SelectionDAGISel.cpp revision fd3f6351035f6bf1a6bfc851da00c0fb24d6db09
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/CodeGen/FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetIntrinsicInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Support/Compiler.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/Timer.h"
51#include "llvm/Support/raw_ostream.h"
52#include "llvm/ADT/PostOrderIterator.h"
53#include "llvm/ADT/Statistic.h"
54#include <algorithm>
55using namespace llvm;
56
57STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
58STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
59STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
60STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
61
62#ifndef NDEBUG
63STATISTIC(NumBBWithOutOfOrderLineInfo,
64          "Number of blocks with out of order line number info");
65STATISTIC(NumMBBWithOutOfOrderLineInfo,
66          "Number of machine blocks with out of order line number info");
67#endif
68
69static cl::opt<bool>
70EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
71          cl::desc("Enable verbose messages in the \"fast\" "
72                   "instruction selector"));
73static cl::opt<bool>
74EnableFastISelAbort("fast-isel-abort", cl::Hidden,
75          cl::desc("Enable abort calls when \"fast\" instruction fails"));
76
77#ifndef NDEBUG
78static cl::opt<bool>
79ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
80          cl::desc("Pop up a window to show dags before the first "
81                   "dag combine pass"));
82static cl::opt<bool>
83ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize types"));
85static cl::opt<bool>
86ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before legalize"));
88static cl::opt<bool>
89ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
90          cl::desc("Pop up a window to show dags before the second "
91                   "dag combine pass"));
92static cl::opt<bool>
93ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
94          cl::desc("Pop up a window to show dags before the post legalize types"
95                   " dag combine pass"));
96static cl::opt<bool>
97ViewISelDAGs("view-isel-dags", cl::Hidden,
98          cl::desc("Pop up a window to show isel dags as they are selected"));
99static cl::opt<bool>
100ViewSchedDAGs("view-sched-dags", cl::Hidden,
101          cl::desc("Pop up a window to show sched dags as they are processed"));
102static cl::opt<bool>
103ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
104      cl::desc("Pop up a window to show SUnit dags after they are processed"));
105#else
106static const bool ViewDAGCombine1 = false,
107                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
108                  ViewDAGCombine2 = false,
109                  ViewDAGCombineLT = false,
110                  ViewISelDAGs = false, ViewSchedDAGs = false,
111                  ViewSUnitDAGs = false;
112#endif
113
114//===---------------------------------------------------------------------===//
115///
116/// RegisterScheduler class - Track the registration of instruction schedulers.
117///
118//===---------------------------------------------------------------------===//
119MachinePassRegistry RegisterScheduler::Registry;
120
121//===---------------------------------------------------------------------===//
122///
123/// ISHeuristic command line option for instruction schedulers.
124///
125//===---------------------------------------------------------------------===//
126static cl::opt<RegisterScheduler::FunctionPassCtor, false,
127               RegisterPassParser<RegisterScheduler> >
128ISHeuristic("pre-RA-sched",
129            cl::init(&createDefaultScheduler),
130            cl::desc("Instruction schedulers available (before register"
131                     " allocation):"));
132
133static RegisterScheduler
134defaultListDAGScheduler("default", "Best scheduler for the target",
135                        createDefaultScheduler);
136
137namespace llvm {
138  //===--------------------------------------------------------------------===//
139  /// createDefaultScheduler - This creates an instruction scheduler appropriate
140  /// for the target.
141  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
142                                             CodeGenOpt::Level OptLevel) {
143    const TargetLowering &TLI = IS->getTargetLowering();
144
145    if (OptLevel == CodeGenOpt::None)
146      return createSourceListDAGScheduler(IS, OptLevel);
147    if (TLI.getSchedulingPreference() == Sched::Latency)
148      return createTDListDAGScheduler(IS, OptLevel);
149    if (TLI.getSchedulingPreference() == Sched::RegPressure)
150      return createBURRListDAGScheduler(IS, OptLevel);
151    if (TLI.getSchedulingPreference() == Sched::Hybrid)
152      return createHybridListDAGScheduler(IS, OptLevel);
153    assert(TLI.getSchedulingPreference() == Sched::ILP &&
154           "Unknown sched type!");
155    return createILPListDAGScheduler(IS, OptLevel);
156  }
157}
158
159// EmitInstrWithCustomInserter - This method should be implemented by targets
160// that mark instructions with the 'usesCustomInserter' flag.  These
161// instructions are special in various ways, which require special support to
162// insert.  The specified MachineInstr is created but not inserted into any
163// basic blocks, and this method is called to expand it into a sequence of
164// instructions, potentially also creating new basic blocks and control flow.
165// When new basic blocks are inserted and the edges from MBB to its successors
166// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
167// DenseMap.
168MachineBasicBlock *
169TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
170                                            MachineBasicBlock *MBB) const {
171#ifndef NDEBUG
172  dbgs() << "If a target marks an instruction with "
173          "'usesCustomInserter', it must implement "
174          "TargetLowering::EmitInstrWithCustomInserter!";
175#endif
176  llvm_unreachable(0);
177  return 0;
178}
179
180//===----------------------------------------------------------------------===//
181// SelectionDAGISel code
182//===----------------------------------------------------------------------===//
183
184SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
185                                   CodeGenOpt::Level OL) :
186  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
187  FuncInfo(new FunctionLoweringInfo(TLI)),
188  CurDAG(new SelectionDAG(tm)),
189  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
190  GFI(),
191  OptLevel(OL),
192  DAGSize(0) {
193    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
194    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
195  }
196
197SelectionDAGISel::~SelectionDAGISel() {
198  delete SDB;
199  delete CurDAG;
200  delete FuncInfo;
201}
202
203void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
204  AU.addRequired<AliasAnalysis>();
205  AU.addPreserved<AliasAnalysis>();
206  AU.addRequired<GCModuleInfo>();
207  AU.addPreserved<GCModuleInfo>();
208  MachineFunctionPass::getAnalysisUsage(AU);
209}
210
211/// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
212/// other function that gcc recognizes as "returning twice". This is used to
213/// limit code-gen optimizations on the machine function.
214///
215/// FIXME: Remove after <rdar://problem/8031714> is fixed.
216static bool FunctionCallsSetJmp(const Function *F) {
217  const Module *M = F->getParent();
218  static const char *ReturnsTwiceFns[] = {
219    "_setjmp",
220    "setjmp",
221    "sigsetjmp",
222    "setjmp_syscall",
223    "savectx",
224    "qsetjmp",
225    "vfork",
226    "getcontext"
227  };
228#define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
229
230  for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I)
231    if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) {
232      if (!Callee->use_empty())
233        for (Value::const_use_iterator
234               I = Callee->use_begin(), E = Callee->use_end();
235             I != E; ++I)
236          if (const CallInst *CI = dyn_cast<CallInst>(*I))
237            if (CI->getParent()->getParent() == F)
238              return true;
239    }
240
241  return false;
242#undef NUM_RETURNS_TWICE_FNS
243}
244
245/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
246/// may trap on it.  In this case we have to split the edge so that the path
247/// through the predecessor block that doesn't go to the phi block doesn't
248/// execute the possibly trapping instruction.
249///
250/// This is required for correctness, so it must be done at -O0.
251///
252static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
253  // Loop for blocks with phi nodes.
254  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
255    PHINode *PN = dyn_cast<PHINode>(BB->begin());
256    if (PN == 0) continue;
257
258  ReprocessBlock:
259    // For each block with a PHI node, check to see if any of the input values
260    // are potentially trapping constant expressions.  Constant expressions are
261    // the only potentially trapping value that can occur as the argument to a
262    // PHI.
263    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
264      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
265        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
266        if (CE == 0 || !CE->canTrap()) continue;
267
268        // The only case we have to worry about is when the edge is critical.
269        // Since this block has a PHI Node, we assume it has multiple input
270        // edges: check to see if the pred has multiple successors.
271        BasicBlock *Pred = PN->getIncomingBlock(i);
272        if (Pred->getTerminator()->getNumSuccessors() == 1)
273          continue;
274
275        // Okay, we have to split this edge.
276        SplitCriticalEdge(Pred->getTerminator(),
277                          GetSuccessorNumber(Pred, BB), SDISel, true);
278        goto ReprocessBlock;
279      }
280  }
281}
282
283bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
284  // Do some sanity-checking on the command-line options.
285  assert((!EnableFastISelVerbose || EnableFastISel) &&
286         "-fast-isel-verbose requires -fast-isel");
287  assert((!EnableFastISelAbort || EnableFastISel) &&
288         "-fast-isel-abort requires -fast-isel");
289
290  const Function &Fn = *mf.getFunction();
291  const TargetInstrInfo &TII = *TM.getInstrInfo();
292  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
293
294  MF = &mf;
295  RegInfo = &MF->getRegInfo();
296  AA = &getAnalysis<AliasAnalysis>();
297  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
298
299  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
300
301  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
302
303  CurDAG->init(*MF);
304  FuncInfo->set(Fn, *MF);
305  SDB->init(GFI, *AA);
306
307  SelectAllBasicBlocks(Fn);
308
309  // If the first basic block in the function has live ins that need to be
310  // copied into vregs, emit the copies into the top of the block before
311  // emitting the code for the block.
312  MachineBasicBlock *EntryMBB = MF->begin();
313  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
314
315  DenseMap<unsigned, unsigned> LiveInMap;
316  if (!FuncInfo->ArgDbgValues.empty())
317    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
318           E = RegInfo->livein_end(); LI != E; ++LI)
319      if (LI->second)
320        LiveInMap.insert(std::make_pair(LI->first, LI->second));
321
322  // Insert DBG_VALUE instructions for function arguments to the entry block.
323  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
324    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
325    unsigned Reg = MI->getOperand(0).getReg();
326    if (TargetRegisterInfo::isPhysicalRegister(Reg))
327      EntryMBB->insert(EntryMBB->begin(), MI);
328    else {
329      MachineInstr *Def = RegInfo->getVRegDef(Reg);
330      MachineBasicBlock::iterator InsertPos = Def;
331      // FIXME: VR def may not be in entry block.
332      Def->getParent()->insert(llvm::next(InsertPos), MI);
333    }
334
335    // If Reg is live-in then update debug info to track its copy in a vreg.
336    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
337    if (LDI != LiveInMap.end()) {
338      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
339      MachineBasicBlock::iterator InsertPos = Def;
340      const MDNode *Variable =
341        MI->getOperand(MI->getNumOperands()-1).getMetadata();
342      unsigned Offset = MI->getOperand(1).getImm();
343      // Def is never a terminator here, so it is ok to increment InsertPos.
344      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
345              TII.get(TargetOpcode::DBG_VALUE))
346        .addReg(LDI->second, RegState::Debug)
347        .addImm(Offset).addMetadata(Variable);
348
349      // If this vreg is directly copied into an exported register then
350      // that COPY instructions also need DBG_VALUE, if it is the only
351      // user of LDI->second.
352      MachineInstr *CopyUseMI = NULL;
353      for (MachineRegisterInfo::use_iterator
354             UI = RegInfo->use_begin(LDI->second);
355           MachineInstr *UseMI = UI.skipInstruction();) {
356        if (UseMI->isDebugValue()) continue;
357        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
358          CopyUseMI = UseMI; continue;
359        }
360        // Otherwise this is another use or second copy use.
361        CopyUseMI = NULL; break;
362      }
363      if (CopyUseMI) {
364        MachineInstr *NewMI =
365          BuildMI(*MF, CopyUseMI->getDebugLoc(),
366                  TII.get(TargetOpcode::DBG_VALUE))
367          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
368          .addImm(Offset).addMetadata(Variable);
369        EntryMBB->insertAfter(CopyUseMI, NewMI);
370      }
371    }
372  }
373
374  // Determine if there are any calls in this machine function.
375  MachineFrameInfo *MFI = MF->getFrameInfo();
376  if (!MFI->hasCalls()) {
377    for (MachineFunction::const_iterator
378           I = MF->begin(), E = MF->end(); I != E; ++I) {
379      const MachineBasicBlock *MBB = I;
380      for (MachineBasicBlock::const_iterator
381             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
382        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
383
384        if ((TID.isCall() && !TID.isReturn()) ||
385            II->isStackAligningInlineAsm()) {
386          MFI->setHasCalls(true);
387          goto done;
388        }
389      }
390    }
391  done:;
392  }
393
394  // Determine if there is a call to setjmp in the machine function.
395  MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
396
397  // Replace forward-declared registers with the registers containing
398  // the desired value.
399  MachineRegisterInfo &MRI = MF->getRegInfo();
400  for (DenseMap<unsigned, unsigned>::iterator
401       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
402       I != E; ++I) {
403    unsigned From = I->first;
404    unsigned To = I->second;
405    // If To is also scheduled to be replaced, find what its ultimate
406    // replacement is.
407    for (;;) {
408      DenseMap<unsigned, unsigned>::iterator J =
409        FuncInfo->RegFixups.find(To);
410      if (J == E) break;
411      To = J->second;
412    }
413    // Replace it.
414    MRI.replaceRegWith(From, To);
415  }
416
417  // Release function-specific state. SDB and CurDAG are already cleared
418  // at this point.
419  FuncInfo->clear();
420
421  return true;
422}
423
424void
425SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
426                                   BasicBlock::const_iterator End,
427                                   bool &HadTailCall) {
428  // Lower all of the non-terminator instructions. If a call is emitted
429  // as a tail call, cease emitting nodes for this block. Terminators
430  // are handled below.
431  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
432    SDB->visit(*I);
433
434  // Make sure the root of the DAG is up-to-date.
435  CurDAG->setRoot(SDB->getControlRoot());
436  HadTailCall = SDB->HasTailCall;
437  SDB->clear();
438
439  // Final step, emit the lowered DAG as machine code.
440  CodeGenAndEmitDAG();
441  return;
442}
443
444void SelectionDAGISel::ComputeLiveOutVRegInfo() {
445  SmallPtrSet<SDNode*, 128> VisitedNodes;
446  SmallVector<SDNode*, 128> Worklist;
447
448  Worklist.push_back(CurDAG->getRoot().getNode());
449
450  APInt Mask;
451  APInt KnownZero;
452  APInt KnownOne;
453
454  do {
455    SDNode *N = Worklist.pop_back_val();
456
457    // If we've already seen this node, ignore it.
458    if (!VisitedNodes.insert(N))
459      continue;
460
461    // Otherwise, add all chain operands to the worklist.
462    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
463      if (N->getOperand(i).getValueType() == MVT::Other)
464        Worklist.push_back(N->getOperand(i).getNode());
465
466    // If this is a CopyToReg with a vreg dest, process it.
467    if (N->getOpcode() != ISD::CopyToReg)
468      continue;
469
470    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
471    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
472      continue;
473
474    // Ignore non-scalar or non-integer values.
475    SDValue Src = N->getOperand(2);
476    EVT SrcVT = Src.getValueType();
477    if (!SrcVT.isInteger() || SrcVT.isVector())
478      continue;
479
480    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
481    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
482    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
483    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
484  } while (!Worklist.empty());
485}
486
487void SelectionDAGISel::CodeGenAndEmitDAG() {
488  std::string GroupName;
489  if (TimePassesIsEnabled)
490    GroupName = "Instruction Selection and Scheduling";
491  std::string BlockName;
492  int BlockNumber = -1;
493#ifdef NDEBUG
494  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
495      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
496      ViewSUnitDAGs)
497#endif
498  {
499    BlockNumber = FuncInfo->MBB->getNumber();
500    BlockName = MF->getFunction()->getNameStr() + ":" +
501                FuncInfo->MBB->getBasicBlock()->getNameStr();
502  }
503  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
504        << " '" << BlockName << "'\n"; CurDAG->dump());
505
506  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
507
508  // Run the DAG combiner in pre-legalize mode.
509  {
510    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
511    CurDAG->Combine(Unrestricted, *AA, OptLevel);
512  }
513
514  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
515        << " '" << BlockName << "'\n"; CurDAG->dump());
516
517  // Second step, hack on the DAG until it only uses operations and types that
518  // the target supports.
519  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
520                                               BlockName);
521
522  bool Changed;
523  {
524    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
525    Changed = CurDAG->LegalizeTypes();
526  }
527
528  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
529        << " '" << BlockName << "'\n"; CurDAG->dump());
530
531  if (Changed) {
532    if (ViewDAGCombineLT)
533      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
534
535    // Run the DAG combiner in post-type-legalize mode.
536    {
537      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
538                         TimePassesIsEnabled);
539      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
540    }
541
542    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
543          << " '" << BlockName << "'\n"; CurDAG->dump());
544  }
545
546  {
547    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
548    Changed = CurDAG->LegalizeVectors();
549  }
550
551  if (Changed) {
552    {
553      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
554      CurDAG->LegalizeTypes();
555    }
556
557    if (ViewDAGCombineLT)
558      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
559
560    // Run the DAG combiner in post-type-legalize mode.
561    {
562      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
563                         TimePassesIsEnabled);
564      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
565    }
566
567    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
568          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
569  }
570
571  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
572
573  {
574    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
575    CurDAG->Legalize(OptLevel);
576  }
577
578  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
579        << " '" << BlockName << "'\n"; CurDAG->dump());
580
581  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
582
583  // Run the DAG combiner in post-legalize mode.
584  {
585    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
586    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
587  }
588
589  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
590        << " '" << BlockName << "'\n"; CurDAG->dump());
591
592  if (OptLevel != CodeGenOpt::None)
593    ComputeLiveOutVRegInfo();
594
595  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
596
597  // Third, instruction select all of the operations to machine code, adding the
598  // code to the MachineBasicBlock.
599  {
600    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
601    DoInstructionSelection();
602  }
603
604  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
605        << " '" << BlockName << "'\n"; CurDAG->dump());
606
607  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
608
609  // Schedule machine code.
610  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
611  {
612    NamedRegionTimer T("Instruction Scheduling", GroupName,
613                       TimePassesIsEnabled);
614    Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
615  }
616
617  if (ViewSUnitDAGs) Scheduler->viewGraph();
618
619  // Emit machine code to BB.  This can change 'BB' to the last block being
620  // inserted into.
621  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
622  {
623    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
624
625    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
626    FuncInfo->InsertPt = Scheduler->InsertPos;
627  }
628
629  // If the block was split, make sure we update any references that are used to
630  // update PHI nodes later on.
631  if (FirstMBB != LastMBB)
632    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
633
634  // Free the scheduler state.
635  {
636    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
637                       TimePassesIsEnabled);
638    delete Scheduler;
639  }
640
641  // Free the SelectionDAG state, now that we're finished with it.
642  CurDAG->clear();
643}
644
645void SelectionDAGISel::DoInstructionSelection() {
646  DEBUG(errs() << "===== Instruction selection begins: BB#"
647        << FuncInfo->MBB->getNumber()
648        << " '" << FuncInfo->MBB->getName() << "'\n");
649
650  PreprocessISelDAG();
651
652  // Select target instructions for the DAG.
653  {
654    // Number all nodes with a topological order and set DAGSize.
655    DAGSize = CurDAG->AssignTopologicalOrder();
656
657    // Create a dummy node (which is not added to allnodes), that adds
658    // a reference to the root node, preventing it from being deleted,
659    // and tracking any changes of the root.
660    HandleSDNode Dummy(CurDAG->getRoot());
661    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
662    ++ISelPosition;
663
664    // The AllNodes list is now topological-sorted. Visit the
665    // nodes by starting at the end of the list (the root of the
666    // graph) and preceding back toward the beginning (the entry
667    // node).
668    while (ISelPosition != CurDAG->allnodes_begin()) {
669      SDNode *Node = --ISelPosition;
670      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
671      // but there are currently some corner cases that it misses. Also, this
672      // makes it theoretically possible to disable the DAGCombiner.
673      if (Node->use_empty())
674        continue;
675
676      SDNode *ResNode = Select(Node);
677
678      // FIXME: This is pretty gross.  'Select' should be changed to not return
679      // anything at all and this code should be nuked with a tactical strike.
680
681      // If node should not be replaced, continue with the next one.
682      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
683        continue;
684      // Replace node.
685      if (ResNode)
686        ReplaceUses(Node, ResNode);
687
688      // If after the replacement this node is not used any more,
689      // remove this dead node.
690      if (Node->use_empty()) { // Don't delete EntryToken, etc.
691        ISelUpdater ISU(ISelPosition);
692        CurDAG->RemoveDeadNode(Node, &ISU);
693      }
694    }
695
696    CurDAG->setRoot(Dummy.getValue());
697  }
698
699  DEBUG(errs() << "===== Instruction selection ends:\n");
700
701  PostprocessISelDAG();
702}
703
704/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
705/// do other setup for EH landing-pad blocks.
706void SelectionDAGISel::PrepareEHLandingPad() {
707  // Add a label to mark the beginning of the landing pad.  Deletion of the
708  // landing pad can thus be detected via the MachineModuleInfo.
709  MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
710
711  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
712  BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
713    .addSym(Label);
714
715  // Mark exception register as live in.
716  unsigned Reg = TLI.getExceptionAddressRegister();
717  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
718
719  // Mark exception selector register as live in.
720  Reg = TLI.getExceptionSelectorRegister();
721  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
722
723  // FIXME: Hack around an exception handling flaw (PR1508): the personality
724  // function and list of typeids logically belong to the invoke (or, if you
725  // like, the basic block containing the invoke), and need to be associated
726  // with it in the dwarf exception handling tables.  Currently however the
727  // information is provided by an intrinsic (eh.selector) that can be moved
728  // to unexpected places by the optimizers: if the unwind edge is critical,
729  // then breaking it can result in the intrinsics being in the successor of
730  // the landing pad, not the landing pad itself.  This results
731  // in exceptions not being caught because no typeids are associated with
732  // the invoke.  This may not be the only way things can go wrong, but it
733  // is the only way we try to work around for the moment.
734  const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
735  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
736
737  if (Br && Br->isUnconditional()) { // Critical edge?
738    BasicBlock::const_iterator I, E;
739    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
740      if (isa<EHSelectorInst>(I))
741        break;
742
743    if (I == E)
744      // No catch info found - try to extract some from the successor.
745      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
746  }
747}
748
749
750
751/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
752/// load into the specified FoldInst.  Note that we could have a sequence where
753/// multiple LLVM IR instructions are folded into the same machineinstr.  For
754/// example we could have:
755///   A: x = load i32 *P
756///   B: y = icmp A, 42
757///   C: br y, ...
758///
759/// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
760/// any other folded instructions) because it is between A and C.
761///
762/// If we succeed in folding the load into the operation, return true.
763///
764bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
765                                             const Instruction *FoldInst,
766                                             FastISel *FastIS) {
767  SmallPtrSet<const Instruction*, 4> FoldedInsts;
768  for (BasicBlock::const_iterator II = FoldInst; &*II != LI; --II)
769    FoldedInsts.insert(II);
770
771  // We know that the load has a single use, but don't know what it is.  If it
772  // isn't one of the folded instructions, then we can't succeed here.
773  if (!FoldedInsts.count(LI->use_back()))
774    return false;
775
776  // Don't try to fold volatile loads.  Target has to deal with alignment
777  // constraints.
778  if (LI->isVolatile()) return false;
779
780  // Figure out which vreg this is going into.
781  unsigned LoadReg = FastIS->getRegForValue(LI);
782  assert(LoadReg && "Load isn't already assigned a vreg? ");
783
784  // Check to see what the uses of this vreg are.  If it has no uses, or more
785  // than one use (at the machine instr level) then we can't fold it.
786  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
787  if (RI == RegInfo->reg_end())
788    return false;
789
790  // See if there is exactly one use of the vreg.  If there are multiple uses,
791  // then the instruction got lowered to multiple machine instructions or the
792  // use of the loaded value ended up being multiple operands of the result, in
793  // either case, we can't fold this.
794  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
795  if (PostRI != RegInfo->reg_end())
796    return false;
797
798  assert(RI.getOperand().isUse() &&
799         "The only use of the vreg must be a use, we haven't emitted the def!");
800
801  MachineInstr *User = &*RI;
802
803  // Set the insertion point properly.  Folding the load can cause generation of
804  // other random instructions (like sign extends) for addressing modes, make
805  // sure they get inserted in a logical place before the new instruction.
806  FuncInfo->InsertPt = User;
807  FuncInfo->MBB = User->getParent();
808
809  // Ask the target to try folding the load.
810  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
811}
812
813#ifndef NDEBUG
814/// CheckLineNumbers - Check if basic block instructions follow source order
815/// or not.
816static void CheckLineNumbers(const BasicBlock *BB) {
817  unsigned Line = 0;
818  unsigned Col = 0;
819  for (BasicBlock::const_iterator BI = BB->begin(),
820         BE = BB->end(); BI != BE; ++BI) {
821    const DebugLoc DL = BI->getDebugLoc();
822    if (DL.isUnknown()) continue;
823    unsigned L = DL.getLine();
824    unsigned C = DL.getCol();
825    if (L < Line || (L == Line && C < Col)) {
826      ++NumBBWithOutOfOrderLineInfo;
827      return;
828    }
829    Line = L;
830    Col = C;
831  }
832}
833
834/// CheckLineNumbers - Check if machine basic block instructions follow source
835/// order or not.
836static void CheckLineNumbers(const MachineBasicBlock *MBB) {
837  unsigned Line = 0;
838  unsigned Col = 0;
839  for (MachineBasicBlock::const_iterator MBI = MBB->begin(),
840         MBE = MBB->end(); MBI != MBE; ++MBI) {
841    const DebugLoc DL = MBI->getDebugLoc();
842    if (DL.isUnknown()) continue;
843    unsigned L = DL.getLine();
844    unsigned C = DL.getCol();
845    if (L < Line || (L == Line && C < Col)) {
846      ++NumMBBWithOutOfOrderLineInfo;
847      return;
848    }
849    Line = L;
850    Col = C;
851  }
852}
853#endif
854
855/// isFoldedOrDeadInstruction - Return true if the specified instruction is
856/// side-effect free and is either dead or folded into a generated instruction.
857/// Return false if it needs to be emitted.
858static bool isFoldedOrDeadInstruction(const Instruction *I,
859                                      FunctionLoweringInfo *FuncInfo) {
860  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
861         !isa<TerminatorInst>(I) && // Terminators aren't folded.
862         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
863         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
864}
865
866void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
867  // Initialize the Fast-ISel state, if needed.
868  FastISel *FastIS = 0;
869  if (EnableFastISel)
870    FastIS = TLI.createFastISel(*FuncInfo);
871
872  // Iterate over all basic blocks in the function.
873  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
874  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
875       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
876    const BasicBlock *LLVMBB = *I;
877#ifndef NDEBUG
878    CheckLineNumbers(LLVMBB);
879#endif
880
881    if (OptLevel != CodeGenOpt::None) {
882      bool AllPredsVisited = true;
883      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
884           PI != PE; ++PI) {
885        if (!FuncInfo->VisitedBBs.count(*PI)) {
886          AllPredsVisited = false;
887          break;
888        }
889      }
890
891      if (AllPredsVisited) {
892        for (BasicBlock::const_iterator I = LLVMBB->begin();
893             isa<PHINode>(I); ++I)
894          FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
895      } else {
896        for (BasicBlock::const_iterator I = LLVMBB->begin();
897             isa<PHINode>(I); ++I)
898          FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
899      }
900
901      FuncInfo->VisitedBBs.insert(LLVMBB);
902    }
903
904    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
905    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
906
907    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
908    BasicBlock::const_iterator const End = LLVMBB->end();
909    BasicBlock::const_iterator BI = End;
910
911    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
912
913    // Setup an EH landing-pad block.
914    if (FuncInfo->MBB->isLandingPad())
915      PrepareEHLandingPad();
916
917    // Lower any arguments needed in this block if this is the entry block.
918    if (LLVMBB == &Fn.getEntryBlock())
919      LowerArguments(LLVMBB);
920
921    // Before doing SelectionDAG ISel, see if FastISel has been requested.
922    if (FastIS) {
923      FastIS->startNewBlock();
924
925      // Emit code for any incoming arguments. This must happen before
926      // beginning FastISel on the entry block.
927      if (LLVMBB == &Fn.getEntryBlock()) {
928        CurDAG->setRoot(SDB->getControlRoot());
929        SDB->clear();
930        CodeGenAndEmitDAG();
931
932        // If we inserted any instructions at the beginning, make a note of
933        // where they are, so we can be sure to emit subsequent instructions
934        // after them.
935        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
936          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
937        else
938          FastIS->setLastLocalValue(0);
939      }
940
941      // Do FastISel on as many instructions as possible.
942      for (; BI != Begin; --BI) {
943        const Instruction *Inst = llvm::prior(BI);
944
945        // If we no longer require this instruction, skip it.
946        if (isFoldedOrDeadInstruction(Inst, FuncInfo))
947          continue;
948
949        // Bottom-up: reset the insert pos at the top, after any local-value
950        // instructions.
951        FastIS->recomputeInsertPt();
952
953        // Try to select the instruction with FastISel.
954        if (FastIS->SelectInstruction(Inst)) {
955          // If fast isel succeeded, skip over all the folded instructions, and
956          // then see if there is a load right before the selected instructions.
957          // Try to fold the load if so.
958          const Instruction *BeforeInst = Inst;
959          while (BeforeInst != Begin) {
960            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
961            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
962              break;
963          }
964          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
965              BeforeInst->hasOneUse() &&
966              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS))
967            // If we succeeded, don't re-select the load.
968            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
969          continue;
970        }
971
972        // Then handle certain instructions as single-LLVM-Instruction blocks.
973        if (isa<CallInst>(Inst)) {
974          ++NumFastIselFailures;
975          if (EnableFastISelVerbose || EnableFastISelAbort) {
976            dbgs() << "FastISel missed call: ";
977            Inst->dump();
978          }
979
980          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
981            unsigned &R = FuncInfo->ValueMap[Inst];
982            if (!R)
983              R = FuncInfo->CreateRegs(Inst->getType());
984          }
985
986          bool HadTailCall = false;
987          SelectBasicBlock(Inst, BI, HadTailCall);
988
989          // If the call was emitted as a tail call, we're done with the block.
990          if (HadTailCall) {
991            --BI;
992            break;
993          }
994
995          continue;
996        }
997
998        // Otherwise, give up on FastISel for the rest of the block.
999        // For now, be a little lenient about non-branch terminators.
1000        if (!isa<TerminatorInst>(Inst) || isa<BranchInst>(Inst)) {
1001          ++NumFastIselFailures;
1002          if (EnableFastISelVerbose || EnableFastISelAbort) {
1003            dbgs() << "FastISel miss: ";
1004            Inst->dump();
1005          }
1006          if (EnableFastISelAbort)
1007            // The "fast" selector couldn't handle something and bailed.
1008            // For the purpose of debugging, just abort.
1009            llvm_unreachable("FastISel didn't select the entire block");
1010        }
1011        break;
1012      }
1013
1014      FastIS->recomputeInsertPt();
1015    }
1016
1017    if (Begin != BI)
1018      ++NumDAGBlocks;
1019    else
1020      ++NumFastIselBlocks;
1021
1022    // Run SelectionDAG instruction selection on the remainder of the block
1023    // not handled by FastISel. If FastISel is not run, this is the entire
1024    // block.
1025    bool HadTailCall;
1026    SelectBasicBlock(Begin, BI, HadTailCall);
1027
1028    FinishBasicBlock();
1029    FuncInfo->PHINodesToUpdate.clear();
1030  }
1031
1032  delete FastIS;
1033#ifndef NDEBUG
1034  for (MachineFunction::const_iterator MBI = MF->begin(), MBE = MF->end();
1035       MBI != MBE; ++MBI)
1036    CheckLineNumbers(MBI);
1037#endif
1038}
1039
1040void
1041SelectionDAGISel::FinishBasicBlock() {
1042
1043  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1044               << FuncInfo->PHINodesToUpdate.size() << "\n";
1045        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1046          dbgs() << "Node " << i << " : ("
1047                 << FuncInfo->PHINodesToUpdate[i].first
1048                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1049
1050  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1051  // PHI nodes in successors.
1052  if (SDB->SwitchCases.empty() &&
1053      SDB->JTCases.empty() &&
1054      SDB->BitTestCases.empty()) {
1055    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1056      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1057      assert(PHI->isPHI() &&
1058             "This is not a machine PHI node that we are updating!");
1059      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1060        continue;
1061      PHI->addOperand(
1062        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1063      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1064    }
1065    return;
1066  }
1067
1068  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1069    // Lower header first, if it wasn't already lowered
1070    if (!SDB->BitTestCases[i].Emitted) {
1071      // Set the current basic block to the mbb we wish to insert the code into
1072      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1073      FuncInfo->InsertPt = FuncInfo->MBB->end();
1074      // Emit the code
1075      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1076      CurDAG->setRoot(SDB->getRoot());
1077      SDB->clear();
1078      CodeGenAndEmitDAG();
1079    }
1080
1081    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1082      // Set the current basic block to the mbb we wish to insert the code into
1083      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1084      FuncInfo->InsertPt = FuncInfo->MBB->end();
1085      // Emit the code
1086      if (j+1 != ej)
1087        SDB->visitBitTestCase(SDB->BitTestCases[i],
1088                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1089                              SDB->BitTestCases[i].Reg,
1090                              SDB->BitTestCases[i].Cases[j],
1091                              FuncInfo->MBB);
1092      else
1093        SDB->visitBitTestCase(SDB->BitTestCases[i],
1094                              SDB->BitTestCases[i].Default,
1095                              SDB->BitTestCases[i].Reg,
1096                              SDB->BitTestCases[i].Cases[j],
1097                              FuncInfo->MBB);
1098
1099
1100      CurDAG->setRoot(SDB->getRoot());
1101      SDB->clear();
1102      CodeGenAndEmitDAG();
1103    }
1104
1105    // Update PHI Nodes
1106    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1107         pi != pe; ++pi) {
1108      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1109      MachineBasicBlock *PHIBB = PHI->getParent();
1110      assert(PHI->isPHI() &&
1111             "This is not a machine PHI node that we are updating!");
1112      // This is "default" BB. We have two jumps to it. From "header" BB and
1113      // from last "case" BB.
1114      if (PHIBB == SDB->BitTestCases[i].Default) {
1115        PHI->addOperand(MachineOperand::
1116                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1117                                  false));
1118        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1119        PHI->addOperand(MachineOperand::
1120                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1121                                  false));
1122        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1123                                                  back().ThisBB));
1124      }
1125      // One of "cases" BB.
1126      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1127           j != ej; ++j) {
1128        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1129        if (cBB->isSuccessor(PHIBB)) {
1130          PHI->addOperand(MachineOperand::
1131                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1132                                    false));
1133          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1134        }
1135      }
1136    }
1137  }
1138  SDB->BitTestCases.clear();
1139
1140  // If the JumpTable record is filled in, then we need to emit a jump table.
1141  // Updating the PHI nodes is tricky in this case, since we need to determine
1142  // whether the PHI is a successor of the range check MBB or the jump table MBB
1143  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1144    // Lower header first, if it wasn't already lowered
1145    if (!SDB->JTCases[i].first.Emitted) {
1146      // Set the current basic block to the mbb we wish to insert the code into
1147      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1148      FuncInfo->InsertPt = FuncInfo->MBB->end();
1149      // Emit the code
1150      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1151                                FuncInfo->MBB);
1152      CurDAG->setRoot(SDB->getRoot());
1153      SDB->clear();
1154      CodeGenAndEmitDAG();
1155    }
1156
1157    // Set the current basic block to the mbb we wish to insert the code into
1158    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1159    FuncInfo->InsertPt = FuncInfo->MBB->end();
1160    // Emit the code
1161    SDB->visitJumpTable(SDB->JTCases[i].second);
1162    CurDAG->setRoot(SDB->getRoot());
1163    SDB->clear();
1164    CodeGenAndEmitDAG();
1165
1166    // Update PHI Nodes
1167    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1168         pi != pe; ++pi) {
1169      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1170      MachineBasicBlock *PHIBB = PHI->getParent();
1171      assert(PHI->isPHI() &&
1172             "This is not a machine PHI node that we are updating!");
1173      // "default" BB. We can go there only from header BB.
1174      if (PHIBB == SDB->JTCases[i].second.Default) {
1175        PHI->addOperand
1176          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1177                                     false));
1178        PHI->addOperand
1179          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1180      }
1181      // JT BB. Just iterate over successors here
1182      if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1183        PHI->addOperand
1184          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1185                                     false));
1186        PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1187      }
1188    }
1189  }
1190  SDB->JTCases.clear();
1191
1192  // If the switch block involved a branch to one of the actual successors, we
1193  // need to update PHI nodes in that block.
1194  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1195    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1196    assert(PHI->isPHI() &&
1197           "This is not a machine PHI node that we are updating!");
1198    if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1199      PHI->addOperand(
1200        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1201      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1202    }
1203  }
1204
1205  // If we generated any switch lowering information, build and codegen any
1206  // additional DAGs necessary.
1207  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1208    // Set the current basic block to the mbb we wish to insert the code into
1209    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1210    FuncInfo->InsertPt = FuncInfo->MBB->end();
1211
1212    // Determine the unique successors.
1213    SmallVector<MachineBasicBlock *, 2> Succs;
1214    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1215    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1216      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1217
1218    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1219    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1220    CurDAG->setRoot(SDB->getRoot());
1221    SDB->clear();
1222    CodeGenAndEmitDAG();
1223
1224    // Remember the last block, now that any splitting is done, for use in
1225    // populating PHI nodes in successors.
1226    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1227
1228    // Handle any PHI nodes in successors of this chunk, as if we were coming
1229    // from the original BB before switch expansion.  Note that PHI nodes can
1230    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1231    // handle them the right number of times.
1232    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1233      FuncInfo->MBB = Succs[i];
1234      FuncInfo->InsertPt = FuncInfo->MBB->end();
1235      // FuncInfo->MBB may have been removed from the CFG if a branch was
1236      // constant folded.
1237      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1238        for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1239             Phi != FuncInfo->MBB->end() && Phi->isPHI();
1240             ++Phi) {
1241          // This value for this PHI node is recorded in PHINodesToUpdate.
1242          for (unsigned pn = 0; ; ++pn) {
1243            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1244                   "Didn't find PHI entry!");
1245            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1246              Phi->addOperand(MachineOperand::
1247                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1248                                        false));
1249              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1250              break;
1251            }
1252          }
1253        }
1254      }
1255    }
1256  }
1257  SDB->SwitchCases.clear();
1258}
1259
1260
1261/// Create the scheduler. If a specific scheduler was specified
1262/// via the SchedulerRegistry, use it, otherwise select the
1263/// one preferred by the target.
1264///
1265ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1266  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1267
1268  if (!Ctor) {
1269    Ctor = ISHeuristic;
1270    RegisterScheduler::setDefault(Ctor);
1271  }
1272
1273  return Ctor(this, OptLevel);
1274}
1275
1276//===----------------------------------------------------------------------===//
1277// Helper functions used by the generated instruction selector.
1278//===----------------------------------------------------------------------===//
1279// Calls to these methods are generated by tblgen.
1280
1281/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1282/// the dag combiner simplified the 255, we still want to match.  RHS is the
1283/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1284/// specified in the .td file (e.g. 255).
1285bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1286                                    int64_t DesiredMaskS) const {
1287  const APInt &ActualMask = RHS->getAPIntValue();
1288  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1289
1290  // If the actual mask exactly matches, success!
1291  if (ActualMask == DesiredMask)
1292    return true;
1293
1294  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1295  if (ActualMask.intersects(~DesiredMask))
1296    return false;
1297
1298  // Otherwise, the DAG Combiner may have proven that the value coming in is
1299  // either already zero or is not demanded.  Check for known zero input bits.
1300  APInt NeededMask = DesiredMask & ~ActualMask;
1301  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1302    return true;
1303
1304  // TODO: check to see if missing bits are just not demanded.
1305
1306  // Otherwise, this pattern doesn't match.
1307  return false;
1308}
1309
1310/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1311/// the dag combiner simplified the 255, we still want to match.  RHS is the
1312/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1313/// specified in the .td file (e.g. 255).
1314bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1315                                   int64_t DesiredMaskS) const {
1316  const APInt &ActualMask = RHS->getAPIntValue();
1317  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1318
1319  // If the actual mask exactly matches, success!
1320  if (ActualMask == DesiredMask)
1321    return true;
1322
1323  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1324  if (ActualMask.intersects(~DesiredMask))
1325    return false;
1326
1327  // Otherwise, the DAG Combiner may have proven that the value coming in is
1328  // either already zero or is not demanded.  Check for known zero input bits.
1329  APInt NeededMask = DesiredMask & ~ActualMask;
1330
1331  APInt KnownZero, KnownOne;
1332  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1333
1334  // If all the missing bits in the or are already known to be set, match!
1335  if ((NeededMask & KnownOne) == NeededMask)
1336    return true;
1337
1338  // TODO: check to see if missing bits are just not demanded.
1339
1340  // Otherwise, this pattern doesn't match.
1341  return false;
1342}
1343
1344
1345/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1346/// by tblgen.  Others should not call it.
1347void SelectionDAGISel::
1348SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1349  std::vector<SDValue> InOps;
1350  std::swap(InOps, Ops);
1351
1352  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1353  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1354  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1355  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1356
1357  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1358  if (InOps[e-1].getValueType() == MVT::Glue)
1359    --e;  // Don't process a glue operand if it is here.
1360
1361  while (i != e) {
1362    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1363    if (!InlineAsm::isMemKind(Flags)) {
1364      // Just skip over this operand, copying the operands verbatim.
1365      Ops.insert(Ops.end(), InOps.begin()+i,
1366                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1367      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1368    } else {
1369      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1370             "Memory operand with multiple values?");
1371      // Otherwise, this is a memory operand.  Ask the target to select it.
1372      std::vector<SDValue> SelOps;
1373      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1374        report_fatal_error("Could not match memory address.  Inline asm"
1375                           " failure!");
1376
1377      // Add this to the output node.
1378      unsigned NewFlags =
1379        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1380      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1381      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1382      i += 2;
1383    }
1384  }
1385
1386  // Add the glue input back if present.
1387  if (e != InOps.size())
1388    Ops.push_back(InOps.back());
1389}
1390
1391/// findGlueUse - Return use of MVT::Glue value produced by the specified
1392/// SDNode.
1393///
1394static SDNode *findGlueUse(SDNode *N) {
1395  unsigned FlagResNo = N->getNumValues()-1;
1396  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1397    SDUse &Use = I.getUse();
1398    if (Use.getResNo() == FlagResNo)
1399      return Use.getUser();
1400  }
1401  return NULL;
1402}
1403
1404/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1405/// This function recursively traverses up the operand chain, ignoring
1406/// certain nodes.
1407static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1408                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1409                          bool IgnoreChains) {
1410  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1411  // greater than all of its (recursive) operands.  If we scan to a point where
1412  // 'use' is smaller than the node we're scanning for, then we know we will
1413  // never find it.
1414  //
1415  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1416  // happen because we scan down to newly selected nodes in the case of glue
1417  // uses.
1418  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1419    return false;
1420
1421  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1422  // won't fail if we scan it again.
1423  if (!Visited.insert(Use))
1424    return false;
1425
1426  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1427    // Ignore chain uses, they are validated by HandleMergeInputChains.
1428    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1429      continue;
1430
1431    SDNode *N = Use->getOperand(i).getNode();
1432    if (N == Def) {
1433      if (Use == ImmedUse || Use == Root)
1434        continue;  // We are not looking for immediate use.
1435      assert(N != Root);
1436      return true;
1437    }
1438
1439    // Traverse up the operand chain.
1440    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1441      return true;
1442  }
1443  return false;
1444}
1445
1446/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1447/// operand node N of U during instruction selection that starts at Root.
1448bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1449                                          SDNode *Root) const {
1450  if (OptLevel == CodeGenOpt::None) return false;
1451  return N.hasOneUse();
1452}
1453
1454/// IsLegalToFold - Returns true if the specific operand node N of
1455/// U can be folded during instruction selection that starts at Root.
1456bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1457                                     CodeGenOpt::Level OptLevel,
1458                                     bool IgnoreChains) {
1459  if (OptLevel == CodeGenOpt::None) return false;
1460
1461  // If Root use can somehow reach N through a path that that doesn't contain
1462  // U then folding N would create a cycle. e.g. In the following
1463  // diagram, Root can reach N through X. If N is folded into into Root, then
1464  // X is both a predecessor and a successor of U.
1465  //
1466  //          [N*]           //
1467  //         ^   ^           //
1468  //        /     \          //
1469  //      [U*]    [X]?       //
1470  //        ^     ^          //
1471  //         \   /           //
1472  //          \ /            //
1473  //         [Root*]         //
1474  //
1475  // * indicates nodes to be folded together.
1476  //
1477  // If Root produces glue, then it gets (even more) interesting. Since it
1478  // will be "glued" together with its glue use in the scheduler, we need to
1479  // check if it might reach N.
1480  //
1481  //          [N*]           //
1482  //         ^   ^           //
1483  //        /     \          //
1484  //      [U*]    [X]?       //
1485  //        ^       ^        //
1486  //         \       \       //
1487  //          \      |       //
1488  //         [Root*] |       //
1489  //          ^      |       //
1490  //          f      |       //
1491  //          |      /       //
1492  //         [Y]    /        //
1493  //           ^   /         //
1494  //           f  /          //
1495  //           | /           //
1496  //          [GU]           //
1497  //
1498  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1499  // (call it Fold), then X is a predecessor of GU and a successor of
1500  // Fold. But since Fold and GU are glued together, this will create
1501  // a cycle in the scheduling graph.
1502
1503  // If the node has glue, walk down the graph to the "lowest" node in the
1504  // glueged set.
1505  EVT VT = Root->getValueType(Root->getNumValues()-1);
1506  while (VT == MVT::Glue) {
1507    SDNode *GU = findGlueUse(Root);
1508    if (GU == NULL)
1509      break;
1510    Root = GU;
1511    VT = Root->getValueType(Root->getNumValues()-1);
1512
1513    // If our query node has a glue result with a use, we've walked up it.  If
1514    // the user (which has already been selected) has a chain or indirectly uses
1515    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1516    // this, we cannot ignore chains in this predicate.
1517    IgnoreChains = false;
1518  }
1519
1520
1521  SmallPtrSet<SDNode*, 16> Visited;
1522  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1523}
1524
1525SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1526  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1527  SelectInlineAsmMemoryOperands(Ops);
1528
1529  std::vector<EVT> VTs;
1530  VTs.push_back(MVT::Other);
1531  VTs.push_back(MVT::Glue);
1532  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1533                                VTs, &Ops[0], Ops.size());
1534  New->setNodeId(-1);
1535  return New.getNode();
1536}
1537
1538SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1539  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1540}
1541
1542/// GetVBR - decode a vbr encoding whose top bit is set.
1543LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1544GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1545  assert(Val >= 128 && "Not a VBR");
1546  Val &= 127;  // Remove first vbr bit.
1547
1548  unsigned Shift = 7;
1549  uint64_t NextBits;
1550  do {
1551    NextBits = MatcherTable[Idx++];
1552    Val |= (NextBits&127) << Shift;
1553    Shift += 7;
1554  } while (NextBits & 128);
1555
1556  return Val;
1557}
1558
1559
1560/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1561/// interior glue and chain results to use the new glue and chain results.
1562void SelectionDAGISel::
1563UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1564                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1565                    SDValue InputGlue,
1566                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1567                    bool isMorphNodeTo) {
1568  SmallVector<SDNode*, 4> NowDeadNodes;
1569
1570  ISelUpdater ISU(ISelPosition);
1571
1572  // Now that all the normal results are replaced, we replace the chain and
1573  // glue results if present.
1574  if (!ChainNodesMatched.empty()) {
1575    assert(InputChain.getNode() != 0 &&
1576           "Matched input chains but didn't produce a chain");
1577    // Loop over all of the nodes we matched that produced a chain result.
1578    // Replace all the chain results with the final chain we ended up with.
1579    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1580      SDNode *ChainNode = ChainNodesMatched[i];
1581
1582      // If this node was already deleted, don't look at it.
1583      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1584        continue;
1585
1586      // Don't replace the results of the root node if we're doing a
1587      // MorphNodeTo.
1588      if (ChainNode == NodeToMatch && isMorphNodeTo)
1589        continue;
1590
1591      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1592      if (ChainVal.getValueType() == MVT::Glue)
1593        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1594      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1595      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1596
1597      // If the node became dead and we haven't already seen it, delete it.
1598      if (ChainNode->use_empty() &&
1599          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1600        NowDeadNodes.push_back(ChainNode);
1601    }
1602  }
1603
1604  // If the result produces glue, update any glue results in the matched
1605  // pattern with the glue result.
1606  if (InputGlue.getNode() != 0) {
1607    // Handle any interior nodes explicitly marked.
1608    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1609      SDNode *FRN = GlueResultNodesMatched[i];
1610
1611      // If this node was already deleted, don't look at it.
1612      if (FRN->getOpcode() == ISD::DELETED_NODE)
1613        continue;
1614
1615      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1616             "Doesn't have a glue result");
1617      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1618                                        InputGlue, &ISU);
1619
1620      // If the node became dead and we haven't already seen it, delete it.
1621      if (FRN->use_empty() &&
1622          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1623        NowDeadNodes.push_back(FRN);
1624    }
1625  }
1626
1627  if (!NowDeadNodes.empty())
1628    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1629
1630  DEBUG(errs() << "ISEL: Match complete!\n");
1631}
1632
1633enum ChainResult {
1634  CR_Simple,
1635  CR_InducesCycle,
1636  CR_LeadsToInteriorNode
1637};
1638
1639/// WalkChainUsers - Walk down the users of the specified chained node that is
1640/// part of the pattern we're matching, looking at all of the users we find.
1641/// This determines whether something is an interior node, whether we have a
1642/// non-pattern node in between two pattern nodes (which prevent folding because
1643/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1644/// between pattern nodes (in which case the TF becomes part of the pattern).
1645///
1646/// The walk we do here is guaranteed to be small because we quickly get down to
1647/// already selected nodes "below" us.
1648static ChainResult
1649WalkChainUsers(SDNode *ChainedNode,
1650               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1651               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1652  ChainResult Result = CR_Simple;
1653
1654  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1655         E = ChainedNode->use_end(); UI != E; ++UI) {
1656    // Make sure the use is of the chain, not some other value we produce.
1657    if (UI.getUse().getValueType() != MVT::Other) continue;
1658
1659    SDNode *User = *UI;
1660
1661    // If we see an already-selected machine node, then we've gone beyond the
1662    // pattern that we're selecting down into the already selected chunk of the
1663    // DAG.
1664    if (User->isMachineOpcode() ||
1665        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1666      continue;
1667
1668    if (User->getOpcode() == ISD::CopyToReg ||
1669        User->getOpcode() == ISD::CopyFromReg ||
1670        User->getOpcode() == ISD::INLINEASM ||
1671        User->getOpcode() == ISD::EH_LABEL) {
1672      // If their node ID got reset to -1 then they've already been selected.
1673      // Treat them like a MachineOpcode.
1674      if (User->getNodeId() == -1)
1675        continue;
1676    }
1677
1678    // If we have a TokenFactor, we handle it specially.
1679    if (User->getOpcode() != ISD::TokenFactor) {
1680      // If the node isn't a token factor and isn't part of our pattern, then it
1681      // must be a random chained node in between two nodes we're selecting.
1682      // This happens when we have something like:
1683      //   x = load ptr
1684      //   call
1685      //   y = x+4
1686      //   store y -> ptr
1687      // Because we structurally match the load/store as a read/modify/write,
1688      // but the call is chained between them.  We cannot fold in this case
1689      // because it would induce a cycle in the graph.
1690      if (!std::count(ChainedNodesInPattern.begin(),
1691                      ChainedNodesInPattern.end(), User))
1692        return CR_InducesCycle;
1693
1694      // Otherwise we found a node that is part of our pattern.  For example in:
1695      //   x = load ptr
1696      //   y = x+4
1697      //   store y -> ptr
1698      // This would happen when we're scanning down from the load and see the
1699      // store as a user.  Record that there is a use of ChainedNode that is
1700      // part of the pattern and keep scanning uses.
1701      Result = CR_LeadsToInteriorNode;
1702      InteriorChainedNodes.push_back(User);
1703      continue;
1704    }
1705
1706    // If we found a TokenFactor, there are two cases to consider: first if the
1707    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1708    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1709    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1710    //     [Load chain]
1711    //         ^
1712    //         |
1713    //       [Load]
1714    //       ^    ^
1715    //       |    \                    DAG's like cheese
1716    //      /       \                       do you?
1717    //     /         |
1718    // [TokenFactor] [Op]
1719    //     ^          ^
1720    //     |          |
1721    //      \        /
1722    //       \      /
1723    //       [Store]
1724    //
1725    // In this case, the TokenFactor becomes part of our match and we rewrite it
1726    // as a new TokenFactor.
1727    //
1728    // To distinguish these two cases, do a recursive walk down the uses.
1729    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1730    case CR_Simple:
1731      // If the uses of the TokenFactor are just already-selected nodes, ignore
1732      // it, it is "below" our pattern.
1733      continue;
1734    case CR_InducesCycle:
1735      // If the uses of the TokenFactor lead to nodes that are not part of our
1736      // pattern that are not selected, folding would turn this into a cycle,
1737      // bail out now.
1738      return CR_InducesCycle;
1739    case CR_LeadsToInteriorNode:
1740      break;  // Otherwise, keep processing.
1741    }
1742
1743    // Okay, we know we're in the interesting interior case.  The TokenFactor
1744    // is now going to be considered part of the pattern so that we rewrite its
1745    // uses (it may have uses that are not part of the pattern) with the
1746    // ultimate chain result of the generated code.  We will also add its chain
1747    // inputs as inputs to the ultimate TokenFactor we create.
1748    Result = CR_LeadsToInteriorNode;
1749    ChainedNodesInPattern.push_back(User);
1750    InteriorChainedNodes.push_back(User);
1751    continue;
1752  }
1753
1754  return Result;
1755}
1756
1757/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1758/// operation for when the pattern matched at least one node with a chains.  The
1759/// input vector contains a list of all of the chained nodes that we match.  We
1760/// must determine if this is a valid thing to cover (i.e. matching it won't
1761/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1762/// be used as the input node chain for the generated nodes.
1763static SDValue
1764HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1765                       SelectionDAG *CurDAG) {
1766  // Walk all of the chained nodes we've matched, recursively scanning down the
1767  // users of the chain result. This adds any TokenFactor nodes that are caught
1768  // in between chained nodes to the chained and interior nodes list.
1769  SmallVector<SDNode*, 3> InteriorChainedNodes;
1770  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1771    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1772                       InteriorChainedNodes) == CR_InducesCycle)
1773      return SDValue(); // Would induce a cycle.
1774  }
1775
1776  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1777  // that we are interested in.  Form our input TokenFactor node.
1778  SmallVector<SDValue, 3> InputChains;
1779  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1780    // Add the input chain of this node to the InputChains list (which will be
1781    // the operands of the generated TokenFactor) if it's not an interior node.
1782    SDNode *N = ChainNodesMatched[i];
1783    if (N->getOpcode() != ISD::TokenFactor) {
1784      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1785        continue;
1786
1787      // Otherwise, add the input chain.
1788      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1789      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1790      InputChains.push_back(InChain);
1791      continue;
1792    }
1793
1794    // If we have a token factor, we want to add all inputs of the token factor
1795    // that are not part of the pattern we're matching.
1796    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1797      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1798                      N->getOperand(op).getNode()))
1799        InputChains.push_back(N->getOperand(op));
1800    }
1801  }
1802
1803  SDValue Res;
1804  if (InputChains.size() == 1)
1805    return InputChains[0];
1806  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1807                         MVT::Other, &InputChains[0], InputChains.size());
1808}
1809
1810/// MorphNode - Handle morphing a node in place for the selector.
1811SDNode *SelectionDAGISel::
1812MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1813          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1814  // It is possible we're using MorphNodeTo to replace a node with no
1815  // normal results with one that has a normal result (or we could be
1816  // adding a chain) and the input could have glue and chains as well.
1817  // In this case we need to shift the operands down.
1818  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1819  // than the old isel though.
1820  int OldGlueResultNo = -1, OldChainResultNo = -1;
1821
1822  unsigned NTMNumResults = Node->getNumValues();
1823  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1824    OldGlueResultNo = NTMNumResults-1;
1825    if (NTMNumResults != 1 &&
1826        Node->getValueType(NTMNumResults-2) == MVT::Other)
1827      OldChainResultNo = NTMNumResults-2;
1828  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1829    OldChainResultNo = NTMNumResults-1;
1830
1831  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1832  // that this deletes operands of the old node that become dead.
1833  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1834
1835  // MorphNodeTo can operate in two ways: if an existing node with the
1836  // specified operands exists, it can just return it.  Otherwise, it
1837  // updates the node in place to have the requested operands.
1838  if (Res == Node) {
1839    // If we updated the node in place, reset the node ID.  To the isel,
1840    // this should be just like a newly allocated machine node.
1841    Res->setNodeId(-1);
1842  }
1843
1844  unsigned ResNumResults = Res->getNumValues();
1845  // Move the glue if needed.
1846  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1847      (unsigned)OldGlueResultNo != ResNumResults-1)
1848    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1849                                      SDValue(Res, ResNumResults-1));
1850
1851  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1852    --ResNumResults;
1853
1854  // Move the chain reference if needed.
1855  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1856      (unsigned)OldChainResultNo != ResNumResults-1)
1857    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1858                                      SDValue(Res, ResNumResults-1));
1859
1860  // Otherwise, no replacement happened because the node already exists. Replace
1861  // Uses of the old node with the new one.
1862  if (Res != Node)
1863    CurDAG->ReplaceAllUsesWith(Node, Res);
1864
1865  return Res;
1866}
1867
1868/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1869LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1870CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1871          SDValue N,
1872          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1873  // Accept if it is exactly the same as a previously recorded node.
1874  unsigned RecNo = MatcherTable[MatcherIndex++];
1875  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1876  return N == RecordedNodes[RecNo].first;
1877}
1878
1879/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1880LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1881CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1882                      SelectionDAGISel &SDISel) {
1883  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1884}
1885
1886/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1887LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1888CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1889                   SelectionDAGISel &SDISel, SDNode *N) {
1890  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1891}
1892
1893LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1894CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1895            SDNode *N) {
1896  uint16_t Opc = MatcherTable[MatcherIndex++];
1897  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1898  return N->getOpcode() == Opc;
1899}
1900
1901LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1902CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1903          SDValue N, const TargetLowering &TLI) {
1904  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1905  if (N.getValueType() == VT) return true;
1906
1907  // Handle the case when VT is iPTR.
1908  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1909}
1910
1911LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1912CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1913               SDValue N, const TargetLowering &TLI,
1914               unsigned ChildNo) {
1915  if (ChildNo >= N.getNumOperands())
1916    return false;  // Match fails if out of range child #.
1917  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1918}
1919
1920
1921LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1922CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1923              SDValue N) {
1924  return cast<CondCodeSDNode>(N)->get() ==
1925      (ISD::CondCode)MatcherTable[MatcherIndex++];
1926}
1927
1928LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1929CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1930               SDValue N, const TargetLowering &TLI) {
1931  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1932  if (cast<VTSDNode>(N)->getVT() == VT)
1933    return true;
1934
1935  // Handle the case when VT is iPTR.
1936  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1937}
1938
1939LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1940CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1941             SDValue N) {
1942  int64_t Val = MatcherTable[MatcherIndex++];
1943  if (Val & 128)
1944    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1945
1946  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1947  return C != 0 && C->getSExtValue() == Val;
1948}
1949
1950LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1951CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1952            SDValue N, SelectionDAGISel &SDISel) {
1953  int64_t Val = MatcherTable[MatcherIndex++];
1954  if (Val & 128)
1955    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1956
1957  if (N->getOpcode() != ISD::AND) return false;
1958
1959  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1960  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1961}
1962
1963LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1964CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1965           SDValue N, SelectionDAGISel &SDISel) {
1966  int64_t Val = MatcherTable[MatcherIndex++];
1967  if (Val & 128)
1968    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1969
1970  if (N->getOpcode() != ISD::OR) return false;
1971
1972  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1973  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1974}
1975
1976/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1977/// scope, evaluate the current node.  If the current predicate is known to
1978/// fail, set Result=true and return anything.  If the current predicate is
1979/// known to pass, set Result=false and return the MatcherIndex to continue
1980/// with.  If the current predicate is unknown, set Result=false and return the
1981/// MatcherIndex to continue with.
1982static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1983                                       unsigned Index, SDValue N,
1984                                       bool &Result, SelectionDAGISel &SDISel,
1985                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1986  switch (Table[Index++]) {
1987  default:
1988    Result = false;
1989    return Index-1;  // Could not evaluate this predicate.
1990  case SelectionDAGISel::OPC_CheckSame:
1991    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1992    return Index;
1993  case SelectionDAGISel::OPC_CheckPatternPredicate:
1994    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1995    return Index;
1996  case SelectionDAGISel::OPC_CheckPredicate:
1997    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1998    return Index;
1999  case SelectionDAGISel::OPC_CheckOpcode:
2000    Result = !::CheckOpcode(Table, Index, N.getNode());
2001    return Index;
2002  case SelectionDAGISel::OPC_CheckType:
2003    Result = !::CheckType(Table, Index, N, SDISel.TLI);
2004    return Index;
2005  case SelectionDAGISel::OPC_CheckChild0Type:
2006  case SelectionDAGISel::OPC_CheckChild1Type:
2007  case SelectionDAGISel::OPC_CheckChild2Type:
2008  case SelectionDAGISel::OPC_CheckChild3Type:
2009  case SelectionDAGISel::OPC_CheckChild4Type:
2010  case SelectionDAGISel::OPC_CheckChild5Type:
2011  case SelectionDAGISel::OPC_CheckChild6Type:
2012  case SelectionDAGISel::OPC_CheckChild7Type:
2013    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2014                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2015    return Index;
2016  case SelectionDAGISel::OPC_CheckCondCode:
2017    Result = !::CheckCondCode(Table, Index, N);
2018    return Index;
2019  case SelectionDAGISel::OPC_CheckValueType:
2020    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2021    return Index;
2022  case SelectionDAGISel::OPC_CheckInteger:
2023    Result = !::CheckInteger(Table, Index, N);
2024    return Index;
2025  case SelectionDAGISel::OPC_CheckAndImm:
2026    Result = !::CheckAndImm(Table, Index, N, SDISel);
2027    return Index;
2028  case SelectionDAGISel::OPC_CheckOrImm:
2029    Result = !::CheckOrImm(Table, Index, N, SDISel);
2030    return Index;
2031  }
2032}
2033
2034namespace {
2035
2036struct MatchScope {
2037  /// FailIndex - If this match fails, this is the index to continue with.
2038  unsigned FailIndex;
2039
2040  /// NodeStack - The node stack when the scope was formed.
2041  SmallVector<SDValue, 4> NodeStack;
2042
2043  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2044  unsigned NumRecordedNodes;
2045
2046  /// NumMatchedMemRefs - The number of matched memref entries.
2047  unsigned NumMatchedMemRefs;
2048
2049  /// InputChain/InputGlue - The current chain/glue
2050  SDValue InputChain, InputGlue;
2051
2052  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2053  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2054};
2055
2056}
2057
2058SDNode *SelectionDAGISel::
2059SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2060                 unsigned TableSize) {
2061  // FIXME: Should these even be selected?  Handle these cases in the caller?
2062  switch (NodeToMatch->getOpcode()) {
2063  default:
2064    break;
2065  case ISD::EntryToken:       // These nodes remain the same.
2066  case ISD::BasicBlock:
2067  case ISD::Register:
2068  //case ISD::VALUETYPE:
2069  //case ISD::CONDCODE:
2070  case ISD::HANDLENODE:
2071  case ISD::MDNODE_SDNODE:
2072  case ISD::TargetConstant:
2073  case ISD::TargetConstantFP:
2074  case ISD::TargetConstantPool:
2075  case ISD::TargetFrameIndex:
2076  case ISD::TargetExternalSymbol:
2077  case ISD::TargetBlockAddress:
2078  case ISD::TargetJumpTable:
2079  case ISD::TargetGlobalTLSAddress:
2080  case ISD::TargetGlobalAddress:
2081  case ISD::TokenFactor:
2082  case ISD::CopyFromReg:
2083  case ISD::CopyToReg:
2084  case ISD::EH_LABEL:
2085    NodeToMatch->setNodeId(-1); // Mark selected.
2086    return 0;
2087  case ISD::AssertSext:
2088  case ISD::AssertZext:
2089    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2090                                      NodeToMatch->getOperand(0));
2091    return 0;
2092  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2093  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2094  }
2095
2096  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2097
2098  // Set up the node stack with NodeToMatch as the only node on the stack.
2099  SmallVector<SDValue, 8> NodeStack;
2100  SDValue N = SDValue(NodeToMatch, 0);
2101  NodeStack.push_back(N);
2102
2103  // MatchScopes - Scopes used when matching, if a match failure happens, this
2104  // indicates where to continue checking.
2105  SmallVector<MatchScope, 8> MatchScopes;
2106
2107  // RecordedNodes - This is the set of nodes that have been recorded by the
2108  // state machine.  The second value is the parent of the node, or null if the
2109  // root is recorded.
2110  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2111
2112  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2113  // pattern.
2114  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2115
2116  // These are the current input chain and glue for use when generating nodes.
2117  // Various Emit operations change these.  For example, emitting a copytoreg
2118  // uses and updates these.
2119  SDValue InputChain, InputGlue;
2120
2121  // ChainNodesMatched - If a pattern matches nodes that have input/output
2122  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2123  // which ones they are.  The result is captured into this list so that we can
2124  // update the chain results when the pattern is complete.
2125  SmallVector<SDNode*, 3> ChainNodesMatched;
2126  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2127
2128  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2129        NodeToMatch->dump(CurDAG);
2130        errs() << '\n');
2131
2132  // Determine where to start the interpreter.  Normally we start at opcode #0,
2133  // but if the state machine starts with an OPC_SwitchOpcode, then we
2134  // accelerate the first lookup (which is guaranteed to be hot) with the
2135  // OpcodeOffset table.
2136  unsigned MatcherIndex = 0;
2137
2138  if (!OpcodeOffset.empty()) {
2139    // Already computed the OpcodeOffset table, just index into it.
2140    if (N.getOpcode() < OpcodeOffset.size())
2141      MatcherIndex = OpcodeOffset[N.getOpcode()];
2142    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2143
2144  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2145    // Otherwise, the table isn't computed, but the state machine does start
2146    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2147    // is the first time we're selecting an instruction.
2148    unsigned Idx = 1;
2149    while (1) {
2150      // Get the size of this case.
2151      unsigned CaseSize = MatcherTable[Idx++];
2152      if (CaseSize & 128)
2153        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2154      if (CaseSize == 0) break;
2155
2156      // Get the opcode, add the index to the table.
2157      uint16_t Opc = MatcherTable[Idx++];
2158      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2159      if (Opc >= OpcodeOffset.size())
2160        OpcodeOffset.resize((Opc+1)*2);
2161      OpcodeOffset[Opc] = Idx;
2162      Idx += CaseSize;
2163    }
2164
2165    // Okay, do the lookup for the first opcode.
2166    if (N.getOpcode() < OpcodeOffset.size())
2167      MatcherIndex = OpcodeOffset[N.getOpcode()];
2168  }
2169
2170  while (1) {
2171    assert(MatcherIndex < TableSize && "Invalid index");
2172#ifndef NDEBUG
2173    unsigned CurrentOpcodeIndex = MatcherIndex;
2174#endif
2175    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2176    switch (Opcode) {
2177    case OPC_Scope: {
2178      // Okay, the semantics of this operation are that we should push a scope
2179      // then evaluate the first child.  However, pushing a scope only to have
2180      // the first check fail (which then pops it) is inefficient.  If we can
2181      // determine immediately that the first check (or first several) will
2182      // immediately fail, don't even bother pushing a scope for them.
2183      unsigned FailIndex;
2184
2185      while (1) {
2186        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2187        if (NumToSkip & 128)
2188          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2189        // Found the end of the scope with no match.
2190        if (NumToSkip == 0) {
2191          FailIndex = 0;
2192          break;
2193        }
2194
2195        FailIndex = MatcherIndex+NumToSkip;
2196
2197        unsigned MatcherIndexOfPredicate = MatcherIndex;
2198        (void)MatcherIndexOfPredicate; // silence warning.
2199
2200        // If we can't evaluate this predicate without pushing a scope (e.g. if
2201        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2202        // push the scope and evaluate the full predicate chain.
2203        bool Result;
2204        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2205                                              Result, *this, RecordedNodes);
2206        if (!Result)
2207          break;
2208
2209        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2210                     << "index " << MatcherIndexOfPredicate
2211                     << ", continuing at " << FailIndex << "\n");
2212        ++NumDAGIselRetries;
2213
2214        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2215        // move to the next case.
2216        MatcherIndex = FailIndex;
2217      }
2218
2219      // If the whole scope failed to match, bail.
2220      if (FailIndex == 0) break;
2221
2222      // Push a MatchScope which indicates where to go if the first child fails
2223      // to match.
2224      MatchScope NewEntry;
2225      NewEntry.FailIndex = FailIndex;
2226      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2227      NewEntry.NumRecordedNodes = RecordedNodes.size();
2228      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2229      NewEntry.InputChain = InputChain;
2230      NewEntry.InputGlue = InputGlue;
2231      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2232      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2233      MatchScopes.push_back(NewEntry);
2234      continue;
2235    }
2236    case OPC_RecordNode: {
2237      // Remember this node, it may end up being an operand in the pattern.
2238      SDNode *Parent = 0;
2239      if (NodeStack.size() > 1)
2240        Parent = NodeStack[NodeStack.size()-2].getNode();
2241      RecordedNodes.push_back(std::make_pair(N, Parent));
2242      continue;
2243    }
2244
2245    case OPC_RecordChild0: case OPC_RecordChild1:
2246    case OPC_RecordChild2: case OPC_RecordChild3:
2247    case OPC_RecordChild4: case OPC_RecordChild5:
2248    case OPC_RecordChild6: case OPC_RecordChild7: {
2249      unsigned ChildNo = Opcode-OPC_RecordChild0;
2250      if (ChildNo >= N.getNumOperands())
2251        break;  // Match fails if out of range child #.
2252
2253      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2254                                             N.getNode()));
2255      continue;
2256    }
2257    case OPC_RecordMemRef:
2258      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2259      continue;
2260
2261    case OPC_CaptureGlueInput:
2262      // If the current node has an input glue, capture it in InputGlue.
2263      if (N->getNumOperands() != 0 &&
2264          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2265        InputGlue = N->getOperand(N->getNumOperands()-1);
2266      continue;
2267
2268    case OPC_MoveChild: {
2269      unsigned ChildNo = MatcherTable[MatcherIndex++];
2270      if (ChildNo >= N.getNumOperands())
2271        break;  // Match fails if out of range child #.
2272      N = N.getOperand(ChildNo);
2273      NodeStack.push_back(N);
2274      continue;
2275    }
2276
2277    case OPC_MoveParent:
2278      // Pop the current node off the NodeStack.
2279      NodeStack.pop_back();
2280      assert(!NodeStack.empty() && "Node stack imbalance!");
2281      N = NodeStack.back();
2282      continue;
2283
2284    case OPC_CheckSame:
2285      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2286      continue;
2287    case OPC_CheckPatternPredicate:
2288      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2289      continue;
2290    case OPC_CheckPredicate:
2291      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2292                                N.getNode()))
2293        break;
2294      continue;
2295    case OPC_CheckComplexPat: {
2296      unsigned CPNum = MatcherTable[MatcherIndex++];
2297      unsigned RecNo = MatcherTable[MatcherIndex++];
2298      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2299      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2300                               RecordedNodes[RecNo].first, CPNum,
2301                               RecordedNodes))
2302        break;
2303      continue;
2304    }
2305    case OPC_CheckOpcode:
2306      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2307      continue;
2308
2309    case OPC_CheckType:
2310      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2311      continue;
2312
2313    case OPC_SwitchOpcode: {
2314      unsigned CurNodeOpcode = N.getOpcode();
2315      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2316      unsigned CaseSize;
2317      while (1) {
2318        // Get the size of this case.
2319        CaseSize = MatcherTable[MatcherIndex++];
2320        if (CaseSize & 128)
2321          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2322        if (CaseSize == 0) break;
2323
2324        uint16_t Opc = MatcherTable[MatcherIndex++];
2325        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2326
2327        // If the opcode matches, then we will execute this case.
2328        if (CurNodeOpcode == Opc)
2329          break;
2330
2331        // Otherwise, skip over this case.
2332        MatcherIndex += CaseSize;
2333      }
2334
2335      // If no cases matched, bail out.
2336      if (CaseSize == 0) break;
2337
2338      // Otherwise, execute the case we found.
2339      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2340                   << " to " << MatcherIndex << "\n");
2341      continue;
2342    }
2343
2344    case OPC_SwitchType: {
2345      MVT CurNodeVT = N.getValueType().getSimpleVT();
2346      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2347      unsigned CaseSize;
2348      while (1) {
2349        // Get the size of this case.
2350        CaseSize = MatcherTable[MatcherIndex++];
2351        if (CaseSize & 128)
2352          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2353        if (CaseSize == 0) break;
2354
2355        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2356        if (CaseVT == MVT::iPTR)
2357          CaseVT = TLI.getPointerTy();
2358
2359        // If the VT matches, then we will execute this case.
2360        if (CurNodeVT == CaseVT)
2361          break;
2362
2363        // Otherwise, skip over this case.
2364        MatcherIndex += CaseSize;
2365      }
2366
2367      // If no cases matched, bail out.
2368      if (CaseSize == 0) break;
2369
2370      // Otherwise, execute the case we found.
2371      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2372                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2373      continue;
2374    }
2375    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2376    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2377    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2378    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2379      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2380                            Opcode-OPC_CheckChild0Type))
2381        break;
2382      continue;
2383    case OPC_CheckCondCode:
2384      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2385      continue;
2386    case OPC_CheckValueType:
2387      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2388      continue;
2389    case OPC_CheckInteger:
2390      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2391      continue;
2392    case OPC_CheckAndImm:
2393      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2394      continue;
2395    case OPC_CheckOrImm:
2396      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2397      continue;
2398
2399    case OPC_CheckFoldableChainNode: {
2400      assert(NodeStack.size() != 1 && "No parent node");
2401      // Verify that all intermediate nodes between the root and this one have
2402      // a single use.
2403      bool HasMultipleUses = false;
2404      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2405        if (!NodeStack[i].hasOneUse()) {
2406          HasMultipleUses = true;
2407          break;
2408        }
2409      if (HasMultipleUses) break;
2410
2411      // Check to see that the target thinks this is profitable to fold and that
2412      // we can fold it without inducing cycles in the graph.
2413      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2414                              NodeToMatch) ||
2415          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2416                         NodeToMatch, OptLevel,
2417                         true/*We validate our own chains*/))
2418        break;
2419
2420      continue;
2421    }
2422    case OPC_EmitInteger: {
2423      MVT::SimpleValueType VT =
2424        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2425      int64_t Val = MatcherTable[MatcherIndex++];
2426      if (Val & 128)
2427        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2428      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2429                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2430      continue;
2431    }
2432    case OPC_EmitRegister: {
2433      MVT::SimpleValueType VT =
2434        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2435      unsigned RegNo = MatcherTable[MatcherIndex++];
2436      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2437                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2438      continue;
2439    }
2440    case OPC_EmitRegister2: {
2441      // For targets w/ more than 256 register names, the register enum
2442      // values are stored in two bytes in the matcher table (just like
2443      // opcodes).
2444      MVT::SimpleValueType VT =
2445        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2446      unsigned RegNo = MatcherTable[MatcherIndex++];
2447      RegNo |= MatcherTable[MatcherIndex++] << 8;
2448      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2449                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2450      continue;
2451    }
2452
2453    case OPC_EmitConvertToTarget:  {
2454      // Convert from IMM/FPIMM to target version.
2455      unsigned RecNo = MatcherTable[MatcherIndex++];
2456      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2457      SDValue Imm = RecordedNodes[RecNo].first;
2458
2459      if (Imm->getOpcode() == ISD::Constant) {
2460        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2461        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2462      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2463        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2464        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2465      }
2466
2467      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2468      continue;
2469    }
2470
2471    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2472    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2473      // These are space-optimized forms of OPC_EmitMergeInputChains.
2474      assert(InputChain.getNode() == 0 &&
2475             "EmitMergeInputChains should be the first chain producing node");
2476      assert(ChainNodesMatched.empty() &&
2477             "Should only have one EmitMergeInputChains per match");
2478
2479      // Read all of the chained nodes.
2480      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2481      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2482      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2483
2484      // FIXME: What if other value results of the node have uses not matched
2485      // by this pattern?
2486      if (ChainNodesMatched.back() != NodeToMatch &&
2487          !RecordedNodes[RecNo].first.hasOneUse()) {
2488        ChainNodesMatched.clear();
2489        break;
2490      }
2491
2492      // Merge the input chains if they are not intra-pattern references.
2493      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2494
2495      if (InputChain.getNode() == 0)
2496        break;  // Failed to merge.
2497      continue;
2498    }
2499
2500    case OPC_EmitMergeInputChains: {
2501      assert(InputChain.getNode() == 0 &&
2502             "EmitMergeInputChains should be the first chain producing node");
2503      // This node gets a list of nodes we matched in the input that have
2504      // chains.  We want to token factor all of the input chains to these nodes
2505      // together.  However, if any of the input chains is actually one of the
2506      // nodes matched in this pattern, then we have an intra-match reference.
2507      // Ignore these because the newly token factored chain should not refer to
2508      // the old nodes.
2509      unsigned NumChains = MatcherTable[MatcherIndex++];
2510      assert(NumChains != 0 && "Can't TF zero chains");
2511
2512      assert(ChainNodesMatched.empty() &&
2513             "Should only have one EmitMergeInputChains per match");
2514
2515      // Read all of the chained nodes.
2516      for (unsigned i = 0; i != NumChains; ++i) {
2517        unsigned RecNo = MatcherTable[MatcherIndex++];
2518        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2519        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2520
2521        // FIXME: What if other value results of the node have uses not matched
2522        // by this pattern?
2523        if (ChainNodesMatched.back() != NodeToMatch &&
2524            !RecordedNodes[RecNo].first.hasOneUse()) {
2525          ChainNodesMatched.clear();
2526          break;
2527        }
2528      }
2529
2530      // If the inner loop broke out, the match fails.
2531      if (ChainNodesMatched.empty())
2532        break;
2533
2534      // Merge the input chains if they are not intra-pattern references.
2535      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2536
2537      if (InputChain.getNode() == 0)
2538        break;  // Failed to merge.
2539
2540      continue;
2541    }
2542
2543    case OPC_EmitCopyToReg: {
2544      unsigned RecNo = MatcherTable[MatcherIndex++];
2545      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2546      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2547
2548      if (InputChain.getNode() == 0)
2549        InputChain = CurDAG->getEntryNode();
2550
2551      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2552                                        DestPhysReg, RecordedNodes[RecNo].first,
2553                                        InputGlue);
2554
2555      InputGlue = InputChain.getValue(1);
2556      continue;
2557    }
2558
2559    case OPC_EmitNodeXForm: {
2560      unsigned XFormNo = MatcherTable[MatcherIndex++];
2561      unsigned RecNo = MatcherTable[MatcherIndex++];
2562      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2563      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2564      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2565      continue;
2566    }
2567
2568    case OPC_EmitNode:
2569    case OPC_MorphNodeTo: {
2570      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2571      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2572      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2573      // Get the result VT list.
2574      unsigned NumVTs = MatcherTable[MatcherIndex++];
2575      SmallVector<EVT, 4> VTs;
2576      for (unsigned i = 0; i != NumVTs; ++i) {
2577        MVT::SimpleValueType VT =
2578          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2579        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2580        VTs.push_back(VT);
2581      }
2582
2583      if (EmitNodeInfo & OPFL_Chain)
2584        VTs.push_back(MVT::Other);
2585      if (EmitNodeInfo & OPFL_GlueOutput)
2586        VTs.push_back(MVT::Glue);
2587
2588      // This is hot code, so optimize the two most common cases of 1 and 2
2589      // results.
2590      SDVTList VTList;
2591      if (VTs.size() == 1)
2592        VTList = CurDAG->getVTList(VTs[0]);
2593      else if (VTs.size() == 2)
2594        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2595      else
2596        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2597
2598      // Get the operand list.
2599      unsigned NumOps = MatcherTable[MatcherIndex++];
2600      SmallVector<SDValue, 8> Ops;
2601      for (unsigned i = 0; i != NumOps; ++i) {
2602        unsigned RecNo = MatcherTable[MatcherIndex++];
2603        if (RecNo & 128)
2604          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2605
2606        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2607        Ops.push_back(RecordedNodes[RecNo].first);
2608      }
2609
2610      // If there are variadic operands to add, handle them now.
2611      if (EmitNodeInfo & OPFL_VariadicInfo) {
2612        // Determine the start index to copy from.
2613        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2614        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2615        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2616               "Invalid variadic node");
2617        // Copy all of the variadic operands, not including a potential glue
2618        // input.
2619        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2620             i != e; ++i) {
2621          SDValue V = NodeToMatch->getOperand(i);
2622          if (V.getValueType() == MVT::Glue) break;
2623          Ops.push_back(V);
2624        }
2625      }
2626
2627      // If this has chain/glue inputs, add them.
2628      if (EmitNodeInfo & OPFL_Chain)
2629        Ops.push_back(InputChain);
2630      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2631        Ops.push_back(InputGlue);
2632
2633      // Create the node.
2634      SDNode *Res = 0;
2635      if (Opcode != OPC_MorphNodeTo) {
2636        // If this is a normal EmitNode command, just create the new node and
2637        // add the results to the RecordedNodes list.
2638        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2639                                     VTList, Ops.data(), Ops.size());
2640
2641        // Add all the non-glue/non-chain results to the RecordedNodes list.
2642        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2643          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2644          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2645                                                             (SDNode*) 0));
2646        }
2647
2648      } else {
2649        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2650                        EmitNodeInfo);
2651      }
2652
2653      // If the node had chain/glue results, update our notion of the current
2654      // chain and glue.
2655      if (EmitNodeInfo & OPFL_GlueOutput) {
2656        InputGlue = SDValue(Res, VTs.size()-1);
2657        if (EmitNodeInfo & OPFL_Chain)
2658          InputChain = SDValue(Res, VTs.size()-2);
2659      } else if (EmitNodeInfo & OPFL_Chain)
2660        InputChain = SDValue(Res, VTs.size()-1);
2661
2662      // If the OPFL_MemRefs glue is set on this node, slap all of the
2663      // accumulated memrefs onto it.
2664      //
2665      // FIXME: This is vastly incorrect for patterns with multiple outputs
2666      // instructions that access memory and for ComplexPatterns that match
2667      // loads.
2668      if (EmitNodeInfo & OPFL_MemRefs) {
2669        MachineSDNode::mmo_iterator MemRefs =
2670          MF->allocateMemRefsArray(MatchedMemRefs.size());
2671        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2672        cast<MachineSDNode>(Res)
2673          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2674      }
2675
2676      DEBUG(errs() << "  "
2677                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2678                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2679
2680      // If this was a MorphNodeTo then we're completely done!
2681      if (Opcode == OPC_MorphNodeTo) {
2682        // Update chain and glue uses.
2683        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2684                            InputGlue, GlueResultNodesMatched, true);
2685        return Res;
2686      }
2687
2688      continue;
2689    }
2690
2691    case OPC_MarkGlueResults: {
2692      unsigned NumNodes = MatcherTable[MatcherIndex++];
2693
2694      // Read and remember all the glue-result nodes.
2695      for (unsigned i = 0; i != NumNodes; ++i) {
2696        unsigned RecNo = MatcherTable[MatcherIndex++];
2697        if (RecNo & 128)
2698          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2699
2700        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2701        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2702      }
2703      continue;
2704    }
2705
2706    case OPC_CompleteMatch: {
2707      // The match has been completed, and any new nodes (if any) have been
2708      // created.  Patch up references to the matched dag to use the newly
2709      // created nodes.
2710      unsigned NumResults = MatcherTable[MatcherIndex++];
2711
2712      for (unsigned i = 0; i != NumResults; ++i) {
2713        unsigned ResSlot = MatcherTable[MatcherIndex++];
2714        if (ResSlot & 128)
2715          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2716
2717        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2718        SDValue Res = RecordedNodes[ResSlot].first;
2719
2720        assert(i < NodeToMatch->getNumValues() &&
2721               NodeToMatch->getValueType(i) != MVT::Other &&
2722               NodeToMatch->getValueType(i) != MVT::Glue &&
2723               "Invalid number of results to complete!");
2724        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2725                NodeToMatch->getValueType(i) == MVT::iPTR ||
2726                Res.getValueType() == MVT::iPTR ||
2727                NodeToMatch->getValueType(i).getSizeInBits() ==
2728                    Res.getValueType().getSizeInBits()) &&
2729               "invalid replacement");
2730        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2731      }
2732
2733      // If the root node defines glue, add it to the glue nodes to update list.
2734      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2735        GlueResultNodesMatched.push_back(NodeToMatch);
2736
2737      // Update chain and glue uses.
2738      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2739                          InputGlue, GlueResultNodesMatched, false);
2740
2741      assert(NodeToMatch->use_empty() &&
2742             "Didn't replace all uses of the node?");
2743
2744      // FIXME: We just return here, which interacts correctly with SelectRoot
2745      // above.  We should fix this to not return an SDNode* anymore.
2746      return 0;
2747    }
2748    }
2749
2750    // If the code reached this point, then the match failed.  See if there is
2751    // another child to try in the current 'Scope', otherwise pop it until we
2752    // find a case to check.
2753    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2754    ++NumDAGIselRetries;
2755    while (1) {
2756      if (MatchScopes.empty()) {
2757        CannotYetSelect(NodeToMatch);
2758        return 0;
2759      }
2760
2761      // Restore the interpreter state back to the point where the scope was
2762      // formed.
2763      MatchScope &LastScope = MatchScopes.back();
2764      RecordedNodes.resize(LastScope.NumRecordedNodes);
2765      NodeStack.clear();
2766      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2767      N = NodeStack.back();
2768
2769      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2770        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2771      MatcherIndex = LastScope.FailIndex;
2772
2773      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2774
2775      InputChain = LastScope.InputChain;
2776      InputGlue = LastScope.InputGlue;
2777      if (!LastScope.HasChainNodesMatched)
2778        ChainNodesMatched.clear();
2779      if (!LastScope.HasGlueResultNodesMatched)
2780        GlueResultNodesMatched.clear();
2781
2782      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2783      // we have reached the end of this scope, otherwise we have another child
2784      // in the current scope to try.
2785      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2786      if (NumToSkip & 128)
2787        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2788
2789      // If we have another child in this scope to match, update FailIndex and
2790      // try it.
2791      if (NumToSkip != 0) {
2792        LastScope.FailIndex = MatcherIndex+NumToSkip;
2793        break;
2794      }
2795
2796      // End of this scope, pop it and try the next child in the containing
2797      // scope.
2798      MatchScopes.pop_back();
2799    }
2800  }
2801}
2802
2803
2804
2805void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2806  std::string msg;
2807  raw_string_ostream Msg(msg);
2808  Msg << "Cannot select: ";
2809
2810  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2811      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2812      N->getOpcode() != ISD::INTRINSIC_VOID) {
2813    N->printrFull(Msg, CurDAG);
2814  } else {
2815    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2816    unsigned iid =
2817      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2818    if (iid < Intrinsic::num_intrinsics)
2819      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2820    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2821      Msg << "target intrinsic %" << TII->getName(iid);
2822    else
2823      Msg << "unknown intrinsic #" << iid;
2824  }
2825  report_fatal_error(Msg.str());
2826}
2827
2828char SelectionDAGISel::ID = 0;
2829