SelectionDAGISel.cpp revision fb6914f85e270628cdda612e7e6c250110c5977c
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/Timer.h"
49#include <algorithm>
50using namespace llvm;
51
52static cl::opt<bool>
53EnableValueProp("enable-value-prop", cl::Hidden);
54static cl::opt<bool>
55EnableLegalizeTypes("enable-legalize-types", cl::Hidden);
56
57
58#ifndef NDEBUG
59static cl::opt<bool>
60ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
61          cl::desc("Pop up a window to show dags before the first "
62                   "dag combine pass"));
63static cl::opt<bool>
64ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
65          cl::desc("Pop up a window to show dags before legalize types"));
66static cl::opt<bool>
67ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
68          cl::desc("Pop up a window to show dags before legalize"));
69static cl::opt<bool>
70ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
71          cl::desc("Pop up a window to show dags before the second "
72                   "dag combine pass"));
73static cl::opt<bool>
74ViewISelDAGs("view-isel-dags", cl::Hidden,
75          cl::desc("Pop up a window to show isel dags as they are selected"));
76static cl::opt<bool>
77ViewSchedDAGs("view-sched-dags", cl::Hidden,
78          cl::desc("Pop up a window to show sched dags as they are processed"));
79static cl::opt<bool>
80ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
81      cl::desc("Pop up a window to show SUnit dags after they are processed"));
82#else
83static const bool ViewDAGCombine1 = false,
84                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
85                  ViewDAGCombine2 = false,
86                  ViewISelDAGs = false, ViewSchedDAGs = false,
87                  ViewSUnitDAGs = false;
88#endif
89
90//===---------------------------------------------------------------------===//
91///
92/// RegisterScheduler class - Track the registration of instruction schedulers.
93///
94//===---------------------------------------------------------------------===//
95MachinePassRegistry RegisterScheduler::Registry;
96
97//===---------------------------------------------------------------------===//
98///
99/// ISHeuristic command line option for instruction schedulers.
100///
101//===---------------------------------------------------------------------===//
102static cl::opt<RegisterScheduler::FunctionPassCtor, false,
103               RegisterPassParser<RegisterScheduler> >
104ISHeuristic("pre-RA-sched",
105            cl::init(&createDefaultScheduler),
106            cl::desc("Instruction schedulers available (before register"
107                     " allocation):"));
108
109static RegisterScheduler
110defaultListDAGScheduler("default", "  Best scheduler for the target",
111                        createDefaultScheduler);
112
113namespace { struct SDISelAsmOperandInfo; }
114
115/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
116/// insertvalue or extractvalue indices that identify a member, return
117/// the linearized index of the start of the member.
118///
119static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
120                                   const unsigned *Indices,
121                                   const unsigned *IndicesEnd,
122                                   unsigned CurIndex = 0) {
123  // Base case: We're done.
124  if (Indices && Indices == IndicesEnd)
125    return CurIndex;
126
127  // Given a struct type, recursively traverse the elements.
128  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
129    for (StructType::element_iterator EB = STy->element_begin(),
130                                      EI = EB,
131                                      EE = STy->element_end();
132        EI != EE; ++EI) {
133      if (Indices && *Indices == unsigned(EI - EB))
134        return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
135      CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
136    }
137  }
138  // Given an array type, recursively traverse the elements.
139  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
140    const Type *EltTy = ATy->getElementType();
141    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
142      if (Indices && *Indices == i)
143        return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
144      CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
145    }
146  }
147  // We haven't found the type we're looking for, so keep searching.
148  return CurIndex + 1;
149}
150
151/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
152/// MVTs that represent all the individual underlying
153/// non-aggregate types that comprise it.
154///
155/// If Offsets is non-null, it points to a vector to be filled in
156/// with the in-memory offsets of each of the individual values.
157///
158static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
159                            SmallVectorImpl<MVT> &ValueVTs,
160                            SmallVectorImpl<uint64_t> *Offsets = 0,
161                            uint64_t StartingOffset = 0) {
162  // Given a struct type, recursively traverse the elements.
163  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
164    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
165    for (StructType::element_iterator EB = STy->element_begin(),
166                                      EI = EB,
167                                      EE = STy->element_end();
168         EI != EE; ++EI)
169      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
170                      StartingOffset + SL->getElementOffset(EI - EB));
171    return;
172  }
173  // Given an array type, recursively traverse the elements.
174  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
175    const Type *EltTy = ATy->getElementType();
176    uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy);
177    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
178      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
179                      StartingOffset + i * EltSize);
180    return;
181  }
182  // Base case: we can get an MVT for this LLVM IR type.
183  ValueVTs.push_back(TLI.getValueType(Ty));
184  if (Offsets)
185    Offsets->push_back(StartingOffset);
186}
187
188namespace {
189  /// RegsForValue - This struct represents the registers (physical or virtual)
190  /// that a particular set of values is assigned, and the type information about
191  /// the value. The most common situation is to represent one value at a time,
192  /// but struct or array values are handled element-wise as multiple values.
193  /// The splitting of aggregates is performed recursively, so that we never
194  /// have aggregate-typed registers. The values at this point do not necessarily
195  /// have legal types, so each value may require one or more registers of some
196  /// legal type.
197  ///
198  struct VISIBILITY_HIDDEN RegsForValue {
199    /// TLI - The TargetLowering object.
200    ///
201    const TargetLowering *TLI;
202
203    /// ValueVTs - The value types of the values, which may not be legal, and
204    /// may need be promoted or synthesized from one or more registers.
205    ///
206    SmallVector<MVT, 4> ValueVTs;
207
208    /// RegVTs - The value types of the registers. This is the same size as
209    /// ValueVTs and it records, for each value, what the type of the assigned
210    /// register or registers are. (Individual values are never synthesized
211    /// from more than one type of register.)
212    ///
213    /// With virtual registers, the contents of RegVTs is redundant with TLI's
214    /// getRegisterType member function, however when with physical registers
215    /// it is necessary to have a separate record of the types.
216    ///
217    SmallVector<MVT, 4> RegVTs;
218
219    /// Regs - This list holds the registers assigned to the values.
220    /// Each legal or promoted value requires one register, and each
221    /// expanded value requires multiple registers.
222    ///
223    SmallVector<unsigned, 4> Regs;
224
225    RegsForValue() : TLI(0) {}
226
227    RegsForValue(const TargetLowering &tli,
228                 const SmallVector<unsigned, 4> &regs,
229                 MVT regvt, MVT valuevt)
230      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
231    RegsForValue(const TargetLowering &tli,
232                 const SmallVector<unsigned, 4> &regs,
233                 const SmallVector<MVT, 4> &regvts,
234                 const SmallVector<MVT, 4> &valuevts)
235      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
236    RegsForValue(const TargetLowering &tli,
237                 unsigned Reg, const Type *Ty) : TLI(&tli) {
238      ComputeValueVTs(tli, Ty, ValueVTs);
239
240      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
241        MVT ValueVT = ValueVTs[Value];
242        unsigned NumRegs = TLI->getNumRegisters(ValueVT);
243        MVT RegisterVT = TLI->getRegisterType(ValueVT);
244        for (unsigned i = 0; i != NumRegs; ++i)
245          Regs.push_back(Reg + i);
246        RegVTs.push_back(RegisterVT);
247        Reg += NumRegs;
248      }
249    }
250
251    /// append - Add the specified values to this one.
252    void append(const RegsForValue &RHS) {
253      TLI = RHS.TLI;
254      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
255      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
256      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
257    }
258
259
260    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
261    /// this value and returns the result as a ValueVTs value.  This uses
262    /// Chain/Flag as the input and updates them for the output Chain/Flag.
263    /// If the Flag pointer is NULL, no flag is used.
264    SDValue getCopyFromRegs(SelectionDAG &DAG,
265                              SDValue &Chain, SDValue *Flag) const;
266
267    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
268    /// specified value into the registers specified by this object.  This uses
269    /// Chain/Flag as the input and updates them for the output Chain/Flag.
270    /// If the Flag pointer is NULL, no flag is used.
271    void getCopyToRegs(SDValue Val, SelectionDAG &DAG,
272                       SDValue &Chain, SDValue *Flag) const;
273
274    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
275    /// operand list.  This adds the code marker and includes the number of
276    /// values added into it.
277    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
278                              std::vector<SDValue> &Ops) const;
279  };
280}
281
282namespace llvm {
283  //===--------------------------------------------------------------------===//
284  /// createDefaultScheduler - This creates an instruction scheduler appropriate
285  /// for the target.
286  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
287                                      SelectionDAG *DAG,
288                                      MachineBasicBlock *BB,
289                                      bool Fast) {
290    TargetLowering &TLI = IS->getTargetLowering();
291
292    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
293      return createTDListDAGScheduler(IS, DAG, BB, Fast);
294    } else {
295      assert(TLI.getSchedulingPreference() ==
296           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
297      return createBURRListDAGScheduler(IS, DAG, BB, Fast);
298    }
299  }
300
301
302  //===--------------------------------------------------------------------===//
303  /// FunctionLoweringInfo - This contains information that is global to a
304  /// function that is used when lowering a region of the function.
305  class FunctionLoweringInfo {
306  public:
307    TargetLowering &TLI;
308    Function &Fn;
309    MachineFunction &MF;
310    MachineRegisterInfo &RegInfo;
311
312    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
313
314    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
315    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
316
317    /// ValueMap - Since we emit code for the function a basic block at a time,
318    /// we must remember which virtual registers hold the values for
319    /// cross-basic-block values.
320    DenseMap<const Value*, unsigned> ValueMap;
321
322    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
323    /// the entry block.  This allows the allocas to be efficiently referenced
324    /// anywhere in the function.
325    std::map<const AllocaInst*, int> StaticAllocaMap;
326
327#ifndef NDEBUG
328    SmallSet<Instruction*, 8> CatchInfoLost;
329    SmallSet<Instruction*, 8> CatchInfoFound;
330#endif
331
332    unsigned MakeReg(MVT VT) {
333      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
334    }
335
336    /// isExportedInst - Return true if the specified value is an instruction
337    /// exported from its block.
338    bool isExportedInst(const Value *V) {
339      return ValueMap.count(V);
340    }
341
342    unsigned CreateRegForValue(const Value *V);
343
344    unsigned InitializeRegForValue(const Value *V) {
345      unsigned &R = ValueMap[V];
346      assert(R == 0 && "Already initialized this value register!");
347      return R = CreateRegForValue(V);
348    }
349
350    struct LiveOutInfo {
351      unsigned NumSignBits;
352      APInt KnownOne, KnownZero;
353      LiveOutInfo() : NumSignBits(0) {}
354    };
355
356    /// LiveOutRegInfo - Information about live out vregs, indexed by their
357    /// register number offset by 'FirstVirtualRegister'.
358    std::vector<LiveOutInfo> LiveOutRegInfo;
359  };
360}
361
362/// isSelector - Return true if this instruction is a call to the
363/// eh.selector intrinsic.
364static bool isSelector(Instruction *I) {
365  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
366    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
367            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
368  return false;
369}
370
371/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
372/// PHI nodes or outside of the basic block that defines it, or used by a
373/// switch or atomic instruction, which may expand to multiple basic blocks.
374static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
375  if (isa<PHINode>(I)) return true;
376  BasicBlock *BB = I->getParent();
377  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
378    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
379        // FIXME: Remove switchinst special case.
380        isa<SwitchInst>(*UI))
381      return true;
382  return false;
383}
384
385/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
386/// entry block, return true.  This includes arguments used by switches, since
387/// the switch may expand into multiple basic blocks.
388static bool isOnlyUsedInEntryBlock(Argument *A) {
389  BasicBlock *Entry = A->getParent()->begin();
390  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
391    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
392      return false;  // Use not in entry block.
393  return true;
394}
395
396FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
397                                           Function &fn, MachineFunction &mf)
398    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
399
400  // Create a vreg for each argument register that is not dead and is used
401  // outside of the entry block for the function.
402  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
403       AI != E; ++AI)
404    if (!isOnlyUsedInEntryBlock(AI))
405      InitializeRegForValue(AI);
406
407  // Initialize the mapping of values to registers.  This is only set up for
408  // instruction values that are used outside of the block that defines
409  // them.
410  Function::iterator BB = Fn.begin(), EB = Fn.end();
411  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
412    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
413      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
414        const Type *Ty = AI->getAllocatedType();
415        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
416        unsigned Align =
417          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
418                   AI->getAlignment());
419
420        TySize *= CUI->getZExtValue();   // Get total allocated size.
421        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
422        StaticAllocaMap[AI] =
423          MF.getFrameInfo()->CreateStackObject(TySize, Align);
424      }
425
426  for (; BB != EB; ++BB)
427    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
428      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
429        if (!isa<AllocaInst>(I) ||
430            !StaticAllocaMap.count(cast<AllocaInst>(I)))
431          InitializeRegForValue(I);
432
433  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
434  // also creates the initial PHI MachineInstrs, though none of the input
435  // operands are populated.
436  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
437    MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
438    MBBMap[BB] = MBB;
439    MF.push_back(MBB);
440
441    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
442    // appropriate.
443    PHINode *PN;
444    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
445      if (PN->use_empty()) continue;
446
447      unsigned PHIReg = ValueMap[PN];
448      assert(PHIReg && "PHI node does not have an assigned virtual register!");
449
450      SmallVector<MVT, 4> ValueVTs;
451      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
452      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
453        MVT VT = ValueVTs[vti];
454        unsigned NumRegisters = TLI.getNumRegisters(VT);
455        const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
456        for (unsigned i = 0; i != NumRegisters; ++i)
457          BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
458        PHIReg += NumRegisters;
459      }
460    }
461  }
462}
463
464/// CreateRegForValue - Allocate the appropriate number of virtual registers of
465/// the correctly promoted or expanded types.  Assign these registers
466/// consecutive vreg numbers and return the first assigned number.
467///
468/// In the case that the given value has struct or array type, this function
469/// will assign registers for each member or element.
470///
471unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
472  SmallVector<MVT, 4> ValueVTs;
473  ComputeValueVTs(TLI, V->getType(), ValueVTs);
474
475  unsigned FirstReg = 0;
476  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
477    MVT ValueVT = ValueVTs[Value];
478    MVT RegisterVT = TLI.getRegisterType(ValueVT);
479
480    unsigned NumRegs = TLI.getNumRegisters(ValueVT);
481    for (unsigned i = 0; i != NumRegs; ++i) {
482      unsigned R = MakeReg(RegisterVT);
483      if (!FirstReg) FirstReg = R;
484    }
485  }
486  return FirstReg;
487}
488
489//===----------------------------------------------------------------------===//
490/// SelectionDAGLowering - This is the common target-independent lowering
491/// implementation that is parameterized by a TargetLowering object.
492/// Also, targets can overload any lowering method.
493///
494namespace llvm {
495class SelectionDAGLowering {
496  MachineBasicBlock *CurMBB;
497
498  DenseMap<const Value*, SDValue> NodeMap;
499
500  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
501  /// them up and then emit token factor nodes when possible.  This allows us to
502  /// get simple disambiguation between loads without worrying about alias
503  /// analysis.
504  SmallVector<SDValue, 8> PendingLoads;
505
506  /// PendingExports - CopyToReg nodes that copy values to virtual registers
507  /// for export to other blocks need to be emitted before any terminator
508  /// instruction, but they have no other ordering requirements. We bunch them
509  /// up and the emit a single tokenfactor for them just before terminator
510  /// instructions.
511  std::vector<SDValue> PendingExports;
512
513  /// Case - A struct to record the Value for a switch case, and the
514  /// case's target basic block.
515  struct Case {
516    Constant* Low;
517    Constant* High;
518    MachineBasicBlock* BB;
519
520    Case() : Low(0), High(0), BB(0) { }
521    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
522      Low(low), High(high), BB(bb) { }
523    uint64_t size() const {
524      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
525      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
526      return (rHigh - rLow + 1ULL);
527    }
528  };
529
530  struct CaseBits {
531    uint64_t Mask;
532    MachineBasicBlock* BB;
533    unsigned Bits;
534
535    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
536      Mask(mask), BB(bb), Bits(bits) { }
537  };
538
539  typedef std::vector<Case>           CaseVector;
540  typedef std::vector<CaseBits>       CaseBitsVector;
541  typedef CaseVector::iterator        CaseItr;
542  typedef std::pair<CaseItr, CaseItr> CaseRange;
543
544  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
545  /// of conditional branches.
546  struct CaseRec {
547    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
548    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
549
550    /// CaseBB - The MBB in which to emit the compare and branch
551    MachineBasicBlock *CaseBB;
552    /// LT, GE - If nonzero, we know the current case value must be less-than or
553    /// greater-than-or-equal-to these Constants.
554    Constant *LT;
555    Constant *GE;
556    /// Range - A pair of iterators representing the range of case values to be
557    /// processed at this point in the binary search tree.
558    CaseRange Range;
559  };
560
561  typedef std::vector<CaseRec> CaseRecVector;
562
563  /// The comparison function for sorting the switch case values in the vector.
564  /// WARNING: Case ranges should be disjoint!
565  struct CaseCmp {
566    bool operator () (const Case& C1, const Case& C2) {
567      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
568      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
569      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
570      return CI1->getValue().slt(CI2->getValue());
571    }
572  };
573
574  struct CaseBitsCmp {
575    bool operator () (const CaseBits& C1, const CaseBits& C2) {
576      return C1.Bits > C2.Bits;
577    }
578  };
579
580  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
581
582public:
583  // TLI - This is information that describes the available target features we
584  // need for lowering.  This indicates when operations are unavailable,
585  // implemented with a libcall, etc.
586  TargetLowering &TLI;
587  SelectionDAG &DAG;
588  const TargetData *TD;
589  AliasAnalysis &AA;
590
591  /// SwitchCases - Vector of CaseBlock structures used to communicate
592  /// SwitchInst code generation information.
593  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
594  /// JTCases - Vector of JumpTable structures used to communicate
595  /// SwitchInst code generation information.
596  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
597  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
598
599  /// FuncInfo - Information about the function as a whole.
600  ///
601  FunctionLoweringInfo &FuncInfo;
602
603  /// GCI - Garbage collection metadata for the function.
604  CollectorMetadata *GCI;
605
606  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
607                       AliasAnalysis &aa,
608                       FunctionLoweringInfo &funcinfo,
609                       CollectorMetadata *gci)
610    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
611      FuncInfo(funcinfo), GCI(gci) {
612  }
613
614  /// getRoot - Return the current virtual root of the Selection DAG,
615  /// flushing any PendingLoad items. This must be done before emitting
616  /// a store or any other node that may need to be ordered after any
617  /// prior load instructions.
618  ///
619  SDValue getRoot() {
620    if (PendingLoads.empty())
621      return DAG.getRoot();
622
623    if (PendingLoads.size() == 1) {
624      SDValue Root = PendingLoads[0];
625      DAG.setRoot(Root);
626      PendingLoads.clear();
627      return Root;
628    }
629
630    // Otherwise, we have to make a token factor node.
631    SDValue Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
632                                 &PendingLoads[0], PendingLoads.size());
633    PendingLoads.clear();
634    DAG.setRoot(Root);
635    return Root;
636  }
637
638  /// getControlRoot - Similar to getRoot, but instead of flushing all the
639  /// PendingLoad items, flush all the PendingExports items. It is necessary
640  /// to do this before emitting a terminator instruction.
641  ///
642  SDValue getControlRoot() {
643    SDValue Root = DAG.getRoot();
644
645    if (PendingExports.empty())
646      return Root;
647
648    // Turn all of the CopyToReg chains into one factored node.
649    if (Root.getOpcode() != ISD::EntryToken) {
650      unsigned i = 0, e = PendingExports.size();
651      for (; i != e; ++i) {
652        assert(PendingExports[i].Val->getNumOperands() > 1);
653        if (PendingExports[i].Val->getOperand(0) == Root)
654          break;  // Don't add the root if we already indirectly depend on it.
655      }
656
657      if (i == e)
658        PendingExports.push_back(Root);
659    }
660
661    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
662                       &PendingExports[0],
663                       PendingExports.size());
664    PendingExports.clear();
665    DAG.setRoot(Root);
666    return Root;
667  }
668
669  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
670
671  void visit(Instruction &I) { visit(I.getOpcode(), I); }
672
673  void visit(unsigned Opcode, User &I) {
674    // Note: this doesn't use InstVisitor, because it has to work with
675    // ConstantExpr's in addition to instructions.
676    switch (Opcode) {
677    default: assert(0 && "Unknown instruction type encountered!");
678             abort();
679      // Build the switch statement using the Instruction.def file.
680#define HANDLE_INST(NUM, OPCODE, CLASS) \
681    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
682#include "llvm/Instruction.def"
683    }
684  }
685
686  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
687
688  SDValue getValue(const Value *V);
689
690  void setValue(const Value *V, SDValue NewN) {
691    SDValue &N = NodeMap[V];
692    assert(N.Val == 0 && "Already set a value for this node!");
693    N = NewN;
694  }
695
696  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
697                            std::set<unsigned> &OutputRegs,
698                            std::set<unsigned> &InputRegs);
699
700  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
701                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
702                            unsigned Opc);
703  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
704  void ExportFromCurrentBlock(Value *V);
705  void LowerCallTo(CallSite CS, SDValue Callee, bool IsTailCall,
706                   MachineBasicBlock *LandingPad = NULL);
707
708  // Terminator instructions.
709  void visitRet(ReturnInst &I);
710  void visitBr(BranchInst &I);
711  void visitSwitch(SwitchInst &I);
712  void visitUnreachable(UnreachableInst &I) { /* noop */ }
713
714  // Helpers for visitSwitch
715  bool handleSmallSwitchRange(CaseRec& CR,
716                              CaseRecVector& WorkList,
717                              Value* SV,
718                              MachineBasicBlock* Default);
719  bool handleJTSwitchCase(CaseRec& CR,
720                          CaseRecVector& WorkList,
721                          Value* SV,
722                          MachineBasicBlock* Default);
723  bool handleBTSplitSwitchCase(CaseRec& CR,
724                               CaseRecVector& WorkList,
725                               Value* SV,
726                               MachineBasicBlock* Default);
727  bool handleBitTestsSwitchCase(CaseRec& CR,
728                                CaseRecVector& WorkList,
729                                Value* SV,
730                                MachineBasicBlock* Default);
731  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
732  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
733  void visitBitTestCase(MachineBasicBlock* NextMBB,
734                        unsigned Reg,
735                        SelectionDAGISel::BitTestCase &B);
736  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
737  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
738                            SelectionDAGISel::JumpTableHeader &JTH);
739
740  // These all get lowered before this pass.
741  void visitInvoke(InvokeInst &I);
742  void visitUnwind(UnwindInst &I);
743
744  void visitBinary(User &I, unsigned OpCode);
745  void visitShift(User &I, unsigned Opcode);
746  void visitAdd(User &I) {
747    if (I.getType()->isFPOrFPVector())
748      visitBinary(I, ISD::FADD);
749    else
750      visitBinary(I, ISD::ADD);
751  }
752  void visitSub(User &I);
753  void visitMul(User &I) {
754    if (I.getType()->isFPOrFPVector())
755      visitBinary(I, ISD::FMUL);
756    else
757      visitBinary(I, ISD::MUL);
758  }
759  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
760  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
761  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
762  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
763  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
764  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
765  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
766  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
767  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
768  void visitShl (User &I) { visitShift(I, ISD::SHL); }
769  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
770  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
771  void visitICmp(User &I);
772  void visitFCmp(User &I);
773  void visitVICmp(User &I);
774  void visitVFCmp(User &I);
775  // Visit the conversion instructions
776  void visitTrunc(User &I);
777  void visitZExt(User &I);
778  void visitSExt(User &I);
779  void visitFPTrunc(User &I);
780  void visitFPExt(User &I);
781  void visitFPToUI(User &I);
782  void visitFPToSI(User &I);
783  void visitUIToFP(User &I);
784  void visitSIToFP(User &I);
785  void visitPtrToInt(User &I);
786  void visitIntToPtr(User &I);
787  void visitBitCast(User &I);
788
789  void visitExtractElement(User &I);
790  void visitInsertElement(User &I);
791  void visitShuffleVector(User &I);
792
793  void visitExtractValue(ExtractValueInst &I);
794  void visitInsertValue(InsertValueInst &I);
795
796  void visitGetElementPtr(User &I);
797  void visitSelect(User &I);
798
799  void visitMalloc(MallocInst &I);
800  void visitFree(FreeInst &I);
801  void visitAlloca(AllocaInst &I);
802  void visitLoad(LoadInst &I);
803  void visitStore(StoreInst &I);
804  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
805  void visitCall(CallInst &I);
806  void visitInlineAsm(CallSite CS);
807  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
808  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
809
810  void visitVAStart(CallInst &I);
811  void visitVAArg(VAArgInst &I);
812  void visitVAEnd(CallInst &I);
813  void visitVACopy(CallInst &I);
814
815  void visitUserOp1(Instruction &I) {
816    assert(0 && "UserOp1 should not exist at instruction selection time!");
817    abort();
818  }
819  void visitUserOp2(Instruction &I) {
820    assert(0 && "UserOp2 should not exist at instruction selection time!");
821    abort();
822  }
823
824private:
825  inline const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
826
827};
828} // end namespace llvm
829
830
831/// getCopyFromParts - Create a value that contains the specified legal parts
832/// combined into the value they represent.  If the parts combine to a type
833/// larger then ValueVT then AssertOp can be used to specify whether the extra
834/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
835/// (ISD::AssertSext).
836static SDValue getCopyFromParts(SelectionDAG &DAG,
837                                  const SDValue *Parts,
838                                  unsigned NumParts,
839                                  MVT PartVT,
840                                  MVT ValueVT,
841                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
842  assert(NumParts > 0 && "No parts to assemble!");
843  TargetLowering &TLI = DAG.getTargetLoweringInfo();
844  SDValue Val = Parts[0];
845
846  if (NumParts > 1) {
847    // Assemble the value from multiple parts.
848    if (!ValueVT.isVector()) {
849      unsigned PartBits = PartVT.getSizeInBits();
850      unsigned ValueBits = ValueVT.getSizeInBits();
851
852      // Assemble the power of 2 part.
853      unsigned RoundParts = NumParts & (NumParts - 1) ?
854        1 << Log2_32(NumParts) : NumParts;
855      unsigned RoundBits = PartBits * RoundParts;
856      MVT RoundVT = RoundBits == ValueBits ?
857        ValueVT : MVT::getIntegerVT(RoundBits);
858      SDValue Lo, Hi;
859
860      if (RoundParts > 2) {
861        MVT HalfVT = MVT::getIntegerVT(RoundBits/2);
862        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
863        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
864                              PartVT, HalfVT);
865      } else {
866        Lo = Parts[0];
867        Hi = Parts[1];
868      }
869      if (TLI.isBigEndian())
870        std::swap(Lo, Hi);
871      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
872
873      if (RoundParts < NumParts) {
874        // Assemble the trailing non-power-of-2 part.
875        unsigned OddParts = NumParts - RoundParts;
876        MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
877        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
878
879        // Combine the round and odd parts.
880        Lo = Val;
881        if (TLI.isBigEndian())
882          std::swap(Lo, Hi);
883        MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
884        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
885        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
886                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
887                                         TLI.getShiftAmountTy()));
888        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
889        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
890      }
891    } else {
892      // Handle a multi-element vector.
893      MVT IntermediateVT, RegisterVT;
894      unsigned NumIntermediates;
895      unsigned NumRegs =
896        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
897                                   RegisterVT);
898      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
899      NumParts = NumRegs; // Silence a compiler warning.
900      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
901      assert(RegisterVT == Parts[0].getValueType() &&
902             "Part type doesn't match part!");
903
904      // Assemble the parts into intermediate operands.
905      SmallVector<SDValue, 8> Ops(NumIntermediates);
906      if (NumIntermediates == NumParts) {
907        // If the register was not expanded, truncate or copy the value,
908        // as appropriate.
909        for (unsigned i = 0; i != NumParts; ++i)
910          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
911                                    PartVT, IntermediateVT);
912      } else if (NumParts > 0) {
913        // If the intermediate type was expanded, build the intermediate operands
914        // from the parts.
915        assert(NumParts % NumIntermediates == 0 &&
916               "Must expand into a divisible number of parts!");
917        unsigned Factor = NumParts / NumIntermediates;
918        for (unsigned i = 0; i != NumIntermediates; ++i)
919          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
920                                    PartVT, IntermediateVT);
921      }
922
923      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
924      // operands.
925      Val = DAG.getNode(IntermediateVT.isVector() ?
926                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
927                        ValueVT, &Ops[0], NumIntermediates);
928    }
929  }
930
931  // There is now one part, held in Val.  Correct it to match ValueVT.
932  PartVT = Val.getValueType();
933
934  if (PartVT == ValueVT)
935    return Val;
936
937  if (PartVT.isVector()) {
938    assert(ValueVT.isVector() && "Unknown vector conversion!");
939    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
940  }
941
942  if (ValueVT.isVector()) {
943    assert(ValueVT.getVectorElementType() == PartVT &&
944           ValueVT.getVectorNumElements() == 1 &&
945           "Only trivial scalar-to-vector conversions should get here!");
946    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
947  }
948
949  if (PartVT.isInteger() &&
950      ValueVT.isInteger()) {
951    if (ValueVT.bitsLT(PartVT)) {
952      // For a truncate, see if we have any information to
953      // indicate whether the truncated bits will always be
954      // zero or sign-extension.
955      if (AssertOp != ISD::DELETED_NODE)
956        Val = DAG.getNode(AssertOp, PartVT, Val,
957                          DAG.getValueType(ValueVT));
958      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
959    } else {
960      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
961    }
962  }
963
964  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
965    if (ValueVT.bitsLT(Val.getValueType()))
966      // FP_ROUND's are always exact here.
967      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
968                         DAG.getIntPtrConstant(1));
969    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
970  }
971
972  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
973    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
974
975  assert(0 && "Unknown mismatch!");
976  return SDValue();
977}
978
979/// getCopyToParts - Create a series of nodes that contain the specified value
980/// split into legal parts.  If the parts contain more bits than Val, then, for
981/// integers, ExtendKind can be used to specify how to generate the extra bits.
982static void getCopyToParts(SelectionDAG &DAG,
983                           SDValue Val,
984                           SDValue *Parts,
985                           unsigned NumParts,
986                           MVT PartVT,
987                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
988  TargetLowering &TLI = DAG.getTargetLoweringInfo();
989  MVT PtrVT = TLI.getPointerTy();
990  MVT ValueVT = Val.getValueType();
991  unsigned PartBits = PartVT.getSizeInBits();
992  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
993
994  if (!NumParts)
995    return;
996
997  if (!ValueVT.isVector()) {
998    if (PartVT == ValueVT) {
999      assert(NumParts == 1 && "No-op copy with multiple parts!");
1000      Parts[0] = Val;
1001      return;
1002    }
1003
1004    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
1005      // If the parts cover more bits than the value has, promote the value.
1006      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
1007        assert(NumParts == 1 && "Do not know what to promote to!");
1008        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
1009      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
1010        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1011        Val = DAG.getNode(ExtendKind, ValueVT, Val);
1012      } else {
1013        assert(0 && "Unknown mismatch!");
1014      }
1015    } else if (PartBits == ValueVT.getSizeInBits()) {
1016      // Different types of the same size.
1017      assert(NumParts == 1 && PartVT != ValueVT);
1018      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1019    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
1020      // If the parts cover less bits than value has, truncate the value.
1021      if (PartVT.isInteger() && ValueVT.isInteger()) {
1022        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1023        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1024      } else {
1025        assert(0 && "Unknown mismatch!");
1026      }
1027    }
1028
1029    // The value may have changed - recompute ValueVT.
1030    ValueVT = Val.getValueType();
1031    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
1032           "Failed to tile the value with PartVT!");
1033
1034    if (NumParts == 1) {
1035      assert(PartVT == ValueVT && "Type conversion failed!");
1036      Parts[0] = Val;
1037      return;
1038    }
1039
1040    // Expand the value into multiple parts.
1041    if (NumParts & (NumParts - 1)) {
1042      // The number of parts is not a power of 2.  Split off and copy the tail.
1043      assert(PartVT.isInteger() && ValueVT.isInteger() &&
1044             "Do not know what to expand to!");
1045      unsigned RoundParts = 1 << Log2_32(NumParts);
1046      unsigned RoundBits = RoundParts * PartBits;
1047      unsigned OddParts = NumParts - RoundParts;
1048      SDValue OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
1049                                     DAG.getConstant(RoundBits,
1050                                                     TLI.getShiftAmountTy()));
1051      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
1052      if (TLI.isBigEndian())
1053        // The odd parts were reversed by getCopyToParts - unreverse them.
1054        std::reverse(Parts + RoundParts, Parts + NumParts);
1055      NumParts = RoundParts;
1056      ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1057      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1058    }
1059
1060    // The number of parts is a power of 2.  Repeatedly bisect the value using
1061    // EXTRACT_ELEMENT.
1062    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
1063                           MVT::getIntegerVT(ValueVT.getSizeInBits()),
1064                           Val);
1065    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
1066      for (unsigned i = 0; i < NumParts; i += StepSize) {
1067        unsigned ThisBits = StepSize * PartBits / 2;
1068        MVT ThisVT = MVT::getIntegerVT (ThisBits);
1069        SDValue &Part0 = Parts[i];
1070        SDValue &Part1 = Parts[i+StepSize/2];
1071
1072        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1073                            DAG.getConstant(1, PtrVT));
1074        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1075                            DAG.getConstant(0, PtrVT));
1076
1077        if (ThisBits == PartBits && ThisVT != PartVT) {
1078          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
1079          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
1080        }
1081      }
1082    }
1083
1084    if (TLI.isBigEndian())
1085      std::reverse(Parts, Parts + NumParts);
1086
1087    return;
1088  }
1089
1090  // Vector ValueVT.
1091  if (NumParts == 1) {
1092    if (PartVT != ValueVT) {
1093      if (PartVT.isVector()) {
1094        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1095      } else {
1096        assert(ValueVT.getVectorElementType() == PartVT &&
1097               ValueVT.getVectorNumElements() == 1 &&
1098               "Only trivial vector-to-scalar conversions should get here!");
1099        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
1100                          DAG.getConstant(0, PtrVT));
1101      }
1102    }
1103
1104    Parts[0] = Val;
1105    return;
1106  }
1107
1108  // Handle a multi-element vector.
1109  MVT IntermediateVT, RegisterVT;
1110  unsigned NumIntermediates;
1111  unsigned NumRegs =
1112    DAG.getTargetLoweringInfo()
1113      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1114                              RegisterVT);
1115  unsigned NumElements = ValueVT.getVectorNumElements();
1116
1117  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1118  NumParts = NumRegs; // Silence a compiler warning.
1119  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1120
1121  // Split the vector into intermediate operands.
1122  SmallVector<SDValue, 8> Ops(NumIntermediates);
1123  for (unsigned i = 0; i != NumIntermediates; ++i)
1124    if (IntermediateVT.isVector())
1125      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
1126                           IntermediateVT, Val,
1127                           DAG.getConstant(i * (NumElements / NumIntermediates),
1128                                           PtrVT));
1129    else
1130      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
1131                           IntermediateVT, Val,
1132                           DAG.getConstant(i, PtrVT));
1133
1134  // Split the intermediate operands into legal parts.
1135  if (NumParts == NumIntermediates) {
1136    // If the register was not expanded, promote or copy the value,
1137    // as appropriate.
1138    for (unsigned i = 0; i != NumParts; ++i)
1139      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
1140  } else if (NumParts > 0) {
1141    // If the intermediate type was expanded, split each the value into
1142    // legal parts.
1143    assert(NumParts % NumIntermediates == 0 &&
1144           "Must expand into a divisible number of parts!");
1145    unsigned Factor = NumParts / NumIntermediates;
1146    for (unsigned i = 0; i != NumIntermediates; ++i)
1147      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
1148  }
1149}
1150
1151
1152SDValue SelectionDAGLowering::getValue(const Value *V) {
1153  SDValue &N = NodeMap[V];
1154  if (N.Val) return N;
1155
1156  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
1157    MVT VT = TLI.getValueType(V->getType(), true);
1158
1159    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1160      return N = DAG.getConstant(CI->getValue(), VT);
1161
1162    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
1163      return N = DAG.getGlobalAddress(GV, VT);
1164
1165    if (isa<ConstantPointerNull>(C))
1166      return N = DAG.getConstant(0, TLI.getPointerTy());
1167
1168    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1169      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
1170
1171    if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
1172        !V->getType()->isAggregateType())
1173      return N = DAG.getNode(ISD::UNDEF, VT);
1174
1175    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1176      visit(CE->getOpcode(), *CE);
1177      SDValue N1 = NodeMap[V];
1178      assert(N1.Val && "visit didn't populate the ValueMap!");
1179      return N1;
1180    }
1181
1182    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1183      SmallVector<SDValue, 4> Constants;
1184      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1185           OI != OE; ++OI) {
1186        SDNode *Val = getValue(*OI).Val;
1187        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1188          Constants.push_back(SDValue(Val, i));
1189      }
1190      return DAG.getMergeValues(&Constants[0], Constants.size());
1191    }
1192
1193    if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
1194      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1195             "Unknown struct or array constant!");
1196
1197      SmallVector<MVT, 4> ValueVTs;
1198      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1199      unsigned NumElts = ValueVTs.size();
1200      if (NumElts == 0)
1201        return SDValue(); // empty struct
1202      SmallVector<SDValue, 4> Constants(NumElts);
1203      for (unsigned i = 0; i != NumElts; ++i) {
1204        MVT EltVT = ValueVTs[i];
1205        if (isa<UndefValue>(C))
1206          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1207        else if (EltVT.isFloatingPoint())
1208          Constants[i] = DAG.getConstantFP(0, EltVT);
1209        else
1210          Constants[i] = DAG.getConstant(0, EltVT);
1211      }
1212      return DAG.getMergeValues(&Constants[0], NumElts);
1213    }
1214
1215    const VectorType *VecTy = cast<VectorType>(V->getType());
1216    unsigned NumElements = VecTy->getNumElements();
1217
1218    // Now that we know the number and type of the elements, get that number of
1219    // elements into the Ops array based on what kind of constant it is.
1220    SmallVector<SDValue, 16> Ops;
1221    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1222      for (unsigned i = 0; i != NumElements; ++i)
1223        Ops.push_back(getValue(CP->getOperand(i)));
1224    } else {
1225      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1226             "Unknown vector constant!");
1227      MVT EltVT = TLI.getValueType(VecTy->getElementType());
1228
1229      SDValue Op;
1230      if (isa<UndefValue>(C))
1231        Op = DAG.getNode(ISD::UNDEF, EltVT);
1232      else if (EltVT.isFloatingPoint())
1233        Op = DAG.getConstantFP(0, EltVT);
1234      else
1235        Op = DAG.getConstant(0, EltVT);
1236      Ops.assign(NumElements, Op);
1237    }
1238
1239    // Create a BUILD_VECTOR node.
1240    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1241  }
1242
1243  // If this is a static alloca, generate it as the frameindex instead of
1244  // computation.
1245  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1246    std::map<const AllocaInst*, int>::iterator SI =
1247      FuncInfo.StaticAllocaMap.find(AI);
1248    if (SI != FuncInfo.StaticAllocaMap.end())
1249      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1250  }
1251
1252  unsigned InReg = FuncInfo.ValueMap[V];
1253  assert(InReg && "Value not in map!");
1254
1255  RegsForValue RFV(TLI, InReg, V->getType());
1256  SDValue Chain = DAG.getEntryNode();
1257  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1258}
1259
1260
1261void SelectionDAGLowering::visitRet(ReturnInst &I) {
1262  if (I.getNumOperands() == 0) {
1263    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
1264    return;
1265  }
1266
1267  SmallVector<SDValue, 8> NewValues;
1268  NewValues.push_back(getControlRoot());
1269  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1270    SDValue RetOp = getValue(I.getOperand(i));
1271
1272    SmallVector<MVT, 4> ValueVTs;
1273    ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
1274    for (unsigned j = 0, f = ValueVTs.size(); j != f; ++j) {
1275      MVT VT = ValueVTs[j];
1276
1277      // FIXME: C calling convention requires the return type to be promoted to
1278      // at least 32-bit. But this is not necessary for non-C calling conventions.
1279      if (VT.isInteger()) {
1280        MVT MinVT = TLI.getRegisterType(MVT::i32);
1281        if (VT.bitsLT(MinVT))
1282          VT = MinVT;
1283      }
1284
1285      unsigned NumParts = TLI.getNumRegisters(VT);
1286      MVT PartVT = TLI.getRegisterType(VT);
1287      SmallVector<SDValue, 4> Parts(NumParts);
1288      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1289
1290      const Function *F = I.getParent()->getParent();
1291      if (F->paramHasAttr(0, ParamAttr::SExt))
1292        ExtendKind = ISD::SIGN_EXTEND;
1293      else if (F->paramHasAttr(0, ParamAttr::ZExt))
1294        ExtendKind = ISD::ZERO_EXTEND;
1295
1296      getCopyToParts(DAG, SDValue(RetOp.Val, RetOp.ResNo + j),
1297                     &Parts[0], NumParts, PartVT, ExtendKind);
1298
1299      for (unsigned i = 0; i < NumParts; ++i) {
1300        NewValues.push_back(Parts[i]);
1301        NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
1302      }
1303    }
1304  }
1305  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1306                          &NewValues[0], NewValues.size()));
1307}
1308
1309/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1310/// the current basic block, add it to ValueMap now so that we'll get a
1311/// CopyTo/FromReg.
1312void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1313  // No need to export constants.
1314  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1315
1316  // Already exported?
1317  if (FuncInfo.isExportedInst(V)) return;
1318
1319  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1320  CopyValueToVirtualRegister(V, Reg);
1321}
1322
1323bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1324                                                    const BasicBlock *FromBB) {
1325  // The operands of the setcc have to be in this block.  We don't know
1326  // how to export them from some other block.
1327  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1328    // Can export from current BB.
1329    if (VI->getParent() == FromBB)
1330      return true;
1331
1332    // Is already exported, noop.
1333    return FuncInfo.isExportedInst(V);
1334  }
1335
1336  // If this is an argument, we can export it if the BB is the entry block or
1337  // if it is already exported.
1338  if (isa<Argument>(V)) {
1339    if (FromBB == &FromBB->getParent()->getEntryBlock())
1340      return true;
1341
1342    // Otherwise, can only export this if it is already exported.
1343    return FuncInfo.isExportedInst(V);
1344  }
1345
1346  // Otherwise, constants can always be exported.
1347  return true;
1348}
1349
1350static bool InBlock(const Value *V, const BasicBlock *BB) {
1351  if (const Instruction *I = dyn_cast<Instruction>(V))
1352    return I->getParent() == BB;
1353  return true;
1354}
1355
1356/// FindMergedConditions - If Cond is an expression like
1357void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1358                                                MachineBasicBlock *TBB,
1359                                                MachineBasicBlock *FBB,
1360                                                MachineBasicBlock *CurBB,
1361                                                unsigned Opc) {
1362  // If this node is not part of the or/and tree, emit it as a branch.
1363  Instruction *BOp = dyn_cast<Instruction>(Cond);
1364
1365  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1366      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1367      BOp->getParent() != CurBB->getBasicBlock() ||
1368      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1369      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1370    const BasicBlock *BB = CurBB->getBasicBlock();
1371
1372    // If the leaf of the tree is a comparison, merge the condition into
1373    // the caseblock.
1374    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1375        // The operands of the cmp have to be in this block.  We don't know
1376        // how to export them from some other block.  If this is the first block
1377        // of the sequence, no exporting is needed.
1378        (CurBB == CurMBB ||
1379         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1380          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1381      BOp = cast<Instruction>(Cond);
1382      ISD::CondCode Condition;
1383      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1384        switch (IC->getPredicate()) {
1385        default: assert(0 && "Unknown icmp predicate opcode!");
1386        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1387        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1388        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1389        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1390        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1391        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1392        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1393        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1394        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1395        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1396        }
1397      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1398        ISD::CondCode FPC, FOC;
1399        switch (FC->getPredicate()) {
1400        default: assert(0 && "Unknown fcmp predicate opcode!");
1401        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1402        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1403        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1404        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1405        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1406        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1407        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1408        case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
1409        case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
1410        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1411        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1412        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1413        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1414        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1415        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1416        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1417        }
1418        if (FiniteOnlyFPMath())
1419          Condition = FOC;
1420        else
1421          Condition = FPC;
1422      } else {
1423        Condition = ISD::SETEQ; // silence warning.
1424        assert(0 && "Unknown compare instruction");
1425      }
1426
1427      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1428                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1429      SwitchCases.push_back(CB);
1430      return;
1431    }
1432
1433    // Create a CaseBlock record representing this branch.
1434    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1435                                   NULL, TBB, FBB, CurBB);
1436    SwitchCases.push_back(CB);
1437    return;
1438  }
1439
1440
1441  //  Create TmpBB after CurBB.
1442  MachineFunction::iterator BBI = CurBB;
1443  MachineFunction &MF = DAG.getMachineFunction();
1444  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1445  CurBB->getParent()->insert(++BBI, TmpBB);
1446
1447  if (Opc == Instruction::Or) {
1448    // Codegen X | Y as:
1449    //   jmp_if_X TBB
1450    //   jmp TmpBB
1451    // TmpBB:
1452    //   jmp_if_Y TBB
1453    //   jmp FBB
1454    //
1455
1456    // Emit the LHS condition.
1457    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1458
1459    // Emit the RHS condition into TmpBB.
1460    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1461  } else {
1462    assert(Opc == Instruction::And && "Unknown merge op!");
1463    // Codegen X & Y as:
1464    //   jmp_if_X TmpBB
1465    //   jmp FBB
1466    // TmpBB:
1467    //   jmp_if_Y TBB
1468    //   jmp FBB
1469    //
1470    //  This requires creation of TmpBB after CurBB.
1471
1472    // Emit the LHS condition.
1473    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1474
1475    // Emit the RHS condition into TmpBB.
1476    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1477  }
1478}
1479
1480/// If the set of cases should be emitted as a series of branches, return true.
1481/// If we should emit this as a bunch of and/or'd together conditions, return
1482/// false.
1483static bool
1484ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1485  if (Cases.size() != 2) return true;
1486
1487  // If this is two comparisons of the same values or'd or and'd together, they
1488  // will get folded into a single comparison, so don't emit two blocks.
1489  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1490       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1491      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1492       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1493    return false;
1494  }
1495
1496  return true;
1497}
1498
1499void SelectionDAGLowering::visitBr(BranchInst &I) {
1500  // Update machine-CFG edges.
1501  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1502
1503  // Figure out which block is immediately after the current one.
1504  MachineBasicBlock *NextBlock = 0;
1505  MachineFunction::iterator BBI = CurMBB;
1506  if (++BBI != CurMBB->getParent()->end())
1507    NextBlock = BBI;
1508
1509  if (I.isUnconditional()) {
1510    // Update machine-CFG edges.
1511    CurMBB->addSuccessor(Succ0MBB);
1512
1513    // If this is not a fall-through branch, emit the branch.
1514    if (Succ0MBB != NextBlock)
1515      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1516                              DAG.getBasicBlock(Succ0MBB)));
1517    return;
1518  }
1519
1520  // If this condition is one of the special cases we handle, do special stuff
1521  // now.
1522  Value *CondVal = I.getCondition();
1523  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1524
1525  // If this is a series of conditions that are or'd or and'd together, emit
1526  // this as a sequence of branches instead of setcc's with and/or operations.
1527  // For example, instead of something like:
1528  //     cmp A, B
1529  //     C = seteq
1530  //     cmp D, E
1531  //     F = setle
1532  //     or C, F
1533  //     jnz foo
1534  // Emit:
1535  //     cmp A, B
1536  //     je foo
1537  //     cmp D, E
1538  //     jle foo
1539  //
1540  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1541    if (BOp->hasOneUse() &&
1542        (BOp->getOpcode() == Instruction::And ||
1543         BOp->getOpcode() == Instruction::Or)) {
1544      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1545      // If the compares in later blocks need to use values not currently
1546      // exported from this block, export them now.  This block should always
1547      // be the first entry.
1548      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1549
1550      // Allow some cases to be rejected.
1551      if (ShouldEmitAsBranches(SwitchCases)) {
1552        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1553          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1554          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1555        }
1556
1557        // Emit the branch for this block.
1558        visitSwitchCase(SwitchCases[0]);
1559        SwitchCases.erase(SwitchCases.begin());
1560        return;
1561      }
1562
1563      // Okay, we decided not to do this, remove any inserted MBB's and clear
1564      // SwitchCases.
1565      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1566        CurMBB->getParent()->erase(SwitchCases[i].ThisBB);
1567
1568      SwitchCases.clear();
1569    }
1570  }
1571
1572  // Create a CaseBlock record representing this branch.
1573  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1574                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1575  // Use visitSwitchCase to actually insert the fast branch sequence for this
1576  // cond branch.
1577  visitSwitchCase(CB);
1578}
1579
1580/// visitSwitchCase - Emits the necessary code to represent a single node in
1581/// the binary search tree resulting from lowering a switch instruction.
1582void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1583  SDValue Cond;
1584  SDValue CondLHS = getValue(CB.CmpLHS);
1585
1586  // Build the setcc now.
1587  if (CB.CmpMHS == NULL) {
1588    // Fold "(X == true)" to X and "(X == false)" to !X to
1589    // handle common cases produced by branch lowering.
1590    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1591      Cond = CondLHS;
1592    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1593      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1594      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1595    } else
1596      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1597  } else {
1598    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1599
1600    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1601    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1602
1603    SDValue CmpOp = getValue(CB.CmpMHS);
1604    MVT VT = CmpOp.getValueType();
1605
1606    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1607      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1608    } else {
1609      SDValue SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1610      Cond = DAG.getSetCC(MVT::i1, SUB,
1611                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1612    }
1613  }
1614
1615  // Update successor info
1616  CurMBB->addSuccessor(CB.TrueBB);
1617  CurMBB->addSuccessor(CB.FalseBB);
1618
1619  // Set NextBlock to be the MBB immediately after the current one, if any.
1620  // This is used to avoid emitting unnecessary branches to the next block.
1621  MachineBasicBlock *NextBlock = 0;
1622  MachineFunction::iterator BBI = CurMBB;
1623  if (++BBI != CurMBB->getParent()->end())
1624    NextBlock = BBI;
1625
1626  // If the lhs block is the next block, invert the condition so that we can
1627  // fall through to the lhs instead of the rhs block.
1628  if (CB.TrueBB == NextBlock) {
1629    std::swap(CB.TrueBB, CB.FalseBB);
1630    SDValue True = DAG.getConstant(1, Cond.getValueType());
1631    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1632  }
1633  SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1634                                 DAG.getBasicBlock(CB.TrueBB));
1635
1636  // If the branch was constant folded, fix up the CFG.
1637  if (BrCond.getOpcode() == ISD::BR) {
1638    if (!DisableCorrectBranchFolding)
1639      CurMBB->removeSuccessor(CB.FalseBB);
1640    DAG.setRoot(BrCond);
1641  } else {
1642    // Otherwise, go ahead and insert the false branch.
1643    if (BrCond == getControlRoot())
1644      if (!DisableCorrectBranchFolding)
1645        CurMBB->removeSuccessor(CB.TrueBB);
1646
1647    if (CB.FalseBB == NextBlock)
1648      DAG.setRoot(BrCond);
1649    else
1650      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1651                              DAG.getBasicBlock(CB.FalseBB)));
1652  }
1653}
1654
1655/// visitJumpTable - Emit JumpTable node in the current MBB
1656void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1657  // Emit the code for the jump table
1658  assert(JT.Reg != -1U && "Should lower JT Header first!");
1659  MVT PTy = TLI.getPointerTy();
1660  SDValue Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1661  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1662  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1663                          Table, Index));
1664  return;
1665}
1666
1667/// visitJumpTableHeader - This function emits necessary code to produce index
1668/// in the JumpTable from switch case.
1669void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1670                                         SelectionDAGISel::JumpTableHeader &JTH) {
1671  // Subtract the lowest switch case value from the value being switched on
1672  // and conditional branch to default mbb if the result is greater than the
1673  // difference between smallest and largest cases.
1674  SDValue SwitchOp = getValue(JTH.SValue);
1675  MVT VT = SwitchOp.getValueType();
1676  SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1677                              DAG.getConstant(JTH.First, VT));
1678
1679  // The SDNode we just created, which holds the value being switched on
1680  // minus the the smallest case value, needs to be copied to a virtual
1681  // register so it can be used as an index into the jump table in a
1682  // subsequent basic block.  This value may be smaller or larger than the
1683  // target's pointer type, and therefore require extension or truncating.
1684  if (VT.bitsGT(TLI.getPointerTy()))
1685    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1686  else
1687    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1688
1689  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1690  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1691  JT.Reg = JumpTableReg;
1692
1693  // Emit the range check for the jump table, and branch to the default
1694  // block for the switch statement if the value being switched on exceeds
1695  // the largest case in the switch.
1696  SDValue CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1697                               DAG.getConstant(JTH.Last-JTH.First,VT),
1698                               ISD::SETUGT);
1699
1700  // Set NextBlock to be the MBB immediately after the current one, if any.
1701  // This is used to avoid emitting unnecessary branches to the next block.
1702  MachineBasicBlock *NextBlock = 0;
1703  MachineFunction::iterator BBI = CurMBB;
1704  if (++BBI != CurMBB->getParent()->end())
1705    NextBlock = BBI;
1706
1707  SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1708                                 DAG.getBasicBlock(JT.Default));
1709
1710  if (JT.MBB == NextBlock)
1711    DAG.setRoot(BrCond);
1712  else
1713    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1714                            DAG.getBasicBlock(JT.MBB)));
1715
1716  return;
1717}
1718
1719/// visitBitTestHeader - This function emits necessary code to produce value
1720/// suitable for "bit tests"
1721void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1722  // Subtract the minimum value
1723  SDValue SwitchOp = getValue(B.SValue);
1724  MVT VT = SwitchOp.getValueType();
1725  SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1726                              DAG.getConstant(B.First, VT));
1727
1728  // Check range
1729  SDValue RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1730                                    DAG.getConstant(B.Range, VT),
1731                                    ISD::SETUGT);
1732
1733  SDValue ShiftOp;
1734  if (VT.bitsGT(TLI.getShiftAmountTy()))
1735    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1736  else
1737    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1738
1739  // Make desired shift
1740  SDValue SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1741                                    DAG.getConstant(1, TLI.getPointerTy()),
1742                                    ShiftOp);
1743
1744  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1745  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1746  B.Reg = SwitchReg;
1747
1748  // Set NextBlock to be the MBB immediately after the current one, if any.
1749  // This is used to avoid emitting unnecessary branches to the next block.
1750  MachineBasicBlock *NextBlock = 0;
1751  MachineFunction::iterator BBI = CurMBB;
1752  if (++BBI != CurMBB->getParent()->end())
1753    NextBlock = BBI;
1754
1755  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1756
1757  CurMBB->addSuccessor(B.Default);
1758  CurMBB->addSuccessor(MBB);
1759
1760  SDValue BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1761                                  DAG.getBasicBlock(B.Default));
1762
1763  if (MBB == NextBlock)
1764    DAG.setRoot(BrRange);
1765  else
1766    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1767                            DAG.getBasicBlock(MBB)));
1768
1769  return;
1770}
1771
1772/// visitBitTestCase - this function produces one "bit test"
1773void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1774                                            unsigned Reg,
1775                                            SelectionDAGISel::BitTestCase &B) {
1776  // Emit bit tests and jumps
1777  SDValue SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg,
1778                                           TLI.getPointerTy());
1779
1780  SDValue AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
1781                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1782  SDValue AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1783                                  DAG.getConstant(0, TLI.getPointerTy()),
1784                                  ISD::SETNE);
1785
1786  CurMBB->addSuccessor(B.TargetBB);
1787  CurMBB->addSuccessor(NextMBB);
1788
1789  SDValue BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1790                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1791
1792  // Set NextBlock to be the MBB immediately after the current one, if any.
1793  // This is used to avoid emitting unnecessary branches to the next block.
1794  MachineBasicBlock *NextBlock = 0;
1795  MachineFunction::iterator BBI = CurMBB;
1796  if (++BBI != CurMBB->getParent()->end())
1797    NextBlock = BBI;
1798
1799  if (NextMBB == NextBlock)
1800    DAG.setRoot(BrAnd);
1801  else
1802    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1803                            DAG.getBasicBlock(NextMBB)));
1804
1805  return;
1806}
1807
1808void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1809  // Retrieve successors.
1810  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1811  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1812
1813  if (isa<InlineAsm>(I.getCalledValue()))
1814    visitInlineAsm(&I);
1815  else
1816    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1817
1818  // If the value of the invoke is used outside of its defining block, make it
1819  // available as a virtual register.
1820  if (!I.use_empty()) {
1821    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1822    if (VMI != FuncInfo.ValueMap.end())
1823      CopyValueToVirtualRegister(&I, VMI->second);
1824  }
1825
1826  // Update successor info
1827  CurMBB->addSuccessor(Return);
1828  CurMBB->addSuccessor(LandingPad);
1829
1830  // Drop into normal successor.
1831  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1832                          DAG.getBasicBlock(Return)));
1833}
1834
1835void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1836}
1837
1838/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1839/// small case ranges).
1840bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1841                                                  CaseRecVector& WorkList,
1842                                                  Value* SV,
1843                                                  MachineBasicBlock* Default) {
1844  Case& BackCase  = *(CR.Range.second-1);
1845
1846  // Size is the number of Cases represented by this range.
1847  unsigned Size = CR.Range.second - CR.Range.first;
1848  if (Size > 3)
1849    return false;
1850
1851  // Get the MachineFunction which holds the current MBB.  This is used when
1852  // inserting any additional MBBs necessary to represent the switch.
1853  MachineFunction *CurMF = CurMBB->getParent();
1854
1855  // Figure out which block is immediately after the current one.
1856  MachineBasicBlock *NextBlock = 0;
1857  MachineFunction::iterator BBI = CR.CaseBB;
1858
1859  if (++BBI != CurMBB->getParent()->end())
1860    NextBlock = BBI;
1861
1862  // TODO: If any two of the cases has the same destination, and if one value
1863  // is the same as the other, but has one bit unset that the other has set,
1864  // use bit manipulation to do two compares at once.  For example:
1865  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1866
1867  // Rearrange the case blocks so that the last one falls through if possible.
1868  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1869    // The last case block won't fall through into 'NextBlock' if we emit the
1870    // branches in this order.  See if rearranging a case value would help.
1871    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1872      if (I->BB == NextBlock) {
1873        std::swap(*I, BackCase);
1874        break;
1875      }
1876    }
1877  }
1878
1879  // Create a CaseBlock record representing a conditional branch to
1880  // the Case's target mbb if the value being switched on SV is equal
1881  // to C.
1882  MachineBasicBlock *CurBlock = CR.CaseBB;
1883  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1884    MachineBasicBlock *FallThrough;
1885    if (I != E-1) {
1886      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1887      CurMF->insert(BBI, FallThrough);
1888    } else {
1889      // If the last case doesn't match, go to the default block.
1890      FallThrough = Default;
1891    }
1892
1893    Value *RHS, *LHS, *MHS;
1894    ISD::CondCode CC;
1895    if (I->High == I->Low) {
1896      // This is just small small case range :) containing exactly 1 case
1897      CC = ISD::SETEQ;
1898      LHS = SV; RHS = I->High; MHS = NULL;
1899    } else {
1900      CC = ISD::SETLE;
1901      LHS = I->Low; MHS = SV; RHS = I->High;
1902    }
1903    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1904                                   I->BB, FallThrough, CurBlock);
1905
1906    // If emitting the first comparison, just call visitSwitchCase to emit the
1907    // code into the current block.  Otherwise, push the CaseBlock onto the
1908    // vector to be later processed by SDISel, and insert the node's MBB
1909    // before the next MBB.
1910    if (CurBlock == CurMBB)
1911      visitSwitchCase(CB);
1912    else
1913      SwitchCases.push_back(CB);
1914
1915    CurBlock = FallThrough;
1916  }
1917
1918  return true;
1919}
1920
1921static inline bool areJTsAllowed(const TargetLowering &TLI) {
1922  return !DisableJumpTables &&
1923          (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1924           TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1925}
1926
1927/// handleJTSwitchCase - Emit jumptable for current switch case range
1928bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1929                                              CaseRecVector& WorkList,
1930                                              Value* SV,
1931                                              MachineBasicBlock* Default) {
1932  Case& FrontCase = *CR.Range.first;
1933  Case& BackCase  = *(CR.Range.second-1);
1934
1935  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1936  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1937
1938  uint64_t TSize = 0;
1939  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1940       I!=E; ++I)
1941    TSize += I->size();
1942
1943  if (!areJTsAllowed(TLI) || TSize <= 3)
1944    return false;
1945
1946  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1947  if (Density < 0.4)
1948    return false;
1949
1950  DOUT << "Lowering jump table\n"
1951       << "First entry: " << First << ". Last entry: " << Last << "\n"
1952       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1953
1954  // Get the MachineFunction which holds the current MBB.  This is used when
1955  // inserting any additional MBBs necessary to represent the switch.
1956  MachineFunction *CurMF = CurMBB->getParent();
1957
1958  // Figure out which block is immediately after the current one.
1959  MachineBasicBlock *NextBlock = 0;
1960  MachineFunction::iterator BBI = CR.CaseBB;
1961
1962  if (++BBI != CurMBB->getParent()->end())
1963    NextBlock = BBI;
1964
1965  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1966
1967  // Create a new basic block to hold the code for loading the address
1968  // of the jump table, and jumping to it.  Update successor information;
1969  // we will either branch to the default case for the switch, or the jump
1970  // table.
1971  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1972  CurMF->insert(BBI, JumpTableBB);
1973  CR.CaseBB->addSuccessor(Default);
1974  CR.CaseBB->addSuccessor(JumpTableBB);
1975
1976  // Build a vector of destination BBs, corresponding to each target
1977  // of the jump table. If the value of the jump table slot corresponds to
1978  // a case statement, push the case's BB onto the vector, otherwise, push
1979  // the default BB.
1980  std::vector<MachineBasicBlock*> DestBBs;
1981  int64_t TEI = First;
1982  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1983    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1984    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1985
1986    if ((Low <= TEI) && (TEI <= High)) {
1987      DestBBs.push_back(I->BB);
1988      if (TEI==High)
1989        ++I;
1990    } else {
1991      DestBBs.push_back(Default);
1992    }
1993  }
1994
1995  // Update successor info. Add one edge to each unique successor.
1996  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1997  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1998         E = DestBBs.end(); I != E; ++I) {
1999    if (!SuccsHandled[(*I)->getNumber()]) {
2000      SuccsHandled[(*I)->getNumber()] = true;
2001      JumpTableBB->addSuccessor(*I);
2002    }
2003  }
2004
2005  // Create a jump table index for this jump table, or return an existing
2006  // one.
2007  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
2008
2009  // Set the jump table information so that we can codegen it as a second
2010  // MachineBasicBlock
2011  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
2012  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
2013                                        (CR.CaseBB == CurMBB));
2014  if (CR.CaseBB == CurMBB)
2015    visitJumpTableHeader(JT, JTH);
2016
2017  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
2018
2019  return true;
2020}
2021
2022/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2023/// 2 subtrees.
2024bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
2025                                                   CaseRecVector& WorkList,
2026                                                   Value* SV,
2027                                                   MachineBasicBlock* Default) {
2028  // Get the MachineFunction which holds the current MBB.  This is used when
2029  // inserting any additional MBBs necessary to represent the switch.
2030  MachineFunction *CurMF = CurMBB->getParent();
2031
2032  // Figure out which block is immediately after the current one.
2033  MachineBasicBlock *NextBlock = 0;
2034  MachineFunction::iterator BBI = CR.CaseBB;
2035
2036  if (++BBI != CurMBB->getParent()->end())
2037    NextBlock = BBI;
2038
2039  Case& FrontCase = *CR.Range.first;
2040  Case& BackCase  = *(CR.Range.second-1);
2041  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2042
2043  // Size is the number of Cases represented by this range.
2044  unsigned Size = CR.Range.second - CR.Range.first;
2045
2046  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
2047  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
2048  double FMetric = 0;
2049  CaseItr Pivot = CR.Range.first + Size/2;
2050
2051  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2052  // (heuristically) allow us to emit JumpTable's later.
2053  uint64_t TSize = 0;
2054  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2055       I!=E; ++I)
2056    TSize += I->size();
2057
2058  uint64_t LSize = FrontCase.size();
2059  uint64_t RSize = TSize-LSize;
2060  DOUT << "Selecting best pivot: \n"
2061       << "First: " << First << ", Last: " << Last <<"\n"
2062       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
2063  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2064       J!=E; ++I, ++J) {
2065    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
2066    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
2067    assert((RBegin-LEnd>=1) && "Invalid case distance");
2068    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
2069    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
2070    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
2071    // Should always split in some non-trivial place
2072    DOUT <<"=>Step\n"
2073         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
2074         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
2075         << "Metric: " << Metric << "\n";
2076    if (FMetric < Metric) {
2077      Pivot = J;
2078      FMetric = Metric;
2079      DOUT << "Current metric set to: " << FMetric << "\n";
2080    }
2081
2082    LSize += J->size();
2083    RSize -= J->size();
2084  }
2085  if (areJTsAllowed(TLI)) {
2086    // If our case is dense we *really* should handle it earlier!
2087    assert((FMetric > 0) && "Should handle dense range earlier!");
2088  } else {
2089    Pivot = CR.Range.first + Size/2;
2090  }
2091
2092  CaseRange LHSR(CR.Range.first, Pivot);
2093  CaseRange RHSR(Pivot, CR.Range.second);
2094  Constant *C = Pivot->Low;
2095  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2096
2097  // We know that we branch to the LHS if the Value being switched on is
2098  // less than the Pivot value, C.  We use this to optimize our binary
2099  // tree a bit, by recognizing that if SV is greater than or equal to the
2100  // LHS's Case Value, and that Case Value is exactly one less than the
2101  // Pivot's Value, then we can branch directly to the LHS's Target,
2102  // rather than creating a leaf node for it.
2103  if ((LHSR.second - LHSR.first) == 1 &&
2104      LHSR.first->High == CR.GE &&
2105      cast<ConstantInt>(C)->getSExtValue() ==
2106      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
2107    TrueBB = LHSR.first->BB;
2108  } else {
2109    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2110    CurMF->insert(BBI, TrueBB);
2111    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2112  }
2113
2114  // Similar to the optimization above, if the Value being switched on is
2115  // known to be less than the Constant CR.LT, and the current Case Value
2116  // is CR.LT - 1, then we can branch directly to the target block for
2117  // the current Case Value, rather than emitting a RHS leaf node for it.
2118  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2119      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
2120      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
2121    FalseBB = RHSR.first->BB;
2122  } else {
2123    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2124    CurMF->insert(BBI, FalseBB);
2125    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2126  }
2127
2128  // Create a CaseBlock record representing a conditional branch to
2129  // the LHS node if the value being switched on SV is less than C.
2130  // Otherwise, branch to LHS.
2131  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
2132                                 TrueBB, FalseBB, CR.CaseBB);
2133
2134  if (CR.CaseBB == CurMBB)
2135    visitSwitchCase(CB);
2136  else
2137    SwitchCases.push_back(CB);
2138
2139  return true;
2140}
2141
2142/// handleBitTestsSwitchCase - if current case range has few destination and
2143/// range span less, than machine word bitwidth, encode case range into series
2144/// of masks and emit bit tests with these masks.
2145bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
2146                                                    CaseRecVector& WorkList,
2147                                                    Value* SV,
2148                                                    MachineBasicBlock* Default){
2149  unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
2150
2151  Case& FrontCase = *CR.Range.first;
2152  Case& BackCase  = *(CR.Range.second-1);
2153
2154  // Get the MachineFunction which holds the current MBB.  This is used when
2155  // inserting any additional MBBs necessary to represent the switch.
2156  MachineFunction *CurMF = CurMBB->getParent();
2157
2158  unsigned numCmps = 0;
2159  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2160       I!=E; ++I) {
2161    // Single case counts one, case range - two.
2162    if (I->Low == I->High)
2163      numCmps +=1;
2164    else
2165      numCmps +=2;
2166  }
2167
2168  // Count unique destinations
2169  SmallSet<MachineBasicBlock*, 4> Dests;
2170  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2171    Dests.insert(I->BB);
2172    if (Dests.size() > 3)
2173      // Don't bother the code below, if there are too much unique destinations
2174      return false;
2175  }
2176  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
2177       << "Total number of comparisons: " << numCmps << "\n";
2178
2179  // Compute span of values.
2180  Constant* minValue = FrontCase.Low;
2181  Constant* maxValue = BackCase.High;
2182  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
2183                   cast<ConstantInt>(minValue)->getSExtValue();
2184  DOUT << "Compare range: " << range << "\n"
2185       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
2186       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
2187
2188  if (range>=IntPtrBits ||
2189      (!(Dests.size() == 1 && numCmps >= 3) &&
2190       !(Dests.size() == 2 && numCmps >= 5) &&
2191       !(Dests.size() >= 3 && numCmps >= 6)))
2192    return false;
2193
2194  DOUT << "Emitting bit tests\n";
2195  int64_t lowBound = 0;
2196
2197  // Optimize the case where all the case values fit in a
2198  // word without having to subtract minValue. In this case,
2199  // we can optimize away the subtraction.
2200  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
2201      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
2202    range = cast<ConstantInt>(maxValue)->getSExtValue();
2203  } else {
2204    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
2205  }
2206
2207  CaseBitsVector CasesBits;
2208  unsigned i, count = 0;
2209
2210  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2211    MachineBasicBlock* Dest = I->BB;
2212    for (i = 0; i < count; ++i)
2213      if (Dest == CasesBits[i].BB)
2214        break;
2215
2216    if (i == count) {
2217      assert((count < 3) && "Too much destinations to test!");
2218      CasesBits.push_back(CaseBits(0, Dest, 0));
2219      count++;
2220    }
2221
2222    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
2223    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
2224
2225    for (uint64_t j = lo; j <= hi; j++) {
2226      CasesBits[i].Mask |=  1ULL << j;
2227      CasesBits[i].Bits++;
2228    }
2229
2230  }
2231  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2232
2233  SelectionDAGISel::BitTestInfo BTC;
2234
2235  // Figure out which block is immediately after the current one.
2236  MachineFunction::iterator BBI = CR.CaseBB;
2237  ++BBI;
2238
2239  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2240
2241  DOUT << "Cases:\n";
2242  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2243    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
2244         << ", BB: " << CasesBits[i].BB << "\n";
2245
2246    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2247    CurMF->insert(BBI, CaseBB);
2248    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
2249                                                CaseBB,
2250                                                CasesBits[i].BB));
2251  }
2252
2253  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
2254                                     -1U, (CR.CaseBB == CurMBB),
2255                                     CR.CaseBB, Default, BTC);
2256
2257  if (CR.CaseBB == CurMBB)
2258    visitBitTestHeader(BTB);
2259
2260  BitTestCases.push_back(BTB);
2261
2262  return true;
2263}
2264
2265
2266/// Clusterify - Transform simple list of Cases into list of CaseRange's
2267unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2268                                          const SwitchInst& SI) {
2269  unsigned numCmps = 0;
2270
2271  // Start with "simple" cases
2272  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2273    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2274    Cases.push_back(Case(SI.getSuccessorValue(i),
2275                         SI.getSuccessorValue(i),
2276                         SMBB));
2277  }
2278  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2279
2280  // Merge case into clusters
2281  if (Cases.size()>=2)
2282    // Must recompute end() each iteration because it may be
2283    // invalidated by erase if we hold on to it
2284    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2285      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2286      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2287      MachineBasicBlock* nextBB = J->BB;
2288      MachineBasicBlock* currentBB = I->BB;
2289
2290      // If the two neighboring cases go to the same destination, merge them
2291      // into a single case.
2292      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2293        I->High = J->High;
2294        J = Cases.erase(J);
2295      } else {
2296        I = J++;
2297      }
2298    }
2299
2300  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2301    if (I->Low != I->High)
2302      // A range counts double, since it requires two compares.
2303      ++numCmps;
2304  }
2305
2306  return numCmps;
2307}
2308
2309void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2310  // Figure out which block is immediately after the current one.
2311  MachineBasicBlock *NextBlock = 0;
2312  MachineFunction::iterator BBI = CurMBB;
2313
2314  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2315
2316  // If there is only the default destination, branch to it if it is not the
2317  // next basic block.  Otherwise, just fall through.
2318  if (SI.getNumOperands() == 2) {
2319    // Update machine-CFG edges.
2320
2321    // If this is not a fall-through branch, emit the branch.
2322    CurMBB->addSuccessor(Default);
2323    if (Default != NextBlock)
2324      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2325                              DAG.getBasicBlock(Default)));
2326
2327    return;
2328  }
2329
2330  // If there are any non-default case statements, create a vector of Cases
2331  // representing each one, and sort the vector so that we can efficiently
2332  // create a binary search tree from them.
2333  CaseVector Cases;
2334  unsigned numCmps = Clusterify(Cases, SI);
2335  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2336       << ". Total compares: " << numCmps << "\n";
2337
2338  // Get the Value to be switched on and default basic blocks, which will be
2339  // inserted into CaseBlock records, representing basic blocks in the binary
2340  // search tree.
2341  Value *SV = SI.getOperand(0);
2342
2343  // Push the initial CaseRec onto the worklist
2344  CaseRecVector WorkList;
2345  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2346
2347  while (!WorkList.empty()) {
2348    // Grab a record representing a case range to process off the worklist
2349    CaseRec CR = WorkList.back();
2350    WorkList.pop_back();
2351
2352    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2353      continue;
2354
2355    // If the range has few cases (two or less) emit a series of specific
2356    // tests.
2357    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2358      continue;
2359
2360    // If the switch has more than 5 blocks, and at least 40% dense, and the
2361    // target supports indirect branches, then emit a jump table rather than
2362    // lowering the switch to a binary tree of conditional branches.
2363    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2364      continue;
2365
2366    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2367    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2368    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2369  }
2370}
2371
2372
2373void SelectionDAGLowering::visitSub(User &I) {
2374  // -0.0 - X --> fneg
2375  const Type *Ty = I.getType();
2376  if (isa<VectorType>(Ty)) {
2377    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2378      const VectorType *DestTy = cast<VectorType>(I.getType());
2379      const Type *ElTy = DestTy->getElementType();
2380      if (ElTy->isFloatingPoint()) {
2381        unsigned VL = DestTy->getNumElements();
2382        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2383        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2384        if (CV == CNZ) {
2385          SDValue Op2 = getValue(I.getOperand(1));
2386          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2387          return;
2388        }
2389      }
2390    }
2391  }
2392  if (Ty->isFloatingPoint()) {
2393    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2394      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2395        SDValue Op2 = getValue(I.getOperand(1));
2396        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2397        return;
2398      }
2399  }
2400
2401  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2402}
2403
2404void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2405  SDValue Op1 = getValue(I.getOperand(0));
2406  SDValue Op2 = getValue(I.getOperand(1));
2407
2408  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2409}
2410
2411void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2412  SDValue Op1 = getValue(I.getOperand(0));
2413  SDValue Op2 = getValue(I.getOperand(1));
2414  if (!isa<VectorType>(I.getType())) {
2415    if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
2416      Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2417    else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
2418      Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2419  }
2420
2421  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2422}
2423
2424void SelectionDAGLowering::visitICmp(User &I) {
2425  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2426  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2427    predicate = IC->getPredicate();
2428  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2429    predicate = ICmpInst::Predicate(IC->getPredicate());
2430  SDValue Op1 = getValue(I.getOperand(0));
2431  SDValue Op2 = getValue(I.getOperand(1));
2432  ISD::CondCode Opcode;
2433  switch (predicate) {
2434    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2435    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2436    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2437    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2438    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2439    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2440    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2441    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2442    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2443    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2444    default:
2445      assert(!"Invalid ICmp predicate value");
2446      Opcode = ISD::SETEQ;
2447      break;
2448  }
2449  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2450}
2451
2452void SelectionDAGLowering::visitFCmp(User &I) {
2453  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2454  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2455    predicate = FC->getPredicate();
2456  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2457    predicate = FCmpInst::Predicate(FC->getPredicate());
2458  SDValue Op1 = getValue(I.getOperand(0));
2459  SDValue Op2 = getValue(I.getOperand(1));
2460  ISD::CondCode Condition, FOC, FPC;
2461  switch (predicate) {
2462    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2463    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2464    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2465    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2466    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2467    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2468    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2469    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2470    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2471    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2472    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2473    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2474    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2475    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2476    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2477    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2478    default:
2479      assert(!"Invalid FCmp predicate value");
2480      FOC = FPC = ISD::SETFALSE;
2481      break;
2482  }
2483  if (FiniteOnlyFPMath())
2484    Condition = FOC;
2485  else
2486    Condition = FPC;
2487  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2488}
2489
2490void SelectionDAGLowering::visitVICmp(User &I) {
2491  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2492  if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
2493    predicate = IC->getPredicate();
2494  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2495    predicate = ICmpInst::Predicate(IC->getPredicate());
2496  SDValue Op1 = getValue(I.getOperand(0));
2497  SDValue Op2 = getValue(I.getOperand(1));
2498  ISD::CondCode Opcode;
2499  switch (predicate) {
2500    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2501    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2502    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2503    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2504    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2505    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2506    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2507    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2508    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2509    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2510    default:
2511      assert(!"Invalid ICmp predicate value");
2512      Opcode = ISD::SETEQ;
2513      break;
2514  }
2515  setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
2516}
2517
2518void SelectionDAGLowering::visitVFCmp(User &I) {
2519  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2520  if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
2521    predicate = FC->getPredicate();
2522  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2523    predicate = FCmpInst::Predicate(FC->getPredicate());
2524  SDValue Op1 = getValue(I.getOperand(0));
2525  SDValue Op2 = getValue(I.getOperand(1));
2526  ISD::CondCode Condition, FOC, FPC;
2527  switch (predicate) {
2528    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2529    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2530    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2531    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2532    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2533    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2534    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2535    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2536    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2537    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2538    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2539    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2540    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2541    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2542    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2543    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2544    default:
2545      assert(!"Invalid VFCmp predicate value");
2546      FOC = FPC = ISD::SETFALSE;
2547      break;
2548  }
2549  if (FiniteOnlyFPMath())
2550    Condition = FOC;
2551  else
2552    Condition = FPC;
2553
2554  MVT DestVT = TLI.getValueType(I.getType());
2555
2556  setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
2557}
2558
2559void SelectionDAGLowering::visitSelect(User &I) {
2560  SDValue Cond     = getValue(I.getOperand(0));
2561  SDValue TrueVal  = getValue(I.getOperand(1));
2562  SDValue FalseVal = getValue(I.getOperand(2));
2563  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2564                           TrueVal, FalseVal));
2565}
2566
2567
2568void SelectionDAGLowering::visitTrunc(User &I) {
2569  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2570  SDValue N = getValue(I.getOperand(0));
2571  MVT DestVT = TLI.getValueType(I.getType());
2572  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2573}
2574
2575void SelectionDAGLowering::visitZExt(User &I) {
2576  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2577  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2578  SDValue N = getValue(I.getOperand(0));
2579  MVT DestVT = TLI.getValueType(I.getType());
2580  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2581}
2582
2583void SelectionDAGLowering::visitSExt(User &I) {
2584  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2585  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2586  SDValue N = getValue(I.getOperand(0));
2587  MVT DestVT = TLI.getValueType(I.getType());
2588  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2589}
2590
2591void SelectionDAGLowering::visitFPTrunc(User &I) {
2592  // FPTrunc is never a no-op cast, no need to check
2593  SDValue N = getValue(I.getOperand(0));
2594  MVT DestVT = TLI.getValueType(I.getType());
2595  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2596}
2597
2598void SelectionDAGLowering::visitFPExt(User &I){
2599  // FPTrunc is never a no-op cast, no need to check
2600  SDValue N = getValue(I.getOperand(0));
2601  MVT DestVT = TLI.getValueType(I.getType());
2602  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2603}
2604
2605void SelectionDAGLowering::visitFPToUI(User &I) {
2606  // FPToUI is never a no-op cast, no need to check
2607  SDValue N = getValue(I.getOperand(0));
2608  MVT DestVT = TLI.getValueType(I.getType());
2609  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2610}
2611
2612void SelectionDAGLowering::visitFPToSI(User &I) {
2613  // FPToSI is never a no-op cast, no need to check
2614  SDValue N = getValue(I.getOperand(0));
2615  MVT DestVT = TLI.getValueType(I.getType());
2616  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2617}
2618
2619void SelectionDAGLowering::visitUIToFP(User &I) {
2620  // UIToFP is never a no-op cast, no need to check
2621  SDValue N = getValue(I.getOperand(0));
2622  MVT DestVT = TLI.getValueType(I.getType());
2623  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2624}
2625
2626void SelectionDAGLowering::visitSIToFP(User &I){
2627  // UIToFP is never a no-op cast, no need to check
2628  SDValue N = getValue(I.getOperand(0));
2629  MVT DestVT = TLI.getValueType(I.getType());
2630  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2631}
2632
2633void SelectionDAGLowering::visitPtrToInt(User &I) {
2634  // What to do depends on the size of the integer and the size of the pointer.
2635  // We can either truncate, zero extend, or no-op, accordingly.
2636  SDValue N = getValue(I.getOperand(0));
2637  MVT SrcVT = N.getValueType();
2638  MVT DestVT = TLI.getValueType(I.getType());
2639  SDValue Result;
2640  if (DestVT.bitsLT(SrcVT))
2641    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2642  else
2643    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2644    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2645  setValue(&I, Result);
2646}
2647
2648void SelectionDAGLowering::visitIntToPtr(User &I) {
2649  // What to do depends on the size of the integer and the size of the pointer.
2650  // We can either truncate, zero extend, or no-op, accordingly.
2651  SDValue N = getValue(I.getOperand(0));
2652  MVT SrcVT = N.getValueType();
2653  MVT DestVT = TLI.getValueType(I.getType());
2654  if (DestVT.bitsLT(SrcVT))
2655    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2656  else
2657    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2658    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2659}
2660
2661void SelectionDAGLowering::visitBitCast(User &I) {
2662  SDValue N = getValue(I.getOperand(0));
2663  MVT DestVT = TLI.getValueType(I.getType());
2664
2665  // BitCast assures us that source and destination are the same size so this
2666  // is either a BIT_CONVERT or a no-op.
2667  if (DestVT != N.getValueType())
2668    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2669  else
2670    setValue(&I, N); // noop cast.
2671}
2672
2673void SelectionDAGLowering::visitInsertElement(User &I) {
2674  SDValue InVec = getValue(I.getOperand(0));
2675  SDValue InVal = getValue(I.getOperand(1));
2676  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2677                                getValue(I.getOperand(2)));
2678
2679  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2680                           TLI.getValueType(I.getType()),
2681                           InVec, InVal, InIdx));
2682}
2683
2684void SelectionDAGLowering::visitExtractElement(User &I) {
2685  SDValue InVec = getValue(I.getOperand(0));
2686  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2687                                getValue(I.getOperand(1)));
2688  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2689                           TLI.getValueType(I.getType()), InVec, InIdx));
2690}
2691
2692void SelectionDAGLowering::visitShuffleVector(User &I) {
2693  SDValue V1   = getValue(I.getOperand(0));
2694  SDValue V2   = getValue(I.getOperand(1));
2695  SDValue Mask = getValue(I.getOperand(2));
2696
2697  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2698                           TLI.getValueType(I.getType()),
2699                           V1, V2, Mask));
2700}
2701
2702void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
2703  const Value *Op0 = I.getOperand(0);
2704  const Value *Op1 = I.getOperand(1);
2705  const Type *AggTy = I.getType();
2706  const Type *ValTy = Op1->getType();
2707  bool IntoUndef = isa<UndefValue>(Op0);
2708  bool FromUndef = isa<UndefValue>(Op1);
2709
2710  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2711                                            I.idx_begin(), I.idx_end());
2712
2713  SmallVector<MVT, 4> AggValueVTs;
2714  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2715  SmallVector<MVT, 4> ValValueVTs;
2716  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2717
2718  unsigned NumAggValues = AggValueVTs.size();
2719  unsigned NumValValues = ValValueVTs.size();
2720  SmallVector<SDValue, 4> Values(NumAggValues);
2721
2722  SDValue Agg = getValue(Op0);
2723  SDValue Val = getValue(Op1);
2724  unsigned i = 0;
2725  // Copy the beginning value(s) from the original aggregate.
2726  for (; i != LinearIndex; ++i)
2727    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2728                SDValue(Agg.Val, Agg.ResNo + i);
2729  // Copy values from the inserted value(s).
2730  for (; i != LinearIndex + NumValValues; ++i)
2731    Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2732                SDValue(Val.Val, Val.ResNo + i - LinearIndex);
2733  // Copy remaining value(s) from the original aggregate.
2734  for (; i != NumAggValues; ++i)
2735    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2736                SDValue(Agg.Val, Agg.ResNo + i);
2737
2738  setValue(&I, DAG.getMergeValues(DAG.getVTList(&AggValueVTs[0], NumAggValues),
2739                                  &Values[0], NumAggValues));
2740}
2741
2742void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
2743  const Value *Op0 = I.getOperand(0);
2744  const Type *AggTy = Op0->getType();
2745  const Type *ValTy = I.getType();
2746  bool OutOfUndef = isa<UndefValue>(Op0);
2747
2748  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2749                                            I.idx_begin(), I.idx_end());
2750
2751  SmallVector<MVT, 4> ValValueVTs;
2752  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2753
2754  unsigned NumValValues = ValValueVTs.size();
2755  SmallVector<SDValue, 4> Values(NumValValues);
2756
2757  SDValue Agg = getValue(Op0);
2758  // Copy out the selected value(s).
2759  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2760    Values[i - LinearIndex] =
2761      OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.Val->getValueType(Agg.ResNo + i)) :
2762                   SDValue(Agg.Val, Agg.ResNo + i);
2763
2764  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValValueVTs[0], NumValValues),
2765                                  &Values[0], NumValValues));
2766}
2767
2768
2769void SelectionDAGLowering::visitGetElementPtr(User &I) {
2770  SDValue N = getValue(I.getOperand(0));
2771  const Type *Ty = I.getOperand(0)->getType();
2772
2773  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2774       OI != E; ++OI) {
2775    Value *Idx = *OI;
2776    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2777      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2778      if (Field) {
2779        // N = N + Offset
2780        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2781        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2782                        DAG.getIntPtrConstant(Offset));
2783      }
2784      Ty = StTy->getElementType(Field);
2785    } else {
2786      Ty = cast<SequentialType>(Ty)->getElementType();
2787
2788      // If this is a constant subscript, handle it quickly.
2789      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2790        if (CI->getZExtValue() == 0) continue;
2791        uint64_t Offs =
2792            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2793        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2794                        DAG.getIntPtrConstant(Offs));
2795        continue;
2796      }
2797
2798      // N = N + Idx * ElementSize;
2799      uint64_t ElementSize = TD->getABITypeSize(Ty);
2800      SDValue IdxN = getValue(Idx);
2801
2802      // If the index is smaller or larger than intptr_t, truncate or extend
2803      // it.
2804      if (IdxN.getValueType().bitsLT(N.getValueType())) {
2805        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2806      } else if (IdxN.getValueType().bitsGT(N.getValueType()))
2807        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2808
2809      // If this is a multiply by a power of two, turn it into a shl
2810      // immediately.  This is a very common case.
2811      if (isPowerOf2_64(ElementSize)) {
2812        unsigned Amt = Log2_64(ElementSize);
2813        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2814                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2815        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2816        continue;
2817      }
2818
2819      SDValue Scale = DAG.getIntPtrConstant(ElementSize);
2820      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2821      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2822    }
2823  }
2824  setValue(&I, N);
2825}
2826
2827void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2828  // If this is a fixed sized alloca in the entry block of the function,
2829  // allocate it statically on the stack.
2830  if (FuncInfo.StaticAllocaMap.count(&I))
2831    return;   // getValue will auto-populate this.
2832
2833  const Type *Ty = I.getAllocatedType();
2834  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2835  unsigned Align =
2836    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2837             I.getAlignment());
2838
2839  SDValue AllocSize = getValue(I.getArraySize());
2840  MVT IntPtr = TLI.getPointerTy();
2841  if (IntPtr.bitsLT(AllocSize.getValueType()))
2842    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2843  else if (IntPtr.bitsGT(AllocSize.getValueType()))
2844    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2845
2846  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2847                          DAG.getIntPtrConstant(TySize));
2848
2849  // Handle alignment.  If the requested alignment is less than or equal to
2850  // the stack alignment, ignore it.  If the size is greater than or equal to
2851  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2852  unsigned StackAlign =
2853    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2854  if (Align <= StackAlign)
2855    Align = 0;
2856
2857  // Round the size of the allocation up to the stack alignment size
2858  // by add SA-1 to the size.
2859  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2860                          DAG.getIntPtrConstant(StackAlign-1));
2861  // Mask out the low bits for alignment purposes.
2862  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2863                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2864
2865  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2866  const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2867                                                    MVT::Other);
2868  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2869  setValue(&I, DSA);
2870  DAG.setRoot(DSA.getValue(1));
2871
2872  // Inform the Frame Information that we have just allocated a variable-sized
2873  // object.
2874  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2875}
2876
2877void SelectionDAGLowering::visitLoad(LoadInst &I) {
2878  const Value *SV = I.getOperand(0);
2879  SDValue Ptr = getValue(SV);
2880
2881  const Type *Ty = I.getType();
2882  bool isVolatile = I.isVolatile();
2883  unsigned Alignment = I.getAlignment();
2884
2885  SmallVector<MVT, 4> ValueVTs;
2886  SmallVector<uint64_t, 4> Offsets;
2887  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2888  unsigned NumValues = ValueVTs.size();
2889  if (NumValues == 0)
2890    return;
2891
2892  SDValue Root;
2893  bool ConstantMemory = false;
2894  if (I.isVolatile())
2895    // Serialize volatile loads with other side effects.
2896    Root = getRoot();
2897  else if (AA.pointsToConstantMemory(SV)) {
2898    // Do not serialize (non-volatile) loads of constant memory with anything.
2899    Root = DAG.getEntryNode();
2900    ConstantMemory = true;
2901  } else {
2902    // Do not serialize non-volatile loads against each other.
2903    Root = DAG.getRoot();
2904  }
2905
2906  SmallVector<SDValue, 4> Values(NumValues);
2907  SmallVector<SDValue, 4> Chains(NumValues);
2908  MVT PtrVT = Ptr.getValueType();
2909  for (unsigned i = 0; i != NumValues; ++i) {
2910    SDValue L = DAG.getLoad(ValueVTs[i], Root,
2911                              DAG.getNode(ISD::ADD, PtrVT, Ptr,
2912                                          DAG.getConstant(Offsets[i], PtrVT)),
2913                              SV, Offsets[i],
2914                              isVolatile, Alignment);
2915    Values[i] = L;
2916    Chains[i] = L.getValue(1);
2917  }
2918
2919  if (!ConstantMemory) {
2920    SDValue Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2921                                  &Chains[0], NumValues);
2922    if (isVolatile)
2923      DAG.setRoot(Chain);
2924    else
2925      PendingLoads.push_back(Chain);
2926  }
2927
2928  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], NumValues),
2929                                  &Values[0], NumValues));
2930}
2931
2932
2933void SelectionDAGLowering::visitStore(StoreInst &I) {
2934  Value *SrcV = I.getOperand(0);
2935  Value *PtrV = I.getOperand(1);
2936
2937  SmallVector<MVT, 4> ValueVTs;
2938  SmallVector<uint64_t, 4> Offsets;
2939  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2940  unsigned NumValues = ValueVTs.size();
2941  if (NumValues == 0)
2942    return;
2943
2944  // Get the lowered operands. Note that we do this after
2945  // checking if NumResults is zero, because with zero results
2946  // the operands won't have values in the map.
2947  SDValue Src = getValue(SrcV);
2948  SDValue Ptr = getValue(PtrV);
2949
2950  SDValue Root = getRoot();
2951  SmallVector<SDValue, 4> Chains(NumValues);
2952  MVT PtrVT = Ptr.getValueType();
2953  bool isVolatile = I.isVolatile();
2954  unsigned Alignment = I.getAlignment();
2955  for (unsigned i = 0; i != NumValues; ++i)
2956    Chains[i] = DAG.getStore(Root, SDValue(Src.Val, Src.ResNo + i),
2957                             DAG.getNode(ISD::ADD, PtrVT, Ptr,
2958                                         DAG.getConstant(Offsets[i], PtrVT)),
2959                             PtrV, Offsets[i],
2960                             isVolatile, Alignment);
2961
2962  DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
2963}
2964
2965/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2966/// node.
2967void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2968                                                unsigned Intrinsic) {
2969  bool HasChain = !I.doesNotAccessMemory();
2970  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2971
2972  // Build the operand list.
2973  SmallVector<SDValue, 8> Ops;
2974  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2975    if (OnlyLoad) {
2976      // We don't need to serialize loads against other loads.
2977      Ops.push_back(DAG.getRoot());
2978    } else {
2979      Ops.push_back(getRoot());
2980    }
2981  }
2982
2983  // Add the intrinsic ID as an integer operand.
2984  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2985
2986  // Add all operands of the call to the operand list.
2987  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2988    SDValue Op = getValue(I.getOperand(i));
2989    assert(TLI.isTypeLegal(Op.getValueType()) &&
2990           "Intrinsic uses a non-legal type?");
2991    Ops.push_back(Op);
2992  }
2993
2994  std::vector<MVT> VTs;
2995  if (I.getType() != Type::VoidTy) {
2996    MVT VT = TLI.getValueType(I.getType());
2997    if (VT.isVector()) {
2998      const VectorType *DestTy = cast<VectorType>(I.getType());
2999      MVT EltVT = TLI.getValueType(DestTy->getElementType());
3000
3001      VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
3002      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
3003    }
3004
3005    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
3006    VTs.push_back(VT);
3007  }
3008  if (HasChain)
3009    VTs.push_back(MVT::Other);
3010
3011  const MVT *VTList = DAG.getNodeValueTypes(VTs);
3012
3013  // Create the node.
3014  SDValue Result;
3015  if (!HasChain)
3016    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
3017                         &Ops[0], Ops.size());
3018  else if (I.getType() != Type::VoidTy)
3019    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
3020                         &Ops[0], Ops.size());
3021  else
3022    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
3023                         &Ops[0], Ops.size());
3024
3025  if (HasChain) {
3026    SDValue Chain = Result.getValue(Result.Val->getNumValues()-1);
3027    if (OnlyLoad)
3028      PendingLoads.push_back(Chain);
3029    else
3030      DAG.setRoot(Chain);
3031  }
3032  if (I.getType() != Type::VoidTy) {
3033    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3034      MVT VT = TLI.getValueType(PTy);
3035      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
3036    }
3037    setValue(&I, Result);
3038  }
3039}
3040
3041/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
3042static GlobalVariable *ExtractTypeInfo (Value *V) {
3043  V = V->stripPointerCasts();
3044  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3045  assert ((GV || isa<ConstantPointerNull>(V)) &&
3046          "TypeInfo must be a global variable or NULL");
3047  return GV;
3048}
3049
3050/// addCatchInfo - Extract the personality and type infos from an eh.selector
3051/// call, and add them to the specified machine basic block.
3052static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
3053                         MachineBasicBlock *MBB) {
3054  // Inform the MachineModuleInfo of the personality for this landing pad.
3055  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
3056  assert(CE->getOpcode() == Instruction::BitCast &&
3057         isa<Function>(CE->getOperand(0)) &&
3058         "Personality should be a function");
3059  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
3060
3061  // Gather all the type infos for this landing pad and pass them along to
3062  // MachineModuleInfo.
3063  std::vector<GlobalVariable *> TyInfo;
3064  unsigned N = I.getNumOperands();
3065
3066  for (unsigned i = N - 1; i > 2; --i) {
3067    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
3068      unsigned FilterLength = CI->getZExtValue();
3069      unsigned FirstCatch = i + FilterLength + !FilterLength;
3070      assert (FirstCatch <= N && "Invalid filter length");
3071
3072      if (FirstCatch < N) {
3073        TyInfo.reserve(N - FirstCatch);
3074        for (unsigned j = FirstCatch; j < N; ++j)
3075          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3076        MMI->addCatchTypeInfo(MBB, TyInfo);
3077        TyInfo.clear();
3078      }
3079
3080      if (!FilterLength) {
3081        // Cleanup.
3082        MMI->addCleanup(MBB);
3083      } else {
3084        // Filter.
3085        TyInfo.reserve(FilterLength - 1);
3086        for (unsigned j = i + 1; j < FirstCatch; ++j)
3087          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3088        MMI->addFilterTypeInfo(MBB, TyInfo);
3089        TyInfo.clear();
3090      }
3091
3092      N = i;
3093    }
3094  }
3095
3096  if (N > 3) {
3097    TyInfo.reserve(N - 3);
3098    for (unsigned j = 3; j < N; ++j)
3099      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3100    MMI->addCatchTypeInfo(MBB, TyInfo);
3101  }
3102}
3103
3104
3105/// Inlined utility function to implement binary input atomic intrinsics for
3106// visitIntrinsicCall: I is a call instruction
3107//                     Op is the associated NodeType for I
3108const char *
3109SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
3110  SDValue Root = getRoot();
3111  SDValue L = DAG.getAtomic(Op, Root,
3112                              getValue(I.getOperand(1)),
3113                              getValue(I.getOperand(2)),
3114                              I.getOperand(1));
3115  setValue(&I, L);
3116  DAG.setRoot(L.getValue(1));
3117  return 0;
3118}
3119
3120/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3121/// we want to emit this as a call to a named external function, return the name
3122/// otherwise lower it and return null.
3123const char *
3124SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3125  switch (Intrinsic) {
3126  default:
3127    // By default, turn this into a target intrinsic node.
3128    visitTargetIntrinsic(I, Intrinsic);
3129    return 0;
3130  case Intrinsic::vastart:  visitVAStart(I); return 0;
3131  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3132  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3133  case Intrinsic::returnaddress:
3134    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
3135                             getValue(I.getOperand(1))));
3136    return 0;
3137  case Intrinsic::frameaddress:
3138    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
3139                             getValue(I.getOperand(1))));
3140    return 0;
3141  case Intrinsic::setjmp:
3142    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3143    break;
3144  case Intrinsic::longjmp:
3145    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3146    break;
3147  case Intrinsic::memcpy_i32:
3148  case Intrinsic::memcpy_i64: {
3149    SDValue Op1 = getValue(I.getOperand(1));
3150    SDValue Op2 = getValue(I.getOperand(2));
3151    SDValue Op3 = getValue(I.getOperand(3));
3152    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3153    DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3154                              I.getOperand(1), 0, I.getOperand(2), 0));
3155    return 0;
3156  }
3157  case Intrinsic::memset_i32:
3158  case Intrinsic::memset_i64: {
3159    SDValue Op1 = getValue(I.getOperand(1));
3160    SDValue Op2 = getValue(I.getOperand(2));
3161    SDValue Op3 = getValue(I.getOperand(3));
3162    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3163    DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
3164                              I.getOperand(1), 0));
3165    return 0;
3166  }
3167  case Intrinsic::memmove_i32:
3168  case Intrinsic::memmove_i64: {
3169    SDValue Op1 = getValue(I.getOperand(1));
3170    SDValue Op2 = getValue(I.getOperand(2));
3171    SDValue Op3 = getValue(I.getOperand(3));
3172    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3173
3174    // If the source and destination are known to not be aliases, we can
3175    // lower memmove as memcpy.
3176    uint64_t Size = -1ULL;
3177    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3178      Size = C->getValue();
3179    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3180        AliasAnalysis::NoAlias) {
3181      DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3182                                I.getOperand(1), 0, I.getOperand(2), 0));
3183      return 0;
3184    }
3185
3186    DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
3187                               I.getOperand(1), 0, I.getOperand(2), 0));
3188    return 0;
3189  }
3190  case Intrinsic::dbg_stoppoint: {
3191    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3192    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3193    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
3194      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
3195      assert(DD && "Not a debug information descriptor");
3196      DAG.setRoot(DAG.getDbgStopPoint(getRoot(),
3197                                      SPI.getLine(),
3198                                      SPI.getColumn(),
3199                                      cast<CompileUnitDesc>(DD)));
3200    }
3201
3202    return 0;
3203  }
3204  case Intrinsic::dbg_region_start: {
3205    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3206    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
3207    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
3208      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
3209      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3210    }
3211
3212    return 0;
3213  }
3214  case Intrinsic::dbg_region_end: {
3215    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3216    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
3217    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
3218      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
3219      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3220    }
3221
3222    return 0;
3223  }
3224  case Intrinsic::dbg_func_start: {
3225    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3226    if (!MMI) return 0;
3227    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
3228    Value *SP = FSI.getSubprogram();
3229    if (SP && MMI->Verify(SP)) {
3230      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
3231      // what (most?) gdb expects.
3232      DebugInfoDesc *DD = MMI->getDescFor(SP);
3233      assert(DD && "Not a debug information descriptor");
3234      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
3235      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
3236      unsigned SrcFile = MMI->RecordSource(CompileUnit);
3237      // Record the source line but does create a label. It will be emitted
3238      // at asm emission time.
3239      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
3240    }
3241
3242    return 0;
3243  }
3244  case Intrinsic::dbg_declare: {
3245    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3246    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3247    Value *Variable = DI.getVariable();
3248    if (MMI && Variable && MMI->Verify(Variable))
3249      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
3250                              getValue(DI.getAddress()), getValue(Variable)));
3251    return 0;
3252  }
3253
3254  case Intrinsic::eh_exception: {
3255    if (!CurMBB->isLandingPad()) {
3256      // FIXME: Mark exception register as live in.  Hack for PR1508.
3257      unsigned Reg = TLI.getExceptionAddressRegister();
3258      if (Reg) CurMBB->addLiveIn(Reg);
3259    }
3260    // Insert the EXCEPTIONADDR instruction.
3261    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3262    SDValue Ops[1];
3263    Ops[0] = DAG.getRoot();
3264    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
3265    setValue(&I, Op);
3266    DAG.setRoot(Op.getValue(1));
3267    return 0;
3268  }
3269
3270  case Intrinsic::eh_selector_i32:
3271  case Intrinsic::eh_selector_i64: {
3272    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3273    MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
3274                         MVT::i32 : MVT::i64);
3275
3276    if (MMI) {
3277      if (CurMBB->isLandingPad())
3278        addCatchInfo(I, MMI, CurMBB);
3279      else {
3280#ifndef NDEBUG
3281        FuncInfo.CatchInfoLost.insert(&I);
3282#endif
3283        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3284        unsigned Reg = TLI.getExceptionSelectorRegister();
3285        if (Reg) CurMBB->addLiveIn(Reg);
3286      }
3287
3288      // Insert the EHSELECTION instruction.
3289      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3290      SDValue Ops[2];
3291      Ops[0] = getValue(I.getOperand(1));
3292      Ops[1] = getRoot();
3293      SDValue Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
3294      setValue(&I, Op);
3295      DAG.setRoot(Op.getValue(1));
3296    } else {
3297      setValue(&I, DAG.getConstant(0, VT));
3298    }
3299
3300    return 0;
3301  }
3302
3303  case Intrinsic::eh_typeid_for_i32:
3304  case Intrinsic::eh_typeid_for_i64: {
3305    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3306    MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
3307                         MVT::i32 : MVT::i64);
3308
3309    if (MMI) {
3310      // Find the type id for the given typeinfo.
3311      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3312
3313      unsigned TypeID = MMI->getTypeIDFor(GV);
3314      setValue(&I, DAG.getConstant(TypeID, VT));
3315    } else {
3316      // Return something different to eh_selector.
3317      setValue(&I, DAG.getConstant(1, VT));
3318    }
3319
3320    return 0;
3321  }
3322
3323  case Intrinsic::eh_return: {
3324    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3325
3326    if (MMI) {
3327      MMI->setCallsEHReturn(true);
3328      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
3329                              MVT::Other,
3330                              getControlRoot(),
3331                              getValue(I.getOperand(1)),
3332                              getValue(I.getOperand(2))));
3333    } else {
3334      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3335    }
3336
3337    return 0;
3338  }
3339
3340   case Intrinsic::eh_unwind_init: {
3341     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3342       MMI->setCallsUnwindInit(true);
3343     }
3344
3345     return 0;
3346   }
3347
3348   case Intrinsic::eh_dwarf_cfa: {
3349     MVT VT = getValue(I.getOperand(1)).getValueType();
3350     SDValue CfaArg;
3351     if (VT.bitsGT(TLI.getPointerTy()))
3352       CfaArg = DAG.getNode(ISD::TRUNCATE,
3353                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3354     else
3355       CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3356                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3357
3358     SDValue Offset = DAG.getNode(ISD::ADD,
3359                                    TLI.getPointerTy(),
3360                                    DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3361                                                TLI.getPointerTy()),
3362                                    CfaArg);
3363     setValue(&I, DAG.getNode(ISD::ADD,
3364                              TLI.getPointerTy(),
3365                              DAG.getNode(ISD::FRAMEADDR,
3366                                          TLI.getPointerTy(),
3367                                          DAG.getConstant(0,
3368                                                          TLI.getPointerTy())),
3369                              Offset));
3370     return 0;
3371  }
3372
3373  case Intrinsic::sqrt:
3374    setValue(&I, DAG.getNode(ISD::FSQRT,
3375                             getValue(I.getOperand(1)).getValueType(),
3376                             getValue(I.getOperand(1))));
3377    return 0;
3378  case Intrinsic::powi:
3379    setValue(&I, DAG.getNode(ISD::FPOWI,
3380                             getValue(I.getOperand(1)).getValueType(),
3381                             getValue(I.getOperand(1)),
3382                             getValue(I.getOperand(2))));
3383    return 0;
3384  case Intrinsic::sin:
3385    setValue(&I, DAG.getNode(ISD::FSIN,
3386                             getValue(I.getOperand(1)).getValueType(),
3387                             getValue(I.getOperand(1))));
3388    return 0;
3389  case Intrinsic::cos:
3390    setValue(&I, DAG.getNode(ISD::FCOS,
3391                             getValue(I.getOperand(1)).getValueType(),
3392                             getValue(I.getOperand(1))));
3393    return 0;
3394  case Intrinsic::pow:
3395    setValue(&I, DAG.getNode(ISD::FPOW,
3396                             getValue(I.getOperand(1)).getValueType(),
3397                             getValue(I.getOperand(1)),
3398                             getValue(I.getOperand(2))));
3399    return 0;
3400  case Intrinsic::pcmarker: {
3401    SDValue Tmp = getValue(I.getOperand(1));
3402    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3403    return 0;
3404  }
3405  case Intrinsic::readcyclecounter: {
3406    SDValue Op = getRoot();
3407    SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3408                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3409                                &Op, 1);
3410    setValue(&I, Tmp);
3411    DAG.setRoot(Tmp.getValue(1));
3412    return 0;
3413  }
3414  case Intrinsic::part_select: {
3415    // Currently not implemented: just abort
3416    assert(0 && "part_select intrinsic not implemented");
3417    abort();
3418  }
3419  case Intrinsic::part_set: {
3420    // Currently not implemented: just abort
3421    assert(0 && "part_set intrinsic not implemented");
3422    abort();
3423  }
3424  case Intrinsic::bswap:
3425    setValue(&I, DAG.getNode(ISD::BSWAP,
3426                             getValue(I.getOperand(1)).getValueType(),
3427                             getValue(I.getOperand(1))));
3428    return 0;
3429  case Intrinsic::cttz: {
3430    SDValue Arg = getValue(I.getOperand(1));
3431    MVT Ty = Arg.getValueType();
3432    SDValue result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3433    setValue(&I, result);
3434    return 0;
3435  }
3436  case Intrinsic::ctlz: {
3437    SDValue Arg = getValue(I.getOperand(1));
3438    MVT Ty = Arg.getValueType();
3439    SDValue result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3440    setValue(&I, result);
3441    return 0;
3442  }
3443  case Intrinsic::ctpop: {
3444    SDValue Arg = getValue(I.getOperand(1));
3445    MVT Ty = Arg.getValueType();
3446    SDValue result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3447    setValue(&I, result);
3448    return 0;
3449  }
3450  case Intrinsic::stacksave: {
3451    SDValue Op = getRoot();
3452    SDValue Tmp = DAG.getNode(ISD::STACKSAVE,
3453              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3454    setValue(&I, Tmp);
3455    DAG.setRoot(Tmp.getValue(1));
3456    return 0;
3457  }
3458  case Intrinsic::stackrestore: {
3459    SDValue Tmp = getValue(I.getOperand(1));
3460    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3461    return 0;
3462  }
3463  case Intrinsic::var_annotation:
3464    // Discard annotate attributes
3465    return 0;
3466
3467  case Intrinsic::init_trampoline: {
3468    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
3469
3470    SDValue Ops[6];
3471    Ops[0] = getRoot();
3472    Ops[1] = getValue(I.getOperand(1));
3473    Ops[2] = getValue(I.getOperand(2));
3474    Ops[3] = getValue(I.getOperand(3));
3475    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3476    Ops[5] = DAG.getSrcValue(F);
3477
3478    SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE,
3479                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3480                                                      MVT::Other), 2,
3481                                Ops, 6);
3482
3483    setValue(&I, Tmp);
3484    DAG.setRoot(Tmp.getValue(1));
3485    return 0;
3486  }
3487
3488  case Intrinsic::gcroot:
3489    if (GCI) {
3490      Value *Alloca = I.getOperand(1);
3491      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3492
3493      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3494      GCI->addStackRoot(FI->getIndex(), TypeMap);
3495    }
3496    return 0;
3497
3498  case Intrinsic::gcread:
3499  case Intrinsic::gcwrite:
3500    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3501    return 0;
3502
3503  case Intrinsic::flt_rounds: {
3504    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3505    return 0;
3506  }
3507
3508  case Intrinsic::trap: {
3509    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3510    return 0;
3511  }
3512  case Intrinsic::prefetch: {
3513    SDValue Ops[4];
3514    Ops[0] = getRoot();
3515    Ops[1] = getValue(I.getOperand(1));
3516    Ops[2] = getValue(I.getOperand(2));
3517    Ops[3] = getValue(I.getOperand(3));
3518    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3519    return 0;
3520  }
3521
3522  case Intrinsic::memory_barrier: {
3523    SDValue Ops[6];
3524    Ops[0] = getRoot();
3525    for (int x = 1; x < 6; ++x)
3526      Ops[x] = getValue(I.getOperand(x));
3527
3528    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3529    return 0;
3530  }
3531  case Intrinsic::atomic_cmp_swap: {
3532    SDValue Root = getRoot();
3533    SDValue L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, Root,
3534                                getValue(I.getOperand(1)),
3535                                getValue(I.getOperand(2)),
3536                                getValue(I.getOperand(3)),
3537                                I.getOperand(1));
3538    setValue(&I, L);
3539    DAG.setRoot(L.getValue(1));
3540    return 0;
3541  }
3542  case Intrinsic::atomic_load_add:
3543    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
3544  case Intrinsic::atomic_load_sub:
3545    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
3546  case Intrinsic::atomic_load_and:
3547    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
3548  case Intrinsic::atomic_load_or:
3549    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
3550  case Intrinsic::atomic_load_xor:
3551    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
3552  case Intrinsic::atomic_load_nand:
3553    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
3554  case Intrinsic::atomic_load_min:
3555    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
3556  case Intrinsic::atomic_load_max:
3557    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
3558  case Intrinsic::atomic_load_umin:
3559    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
3560  case Intrinsic::atomic_load_umax:
3561      return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
3562  case Intrinsic::atomic_swap:
3563    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
3564  }
3565}
3566
3567
3568void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
3569                                       bool IsTailCall,
3570                                       MachineBasicBlock *LandingPad) {
3571  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3572  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3573  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3574  unsigned BeginLabel = 0, EndLabel = 0;
3575
3576  TargetLowering::ArgListTy Args;
3577  TargetLowering::ArgListEntry Entry;
3578  Args.reserve(CS.arg_size());
3579  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3580       i != e; ++i) {
3581    SDValue ArgNode = getValue(*i);
3582    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3583
3584    unsigned attrInd = i - CS.arg_begin() + 1;
3585    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3586    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3587    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3588    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3589    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3590    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3591    Entry.Alignment = CS.getParamAlignment(attrInd);
3592    Args.push_back(Entry);
3593  }
3594
3595  if (LandingPad && MMI) {
3596    // Insert a label before the invoke call to mark the try range.  This can be
3597    // used to detect deletion of the invoke via the MachineModuleInfo.
3598    BeginLabel = MMI->NextLabelID();
3599    // Both PendingLoads and PendingExports must be flushed here;
3600    // this call might not return.
3601    (void)getRoot();
3602    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel));
3603  }
3604
3605  std::pair<SDValue,SDValue> Result =
3606    TLI.LowerCallTo(getRoot(), CS.getType(),
3607                    CS.paramHasAttr(0, ParamAttr::SExt),
3608                    CS.paramHasAttr(0, ParamAttr::ZExt),
3609                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3610                    Callee, Args, DAG);
3611  if (CS.getType() != Type::VoidTy)
3612    setValue(CS.getInstruction(), Result.first);
3613  DAG.setRoot(Result.second);
3614
3615  if (LandingPad && MMI) {
3616    // Insert a label at the end of the invoke call to mark the try range.  This
3617    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3618    EndLabel = MMI->NextLabelID();
3619    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel));
3620
3621    // Inform MachineModuleInfo of range.
3622    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3623  }
3624}
3625
3626
3627void SelectionDAGLowering::visitCall(CallInst &I) {
3628  const char *RenameFn = 0;
3629  if (Function *F = I.getCalledFunction()) {
3630    if (F->isDeclaration()) {
3631      if (unsigned IID = F->getIntrinsicID()) {
3632        RenameFn = visitIntrinsicCall(I, IID);
3633        if (!RenameFn)
3634          return;
3635      }
3636    }
3637
3638    // Check for well-known libc/libm calls.  If the function is internal, it
3639    // can't be a library call.
3640    unsigned NameLen = F->getNameLen();
3641    if (!F->hasInternalLinkage() && NameLen) {
3642      const char *NameStr = F->getNameStart();
3643      if (NameStr[0] == 'c' &&
3644          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3645           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3646        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3647            I.getOperand(1)->getType()->isFloatingPoint() &&
3648            I.getType() == I.getOperand(1)->getType() &&
3649            I.getType() == I.getOperand(2)->getType()) {
3650          SDValue LHS = getValue(I.getOperand(1));
3651          SDValue RHS = getValue(I.getOperand(2));
3652          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3653                                   LHS, RHS));
3654          return;
3655        }
3656      } else if (NameStr[0] == 'f' &&
3657                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3658                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3659                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3660        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3661            I.getOperand(1)->getType()->isFloatingPoint() &&
3662            I.getType() == I.getOperand(1)->getType()) {
3663          SDValue Tmp = getValue(I.getOperand(1));
3664          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3665          return;
3666        }
3667      } else if (NameStr[0] == 's' &&
3668                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3669                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3670                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3671        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3672            I.getOperand(1)->getType()->isFloatingPoint() &&
3673            I.getType() == I.getOperand(1)->getType()) {
3674          SDValue Tmp = getValue(I.getOperand(1));
3675          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3676          return;
3677        }
3678      } else if (NameStr[0] == 'c' &&
3679                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3680                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3681                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3682        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3683            I.getOperand(1)->getType()->isFloatingPoint() &&
3684            I.getType() == I.getOperand(1)->getType()) {
3685          SDValue Tmp = getValue(I.getOperand(1));
3686          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3687          return;
3688        }
3689      }
3690    }
3691  } else if (isa<InlineAsm>(I.getOperand(0))) {
3692    visitInlineAsm(&I);
3693    return;
3694  }
3695
3696  SDValue Callee;
3697  if (!RenameFn)
3698    Callee = getValue(I.getOperand(0));
3699  else
3700    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3701
3702  LowerCallTo(&I, Callee, I.isTailCall());
3703}
3704
3705
3706/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3707/// this value and returns the result as a ValueVT value.  This uses
3708/// Chain/Flag as the input and updates them for the output Chain/Flag.
3709/// If the Flag pointer is NULL, no flag is used.
3710SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3711                                      SDValue &Chain,
3712                                      SDValue *Flag) const {
3713  // Assemble the legal parts into the final values.
3714  SmallVector<SDValue, 4> Values(ValueVTs.size());
3715  SmallVector<SDValue, 8> Parts;
3716  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3717    // Copy the legal parts from the registers.
3718    MVT ValueVT = ValueVTs[Value];
3719    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
3720    MVT RegisterVT = RegVTs[Value];
3721
3722    Parts.resize(NumRegs);
3723    for (unsigned i = 0; i != NumRegs; ++i) {
3724      SDValue P;
3725      if (Flag == 0)
3726        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
3727      else {
3728        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
3729        *Flag = P.getValue(2);
3730      }
3731      Chain = P.getValue(1);
3732
3733      // If the source register was virtual and if we know something about it,
3734      // add an assert node.
3735      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
3736          RegisterVT.isInteger() && !RegisterVT.isVector()) {
3737        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
3738        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
3739        if (FLI.LiveOutRegInfo.size() > SlotNo) {
3740          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
3741
3742          unsigned RegSize = RegisterVT.getSizeInBits();
3743          unsigned NumSignBits = LOI.NumSignBits;
3744          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
3745
3746          // FIXME: We capture more information than the dag can represent.  For
3747          // now, just use the tightest assertzext/assertsext possible.
3748          bool isSExt = true;
3749          MVT FromVT(MVT::Other);
3750          if (NumSignBits == RegSize)
3751            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
3752          else if (NumZeroBits >= RegSize-1)
3753            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
3754          else if (NumSignBits > RegSize-8)
3755            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
3756          else if (NumZeroBits >= RegSize-9)
3757            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
3758          else if (NumSignBits > RegSize-16)
3759            isSExt = true, FromVT = MVT::i16;   // ASSERT SEXT 16
3760          else if (NumZeroBits >= RegSize-17)
3761            isSExt = false, FromVT = MVT::i16;  // ASSERT ZEXT 16
3762          else if (NumSignBits > RegSize-32)
3763            isSExt = true, FromVT = MVT::i32;   // ASSERT SEXT 32
3764          else if (NumZeroBits >= RegSize-33)
3765            isSExt = false, FromVT = MVT::i32;  // ASSERT ZEXT 32
3766
3767          if (FromVT != MVT::Other) {
3768            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
3769                            RegisterVT, P, DAG.getValueType(FromVT));
3770
3771          }
3772        }
3773      }
3774
3775      Parts[Part+i] = P;
3776    }
3777
3778    Values[Value] = getCopyFromParts(DAG, &Parts[Part], NumRegs, RegisterVT,
3779                                     ValueVT);
3780    Part += NumRegs;
3781  }
3782
3783  return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
3784                            &Values[0], ValueVTs.size());
3785}
3786
3787/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3788/// specified value into the registers specified by this object.  This uses
3789/// Chain/Flag as the input and updates them for the output Chain/Flag.
3790/// If the Flag pointer is NULL, no flag is used.
3791void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
3792                                 SDValue &Chain, SDValue *Flag) const {
3793  // Get the list of the values's legal parts.
3794  unsigned NumRegs = Regs.size();
3795  SmallVector<SDValue, 8> Parts(NumRegs);
3796  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3797    MVT ValueVT = ValueVTs[Value];
3798    unsigned NumParts = TLI->getNumRegisters(ValueVT);
3799    MVT RegisterVT = RegVTs[Value];
3800
3801    getCopyToParts(DAG, Val.getValue(Val.ResNo + Value),
3802                   &Parts[Part], NumParts, RegisterVT);
3803    Part += NumParts;
3804  }
3805
3806  // Copy the parts into the registers.
3807  SmallVector<SDValue, 8> Chains(NumRegs);
3808  for (unsigned i = 0; i != NumRegs; ++i) {
3809    SDValue Part;
3810    if (Flag == 0)
3811      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3812    else {
3813      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
3814      *Flag = Part.getValue(1);
3815    }
3816    Chains[i] = Part.getValue(0);
3817  }
3818
3819  if (NumRegs == 1 || Flag)
3820    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
3821    // flagged to it. That is the CopyToReg nodes and the user are considered
3822    // a single scheduling unit. If we create a TokenFactor and return it as
3823    // chain, then the TokenFactor is both a predecessor (operand) of the
3824    // user as well as a successor (the TF operands are flagged to the user).
3825    // c1, f1 = CopyToReg
3826    // c2, f2 = CopyToReg
3827    // c3     = TokenFactor c1, c2
3828    // ...
3829    //        = op c3, ..., f2
3830    Chain = Chains[NumRegs-1];
3831  else
3832    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
3833}
3834
3835/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3836/// operand list.  This adds the code marker and includes the number of
3837/// values added into it.
3838void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3839                                        std::vector<SDValue> &Ops) const {
3840  MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3841  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3842  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
3843    unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
3844    MVT RegisterVT = RegVTs[Value];
3845    for (unsigned i = 0; i != NumRegs; ++i)
3846      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
3847  }
3848}
3849
3850/// isAllocatableRegister - If the specified register is safe to allocate,
3851/// i.e. it isn't a stack pointer or some other special register, return the
3852/// register class for the register.  Otherwise, return null.
3853static const TargetRegisterClass *
3854isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3855                      const TargetLowering &TLI,
3856                      const TargetRegisterInfo *TRI) {
3857  MVT FoundVT = MVT::Other;
3858  const TargetRegisterClass *FoundRC = 0;
3859  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3860       E = TRI->regclass_end(); RCI != E; ++RCI) {
3861    MVT ThisVT = MVT::Other;
3862
3863    const TargetRegisterClass *RC = *RCI;
3864    // If none of the the value types for this register class are valid, we
3865    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3866    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3867         I != E; ++I) {
3868      if (TLI.isTypeLegal(*I)) {
3869        // If we have already found this register in a different register class,
3870        // choose the one with the largest VT specified.  For example, on
3871        // PowerPC, we favor f64 register classes over f32.
3872        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
3873          ThisVT = *I;
3874          break;
3875        }
3876      }
3877    }
3878
3879    if (ThisVT == MVT::Other) continue;
3880
3881    // NOTE: This isn't ideal.  In particular, this might allocate the
3882    // frame pointer in functions that need it (due to them not being taken
3883    // out of allocation, because a variable sized allocation hasn't been seen
3884    // yet).  This is a slight code pessimization, but should still work.
3885    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3886         E = RC->allocation_order_end(MF); I != E; ++I)
3887      if (*I == Reg) {
3888        // We found a matching register class.  Keep looking at others in case
3889        // we find one with larger registers that this physreg is also in.
3890        FoundRC = RC;
3891        FoundVT = ThisVT;
3892        break;
3893      }
3894  }
3895  return FoundRC;
3896}
3897
3898
3899namespace {
3900/// AsmOperandInfo - This contains information for each constraint that we are
3901/// lowering.
3902struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
3903  /// CallOperand - If this is the result output operand or a clobber
3904  /// this is null, otherwise it is the incoming operand to the CallInst.
3905  /// This gets modified as the asm is processed.
3906  SDValue CallOperand;
3907
3908  /// AssignedRegs - If this is a register or register class operand, this
3909  /// contains the set of register corresponding to the operand.
3910  RegsForValue AssignedRegs;
3911
3912  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3913    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
3914  }
3915
3916  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3917  /// busy in OutputRegs/InputRegs.
3918  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3919                         std::set<unsigned> &OutputRegs,
3920                         std::set<unsigned> &InputRegs,
3921                         const TargetRegisterInfo &TRI) const {
3922    if (isOutReg) {
3923      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3924        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
3925    }
3926    if (isInReg) {
3927      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3928        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
3929    }
3930  }
3931
3932private:
3933  /// MarkRegAndAliases - Mark the specified register and all aliases in the
3934  /// specified set.
3935  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
3936                                const TargetRegisterInfo &TRI) {
3937    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
3938    Regs.insert(Reg);
3939    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
3940      for (; *Aliases; ++Aliases)
3941        Regs.insert(*Aliases);
3942  }
3943};
3944} // end anon namespace.
3945
3946
3947/// GetRegistersForValue - Assign registers (virtual or physical) for the
3948/// specified operand.  We prefer to assign virtual registers, to allow the
3949/// register allocator handle the assignment process.  However, if the asm uses
3950/// features that we can't model on machineinstrs, we have SDISel do the
3951/// allocation.  This produces generally horrible, but correct, code.
3952///
3953///   OpInfo describes the operand.
3954///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
3955///     or any explicitly clobbered registers.
3956///   Input and OutputRegs are the set of already allocated physical registers.
3957///
3958void SelectionDAGLowering::
3959GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
3960                     std::set<unsigned> &OutputRegs,
3961                     std::set<unsigned> &InputRegs) {
3962  // Compute whether this value requires an input register, an output register,
3963  // or both.
3964  bool isOutReg = false;
3965  bool isInReg = false;
3966  switch (OpInfo.Type) {
3967  case InlineAsm::isOutput:
3968    isOutReg = true;
3969
3970    // If this is an early-clobber output, or if there is an input
3971    // constraint that matches this, we need to reserve the input register
3972    // so no other inputs allocate to it.
3973    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3974    break;
3975  case InlineAsm::isInput:
3976    isInReg = true;
3977    isOutReg = false;
3978    break;
3979  case InlineAsm::isClobber:
3980    isOutReg = true;
3981    isInReg = true;
3982    break;
3983  }
3984
3985
3986  MachineFunction &MF = DAG.getMachineFunction();
3987  SmallVector<unsigned, 4> Regs;
3988
3989  // If this is a constraint for a single physreg, or a constraint for a
3990  // register class, find it.
3991  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3992    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3993                                     OpInfo.ConstraintVT);
3994
3995  unsigned NumRegs = 1;
3996  if (OpInfo.ConstraintVT != MVT::Other)
3997    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3998  MVT RegVT;
3999  MVT ValueVT = OpInfo.ConstraintVT;
4000
4001
4002  // If this is a constraint for a specific physical register, like {r17},
4003  // assign it now.
4004  if (PhysReg.first) {
4005    if (OpInfo.ConstraintVT == MVT::Other)
4006      ValueVT = *PhysReg.second->vt_begin();
4007
4008    // Get the actual register value type.  This is important, because the user
4009    // may have asked for (e.g.) the AX register in i32 type.  We need to
4010    // remember that AX is actually i16 to get the right extension.
4011    RegVT = *PhysReg.second->vt_begin();
4012
4013    // This is a explicit reference to a physical register.
4014    Regs.push_back(PhysReg.first);
4015
4016    // If this is an expanded reference, add the rest of the regs to Regs.
4017    if (NumRegs != 1) {
4018      TargetRegisterClass::iterator I = PhysReg.second->begin();
4019      for (; *I != PhysReg.first; ++I)
4020        assert(I != PhysReg.second->end() && "Didn't find reg!");
4021
4022      // Already added the first reg.
4023      --NumRegs; ++I;
4024      for (; NumRegs; --NumRegs, ++I) {
4025        assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
4026        Regs.push_back(*I);
4027      }
4028    }
4029    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4030    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4031    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4032    return;
4033  }
4034
4035  // Otherwise, if this was a reference to an LLVM register class, create vregs
4036  // for this reference.
4037  std::vector<unsigned> RegClassRegs;
4038  const TargetRegisterClass *RC = PhysReg.second;
4039  if (RC) {
4040    // If this is an early clobber or tied register, our regalloc doesn't know
4041    // how to maintain the constraint.  If it isn't, go ahead and create vreg
4042    // and let the regalloc do the right thing.
4043    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
4044        // If there is some other early clobber and this is an input register,
4045        // then we are forced to pre-allocate the input reg so it doesn't
4046        // conflict with the earlyclobber.
4047        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
4048      RegVT = *PhysReg.second->vt_begin();
4049
4050      if (OpInfo.ConstraintVT == MVT::Other)
4051        ValueVT = RegVT;
4052
4053      // Create the appropriate number of virtual registers.
4054      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4055      for (; NumRegs; --NumRegs)
4056        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
4057
4058      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4059      return;
4060    }
4061
4062    // Otherwise, we can't allocate it.  Let the code below figure out how to
4063    // maintain these constraints.
4064    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
4065
4066  } else {
4067    // This is a reference to a register class that doesn't directly correspond
4068    // to an LLVM register class.  Allocate NumRegs consecutive, available,
4069    // registers from the class.
4070    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
4071                                                         OpInfo.ConstraintVT);
4072  }
4073
4074  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4075  unsigned NumAllocated = 0;
4076  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
4077    unsigned Reg = RegClassRegs[i];
4078    // See if this register is available.
4079    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
4080        (isInReg  && InputRegs.count(Reg))) {    // Already used.
4081      // Make sure we find consecutive registers.
4082      NumAllocated = 0;
4083      continue;
4084    }
4085
4086    // Check to see if this register is allocatable (i.e. don't give out the
4087    // stack pointer).
4088    if (RC == 0) {
4089      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
4090      if (!RC) {        // Couldn't allocate this register.
4091        // Reset NumAllocated to make sure we return consecutive registers.
4092        NumAllocated = 0;
4093        continue;
4094      }
4095    }
4096
4097    // Okay, this register is good, we can use it.
4098    ++NumAllocated;
4099
4100    // If we allocated enough consecutive registers, succeed.
4101    if (NumAllocated == NumRegs) {
4102      unsigned RegStart = (i-NumAllocated)+1;
4103      unsigned RegEnd   = i+1;
4104      // Mark all of the allocated registers used.
4105      for (unsigned i = RegStart; i != RegEnd; ++i)
4106        Regs.push_back(RegClassRegs[i]);
4107
4108      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
4109                                         OpInfo.ConstraintVT);
4110      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4111      return;
4112    }
4113  }
4114
4115  // Otherwise, we couldn't allocate enough registers for this.
4116}
4117
4118
4119/// visitInlineAsm - Handle a call to an InlineAsm object.
4120///
4121void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
4122  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4123
4124  /// ConstraintOperands - Information about all of the constraints.
4125  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
4126
4127  SDValue Chain = getRoot();
4128  SDValue Flag;
4129
4130  std::set<unsigned> OutputRegs, InputRegs;
4131
4132  // Do a prepass over the constraints, canonicalizing them, and building up the
4133  // ConstraintOperands list.
4134  std::vector<InlineAsm::ConstraintInfo>
4135    ConstraintInfos = IA->ParseConstraints();
4136
4137  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
4138  // constraint.  If so, we can't let the register allocator allocate any input
4139  // registers, because it will not know to avoid the earlyclobbered output reg.
4140  bool SawEarlyClobber = false;
4141
4142  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
4143  unsigned ResNo = 0;   // ResNo - The result number of the next output.
4144  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4145    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
4146    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
4147
4148    MVT OpVT = MVT::Other;
4149
4150    // Compute the value type for each operand.
4151    switch (OpInfo.Type) {
4152    case InlineAsm::isOutput:
4153      // Indirect outputs just consume an argument.
4154      if (OpInfo.isIndirect) {
4155        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4156        break;
4157      }
4158      // The return value of the call is this value.  As such, there is no
4159      // corresponding argument.
4160      assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4161      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
4162        OpVT = TLI.getValueType(STy->getElementType(ResNo));
4163      } else {
4164        assert(ResNo == 0 && "Asm only has one result!");
4165        OpVT = TLI.getValueType(CS.getType());
4166      }
4167      ++ResNo;
4168      break;
4169    case InlineAsm::isInput:
4170      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4171      break;
4172    case InlineAsm::isClobber:
4173      // Nothing to do.
4174      break;
4175    }
4176
4177    // If this is an input or an indirect output, process the call argument.
4178    // BasicBlocks are labels, currently appearing only in asm's.
4179    if (OpInfo.CallOperandVal) {
4180      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
4181        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
4182      else {
4183        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
4184        const Type *OpTy = OpInfo.CallOperandVal->getType();
4185        // If this is an indirect operand, the operand is a pointer to the
4186        // accessed type.
4187        if (OpInfo.isIndirect)
4188          OpTy = cast<PointerType>(OpTy)->getElementType();
4189
4190        // If OpTy is not a single value, it may be a struct/union that we
4191        // can tile with integers.
4192        if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4193          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4194          switch (BitSize) {
4195          default: break;
4196          case 1:
4197          case 8:
4198          case 16:
4199          case 32:
4200          case 64:
4201            OpTy = IntegerType::get(BitSize);
4202            break;
4203          }
4204        }
4205
4206        OpVT = TLI.getValueType(OpTy, true);
4207      }
4208    }
4209
4210    OpInfo.ConstraintVT = OpVT;
4211
4212    // Compute the constraint code and ConstraintType to use.
4213    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
4214
4215    // Keep track of whether we see an earlyclobber.
4216    SawEarlyClobber |= OpInfo.isEarlyClobber;
4217
4218    // If we see a clobber of a register, it is an early clobber.
4219    if (!SawEarlyClobber &&
4220        OpInfo.Type == InlineAsm::isClobber &&
4221        OpInfo.ConstraintType == TargetLowering::C_Register) {
4222      // Note that we want to ignore things that we don't trick here, like
4223      // dirflag, fpsr, flags, etc.
4224      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4225        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4226                                         OpInfo.ConstraintVT);
4227      if (PhysReg.first || PhysReg.second) {
4228        // This is a register we know of.
4229        SawEarlyClobber = true;
4230      }
4231    }
4232
4233    // If this is a memory input, and if the operand is not indirect, do what we
4234    // need to to provide an address for the memory input.
4235    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4236        !OpInfo.isIndirect) {
4237      assert(OpInfo.Type == InlineAsm::isInput &&
4238             "Can only indirectify direct input operands!");
4239
4240      // Memory operands really want the address of the value.  If we don't have
4241      // an indirect input, put it in the constpool if we can, otherwise spill
4242      // it to a stack slot.
4243
4244      // If the operand is a float, integer, or vector constant, spill to a
4245      // constant pool entry to get its address.
4246      Value *OpVal = OpInfo.CallOperandVal;
4247      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
4248          isa<ConstantVector>(OpVal)) {
4249        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
4250                                                 TLI.getPointerTy());
4251      } else {
4252        // Otherwise, create a stack slot and emit a store to it before the
4253        // asm.
4254        const Type *Ty = OpVal->getType();
4255        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
4256        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
4257        MachineFunction &MF = DAG.getMachineFunction();
4258        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
4259        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4260        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
4261        OpInfo.CallOperand = StackSlot;
4262      }
4263
4264      // There is no longer a Value* corresponding to this operand.
4265      OpInfo.CallOperandVal = 0;
4266      // It is now an indirect operand.
4267      OpInfo.isIndirect = true;
4268    }
4269
4270    // If this constraint is for a specific register, allocate it before
4271    // anything else.
4272    if (OpInfo.ConstraintType == TargetLowering::C_Register)
4273      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4274  }
4275  ConstraintInfos.clear();
4276
4277
4278  // Second pass - Loop over all of the operands, assigning virtual or physregs
4279  // to registerclass operands.
4280  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4281    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4282
4283    // C_Register operands have already been allocated, Other/Memory don't need
4284    // to be.
4285    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
4286      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4287  }
4288
4289  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
4290  std::vector<SDValue> AsmNodeOperands;
4291  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
4292  AsmNodeOperands.push_back(
4293          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
4294
4295
4296  // Loop over all of the inputs, copying the operand values into the
4297  // appropriate registers and processing the output regs.
4298  RegsForValue RetValRegs;
4299
4300  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
4301  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
4302
4303  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4304    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4305
4306    switch (OpInfo.Type) {
4307    case InlineAsm::isOutput: {
4308      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
4309          OpInfo.ConstraintType != TargetLowering::C_Register) {
4310        // Memory output, or 'other' output (e.g. 'X' constraint).
4311        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
4312
4313        // Add information to the INLINEASM node to know about this output.
4314        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4315        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4316                                                        TLI.getPointerTy()));
4317        AsmNodeOperands.push_back(OpInfo.CallOperand);
4318        break;
4319      }
4320
4321      // Otherwise, this is a register or register class output.
4322
4323      // Copy the output from the appropriate register.  Find a register that
4324      // we can use.
4325      if (OpInfo.AssignedRegs.Regs.empty()) {
4326        cerr << "Couldn't allocate output reg for constraint '"
4327             << OpInfo.ConstraintCode << "'!\n";
4328        exit(1);
4329      }
4330
4331      // If this is an indirect operand, store through the pointer after the
4332      // asm.
4333      if (OpInfo.isIndirect) {
4334        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
4335                                                      OpInfo.CallOperandVal));
4336      } else {
4337        // This is the result value of the call.
4338        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4339        // Concatenate this output onto the outputs list.
4340        RetValRegs.append(OpInfo.AssignedRegs);
4341      }
4342
4343      // Add information to the INLINEASM node to know that this register is
4344      // set.
4345      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
4346                                               AsmNodeOperands);
4347      break;
4348    }
4349    case InlineAsm::isInput: {
4350      SDValue InOperandVal = OpInfo.CallOperand;
4351
4352      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
4353        // If this is required to match an output register we have already set,
4354        // just use its register.
4355        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
4356
4357        // Scan until we find the definition we already emitted of this operand.
4358        // When we find it, create a RegsForValue operand.
4359        unsigned CurOp = 2;  // The first operand.
4360        for (; OperandNo; --OperandNo) {
4361          // Advance to the next operand.
4362          unsigned NumOps =
4363            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4364          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
4365                  (NumOps & 7) == 4 /*MEM*/) &&
4366                 "Skipped past definitions?");
4367          CurOp += (NumOps>>3)+1;
4368        }
4369
4370        unsigned NumOps =
4371          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4372        if ((NumOps & 7) == 2 /*REGDEF*/) {
4373          // Add NumOps>>3 registers to MatchedRegs.
4374          RegsForValue MatchedRegs;
4375          MatchedRegs.TLI = &TLI;
4376          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
4377          MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
4378          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
4379            unsigned Reg =
4380              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
4381            MatchedRegs.Regs.push_back(Reg);
4382          }
4383
4384          // Use the produced MatchedRegs object to
4385          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4386          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
4387          break;
4388        } else {
4389          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
4390          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
4391          // Add information to the INLINEASM node to know about this input.
4392          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4393          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4394                                                          TLI.getPointerTy()));
4395          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
4396          break;
4397        }
4398      }
4399
4400      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
4401        assert(!OpInfo.isIndirect &&
4402               "Don't know how to handle indirect other inputs yet!");
4403
4404        std::vector<SDValue> Ops;
4405        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
4406                                         Ops, DAG);
4407        if (Ops.empty()) {
4408          cerr << "Invalid operand for inline asm constraint '"
4409               << OpInfo.ConstraintCode << "'!\n";
4410          exit(1);
4411        }
4412
4413        // Add information to the INLINEASM node to know about this input.
4414        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
4415        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4416                                                        TLI.getPointerTy()));
4417        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
4418        break;
4419      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4420        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4421        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
4422               "Memory operands expect pointer values");
4423
4424        // Add information to the INLINEASM node to know about this input.
4425        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4426        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4427                                                        TLI.getPointerTy()));
4428        AsmNodeOperands.push_back(InOperandVal);
4429        break;
4430      }
4431
4432      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4433              OpInfo.ConstraintType == TargetLowering::C_Register) &&
4434             "Unknown constraint type!");
4435      assert(!OpInfo.isIndirect &&
4436             "Don't know how to handle indirect register inputs yet!");
4437
4438      // Copy the input into the appropriate registers.
4439      assert(!OpInfo.AssignedRegs.Regs.empty() &&
4440             "Couldn't allocate input reg!");
4441
4442      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4443
4444      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
4445                                               AsmNodeOperands);
4446      break;
4447    }
4448    case InlineAsm::isClobber: {
4449      // Add the clobbered value to the operand list, so that the register
4450      // allocator is aware that the physreg got clobbered.
4451      if (!OpInfo.AssignedRegs.Regs.empty())
4452        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
4453                                                 AsmNodeOperands);
4454      break;
4455    }
4456    }
4457  }
4458
4459  // Finish up input operands.
4460  AsmNodeOperands[0] = Chain;
4461  if (Flag.Val) AsmNodeOperands.push_back(Flag);
4462
4463  Chain = DAG.getNode(ISD::INLINEASM,
4464                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
4465                      &AsmNodeOperands[0], AsmNodeOperands.size());
4466  Flag = Chain.getValue(1);
4467
4468  // If this asm returns a register value, copy the result from that register
4469  // and set it as the value of the call.
4470  if (!RetValRegs.Regs.empty()) {
4471    SDValue Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
4472
4473    // If any of the results of the inline asm is a vector, it may have the
4474    // wrong width/num elts.  This can happen for register classes that can
4475    // contain multiple different value types.  The preg or vreg allocated may
4476    // not have the same VT as was expected.  Convert it to the right type with
4477    // bit_convert.
4478    if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) {
4479      for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) {
4480        if (Val.Val->getValueType(i).isVector())
4481          Val = DAG.getNode(ISD::BIT_CONVERT,
4482                            TLI.getValueType(ResSTy->getElementType(i)), Val);
4483      }
4484    } else {
4485      if (Val.getValueType().isVector())
4486        Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()),
4487                          Val);
4488    }
4489
4490    setValue(CS.getInstruction(), Val);
4491  }
4492
4493  std::vector<std::pair<SDValue, Value*> > StoresToEmit;
4494
4495  // Process indirect outputs, first output all of the flagged copies out of
4496  // physregs.
4497  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4498    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4499    Value *Ptr = IndirectStoresToEmit[i].second;
4500    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4501    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4502  }
4503
4504  // Emit the non-flagged stores from the physregs.
4505  SmallVector<SDValue, 8> OutChains;
4506  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4507    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4508                                    getValue(StoresToEmit[i].second),
4509                                    StoresToEmit[i].second, 0));
4510  if (!OutChains.empty())
4511    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4512                        &OutChains[0], OutChains.size());
4513  DAG.setRoot(Chain);
4514}
4515
4516
4517void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4518  SDValue Src = getValue(I.getOperand(0));
4519
4520  MVT IntPtr = TLI.getPointerTy();
4521
4522  if (IntPtr.bitsLT(Src.getValueType()))
4523    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4524  else if (IntPtr.bitsGT(Src.getValueType()))
4525    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4526
4527  // Scale the source by the type size.
4528  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
4529  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
4530                    Src, DAG.getIntPtrConstant(ElementSize));
4531
4532  TargetLowering::ArgListTy Args;
4533  TargetLowering::ArgListEntry Entry;
4534  Entry.Node = Src;
4535  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4536  Args.push_back(Entry);
4537
4538  std::pair<SDValue,SDValue> Result =
4539    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4540                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
4541  setValue(&I, Result.first);  // Pointers always fit in registers
4542  DAG.setRoot(Result.second);
4543}
4544
4545void SelectionDAGLowering::visitFree(FreeInst &I) {
4546  TargetLowering::ArgListTy Args;
4547  TargetLowering::ArgListEntry Entry;
4548  Entry.Node = getValue(I.getOperand(0));
4549  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4550  Args.push_back(Entry);
4551  MVT IntPtr = TLI.getPointerTy();
4552  std::pair<SDValue,SDValue> Result =
4553    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4554                    CallingConv::C, true,
4555                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4556  DAG.setRoot(Result.second);
4557}
4558
4559// EmitInstrWithCustomInserter - This method should be implemented by targets
4560// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4561// instructions are special in various ways, which require special support to
4562// insert.  The specified MachineInstr is created but not inserted into any
4563// basic blocks, and the scheduler passes ownership of it to this method.
4564MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4565                                                       MachineBasicBlock *MBB) {
4566  cerr << "If a target marks an instruction with "
4567       << "'usesCustomDAGSchedInserter', it must implement "
4568       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4569  abort();
4570  return 0;
4571}
4572
4573void SelectionDAGLowering::visitVAStart(CallInst &I) {
4574  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4575                          getValue(I.getOperand(1)),
4576                          DAG.getSrcValue(I.getOperand(1))));
4577}
4578
4579void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4580  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4581                             getValue(I.getOperand(0)),
4582                             DAG.getSrcValue(I.getOperand(0)));
4583  setValue(&I, V);
4584  DAG.setRoot(V.getValue(1));
4585}
4586
4587void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4588  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4589                          getValue(I.getOperand(1)),
4590                          DAG.getSrcValue(I.getOperand(1))));
4591}
4592
4593void SelectionDAGLowering::visitVACopy(CallInst &I) {
4594  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4595                          getValue(I.getOperand(1)),
4596                          getValue(I.getOperand(2)),
4597                          DAG.getSrcValue(I.getOperand(1)),
4598                          DAG.getSrcValue(I.getOperand(2))));
4599}
4600
4601/// TargetLowering::LowerArguments - This is the default LowerArguments
4602/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4603/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4604/// integrated into SDISel.
4605void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
4606                                    SmallVectorImpl<SDValue> &ArgValues) {
4607  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4608  SmallVector<SDValue, 3+16> Ops;
4609  Ops.push_back(DAG.getRoot());
4610  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4611  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4612
4613  // Add one result value for each formal argument.
4614  SmallVector<MVT, 16> RetVals;
4615  unsigned j = 1;
4616  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4617       I != E; ++I, ++j) {
4618    SmallVector<MVT, 4> ValueVTs;
4619    ComputeValueVTs(*this, I->getType(), ValueVTs);
4620    for (unsigned Value = 0, NumValues = ValueVTs.size();
4621         Value != NumValues; ++Value) {
4622      MVT VT = ValueVTs[Value];
4623      const Type *ArgTy = VT.getTypeForMVT();
4624      ISD::ArgFlagsTy Flags;
4625      unsigned OriginalAlignment =
4626        getTargetData()->getABITypeAlignment(ArgTy);
4627
4628      if (F.paramHasAttr(j, ParamAttr::ZExt))
4629        Flags.setZExt();
4630      if (F.paramHasAttr(j, ParamAttr::SExt))
4631        Flags.setSExt();
4632      if (F.paramHasAttr(j, ParamAttr::InReg))
4633        Flags.setInReg();
4634      if (F.paramHasAttr(j, ParamAttr::StructRet))
4635        Flags.setSRet();
4636      if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4637        Flags.setByVal();
4638        const PointerType *Ty = cast<PointerType>(I->getType());
4639        const Type *ElementTy = Ty->getElementType();
4640        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4641        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4642        // For ByVal, alignment should be passed from FE.  BE will guess if
4643        // this info is not there but there are cases it cannot get right.
4644        if (F.getParamAlignment(j))
4645          FrameAlign = F.getParamAlignment(j);
4646        Flags.setByValAlign(FrameAlign);
4647        Flags.setByValSize(FrameSize);
4648      }
4649      if (F.paramHasAttr(j, ParamAttr::Nest))
4650        Flags.setNest();
4651      Flags.setOrigAlign(OriginalAlignment);
4652
4653      MVT RegisterVT = getRegisterType(VT);
4654      unsigned NumRegs = getNumRegisters(VT);
4655      for (unsigned i = 0; i != NumRegs; ++i) {
4656        RetVals.push_back(RegisterVT);
4657        ISD::ArgFlagsTy MyFlags = Flags;
4658        if (NumRegs > 1 && i == 0)
4659          MyFlags.setSplit();
4660        // if it isn't first piece, alignment must be 1
4661        else if (i > 0)
4662          MyFlags.setOrigAlign(1);
4663        Ops.push_back(DAG.getArgFlags(MyFlags));
4664      }
4665    }
4666  }
4667
4668  RetVals.push_back(MVT::Other);
4669
4670  // Create the node.
4671  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4672                               DAG.getVTList(&RetVals[0], RetVals.size()),
4673                               &Ops[0], Ops.size()).Val;
4674
4675  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4676  // allows exposing the loads that may be part of the argument access to the
4677  // first DAGCombiner pass.
4678  SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG);
4679
4680  // The number of results should match up, except that the lowered one may have
4681  // an extra flag result.
4682  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4683          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4684           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4685         && "Lowering produced unexpected number of results!");
4686
4687  // The FORMAL_ARGUMENTS node itself is likely no longer needed.
4688  if (Result != TmpRes.Val && Result->use_empty()) {
4689    HandleSDNode Dummy(DAG.getRoot());
4690    DAG.RemoveDeadNode(Result);
4691  }
4692
4693  Result = TmpRes.Val;
4694
4695  unsigned NumArgRegs = Result->getNumValues() - 1;
4696  DAG.setRoot(SDValue(Result, NumArgRegs));
4697
4698  // Set up the return result vector.
4699  unsigned i = 0;
4700  unsigned Idx = 1;
4701  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4702      ++I, ++Idx) {
4703    SmallVector<MVT, 4> ValueVTs;
4704    ComputeValueVTs(*this, I->getType(), ValueVTs);
4705    for (unsigned Value = 0, NumValues = ValueVTs.size();
4706         Value != NumValues; ++Value) {
4707      MVT VT = ValueVTs[Value];
4708      MVT PartVT = getRegisterType(VT);
4709
4710      unsigned NumParts = getNumRegisters(VT);
4711      SmallVector<SDValue, 4> Parts(NumParts);
4712      for (unsigned j = 0; j != NumParts; ++j)
4713        Parts[j] = SDValue(Result, i++);
4714
4715      ISD::NodeType AssertOp = ISD::DELETED_NODE;
4716      if (F.paramHasAttr(Idx, ParamAttr::SExt))
4717        AssertOp = ISD::AssertSext;
4718      else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4719        AssertOp = ISD::AssertZext;
4720
4721      ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
4722                                           AssertOp));
4723    }
4724  }
4725  assert(i == NumArgRegs && "Argument register count mismatch!");
4726}
4727
4728
4729/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4730/// implementation, which just inserts an ISD::CALL node, which is later custom
4731/// lowered by the target to something concrete.  FIXME: When all targets are
4732/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4733std::pair<SDValue, SDValue>
4734TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
4735                            bool RetSExt, bool RetZExt, bool isVarArg,
4736                            unsigned CallingConv, bool isTailCall,
4737                            SDValue Callee,
4738                            ArgListTy &Args, SelectionDAG &DAG) {
4739  SmallVector<SDValue, 32> Ops;
4740  Ops.push_back(Chain);   // Op#0 - Chain
4741  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4742  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4743  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4744  Ops.push_back(Callee);
4745
4746  // Handle all of the outgoing arguments.
4747  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4748    SmallVector<MVT, 4> ValueVTs;
4749    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
4750    for (unsigned Value = 0, NumValues = ValueVTs.size();
4751         Value != NumValues; ++Value) {
4752      MVT VT = ValueVTs[Value];
4753      const Type *ArgTy = VT.getTypeForMVT();
4754      SDValue Op = SDValue(Args[i].Node.Val, Args[i].Node.ResNo + Value);
4755      ISD::ArgFlagsTy Flags;
4756      unsigned OriginalAlignment =
4757        getTargetData()->getABITypeAlignment(ArgTy);
4758
4759      if (Args[i].isZExt)
4760        Flags.setZExt();
4761      if (Args[i].isSExt)
4762        Flags.setSExt();
4763      if (Args[i].isInReg)
4764        Flags.setInReg();
4765      if (Args[i].isSRet)
4766        Flags.setSRet();
4767      if (Args[i].isByVal) {
4768        Flags.setByVal();
4769        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4770        const Type *ElementTy = Ty->getElementType();
4771        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4772        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4773        // For ByVal, alignment should come from FE.  BE will guess if this
4774        // info is not there but there are cases it cannot get right.
4775        if (Args[i].Alignment)
4776          FrameAlign = Args[i].Alignment;
4777        Flags.setByValAlign(FrameAlign);
4778        Flags.setByValSize(FrameSize);
4779      }
4780      if (Args[i].isNest)
4781        Flags.setNest();
4782      Flags.setOrigAlign(OriginalAlignment);
4783
4784      MVT PartVT = getRegisterType(VT);
4785      unsigned NumParts = getNumRegisters(VT);
4786      SmallVector<SDValue, 4> Parts(NumParts);
4787      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4788
4789      if (Args[i].isSExt)
4790        ExtendKind = ISD::SIGN_EXTEND;
4791      else if (Args[i].isZExt)
4792        ExtendKind = ISD::ZERO_EXTEND;
4793
4794      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4795
4796      for (unsigned i = 0; i != NumParts; ++i) {
4797        // if it isn't first piece, alignment must be 1
4798        ISD::ArgFlagsTy MyFlags = Flags;
4799        if (NumParts > 1 && i == 0)
4800          MyFlags.setSplit();
4801        else if (i != 0)
4802          MyFlags.setOrigAlign(1);
4803
4804        Ops.push_back(Parts[i]);
4805        Ops.push_back(DAG.getArgFlags(MyFlags));
4806      }
4807    }
4808  }
4809
4810  // Figure out the result value types. We start by making a list of
4811  // the potentially illegal return value types.
4812  SmallVector<MVT, 4> LoweredRetTys;
4813  SmallVector<MVT, 4> RetTys;
4814  ComputeValueVTs(*this, RetTy, RetTys);
4815
4816  // Then we translate that to a list of legal types.
4817  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4818    MVT VT = RetTys[I];
4819    MVT RegisterVT = getRegisterType(VT);
4820    unsigned NumRegs = getNumRegisters(VT);
4821    for (unsigned i = 0; i != NumRegs; ++i)
4822      LoweredRetTys.push_back(RegisterVT);
4823  }
4824
4825  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
4826
4827  // Create the CALL node.
4828  SDValue Res = DAG.getNode(ISD::CALL,
4829                              DAG.getVTList(&LoweredRetTys[0],
4830                                            LoweredRetTys.size()),
4831                              &Ops[0], Ops.size());
4832  Chain = Res.getValue(LoweredRetTys.size() - 1);
4833
4834  // Gather up the call result into a single value.
4835  if (RetTy != Type::VoidTy) {
4836    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4837
4838    if (RetSExt)
4839      AssertOp = ISD::AssertSext;
4840    else if (RetZExt)
4841      AssertOp = ISD::AssertZext;
4842
4843    SmallVector<SDValue, 4> ReturnValues;
4844    unsigned RegNo = 0;
4845    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4846      MVT VT = RetTys[I];
4847      MVT RegisterVT = getRegisterType(VT);
4848      unsigned NumRegs = getNumRegisters(VT);
4849      unsigned RegNoEnd = NumRegs + RegNo;
4850      SmallVector<SDValue, 4> Results;
4851      for (; RegNo != RegNoEnd; ++RegNo)
4852        Results.push_back(Res.getValue(RegNo));
4853      SDValue ReturnValue =
4854        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4855                         AssertOp);
4856      ReturnValues.push_back(ReturnValue);
4857    }
4858    Res = DAG.getMergeValues(DAG.getVTList(&RetTys[0], RetTys.size()),
4859                             &ReturnValues[0], ReturnValues.size());
4860  }
4861
4862  return std::make_pair(Res, Chain);
4863}
4864
4865SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
4866  assert(0 && "LowerOperation not implemented for this target!");
4867  abort();
4868  return SDValue();
4869}
4870
4871
4872//===----------------------------------------------------------------------===//
4873// SelectionDAGISel code
4874//===----------------------------------------------------------------------===//
4875
4876unsigned SelectionDAGISel::MakeReg(MVT VT) {
4877  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4878}
4879
4880void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4881  AU.addRequired<AliasAnalysis>();
4882  AU.addRequired<CollectorModuleMetadata>();
4883  AU.setPreservesAll();
4884}
4885
4886bool SelectionDAGISel::runOnFunction(Function &Fn) {
4887  // Get alias analysis for load/store combining.
4888  AA = &getAnalysis<AliasAnalysis>();
4889
4890  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4891  if (MF.getFunction()->hasCollector())
4892    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4893  else
4894    GCI = 0;
4895  RegInfo = &MF.getRegInfo();
4896  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4897
4898  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4899
4900  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4901    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4902      // Mark landing pad.
4903      FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4904
4905  SelectAllBasicBlocks(Fn, MF, FuncInfo);
4906
4907  // Add function live-ins to entry block live-in set.
4908  BasicBlock *EntryBB = &Fn.getEntryBlock();
4909  BB = FuncInfo.MBBMap[EntryBB];
4910  if (!RegInfo->livein_empty())
4911    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4912           E = RegInfo->livein_end(); I != E; ++I)
4913      BB->addLiveIn(I->first);
4914
4915#ifndef NDEBUG
4916  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4917         "Not all catch info was assigned to a landing pad!");
4918#endif
4919
4920  return true;
4921}
4922
4923void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
4924  SDValue Op = getValue(V);
4925  assert((Op.getOpcode() != ISD::CopyFromReg ||
4926          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4927         "Copy from a reg to the same reg!");
4928  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
4929
4930  RegsForValue RFV(TLI, Reg, V->getType());
4931  SDValue Chain = DAG.getEntryNode();
4932  RFV.getCopyToRegs(Op, DAG, Chain, 0);
4933  PendingExports.push_back(Chain);
4934}
4935
4936void SelectionDAGISel::
4937LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL) {
4938  // If this is the entry block, emit arguments.
4939  Function &F = *LLVMBB->getParent();
4940  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4941  SDValue OldRoot = SDL.DAG.getRoot();
4942  SmallVector<SDValue, 16> Args;
4943  TLI.LowerArguments(F, SDL.DAG, Args);
4944
4945  unsigned a = 0;
4946  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4947       AI != E; ++AI) {
4948    SmallVector<MVT, 4> ValueVTs;
4949    ComputeValueVTs(TLI, AI->getType(), ValueVTs);
4950    unsigned NumValues = ValueVTs.size();
4951    if (!AI->use_empty()) {
4952      SDL.setValue(AI, SDL.DAG.getMergeValues(&Args[a], NumValues));
4953      // If this argument is live outside of the entry block, insert a copy from
4954      // whereever we got it to the vreg that other BB's will reference it as.
4955      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4956      if (VMI != FuncInfo.ValueMap.end()) {
4957        SDL.CopyValueToVirtualRegister(AI, VMI->second);
4958      }
4959    }
4960    a += NumValues;
4961  }
4962
4963  // Finally, if the target has anything special to do, allow it to do so.
4964  // FIXME: this should insert code into the DAG!
4965  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4966}
4967
4968static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4969                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4970  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4971    if (isSelector(I)) {
4972      // Apply the catch info to DestBB.
4973      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4974#ifndef NDEBUG
4975      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4976        FLI.CatchInfoFound.insert(I);
4977#endif
4978    }
4979}
4980
4981/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
4982/// whether object offset >= 0.
4983static bool
4984IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDValue Op) {
4985  if (!isa<FrameIndexSDNode>(Op)) return false;
4986
4987  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
4988  int FrameIdx =  FrameIdxNode->getIndex();
4989  return MFI->isFixedObjectIndex(FrameIdx) &&
4990    MFI->getObjectOffset(FrameIdx) >= 0;
4991}
4992
4993/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
4994/// possibly be overwritten when lowering the outgoing arguments in a tail
4995/// call. Currently the implementation of this call is very conservative and
4996/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
4997/// virtual registers would be overwritten by direct lowering.
4998static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
4999                                                    MachineFrameInfo * MFI) {
5000  RegisterSDNode * OpReg = NULL;
5001  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
5002      (Op.getOpcode()== ISD::CopyFromReg &&
5003       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
5004       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
5005      (Op.getOpcode() == ISD::LOAD &&
5006       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
5007      (Op.getOpcode() == ISD::MERGE_VALUES &&
5008       Op.getOperand(Op.ResNo).getOpcode() == ISD::LOAD &&
5009       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.ResNo).
5010                                       getOperand(1))))
5011    return true;
5012  return false;
5013}
5014
5015/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
5016/// DAG and fixes their tailcall attribute operand.
5017static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
5018                                           TargetLowering& TLI) {
5019  SDNode * Ret = NULL;
5020  SDValue Terminator = DAG.getRoot();
5021
5022  // Find RET node.
5023  if (Terminator.getOpcode() == ISD::RET) {
5024    Ret = Terminator.Val;
5025  }
5026
5027  // Fix tail call attribute of CALL nodes.
5028  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
5029         BI = DAG.allnodes_end(); BI != BE; ) {
5030    --BI;
5031    if (BI->getOpcode() == ISD::CALL) {
5032      SDValue OpRet(Ret, 0);
5033      SDValue OpCall(BI, 0);
5034      bool isMarkedTailCall =
5035        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
5036      // If CALL node has tail call attribute set to true and the call is not
5037      // eligible (no RET or the target rejects) the attribute is fixed to
5038      // false. The TargetLowering::IsEligibleForTailCallOptimization function
5039      // must correctly identify tail call optimizable calls.
5040      if (!isMarkedTailCall) continue;
5041      if (Ret==NULL ||
5042          !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) {
5043        // Not eligible. Mark CALL node as non tail call.
5044        SmallVector<SDValue, 32> Ops;
5045        unsigned idx=0;
5046        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
5047              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5048          if (idx!=3)
5049            Ops.push_back(*I);
5050          else
5051            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
5052        }
5053        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5054      } else {
5055        // Look for tail call clobbered arguments. Emit a series of
5056        // copyto/copyfrom virtual register nodes to protect them.
5057        SmallVector<SDValue, 32> Ops;
5058        SDValue Chain = OpCall.getOperand(0), InFlag;
5059        unsigned idx=0;
5060        for(SDNode::op_iterator I = OpCall.Val->op_begin(),
5061              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5062          SDValue Arg = *I;
5063          if (idx > 4 && (idx % 2)) {
5064            bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))->
5065              getArgFlags().isByVal();
5066            MachineFunction &MF = DAG.getMachineFunction();
5067            MachineFrameInfo *MFI = MF.getFrameInfo();
5068            if (!isByVal &&
5069                IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
5070              MVT VT = Arg.getValueType();
5071              unsigned VReg = MF.getRegInfo().
5072                createVirtualRegister(TLI.getRegClassFor(VT));
5073              Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
5074              InFlag = Chain.getValue(1);
5075              Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
5076              Chain = Arg.getValue(1);
5077              InFlag = Arg.getValue(2);
5078            }
5079          }
5080          Ops.push_back(Arg);
5081        }
5082        // Link in chain of CopyTo/CopyFromReg.
5083        Ops[0] = Chain;
5084        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5085      }
5086    }
5087  }
5088}
5089
5090void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
5091       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
5092                                         FunctionLoweringInfo &FuncInfo) {
5093  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
5094
5095  // Lower any arguments needed in this block if this is the entry block.
5096  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
5097    LowerArguments(LLVMBB, SDL);
5098
5099  BB = FuncInfo.MBBMap[LLVMBB];
5100  SDL.setCurrentBasicBlock(BB);
5101
5102  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
5103
5104  if (MMI && BB->isLandingPad()) {
5105    // Add a label to mark the beginning of the landing pad.  Deletion of the
5106    // landing pad can thus be detected via the MachineModuleInfo.
5107    unsigned LabelID = MMI->addLandingPad(BB);
5108    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, DAG.getEntryNode(), LabelID));
5109
5110    // Mark exception register as live in.
5111    unsigned Reg = TLI.getExceptionAddressRegister();
5112    if (Reg) BB->addLiveIn(Reg);
5113
5114    // Mark exception selector register as live in.
5115    Reg = TLI.getExceptionSelectorRegister();
5116    if (Reg) BB->addLiveIn(Reg);
5117
5118    // FIXME: Hack around an exception handling flaw (PR1508): the personality
5119    // function and list of typeids logically belong to the invoke (or, if you
5120    // like, the basic block containing the invoke), and need to be associated
5121    // with it in the dwarf exception handling tables.  Currently however the
5122    // information is provided by an intrinsic (eh.selector) that can be moved
5123    // to unexpected places by the optimizers: if the unwind edge is critical,
5124    // then breaking it can result in the intrinsics being in the successor of
5125    // the landing pad, not the landing pad itself.  This results in exceptions
5126    // not being caught because no typeids are associated with the invoke.
5127    // This may not be the only way things can go wrong, but it is the only way
5128    // we try to work around for the moment.
5129    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
5130
5131    if (Br && Br->isUnconditional()) { // Critical edge?
5132      BasicBlock::iterator I, E;
5133      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
5134        if (isSelector(I))
5135          break;
5136
5137      if (I == E)
5138        // No catch info found - try to extract some from the successor.
5139        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
5140    }
5141  }
5142
5143  // Lower all of the non-terminator instructions.
5144  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
5145       I != E; ++I)
5146    SDL.visit(*I);
5147
5148  // Ensure that all instructions which are used outside of their defining
5149  // blocks are available as virtual registers.  Invoke is handled elsewhere.
5150  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
5151    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
5152      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
5153      if (VMI != FuncInfo.ValueMap.end())
5154        SDL.CopyValueToVirtualRegister(I, VMI->second);
5155    }
5156
5157  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
5158  // ensure constants are generated when needed.  Remember the virtual registers
5159  // that need to be added to the Machine PHI nodes as input.  We cannot just
5160  // directly add them, because expansion might result in multiple MBB's for one
5161  // BB.  As such, the start of the BB might correspond to a different MBB than
5162  // the end.
5163  //
5164  TerminatorInst *TI = LLVMBB->getTerminator();
5165
5166  // Emit constants only once even if used by multiple PHI nodes.
5167  std::map<Constant*, unsigned> ConstantsOut;
5168
5169  // Vector bool would be better, but vector<bool> is really slow.
5170  std::vector<unsigned char> SuccsHandled;
5171  if (TI->getNumSuccessors())
5172    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
5173
5174  // Check successor nodes' PHI nodes that expect a constant to be available
5175  // from this block.
5176  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5177    BasicBlock *SuccBB = TI->getSuccessor(succ);
5178    if (!isa<PHINode>(SuccBB->begin())) continue;
5179    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
5180
5181    // If this terminator has multiple identical successors (common for
5182    // switches), only handle each succ once.
5183    unsigned SuccMBBNo = SuccMBB->getNumber();
5184    if (SuccsHandled[SuccMBBNo]) continue;
5185    SuccsHandled[SuccMBBNo] = true;
5186
5187    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5188    PHINode *PN;
5189
5190    // At this point we know that there is a 1-1 correspondence between LLVM PHI
5191    // nodes and Machine PHI nodes, but the incoming operands have not been
5192    // emitted yet.
5193    for (BasicBlock::iterator I = SuccBB->begin();
5194         (PN = dyn_cast<PHINode>(I)); ++I) {
5195      // Ignore dead phi's.
5196      if (PN->use_empty()) continue;
5197
5198      unsigned Reg;
5199      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5200
5201      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
5202        unsigned &RegOut = ConstantsOut[C];
5203        if (RegOut == 0) {
5204          RegOut = FuncInfo.CreateRegForValue(C);
5205          SDL.CopyValueToVirtualRegister(C, RegOut);
5206        }
5207        Reg = RegOut;
5208      } else {
5209        Reg = FuncInfo.ValueMap[PHIOp];
5210        if (Reg == 0) {
5211          assert(isa<AllocaInst>(PHIOp) &&
5212                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
5213                 "Didn't codegen value into a register!??");
5214          Reg = FuncInfo.CreateRegForValue(PHIOp);
5215          SDL.CopyValueToVirtualRegister(PHIOp, Reg);
5216        }
5217      }
5218
5219      // Remember that this register needs to added to the machine PHI node as
5220      // the input for this MBB.
5221      SmallVector<MVT, 4> ValueVTs;
5222      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
5223      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
5224        MVT VT = ValueVTs[vti];
5225        unsigned NumRegisters = TLI.getNumRegisters(VT);
5226        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
5227          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
5228        Reg += NumRegisters;
5229      }
5230    }
5231  }
5232  ConstantsOut.clear();
5233
5234  // Lower the terminator after the copies are emitted.
5235  SDL.visit(*LLVMBB->getTerminator());
5236
5237  // Copy over any CaseBlock records that may now exist due to SwitchInst
5238  // lowering, as well as any jump table information.
5239  SwitchCases.clear();
5240  SwitchCases = SDL.SwitchCases;
5241  JTCases.clear();
5242  JTCases = SDL.JTCases;
5243  BitTestCases.clear();
5244  BitTestCases = SDL.BitTestCases;
5245
5246  // Make sure the root of the DAG is up-to-date.
5247  DAG.setRoot(SDL.getControlRoot());
5248
5249  // Check whether calls in this block are real tail calls. Fix up CALL nodes
5250  // with correct tailcall attribute so that the target can rely on the tailcall
5251  // attribute indicating whether the call is really eligible for tail call
5252  // optimization.
5253  CheckDAGForTailCallsAndFixThem(DAG, TLI);
5254}
5255
5256void SelectionDAGISel::ComputeLiveOutVRegInfo(SelectionDAG &DAG) {
5257  SmallPtrSet<SDNode*, 128> VisitedNodes;
5258  SmallVector<SDNode*, 128> Worklist;
5259
5260  Worklist.push_back(DAG.getRoot().Val);
5261
5262  APInt Mask;
5263  APInt KnownZero;
5264  APInt KnownOne;
5265
5266  while (!Worklist.empty()) {
5267    SDNode *N = Worklist.back();
5268    Worklist.pop_back();
5269
5270    // If we've already seen this node, ignore it.
5271    if (!VisitedNodes.insert(N))
5272      continue;
5273
5274    // Otherwise, add all chain operands to the worklist.
5275    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5276      if (N->getOperand(i).getValueType() == MVT::Other)
5277        Worklist.push_back(N->getOperand(i).Val);
5278
5279    // If this is a CopyToReg with a vreg dest, process it.
5280    if (N->getOpcode() != ISD::CopyToReg)
5281      continue;
5282
5283    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
5284    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
5285      continue;
5286
5287    // Ignore non-scalar or non-integer values.
5288    SDValue Src = N->getOperand(2);
5289    MVT SrcVT = Src.getValueType();
5290    if (!SrcVT.isInteger() || SrcVT.isVector())
5291      continue;
5292
5293    unsigned NumSignBits = DAG.ComputeNumSignBits(Src);
5294    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
5295    DAG.ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
5296
5297    // Only install this information if it tells us something.
5298    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
5299      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
5300      FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5301      if (DestReg >= FLI.LiveOutRegInfo.size())
5302        FLI.LiveOutRegInfo.resize(DestReg+1);
5303      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
5304      LOI.NumSignBits = NumSignBits;
5305      LOI.KnownOne = NumSignBits;
5306      LOI.KnownZero = NumSignBits;
5307    }
5308  }
5309}
5310
5311void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
5312  std::string GroupName;
5313  if (TimePassesIsEnabled)
5314    GroupName = "Instruction Selection and Scheduling";
5315  std::string BlockName;
5316  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
5317      ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs)
5318    BlockName = DAG.getMachineFunction().getFunction()->getName() + ':' +
5319                BB->getBasicBlock()->getName();
5320
5321  DOUT << "Initial selection DAG:\n";
5322  DEBUG(DAG.dump());
5323
5324  if (ViewDAGCombine1) DAG.viewGraph("dag-combine1 input for " + BlockName);
5325
5326  // Run the DAG combiner in pre-legalize mode.
5327  if (TimePassesIsEnabled) {
5328    NamedRegionTimer T("DAG Combining 1", GroupName);
5329    DAG.Combine(false, *AA);
5330  } else {
5331    DAG.Combine(false, *AA);
5332  }
5333
5334  DOUT << "Optimized lowered selection DAG:\n";
5335  DEBUG(DAG.dump());
5336
5337  // Second step, hack on the DAG until it only uses operations and types that
5338  // the target supports.
5339  if (EnableLegalizeTypes) {// Enable this some day.
5340    if (ViewLegalizeTypesDAGs) DAG.viewGraph("legalize-types input for " +
5341                                             BlockName);
5342
5343    if (TimePassesIsEnabled) {
5344      NamedRegionTimer T("Type Legalization", GroupName);
5345      DAG.LegalizeTypes();
5346    } else {
5347      DAG.LegalizeTypes();
5348    }
5349
5350    DOUT << "Type-legalized selection DAG:\n";
5351    DEBUG(DAG.dump());
5352
5353    // TODO: enable a dag combine pass here.
5354  }
5355
5356  if (ViewLegalizeDAGs) DAG.viewGraph("legalize input for " + BlockName);
5357
5358  if (TimePassesIsEnabled) {
5359    NamedRegionTimer T("DAG Legalization", GroupName);
5360    DAG.Legalize();
5361  } else {
5362    DAG.Legalize();
5363  }
5364
5365  DOUT << "Legalized selection DAG:\n";
5366  DEBUG(DAG.dump());
5367
5368  if (ViewDAGCombine2) DAG.viewGraph("dag-combine2 input for " + BlockName);
5369
5370  // Run the DAG combiner in post-legalize mode.
5371  if (TimePassesIsEnabled) {
5372    NamedRegionTimer T("DAG Combining 2", GroupName);
5373    DAG.Combine(true, *AA);
5374  } else {
5375    DAG.Combine(true, *AA);
5376  }
5377
5378  DOUT << "Optimized legalized selection DAG:\n";
5379  DEBUG(DAG.dump());
5380
5381  if (ViewISelDAGs) DAG.viewGraph("isel input for " + BlockName);
5382
5383  if (!FastISel && EnableValueProp)
5384    ComputeLiveOutVRegInfo(DAG);
5385
5386  // Third, instruction select all of the operations to machine code, adding the
5387  // code to the MachineBasicBlock.
5388  if (TimePassesIsEnabled) {
5389    NamedRegionTimer T("Instruction Selection", GroupName);
5390    InstructionSelect(DAG);
5391  } else {
5392    InstructionSelect(DAG);
5393  }
5394
5395  DOUT << "Selected selection DAG:\n";
5396  DEBUG(DAG.dump());
5397
5398  if (ViewSchedDAGs) DAG.viewGraph("scheduler input for " + BlockName);
5399
5400  // Schedule machine code.
5401  ScheduleDAG *Scheduler;
5402  if (TimePassesIsEnabled) {
5403    NamedRegionTimer T("Instruction Scheduling", GroupName);
5404    Scheduler = Schedule(DAG);
5405  } else {
5406    Scheduler = Schedule(DAG);
5407  }
5408
5409  if (ViewSUnitDAGs) Scheduler->viewGraph();
5410
5411  // Emit machine code to BB.  This can change 'BB' to the last block being
5412  // inserted into.
5413  if (TimePassesIsEnabled) {
5414    NamedRegionTimer T("Instruction Creation", GroupName);
5415    BB = Scheduler->EmitSchedule();
5416  } else {
5417    BB = Scheduler->EmitSchedule();
5418  }
5419
5420  // Free the scheduler state.
5421  if (TimePassesIsEnabled) {
5422    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
5423    delete Scheduler;
5424  } else {
5425    delete Scheduler;
5426  }
5427
5428  // Perform target specific isel post processing.
5429  if (TimePassesIsEnabled) {
5430    NamedRegionTimer T("Instruction Selection Post Processing", GroupName);
5431    InstructionSelectPostProcessing();
5432  } else {
5433    InstructionSelectPostProcessing();
5434  }
5435
5436  DOUT << "Selected machine code:\n";
5437  DEBUG(BB->dump());
5438}
5439
5440void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF,
5441                                            FunctionLoweringInfo &FuncInfo) {
5442  // Define NodeAllocator here so that memory allocation is reused for
5443  // each basic block.
5444  NodeAllocatorType NodeAllocator;
5445
5446  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
5447    SelectBasicBlock(I, MF, FuncInfo, NodeAllocator);
5448}
5449
5450void
5451SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
5452                                   FunctionLoweringInfo &FuncInfo,
5453                                   NodeAllocatorType &NodeAllocator) {
5454  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
5455  {
5456    SelectionDAG DAG(TLI, MF, FuncInfo,
5457                     getAnalysisToUpdate<MachineModuleInfo>(),
5458                     NodeAllocator);
5459    CurDAG = &DAG;
5460
5461    // First step, lower LLVM code to some DAG.  This DAG may use operations and
5462    // types that are not supported by the target.
5463    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
5464
5465    // Second step, emit the lowered DAG as machine code.
5466    CodeGenAndEmitDAG(DAG);
5467  }
5468
5469  DOUT << "Total amount of phi nodes to update: "
5470       << PHINodesToUpdate.size() << "\n";
5471  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
5472          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
5473               << ", " << PHINodesToUpdate[i].second << ")\n";);
5474
5475  // Next, now that we know what the last MBB the LLVM BB expanded is, update
5476  // PHI nodes in successors.
5477  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
5478    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5479      MachineInstr *PHI = PHINodesToUpdate[i].first;
5480      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5481             "This is not a machine PHI node that we are updating!");
5482      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5483                                                false));
5484      PHI->addOperand(MachineOperand::CreateMBB(BB));
5485    }
5486    return;
5487  }
5488
5489  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
5490    // Lower header first, if it wasn't already lowered
5491    if (!BitTestCases[i].Emitted) {
5492      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5493                         getAnalysisToUpdate<MachineModuleInfo>(),
5494                         NodeAllocator);
5495      CurDAG = &HSDAG;
5496      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5497      // Set the current basic block to the mbb we wish to insert the code into
5498      BB = BitTestCases[i].Parent;
5499      HSDL.setCurrentBasicBlock(BB);
5500      // Emit the code
5501      HSDL.visitBitTestHeader(BitTestCases[i]);
5502      HSDAG.setRoot(HSDL.getRoot());
5503      CodeGenAndEmitDAG(HSDAG);
5504    }
5505
5506    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5507      SelectionDAG BSDAG(TLI, MF, FuncInfo,
5508                         getAnalysisToUpdate<MachineModuleInfo>(),
5509                         NodeAllocator);
5510      CurDAG = &BSDAG;
5511      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
5512      // Set the current basic block to the mbb we wish to insert the code into
5513      BB = BitTestCases[i].Cases[j].ThisBB;
5514      BSDL.setCurrentBasicBlock(BB);
5515      // Emit the code
5516      if (j+1 != ej)
5517        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
5518                              BitTestCases[i].Reg,
5519                              BitTestCases[i].Cases[j]);
5520      else
5521        BSDL.visitBitTestCase(BitTestCases[i].Default,
5522                              BitTestCases[i].Reg,
5523                              BitTestCases[i].Cases[j]);
5524
5525
5526      BSDAG.setRoot(BSDL.getRoot());
5527      CodeGenAndEmitDAG(BSDAG);
5528    }
5529
5530    // Update PHI Nodes
5531    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5532      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5533      MachineBasicBlock *PHIBB = PHI->getParent();
5534      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5535             "This is not a machine PHI node that we are updating!");
5536      // This is "default" BB. We have two jumps to it. From "header" BB and
5537      // from last "case" BB.
5538      if (PHIBB == BitTestCases[i].Default) {
5539        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5540                                                  false));
5541        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
5542        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5543                                                  false));
5544        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
5545                                                  back().ThisBB));
5546      }
5547      // One of "cases" BB.
5548      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5549        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
5550        if (cBB->succ_end() !=
5551            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
5552          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5553                                                    false));
5554          PHI->addOperand(MachineOperand::CreateMBB(cBB));
5555        }
5556      }
5557    }
5558  }
5559
5560  // If the JumpTable record is filled in, then we need to emit a jump table.
5561  // Updating the PHI nodes is tricky in this case, since we need to determine
5562  // whether the PHI is a successor of the range check MBB or the jump table MBB
5563  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
5564    // Lower header first, if it wasn't already lowered
5565    if (!JTCases[i].first.Emitted) {
5566      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5567                         getAnalysisToUpdate<MachineModuleInfo>(),
5568                         NodeAllocator);
5569      CurDAG = &HSDAG;
5570      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5571      // Set the current basic block to the mbb we wish to insert the code into
5572      BB = JTCases[i].first.HeaderBB;
5573      HSDL.setCurrentBasicBlock(BB);
5574      // Emit the code
5575      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
5576      HSDAG.setRoot(HSDL.getRoot());
5577      CodeGenAndEmitDAG(HSDAG);
5578    }
5579
5580    SelectionDAG JSDAG(TLI, MF, FuncInfo,
5581                       getAnalysisToUpdate<MachineModuleInfo>(),
5582                       NodeAllocator);
5583    CurDAG = &JSDAG;
5584    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
5585    // Set the current basic block to the mbb we wish to insert the code into
5586    BB = JTCases[i].second.MBB;
5587    JSDL.setCurrentBasicBlock(BB);
5588    // Emit the code
5589    JSDL.visitJumpTable(JTCases[i].second);
5590    JSDAG.setRoot(JSDL.getRoot());
5591    CodeGenAndEmitDAG(JSDAG);
5592
5593    // Update PHI Nodes
5594    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5595      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5596      MachineBasicBlock *PHIBB = PHI->getParent();
5597      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5598             "This is not a machine PHI node that we are updating!");
5599      // "default" BB. We can go there only from header BB.
5600      if (PHIBB == JTCases[i].second.Default) {
5601        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5602                                                  false));
5603        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
5604      }
5605      // JT BB. Just iterate over successors here
5606      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
5607        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5608                                                  false));
5609        PHI->addOperand(MachineOperand::CreateMBB(BB));
5610      }
5611    }
5612  }
5613
5614  // If the switch block involved a branch to one of the actual successors, we
5615  // need to update PHI nodes in that block.
5616  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5617    MachineInstr *PHI = PHINodesToUpdate[i].first;
5618    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5619           "This is not a machine PHI node that we are updating!");
5620    if (BB->isSuccessor(PHI->getParent())) {
5621      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5622                                                false));
5623      PHI->addOperand(MachineOperand::CreateMBB(BB));
5624    }
5625  }
5626
5627  // If we generated any switch lowering information, build and codegen any
5628  // additional DAGs necessary.
5629  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
5630    SelectionDAG SDAG(TLI, MF, FuncInfo,
5631                      getAnalysisToUpdate<MachineModuleInfo>(),
5632                      NodeAllocator);
5633    CurDAG = &SDAG;
5634    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
5635
5636    // Set the current basic block to the mbb we wish to insert the code into
5637    BB = SwitchCases[i].ThisBB;
5638    SDL.setCurrentBasicBlock(BB);
5639
5640    // Emit the code
5641    SDL.visitSwitchCase(SwitchCases[i]);
5642    SDAG.setRoot(SDL.getRoot());
5643    CodeGenAndEmitDAG(SDAG);
5644
5645    // Handle any PHI nodes in successors of this chunk, as if we were coming
5646    // from the original BB before switch expansion.  Note that PHI nodes can
5647    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5648    // handle them the right number of times.
5649    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5650      for (MachineBasicBlock::iterator Phi = BB->begin();
5651           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5652        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5653        for (unsigned pn = 0; ; ++pn) {
5654          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
5655          if (PHINodesToUpdate[pn].first == Phi) {
5656            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
5657                                                      second, false));
5658            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
5659            break;
5660          }
5661        }
5662      }
5663
5664      // Don't process RHS if same block as LHS.
5665      if (BB == SwitchCases[i].FalseBB)
5666        SwitchCases[i].FalseBB = 0;
5667
5668      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5669      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
5670      SwitchCases[i].FalseBB = 0;
5671    }
5672    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
5673  }
5674}
5675
5676
5677/// Schedule - Pick a safe ordering for instructions for each
5678/// target node in the graph.
5679///
5680ScheduleDAG *SelectionDAGISel::Schedule(SelectionDAG &DAG) {
5681  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5682
5683  if (!Ctor) {
5684    Ctor = ISHeuristic;
5685    RegisterScheduler::setDefault(Ctor);
5686  }
5687
5688  ScheduleDAG *Scheduler = Ctor(this, &DAG, BB, FastISel);
5689  Scheduler->Run();
5690
5691  return Scheduler;
5692}
5693
5694
5695HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5696  return new HazardRecognizer();
5697}
5698
5699//===----------------------------------------------------------------------===//
5700// Helper functions used by the generated instruction selector.
5701//===----------------------------------------------------------------------===//
5702// Calls to these methods are generated by tblgen.
5703
5704/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5705/// the dag combiner simplified the 255, we still want to match.  RHS is the
5706/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5707/// specified in the .td file (e.g. 255).
5708bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
5709                                    int64_t DesiredMaskS) const {
5710  const APInt &ActualMask = RHS->getAPIntValue();
5711  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5712
5713  // If the actual mask exactly matches, success!
5714  if (ActualMask == DesiredMask)
5715    return true;
5716
5717  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5718  if (ActualMask.intersects(~DesiredMask))
5719    return false;
5720
5721  // Otherwise, the DAG Combiner may have proven that the value coming in is
5722  // either already zero or is not demanded.  Check for known zero input bits.
5723  APInt NeededMask = DesiredMask & ~ActualMask;
5724  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5725    return true;
5726
5727  // TODO: check to see if missing bits are just not demanded.
5728
5729  // Otherwise, this pattern doesn't match.
5730  return false;
5731}
5732
5733/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5734/// the dag combiner simplified the 255, we still want to match.  RHS is the
5735/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5736/// specified in the .td file (e.g. 255).
5737bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
5738                                   int64_t DesiredMaskS) const {
5739  const APInt &ActualMask = RHS->getAPIntValue();
5740  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5741
5742  // If the actual mask exactly matches, success!
5743  if (ActualMask == DesiredMask)
5744    return true;
5745
5746  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5747  if (ActualMask.intersects(~DesiredMask))
5748    return false;
5749
5750  // Otherwise, the DAG Combiner may have proven that the value coming in is
5751  // either already zero or is not demanded.  Check for known zero input bits.
5752  APInt NeededMask = DesiredMask & ~ActualMask;
5753
5754  APInt KnownZero, KnownOne;
5755  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5756
5757  // If all the missing bits in the or are already known to be set, match!
5758  if ((NeededMask & KnownOne) == NeededMask)
5759    return true;
5760
5761  // TODO: check to see if missing bits are just not demanded.
5762
5763  // Otherwise, this pattern doesn't match.
5764  return false;
5765}
5766
5767
5768/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5769/// by tblgen.  Others should not call it.
5770void SelectionDAGISel::
5771SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, SelectionDAG &DAG) {
5772  std::vector<SDValue> InOps;
5773  std::swap(InOps, Ops);
5774
5775  Ops.push_back(InOps[0]);  // input chain.
5776  Ops.push_back(InOps[1]);  // input asm string.
5777
5778  unsigned i = 2, e = InOps.size();
5779  if (InOps[e-1].getValueType() == MVT::Flag)
5780    --e;  // Don't process a flag operand if it is here.
5781
5782  while (i != e) {
5783    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5784    if ((Flags & 7) != 4 /*MEM*/) {
5785      // Just skip over this operand, copying the operands verbatim.
5786      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5787      i += (Flags >> 3) + 1;
5788    } else {
5789      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5790      // Otherwise, this is a memory operand.  Ask the target to select it.
5791      std::vector<SDValue> SelOps;
5792      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5793        cerr << "Could not match memory address.  Inline asm failure!\n";
5794        exit(1);
5795      }
5796
5797      // Add this to the output node.
5798      MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5799      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5800                                          IntPtrTy));
5801      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5802      i += 2;
5803    }
5804  }
5805
5806  // Add the flag input back if present.
5807  if (e != InOps.size())
5808    Ops.push_back(InOps.back());
5809}
5810
5811char SelectionDAGISel::ID = 0;
5812