5036  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
5037
5038  // If the actual mask exactly matches, success!
5039  if (ActualMask == DesiredMask)
5040    return true;
5041
5042  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5043  if (ActualMask & ~DesiredMask)
5044    return false;
5045
5046  // Otherwise, the DAG Combiner may have proven that the value coming in is
5047  // either already zero or is not demanded.  Check for known zero input bits.
5048  uint64_t NeededMask = DesiredMask & ~ActualMask;
5049
5050  uint64_t KnownZero, KnownOne;
5051  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5052
5053  // If all the missing bits in the or are already known to be set, match!
5054  if ((NeededMask & KnownOne) == NeededMask)
5055    return true;
5056
5057  // TODO: check to see if missing bits are just not demanded.
5058
5059  // Otherwise, this pattern doesn't match.
5060  return false;
5061}
5062
5063
5064/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5065/// by tblgen.  Others should not call it.
5066void SelectionDAGISel::
5067SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5068  std::vector<SDOperand> InOps;
5069  std::swap(InOps, Ops);
5070
5071  Ops.push_back(InOps[0]);  // input chain.
5072  Ops.push_back(InOps[1]);  // input asm string.
5073
5074  unsigned i = 2, e = InOps.size();
5075  if (InOps[e-1].getValueType() == MVT::Flag)
5076    --e;  // Don't process a flag operand if it is here.
5077
5078  while (i != e) {
5079    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5080    if ((Flags & 7) != 4 /*MEM*/) {
5081      // Just skip over this operand, copying the operands verbatim.
5082      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5083      i += (Flags >> 3) + 1;
5084    } else {
5085      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5086      // Otherwise, this is a memory operand.  Ask the target to select it.
5087      std::vector<SDOperand> SelOps;
5088      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5089        cerr << "Could not match memory address.  Inline asm failure!\n";
5090        exit(1);
5091      }
5092
5093      // Add this to the output node.
5094      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5095      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5096                                          IntPtrTy));
5097      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5098      i += 2;
5099    }
5100  }
5101
5102  // Add the flag input back if present.
5103  if (e != InOps.size())
5104    Ops.push_back(InOps.back());
5105}
5106
5107char SelectionDAGISel::ID = 0;
5108