SelectionDAGISel.cpp revision fae59b99b8d1942f30a4be609423282c3fd62dd8
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Function.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/SelectionDAG.h"
26#include "llvm/CodeGen/SSARegMap.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetFrameInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include <map>
35#include <iostream>
36using namespace llvm;
37
38#ifndef _NDEBUG
39static cl::opt<bool>
40ViewDAGs("view-isel-dags", cl::Hidden,
41         cl::desc("Pop up a window to show isel dags as they are selected"));
42#else
43static const bool ViewDAGS = 0;
44#endif
45
46namespace llvm {
47  //===--------------------------------------------------------------------===//
48  /// FunctionLoweringInfo - This contains information that is global to a
49  /// function that is used when lowering a region of the function.
50  class FunctionLoweringInfo {
51  public:
52    TargetLowering &TLI;
53    Function &Fn;
54    MachineFunction &MF;
55    SSARegMap *RegMap;
56
57    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
58
59    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
60    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
61
62    /// ValueMap - Since we emit code for the function a basic block at a time,
63    /// we must remember which virtual registers hold the values for
64    /// cross-basic-block values.
65    std::map<const Value*, unsigned> ValueMap;
66
67    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
68    /// the entry block.  This allows the allocas to be efficiently referenced
69    /// anywhere in the function.
70    std::map<const AllocaInst*, int> StaticAllocaMap;
71
72    /// BlockLocalArguments - If any arguments are only used in a single basic
73    /// block, and if the target can access the arguments without side-effects,
74    /// avoid emitting CopyToReg nodes for those arguments.  This map keeps
75    /// track of which arguments are local to each BB.
76    std::multimap<BasicBlock*, std::pair<Argument*,
77                                         unsigned> > BlockLocalArguments;
78
79
80    unsigned MakeReg(MVT::ValueType VT) {
81      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
82    }
83
84    unsigned CreateRegForValue(const Value *V) {
85      MVT::ValueType VT = TLI.getValueType(V->getType());
86      // The common case is that we will only create one register for this
87      // value.  If we have that case, create and return the virtual register.
88      unsigned NV = TLI.getNumElements(VT);
89      if (NV == 1) {
90        // If we are promoting this value, pick the next largest supported type.
91        return MakeReg(TLI.getTypeToTransformTo(VT));
92      }
93
94      // If this value is represented with multiple target registers, make sure
95      // to create enough consequtive registers of the right (smaller) type.
96      unsigned NT = VT-1;  // Find the type to use.
97      while (TLI.getNumElements((MVT::ValueType)NT) != 1)
98        --NT;
99
100      unsigned R = MakeReg((MVT::ValueType)NT);
101      for (unsigned i = 1; i != NV; ++i)
102        MakeReg((MVT::ValueType)NT);
103      return R;
104    }
105
106    unsigned InitializeRegForValue(const Value *V) {
107      unsigned &R = ValueMap[V];
108      assert(R == 0 && "Already initialized this value register!");
109      return R = CreateRegForValue(V);
110    }
111  };
112}
113
114/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
115/// PHI nodes or outside of the basic block that defines it.
116static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
117  if (isa<PHINode>(I)) return true;
118  BasicBlock *BB = I->getParent();
119  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
120    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
121      return true;
122  return false;
123}
124
125FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
126                                           Function &fn, MachineFunction &mf)
127    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
128
129  // Initialize the mapping of values to registers.  This is only set up for
130  // instruction values that are used outside of the block that defines
131  // them.
132  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
133       AI != E; ++AI)
134    InitializeRegForValue(AI);
135
136  Function::iterator BB = Fn.begin(), E = Fn.end();
137  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
138    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
139      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
140        const Type *Ty = AI->getAllocatedType();
141        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
142        unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
143
144        // If the alignment of the value is smaller than the size of the value,
145        // and if the size of the value is particularly small (<= 8 bytes),
146        // round up to the size of the value for potentially better performance.
147        //
148        // FIXME: This could be made better with a preferred alignment hook in
149        // TargetData.  It serves primarily to 8-byte align doubles for X86.
150        if (Align < TySize && TySize <= 8) Align = TySize;
151
152        TySize *= CUI->getValue();   // Get total allocated size.
153        StaticAllocaMap[AI] =
154          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
155      }
156
157  for (; BB != E; ++BB)
158    for (BasicBlock::iterator I = BB->begin(), e = BB->end(); I != e; ++I)
159      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
160        if (!isa<AllocaInst>(I) ||
161            !StaticAllocaMap.count(cast<AllocaInst>(I)))
162          InitializeRegForValue(I);
163
164  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
165  // also creates the initial PHI MachineInstrs, though none of the input
166  // operands are populated.
167  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
168    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
169    MBBMap[BB] = MBB;
170    MF.getBasicBlockList().push_back(MBB);
171
172    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
173    // appropriate.
174    PHINode *PN;
175    for (BasicBlock::iterator I = BB->begin();
176         (PN = dyn_cast<PHINode>(I)); ++I)
177      if (!PN->use_empty()) {
178        unsigned NumElements =
179          TLI.getNumElements(TLI.getValueType(PN->getType()));
180        unsigned PHIReg = ValueMap[PN];
181        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
182        for (unsigned i = 0; i != NumElements; ++i)
183          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
184      }
185  }
186}
187
188
189
190//===----------------------------------------------------------------------===//
191/// SelectionDAGLowering - This is the common target-independent lowering
192/// implementation that is parameterized by a TargetLowering object.
193/// Also, targets can overload any lowering method.
194///
195namespace llvm {
196class SelectionDAGLowering {
197  MachineBasicBlock *CurMBB;
198
199  std::map<const Value*, SDOperand> NodeMap;
200
201  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
202  /// them up and then emit token factor nodes when possible.  This allows us to
203  /// get simple disambiguation between loads without worrying about alias
204  /// analysis.
205  std::vector<SDOperand> PendingLoads;
206
207public:
208  // TLI - This is information that describes the available target features we
209  // need for lowering.  This indicates when operations are unavailable,
210  // implemented with a libcall, etc.
211  TargetLowering &TLI;
212  SelectionDAG &DAG;
213  const TargetData &TD;
214
215  /// FuncInfo - Information about the function as a whole.
216  ///
217  FunctionLoweringInfo &FuncInfo;
218
219  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
220                       FunctionLoweringInfo &funcinfo)
221    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
222      FuncInfo(funcinfo) {
223  }
224
225  /// getRoot - Return the current virtual root of the Selection DAG.
226  ///
227  SDOperand getRoot() {
228    if (PendingLoads.empty())
229      return DAG.getRoot();
230
231    if (PendingLoads.size() == 1) {
232      SDOperand Root = PendingLoads[0];
233      DAG.setRoot(Root);
234      PendingLoads.clear();
235      return Root;
236    }
237
238    // Otherwise, we have to make a token factor node.
239    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
240    PendingLoads.clear();
241    DAG.setRoot(Root);
242    return Root;
243  }
244
245  void visit(Instruction &I) { visit(I.getOpcode(), I); }
246
247  void visit(unsigned Opcode, User &I) {
248    switch (Opcode) {
249    default: assert(0 && "Unknown instruction type encountered!");
250             abort();
251      // Build the switch statement using the Instruction.def file.
252#define HANDLE_INST(NUM, OPCODE, CLASS) \
253    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
254#include "llvm/Instruction.def"
255    }
256  }
257
258  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
259
260
261  SDOperand getIntPtrConstant(uint64_t Val) {
262    return DAG.getConstant(Val, TLI.getPointerTy());
263  }
264
265  SDOperand getValue(const Value *V) {
266    SDOperand &N = NodeMap[V];
267    if (N.Val) return N;
268
269    MVT::ValueType VT = TLI.getValueType(V->getType());
270    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
271      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
272        visit(CE->getOpcode(), *CE);
273        assert(N.Val && "visit didn't populate the ValueMap!");
274        return N;
275      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
276        return N = DAG.getGlobalAddress(GV, VT);
277      } else if (isa<ConstantPointerNull>(C)) {
278        return N = DAG.getConstant(0, TLI.getPointerTy());
279      } else if (isa<UndefValue>(C)) {
280        return N = DAG.getNode(ISD::UNDEF, VT);
281      } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
282        return N = DAG.getConstantFP(CFP->getValue(), VT);
283      } else {
284        // Canonicalize all constant ints to be unsigned.
285        return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
286      }
287
288    if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
289      std::map<const AllocaInst*, int>::iterator SI =
290        FuncInfo.StaticAllocaMap.find(AI);
291      if (SI != FuncInfo.StaticAllocaMap.end())
292        return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
293    }
294
295    std::map<const Value*, unsigned>::const_iterator VMI =
296      FuncInfo.ValueMap.find(V);
297    assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
298
299    unsigned InReg = VMI->second;
300
301    // If this type is not legal, make it so now.
302    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
303
304    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
305    if (DestVT < VT) {
306      // Source must be expanded.  This input value is actually coming from the
307      // register pair VMI->second and VMI->second+1.
308      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
309                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
310    } else {
311      if (DestVT > VT) { // Promotion case
312        if (MVT::isFloatingPoint(VT))
313          N = DAG.getNode(ISD::FP_ROUND, VT, N);
314        else
315          N = DAG.getNode(ISD::TRUNCATE, VT, N);
316      }
317    }
318
319    return N;
320  }
321
322  const SDOperand &setValue(const Value *V, SDOperand NewN) {
323    SDOperand &N = NodeMap[V];
324    assert(N.Val == 0 && "Already set a value for this node!");
325    return N = NewN;
326  }
327
328  // Terminator instructions.
329  void visitRet(ReturnInst &I);
330  void visitBr(BranchInst &I);
331  void visitUnreachable(UnreachableInst &I) { /* noop */ }
332
333  // These all get lowered before this pass.
334  void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
335  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
336  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
337
338  //
339  void visitBinary(User &I, unsigned Opcode);
340  void visitAdd(User &I) { visitBinary(I, ISD::ADD); }
341  void visitSub(User &I);
342  void visitMul(User &I) { visitBinary(I, ISD::MUL); }
343  void visitDiv(User &I) {
344    visitBinary(I, I.getType()->isUnsigned() ? ISD::UDIV : ISD::SDIV);
345  }
346  void visitRem(User &I) {
347    visitBinary(I, I.getType()->isUnsigned() ? ISD::UREM : ISD::SREM);
348  }
349  void visitAnd(User &I) { visitBinary(I, ISD::AND); }
350  void visitOr (User &I) { visitBinary(I, ISD::OR); }
351  void visitXor(User &I) { visitBinary(I, ISD::XOR); }
352  void visitShl(User &I) { visitBinary(I, ISD::SHL); }
353  void visitShr(User &I) {
354    visitBinary(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
355  }
356
357  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
358  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
359  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
360  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
361  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
362  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
363  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
364
365  void visitGetElementPtr(User &I);
366  void visitCast(User &I);
367  void visitSelect(User &I);
368  //
369
370  void visitMalloc(MallocInst &I);
371  void visitFree(FreeInst &I);
372  void visitAlloca(AllocaInst &I);
373  void visitLoad(LoadInst &I);
374  void visitStore(StoreInst &I);
375  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
376  void visitCall(CallInst &I);
377
378  void visitVAStart(CallInst &I);
379  void visitVAArg(VAArgInst &I);
380  void visitVAEnd(CallInst &I);
381  void visitVACopy(CallInst &I);
382  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
383
384  void visitMemIntrinsic(CallInst &I, unsigned Op);
385
386  void visitUserOp1(Instruction &I) {
387    assert(0 && "UserOp1 should not exist at instruction selection time!");
388    abort();
389  }
390  void visitUserOp2(Instruction &I) {
391    assert(0 && "UserOp2 should not exist at instruction selection time!");
392    abort();
393  }
394};
395} // end namespace llvm
396
397void SelectionDAGLowering::visitRet(ReturnInst &I) {
398  if (I.getNumOperands() == 0) {
399    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
400    return;
401  }
402
403  SDOperand Op1 = getValue(I.getOperand(0));
404  MVT::ValueType TmpVT;
405
406  switch (Op1.getValueType()) {
407  default: assert(0 && "Unknown value type!");
408  case MVT::i1:
409  case MVT::i8:
410  case MVT::i16:
411  case MVT::i32:
412    // If this is a machine where 32-bits is legal or expanded, promote to
413    // 32-bits, otherwise, promote to 64-bits.
414    if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
415      TmpVT = TLI.getTypeToTransformTo(MVT::i32);
416    else
417      TmpVT = MVT::i32;
418
419    // Extend integer types to result type.
420    if (I.getOperand(0)->getType()->isSigned())
421      Op1 = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, Op1);
422    else
423      Op1 = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, Op1);
424    break;
425  case MVT::f32:
426  case MVT::i64:
427  case MVT::f64:
428    break; // No extension needed!
429  }
430
431  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot(), Op1));
432}
433
434void SelectionDAGLowering::visitBr(BranchInst &I) {
435  // Update machine-CFG edges.
436  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
437
438  // Figure out which block is immediately after the current one.
439  MachineBasicBlock *NextBlock = 0;
440  MachineFunction::iterator BBI = CurMBB;
441  if (++BBI != CurMBB->getParent()->end())
442    NextBlock = BBI;
443
444  if (I.isUnconditional()) {
445    // If this is not a fall-through branch, emit the branch.
446    if (Succ0MBB != NextBlock)
447      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
448                              DAG.getBasicBlock(Succ0MBB)));
449  } else {
450    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
451
452    SDOperand Cond = getValue(I.getCondition());
453    if (Succ1MBB == NextBlock) {
454      // If the condition is false, fall through.  This means we should branch
455      // if the condition is true to Succ #0.
456      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
457                              Cond, DAG.getBasicBlock(Succ0MBB)));
458    } else if (Succ0MBB == NextBlock) {
459      // If the condition is true, fall through.  This means we should branch if
460      // the condition is false to Succ #1.  Invert the condition first.
461      SDOperand True = DAG.getConstant(1, Cond.getValueType());
462      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
463      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
464                              Cond, DAG.getBasicBlock(Succ1MBB)));
465    } else {
466      std::vector<SDOperand> Ops;
467      Ops.push_back(getRoot());
468      Ops.push_back(Cond);
469      Ops.push_back(DAG.getBasicBlock(Succ0MBB));
470      Ops.push_back(DAG.getBasicBlock(Succ1MBB));
471      DAG.setRoot(DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops));
472    }
473  }
474}
475
476void SelectionDAGLowering::visitSub(User &I) {
477  // -0.0 - X --> fneg
478  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
479    if (CFP->isExactlyValue(-0.0)) {
480      SDOperand Op2 = getValue(I.getOperand(1));
481      setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
482      return;
483    }
484
485  visitBinary(I, ISD::SUB);
486}
487
488void SelectionDAGLowering::visitBinary(User &I, unsigned Opcode) {
489  SDOperand Op1 = getValue(I.getOperand(0));
490  SDOperand Op2 = getValue(I.getOperand(1));
491
492  if (isa<ShiftInst>(I))
493    Op2 = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), Op2);
494
495  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
496}
497
498void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
499                                      ISD::CondCode UnsignedOpcode) {
500  SDOperand Op1 = getValue(I.getOperand(0));
501  SDOperand Op2 = getValue(I.getOperand(1));
502  ISD::CondCode Opcode = SignedOpcode;
503  if (I.getOperand(0)->getType()->isUnsigned())
504    Opcode = UnsignedOpcode;
505  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
506}
507
508void SelectionDAGLowering::visitSelect(User &I) {
509  SDOperand Cond     = getValue(I.getOperand(0));
510  SDOperand TrueVal  = getValue(I.getOperand(1));
511  SDOperand FalseVal = getValue(I.getOperand(2));
512  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
513                           TrueVal, FalseVal));
514}
515
516void SelectionDAGLowering::visitCast(User &I) {
517  SDOperand N = getValue(I.getOperand(0));
518  MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
519  MVT::ValueType DestTy = TLI.getValueType(I.getType());
520
521  if (N.getValueType() == DestTy) {
522    setValue(&I, N);  // noop cast.
523  } else if (DestTy == MVT::i1) {
524    // Cast to bool is a comparison against zero, not truncation to zero.
525    SDOperand Zero = isInteger(SrcTy) ? DAG.getConstant(0, N.getValueType()) :
526                                       DAG.getConstantFP(0.0, N.getValueType());
527    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
528  } else if (isInteger(SrcTy)) {
529    if (isInteger(DestTy)) {        // Int -> Int cast
530      if (DestTy < SrcTy)   // Truncating cast?
531        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
532      else if (I.getOperand(0)->getType()->isSigned())
533        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
534      else
535        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
536    } else {                        // Int -> FP cast
537      if (I.getOperand(0)->getType()->isSigned())
538        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N));
539      else
540        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N));
541    }
542  } else {
543    assert(isFloatingPoint(SrcTy) && "Unknown value type!");
544    if (isFloatingPoint(DestTy)) {  // FP -> FP cast
545      if (DestTy < SrcTy)   // Rounding cast?
546        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
547      else
548        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
549    } else {                        // FP -> Int cast.
550      if (I.getType()->isSigned())
551        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N));
552      else
553        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N));
554    }
555  }
556}
557
558void SelectionDAGLowering::visitGetElementPtr(User &I) {
559  SDOperand N = getValue(I.getOperand(0));
560  const Type *Ty = I.getOperand(0)->getType();
561  const Type *UIntPtrTy = TD.getIntPtrType();
562
563  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
564       OI != E; ++OI) {
565    Value *Idx = *OI;
566    if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
567      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
568      if (Field) {
569        // N = N + Offset
570        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
571        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
572                        getIntPtrConstant(Offset));
573      }
574      Ty = StTy->getElementType(Field);
575    } else {
576      Ty = cast<SequentialType>(Ty)->getElementType();
577      if (!isa<Constant>(Idx) || !cast<Constant>(Idx)->isNullValue()) {
578        // N = N + Idx * ElementSize;
579        uint64_t ElementSize = TD.getTypeSize(Ty);
580        SDOperand IdxN = getValue(Idx), Scale = getIntPtrConstant(ElementSize);
581
582        // If the index is smaller or larger than intptr_t, truncate or extend
583        // it.
584        if (IdxN.getValueType() < Scale.getValueType()) {
585          if (Idx->getType()->isSigned())
586            IdxN = DAG.getNode(ISD::SIGN_EXTEND, Scale.getValueType(), IdxN);
587          else
588            IdxN = DAG.getNode(ISD::ZERO_EXTEND, Scale.getValueType(), IdxN);
589        } else if (IdxN.getValueType() > Scale.getValueType())
590          IdxN = DAG.getNode(ISD::TRUNCATE, Scale.getValueType(), IdxN);
591
592        IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
593        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
594      }
595    }
596  }
597  setValue(&I, N);
598}
599
600void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
601  // If this is a fixed sized alloca in the entry block of the function,
602  // allocate it statically on the stack.
603  if (FuncInfo.StaticAllocaMap.count(&I))
604    return;   // getValue will auto-populate this.
605
606  const Type *Ty = I.getAllocatedType();
607  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
608  unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
609
610  SDOperand AllocSize = getValue(I.getArraySize());
611  MVT::ValueType IntPtr = TLI.getPointerTy();
612  if (IntPtr < AllocSize.getValueType())
613    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
614  else if (IntPtr > AllocSize.getValueType())
615    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
616
617  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
618                          getIntPtrConstant(TySize));
619
620  // Handle alignment.  If the requested alignment is less than or equal to the
621  // stack alignment, ignore it and round the size of the allocation up to the
622  // stack alignment size.  If the size is greater than the stack alignment, we
623  // note this in the DYNAMIC_STACKALLOC node.
624  unsigned StackAlign =
625    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
626  if (Align <= StackAlign) {
627    Align = 0;
628    // Add SA-1 to the size.
629    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
630                            getIntPtrConstant(StackAlign-1));
631    // Mask out the low bits for alignment purposes.
632    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
633                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
634  }
635
636  std::vector<MVT::ValueType> VTs;
637  VTs.push_back(AllocSize.getValueType());
638  VTs.push_back(MVT::Other);
639  std::vector<SDOperand> Ops;
640  Ops.push_back(getRoot());
641  Ops.push_back(AllocSize);
642  Ops.push_back(getIntPtrConstant(Align));
643  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
644  DAG.setRoot(setValue(&I, DSA).getValue(1));
645
646  // Inform the Frame Information that we have just allocated a variable-sized
647  // object.
648  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
649}
650
651
652void SelectionDAGLowering::visitLoad(LoadInst &I) {
653  SDOperand Ptr = getValue(I.getOperand(0));
654
655  SDOperand Root;
656  if (I.isVolatile())
657    Root = getRoot();
658  else {
659    // Do not serialize non-volatile loads against each other.
660    Root = DAG.getRoot();
661  }
662
663  SDOperand L = DAG.getLoad(TLI.getValueType(I.getType()), Root, Ptr,
664                            DAG.getSrcValue(I.getOperand(0)));
665  setValue(&I, L);
666
667  if (I.isVolatile())
668    DAG.setRoot(L.getValue(1));
669  else
670    PendingLoads.push_back(L.getValue(1));
671}
672
673
674void SelectionDAGLowering::visitStore(StoreInst &I) {
675  Value *SrcV = I.getOperand(0);
676  SDOperand Src = getValue(SrcV);
677  SDOperand Ptr = getValue(I.getOperand(1));
678  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
679                          DAG.getSrcValue(I.getOperand(1))));
680}
681
682void SelectionDAGLowering::visitCall(CallInst &I) {
683  const char *RenameFn = 0;
684  SDOperand Tmp;
685  if (Function *F = I.getCalledFunction())
686    if (F->isExternal())
687      switch (F->getIntrinsicID()) {
688      case 0:     // Not an LLVM intrinsic.
689        if (F->getName() == "fabs" || F->getName() == "fabsf") {
690          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
691              I.getOperand(1)->getType()->isFloatingPoint() &&
692              I.getType() == I.getOperand(1)->getType()) {
693            Tmp = getValue(I.getOperand(1));
694            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
695            return;
696          }
697        }
698        else if (F->getName() == "sin" || F->getName() == "sinf") {
699          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
700              I.getOperand(1)->getType()->isFloatingPoint() &&
701              I.getType() == I.getOperand(1)->getType()) {
702            Tmp = getValue(I.getOperand(1));
703            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
704            return;
705          }
706        }
707        else if (F->getName() == "cos" || F->getName() == "cosf") {
708          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
709              I.getOperand(1)->getType()->isFloatingPoint() &&
710              I.getType() == I.getOperand(1)->getType()) {
711            Tmp = getValue(I.getOperand(1));
712            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
713            return;
714          }
715        }
716        break;
717      case Intrinsic::vastart:  visitVAStart(I); return;
718      case Intrinsic::vaend:    visitVAEnd(I); return;
719      case Intrinsic::vacopy:   visitVACopy(I); return;
720      case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return;
721      case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return;
722
723      case Intrinsic::setjmp:  RenameFn = "setjmp"; break;
724      case Intrinsic::longjmp: RenameFn = "longjmp"; break;
725      case Intrinsic::memcpy:  visitMemIntrinsic(I, ISD::MEMCPY); return;
726      case Intrinsic::memset:  visitMemIntrinsic(I, ISD::MEMSET); return;
727      case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return;
728
729      case Intrinsic::readport:
730      case Intrinsic::readio: {
731        std::vector<MVT::ValueType> VTs;
732        VTs.push_back(TLI.getValueType(I.getType()));
733        VTs.push_back(MVT::Other);
734        std::vector<SDOperand> Ops;
735        Ops.push_back(getRoot());
736        Ops.push_back(getValue(I.getOperand(1)));
737        Tmp = DAG.getNode(F->getIntrinsicID() == Intrinsic::readport ?
738                          ISD::READPORT : ISD::READIO, VTs, Ops);
739
740        setValue(&I, Tmp);
741        DAG.setRoot(Tmp.getValue(1));
742        return;
743      }
744      case Intrinsic::writeport:
745      case Intrinsic::writeio:
746        DAG.setRoot(DAG.getNode(F->getIntrinsicID() == Intrinsic::writeport ?
747                                ISD::WRITEPORT : ISD::WRITEIO, MVT::Other,
748                                getRoot(), getValue(I.getOperand(1)),
749                                getValue(I.getOperand(2))));
750        return;
751      case Intrinsic::dbg_stoppoint:
752      case Intrinsic::dbg_region_start:
753      case Intrinsic::dbg_region_end:
754      case Intrinsic::dbg_func_start:
755      case Intrinsic::dbg_declare:
756        if (I.getType() != Type::VoidTy)
757          setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
758        return;
759
760      case Intrinsic::isunordered:
761        setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
762                                  getValue(I.getOperand(2)), ISD::SETUO));
763        return;
764
765      case Intrinsic::sqrt:
766        setValue(&I, DAG.getNode(ISD::FSQRT,
767                                 getValue(I.getOperand(1)).getValueType(),
768                                 getValue(I.getOperand(1))));
769        return;
770
771      case Intrinsic::pcmarker:
772        Tmp = getValue(I.getOperand(1));
773        DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
774        return;
775      case Intrinsic::cttz:
776        setValue(&I, DAG.getNode(ISD::CTTZ,
777                                 getValue(I.getOperand(1)).getValueType(),
778                                 getValue(I.getOperand(1))));
779        return;
780      case Intrinsic::ctlz:
781        setValue(&I, DAG.getNode(ISD::CTLZ,
782                                 getValue(I.getOperand(1)).getValueType(),
783                                 getValue(I.getOperand(1))));
784        return;
785      case Intrinsic::ctpop:
786        setValue(&I, DAG.getNode(ISD::CTPOP,
787                                 getValue(I.getOperand(1)).getValueType(),
788                                 getValue(I.getOperand(1))));
789        return;
790      default:
791        std::cerr << I;
792        assert(0 && "This intrinsic is not implemented yet!");
793        return;
794      }
795
796  SDOperand Callee;
797  if (!RenameFn)
798    Callee = getValue(I.getOperand(0));
799  else
800    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
801  std::vector<std::pair<SDOperand, const Type*> > Args;
802
803  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
804    Value *Arg = I.getOperand(i);
805    SDOperand ArgNode = getValue(Arg);
806    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
807  }
808
809  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
810  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
811
812  std::pair<SDOperand,SDOperand> Result =
813    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
814                    I.isTailCall(), Callee, Args, DAG);
815  if (I.getType() != Type::VoidTy)
816    setValue(&I, Result.first);
817  DAG.setRoot(Result.second);
818}
819
820void SelectionDAGLowering::visitMalloc(MallocInst &I) {
821  SDOperand Src = getValue(I.getOperand(0));
822
823  MVT::ValueType IntPtr = TLI.getPointerTy();
824
825  if (IntPtr < Src.getValueType())
826    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
827  else if (IntPtr > Src.getValueType())
828    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
829
830  // Scale the source by the type size.
831  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
832  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
833                    Src, getIntPtrConstant(ElementSize));
834
835  std::vector<std::pair<SDOperand, const Type*> > Args;
836  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
837
838  std::pair<SDOperand,SDOperand> Result =
839    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
840                    DAG.getExternalSymbol("malloc", IntPtr),
841                    Args, DAG);
842  setValue(&I, Result.first);  // Pointers always fit in registers
843  DAG.setRoot(Result.second);
844}
845
846void SelectionDAGLowering::visitFree(FreeInst &I) {
847  std::vector<std::pair<SDOperand, const Type*> > Args;
848  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
849                                TLI.getTargetData().getIntPtrType()));
850  MVT::ValueType IntPtr = TLI.getPointerTy();
851  std::pair<SDOperand,SDOperand> Result =
852    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
853                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
854  DAG.setRoot(Result.second);
855}
856
857SDOperand TargetLowering::LowerVAStart(SDOperand Chain,
858                                       SDOperand VAListP, Value *VAListV,
859                                       SelectionDAG &DAG) {
860  // We have no sane default behavior, just emit a useful error message and bail
861  // out.
862  std::cerr << "Variable arguments handling not implemented on this target!\n";
863  abort();
864  return SDOperand();
865}
866
867SDOperand TargetLowering::LowerVAEnd(SDOperand Chain, SDOperand LP, Value *LV,
868                                     SelectionDAG &DAG) {
869  // Default to a noop.
870  return Chain;
871}
872
873SDOperand TargetLowering::LowerVACopy(SDOperand Chain,
874                                      SDOperand SrcP, Value *SrcV,
875                                      SDOperand DestP, Value *DestV,
876                                      SelectionDAG &DAG) {
877  // Default to copying the input list.
878  SDOperand Val = DAG.getLoad(getPointerTy(), Chain,
879                              SrcP, DAG.getSrcValue(SrcV));
880  SDOperand Result = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
881                                 Val, DestP, DAG.getSrcValue(DestV));
882  return Result;
883}
884
885std::pair<SDOperand,SDOperand>
886TargetLowering::LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
887                           const Type *ArgTy, SelectionDAG &DAG) {
888  // We have no sane default behavior, just emit a useful error message and bail
889  // out.
890  std::cerr << "Variable arguments handling not implemented on this target!\n";
891  abort();
892  return std::make_pair(SDOperand(), SDOperand());
893}
894
895
896void SelectionDAGLowering::visitVAStart(CallInst &I) {
897  DAG.setRoot(TLI.LowerVAStart(getRoot(), getValue(I.getOperand(1)),
898                               I.getOperand(1), DAG));
899}
900
901void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
902  std::pair<SDOperand,SDOperand> Result =
903    TLI.LowerVAArg(getRoot(), getValue(I.getOperand(0)), I.getOperand(0),
904                   I.getType(), DAG);
905  setValue(&I, Result.first);
906  DAG.setRoot(Result.second);
907}
908
909void SelectionDAGLowering::visitVAEnd(CallInst &I) {
910  DAG.setRoot(TLI.LowerVAEnd(getRoot(), getValue(I.getOperand(1)),
911                             I.getOperand(1), DAG));
912}
913
914void SelectionDAGLowering::visitVACopy(CallInst &I) {
915  SDOperand Result =
916    TLI.LowerVACopy(getRoot(), getValue(I.getOperand(2)), I.getOperand(2),
917                    getValue(I.getOperand(1)), I.getOperand(1), DAG);
918  DAG.setRoot(Result);
919}
920
921
922// It is always conservatively correct for llvm.returnaddress and
923// llvm.frameaddress to return 0.
924std::pair<SDOperand, SDOperand>
925TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
926                                        unsigned Depth, SelectionDAG &DAG) {
927  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
928}
929
930SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
931  assert(0 && "LowerOperation not implemented for this target!");
932  abort();
933  return SDOperand();
934}
935
936void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
937  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
938  std::pair<SDOperand,SDOperand> Result =
939    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
940  setValue(&I, Result.first);
941  DAG.setRoot(Result.second);
942}
943
944void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
945  std::vector<SDOperand> Ops;
946  Ops.push_back(getRoot());
947  Ops.push_back(getValue(I.getOperand(1)));
948  Ops.push_back(getValue(I.getOperand(2)));
949  Ops.push_back(getValue(I.getOperand(3)));
950  Ops.push_back(getValue(I.getOperand(4)));
951  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
952}
953
954//===----------------------------------------------------------------------===//
955// SelectionDAGISel code
956//===----------------------------------------------------------------------===//
957
958unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
959  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
960}
961
962
963
964bool SelectionDAGISel::runOnFunction(Function &Fn) {
965  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
966  RegMap = MF.getSSARegMap();
967  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
968
969  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
970
971  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
972    SelectBasicBlock(I, MF, FuncInfo);
973
974  return true;
975}
976
977
978SDOperand SelectionDAGISel::
979CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
980  SDOperand Op = SDL.getValue(V);
981  assert((Op.getOpcode() != ISD::CopyFromReg ||
982          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
983         "Copy from a reg to the same reg!");
984
985  // If this type is not legal, we must make sure to not create an invalid
986  // register use.
987  MVT::ValueType SrcVT = Op.getValueType();
988  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
989  SelectionDAG &DAG = SDL.DAG;
990  if (SrcVT == DestVT) {
991    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
992  } else if (SrcVT < DestVT) {
993    // The src value is promoted to the register.
994    if (MVT::isFloatingPoint(SrcVT))
995      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
996    else
997      Op = DAG.getNode(ISD::ZERO_EXTEND, DestVT, Op);
998    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
999  } else  {
1000    // The src value is expanded into multiple registers.
1001    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
1002                               Op, DAG.getConstant(0, MVT::i32));
1003    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
1004                               Op, DAG.getConstant(1, MVT::i32));
1005    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
1006    return DAG.getCopyToReg(Op, Reg+1, Hi);
1007  }
1008}
1009
1010/// IsOnlyUsedInOneBasicBlock - If the specified argument is only used in a
1011/// single basic block, return that block.  Otherwise, return a null pointer.
1012static BasicBlock *IsOnlyUsedInOneBasicBlock(Argument *A) {
1013  if (A->use_empty()) return 0;
1014  BasicBlock *BB = cast<Instruction>(A->use_back())->getParent();
1015  for (Argument::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E;
1016       ++UI)
1017    if (isa<PHINode>(*UI) || cast<Instruction>(*UI)->getParent() != BB)
1018      return 0;  // Disagreement among the users?
1019
1020  // Okay, there is a single BB user.  Only permit this optimization if this is
1021  // the entry block, otherwise, we might sink argument loads into loops and
1022  // stuff.  Later, when we have global instruction selection, this won't be an
1023  // issue clearly.
1024  if (BB == BB->getParent()->begin())
1025    return BB;
1026  return 0;
1027}
1028
1029void SelectionDAGISel::
1030LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
1031               std::vector<SDOperand> &UnorderedChains) {
1032  // If this is the entry block, emit arguments.
1033  Function &F = *BB->getParent();
1034  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
1035
1036  if (BB == &F.front()) {
1037    SDOperand OldRoot = SDL.DAG.getRoot();
1038
1039    std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
1040
1041    // If there were side effects accessing the argument list, do not do
1042    // anything special.
1043    if (OldRoot != SDL.DAG.getRoot()) {
1044      unsigned a = 0;
1045      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1046           AI != E; ++AI,++a)
1047        if (!AI->use_empty()) {
1048          SDL.setValue(AI, Args[a]);
1049          SDOperand Copy =
1050            CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
1051          UnorderedChains.push_back(Copy);
1052        }
1053    } else {
1054      // Otherwise, if any argument is only accessed in a single basic block,
1055      // emit that argument only to that basic block.
1056      unsigned a = 0;
1057      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1058           AI != E; ++AI,++a)
1059        if (!AI->use_empty()) {
1060          if (BasicBlock *BBU = IsOnlyUsedInOneBasicBlock(AI)) {
1061            FuncInfo.BlockLocalArguments.insert(std::make_pair(BBU,
1062                                                      std::make_pair(AI, a)));
1063          } else {
1064            SDL.setValue(AI, Args[a]);
1065            SDOperand Copy =
1066              CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
1067            UnorderedChains.push_back(Copy);
1068          }
1069        }
1070    }
1071
1072    EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
1073  }
1074
1075  // See if there are any block-local arguments that need to be emitted in this
1076  // block.
1077
1078  if (!FuncInfo.BlockLocalArguments.empty()) {
1079    std::multimap<BasicBlock*, std::pair<Argument*, unsigned> >::iterator BLAI =
1080      FuncInfo.BlockLocalArguments.lower_bound(BB);
1081    if (BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB) {
1082      // Lower the arguments into this block.
1083      std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
1084
1085      // Set up the value mapping for the local arguments.
1086      for (; BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB;
1087           ++BLAI)
1088        SDL.setValue(BLAI->second.first, Args[BLAI->second.second]);
1089
1090      // Any dead arguments will just be ignored here.
1091    }
1092  }
1093}
1094
1095
1096void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
1097       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
1098                                    FunctionLoweringInfo &FuncInfo) {
1099  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
1100
1101  std::vector<SDOperand> UnorderedChains;
1102
1103  // Lower any arguments needed in this block.
1104  LowerArguments(LLVMBB, SDL, UnorderedChains);
1105
1106  BB = FuncInfo.MBBMap[LLVMBB];
1107  SDL.setCurrentBasicBlock(BB);
1108
1109  // Lower all of the non-terminator instructions.
1110  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
1111       I != E; ++I)
1112    SDL.visit(*I);
1113
1114  // Ensure that all instructions which are used outside of their defining
1115  // blocks are available as virtual registers.
1116  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
1117    if (!I->use_empty() && !isa<PHINode>(I)) {
1118      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
1119      if (VMI != FuncInfo.ValueMap.end())
1120        UnorderedChains.push_back(
1121                           CopyValueToVirtualRegister(SDL, I, VMI->second));
1122    }
1123
1124  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
1125  // ensure constants are generated when needed.  Remember the virtual registers
1126  // that need to be added to the Machine PHI nodes as input.  We cannot just
1127  // directly add them, because expansion might result in multiple MBB's for one
1128  // BB.  As such, the start of the BB might correspond to a different MBB than
1129  // the end.
1130  //
1131
1132  // Emit constants only once even if used by multiple PHI nodes.
1133  std::map<Constant*, unsigned> ConstantsOut;
1134
1135  // Check successor nodes PHI nodes that expect a constant to be available from
1136  // this block.
1137  TerminatorInst *TI = LLVMBB->getTerminator();
1138  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1139    BasicBlock *SuccBB = TI->getSuccessor(succ);
1140    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
1141    PHINode *PN;
1142
1143    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1144    // nodes and Machine PHI nodes, but the incoming operands have not been
1145    // emitted yet.
1146    for (BasicBlock::iterator I = SuccBB->begin();
1147         (PN = dyn_cast<PHINode>(I)); ++I)
1148      if (!PN->use_empty()) {
1149        unsigned Reg;
1150        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1151        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
1152          unsigned &RegOut = ConstantsOut[C];
1153          if (RegOut == 0) {
1154            RegOut = FuncInfo.CreateRegForValue(C);
1155            UnorderedChains.push_back(
1156                             CopyValueToVirtualRegister(SDL, C, RegOut));
1157          }
1158          Reg = RegOut;
1159        } else {
1160          Reg = FuncInfo.ValueMap[PHIOp];
1161          if (Reg == 0) {
1162            assert(isa<AllocaInst>(PHIOp) &&
1163                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
1164                   "Didn't codegen value into a register!??");
1165            Reg = FuncInfo.CreateRegForValue(PHIOp);
1166            UnorderedChains.push_back(
1167                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
1168          }
1169        }
1170
1171        // Remember that this register needs to added to the machine PHI node as
1172        // the input for this MBB.
1173        unsigned NumElements =
1174          TLI.getNumElements(TLI.getValueType(PN->getType()));
1175        for (unsigned i = 0, e = NumElements; i != e; ++i)
1176          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
1177      }
1178  }
1179  ConstantsOut.clear();
1180
1181  // Turn all of the unordered chains into one factored node.
1182  if (!UnorderedChains.empty()) {
1183    UnorderedChains.push_back(SDL.getRoot());
1184    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
1185  }
1186
1187  // Lower the terminator after the copies are emitted.
1188  SDL.visit(*LLVMBB->getTerminator());
1189
1190  // Make sure the root of the DAG is up-to-date.
1191  DAG.setRoot(SDL.getRoot());
1192}
1193
1194void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
1195                                        FunctionLoweringInfo &FuncInfo) {
1196  SelectionDAG DAG(TLI, MF);
1197  CurDAG = &DAG;
1198  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
1199
1200  // First step, lower LLVM code to some DAG.  This DAG may use operations and
1201  // types that are not supported by the target.
1202  BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
1203
1204  DEBUG(std::cerr << "Lowered selection DAG:\n");
1205  DEBUG(DAG.dump());
1206
1207  // Second step, hack on the DAG until it only uses operations and types that
1208  // the target supports.
1209  DAG.Legalize();
1210
1211  DEBUG(std::cerr << "Legalized selection DAG:\n");
1212  DEBUG(DAG.dump());
1213
1214  // Third, instruction select all of the operations to machine code, adding the
1215  // code to the MachineBasicBlock.
1216  InstructionSelectBasicBlock(DAG);
1217
1218  if (ViewDAGs) DAG.viewGraph();
1219
1220  DEBUG(std::cerr << "Selected machine code:\n");
1221  DEBUG(BB->dump());
1222
1223  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1224  // PHI nodes in successors.
1225  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
1226    MachineInstr *PHI = PHINodesToUpdate[i].first;
1227    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
1228           "This is not a machine PHI node that we are updating!");
1229    PHI->addRegOperand(PHINodesToUpdate[i].second);
1230    PHI->addMachineBasicBlockOperand(BB);
1231  }
1232
1233  // Finally, add the CFG edges from the last selected MBB to the successor
1234  // MBBs.
1235  TerminatorInst *TI = LLVMBB->getTerminator();
1236  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1237    MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)];
1238    BB->addSuccessor(Succ0MBB);
1239  }
1240}
1241