SelectionDAGISel.cpp revision fab08875b73656f373b10a59aad475615df82baf
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Function.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/SelectionDAG.h"
26#include "llvm/CodeGen/SSARegMap.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetFrameInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Transforms/Utils/BasicBlockUtils.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include <map>
36#include <iostream>
37using namespace llvm;
38
39#ifndef NDEBUG
40static cl::opt<bool>
41ViewDAGs("view-isel-dags", cl::Hidden,
42         cl::desc("Pop up a window to show isel dags as they are selected"));
43#else
44static const bool ViewDAGS = 0;
45#endif
46
47namespace llvm {
48  //===--------------------------------------------------------------------===//
49  /// FunctionLoweringInfo - This contains information that is global to a
50  /// function that is used when lowering a region of the function.
51  class FunctionLoweringInfo {
52  public:
53    TargetLowering &TLI;
54    Function &Fn;
55    MachineFunction &MF;
56    SSARegMap *RegMap;
57
58    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
59
60    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
61    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
62
63    /// ValueMap - Since we emit code for the function a basic block at a time,
64    /// we must remember which virtual registers hold the values for
65    /// cross-basic-block values.
66    std::map<const Value*, unsigned> ValueMap;
67
68    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
69    /// the entry block.  This allows the allocas to be efficiently referenced
70    /// anywhere in the function.
71    std::map<const AllocaInst*, int> StaticAllocaMap;
72
73    /// BlockLocalArguments - If any arguments are only used in a single basic
74    /// block, and if the target can access the arguments without side-effects,
75    /// avoid emitting CopyToReg nodes for those arguments.  This map keeps
76    /// track of which arguments are local to each BB.
77    std::multimap<BasicBlock*, std::pair<Argument*,
78                                         unsigned> > BlockLocalArguments;
79
80
81    unsigned MakeReg(MVT::ValueType VT) {
82      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
83    }
84
85    unsigned CreateRegForValue(const Value *V) {
86      MVT::ValueType VT = TLI.getValueType(V->getType());
87      // The common case is that we will only create one register for this
88      // value.  If we have that case, create and return the virtual register.
89      unsigned NV = TLI.getNumElements(VT);
90      if (NV == 1) {
91        // If we are promoting this value, pick the next largest supported type.
92        return MakeReg(TLI.getTypeToTransformTo(VT));
93      }
94
95      // If this value is represented with multiple target registers, make sure
96      // to create enough consequtive registers of the right (smaller) type.
97      unsigned NT = VT-1;  // Find the type to use.
98      while (TLI.getNumElements((MVT::ValueType)NT) != 1)
99        --NT;
100
101      unsigned R = MakeReg((MVT::ValueType)NT);
102      for (unsigned i = 1; i != NV; ++i)
103        MakeReg((MVT::ValueType)NT);
104      return R;
105    }
106
107    unsigned InitializeRegForValue(const Value *V) {
108      unsigned &R = ValueMap[V];
109      assert(R == 0 && "Already initialized this value register!");
110      return R = CreateRegForValue(V);
111    }
112  };
113}
114
115/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
116/// PHI nodes or outside of the basic block that defines it.
117static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
118  if (isa<PHINode>(I)) return true;
119  BasicBlock *BB = I->getParent();
120  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
121    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
122      return true;
123  return false;
124}
125
126FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
127                                           Function &fn, MachineFunction &mf)
128    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
129
130  // Initialize the mapping of values to registers.  This is only set up for
131  // instruction values that are used outside of the block that defines
132  // them.
133  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
134       AI != E; ++AI)
135    InitializeRegForValue(AI);
136
137  Function::iterator BB = Fn.begin(), E = Fn.end();
138  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
139    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
140      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
141        const Type *Ty = AI->getAllocatedType();
142        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
143        unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
144
145        // If the alignment of the value is smaller than the size of the value,
146        // and if the size of the value is particularly small (<= 8 bytes),
147        // round up to the size of the value for potentially better performance.
148        //
149        // FIXME: This could be made better with a preferred alignment hook in
150        // TargetData.  It serves primarily to 8-byte align doubles for X86.
151        if (Align < TySize && TySize <= 8) Align = TySize;
152
153        TySize *= CUI->getValue();   // Get total allocated size.
154        StaticAllocaMap[AI] =
155          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
156      }
157
158  for (; BB != E; ++BB)
159    for (BasicBlock::iterator I = BB->begin(), e = BB->end(); I != e; ++I)
160      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
161        if (!isa<AllocaInst>(I) ||
162            !StaticAllocaMap.count(cast<AllocaInst>(I)))
163          InitializeRegForValue(I);
164
165  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
166  // also creates the initial PHI MachineInstrs, though none of the input
167  // operands are populated.
168  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
169    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
170    MBBMap[BB] = MBB;
171    MF.getBasicBlockList().push_back(MBB);
172
173    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
174    // appropriate.
175    PHINode *PN;
176    for (BasicBlock::iterator I = BB->begin();
177         (PN = dyn_cast<PHINode>(I)); ++I)
178      if (!PN->use_empty()) {
179        unsigned NumElements =
180          TLI.getNumElements(TLI.getValueType(PN->getType()));
181        unsigned PHIReg = ValueMap[PN];
182        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
183        for (unsigned i = 0; i != NumElements; ++i)
184          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
185      }
186  }
187}
188
189
190
191//===----------------------------------------------------------------------===//
192/// SelectionDAGLowering - This is the common target-independent lowering
193/// implementation that is parameterized by a TargetLowering object.
194/// Also, targets can overload any lowering method.
195///
196namespace llvm {
197class SelectionDAGLowering {
198  MachineBasicBlock *CurMBB;
199
200  std::map<const Value*, SDOperand> NodeMap;
201
202  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
203  /// them up and then emit token factor nodes when possible.  This allows us to
204  /// get simple disambiguation between loads without worrying about alias
205  /// analysis.
206  std::vector<SDOperand> PendingLoads;
207
208public:
209  // TLI - This is information that describes the available target features we
210  // need for lowering.  This indicates when operations are unavailable,
211  // implemented with a libcall, etc.
212  TargetLowering &TLI;
213  SelectionDAG &DAG;
214  const TargetData &TD;
215
216  /// FuncInfo - Information about the function as a whole.
217  ///
218  FunctionLoweringInfo &FuncInfo;
219
220  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
221                       FunctionLoweringInfo &funcinfo)
222    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
223      FuncInfo(funcinfo) {
224  }
225
226  /// getRoot - Return the current virtual root of the Selection DAG.
227  ///
228  SDOperand getRoot() {
229    if (PendingLoads.empty())
230      return DAG.getRoot();
231
232    if (PendingLoads.size() == 1) {
233      SDOperand Root = PendingLoads[0];
234      DAG.setRoot(Root);
235      PendingLoads.clear();
236      return Root;
237    }
238
239    // Otherwise, we have to make a token factor node.
240    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
241    PendingLoads.clear();
242    DAG.setRoot(Root);
243    return Root;
244  }
245
246  void visit(Instruction &I) { visit(I.getOpcode(), I); }
247
248  void visit(unsigned Opcode, User &I) {
249    switch (Opcode) {
250    default: assert(0 && "Unknown instruction type encountered!");
251             abort();
252      // Build the switch statement using the Instruction.def file.
253#define HANDLE_INST(NUM, OPCODE, CLASS) \
254    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
255#include "llvm/Instruction.def"
256    }
257  }
258
259  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
260
261
262  SDOperand getIntPtrConstant(uint64_t Val) {
263    return DAG.getConstant(Val, TLI.getPointerTy());
264  }
265
266  SDOperand getValue(const Value *V) {
267    SDOperand &N = NodeMap[V];
268    if (N.Val) return N;
269
270    MVT::ValueType VT = TLI.getValueType(V->getType());
271    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
272      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
273        visit(CE->getOpcode(), *CE);
274        assert(N.Val && "visit didn't populate the ValueMap!");
275        return N;
276      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
277        return N = DAG.getGlobalAddress(GV, VT);
278      } else if (isa<ConstantPointerNull>(C)) {
279        return N = DAG.getConstant(0, TLI.getPointerTy());
280      } else if (isa<UndefValue>(C)) {
281        return N = DAG.getNode(ISD::UNDEF, VT);
282      } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
283        return N = DAG.getConstantFP(CFP->getValue(), VT);
284      } else {
285        // Canonicalize all constant ints to be unsigned.
286        return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
287      }
288
289    if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
290      std::map<const AllocaInst*, int>::iterator SI =
291        FuncInfo.StaticAllocaMap.find(AI);
292      if (SI != FuncInfo.StaticAllocaMap.end())
293        return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
294    }
295
296    std::map<const Value*, unsigned>::const_iterator VMI =
297      FuncInfo.ValueMap.find(V);
298    assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
299
300    unsigned InReg = VMI->second;
301
302    // If this type is not legal, make it so now.
303    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
304
305    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
306    if (DestVT < VT) {
307      // Source must be expanded.  This input value is actually coming from the
308      // register pair VMI->second and VMI->second+1.
309      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
310                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
311    } else {
312      if (DestVT > VT) { // Promotion case
313        if (MVT::isFloatingPoint(VT))
314          N = DAG.getNode(ISD::FP_ROUND, VT, N);
315        else
316          N = DAG.getNode(ISD::TRUNCATE, VT, N);
317      }
318    }
319
320    return N;
321  }
322
323  const SDOperand &setValue(const Value *V, SDOperand NewN) {
324    SDOperand &N = NodeMap[V];
325    assert(N.Val == 0 && "Already set a value for this node!");
326    return N = NewN;
327  }
328
329  // Terminator instructions.
330  void visitRet(ReturnInst &I);
331  void visitBr(BranchInst &I);
332  void visitUnreachable(UnreachableInst &I) { /* noop */ }
333
334  // These all get lowered before this pass.
335  void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
336  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
337  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
338
339  //
340  void visitBinary(User &I, unsigned Opcode, bool isShift = false);
341  void visitAdd(User &I) { visitBinary(I, ISD::ADD); }
342  void visitSub(User &I);
343  void visitMul(User &I) { visitBinary(I, ISD::MUL); }
344  void visitDiv(User &I) {
345    visitBinary(I, I.getType()->isUnsigned() ? ISD::UDIV : ISD::SDIV);
346  }
347  void visitRem(User &I) {
348    visitBinary(I, I.getType()->isUnsigned() ? ISD::UREM : ISD::SREM);
349  }
350  void visitAnd(User &I) { visitBinary(I, ISD::AND); }
351  void visitOr (User &I) { visitBinary(I, ISD::OR); }
352  void visitXor(User &I) { visitBinary(I, ISD::XOR); }
353  void visitShl(User &I) { visitBinary(I, ISD::SHL, true); }
354  void visitShr(User &I) {
355    visitBinary(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA, true);
356  }
357
358  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
359  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
360  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
361  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
362  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
363  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
364  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
365
366  void visitGetElementPtr(User &I);
367  void visitCast(User &I);
368  void visitSelect(User &I);
369  //
370
371  void visitMalloc(MallocInst &I);
372  void visitFree(FreeInst &I);
373  void visitAlloca(AllocaInst &I);
374  void visitLoad(LoadInst &I);
375  void visitStore(StoreInst &I);
376  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
377  void visitCall(CallInst &I);
378
379  void visitVAStart(CallInst &I);
380  void visitVAArg(VAArgInst &I);
381  void visitVAEnd(CallInst &I);
382  void visitVACopy(CallInst &I);
383  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
384
385  void visitMemIntrinsic(CallInst &I, unsigned Op);
386
387  void visitUserOp1(Instruction &I) {
388    assert(0 && "UserOp1 should not exist at instruction selection time!");
389    abort();
390  }
391  void visitUserOp2(Instruction &I) {
392    assert(0 && "UserOp2 should not exist at instruction selection time!");
393    abort();
394  }
395};
396} // end namespace llvm
397
398void SelectionDAGLowering::visitRet(ReturnInst &I) {
399  if (I.getNumOperands() == 0) {
400    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
401    return;
402  }
403
404  SDOperand Op1 = getValue(I.getOperand(0));
405  MVT::ValueType TmpVT;
406
407  switch (Op1.getValueType()) {
408  default: assert(0 && "Unknown value type!");
409  case MVT::i1:
410  case MVT::i8:
411  case MVT::i16:
412  case MVT::i32:
413    // If this is a machine where 32-bits is legal or expanded, promote to
414    // 32-bits, otherwise, promote to 64-bits.
415    if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
416      TmpVT = TLI.getTypeToTransformTo(MVT::i32);
417    else
418      TmpVT = MVT::i32;
419
420    // Extend integer types to result type.
421    if (I.getOperand(0)->getType()->isSigned())
422      Op1 = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, Op1);
423    else
424      Op1 = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, Op1);
425    break;
426  case MVT::f32:
427  case MVT::i64:
428  case MVT::f64:
429    break; // No extension needed!
430  }
431
432  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot(), Op1));
433}
434
435void SelectionDAGLowering::visitBr(BranchInst &I) {
436  // Update machine-CFG edges.
437  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
438
439  // Figure out which block is immediately after the current one.
440  MachineBasicBlock *NextBlock = 0;
441  MachineFunction::iterator BBI = CurMBB;
442  if (++BBI != CurMBB->getParent()->end())
443    NextBlock = BBI;
444
445  if (I.isUnconditional()) {
446    // If this is not a fall-through branch, emit the branch.
447    if (Succ0MBB != NextBlock)
448      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
449                              DAG.getBasicBlock(Succ0MBB)));
450  } else {
451    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
452
453    SDOperand Cond = getValue(I.getCondition());
454    if (Succ1MBB == NextBlock) {
455      // If the condition is false, fall through.  This means we should branch
456      // if the condition is true to Succ #0.
457      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
458                              Cond, DAG.getBasicBlock(Succ0MBB)));
459    } else if (Succ0MBB == NextBlock) {
460      // If the condition is true, fall through.  This means we should branch if
461      // the condition is false to Succ #1.  Invert the condition first.
462      SDOperand True = DAG.getConstant(1, Cond.getValueType());
463      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
464      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
465                              Cond, DAG.getBasicBlock(Succ1MBB)));
466    } else {
467      std::vector<SDOperand> Ops;
468      Ops.push_back(getRoot());
469      Ops.push_back(Cond);
470      Ops.push_back(DAG.getBasicBlock(Succ0MBB));
471      Ops.push_back(DAG.getBasicBlock(Succ1MBB));
472      DAG.setRoot(DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops));
473    }
474  }
475}
476
477void SelectionDAGLowering::visitSub(User &I) {
478  // -0.0 - X --> fneg
479  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
480    if (CFP->isExactlyValue(-0.0)) {
481      SDOperand Op2 = getValue(I.getOperand(1));
482      setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
483      return;
484    }
485
486  visitBinary(I, ISD::SUB);
487}
488
489void SelectionDAGLowering::visitBinary(User &I, unsigned Opcode, bool isShift) {
490  SDOperand Op1 = getValue(I.getOperand(0));
491  SDOperand Op2 = getValue(I.getOperand(1));
492
493  if (isShift)
494    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
495
496  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
497}
498
499void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
500                                      ISD::CondCode UnsignedOpcode) {
501  SDOperand Op1 = getValue(I.getOperand(0));
502  SDOperand Op2 = getValue(I.getOperand(1));
503  ISD::CondCode Opcode = SignedOpcode;
504  if (I.getOperand(0)->getType()->isUnsigned())
505    Opcode = UnsignedOpcode;
506  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
507}
508
509void SelectionDAGLowering::visitSelect(User &I) {
510  SDOperand Cond     = getValue(I.getOperand(0));
511  SDOperand TrueVal  = getValue(I.getOperand(1));
512  SDOperand FalseVal = getValue(I.getOperand(2));
513  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
514                           TrueVal, FalseVal));
515}
516
517void SelectionDAGLowering::visitCast(User &I) {
518  SDOperand N = getValue(I.getOperand(0));
519  MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
520  MVT::ValueType DestTy = TLI.getValueType(I.getType());
521
522  if (N.getValueType() == DestTy) {
523    setValue(&I, N);  // noop cast.
524  } else if (DestTy == MVT::i1) {
525    // Cast to bool is a comparison against zero, not truncation to zero.
526    SDOperand Zero = isInteger(SrcTy) ? DAG.getConstant(0, N.getValueType()) :
527                                       DAG.getConstantFP(0.0, N.getValueType());
528    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
529  } else if (isInteger(SrcTy)) {
530    if (isInteger(DestTy)) {        // Int -> Int cast
531      if (DestTy < SrcTy)   // Truncating cast?
532        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
533      else if (I.getOperand(0)->getType()->isSigned())
534        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
535      else
536        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
537    } else {                        // Int -> FP cast
538      if (I.getOperand(0)->getType()->isSigned())
539        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N));
540      else
541        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N));
542    }
543  } else {
544    assert(isFloatingPoint(SrcTy) && "Unknown value type!");
545    if (isFloatingPoint(DestTy)) {  // FP -> FP cast
546      if (DestTy < SrcTy)   // Rounding cast?
547        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
548      else
549        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
550    } else {                        // FP -> Int cast.
551      if (I.getType()->isSigned())
552        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N));
553      else
554        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N));
555    }
556  }
557}
558
559void SelectionDAGLowering::visitGetElementPtr(User &I) {
560  SDOperand N = getValue(I.getOperand(0));
561  const Type *Ty = I.getOperand(0)->getType();
562  const Type *UIntPtrTy = TD.getIntPtrType();
563
564  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
565       OI != E; ++OI) {
566    Value *Idx = *OI;
567    if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
568      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
569      if (Field) {
570        // N = N + Offset
571        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
572        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
573                        getIntPtrConstant(Offset));
574      }
575      Ty = StTy->getElementType(Field);
576    } else {
577      Ty = cast<SequentialType>(Ty)->getElementType();
578      if (!isa<Constant>(Idx) || !cast<Constant>(Idx)->isNullValue()) {
579        // N = N + Idx * ElementSize;
580        uint64_t ElementSize = TD.getTypeSize(Ty);
581        SDOperand IdxN = getValue(Idx), Scale = getIntPtrConstant(ElementSize);
582
583        // If the index is smaller or larger than intptr_t, truncate or extend
584        // it.
585        if (IdxN.getValueType() < Scale.getValueType()) {
586          if (Idx->getType()->isSigned())
587            IdxN = DAG.getNode(ISD::SIGN_EXTEND, Scale.getValueType(), IdxN);
588          else
589            IdxN = DAG.getNode(ISD::ZERO_EXTEND, Scale.getValueType(), IdxN);
590        } else if (IdxN.getValueType() > Scale.getValueType())
591          IdxN = DAG.getNode(ISD::TRUNCATE, Scale.getValueType(), IdxN);
592
593        IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
594        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
595      }
596    }
597  }
598  setValue(&I, N);
599}
600
601void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
602  // If this is a fixed sized alloca in the entry block of the function,
603  // allocate it statically on the stack.
604  if (FuncInfo.StaticAllocaMap.count(&I))
605    return;   // getValue will auto-populate this.
606
607  const Type *Ty = I.getAllocatedType();
608  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
609  unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
610
611  SDOperand AllocSize = getValue(I.getArraySize());
612  MVT::ValueType IntPtr = TLI.getPointerTy();
613  if (IntPtr < AllocSize.getValueType())
614    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
615  else if (IntPtr > AllocSize.getValueType())
616    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
617
618  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
619                          getIntPtrConstant(TySize));
620
621  // Handle alignment.  If the requested alignment is less than or equal to the
622  // stack alignment, ignore it and round the size of the allocation up to the
623  // stack alignment size.  If the size is greater than the stack alignment, we
624  // note this in the DYNAMIC_STACKALLOC node.
625  unsigned StackAlign =
626    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
627  if (Align <= StackAlign) {
628    Align = 0;
629    // Add SA-1 to the size.
630    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
631                            getIntPtrConstant(StackAlign-1));
632    // Mask out the low bits for alignment purposes.
633    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
634                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
635  }
636
637  std::vector<MVT::ValueType> VTs;
638  VTs.push_back(AllocSize.getValueType());
639  VTs.push_back(MVT::Other);
640  std::vector<SDOperand> Ops;
641  Ops.push_back(getRoot());
642  Ops.push_back(AllocSize);
643  Ops.push_back(getIntPtrConstant(Align));
644  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
645  DAG.setRoot(setValue(&I, DSA).getValue(1));
646
647  // Inform the Frame Information that we have just allocated a variable-sized
648  // object.
649  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
650}
651
652
653void SelectionDAGLowering::visitLoad(LoadInst &I) {
654  SDOperand Ptr = getValue(I.getOperand(0));
655
656  SDOperand Root;
657  if (I.isVolatile())
658    Root = getRoot();
659  else {
660    // Do not serialize non-volatile loads against each other.
661    Root = DAG.getRoot();
662  }
663
664  SDOperand L = DAG.getLoad(TLI.getValueType(I.getType()), Root, Ptr,
665                            DAG.getSrcValue(I.getOperand(0)));
666  setValue(&I, L);
667
668  if (I.isVolatile())
669    DAG.setRoot(L.getValue(1));
670  else
671    PendingLoads.push_back(L.getValue(1));
672}
673
674
675void SelectionDAGLowering::visitStore(StoreInst &I) {
676  Value *SrcV = I.getOperand(0);
677  SDOperand Src = getValue(SrcV);
678  SDOperand Ptr = getValue(I.getOperand(1));
679  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
680                          DAG.getSrcValue(I.getOperand(1))));
681}
682
683void SelectionDAGLowering::visitCall(CallInst &I) {
684  const char *RenameFn = 0;
685  SDOperand Tmp;
686  if (Function *F = I.getCalledFunction())
687    if (F->isExternal())
688      switch (F->getIntrinsicID()) {
689      case 0:     // Not an LLVM intrinsic.
690        if (F->getName() == "fabs" || F->getName() == "fabsf") {
691          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
692              I.getOperand(1)->getType()->isFloatingPoint() &&
693              I.getType() == I.getOperand(1)->getType()) {
694            Tmp = getValue(I.getOperand(1));
695            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
696            return;
697          }
698        }
699        else if (F->getName() == "sin" || F->getName() == "sinf") {
700          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
701              I.getOperand(1)->getType()->isFloatingPoint() &&
702              I.getType() == I.getOperand(1)->getType()) {
703            Tmp = getValue(I.getOperand(1));
704            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
705            return;
706          }
707        }
708        else if (F->getName() == "cos" || F->getName() == "cosf") {
709          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
710              I.getOperand(1)->getType()->isFloatingPoint() &&
711              I.getType() == I.getOperand(1)->getType()) {
712            Tmp = getValue(I.getOperand(1));
713            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
714            return;
715          }
716        }
717        break;
718      case Intrinsic::vastart:  visitVAStart(I); return;
719      case Intrinsic::vaend:    visitVAEnd(I); return;
720      case Intrinsic::vacopy:   visitVACopy(I); return;
721      case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return;
722      case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return;
723
724      case Intrinsic::setjmp:  RenameFn = "setjmp"; break;
725      case Intrinsic::longjmp: RenameFn = "longjmp"; break;
726      case Intrinsic::memcpy:  visitMemIntrinsic(I, ISD::MEMCPY); return;
727      case Intrinsic::memset:  visitMemIntrinsic(I, ISD::MEMSET); return;
728      case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return;
729
730      case Intrinsic::readport:
731      case Intrinsic::readio: {
732        std::vector<MVT::ValueType> VTs;
733        VTs.push_back(TLI.getValueType(I.getType()));
734        VTs.push_back(MVT::Other);
735        std::vector<SDOperand> Ops;
736        Ops.push_back(getRoot());
737        Ops.push_back(getValue(I.getOperand(1)));
738        Tmp = DAG.getNode(F->getIntrinsicID() == Intrinsic::readport ?
739                          ISD::READPORT : ISD::READIO, VTs, Ops);
740
741        setValue(&I, Tmp);
742        DAG.setRoot(Tmp.getValue(1));
743        return;
744      }
745      case Intrinsic::writeport:
746      case Intrinsic::writeio:
747        DAG.setRoot(DAG.getNode(F->getIntrinsicID() == Intrinsic::writeport ?
748                                ISD::WRITEPORT : ISD::WRITEIO, MVT::Other,
749                                getRoot(), getValue(I.getOperand(1)),
750                                getValue(I.getOperand(2))));
751        return;
752      case Intrinsic::dbg_stoppoint:
753      case Intrinsic::dbg_region_start:
754      case Intrinsic::dbg_region_end:
755      case Intrinsic::dbg_func_start:
756      case Intrinsic::dbg_declare:
757        if (I.getType() != Type::VoidTy)
758          setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
759        return;
760
761      case Intrinsic::isunordered:
762        setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
763                                  getValue(I.getOperand(2)), ISD::SETUO));
764        return;
765
766      case Intrinsic::sqrt:
767        setValue(&I, DAG.getNode(ISD::FSQRT,
768                                 getValue(I.getOperand(1)).getValueType(),
769                                 getValue(I.getOperand(1))));
770        return;
771
772      case Intrinsic::pcmarker:
773        Tmp = getValue(I.getOperand(1));
774        DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
775        return;
776      case Intrinsic::cttz:
777        setValue(&I, DAG.getNode(ISD::CTTZ,
778                                 getValue(I.getOperand(1)).getValueType(),
779                                 getValue(I.getOperand(1))));
780        return;
781      case Intrinsic::ctlz:
782        setValue(&I, DAG.getNode(ISD::CTLZ,
783                                 getValue(I.getOperand(1)).getValueType(),
784                                 getValue(I.getOperand(1))));
785        return;
786      case Intrinsic::ctpop:
787        setValue(&I, DAG.getNode(ISD::CTPOP,
788                                 getValue(I.getOperand(1)).getValueType(),
789                                 getValue(I.getOperand(1))));
790        return;
791      default:
792        std::cerr << I;
793        assert(0 && "This intrinsic is not implemented yet!");
794        return;
795      }
796
797  SDOperand Callee;
798  if (!RenameFn)
799    Callee = getValue(I.getOperand(0));
800  else
801    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
802  std::vector<std::pair<SDOperand, const Type*> > Args;
803
804  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
805    Value *Arg = I.getOperand(i);
806    SDOperand ArgNode = getValue(Arg);
807    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
808  }
809
810  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
811  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
812
813  std::pair<SDOperand,SDOperand> Result =
814    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
815                    I.isTailCall(), Callee, Args, DAG);
816  if (I.getType() != Type::VoidTy)
817    setValue(&I, Result.first);
818  DAG.setRoot(Result.second);
819}
820
821void SelectionDAGLowering::visitMalloc(MallocInst &I) {
822  SDOperand Src = getValue(I.getOperand(0));
823
824  MVT::ValueType IntPtr = TLI.getPointerTy();
825
826  if (IntPtr < Src.getValueType())
827    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
828  else if (IntPtr > Src.getValueType())
829    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
830
831  // Scale the source by the type size.
832  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
833  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
834                    Src, getIntPtrConstant(ElementSize));
835
836  std::vector<std::pair<SDOperand, const Type*> > Args;
837  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
838
839  std::pair<SDOperand,SDOperand> Result =
840    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
841                    DAG.getExternalSymbol("malloc", IntPtr),
842                    Args, DAG);
843  setValue(&I, Result.first);  // Pointers always fit in registers
844  DAG.setRoot(Result.second);
845}
846
847void SelectionDAGLowering::visitFree(FreeInst &I) {
848  std::vector<std::pair<SDOperand, const Type*> > Args;
849  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
850                                TLI.getTargetData().getIntPtrType()));
851  MVT::ValueType IntPtr = TLI.getPointerTy();
852  std::pair<SDOperand,SDOperand> Result =
853    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
854                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
855  DAG.setRoot(Result.second);
856}
857
858// InsertAtEndOfBasicBlock - This method should be implemented by targets that
859// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
860// instructions are special in various ways, which require special support to
861// insert.  The specified MachineInstr is created but not inserted into any
862// basic blocks, and the scheduler passes ownership of it to this method.
863MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
864                                                       MachineBasicBlock *MBB) {
865  std::cerr << "If a target marks an instruction with "
866               "'usesCustomDAGSchedInserter', it must implement "
867               "TargetLowering::InsertAtEndOfBasicBlock!\n";
868  abort();
869  return 0;
870}
871
872SDOperand TargetLowering::LowerVAStart(SDOperand Chain,
873                                       SDOperand VAListP, Value *VAListV,
874                                       SelectionDAG &DAG) {
875  // We have no sane default behavior, just emit a useful error message and bail
876  // out.
877  std::cerr << "Variable arguments handling not implemented on this target!\n";
878  abort();
879  return SDOperand();
880}
881
882SDOperand TargetLowering::LowerVAEnd(SDOperand Chain, SDOperand LP, Value *LV,
883                                     SelectionDAG &DAG) {
884  // Default to a noop.
885  return Chain;
886}
887
888SDOperand TargetLowering::LowerVACopy(SDOperand Chain,
889                                      SDOperand SrcP, Value *SrcV,
890                                      SDOperand DestP, Value *DestV,
891                                      SelectionDAG &DAG) {
892  // Default to copying the input list.
893  SDOperand Val = DAG.getLoad(getPointerTy(), Chain,
894                              SrcP, DAG.getSrcValue(SrcV));
895  SDOperand Result = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
896                                 Val, DestP, DAG.getSrcValue(DestV));
897  return Result;
898}
899
900std::pair<SDOperand,SDOperand>
901TargetLowering::LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
902                           const Type *ArgTy, SelectionDAG &DAG) {
903  // We have no sane default behavior, just emit a useful error message and bail
904  // out.
905  std::cerr << "Variable arguments handling not implemented on this target!\n";
906  abort();
907  return std::make_pair(SDOperand(), SDOperand());
908}
909
910
911void SelectionDAGLowering::visitVAStart(CallInst &I) {
912  DAG.setRoot(TLI.LowerVAStart(getRoot(), getValue(I.getOperand(1)),
913                               I.getOperand(1), DAG));
914}
915
916void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
917  std::pair<SDOperand,SDOperand> Result =
918    TLI.LowerVAArg(getRoot(), getValue(I.getOperand(0)), I.getOperand(0),
919                   I.getType(), DAG);
920  setValue(&I, Result.first);
921  DAG.setRoot(Result.second);
922}
923
924void SelectionDAGLowering::visitVAEnd(CallInst &I) {
925  DAG.setRoot(TLI.LowerVAEnd(getRoot(), getValue(I.getOperand(1)),
926                             I.getOperand(1), DAG));
927}
928
929void SelectionDAGLowering::visitVACopy(CallInst &I) {
930  SDOperand Result =
931    TLI.LowerVACopy(getRoot(), getValue(I.getOperand(2)), I.getOperand(2),
932                    getValue(I.getOperand(1)), I.getOperand(1), DAG);
933  DAG.setRoot(Result);
934}
935
936
937// It is always conservatively correct for llvm.returnaddress and
938// llvm.frameaddress to return 0.
939std::pair<SDOperand, SDOperand>
940TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
941                                        unsigned Depth, SelectionDAG &DAG) {
942  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
943}
944
945SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
946  assert(0 && "LowerOperation not implemented for this target!");
947  abort();
948  return SDOperand();
949}
950
951void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
952  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
953  std::pair<SDOperand,SDOperand> Result =
954    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
955  setValue(&I, Result.first);
956  DAG.setRoot(Result.second);
957}
958
959void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
960  std::vector<SDOperand> Ops;
961  Ops.push_back(getRoot());
962  Ops.push_back(getValue(I.getOperand(1)));
963  Ops.push_back(getValue(I.getOperand(2)));
964  Ops.push_back(getValue(I.getOperand(3)));
965  Ops.push_back(getValue(I.getOperand(4)));
966  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
967}
968
969//===----------------------------------------------------------------------===//
970// SelectionDAGISel code
971//===----------------------------------------------------------------------===//
972
973unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
974  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
975}
976
977void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
978  // FIXME: we only modify the CFG to split critical edges.  This
979  // updates dom and loop info.
980}
981
982
983bool SelectionDAGISel::runOnFunction(Function &Fn) {
984  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
985  RegMap = MF.getSSARegMap();
986  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
987
988  // First pass, split all critical edges for PHI nodes with incoming values
989  // that are constants, this way the load of the constant into a vreg will not
990  // be placed into MBBs that are used some other way.
991  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
992    PHINode *PN;
993    for (BasicBlock::iterator BBI = BB->begin();
994         (PN = dyn_cast<PHINode>(BBI)); ++BBI)
995      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
996        if (isa<Constant>(PN->getIncomingValue(i)))
997          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
998  }
999
1000  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
1001
1002  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
1003    SelectBasicBlock(I, MF, FuncInfo);
1004
1005  return true;
1006}
1007
1008
1009SDOperand SelectionDAGISel::
1010CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
1011  SDOperand Op = SDL.getValue(V);
1012  assert((Op.getOpcode() != ISD::CopyFromReg ||
1013          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
1014         "Copy from a reg to the same reg!");
1015
1016  // If this type is not legal, we must make sure to not create an invalid
1017  // register use.
1018  MVT::ValueType SrcVT = Op.getValueType();
1019  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
1020  SelectionDAG &DAG = SDL.DAG;
1021  if (SrcVT == DestVT) {
1022    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
1023  } else if (SrcVT < DestVT) {
1024    // The src value is promoted to the register.
1025    if (MVT::isFloatingPoint(SrcVT))
1026      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
1027    else
1028      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
1029    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
1030  } else  {
1031    // The src value is expanded into multiple registers.
1032    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
1033                               Op, DAG.getConstant(0, MVT::i32));
1034    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
1035                               Op, DAG.getConstant(1, MVT::i32));
1036    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
1037    return DAG.getCopyToReg(Op, Reg+1, Hi);
1038  }
1039}
1040
1041/// IsOnlyUsedInOneBasicBlock - If the specified argument is only used in a
1042/// single basic block, return that block.  Otherwise, return a null pointer.
1043static BasicBlock *IsOnlyUsedInOneBasicBlock(Argument *A) {
1044  if (A->use_empty()) return 0;
1045  BasicBlock *BB = cast<Instruction>(A->use_back())->getParent();
1046  for (Argument::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E;
1047       ++UI)
1048    if (isa<PHINode>(*UI) || cast<Instruction>(*UI)->getParent() != BB)
1049      return 0;  // Disagreement among the users?
1050
1051  // Okay, there is a single BB user.  Only permit this optimization if this is
1052  // the entry block, otherwise, we might sink argument loads into loops and
1053  // stuff.  Later, when we have global instruction selection, this won't be an
1054  // issue clearly.
1055  if (BB == BB->getParent()->begin())
1056    return BB;
1057  return 0;
1058}
1059
1060void SelectionDAGISel::
1061LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
1062               std::vector<SDOperand> &UnorderedChains) {
1063  // If this is the entry block, emit arguments.
1064  Function &F = *BB->getParent();
1065  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
1066
1067  if (BB == &F.front()) {
1068    SDOperand OldRoot = SDL.DAG.getRoot();
1069
1070    std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
1071
1072    // If there were side effects accessing the argument list, do not do
1073    // anything special.
1074    if (OldRoot != SDL.DAG.getRoot()) {
1075      unsigned a = 0;
1076      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1077           AI != E; ++AI,++a)
1078        if (!AI->use_empty()) {
1079          SDL.setValue(AI, Args[a]);
1080
1081          SDOperand Copy =
1082            CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
1083          UnorderedChains.push_back(Copy);
1084        }
1085    } else {
1086      // Otherwise, if any argument is only accessed in a single basic block,
1087      // emit that argument only to that basic block.
1088      unsigned a = 0;
1089      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1090           AI != E; ++AI,++a)
1091        if (!AI->use_empty()) {
1092          if (BasicBlock *BBU = IsOnlyUsedInOneBasicBlock(AI)) {
1093            FuncInfo.BlockLocalArguments.insert(std::make_pair(BBU,
1094                                                      std::make_pair(AI, a)));
1095          } else {
1096            SDL.setValue(AI, Args[a]);
1097            SDOperand Copy =
1098              CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
1099            UnorderedChains.push_back(Copy);
1100          }
1101        }
1102    }
1103
1104    EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
1105  }
1106
1107  // See if there are any block-local arguments that need to be emitted in this
1108  // block.
1109
1110  if (!FuncInfo.BlockLocalArguments.empty()) {
1111    std::multimap<BasicBlock*, std::pair<Argument*, unsigned> >::iterator BLAI =
1112      FuncInfo.BlockLocalArguments.lower_bound(BB);
1113    if (BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB) {
1114      // Lower the arguments into this block.
1115      std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
1116
1117      // Set up the value mapping for the local arguments.
1118      for (; BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB;
1119           ++BLAI)
1120        SDL.setValue(BLAI->second.first, Args[BLAI->second.second]);
1121
1122      // Any dead arguments will just be ignored here.
1123    }
1124  }
1125}
1126
1127
1128void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
1129       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
1130                                    FunctionLoweringInfo &FuncInfo) {
1131  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
1132
1133  std::vector<SDOperand> UnorderedChains;
1134
1135  // Lower any arguments needed in this block.
1136  LowerArguments(LLVMBB, SDL, UnorderedChains);
1137
1138  BB = FuncInfo.MBBMap[LLVMBB];
1139  SDL.setCurrentBasicBlock(BB);
1140
1141  // Lower all of the non-terminator instructions.
1142  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
1143       I != E; ++I)
1144    SDL.visit(*I);
1145
1146  // Ensure that all instructions which are used outside of their defining
1147  // blocks are available as virtual registers.
1148  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
1149    if (!I->use_empty() && !isa<PHINode>(I)) {
1150      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
1151      if (VMI != FuncInfo.ValueMap.end())
1152        UnorderedChains.push_back(
1153                           CopyValueToVirtualRegister(SDL, I, VMI->second));
1154    }
1155
1156  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
1157  // ensure constants are generated when needed.  Remember the virtual registers
1158  // that need to be added to the Machine PHI nodes as input.  We cannot just
1159  // directly add them, because expansion might result in multiple MBB's for one
1160  // BB.  As such, the start of the BB might correspond to a different MBB than
1161  // the end.
1162  //
1163
1164  // Emit constants only once even if used by multiple PHI nodes.
1165  std::map<Constant*, unsigned> ConstantsOut;
1166
1167  // Check successor nodes PHI nodes that expect a constant to be available from
1168  // this block.
1169  TerminatorInst *TI = LLVMBB->getTerminator();
1170  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1171    BasicBlock *SuccBB = TI->getSuccessor(succ);
1172    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
1173    PHINode *PN;
1174
1175    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1176    // nodes and Machine PHI nodes, but the incoming operands have not been
1177    // emitted yet.
1178    for (BasicBlock::iterator I = SuccBB->begin();
1179         (PN = dyn_cast<PHINode>(I)); ++I)
1180      if (!PN->use_empty()) {
1181        unsigned Reg;
1182        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1183        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
1184          unsigned &RegOut = ConstantsOut[C];
1185          if (RegOut == 0) {
1186            RegOut = FuncInfo.CreateRegForValue(C);
1187            UnorderedChains.push_back(
1188                             CopyValueToVirtualRegister(SDL, C, RegOut));
1189          }
1190          Reg = RegOut;
1191        } else {
1192          Reg = FuncInfo.ValueMap[PHIOp];
1193          if (Reg == 0) {
1194            assert(isa<AllocaInst>(PHIOp) &&
1195                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
1196                   "Didn't codegen value into a register!??");
1197            Reg = FuncInfo.CreateRegForValue(PHIOp);
1198            UnorderedChains.push_back(
1199                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
1200          }
1201        }
1202
1203        // Remember that this register needs to added to the machine PHI node as
1204        // the input for this MBB.
1205        unsigned NumElements =
1206          TLI.getNumElements(TLI.getValueType(PN->getType()));
1207        for (unsigned i = 0, e = NumElements; i != e; ++i)
1208          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
1209      }
1210  }
1211  ConstantsOut.clear();
1212
1213  // Turn all of the unordered chains into one factored node.
1214  if (!UnorderedChains.empty()) {
1215    UnorderedChains.push_back(SDL.getRoot());
1216    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
1217  }
1218
1219  // Lower the terminator after the copies are emitted.
1220  SDL.visit(*LLVMBB->getTerminator());
1221
1222  // Make sure the root of the DAG is up-to-date.
1223  DAG.setRoot(SDL.getRoot());
1224}
1225
1226void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
1227                                        FunctionLoweringInfo &FuncInfo) {
1228  SelectionDAG DAG(TLI, MF);
1229  CurDAG = &DAG;
1230  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
1231
1232  // First step, lower LLVM code to some DAG.  This DAG may use operations and
1233  // types that are not supported by the target.
1234  BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
1235
1236  DEBUG(std::cerr << "Lowered selection DAG:\n");
1237  DEBUG(DAG.dump());
1238
1239  // Second step, hack on the DAG until it only uses operations and types that
1240  // the target supports.
1241  DAG.Legalize();
1242
1243  DEBUG(std::cerr << "Legalized selection DAG:\n");
1244  DEBUG(DAG.dump());
1245
1246  if (ViewDAGs) DAG.viewGraph();
1247
1248  // Third, instruction select all of the operations to machine code, adding the
1249  // code to the MachineBasicBlock.
1250  InstructionSelectBasicBlock(DAG);
1251
1252  DEBUG(std::cerr << "Selected machine code:\n");
1253  DEBUG(BB->dump());
1254
1255  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1256  // PHI nodes in successors.
1257  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
1258    MachineInstr *PHI = PHINodesToUpdate[i].first;
1259    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
1260           "This is not a machine PHI node that we are updating!");
1261    PHI->addRegOperand(PHINodesToUpdate[i].second);
1262    PHI->addMachineBasicBlockOperand(BB);
1263  }
1264
1265  // Finally, add the CFG edges from the last selected MBB to the successor
1266  // MBBs.
1267  TerminatorInst *TI = LLVMBB->getTerminator();
1268  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1269    MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)];
1270    BB->addSuccessor(Succ0MBB);
1271  }
1272}
1273