SelectionDAGISel.cpp revision fd7b326bea39c077eea8d378156bcf09051cc4ec
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57static cl::opt<bool>
58ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
59          cl::desc("Pop up a window to show SUnit dags after they are processed"));
60#else
61static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
62#endif
63
64//===---------------------------------------------------------------------===//
65///
66/// RegisterScheduler class - Track the registration of instruction schedulers.
67///
68//===---------------------------------------------------------------------===//
69MachinePassRegistry RegisterScheduler::Registry;
70
71//===---------------------------------------------------------------------===//
72///
73/// ISHeuristic command line option for instruction schedulers.
74///
75//===---------------------------------------------------------------------===//
76namespace {
77  cl::opt<RegisterScheduler::FunctionPassCtor, false,
78          RegisterPassParser<RegisterScheduler> >
79  ISHeuristic("pre-RA-sched",
80              cl::init(&createDefaultScheduler),
81              cl::desc("Instruction schedulers available (before register allocation):"));
82
83  static RegisterScheduler
84  defaultListDAGScheduler("default", "  Best scheduler for the target",
85                          createDefaultScheduler);
86} // namespace
87
88namespace { struct AsmOperandInfo; }
89
90namespace {
91  /// RegsForValue - This struct represents the physical registers that a
92  /// particular value is assigned and the type information about the value.
93  /// This is needed because values can be promoted into larger registers and
94  /// expanded into multiple smaller registers than the value.
95  struct VISIBILITY_HIDDEN RegsForValue {
96    /// Regs - This list holds the register (for legal and promoted values)
97    /// or register set (for expanded values) that the value should be assigned
98    /// to.
99    std::vector<unsigned> Regs;
100
101    /// RegVT - The value type of each register.
102    ///
103    MVT::ValueType RegVT;
104
105    /// ValueVT - The value type of the LLVM value, which may be promoted from
106    /// RegVT or made from merging the two expanded parts.
107    MVT::ValueType ValueVT;
108
109    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
110
111    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
112      : RegVT(regvt), ValueVT(valuevt) {
113        Regs.push_back(Reg);
114    }
115    RegsForValue(const std::vector<unsigned> &regs,
116                 MVT::ValueType regvt, MVT::ValueType valuevt)
117      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
118    }
119
120    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
121    /// this value and returns the result as a ValueVT value.  This uses
122    /// Chain/Flag as the input and updates them for the output Chain/Flag.
123    /// If the Flag pointer is NULL, no flag is used.
124    SDOperand getCopyFromRegs(SelectionDAG &DAG,
125                              SDOperand &Chain, SDOperand *Flag) const;
126
127    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
128    /// specified value into the registers specified by this object.  This uses
129    /// Chain/Flag as the input and updates them for the output Chain/Flag.
130    /// If the Flag pointer is NULL, no flag is used.
131    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
132                       SDOperand &Chain, SDOperand *Flag) const;
133
134    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
135    /// operand list.  This adds the code marker and includes the number of
136    /// values added into it.
137    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
138                              std::vector<SDOperand> &Ops) const;
139  };
140}
141
142namespace llvm {
143  //===--------------------------------------------------------------------===//
144  /// createDefaultScheduler - This creates an instruction scheduler appropriate
145  /// for the target.
146  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
147                                      SelectionDAG *DAG,
148                                      MachineBasicBlock *BB) {
149    TargetLowering &TLI = IS->getTargetLowering();
150
151    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
152      return createTDListDAGScheduler(IS, DAG, BB);
153    } else {
154      assert(TLI.getSchedulingPreference() ==
155           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
156      return createBURRListDAGScheduler(IS, DAG, BB);
157    }
158  }
159
160
161  //===--------------------------------------------------------------------===//
162  /// FunctionLoweringInfo - This contains information that is global to a
163  /// function that is used when lowering a region of the function.
164  class FunctionLoweringInfo {
165  public:
166    TargetLowering &TLI;
167    Function &Fn;
168    MachineFunction &MF;
169    SSARegMap *RegMap;
170
171    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
172
173    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
174    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
175
176    /// ValueMap - Since we emit code for the function a basic block at a time,
177    /// we must remember which virtual registers hold the values for
178    /// cross-basic-block values.
179    DenseMap<const Value*, unsigned> ValueMap;
180
181    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
182    /// the entry block.  This allows the allocas to be efficiently referenced
183    /// anywhere in the function.
184    std::map<const AllocaInst*, int> StaticAllocaMap;
185
186#ifndef NDEBUG
187    SmallSet<Instruction*, 8> CatchInfoLost;
188    SmallSet<Instruction*, 8> CatchInfoFound;
189#endif
190
191    unsigned MakeReg(MVT::ValueType VT) {
192      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
193    }
194
195    /// isExportedInst - Return true if the specified value is an instruction
196    /// exported from its block.
197    bool isExportedInst(const Value *V) {
198      return ValueMap.count(V);
199    }
200
201    unsigned CreateRegForValue(const Value *V);
202
203    unsigned InitializeRegForValue(const Value *V) {
204      unsigned &R = ValueMap[V];
205      assert(R == 0 && "Already initialized this value register!");
206      return R = CreateRegForValue(V);
207    }
208  };
209}
210
211/// isSelector - Return true if this instruction is a call to the
212/// eh.selector intrinsic.
213static bool isSelector(Instruction *I) {
214  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
215    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
216            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
217  return false;
218}
219
220/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
221/// PHI nodes or outside of the basic block that defines it, or used by a
222/// switch instruction, which may expand to multiple basic blocks.
223static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
224  if (isa<PHINode>(I)) return true;
225  BasicBlock *BB = I->getParent();
226  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
227    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
228        // FIXME: Remove switchinst special case.
229        isa<SwitchInst>(*UI))
230      return true;
231  return false;
232}
233
234/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
235/// entry block, return true.  This includes arguments used by switches, since
236/// the switch may expand into multiple basic blocks.
237static bool isOnlyUsedInEntryBlock(Argument *A) {
238  BasicBlock *Entry = A->getParent()->begin();
239  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
240    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
241      return false;  // Use not in entry block.
242  return true;
243}
244
245FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
246                                           Function &fn, MachineFunction &mf)
247    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
248
249  // Create a vreg for each argument register that is not dead and is used
250  // outside of the entry block for the function.
251  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
252       AI != E; ++AI)
253    if (!isOnlyUsedInEntryBlock(AI))
254      InitializeRegForValue(AI);
255
256  // Initialize the mapping of values to registers.  This is only set up for
257  // instruction values that are used outside of the block that defines
258  // them.
259  Function::iterator BB = Fn.begin(), EB = Fn.end();
260  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
261    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
262      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
263        const Type *Ty = AI->getAllocatedType();
264        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
265        unsigned Align =
266          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
267                   AI->getAlignment());
268
269        TySize *= CUI->getZExtValue();   // Get total allocated size.
270        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
271        StaticAllocaMap[AI] =
272          MF.getFrameInfo()->CreateStackObject(TySize, Align);
273      }
274
275  for (; BB != EB; ++BB)
276    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
277      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
278        if (!isa<AllocaInst>(I) ||
279            !StaticAllocaMap.count(cast<AllocaInst>(I)))
280          InitializeRegForValue(I);
281
282  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
283  // also creates the initial PHI MachineInstrs, though none of the input
284  // operands are populated.
285  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
286    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
287    MBBMap[BB] = MBB;
288    MF.getBasicBlockList().push_back(MBB);
289
290    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
291    // appropriate.
292    PHINode *PN;
293    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
294      if (PN->use_empty()) continue;
295
296      MVT::ValueType VT = TLI.getValueType(PN->getType());
297      unsigned NumRegisters = TLI.getNumRegisters(VT);
298      unsigned PHIReg = ValueMap[PN];
299      assert(PHIReg && "PHI node does not have an assigned virtual register!");
300      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
301      for (unsigned i = 0; i != NumRegisters; ++i)
302        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
303    }
304  }
305}
306
307/// CreateRegForValue - Allocate the appropriate number of virtual registers of
308/// the correctly promoted or expanded types.  Assign these registers
309/// consecutive vreg numbers and return the first assigned number.
310unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
311  MVT::ValueType VT = TLI.getValueType(V->getType());
312
313  unsigned NumRegisters = TLI.getNumRegisters(VT);
314  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
315
316  unsigned R = MakeReg(RegisterVT);
317  for (unsigned i = 1; i != NumRegisters; ++i)
318    MakeReg(RegisterVT);
319
320  return R;
321}
322
323//===----------------------------------------------------------------------===//
324/// SelectionDAGLowering - This is the common target-independent lowering
325/// implementation that is parameterized by a TargetLowering object.
326/// Also, targets can overload any lowering method.
327///
328namespace llvm {
329class SelectionDAGLowering {
330  MachineBasicBlock *CurMBB;
331
332  DenseMap<const Value*, SDOperand> NodeMap;
333
334  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
335  /// them up and then emit token factor nodes when possible.  This allows us to
336  /// get simple disambiguation between loads without worrying about alias
337  /// analysis.
338  std::vector<SDOperand> PendingLoads;
339
340  /// Case - A struct to record the Value for a switch case, and the
341  /// case's target basic block.
342  struct Case {
343    Constant* Low;
344    Constant* High;
345    MachineBasicBlock* BB;
346
347    Case() : Low(0), High(0), BB(0) { }
348    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
349      Low(low), High(high), BB(bb) { }
350    uint64_t size() const {
351      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
352      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
353      return (rHigh - rLow + 1ULL);
354    }
355  };
356
357  struct CaseBits {
358    uint64_t Mask;
359    MachineBasicBlock* BB;
360    unsigned Bits;
361
362    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
363      Mask(mask), BB(bb), Bits(bits) { }
364  };
365
366  typedef std::vector<Case>           CaseVector;
367  typedef std::vector<CaseBits>       CaseBitsVector;
368  typedef CaseVector::iterator        CaseItr;
369  typedef std::pair<CaseItr, CaseItr> CaseRange;
370
371  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
372  /// of conditional branches.
373  struct CaseRec {
374    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
375    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
376
377    /// CaseBB - The MBB in which to emit the compare and branch
378    MachineBasicBlock *CaseBB;
379    /// LT, GE - If nonzero, we know the current case value must be less-than or
380    /// greater-than-or-equal-to these Constants.
381    Constant *LT;
382    Constant *GE;
383    /// Range - A pair of iterators representing the range of case values to be
384    /// processed at this point in the binary search tree.
385    CaseRange Range;
386  };
387
388  typedef std::vector<CaseRec> CaseRecVector;
389
390  /// The comparison function for sorting the switch case values in the vector.
391  /// WARNING: Case ranges should be disjoint!
392  struct CaseCmp {
393    bool operator () (const Case& C1, const Case& C2) {
394      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
395      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
396      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
397      return CI1->getValue().slt(CI2->getValue());
398    }
399  };
400
401  struct CaseBitsCmp {
402    bool operator () (const CaseBits& C1, const CaseBits& C2) {
403      return C1.Bits > C2.Bits;
404    }
405  };
406
407  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
408
409public:
410  // TLI - This is information that describes the available target features we
411  // need for lowering.  This indicates when operations are unavailable,
412  // implemented with a libcall, etc.
413  TargetLowering &TLI;
414  SelectionDAG &DAG;
415  const TargetData *TD;
416  AliasAnalysis &AA;
417
418  /// SwitchCases - Vector of CaseBlock structures used to communicate
419  /// SwitchInst code generation information.
420  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
421  /// JTCases - Vector of JumpTable structures used to communicate
422  /// SwitchInst code generation information.
423  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
424  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
425
426  /// FuncInfo - Information about the function as a whole.
427  ///
428  FunctionLoweringInfo &FuncInfo;
429
430  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
431                       AliasAnalysis &aa,
432                       FunctionLoweringInfo &funcinfo)
433    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
434      FuncInfo(funcinfo) {
435  }
436
437  /// getRoot - Return the current virtual root of the Selection DAG.
438  ///
439  SDOperand getRoot() {
440    if (PendingLoads.empty())
441      return DAG.getRoot();
442
443    if (PendingLoads.size() == 1) {
444      SDOperand Root = PendingLoads[0];
445      DAG.setRoot(Root);
446      PendingLoads.clear();
447      return Root;
448    }
449
450    // Otherwise, we have to make a token factor node.
451    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
452                                 &PendingLoads[0], PendingLoads.size());
453    PendingLoads.clear();
454    DAG.setRoot(Root);
455    return Root;
456  }
457
458  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
459
460  void visit(Instruction &I) { visit(I.getOpcode(), I); }
461
462  void visit(unsigned Opcode, User &I) {
463    // Note: this doesn't use InstVisitor, because it has to work with
464    // ConstantExpr's in addition to instructions.
465    switch (Opcode) {
466    default: assert(0 && "Unknown instruction type encountered!");
467             abort();
468      // Build the switch statement using the Instruction.def file.
469#define HANDLE_INST(NUM, OPCODE, CLASS) \
470    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
471#include "llvm/Instruction.def"
472    }
473  }
474
475  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
476
477  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
478                        const Value *SV, SDOperand Root,
479                        bool isVolatile, unsigned Alignment);
480
481  SDOperand getIntPtrConstant(uint64_t Val) {
482    return DAG.getConstant(Val, TLI.getPointerTy());
483  }
484
485  SDOperand getValue(const Value *V);
486
487  void setValue(const Value *V, SDOperand NewN) {
488    SDOperand &N = NodeMap[V];
489    assert(N.Val == 0 && "Already set a value for this node!");
490    N = NewN;
491  }
492
493  void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
494                            std::set<unsigned> &OutputRegs,
495                            std::set<unsigned> &InputRegs);
496
497  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
498                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
499                            unsigned Opc);
500  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
501  void ExportFromCurrentBlock(Value *V);
502  void LowerCallTo(Instruction &I, const Type *CalledValueTy,
503                   const ParamAttrsList *PAL, unsigned CallingConv,
504                   bool IsTailCall, SDOperand Callee, unsigned OpIdx,
505                   MachineBasicBlock *LandingPad = NULL);
506
507  // Terminator instructions.
508  void visitRet(ReturnInst &I);
509  void visitBr(BranchInst &I);
510  void visitSwitch(SwitchInst &I);
511  void visitUnreachable(UnreachableInst &I) { /* noop */ }
512
513  // Helpers for visitSwitch
514  bool handleSmallSwitchRange(CaseRec& CR,
515                              CaseRecVector& WorkList,
516                              Value* SV,
517                              MachineBasicBlock* Default);
518  bool handleJTSwitchCase(CaseRec& CR,
519                          CaseRecVector& WorkList,
520                          Value* SV,
521                          MachineBasicBlock* Default);
522  bool handleBTSplitSwitchCase(CaseRec& CR,
523                               CaseRecVector& WorkList,
524                               Value* SV,
525                               MachineBasicBlock* Default);
526  bool handleBitTestsSwitchCase(CaseRec& CR,
527                                CaseRecVector& WorkList,
528                                Value* SV,
529                                MachineBasicBlock* Default);
530  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
531  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
532  void visitBitTestCase(MachineBasicBlock* NextMBB,
533                        unsigned Reg,
534                        SelectionDAGISel::BitTestCase &B);
535  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
536  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
537                            SelectionDAGISel::JumpTableHeader &JTH);
538
539  // These all get lowered before this pass.
540  void visitInvoke(InvokeInst &I);
541  void visitUnwind(UnwindInst &I);
542
543  void visitBinary(User &I, unsigned OpCode);
544  void visitShift(User &I, unsigned Opcode);
545  void visitAdd(User &I) {
546    if (I.getType()->isFPOrFPVector())
547      visitBinary(I, ISD::FADD);
548    else
549      visitBinary(I, ISD::ADD);
550  }
551  void visitSub(User &I);
552  void visitMul(User &I) {
553    if (I.getType()->isFPOrFPVector())
554      visitBinary(I, ISD::FMUL);
555    else
556      visitBinary(I, ISD::MUL);
557  }
558  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
559  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
560  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
561  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
562  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
563  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
564  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
565  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
566  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
567  void visitShl (User &I) { visitShift(I, ISD::SHL); }
568  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
569  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
570  void visitICmp(User &I);
571  void visitFCmp(User &I);
572  // Visit the conversion instructions
573  void visitTrunc(User &I);
574  void visitZExt(User &I);
575  void visitSExt(User &I);
576  void visitFPTrunc(User &I);
577  void visitFPExt(User &I);
578  void visitFPToUI(User &I);
579  void visitFPToSI(User &I);
580  void visitUIToFP(User &I);
581  void visitSIToFP(User &I);
582  void visitPtrToInt(User &I);
583  void visitIntToPtr(User &I);
584  void visitBitCast(User &I);
585
586  void visitExtractElement(User &I);
587  void visitInsertElement(User &I);
588  void visitShuffleVector(User &I);
589
590  void visitGetElementPtr(User &I);
591  void visitSelect(User &I);
592
593  void visitMalloc(MallocInst &I);
594  void visitFree(FreeInst &I);
595  void visitAlloca(AllocaInst &I);
596  void visitLoad(LoadInst &I);
597  void visitStore(StoreInst &I);
598  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
599  void visitCall(CallInst &I);
600  void visitInlineAsm(CallSite CS);
601  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
602  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
603
604  void visitVAStart(CallInst &I);
605  void visitVAArg(VAArgInst &I);
606  void visitVAEnd(CallInst &I);
607  void visitVACopy(CallInst &I);
608
609  void visitMemIntrinsic(CallInst &I, unsigned Op);
610
611  void visitUserOp1(Instruction &I) {
612    assert(0 && "UserOp1 should not exist at instruction selection time!");
613    abort();
614  }
615  void visitUserOp2(Instruction &I) {
616    assert(0 && "UserOp2 should not exist at instruction selection time!");
617    abort();
618  }
619};
620} // end namespace llvm
621
622
623/// getCopyFromParts - Create a value that contains the
624/// specified legal parts combined into the value they represent.
625static SDOperand getCopyFromParts(SelectionDAG &DAG,
626                                  const SDOperand *Parts,
627                                  unsigned NumParts,
628                                  MVT::ValueType PartVT,
629                                  MVT::ValueType ValueVT,
630                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
631  if (!MVT::isVector(ValueVT) || NumParts == 1) {
632    SDOperand Val = Parts[0];
633
634    // If the value was expanded, copy from the top part.
635    if (NumParts > 1) {
636      assert(NumParts == 2 &&
637             "Cannot expand to more than 2 elts yet!");
638      SDOperand Hi = Parts[1];
639      if (!DAG.getTargetLoweringInfo().isLittleEndian())
640        std::swap(Val, Hi);
641      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
642    }
643
644    // Otherwise, if the value was promoted or extended, truncate it to the
645    // appropriate type.
646    if (PartVT == ValueVT)
647      return Val;
648
649    if (MVT::isVector(PartVT)) {
650      assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
651      return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
652    }
653
654    if (MVT::isVector(ValueVT)) {
655      assert(NumParts == 1 &&
656             MVT::getVectorElementType(ValueVT) == PartVT &&
657             MVT::getVectorNumElements(ValueVT) == 1 &&
658             "Only trivial scalar-to-vector conversions should get here!");
659      return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
660    }
661
662    if (MVT::isInteger(PartVT) &&
663        MVT::isInteger(ValueVT)) {
664      if (ValueVT < PartVT) {
665        // For a truncate, see if we have any information to
666        // indicate whether the truncated bits will always be
667        // zero or sign-extension.
668        if (AssertOp != ISD::DELETED_NODE)
669          Val = DAG.getNode(AssertOp, PartVT, Val,
670                            DAG.getValueType(ValueVT));
671        return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
672      } else {
673        return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
674      }
675    }
676
677    if (MVT::isFloatingPoint(PartVT) &&
678        MVT::isFloatingPoint(ValueVT))
679      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
680
681    if (MVT::getSizeInBits(PartVT) ==
682        MVT::getSizeInBits(ValueVT))
683      return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
684
685    assert(0 && "Unknown mismatch!");
686  }
687
688  // Handle a multi-element vector.
689  MVT::ValueType IntermediateVT, RegisterVT;
690  unsigned NumIntermediates;
691  unsigned NumRegs =
692    DAG.getTargetLoweringInfo()
693      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
694                              RegisterVT);
695
696  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
697  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
698  assert(RegisterVT == Parts[0].getValueType() &&
699         "Part type doesn't match part!");
700
701  // Assemble the parts into intermediate operands.
702  SmallVector<SDOperand, 8> Ops(NumIntermediates);
703  if (NumIntermediates == NumParts) {
704    // If the register was not expanded, truncate or copy the value,
705    // as appropriate.
706    for (unsigned i = 0; i != NumParts; ++i)
707      Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
708                                PartVT, IntermediateVT);
709  } else if (NumParts > 0) {
710    // If the intermediate type was expanded, build the intermediate operands
711    // from the parts.
712    assert(NumParts % NumIntermediates == 0 &&
713           "Must expand into a divisible number of parts!");
714    unsigned Factor = NumParts / NumIntermediates;
715    for (unsigned i = 0; i != NumIntermediates; ++i)
716      Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
717                                PartVT, IntermediateVT);
718  }
719
720  // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
721  // operands.
722  return DAG.getNode(MVT::isVector(IntermediateVT) ?
723                       ISD::CONCAT_VECTORS :
724                       ISD::BUILD_VECTOR,
725                     ValueVT, &Ops[0], NumIntermediates);
726}
727
728/// getCopyToParts - Create a series of nodes that contain the
729/// specified value split into legal parts.
730static void getCopyToParts(SelectionDAG &DAG,
731                           SDOperand Val,
732                           SDOperand *Parts,
733                           unsigned NumParts,
734                           MVT::ValueType PartVT) {
735  TargetLowering &TLI = DAG.getTargetLoweringInfo();
736  MVT::ValueType PtrVT = TLI.getPointerTy();
737  MVT::ValueType ValueVT = Val.getValueType();
738
739  if (!MVT::isVector(ValueVT) || NumParts == 1) {
740    // If the value was expanded, copy from the parts.
741    if (NumParts > 1) {
742      for (unsigned i = 0; i != NumParts; ++i)
743        Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
744                               DAG.getConstant(i, PtrVT));
745      if (!DAG.getTargetLoweringInfo().isLittleEndian())
746        std::reverse(Parts, Parts + NumParts);
747      return;
748    }
749
750    // If there is a single part and the types differ, this must be
751    // a promotion.
752    if (PartVT != ValueVT) {
753      if (MVT::isVector(PartVT)) {
754        assert(MVT::isVector(ValueVT) &&
755               "Not a vector-vector cast?");
756        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
757      } else if (MVT::isVector(ValueVT)) {
758        assert(NumParts == 1 &&
759               MVT::getVectorElementType(ValueVT) == PartVT &&
760               MVT::getVectorNumElements(ValueVT) == 1 &&
761               "Only trivial vector-to-scalar conversions should get here!");
762        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
763                          DAG.getConstant(0, PtrVT));
764      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
765        if (PartVT < ValueVT)
766          Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
767        else
768          Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
769      } else if (MVT::isFloatingPoint(PartVT) &&
770                 MVT::isFloatingPoint(ValueVT)) {
771        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
772      } else if (MVT::getSizeInBits(PartVT) ==
773                 MVT::getSizeInBits(ValueVT)) {
774        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
775      } else {
776        assert(0 && "Unknown mismatch!");
777      }
778    }
779    Parts[0] = Val;
780    return;
781  }
782
783  // Handle a multi-element vector.
784  MVT::ValueType IntermediateVT, RegisterVT;
785  unsigned NumIntermediates;
786  unsigned NumRegs =
787    DAG.getTargetLoweringInfo()
788      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
789                              RegisterVT);
790  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
791
792  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
793  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
794
795  // Split the vector into intermediate operands.
796  SmallVector<SDOperand, 8> Ops(NumIntermediates);
797  for (unsigned i = 0; i != NumIntermediates; ++i)
798    if (MVT::isVector(IntermediateVT))
799      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
800                           IntermediateVT, Val,
801                           DAG.getConstant(i * (NumElements / NumIntermediates),
802                                           PtrVT));
803    else
804      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
805                           IntermediateVT, Val,
806                           DAG.getConstant(i, PtrVT));
807
808  // Split the intermediate operands into legal parts.
809  if (NumParts == NumIntermediates) {
810    // If the register was not expanded, promote or copy the value,
811    // as appropriate.
812    for (unsigned i = 0; i != NumParts; ++i)
813      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
814  } else if (NumParts > 0) {
815    // If the intermediate type was expanded, split each the value into
816    // legal parts.
817    assert(NumParts % NumIntermediates == 0 &&
818           "Must expand into a divisible number of parts!");
819    unsigned Factor = NumParts / NumIntermediates;
820    for (unsigned i = 0; i != NumIntermediates; ++i)
821      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
822  }
823}
824
825
826SDOperand SelectionDAGLowering::getValue(const Value *V) {
827  SDOperand &N = NodeMap[V];
828  if (N.Val) return N;
829
830  const Type *VTy = V->getType();
831  MVT::ValueType VT = TLI.getValueType(VTy);
832  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
833    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
834      visit(CE->getOpcode(), *CE);
835      SDOperand N1 = NodeMap[V];
836      assert(N1.Val && "visit didn't populate the ValueMap!");
837      return N1;
838    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
839      return N = DAG.getGlobalAddress(GV, VT);
840    } else if (isa<ConstantPointerNull>(C)) {
841      return N = DAG.getConstant(0, TLI.getPointerTy());
842    } else if (isa<UndefValue>(C)) {
843      if (!isa<VectorType>(VTy))
844        return N = DAG.getNode(ISD::UNDEF, VT);
845
846      // Create a BUILD_VECTOR of undef nodes.
847      const VectorType *PTy = cast<VectorType>(VTy);
848      unsigned NumElements = PTy->getNumElements();
849      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
850
851      SmallVector<SDOperand, 8> Ops;
852      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
853
854      // Create a VConstant node with generic Vector type.
855      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
856      return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
857                             &Ops[0], Ops.size());
858    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
859      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
860    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
861      unsigned NumElements = PTy->getNumElements();
862      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
863
864      // Now that we know the number and type of the elements, push a
865      // Constant or ConstantFP node onto the ops list for each element of
866      // the vector constant.
867      SmallVector<SDOperand, 8> Ops;
868      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
869        for (unsigned i = 0; i != NumElements; ++i)
870          Ops.push_back(getValue(CP->getOperand(i)));
871      } else {
872        assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
873        SDOperand Op;
874        if (MVT::isFloatingPoint(PVT))
875          Op = DAG.getConstantFP(0, PVT);
876        else
877          Op = DAG.getConstant(0, PVT);
878        Ops.assign(NumElements, Op);
879      }
880
881      // Create a BUILD_VECTOR node.
882      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
883      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
884                                      Ops.size());
885    } else {
886      // Canonicalize all constant ints to be unsigned.
887      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
888    }
889  }
890
891  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
892    std::map<const AllocaInst*, int>::iterator SI =
893    FuncInfo.StaticAllocaMap.find(AI);
894    if (SI != FuncInfo.StaticAllocaMap.end())
895      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
896  }
897
898  unsigned InReg = FuncInfo.ValueMap[V];
899  assert(InReg && "Value not in map!");
900
901  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
902  unsigned NumRegs = TLI.getNumRegisters(VT);
903
904  std::vector<unsigned> Regs(NumRegs);
905  for (unsigned i = 0; i != NumRegs; ++i)
906    Regs[i] = InReg + i;
907
908  RegsForValue RFV(Regs, RegisterVT, VT);
909  SDOperand Chain = DAG.getEntryNode();
910
911  return RFV.getCopyFromRegs(DAG, Chain, NULL);
912}
913
914
915void SelectionDAGLowering::visitRet(ReturnInst &I) {
916  if (I.getNumOperands() == 0) {
917    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
918    return;
919  }
920  SmallVector<SDOperand, 8> NewValues;
921  NewValues.push_back(getRoot());
922  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
923    SDOperand RetOp = getValue(I.getOperand(i));
924
925    // If this is an integer return value, we need to promote it ourselves to
926    // the full width of a register, since getCopyToParts and Legalize will use
927    // ANY_EXTEND rather than sign/zero.
928    // FIXME: C calling convention requires the return type to be promoted to
929    // at least 32-bit. But this is not necessary for non-C calling conventions.
930    if (MVT::isInteger(RetOp.getValueType()) &&
931        RetOp.getValueType() < MVT::i64) {
932      MVT::ValueType TmpVT;
933      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
934        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
935      else
936        TmpVT = MVT::i32;
937      const Function *F = I.getParent()->getParent();
938      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
939      if (F->paramHasAttr(0, ParamAttr::SExt))
940        ExtendKind = ISD::SIGN_EXTEND;
941      if (F->paramHasAttr(0, ParamAttr::ZExt))
942        ExtendKind = ISD::ZERO_EXTEND;
943      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
944      NewValues.push_back(RetOp);
945      NewValues.push_back(DAG.getConstant(false, MVT::i32));
946    } else {
947      MVT::ValueType VT = RetOp.getValueType();
948      unsigned NumParts = TLI.getNumRegisters(VT);
949      MVT::ValueType PartVT = TLI.getRegisterType(VT);
950      SmallVector<SDOperand, 4> Parts(NumParts);
951      getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT);
952      for (unsigned i = 0; i < NumParts; ++i) {
953        NewValues.push_back(Parts[i]);
954        NewValues.push_back(DAG.getConstant(false, MVT::i32));
955      }
956    }
957  }
958  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
959                          &NewValues[0], NewValues.size()));
960}
961
962/// ExportFromCurrentBlock - If this condition isn't known to be exported from
963/// the current basic block, add it to ValueMap now so that we'll get a
964/// CopyTo/FromReg.
965void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
966  // No need to export constants.
967  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
968
969  // Already exported?
970  if (FuncInfo.isExportedInst(V)) return;
971
972  unsigned Reg = FuncInfo.InitializeRegForValue(V);
973  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
974}
975
976bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
977                                                    const BasicBlock *FromBB) {
978  // The operands of the setcc have to be in this block.  We don't know
979  // how to export them from some other block.
980  if (Instruction *VI = dyn_cast<Instruction>(V)) {
981    // Can export from current BB.
982    if (VI->getParent() == FromBB)
983      return true;
984
985    // Is already exported, noop.
986    return FuncInfo.isExportedInst(V);
987  }
988
989  // If this is an argument, we can export it if the BB is the entry block or
990  // if it is already exported.
991  if (isa<Argument>(V)) {
992    if (FromBB == &FromBB->getParent()->getEntryBlock())
993      return true;
994
995    // Otherwise, can only export this if it is already exported.
996    return FuncInfo.isExportedInst(V);
997  }
998
999  // Otherwise, constants can always be exported.
1000  return true;
1001}
1002
1003static bool InBlock(const Value *V, const BasicBlock *BB) {
1004  if (const Instruction *I = dyn_cast<Instruction>(V))
1005    return I->getParent() == BB;
1006  return true;
1007}
1008
1009/// FindMergedConditions - If Cond is an expression like
1010void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1011                                                MachineBasicBlock *TBB,
1012                                                MachineBasicBlock *FBB,
1013                                                MachineBasicBlock *CurBB,
1014                                                unsigned Opc) {
1015  // If this node is not part of the or/and tree, emit it as a branch.
1016  Instruction *BOp = dyn_cast<Instruction>(Cond);
1017
1018  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1019      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1020      BOp->getParent() != CurBB->getBasicBlock() ||
1021      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1022      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1023    const BasicBlock *BB = CurBB->getBasicBlock();
1024
1025    // If the leaf of the tree is a comparison, merge the condition into
1026    // the caseblock.
1027    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1028        // The operands of the cmp have to be in this block.  We don't know
1029        // how to export them from some other block.  If this is the first block
1030        // of the sequence, no exporting is needed.
1031        (CurBB == CurMBB ||
1032         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1033          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1034      BOp = cast<Instruction>(Cond);
1035      ISD::CondCode Condition;
1036      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1037        switch (IC->getPredicate()) {
1038        default: assert(0 && "Unknown icmp predicate opcode!");
1039        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1040        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1041        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1042        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1043        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1044        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1045        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1046        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1047        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1048        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1049        }
1050      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1051        ISD::CondCode FPC, FOC;
1052        switch (FC->getPredicate()) {
1053        default: assert(0 && "Unknown fcmp predicate opcode!");
1054        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1055        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1056        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1057        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1058        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1059        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1060        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1061        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1062        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1063        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1064        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1065        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1066        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1067        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1068        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1069        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1070        }
1071        if (FiniteOnlyFPMath())
1072          Condition = FOC;
1073        else
1074          Condition = FPC;
1075      } else {
1076        Condition = ISD::SETEQ; // silence warning.
1077        assert(0 && "Unknown compare instruction");
1078      }
1079
1080      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1081                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1082      SwitchCases.push_back(CB);
1083      return;
1084    }
1085
1086    // Create a CaseBlock record representing this branch.
1087    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1088                                   NULL, TBB, FBB, CurBB);
1089    SwitchCases.push_back(CB);
1090    return;
1091  }
1092
1093
1094  //  Create TmpBB after CurBB.
1095  MachineFunction::iterator BBI = CurBB;
1096  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1097  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1098
1099  if (Opc == Instruction::Or) {
1100    // Codegen X | Y as:
1101    //   jmp_if_X TBB
1102    //   jmp TmpBB
1103    // TmpBB:
1104    //   jmp_if_Y TBB
1105    //   jmp FBB
1106    //
1107
1108    // Emit the LHS condition.
1109    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1110
1111    // Emit the RHS condition into TmpBB.
1112    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1113  } else {
1114    assert(Opc == Instruction::And && "Unknown merge op!");
1115    // Codegen X & Y as:
1116    //   jmp_if_X TmpBB
1117    //   jmp FBB
1118    // TmpBB:
1119    //   jmp_if_Y TBB
1120    //   jmp FBB
1121    //
1122    //  This requires creation of TmpBB after CurBB.
1123
1124    // Emit the LHS condition.
1125    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1126
1127    // Emit the RHS condition into TmpBB.
1128    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1129  }
1130}
1131
1132/// If the set of cases should be emitted as a series of branches, return true.
1133/// If we should emit this as a bunch of and/or'd together conditions, return
1134/// false.
1135static bool
1136ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1137  if (Cases.size() != 2) return true;
1138
1139  // If this is two comparisons of the same values or'd or and'd together, they
1140  // will get folded into a single comparison, so don't emit two blocks.
1141  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1142       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1143      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1144       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1145    return false;
1146  }
1147
1148  return true;
1149}
1150
1151void SelectionDAGLowering::visitBr(BranchInst &I) {
1152  // Update machine-CFG edges.
1153  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1154
1155  // Figure out which block is immediately after the current one.
1156  MachineBasicBlock *NextBlock = 0;
1157  MachineFunction::iterator BBI = CurMBB;
1158  if (++BBI != CurMBB->getParent()->end())
1159    NextBlock = BBI;
1160
1161  if (I.isUnconditional()) {
1162    // If this is not a fall-through branch, emit the branch.
1163    if (Succ0MBB != NextBlock)
1164      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1165                              DAG.getBasicBlock(Succ0MBB)));
1166
1167    // Update machine-CFG edges.
1168    CurMBB->addSuccessor(Succ0MBB);
1169
1170    return;
1171  }
1172
1173  // If this condition is one of the special cases we handle, do special stuff
1174  // now.
1175  Value *CondVal = I.getCondition();
1176  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1177
1178  // If this is a series of conditions that are or'd or and'd together, emit
1179  // this as a sequence of branches instead of setcc's with and/or operations.
1180  // For example, instead of something like:
1181  //     cmp A, B
1182  //     C = seteq
1183  //     cmp D, E
1184  //     F = setle
1185  //     or C, F
1186  //     jnz foo
1187  // Emit:
1188  //     cmp A, B
1189  //     je foo
1190  //     cmp D, E
1191  //     jle foo
1192  //
1193  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1194    if (BOp->hasOneUse() &&
1195        (BOp->getOpcode() == Instruction::And ||
1196         BOp->getOpcode() == Instruction::Or)) {
1197      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1198      // If the compares in later blocks need to use values not currently
1199      // exported from this block, export them now.  This block should always
1200      // be the first entry.
1201      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1202
1203      // Allow some cases to be rejected.
1204      if (ShouldEmitAsBranches(SwitchCases)) {
1205        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1206          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1207          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1208        }
1209
1210        // Emit the branch for this block.
1211        visitSwitchCase(SwitchCases[0]);
1212        SwitchCases.erase(SwitchCases.begin());
1213        return;
1214      }
1215
1216      // Okay, we decided not to do this, remove any inserted MBB's and clear
1217      // SwitchCases.
1218      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1219        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1220
1221      SwitchCases.clear();
1222    }
1223  }
1224
1225  // Create a CaseBlock record representing this branch.
1226  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1227                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1228  // Use visitSwitchCase to actually insert the fast branch sequence for this
1229  // cond branch.
1230  visitSwitchCase(CB);
1231}
1232
1233/// visitSwitchCase - Emits the necessary code to represent a single node in
1234/// the binary search tree resulting from lowering a switch instruction.
1235void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1236  SDOperand Cond;
1237  SDOperand CondLHS = getValue(CB.CmpLHS);
1238
1239  // Build the setcc now.
1240  if (CB.CmpMHS == NULL) {
1241    // Fold "(X == true)" to X and "(X == false)" to !X to
1242    // handle common cases produced by branch lowering.
1243    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1244      Cond = CondLHS;
1245    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1246      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1247      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1248    } else
1249      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1250  } else {
1251    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1252
1253    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1254    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1255
1256    SDOperand CmpOp = getValue(CB.CmpMHS);
1257    MVT::ValueType VT = CmpOp.getValueType();
1258
1259    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1260      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1261    } else {
1262      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1263      Cond = DAG.getSetCC(MVT::i1, SUB,
1264                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1265    }
1266
1267  }
1268
1269  // Set NextBlock to be the MBB immediately after the current one, if any.
1270  // This is used to avoid emitting unnecessary branches to the next block.
1271  MachineBasicBlock *NextBlock = 0;
1272  MachineFunction::iterator BBI = CurMBB;
1273  if (++BBI != CurMBB->getParent()->end())
1274    NextBlock = BBI;
1275
1276  // If the lhs block is the next block, invert the condition so that we can
1277  // fall through to the lhs instead of the rhs block.
1278  if (CB.TrueBB == NextBlock) {
1279    std::swap(CB.TrueBB, CB.FalseBB);
1280    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1281    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1282  }
1283  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1284                                 DAG.getBasicBlock(CB.TrueBB));
1285  if (CB.FalseBB == NextBlock)
1286    DAG.setRoot(BrCond);
1287  else
1288    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1289                            DAG.getBasicBlock(CB.FalseBB)));
1290  // Update successor info
1291  CurMBB->addSuccessor(CB.TrueBB);
1292  CurMBB->addSuccessor(CB.FalseBB);
1293}
1294
1295/// visitJumpTable - Emit JumpTable node in the current MBB
1296void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1297  // Emit the code for the jump table
1298  assert(JT.Reg != -1U && "Should lower JT Header first!");
1299  MVT::ValueType PTy = TLI.getPointerTy();
1300  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1301  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1302  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1303                          Table, Index));
1304  return;
1305}
1306
1307/// visitJumpTableHeader - This function emits necessary code to produce index
1308/// in the JumpTable from switch case.
1309void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1310                                         SelectionDAGISel::JumpTableHeader &JTH) {
1311  // Subtract the lowest switch case value from the value being switched on
1312  // and conditional branch to default mbb if the result is greater than the
1313  // difference between smallest and largest cases.
1314  SDOperand SwitchOp = getValue(JTH.SValue);
1315  MVT::ValueType VT = SwitchOp.getValueType();
1316  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1317                              DAG.getConstant(JTH.First, VT));
1318
1319  // The SDNode we just created, which holds the value being switched on
1320  // minus the the smallest case value, needs to be copied to a virtual
1321  // register so it can be used as an index into the jump table in a
1322  // subsequent basic block.  This value may be smaller or larger than the
1323  // target's pointer type, and therefore require extension or truncating.
1324  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1325    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1326  else
1327    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1328
1329  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1330  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1331  JT.Reg = JumpTableReg;
1332
1333  // Emit the range check for the jump table, and branch to the default
1334  // block for the switch statement if the value being switched on exceeds
1335  // the largest case in the switch.
1336  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1337                               DAG.getConstant(JTH.Last-JTH.First,VT),
1338                               ISD::SETUGT);
1339
1340  // Set NextBlock to be the MBB immediately after the current one, if any.
1341  // This is used to avoid emitting unnecessary branches to the next block.
1342  MachineBasicBlock *NextBlock = 0;
1343  MachineFunction::iterator BBI = CurMBB;
1344  if (++BBI != CurMBB->getParent()->end())
1345    NextBlock = BBI;
1346
1347  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1348                                 DAG.getBasicBlock(JT.Default));
1349
1350  if (JT.MBB == NextBlock)
1351    DAG.setRoot(BrCond);
1352  else
1353    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1354                            DAG.getBasicBlock(JT.MBB)));
1355
1356  return;
1357}
1358
1359/// visitBitTestHeader - This function emits necessary code to produce value
1360/// suitable for "bit tests"
1361void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1362  // Subtract the minimum value
1363  SDOperand SwitchOp = getValue(B.SValue);
1364  MVT::ValueType VT = SwitchOp.getValueType();
1365  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1366                              DAG.getConstant(B.First, VT));
1367
1368  // Check range
1369  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1370                                    DAG.getConstant(B.Range, VT),
1371                                    ISD::SETUGT);
1372
1373  SDOperand ShiftOp;
1374  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1375    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1376  else
1377    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1378
1379  // Make desired shift
1380  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1381                                    DAG.getConstant(1, TLI.getPointerTy()),
1382                                    ShiftOp);
1383
1384  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1385  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1386  B.Reg = SwitchReg;
1387
1388  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1389                                  DAG.getBasicBlock(B.Default));
1390
1391  // Set NextBlock to be the MBB immediately after the current one, if any.
1392  // This is used to avoid emitting unnecessary branches to the next block.
1393  MachineBasicBlock *NextBlock = 0;
1394  MachineFunction::iterator BBI = CurMBB;
1395  if (++BBI != CurMBB->getParent()->end())
1396    NextBlock = BBI;
1397
1398  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1399  if (MBB == NextBlock)
1400    DAG.setRoot(BrRange);
1401  else
1402    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1403                            DAG.getBasicBlock(MBB)));
1404
1405  CurMBB->addSuccessor(B.Default);
1406  CurMBB->addSuccessor(MBB);
1407
1408  return;
1409}
1410
1411/// visitBitTestCase - this function produces one "bit test"
1412void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1413                                            unsigned Reg,
1414                                            SelectionDAGISel::BitTestCase &B) {
1415  // Emit bit tests and jumps
1416  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1417
1418  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1419                                SwitchVal,
1420                                DAG.getConstant(B.Mask,
1421                                                TLI.getPointerTy()));
1422  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1423                                  DAG.getConstant(0, TLI.getPointerTy()),
1424                                  ISD::SETNE);
1425  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1426                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1427
1428  // Set NextBlock to be the MBB immediately after the current one, if any.
1429  // This is used to avoid emitting unnecessary branches to the next block.
1430  MachineBasicBlock *NextBlock = 0;
1431  MachineFunction::iterator BBI = CurMBB;
1432  if (++BBI != CurMBB->getParent()->end())
1433    NextBlock = BBI;
1434
1435  if (NextMBB == NextBlock)
1436    DAG.setRoot(BrAnd);
1437  else
1438    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1439                            DAG.getBasicBlock(NextMBB)));
1440
1441  CurMBB->addSuccessor(B.TargetBB);
1442  CurMBB->addSuccessor(NextMBB);
1443
1444  return;
1445}
1446
1447void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1448  // Retrieve successors.
1449  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1450  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1451
1452  if (isa<InlineAsm>(I.getCalledValue()))
1453    visitInlineAsm(&I);
1454  else
1455    LowerCallTo(I, I.getCalledValue()->getType(), I.getParamAttrs(),
1456                I.getCallingConv(),
1457                false,
1458                getValue(I.getOperand(0)),
1459                3, LandingPad);
1460
1461  // If the value of the invoke is used outside of its defining block, make it
1462  // available as a virtual register.
1463  if (!I.use_empty()) {
1464    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1465    if (VMI != FuncInfo.ValueMap.end())
1466      DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1467  }
1468
1469  // Drop into normal successor.
1470  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1471                          DAG.getBasicBlock(Return)));
1472
1473  // Update successor info
1474  CurMBB->addSuccessor(Return);
1475  CurMBB->addSuccessor(LandingPad);
1476}
1477
1478void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1479}
1480
1481/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1482/// small case ranges).
1483bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1484                                                  CaseRecVector& WorkList,
1485                                                  Value* SV,
1486                                                  MachineBasicBlock* Default) {
1487  Case& BackCase  = *(CR.Range.second-1);
1488
1489  // Size is the number of Cases represented by this range.
1490  unsigned Size = CR.Range.second - CR.Range.first;
1491  if (Size > 3)
1492    return false;
1493
1494  // Get the MachineFunction which holds the current MBB.  This is used when
1495  // inserting any additional MBBs necessary to represent the switch.
1496  MachineFunction *CurMF = CurMBB->getParent();
1497
1498  // Figure out which block is immediately after the current one.
1499  MachineBasicBlock *NextBlock = 0;
1500  MachineFunction::iterator BBI = CR.CaseBB;
1501
1502  if (++BBI != CurMBB->getParent()->end())
1503    NextBlock = BBI;
1504
1505  // TODO: If any two of the cases has the same destination, and if one value
1506  // is the same as the other, but has one bit unset that the other has set,
1507  // use bit manipulation to do two compares at once.  For example:
1508  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1509
1510  // Rearrange the case blocks so that the last one falls through if possible.
1511  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1512    // The last case block won't fall through into 'NextBlock' if we emit the
1513    // branches in this order.  See if rearranging a case value would help.
1514    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1515      if (I->BB == NextBlock) {
1516        std::swap(*I, BackCase);
1517        break;
1518      }
1519    }
1520  }
1521
1522  // Create a CaseBlock record representing a conditional branch to
1523  // the Case's target mbb if the value being switched on SV is equal
1524  // to C.
1525  MachineBasicBlock *CurBlock = CR.CaseBB;
1526  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1527    MachineBasicBlock *FallThrough;
1528    if (I != E-1) {
1529      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1530      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1531    } else {
1532      // If the last case doesn't match, go to the default block.
1533      FallThrough = Default;
1534    }
1535
1536    Value *RHS, *LHS, *MHS;
1537    ISD::CondCode CC;
1538    if (I->High == I->Low) {
1539      // This is just small small case range :) containing exactly 1 case
1540      CC = ISD::SETEQ;
1541      LHS = SV; RHS = I->High; MHS = NULL;
1542    } else {
1543      CC = ISD::SETLE;
1544      LHS = I->Low; MHS = SV; RHS = I->High;
1545    }
1546    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1547                                   I->BB, FallThrough, CurBlock);
1548
1549    // If emitting the first comparison, just call visitSwitchCase to emit the
1550    // code into the current block.  Otherwise, push the CaseBlock onto the
1551    // vector to be later processed by SDISel, and insert the node's MBB
1552    // before the next MBB.
1553    if (CurBlock == CurMBB)
1554      visitSwitchCase(CB);
1555    else
1556      SwitchCases.push_back(CB);
1557
1558    CurBlock = FallThrough;
1559  }
1560
1561  return true;
1562}
1563
1564static inline bool areJTsAllowed(const TargetLowering &TLI) {
1565  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1566          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1567}
1568
1569/// handleJTSwitchCase - Emit jumptable for current switch case range
1570bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1571                                              CaseRecVector& WorkList,
1572                                              Value* SV,
1573                                              MachineBasicBlock* Default) {
1574  Case& FrontCase = *CR.Range.first;
1575  Case& BackCase  = *(CR.Range.second-1);
1576
1577  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1578  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1579
1580  uint64_t TSize = 0;
1581  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1582       I!=E; ++I)
1583    TSize += I->size();
1584
1585  if (!areJTsAllowed(TLI) || TSize <= 3)
1586    return false;
1587
1588  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1589  if (Density < 0.4)
1590    return false;
1591
1592  DOUT << "Lowering jump table\n"
1593       << "First entry: " << First << ". Last entry: " << Last << "\n"
1594       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1595
1596  // Get the MachineFunction which holds the current MBB.  This is used when
1597  // inserting any additional MBBs necessary to represent the switch.
1598  MachineFunction *CurMF = CurMBB->getParent();
1599
1600  // Figure out which block is immediately after the current one.
1601  MachineBasicBlock *NextBlock = 0;
1602  MachineFunction::iterator BBI = CR.CaseBB;
1603
1604  if (++BBI != CurMBB->getParent()->end())
1605    NextBlock = BBI;
1606
1607  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1608
1609  // Create a new basic block to hold the code for loading the address
1610  // of the jump table, and jumping to it.  Update successor information;
1611  // we will either branch to the default case for the switch, or the jump
1612  // table.
1613  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1614  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1615  CR.CaseBB->addSuccessor(Default);
1616  CR.CaseBB->addSuccessor(JumpTableBB);
1617
1618  // Build a vector of destination BBs, corresponding to each target
1619  // of the jump table. If the value of the jump table slot corresponds to
1620  // a case statement, push the case's BB onto the vector, otherwise, push
1621  // the default BB.
1622  std::vector<MachineBasicBlock*> DestBBs;
1623  int64_t TEI = First;
1624  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1625    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1626    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1627
1628    if ((Low <= TEI) && (TEI <= High)) {
1629      DestBBs.push_back(I->BB);
1630      if (TEI==High)
1631        ++I;
1632    } else {
1633      DestBBs.push_back(Default);
1634    }
1635  }
1636
1637  // Update successor info. Add one edge to each unique successor.
1638  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1639  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1640         E = DestBBs.end(); I != E; ++I) {
1641    if (!SuccsHandled[(*I)->getNumber()]) {
1642      SuccsHandled[(*I)->getNumber()] = true;
1643      JumpTableBB->addSuccessor(*I);
1644    }
1645  }
1646
1647  // Create a jump table index for this jump table, or return an existing
1648  // one.
1649  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1650
1651  // Set the jump table information so that we can codegen it as a second
1652  // MachineBasicBlock
1653  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1654  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1655                                        (CR.CaseBB == CurMBB));
1656  if (CR.CaseBB == CurMBB)
1657    visitJumpTableHeader(JT, JTH);
1658
1659  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1660
1661  return true;
1662}
1663
1664/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1665/// 2 subtrees.
1666bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1667                                                   CaseRecVector& WorkList,
1668                                                   Value* SV,
1669                                                   MachineBasicBlock* Default) {
1670  // Get the MachineFunction which holds the current MBB.  This is used when
1671  // inserting any additional MBBs necessary to represent the switch.
1672  MachineFunction *CurMF = CurMBB->getParent();
1673
1674  // Figure out which block is immediately after the current one.
1675  MachineBasicBlock *NextBlock = 0;
1676  MachineFunction::iterator BBI = CR.CaseBB;
1677
1678  if (++BBI != CurMBB->getParent()->end())
1679    NextBlock = BBI;
1680
1681  Case& FrontCase = *CR.Range.first;
1682  Case& BackCase  = *(CR.Range.second-1);
1683  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1684
1685  // Size is the number of Cases represented by this range.
1686  unsigned Size = CR.Range.second - CR.Range.first;
1687
1688  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1689  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1690  double FMetric = 0;
1691  CaseItr Pivot = CR.Range.first + Size/2;
1692
1693  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1694  // (heuristically) allow us to emit JumpTable's later.
1695  uint64_t TSize = 0;
1696  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1697       I!=E; ++I)
1698    TSize += I->size();
1699
1700  uint64_t LSize = FrontCase.size();
1701  uint64_t RSize = TSize-LSize;
1702  DOUT << "Selecting best pivot: \n"
1703       << "First: " << First << ", Last: " << Last <<"\n"
1704       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1705  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1706       J!=E; ++I, ++J) {
1707    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1708    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1709    assert((RBegin-LEnd>=1) && "Invalid case distance");
1710    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1711    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1712    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1713    // Should always split in some non-trivial place
1714    DOUT <<"=>Step\n"
1715         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1716         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1717         << "Metric: " << Metric << "\n";
1718    if (FMetric < Metric) {
1719      Pivot = J;
1720      FMetric = Metric;
1721      DOUT << "Current metric set to: " << FMetric << "\n";
1722    }
1723
1724    LSize += J->size();
1725    RSize -= J->size();
1726  }
1727  if (areJTsAllowed(TLI)) {
1728    // If our case is dense we *really* should handle it earlier!
1729    assert((FMetric > 0) && "Should handle dense range earlier!");
1730  } else {
1731    Pivot = CR.Range.first + Size/2;
1732  }
1733
1734  CaseRange LHSR(CR.Range.first, Pivot);
1735  CaseRange RHSR(Pivot, CR.Range.second);
1736  Constant *C = Pivot->Low;
1737  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1738
1739  // We know that we branch to the LHS if the Value being switched on is
1740  // less than the Pivot value, C.  We use this to optimize our binary
1741  // tree a bit, by recognizing that if SV is greater than or equal to the
1742  // LHS's Case Value, and that Case Value is exactly one less than the
1743  // Pivot's Value, then we can branch directly to the LHS's Target,
1744  // rather than creating a leaf node for it.
1745  if ((LHSR.second - LHSR.first) == 1 &&
1746      LHSR.first->High == CR.GE &&
1747      cast<ConstantInt>(C)->getSExtValue() ==
1748      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1749    TrueBB = LHSR.first->BB;
1750  } else {
1751    TrueBB = new MachineBasicBlock(LLVMBB);
1752    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1753    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1754  }
1755
1756  // Similar to the optimization above, if the Value being switched on is
1757  // known to be less than the Constant CR.LT, and the current Case Value
1758  // is CR.LT - 1, then we can branch directly to the target block for
1759  // the current Case Value, rather than emitting a RHS leaf node for it.
1760  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1761      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1762      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1763    FalseBB = RHSR.first->BB;
1764  } else {
1765    FalseBB = new MachineBasicBlock(LLVMBB);
1766    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1767    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1768  }
1769
1770  // Create a CaseBlock record representing a conditional branch to
1771  // the LHS node if the value being switched on SV is less than C.
1772  // Otherwise, branch to LHS.
1773  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1774                                 TrueBB, FalseBB, CR.CaseBB);
1775
1776  if (CR.CaseBB == CurMBB)
1777    visitSwitchCase(CB);
1778  else
1779    SwitchCases.push_back(CB);
1780
1781  return true;
1782}
1783
1784/// handleBitTestsSwitchCase - if current case range has few destination and
1785/// range span less, than machine word bitwidth, encode case range into series
1786/// of masks and emit bit tests with these masks.
1787bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1788                                                    CaseRecVector& WorkList,
1789                                                    Value* SV,
1790                                                    MachineBasicBlock* Default){
1791  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1792
1793  Case& FrontCase = *CR.Range.first;
1794  Case& BackCase  = *(CR.Range.second-1);
1795
1796  // Get the MachineFunction which holds the current MBB.  This is used when
1797  // inserting any additional MBBs necessary to represent the switch.
1798  MachineFunction *CurMF = CurMBB->getParent();
1799
1800  unsigned numCmps = 0;
1801  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1802       I!=E; ++I) {
1803    // Single case counts one, case range - two.
1804    if (I->Low == I->High)
1805      numCmps +=1;
1806    else
1807      numCmps +=2;
1808  }
1809
1810  // Count unique destinations
1811  SmallSet<MachineBasicBlock*, 4> Dests;
1812  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1813    Dests.insert(I->BB);
1814    if (Dests.size() > 3)
1815      // Don't bother the code below, if there are too much unique destinations
1816      return false;
1817  }
1818  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1819       << "Total number of comparisons: " << numCmps << "\n";
1820
1821  // Compute span of values.
1822  Constant* minValue = FrontCase.Low;
1823  Constant* maxValue = BackCase.High;
1824  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1825                   cast<ConstantInt>(minValue)->getSExtValue();
1826  DOUT << "Compare range: " << range << "\n"
1827       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1828       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1829
1830  if (range>=IntPtrBits ||
1831      (!(Dests.size() == 1 && numCmps >= 3) &&
1832       !(Dests.size() == 2 && numCmps >= 5) &&
1833       !(Dests.size() >= 3 && numCmps >= 6)))
1834    return false;
1835
1836  DOUT << "Emitting bit tests\n";
1837  int64_t lowBound = 0;
1838
1839  // Optimize the case where all the case values fit in a
1840  // word without having to subtract minValue. In this case,
1841  // we can optimize away the subtraction.
1842  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1843      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1844    range = cast<ConstantInt>(maxValue)->getSExtValue();
1845  } else {
1846    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1847  }
1848
1849  CaseBitsVector CasesBits;
1850  unsigned i, count = 0;
1851
1852  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1853    MachineBasicBlock* Dest = I->BB;
1854    for (i = 0; i < count; ++i)
1855      if (Dest == CasesBits[i].BB)
1856        break;
1857
1858    if (i == count) {
1859      assert((count < 3) && "Too much destinations to test!");
1860      CasesBits.push_back(CaseBits(0, Dest, 0));
1861      count++;
1862    }
1863
1864    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1865    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1866
1867    for (uint64_t j = lo; j <= hi; j++) {
1868      CasesBits[i].Mask |=  1ULL << j;
1869      CasesBits[i].Bits++;
1870    }
1871
1872  }
1873  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1874
1875  SelectionDAGISel::BitTestInfo BTC;
1876
1877  // Figure out which block is immediately after the current one.
1878  MachineFunction::iterator BBI = CR.CaseBB;
1879  ++BBI;
1880
1881  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1882
1883  DOUT << "Cases:\n";
1884  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1885    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1886         << ", BB: " << CasesBits[i].BB << "\n";
1887
1888    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1889    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1890    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1891                                                CaseBB,
1892                                                CasesBits[i].BB));
1893  }
1894
1895  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1896                                     -1U, (CR.CaseBB == CurMBB),
1897                                     CR.CaseBB, Default, BTC);
1898
1899  if (CR.CaseBB == CurMBB)
1900    visitBitTestHeader(BTB);
1901
1902  BitTestCases.push_back(BTB);
1903
1904  return true;
1905}
1906
1907
1908// Clusterify - Transform simple list of Cases into list of CaseRange's
1909unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1910                                          const SwitchInst& SI) {
1911  unsigned numCmps = 0;
1912
1913  // Start with "simple" cases
1914  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1915    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1916    Cases.push_back(Case(SI.getSuccessorValue(i),
1917                         SI.getSuccessorValue(i),
1918                         SMBB));
1919  }
1920  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1921
1922  // Merge case into clusters
1923  if (Cases.size()>=2)
1924    // Must recompute end() each iteration because it may be
1925    // invalidated by erase if we hold on to it
1926    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
1927      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1928      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1929      MachineBasicBlock* nextBB = J->BB;
1930      MachineBasicBlock* currentBB = I->BB;
1931
1932      // If the two neighboring cases go to the same destination, merge them
1933      // into a single case.
1934      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1935        I->High = J->High;
1936        J = Cases.erase(J);
1937      } else {
1938        I = J++;
1939      }
1940    }
1941
1942  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1943    if (I->Low != I->High)
1944      // A range counts double, since it requires two compares.
1945      ++numCmps;
1946  }
1947
1948  return numCmps;
1949}
1950
1951void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1952  // Figure out which block is immediately after the current one.
1953  MachineBasicBlock *NextBlock = 0;
1954  MachineFunction::iterator BBI = CurMBB;
1955
1956  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1957
1958  // If there is only the default destination, branch to it if it is not the
1959  // next basic block.  Otherwise, just fall through.
1960  if (SI.getNumOperands() == 2) {
1961    // Update machine-CFG edges.
1962
1963    // If this is not a fall-through branch, emit the branch.
1964    if (Default != NextBlock)
1965      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1966                              DAG.getBasicBlock(Default)));
1967
1968    CurMBB->addSuccessor(Default);
1969    return;
1970  }
1971
1972  // If there are any non-default case statements, create a vector of Cases
1973  // representing each one, and sort the vector so that we can efficiently
1974  // create a binary search tree from them.
1975  CaseVector Cases;
1976  unsigned numCmps = Clusterify(Cases, SI);
1977  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1978       << ". Total compares: " << numCmps << "\n";
1979
1980  // Get the Value to be switched on and default basic blocks, which will be
1981  // inserted into CaseBlock records, representing basic blocks in the binary
1982  // search tree.
1983  Value *SV = SI.getOperand(0);
1984
1985  // Push the initial CaseRec onto the worklist
1986  CaseRecVector WorkList;
1987  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1988
1989  while (!WorkList.empty()) {
1990    // Grab a record representing a case range to process off the worklist
1991    CaseRec CR = WorkList.back();
1992    WorkList.pop_back();
1993
1994    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1995      continue;
1996
1997    // If the range has few cases (two or less) emit a series of specific
1998    // tests.
1999    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2000      continue;
2001
2002    // If the switch has more than 5 blocks, and at least 40% dense, and the
2003    // target supports indirect branches, then emit a jump table rather than
2004    // lowering the switch to a binary tree of conditional branches.
2005    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2006      continue;
2007
2008    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2009    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2010    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2011  }
2012}
2013
2014
2015void SelectionDAGLowering::visitSub(User &I) {
2016  // -0.0 - X --> fneg
2017  const Type *Ty = I.getType();
2018  if (isa<VectorType>(Ty)) {
2019    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2020      const VectorType *DestTy = cast<VectorType>(I.getType());
2021      const Type *ElTy = DestTy->getElementType();
2022      if (ElTy->isFloatingPoint()) {
2023        unsigned VL = DestTy->getNumElements();
2024        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2025        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2026        if (CV == CNZ) {
2027          SDOperand Op2 = getValue(I.getOperand(1));
2028          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2029          return;
2030        }
2031      }
2032    }
2033  }
2034  if (Ty->isFloatingPoint()) {
2035    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2036      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2037        SDOperand Op2 = getValue(I.getOperand(1));
2038        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2039        return;
2040      }
2041  }
2042
2043  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2044}
2045
2046void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2047  SDOperand Op1 = getValue(I.getOperand(0));
2048  SDOperand Op2 = getValue(I.getOperand(1));
2049
2050  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2051}
2052
2053void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2054  SDOperand Op1 = getValue(I.getOperand(0));
2055  SDOperand Op2 = getValue(I.getOperand(1));
2056
2057  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2058      MVT::getSizeInBits(Op2.getValueType()))
2059    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2060  else if (TLI.getShiftAmountTy() > Op2.getValueType())
2061    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2062
2063  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2064}
2065
2066void SelectionDAGLowering::visitICmp(User &I) {
2067  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2068  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2069    predicate = IC->getPredicate();
2070  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2071    predicate = ICmpInst::Predicate(IC->getPredicate());
2072  SDOperand Op1 = getValue(I.getOperand(0));
2073  SDOperand Op2 = getValue(I.getOperand(1));
2074  ISD::CondCode Opcode;
2075  switch (predicate) {
2076    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2077    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2078    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2079    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2080    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2081    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2082    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2083    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2084    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2085    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2086    default:
2087      assert(!"Invalid ICmp predicate value");
2088      Opcode = ISD::SETEQ;
2089      break;
2090  }
2091  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2092}
2093
2094void SelectionDAGLowering::visitFCmp(User &I) {
2095  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2096  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2097    predicate = FC->getPredicate();
2098  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2099    predicate = FCmpInst::Predicate(FC->getPredicate());
2100  SDOperand Op1 = getValue(I.getOperand(0));
2101  SDOperand Op2 = getValue(I.getOperand(1));
2102  ISD::CondCode Condition, FOC, FPC;
2103  switch (predicate) {
2104    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2105    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2106    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2107    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2108    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2109    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2110    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2111    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2112    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2113    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2114    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2115    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2116    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2117    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2118    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2119    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2120    default:
2121      assert(!"Invalid FCmp predicate value");
2122      FOC = FPC = ISD::SETFALSE;
2123      break;
2124  }
2125  if (FiniteOnlyFPMath())
2126    Condition = FOC;
2127  else
2128    Condition = FPC;
2129  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2130}
2131
2132void SelectionDAGLowering::visitSelect(User &I) {
2133  SDOperand Cond     = getValue(I.getOperand(0));
2134  SDOperand TrueVal  = getValue(I.getOperand(1));
2135  SDOperand FalseVal = getValue(I.getOperand(2));
2136  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2137                           TrueVal, FalseVal));
2138}
2139
2140
2141void SelectionDAGLowering::visitTrunc(User &I) {
2142  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2143  SDOperand N = getValue(I.getOperand(0));
2144  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2145  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2146}
2147
2148void SelectionDAGLowering::visitZExt(User &I) {
2149  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2150  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2151  SDOperand N = getValue(I.getOperand(0));
2152  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2153  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2154}
2155
2156void SelectionDAGLowering::visitSExt(User &I) {
2157  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2158  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2159  SDOperand N = getValue(I.getOperand(0));
2160  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2161  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2162}
2163
2164void SelectionDAGLowering::visitFPTrunc(User &I) {
2165  // FPTrunc is never a no-op cast, no need to check
2166  SDOperand N = getValue(I.getOperand(0));
2167  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2168  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2169}
2170
2171void SelectionDAGLowering::visitFPExt(User &I){
2172  // FPTrunc is never a no-op cast, no need to check
2173  SDOperand N = getValue(I.getOperand(0));
2174  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2175  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2176}
2177
2178void SelectionDAGLowering::visitFPToUI(User &I) {
2179  // FPToUI is never a no-op cast, no need to check
2180  SDOperand N = getValue(I.getOperand(0));
2181  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2182  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2183}
2184
2185void SelectionDAGLowering::visitFPToSI(User &I) {
2186  // FPToSI is never a no-op cast, no need to check
2187  SDOperand N = getValue(I.getOperand(0));
2188  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2189  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2190}
2191
2192void SelectionDAGLowering::visitUIToFP(User &I) {
2193  // UIToFP is never a no-op cast, no need to check
2194  SDOperand N = getValue(I.getOperand(0));
2195  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2196  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2197}
2198
2199void SelectionDAGLowering::visitSIToFP(User &I){
2200  // UIToFP is never a no-op cast, no need to check
2201  SDOperand N = getValue(I.getOperand(0));
2202  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2203  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2204}
2205
2206void SelectionDAGLowering::visitPtrToInt(User &I) {
2207  // What to do depends on the size of the integer and the size of the pointer.
2208  // We can either truncate, zero extend, or no-op, accordingly.
2209  SDOperand N = getValue(I.getOperand(0));
2210  MVT::ValueType SrcVT = N.getValueType();
2211  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2212  SDOperand Result;
2213  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2214    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2215  else
2216    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2217    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2218  setValue(&I, Result);
2219}
2220
2221void SelectionDAGLowering::visitIntToPtr(User &I) {
2222  // What to do depends on the size of the integer and the size of the pointer.
2223  // We can either truncate, zero extend, or no-op, accordingly.
2224  SDOperand N = getValue(I.getOperand(0));
2225  MVT::ValueType SrcVT = N.getValueType();
2226  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2227  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2228    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2229  else
2230    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2231    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2232}
2233
2234void SelectionDAGLowering::visitBitCast(User &I) {
2235  SDOperand N = getValue(I.getOperand(0));
2236  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2237
2238  // BitCast assures us that source and destination are the same size so this
2239  // is either a BIT_CONVERT or a no-op.
2240  if (DestVT != N.getValueType())
2241    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2242  else
2243    setValue(&I, N); // noop cast.
2244}
2245
2246void SelectionDAGLowering::visitInsertElement(User &I) {
2247  SDOperand InVec = getValue(I.getOperand(0));
2248  SDOperand InVal = getValue(I.getOperand(1));
2249  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2250                                getValue(I.getOperand(2)));
2251
2252  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2253                           TLI.getValueType(I.getType()),
2254                           InVec, InVal, InIdx));
2255}
2256
2257void SelectionDAGLowering::visitExtractElement(User &I) {
2258  SDOperand InVec = getValue(I.getOperand(0));
2259  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2260                                getValue(I.getOperand(1)));
2261  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2262                           TLI.getValueType(I.getType()), InVec, InIdx));
2263}
2264
2265void SelectionDAGLowering::visitShuffleVector(User &I) {
2266  SDOperand V1   = getValue(I.getOperand(0));
2267  SDOperand V2   = getValue(I.getOperand(1));
2268  SDOperand Mask = getValue(I.getOperand(2));
2269
2270  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2271                           TLI.getValueType(I.getType()),
2272                           V1, V2, Mask));
2273}
2274
2275
2276void SelectionDAGLowering::visitGetElementPtr(User &I) {
2277  SDOperand N = getValue(I.getOperand(0));
2278  const Type *Ty = I.getOperand(0)->getType();
2279
2280  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2281       OI != E; ++OI) {
2282    Value *Idx = *OI;
2283    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2284      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2285      if (Field) {
2286        // N = N + Offset
2287        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2288        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2289                        getIntPtrConstant(Offset));
2290      }
2291      Ty = StTy->getElementType(Field);
2292    } else {
2293      Ty = cast<SequentialType>(Ty)->getElementType();
2294
2295      // If this is a constant subscript, handle it quickly.
2296      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2297        if (CI->getZExtValue() == 0) continue;
2298        uint64_t Offs =
2299            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2300        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2301        continue;
2302      }
2303
2304      // N = N + Idx * ElementSize;
2305      uint64_t ElementSize = TD->getABITypeSize(Ty);
2306      SDOperand IdxN = getValue(Idx);
2307
2308      // If the index is smaller or larger than intptr_t, truncate or extend
2309      // it.
2310      if (IdxN.getValueType() < N.getValueType()) {
2311        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2312      } else if (IdxN.getValueType() > N.getValueType())
2313        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2314
2315      // If this is a multiply by a power of two, turn it into a shl
2316      // immediately.  This is a very common case.
2317      if (isPowerOf2_64(ElementSize)) {
2318        unsigned Amt = Log2_64(ElementSize);
2319        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2320                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2321        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2322        continue;
2323      }
2324
2325      SDOperand Scale = getIntPtrConstant(ElementSize);
2326      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2327      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2328    }
2329  }
2330  setValue(&I, N);
2331}
2332
2333void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2334  // If this is a fixed sized alloca in the entry block of the function,
2335  // allocate it statically on the stack.
2336  if (FuncInfo.StaticAllocaMap.count(&I))
2337    return;   // getValue will auto-populate this.
2338
2339  const Type *Ty = I.getAllocatedType();
2340  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2341  unsigned Align =
2342    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2343             I.getAlignment());
2344
2345  SDOperand AllocSize = getValue(I.getArraySize());
2346  MVT::ValueType IntPtr = TLI.getPointerTy();
2347  if (IntPtr < AllocSize.getValueType())
2348    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2349  else if (IntPtr > AllocSize.getValueType())
2350    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2351
2352  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2353                          getIntPtrConstant(TySize));
2354
2355  // Handle alignment.  If the requested alignment is less than or equal to
2356  // the stack alignment, ignore it.  If the size is greater than or equal to
2357  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2358  unsigned StackAlign =
2359    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2360  if (Align <= StackAlign)
2361    Align = 0;
2362
2363  // Round the size of the allocation up to the stack alignment size
2364  // by add SA-1 to the size.
2365  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2366                          getIntPtrConstant(StackAlign-1));
2367  // Mask out the low bits for alignment purposes.
2368  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2369                          getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2370
2371  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2372  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2373                                                    MVT::Other);
2374  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2375  setValue(&I, DSA);
2376  DAG.setRoot(DSA.getValue(1));
2377
2378  // Inform the Frame Information that we have just allocated a variable-sized
2379  // object.
2380  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2381}
2382
2383void SelectionDAGLowering::visitLoad(LoadInst &I) {
2384  SDOperand Ptr = getValue(I.getOperand(0));
2385
2386  SDOperand Root;
2387  if (I.isVolatile())
2388    Root = getRoot();
2389  else {
2390    // Do not serialize non-volatile loads against each other.
2391    Root = DAG.getRoot();
2392  }
2393
2394  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2395                           Root, I.isVolatile(), I.getAlignment()));
2396}
2397
2398SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2399                                            const Value *SV, SDOperand Root,
2400                                            bool isVolatile,
2401                                            unsigned Alignment) {
2402  SDOperand L =
2403    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2404                isVolatile, Alignment);
2405
2406  if (isVolatile)
2407    DAG.setRoot(L.getValue(1));
2408  else
2409    PendingLoads.push_back(L.getValue(1));
2410
2411  return L;
2412}
2413
2414
2415void SelectionDAGLowering::visitStore(StoreInst &I) {
2416  Value *SrcV = I.getOperand(0);
2417  SDOperand Src = getValue(SrcV);
2418  SDOperand Ptr = getValue(I.getOperand(1));
2419  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2420                           I.isVolatile(), I.getAlignment()));
2421}
2422
2423/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2424/// node.
2425void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2426                                                unsigned Intrinsic) {
2427  bool HasChain = !I.doesNotAccessMemory();
2428  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2429
2430  // Build the operand list.
2431  SmallVector<SDOperand, 8> Ops;
2432  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2433    if (OnlyLoad) {
2434      // We don't need to serialize loads against other loads.
2435      Ops.push_back(DAG.getRoot());
2436    } else {
2437      Ops.push_back(getRoot());
2438    }
2439  }
2440
2441  // Add the intrinsic ID as an integer operand.
2442  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2443
2444  // Add all operands of the call to the operand list.
2445  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2446    SDOperand Op = getValue(I.getOperand(i));
2447    assert(TLI.isTypeLegal(Op.getValueType()) &&
2448           "Intrinsic uses a non-legal type?");
2449    Ops.push_back(Op);
2450  }
2451
2452  std::vector<MVT::ValueType> VTs;
2453  if (I.getType() != Type::VoidTy) {
2454    MVT::ValueType VT = TLI.getValueType(I.getType());
2455    if (MVT::isVector(VT)) {
2456      const VectorType *DestTy = cast<VectorType>(I.getType());
2457      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2458
2459      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2460      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2461    }
2462
2463    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2464    VTs.push_back(VT);
2465  }
2466  if (HasChain)
2467    VTs.push_back(MVT::Other);
2468
2469  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2470
2471  // Create the node.
2472  SDOperand Result;
2473  if (!HasChain)
2474    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2475                         &Ops[0], Ops.size());
2476  else if (I.getType() != Type::VoidTy)
2477    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2478                         &Ops[0], Ops.size());
2479  else
2480    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2481                         &Ops[0], Ops.size());
2482
2483  if (HasChain) {
2484    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2485    if (OnlyLoad)
2486      PendingLoads.push_back(Chain);
2487    else
2488      DAG.setRoot(Chain);
2489  }
2490  if (I.getType() != Type::VoidTy) {
2491    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2492      MVT::ValueType VT = TLI.getValueType(PTy);
2493      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2494    }
2495    setValue(&I, Result);
2496  }
2497}
2498
2499/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2500static GlobalVariable *ExtractTypeInfo (Value *V) {
2501  V = IntrinsicInst::StripPointerCasts(V);
2502  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2503  assert (GV || isa<ConstantPointerNull>(V) &&
2504          "TypeInfo must be a global variable or NULL");
2505  return GV;
2506}
2507
2508/// addCatchInfo - Extract the personality and type infos from an eh.selector
2509/// call, and add them to the specified machine basic block.
2510static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2511                         MachineBasicBlock *MBB) {
2512  // Inform the MachineModuleInfo of the personality for this landing pad.
2513  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2514  assert(CE->getOpcode() == Instruction::BitCast &&
2515         isa<Function>(CE->getOperand(0)) &&
2516         "Personality should be a function");
2517  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2518
2519  // Gather all the type infos for this landing pad and pass them along to
2520  // MachineModuleInfo.
2521  std::vector<GlobalVariable *> TyInfo;
2522  unsigned N = I.getNumOperands();
2523
2524  for (unsigned i = N - 1; i > 2; --i) {
2525    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2526      unsigned FilterLength = CI->getZExtValue();
2527      unsigned FirstCatch = i + FilterLength + !FilterLength;
2528      assert (FirstCatch <= N && "Invalid filter length");
2529
2530      if (FirstCatch < N) {
2531        TyInfo.reserve(N - FirstCatch);
2532        for (unsigned j = FirstCatch; j < N; ++j)
2533          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2534        MMI->addCatchTypeInfo(MBB, TyInfo);
2535        TyInfo.clear();
2536      }
2537
2538      if (!FilterLength) {
2539        // Cleanup.
2540        MMI->addCleanup(MBB);
2541      } else {
2542        // Filter.
2543        TyInfo.reserve(FilterLength - 1);
2544        for (unsigned j = i + 1; j < FirstCatch; ++j)
2545          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2546        MMI->addFilterTypeInfo(MBB, TyInfo);
2547        TyInfo.clear();
2548      }
2549
2550      N = i;
2551    }
2552  }
2553
2554  if (N > 3) {
2555    TyInfo.reserve(N - 3);
2556    for (unsigned j = 3; j < N; ++j)
2557      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2558    MMI->addCatchTypeInfo(MBB, TyInfo);
2559  }
2560}
2561
2562/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2563/// we want to emit this as a call to a named external function, return the name
2564/// otherwise lower it and return null.
2565const char *
2566SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2567  switch (Intrinsic) {
2568  default:
2569    // By default, turn this into a target intrinsic node.
2570    visitTargetIntrinsic(I, Intrinsic);
2571    return 0;
2572  case Intrinsic::vastart:  visitVAStart(I); return 0;
2573  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2574  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2575  case Intrinsic::returnaddress:
2576    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2577                             getValue(I.getOperand(1))));
2578    return 0;
2579  case Intrinsic::frameaddress:
2580    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2581                             getValue(I.getOperand(1))));
2582    return 0;
2583  case Intrinsic::setjmp:
2584    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2585    break;
2586  case Intrinsic::longjmp:
2587    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2588    break;
2589  case Intrinsic::memcpy_i32:
2590  case Intrinsic::memcpy_i64:
2591    visitMemIntrinsic(I, ISD::MEMCPY);
2592    return 0;
2593  case Intrinsic::memset_i32:
2594  case Intrinsic::memset_i64:
2595    visitMemIntrinsic(I, ISD::MEMSET);
2596    return 0;
2597  case Intrinsic::memmove_i32:
2598  case Intrinsic::memmove_i64:
2599    visitMemIntrinsic(I, ISD::MEMMOVE);
2600    return 0;
2601
2602  case Intrinsic::dbg_stoppoint: {
2603    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2604    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2605    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2606      SDOperand Ops[5];
2607
2608      Ops[0] = getRoot();
2609      Ops[1] = getValue(SPI.getLineValue());
2610      Ops[2] = getValue(SPI.getColumnValue());
2611
2612      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2613      assert(DD && "Not a debug information descriptor");
2614      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2615
2616      Ops[3] = DAG.getString(CompileUnit->getFileName());
2617      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2618
2619      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2620    }
2621
2622    return 0;
2623  }
2624  case Intrinsic::dbg_region_start: {
2625    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2626    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2627    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2628      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2629      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2630                              DAG.getConstant(LabelID, MVT::i32)));
2631    }
2632
2633    return 0;
2634  }
2635  case Intrinsic::dbg_region_end: {
2636    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2637    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2638    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2639      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2640      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2641                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2642    }
2643
2644    return 0;
2645  }
2646  case Intrinsic::dbg_func_start: {
2647    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2648    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2649    if (MMI && FSI.getSubprogram() &&
2650        MMI->Verify(FSI.getSubprogram())) {
2651      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2652      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2653                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2654    }
2655
2656    return 0;
2657  }
2658  case Intrinsic::dbg_declare: {
2659    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2660    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2661    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2662      SDOperand AddressOp  = getValue(DI.getAddress());
2663      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2664        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2665    }
2666
2667    return 0;
2668  }
2669
2670  case Intrinsic::eh_exception: {
2671    if (ExceptionHandling) {
2672      if (!CurMBB->isLandingPad()) {
2673        // FIXME: Mark exception register as live in.  Hack for PR1508.
2674        unsigned Reg = TLI.getExceptionAddressRegister();
2675        if (Reg) CurMBB->addLiveIn(Reg);
2676      }
2677      // Insert the EXCEPTIONADDR instruction.
2678      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2679      SDOperand Ops[1];
2680      Ops[0] = DAG.getRoot();
2681      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2682      setValue(&I, Op);
2683      DAG.setRoot(Op.getValue(1));
2684    } else {
2685      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2686    }
2687    return 0;
2688  }
2689
2690  case Intrinsic::eh_selector_i32:
2691  case Intrinsic::eh_selector_i64: {
2692    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2693    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2694                         MVT::i32 : MVT::i64);
2695
2696    if (ExceptionHandling && MMI) {
2697      if (CurMBB->isLandingPad())
2698        addCatchInfo(I, MMI, CurMBB);
2699      else {
2700#ifndef NDEBUG
2701        FuncInfo.CatchInfoLost.insert(&I);
2702#endif
2703        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
2704        unsigned Reg = TLI.getExceptionSelectorRegister();
2705        if (Reg) CurMBB->addLiveIn(Reg);
2706      }
2707
2708      // Insert the EHSELECTION instruction.
2709      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2710      SDOperand Ops[2];
2711      Ops[0] = getValue(I.getOperand(1));
2712      Ops[1] = getRoot();
2713      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2714      setValue(&I, Op);
2715      DAG.setRoot(Op.getValue(1));
2716    } else {
2717      setValue(&I, DAG.getConstant(0, VT));
2718    }
2719
2720    return 0;
2721  }
2722
2723  case Intrinsic::eh_typeid_for_i32:
2724  case Intrinsic::eh_typeid_for_i64: {
2725    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2726    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2727                         MVT::i32 : MVT::i64);
2728
2729    if (MMI) {
2730      // Find the type id for the given typeinfo.
2731      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2732
2733      unsigned TypeID = MMI->getTypeIDFor(GV);
2734      setValue(&I, DAG.getConstant(TypeID, VT));
2735    } else {
2736      // Return something different to eh_selector.
2737      setValue(&I, DAG.getConstant(1, VT));
2738    }
2739
2740    return 0;
2741  }
2742
2743  case Intrinsic::eh_return: {
2744    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2745
2746    if (MMI && ExceptionHandling) {
2747      MMI->setCallsEHReturn(true);
2748      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2749                              MVT::Other,
2750                              getRoot(),
2751                              getValue(I.getOperand(1)),
2752                              getValue(I.getOperand(2))));
2753    } else {
2754      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2755    }
2756
2757    return 0;
2758  }
2759
2760   case Intrinsic::eh_unwind_init: {
2761     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2762       MMI->setCallsUnwindInit(true);
2763     }
2764
2765     return 0;
2766   }
2767
2768   case Intrinsic::eh_dwarf_cfa: {
2769     if (ExceptionHandling) {
2770       MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
2771       SDOperand CfaArg;
2772       if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2773         CfaArg = DAG.getNode(ISD::TRUNCATE,
2774                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2775       else
2776         CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2777                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2778
2779       SDOperand Offset = DAG.getNode(ISD::ADD,
2780                                      TLI.getPointerTy(),
2781                                      DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
2782                                                  TLI.getPointerTy()),
2783                                      CfaArg);
2784       setValue(&I, DAG.getNode(ISD::ADD,
2785                                TLI.getPointerTy(),
2786                                DAG.getNode(ISD::FRAMEADDR,
2787                                            TLI.getPointerTy(),
2788                                            DAG.getConstant(0,
2789                                                            TLI.getPointerTy())),
2790                                Offset));
2791     } else {
2792       setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2793     }
2794
2795     return 0;
2796  }
2797
2798  case Intrinsic::sqrt:
2799    setValue(&I, DAG.getNode(ISD::FSQRT,
2800                             getValue(I.getOperand(1)).getValueType(),
2801                             getValue(I.getOperand(1))));
2802    return 0;
2803  case Intrinsic::powi:
2804    setValue(&I, DAG.getNode(ISD::FPOWI,
2805                             getValue(I.getOperand(1)).getValueType(),
2806                             getValue(I.getOperand(1)),
2807                             getValue(I.getOperand(2))));
2808    return 0;
2809  case Intrinsic::sin:
2810    setValue(&I, DAG.getNode(ISD::FSIN,
2811                             getValue(I.getOperand(1)).getValueType(),
2812                             getValue(I.getOperand(1))));
2813    return 0;
2814  case Intrinsic::cos:
2815    setValue(&I, DAG.getNode(ISD::FCOS,
2816                             getValue(I.getOperand(1)).getValueType(),
2817                             getValue(I.getOperand(1))));
2818    return 0;
2819  case Intrinsic::pow:
2820    setValue(&I, DAG.getNode(ISD::FPOW,
2821                             getValue(I.getOperand(1)).getValueType(),
2822                             getValue(I.getOperand(1)),
2823                             getValue(I.getOperand(2))));
2824    return 0;
2825  case Intrinsic::pcmarker: {
2826    SDOperand Tmp = getValue(I.getOperand(1));
2827    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2828    return 0;
2829  }
2830  case Intrinsic::readcyclecounter: {
2831    SDOperand Op = getRoot();
2832    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2833                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2834                                &Op, 1);
2835    setValue(&I, Tmp);
2836    DAG.setRoot(Tmp.getValue(1));
2837    return 0;
2838  }
2839  case Intrinsic::part_select: {
2840    // Currently not implemented: just abort
2841    assert(0 && "part_select intrinsic not implemented");
2842    abort();
2843  }
2844  case Intrinsic::part_set: {
2845    // Currently not implemented: just abort
2846    assert(0 && "part_set intrinsic not implemented");
2847    abort();
2848  }
2849  case Intrinsic::bswap:
2850    setValue(&I, DAG.getNode(ISD::BSWAP,
2851                             getValue(I.getOperand(1)).getValueType(),
2852                             getValue(I.getOperand(1))));
2853    return 0;
2854  case Intrinsic::cttz: {
2855    SDOperand Arg = getValue(I.getOperand(1));
2856    MVT::ValueType Ty = Arg.getValueType();
2857    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2858    setValue(&I, result);
2859    return 0;
2860  }
2861  case Intrinsic::ctlz: {
2862    SDOperand Arg = getValue(I.getOperand(1));
2863    MVT::ValueType Ty = Arg.getValueType();
2864    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2865    setValue(&I, result);
2866    return 0;
2867  }
2868  case Intrinsic::ctpop: {
2869    SDOperand Arg = getValue(I.getOperand(1));
2870    MVT::ValueType Ty = Arg.getValueType();
2871    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2872    setValue(&I, result);
2873    return 0;
2874  }
2875  case Intrinsic::stacksave: {
2876    SDOperand Op = getRoot();
2877    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2878              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2879    setValue(&I, Tmp);
2880    DAG.setRoot(Tmp.getValue(1));
2881    return 0;
2882  }
2883  case Intrinsic::stackrestore: {
2884    SDOperand Tmp = getValue(I.getOperand(1));
2885    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2886    return 0;
2887  }
2888  case Intrinsic::prefetch:
2889    // FIXME: Currently discarding prefetches.
2890    return 0;
2891
2892  case Intrinsic::var_annotation:
2893    // Discard annotate attributes
2894    return 0;
2895
2896  case Intrinsic::init_trampoline: {
2897    const Function *F =
2898      cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
2899
2900    SDOperand Ops[6];
2901    Ops[0] = getRoot();
2902    Ops[1] = getValue(I.getOperand(1));
2903    Ops[2] = getValue(I.getOperand(2));
2904    Ops[3] = getValue(I.getOperand(3));
2905    Ops[4] = DAG.getSrcValue(I.getOperand(1));
2906    Ops[5] = DAG.getSrcValue(F);
2907
2908    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
2909                                DAG.getNodeValueTypes(TLI.getPointerTy(),
2910                                                      MVT::Other), 2,
2911                                Ops, 6);
2912
2913    setValue(&I, Tmp);
2914    DAG.setRoot(Tmp.getValue(1));
2915    return 0;
2916  }
2917  case Intrinsic::flt_rounds: {
2918    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS, MVT::i32));
2919    return 0;
2920  }
2921  }
2922}
2923
2924
2925void SelectionDAGLowering::LowerCallTo(Instruction &I,
2926                                       const Type *CalledValueTy,
2927                                       const ParamAttrsList *Attrs,
2928                                       unsigned CallingConv,
2929                                       bool IsTailCall,
2930                                       SDOperand Callee, unsigned OpIdx,
2931                                       MachineBasicBlock *LandingPad) {
2932  const PointerType *PT = cast<PointerType>(CalledValueTy);
2933  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2934  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2935  unsigned BeginLabel = 0, EndLabel = 0;
2936
2937  TargetLowering::ArgListTy Args;
2938  TargetLowering::ArgListEntry Entry;
2939  Args.reserve(I.getNumOperands());
2940  for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2941    Value *Arg = I.getOperand(i);
2942    SDOperand ArgNode = getValue(Arg);
2943    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2944
2945    unsigned attrInd = i - OpIdx + 1;
2946    Entry.isSExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt);
2947    Entry.isZExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt);
2948    Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg);
2949    Entry.isSRet  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet);
2950    Entry.isNest  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::Nest);
2951    Entry.isByVal = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ByVal);
2952    Args.push_back(Entry);
2953  }
2954
2955  if (ExceptionHandling && MMI && LandingPad) {
2956    // Insert a label before the invoke call to mark the try range.  This can be
2957    // used to detect deletion of the invoke via the MachineModuleInfo.
2958    BeginLabel = MMI->NextLabelID();
2959    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2960                            DAG.getConstant(BeginLabel, MVT::i32)));
2961  }
2962
2963  std::pair<SDOperand,SDOperand> Result =
2964    TLI.LowerCallTo(getRoot(), I.getType(),
2965                    Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2966                    FTy->isVarArg(), CallingConv, IsTailCall,
2967                    Callee, Args, DAG);
2968  if (I.getType() != Type::VoidTy)
2969    setValue(&I, Result.first);
2970  DAG.setRoot(Result.second);
2971
2972  if (ExceptionHandling && MMI && LandingPad) {
2973    // Insert a label at the end of the invoke call to mark the try range.  This
2974    // can be used to detect deletion of the invoke via the MachineModuleInfo.
2975    EndLabel = MMI->NextLabelID();
2976    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2977                            DAG.getConstant(EndLabel, MVT::i32)));
2978
2979    // Inform MachineModuleInfo of range.
2980    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2981  }
2982}
2983
2984
2985void SelectionDAGLowering::visitCall(CallInst &I) {
2986  const char *RenameFn = 0;
2987  if (Function *F = I.getCalledFunction()) {
2988    if (F->isDeclaration()) {
2989      if (unsigned IID = F->getIntrinsicID()) {
2990        RenameFn = visitIntrinsicCall(I, IID);
2991        if (!RenameFn)
2992          return;
2993      }
2994    }
2995
2996    // Check for well-known libc/libm calls.  If the function is internal, it
2997    // can't be a library call.
2998    unsigned NameLen = F->getNameLen();
2999    if (!F->hasInternalLinkage() && NameLen) {
3000      const char *NameStr = F->getNameStart();
3001      if (NameStr[0] == 'c' &&
3002          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3003           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3004        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3005            I.getOperand(1)->getType()->isFloatingPoint() &&
3006            I.getType() == I.getOperand(1)->getType() &&
3007            I.getType() == I.getOperand(2)->getType()) {
3008          SDOperand LHS = getValue(I.getOperand(1));
3009          SDOperand RHS = getValue(I.getOperand(2));
3010          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3011                                   LHS, RHS));
3012          return;
3013        }
3014      } else if (NameStr[0] == 'f' &&
3015                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3016                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3017                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3018        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3019            I.getOperand(1)->getType()->isFloatingPoint() &&
3020            I.getType() == I.getOperand(1)->getType()) {
3021          SDOperand Tmp = getValue(I.getOperand(1));
3022          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3023          return;
3024        }
3025      } else if (NameStr[0] == 's' &&
3026                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3027                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3028                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3029        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3030            I.getOperand(1)->getType()->isFloatingPoint() &&
3031            I.getType() == I.getOperand(1)->getType()) {
3032          SDOperand Tmp = getValue(I.getOperand(1));
3033          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3034          return;
3035        }
3036      } else if (NameStr[0] == 'c' &&
3037                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3038                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3039                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3040        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3041            I.getOperand(1)->getType()->isFloatingPoint() &&
3042            I.getType() == I.getOperand(1)->getType()) {
3043          SDOperand Tmp = getValue(I.getOperand(1));
3044          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3045          return;
3046        }
3047      }
3048    }
3049  } else if (isa<InlineAsm>(I.getOperand(0))) {
3050    visitInlineAsm(&I);
3051    return;
3052  }
3053
3054  SDOperand Callee;
3055  if (!RenameFn)
3056    Callee = getValue(I.getOperand(0));
3057  else
3058    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3059
3060  LowerCallTo(I, I.getCalledValue()->getType(), I.getParamAttrs(),
3061              I.getCallingConv(),
3062              I.isTailCall(),
3063              Callee,
3064              1);
3065}
3066
3067
3068/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3069/// this value and returns the result as a ValueVT value.  This uses
3070/// Chain/Flag as the input and updates them for the output Chain/Flag.
3071/// If the Flag pointer is NULL, no flag is used.
3072SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3073                                        SDOperand &Chain, SDOperand *Flag)const{
3074  // Copy the legal parts from the registers.
3075  unsigned NumParts = Regs.size();
3076  SmallVector<SDOperand, 8> Parts(NumParts);
3077  for (unsigned i = 0; i != NumParts; ++i) {
3078    SDOperand Part = Flag ?
3079                     DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3080                     DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3081    Chain = Part.getValue(1);
3082    if (Flag)
3083      *Flag = Part.getValue(2);
3084    Parts[i] = Part;
3085  }
3086
3087  // Assemble the legal parts into the final value.
3088  return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
3089}
3090
3091/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3092/// specified value into the registers specified by this object.  This uses
3093/// Chain/Flag as the input and updates them for the output Chain/Flag.
3094/// If the Flag pointer is NULL, no flag is used.
3095void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3096                                 SDOperand &Chain, SDOperand *Flag) const {
3097  // Get the list of the values's legal parts.
3098  unsigned NumParts = Regs.size();
3099  SmallVector<SDOperand, 8> Parts(NumParts);
3100  getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3101
3102  // Copy the parts into the registers.
3103  for (unsigned i = 0; i != NumParts; ++i) {
3104    SDOperand Part = Flag ?
3105                     DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3106                     DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3107    Chain = Part.getValue(0);
3108    if (Flag)
3109      *Flag = Part.getValue(1);
3110  }
3111}
3112
3113/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3114/// operand list.  This adds the code marker and includes the number of
3115/// values added into it.
3116void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3117                                        std::vector<SDOperand> &Ops) const {
3118  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3119  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3120  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3121    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3122}
3123
3124/// isAllocatableRegister - If the specified register is safe to allocate,
3125/// i.e. it isn't a stack pointer or some other special register, return the
3126/// register class for the register.  Otherwise, return null.
3127static const TargetRegisterClass *
3128isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3129                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
3130  MVT::ValueType FoundVT = MVT::Other;
3131  const TargetRegisterClass *FoundRC = 0;
3132  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3133       E = MRI->regclass_end(); RCI != E; ++RCI) {
3134    MVT::ValueType ThisVT = MVT::Other;
3135
3136    const TargetRegisterClass *RC = *RCI;
3137    // If none of the the value types for this register class are valid, we
3138    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3139    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3140         I != E; ++I) {
3141      if (TLI.isTypeLegal(*I)) {
3142        // If we have already found this register in a different register class,
3143        // choose the one with the largest VT specified.  For example, on
3144        // PowerPC, we favor f64 register classes over f32.
3145        if (FoundVT == MVT::Other ||
3146            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3147          ThisVT = *I;
3148          break;
3149        }
3150      }
3151    }
3152
3153    if (ThisVT == MVT::Other) continue;
3154
3155    // NOTE: This isn't ideal.  In particular, this might allocate the
3156    // frame pointer in functions that need it (due to them not being taken
3157    // out of allocation, because a variable sized allocation hasn't been seen
3158    // yet).  This is a slight code pessimization, but should still work.
3159    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3160         E = RC->allocation_order_end(MF); I != E; ++I)
3161      if (*I == Reg) {
3162        // We found a matching register class.  Keep looking at others in case
3163        // we find one with larger registers that this physreg is also in.
3164        FoundRC = RC;
3165        FoundVT = ThisVT;
3166        break;
3167      }
3168  }
3169  return FoundRC;
3170}
3171
3172
3173namespace {
3174/// AsmOperandInfo - This contains information for each constraint that we are
3175/// lowering.
3176struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3177  /// ConstraintCode - This contains the actual string for the code, like "m".
3178  std::string ConstraintCode;
3179
3180  /// ConstraintType - Information about the constraint code, e.g. Register,
3181  /// RegisterClass, Memory, Other, Unknown.
3182  TargetLowering::ConstraintType ConstraintType;
3183
3184  /// CallOperand/CallOperandval - If this is the result output operand or a
3185  /// clobber, this is null, otherwise it is the incoming operand to the
3186  /// CallInst.  This gets modified as the asm is processed.
3187  SDOperand CallOperand;
3188  Value *CallOperandVal;
3189
3190  /// ConstraintVT - The ValueType for the operand value.
3191  MVT::ValueType ConstraintVT;
3192
3193  /// AssignedRegs - If this is a register or register class operand, this
3194  /// contains the set of register corresponding to the operand.
3195  RegsForValue AssignedRegs;
3196
3197  AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3198    : InlineAsm::ConstraintInfo(info),
3199      ConstraintType(TargetLowering::C_Unknown),
3200      CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3201  }
3202
3203  void ComputeConstraintToUse(const TargetLowering &TLI);
3204
3205  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3206  /// busy in OutputRegs/InputRegs.
3207  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3208                         std::set<unsigned> &OutputRegs,
3209                         std::set<unsigned> &InputRegs) const {
3210     if (isOutReg)
3211       OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3212     if (isInReg)
3213       InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3214   }
3215};
3216} // end anon namespace.
3217
3218/// getConstraintGenerality - Return an integer indicating how general CT is.
3219static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3220  switch (CT) {
3221    default: assert(0 && "Unknown constraint type!");
3222    case TargetLowering::C_Other:
3223    case TargetLowering::C_Unknown:
3224      return 0;
3225    case TargetLowering::C_Register:
3226      return 1;
3227    case TargetLowering::C_RegisterClass:
3228      return 2;
3229    case TargetLowering::C_Memory:
3230      return 3;
3231  }
3232}
3233
3234void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3235  assert(!Codes.empty() && "Must have at least one constraint");
3236
3237  std::string *Current = &Codes[0];
3238  TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3239  if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
3240    ConstraintCode = *Current;
3241    ConstraintType = CurType;
3242    return;
3243  }
3244
3245  unsigned CurGenerality = getConstraintGenerality(CurType);
3246
3247  // If we have multiple constraints, try to pick the most general one ahead
3248  // of time.  This isn't a wonderful solution, but handles common cases.
3249  for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3250    TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3251    unsigned ThisGenerality = getConstraintGenerality(ThisType);
3252    if (ThisGenerality > CurGenerality) {
3253      // This constraint letter is more general than the previous one,
3254      // use it.
3255      CurType = ThisType;
3256      Current = &Codes[j];
3257      CurGenerality = ThisGenerality;
3258    }
3259  }
3260
3261  ConstraintCode = *Current;
3262  ConstraintType = CurType;
3263}
3264
3265
3266void SelectionDAGLowering::
3267GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3268                     std::set<unsigned> &OutputRegs,
3269                     std::set<unsigned> &InputRegs) {
3270  // Compute whether this value requires an input register, an output register,
3271  // or both.
3272  bool isOutReg = false;
3273  bool isInReg = false;
3274  switch (OpInfo.Type) {
3275  case InlineAsm::isOutput:
3276    isOutReg = true;
3277
3278    // If this is an early-clobber output, or if there is an input
3279    // constraint that matches this, we need to reserve the input register
3280    // so no other inputs allocate to it.
3281    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3282    break;
3283  case InlineAsm::isInput:
3284    isInReg = true;
3285    isOutReg = false;
3286    break;
3287  case InlineAsm::isClobber:
3288    isOutReg = true;
3289    isInReg = true;
3290    break;
3291  }
3292
3293
3294  MachineFunction &MF = DAG.getMachineFunction();
3295  std::vector<unsigned> Regs;
3296
3297  // If this is a constraint for a single physreg, or a constraint for a
3298  // register class, find it.
3299  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3300    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3301                                     OpInfo.ConstraintVT);
3302
3303  unsigned NumRegs = 1;
3304  if (OpInfo.ConstraintVT != MVT::Other)
3305    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3306  MVT::ValueType RegVT;
3307  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3308
3309
3310  // If this is a constraint for a specific physical register, like {r17},
3311  // assign it now.
3312  if (PhysReg.first) {
3313    if (OpInfo.ConstraintVT == MVT::Other)
3314      ValueVT = *PhysReg.second->vt_begin();
3315
3316    // Get the actual register value type.  This is important, because the user
3317    // may have asked for (e.g.) the AX register in i32 type.  We need to
3318    // remember that AX is actually i16 to get the right extension.
3319    RegVT = *PhysReg.second->vt_begin();
3320
3321    // This is a explicit reference to a physical register.
3322    Regs.push_back(PhysReg.first);
3323
3324    // If this is an expanded reference, add the rest of the regs to Regs.
3325    if (NumRegs != 1) {
3326      TargetRegisterClass::iterator I = PhysReg.second->begin();
3327      TargetRegisterClass::iterator E = PhysReg.second->end();
3328      for (; *I != PhysReg.first; ++I)
3329        assert(I != E && "Didn't find reg!");
3330
3331      // Already added the first reg.
3332      --NumRegs; ++I;
3333      for (; NumRegs; --NumRegs, ++I) {
3334        assert(I != E && "Ran out of registers to allocate!");
3335        Regs.push_back(*I);
3336      }
3337    }
3338    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3339    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3340    return;
3341  }
3342
3343  // Otherwise, if this was a reference to an LLVM register class, create vregs
3344  // for this reference.
3345  std::vector<unsigned> RegClassRegs;
3346  const TargetRegisterClass *RC = PhysReg.second;
3347  if (RC) {
3348    // If this is an early clobber or tied register, our regalloc doesn't know
3349    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3350    // and let the regalloc do the right thing.
3351    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3352        // If there is some other early clobber and this is an input register,
3353        // then we are forced to pre-allocate the input reg so it doesn't
3354        // conflict with the earlyclobber.
3355        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3356      RegVT = *PhysReg.second->vt_begin();
3357
3358      if (OpInfo.ConstraintVT == MVT::Other)
3359        ValueVT = RegVT;
3360
3361      // Create the appropriate number of virtual registers.
3362      SSARegMap *RegMap = MF.getSSARegMap();
3363      for (; NumRegs; --NumRegs)
3364        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3365
3366      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3367      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3368      return;
3369    }
3370
3371    // Otherwise, we can't allocate it.  Let the code below figure out how to
3372    // maintain these constraints.
3373    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3374
3375  } else {
3376    // This is a reference to a register class that doesn't directly correspond
3377    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3378    // registers from the class.
3379    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3380                                                         OpInfo.ConstraintVT);
3381  }
3382
3383  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3384  unsigned NumAllocated = 0;
3385  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3386    unsigned Reg = RegClassRegs[i];
3387    // See if this register is available.
3388    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3389        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3390      // Make sure we find consecutive registers.
3391      NumAllocated = 0;
3392      continue;
3393    }
3394
3395    // Check to see if this register is allocatable (i.e. don't give out the
3396    // stack pointer).
3397    if (RC == 0) {
3398      RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3399      if (!RC) {        // Couldn't allocate this register.
3400        // Reset NumAllocated to make sure we return consecutive registers.
3401        NumAllocated = 0;
3402        continue;
3403      }
3404    }
3405
3406    // Okay, this register is good, we can use it.
3407    ++NumAllocated;
3408
3409    // If we allocated enough consecutive registers, succeed.
3410    if (NumAllocated == NumRegs) {
3411      unsigned RegStart = (i-NumAllocated)+1;
3412      unsigned RegEnd   = i+1;
3413      // Mark all of the allocated registers used.
3414      for (unsigned i = RegStart; i != RegEnd; ++i)
3415        Regs.push_back(RegClassRegs[i]);
3416
3417      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3418                                         OpInfo.ConstraintVT);
3419      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3420      return;
3421    }
3422  }
3423
3424  // Otherwise, we couldn't allocate enough registers for this.
3425  return;
3426}
3427
3428
3429/// visitInlineAsm - Handle a call to an InlineAsm object.
3430///
3431void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
3432  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3433
3434  /// ConstraintOperands - Information about all of the constraints.
3435  std::vector<AsmOperandInfo> ConstraintOperands;
3436
3437  SDOperand Chain = getRoot();
3438  SDOperand Flag;
3439
3440  std::set<unsigned> OutputRegs, InputRegs;
3441
3442  // Do a prepass over the constraints, canonicalizing them, and building up the
3443  // ConstraintOperands list.
3444  std::vector<InlineAsm::ConstraintInfo>
3445    ConstraintInfos = IA->ParseConstraints();
3446
3447  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3448  // constraint.  If so, we can't let the register allocator allocate any input
3449  // registers, because it will not know to avoid the earlyclobbered output reg.
3450  bool SawEarlyClobber = false;
3451
3452  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3453  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3454    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3455    AsmOperandInfo &OpInfo = ConstraintOperands.back();
3456
3457    MVT::ValueType OpVT = MVT::Other;
3458
3459    // Compute the value type for each operand.
3460    switch (OpInfo.Type) {
3461    case InlineAsm::isOutput:
3462      if (!OpInfo.isIndirect) {
3463        // The return value of the call is this value.  As such, there is no
3464        // corresponding argument.
3465        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3466        OpVT = TLI.getValueType(CS.getType());
3467      } else {
3468        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3469      }
3470      break;
3471    case InlineAsm::isInput:
3472      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3473      break;
3474    case InlineAsm::isClobber:
3475      // Nothing to do.
3476      break;
3477    }
3478
3479    // If this is an input or an indirect output, process the call argument.
3480    // BasicBlocks are labels, currently appearing only in asm's.
3481    if (OpInfo.CallOperandVal) {
3482      if (isa<BasicBlock>(OpInfo.CallOperandVal))
3483        OpInfo.CallOperand =
3484          DAG.getBasicBlock(FuncInfo.MBBMap[cast<BasicBlock>(OpInfo.CallOperandVal)]);
3485      else {
3486        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3487        const Type *OpTy = OpInfo.CallOperandVal->getType();
3488        // If this is an indirect operand, the operand is a pointer to the
3489        // accessed type.
3490        if (OpInfo.isIndirect)
3491          OpTy = cast<PointerType>(OpTy)->getElementType();
3492
3493        // If OpTy is not a first-class value, it may be a struct/union that we
3494        // can tile with integers.
3495        if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3496          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3497          switch (BitSize) {
3498          default: break;
3499          case 1:
3500          case 8:
3501          case 16:
3502          case 32:
3503          case 64:
3504            OpTy = IntegerType::get(BitSize);
3505            break;
3506          }
3507        }
3508
3509        OpVT = TLI.getValueType(OpTy, true);
3510      }
3511    }
3512
3513    OpInfo.ConstraintVT = OpVT;
3514
3515    // Compute the constraint code and ConstraintType to use.
3516    OpInfo.ComputeConstraintToUse(TLI);
3517
3518    // Keep track of whether we see an earlyclobber.
3519    SawEarlyClobber |= OpInfo.isEarlyClobber;
3520
3521    // If this is a memory input, and if the operand is not indirect, do what we
3522    // need to to provide an address for the memory input.
3523    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3524        !OpInfo.isIndirect) {
3525      assert(OpInfo.Type == InlineAsm::isInput &&
3526             "Can only indirectify direct input operands!");
3527
3528      // Memory operands really want the address of the value.  If we don't have
3529      // an indirect input, put it in the constpool if we can, otherwise spill
3530      // it to a stack slot.
3531
3532      // If the operand is a float, integer, or vector constant, spill to a
3533      // constant pool entry to get its address.
3534      Value *OpVal = OpInfo.CallOperandVal;
3535      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3536          isa<ConstantVector>(OpVal)) {
3537        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3538                                                 TLI.getPointerTy());
3539      } else {
3540        // Otherwise, create a stack slot and emit a store to it before the
3541        // asm.
3542        const Type *Ty = OpVal->getType();
3543        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
3544        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3545        MachineFunction &MF = DAG.getMachineFunction();
3546        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3547        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3548        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3549        OpInfo.CallOperand = StackSlot;
3550      }
3551
3552      // There is no longer a Value* corresponding to this operand.
3553      OpInfo.CallOperandVal = 0;
3554      // It is now an indirect operand.
3555      OpInfo.isIndirect = true;
3556    }
3557
3558    // If this constraint is for a specific register, allocate it before
3559    // anything else.
3560    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3561      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3562  }
3563  ConstraintInfos.clear();
3564
3565
3566  // Second pass - Loop over all of the operands, assigning virtual or physregs
3567  // to registerclass operands.
3568  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3569    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3570
3571    // C_Register operands have already been allocated, Other/Memory don't need
3572    // to be.
3573    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3574      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3575  }
3576
3577  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3578  std::vector<SDOperand> AsmNodeOperands;
3579  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3580  AsmNodeOperands.push_back(
3581          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3582
3583
3584  // Loop over all of the inputs, copying the operand values into the
3585  // appropriate registers and processing the output regs.
3586  RegsForValue RetValRegs;
3587
3588  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3589  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3590
3591  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3592    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3593
3594    switch (OpInfo.Type) {
3595    case InlineAsm::isOutput: {
3596      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3597          OpInfo.ConstraintType != TargetLowering::C_Register) {
3598        // Memory output, or 'other' output (e.g. 'X' constraint).
3599        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3600
3601        // Add information to the INLINEASM node to know about this output.
3602        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3603        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3604                                                        TLI.getPointerTy()));
3605        AsmNodeOperands.push_back(OpInfo.CallOperand);
3606        break;
3607      }
3608
3609      // Otherwise, this is a register or register class output.
3610
3611      // Copy the output from the appropriate register.  Find a register that
3612      // we can use.
3613      if (OpInfo.AssignedRegs.Regs.empty()) {
3614        cerr << "Couldn't allocate output reg for contraint '"
3615             << OpInfo.ConstraintCode << "'!\n";
3616        exit(1);
3617      }
3618
3619      if (!OpInfo.isIndirect) {
3620        // This is the result value of the call.
3621        assert(RetValRegs.Regs.empty() &&
3622               "Cannot have multiple output constraints yet!");
3623        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3624        RetValRegs = OpInfo.AssignedRegs;
3625      } else {
3626        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3627                                                      OpInfo.CallOperandVal));
3628      }
3629
3630      // Add information to the INLINEASM node to know that this register is
3631      // set.
3632      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3633                                               AsmNodeOperands);
3634      break;
3635    }
3636    case InlineAsm::isInput: {
3637      SDOperand InOperandVal = OpInfo.CallOperand;
3638
3639      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3640        // If this is required to match an output register we have already set,
3641        // just use its register.
3642        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3643
3644        // Scan until we find the definition we already emitted of this operand.
3645        // When we find it, create a RegsForValue operand.
3646        unsigned CurOp = 2;  // The first operand.
3647        for (; OperandNo; --OperandNo) {
3648          // Advance to the next operand.
3649          unsigned NumOps =
3650            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3651          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3652                  (NumOps & 7) == 4 /*MEM*/) &&
3653                 "Skipped past definitions?");
3654          CurOp += (NumOps>>3)+1;
3655        }
3656
3657        unsigned NumOps =
3658          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3659        if ((NumOps & 7) == 2 /*REGDEF*/) {
3660          // Add NumOps>>3 registers to MatchedRegs.
3661          RegsForValue MatchedRegs;
3662          MatchedRegs.ValueVT = InOperandVal.getValueType();
3663          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3664          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3665            unsigned Reg =
3666              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3667            MatchedRegs.Regs.push_back(Reg);
3668          }
3669
3670          // Use the produced MatchedRegs object to
3671          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3672          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3673          break;
3674        } else {
3675          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3676          assert(0 && "matching constraints for memory operands unimp");
3677        }
3678      }
3679
3680      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3681        assert(!OpInfo.isIndirect &&
3682               "Don't know how to handle indirect other inputs yet!");
3683
3684        std::vector<SDOperand> Ops;
3685        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3686                                         Ops, DAG);
3687        if (Ops.empty()) {
3688          cerr << "Invalid operand for inline asm constraint '"
3689               << OpInfo.ConstraintCode << "'!\n";
3690          exit(1);
3691        }
3692
3693        // Add information to the INLINEASM node to know about this input.
3694        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
3695        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3696                                                        TLI.getPointerTy()));
3697        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
3698        break;
3699      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3700        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3701        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3702               "Memory operands expect pointer values");
3703
3704        // Add information to the INLINEASM node to know about this input.
3705        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3706        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3707                                                        TLI.getPointerTy()));
3708        AsmNodeOperands.push_back(InOperandVal);
3709        break;
3710      }
3711
3712      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3713              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3714             "Unknown constraint type!");
3715      assert(!OpInfo.isIndirect &&
3716             "Don't know how to handle indirect register inputs yet!");
3717
3718      // Copy the input into the appropriate registers.
3719      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3720             "Couldn't allocate input reg!");
3721
3722      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3723
3724      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3725                                               AsmNodeOperands);
3726      break;
3727    }
3728    case InlineAsm::isClobber: {
3729      // Add the clobbered value to the operand list, so that the register
3730      // allocator is aware that the physreg got clobbered.
3731      if (!OpInfo.AssignedRegs.Regs.empty())
3732        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3733                                                 AsmNodeOperands);
3734      break;
3735    }
3736    }
3737  }
3738
3739  // Finish up input operands.
3740  AsmNodeOperands[0] = Chain;
3741  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3742
3743  Chain = DAG.getNode(ISD::INLINEASM,
3744                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3745                      &AsmNodeOperands[0], AsmNodeOperands.size());
3746  Flag = Chain.getValue(1);
3747
3748  // If this asm returns a register value, copy the result from that register
3749  // and set it as the value of the call.
3750  if (!RetValRegs.Regs.empty()) {
3751    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3752
3753    // If the result of the inline asm is a vector, it may have the wrong
3754    // width/num elts.  Make sure to convert it to the right type with
3755    // bit_convert.
3756    if (MVT::isVector(Val.getValueType())) {
3757      const VectorType *VTy = cast<VectorType>(CS.getType());
3758      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3759
3760      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3761    }
3762
3763    setValue(CS.getInstruction(), Val);
3764  }
3765
3766  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3767
3768  // Process indirect outputs, first output all of the flagged copies out of
3769  // physregs.
3770  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3771    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3772    Value *Ptr = IndirectStoresToEmit[i].second;
3773    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3774    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3775  }
3776
3777  // Emit the non-flagged stores from the physregs.
3778  SmallVector<SDOperand, 8> OutChains;
3779  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3780    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3781                                    getValue(StoresToEmit[i].second),
3782                                    StoresToEmit[i].second, 0));
3783  if (!OutChains.empty())
3784    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3785                        &OutChains[0], OutChains.size());
3786  DAG.setRoot(Chain);
3787}
3788
3789
3790void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3791  SDOperand Src = getValue(I.getOperand(0));
3792
3793  MVT::ValueType IntPtr = TLI.getPointerTy();
3794
3795  if (IntPtr < Src.getValueType())
3796    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3797  else if (IntPtr > Src.getValueType())
3798    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3799
3800  // Scale the source by the type size.
3801  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
3802  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3803                    Src, getIntPtrConstant(ElementSize));
3804
3805  TargetLowering::ArgListTy Args;
3806  TargetLowering::ArgListEntry Entry;
3807  Entry.Node = Src;
3808  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3809  Args.push_back(Entry);
3810
3811  std::pair<SDOperand,SDOperand> Result =
3812    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3813                    DAG.getExternalSymbol("malloc", IntPtr),
3814                    Args, DAG);
3815  setValue(&I, Result.first);  // Pointers always fit in registers
3816  DAG.setRoot(Result.second);
3817}
3818
3819void SelectionDAGLowering::visitFree(FreeInst &I) {
3820  TargetLowering::ArgListTy Args;
3821  TargetLowering::ArgListEntry Entry;
3822  Entry.Node = getValue(I.getOperand(0));
3823  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3824  Args.push_back(Entry);
3825  MVT::ValueType IntPtr = TLI.getPointerTy();
3826  std::pair<SDOperand,SDOperand> Result =
3827    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3828                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3829  DAG.setRoot(Result.second);
3830}
3831
3832// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3833// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3834// instructions are special in various ways, which require special support to
3835// insert.  The specified MachineInstr is created but not inserted into any
3836// basic blocks, and the scheduler passes ownership of it to this method.
3837MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3838                                                       MachineBasicBlock *MBB) {
3839  cerr << "If a target marks an instruction with "
3840       << "'usesCustomDAGSchedInserter', it must implement "
3841       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3842  abort();
3843  return 0;
3844}
3845
3846void SelectionDAGLowering::visitVAStart(CallInst &I) {
3847  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3848                          getValue(I.getOperand(1)),
3849                          DAG.getSrcValue(I.getOperand(1))));
3850}
3851
3852void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3853  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3854                             getValue(I.getOperand(0)),
3855                             DAG.getSrcValue(I.getOperand(0)));
3856  setValue(&I, V);
3857  DAG.setRoot(V.getValue(1));
3858}
3859
3860void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3861  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3862                          getValue(I.getOperand(1)),
3863                          DAG.getSrcValue(I.getOperand(1))));
3864}
3865
3866void SelectionDAGLowering::visitVACopy(CallInst &I) {
3867  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3868                          getValue(I.getOperand(1)),
3869                          getValue(I.getOperand(2)),
3870                          DAG.getSrcValue(I.getOperand(1)),
3871                          DAG.getSrcValue(I.getOperand(2))));
3872}
3873
3874/// TargetLowering::LowerArguments - This is the default LowerArguments
3875/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3876/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3877/// integrated into SDISel.
3878std::vector<SDOperand>
3879TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3880  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3881  std::vector<SDOperand> Ops;
3882  Ops.push_back(DAG.getRoot());
3883  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3884  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3885
3886  // Add one result value for each formal argument.
3887  std::vector<MVT::ValueType> RetVals;
3888  unsigned j = 1;
3889  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3890       I != E; ++I, ++j) {
3891    MVT::ValueType VT = getValueType(I->getType());
3892    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3893    unsigned OriginalAlignment =
3894      getTargetData()->getABITypeAlignment(I->getType());
3895
3896    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3897    // that is zero extended!
3898    if (F.paramHasAttr(j, ParamAttr::ZExt))
3899      Flags &= ~(ISD::ParamFlags::SExt);
3900    if (F.paramHasAttr(j, ParamAttr::SExt))
3901      Flags |= ISD::ParamFlags::SExt;
3902    if (F.paramHasAttr(j, ParamAttr::InReg))
3903      Flags |= ISD::ParamFlags::InReg;
3904    if (F.paramHasAttr(j, ParamAttr::StructRet))
3905      Flags |= ISD::ParamFlags::StructReturn;
3906    if (F.paramHasAttr(j, ParamAttr::ByVal)) {
3907      Flags |= ISD::ParamFlags::ByVal;
3908      const PointerType *Ty = cast<PointerType>(I->getType());
3909      const StructType *STy = cast<StructType>(Ty->getElementType());
3910      unsigned StructAlign =
3911          Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
3912      unsigned StructSize  = getTargetData()->getABITypeSize(STy);
3913      Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
3914      Flags |= (StructSize  << ISD::ParamFlags::ByValSizeOffs);
3915    }
3916    if (F.paramHasAttr(j, ParamAttr::Nest))
3917      Flags |= ISD::ParamFlags::Nest;
3918    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3919
3920    switch (getTypeAction(VT)) {
3921    default: assert(0 && "Unknown type action!");
3922    case Legal:
3923      RetVals.push_back(VT);
3924      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3925      break;
3926    case Promote:
3927      RetVals.push_back(getTypeToTransformTo(VT));
3928      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3929      break;
3930    case Expand: {
3931      // If this is an illegal type, it needs to be broken up to fit into
3932      // registers.
3933      MVT::ValueType RegisterVT = getRegisterType(VT);
3934      unsigned NumRegs = getNumRegisters(VT);
3935      for (unsigned i = 0; i != NumRegs; ++i) {
3936        RetVals.push_back(RegisterVT);
3937        // if it isn't first piece, alignment must be 1
3938        if (i > 0)
3939          Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3940            (1 << ISD::ParamFlags::OrigAlignmentOffs);
3941        Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3942      }
3943      break;
3944    }
3945    }
3946  }
3947
3948  RetVals.push_back(MVT::Other);
3949
3950  // Create the node.
3951  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3952                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3953                               &Ops[0], Ops.size()).Val;
3954  unsigned NumArgRegs = Result->getNumValues() - 1;
3955  DAG.setRoot(SDOperand(Result, NumArgRegs));
3956
3957  // Set up the return result vector.
3958  Ops.clear();
3959  unsigned i = 0;
3960  unsigned Idx = 1;
3961  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3962      ++I, ++Idx) {
3963    MVT::ValueType VT = getValueType(I->getType());
3964
3965    switch (getTypeAction(VT)) {
3966    default: assert(0 && "Unknown type action!");
3967    case Legal:
3968      Ops.push_back(SDOperand(Result, i++));
3969      break;
3970    case Promote: {
3971      SDOperand Op(Result, i++);
3972      if (MVT::isInteger(VT)) {
3973        if (F.paramHasAttr(Idx, ParamAttr::SExt))
3974          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3975                           DAG.getValueType(VT));
3976        else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
3977          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3978                           DAG.getValueType(VT));
3979        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3980      } else {
3981        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3982        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3983      }
3984      Ops.push_back(Op);
3985      break;
3986    }
3987    case Expand: {
3988      MVT::ValueType PartVT = getRegisterType(VT);
3989      unsigned NumParts = getNumRegisters(VT);
3990      SmallVector<SDOperand, 4> Parts(NumParts);
3991      for (unsigned j = 0; j != NumParts; ++j)
3992        Parts[j] = SDOperand(Result, i++);
3993      Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT));
3994      break;
3995    }
3996    }
3997  }
3998  assert(i == NumArgRegs && "Argument register count mismatch!");
3999  return Ops;
4000}
4001
4002
4003/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4004/// implementation, which just inserts an ISD::CALL node, which is later custom
4005/// lowered by the target to something concrete.  FIXME: When all targets are
4006/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4007std::pair<SDOperand, SDOperand>
4008TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4009                            bool RetTyIsSigned, bool isVarArg,
4010                            unsigned CallingConv, bool isTailCall,
4011                            SDOperand Callee,
4012                            ArgListTy &Args, SelectionDAG &DAG) {
4013  SmallVector<SDOperand, 32> Ops;
4014  Ops.push_back(Chain);   // Op#0 - Chain
4015  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4016  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4017  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4018  Ops.push_back(Callee);
4019
4020  // Handle all of the outgoing arguments.
4021  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4022    MVT::ValueType VT = getValueType(Args[i].Ty);
4023    SDOperand Op = Args[i].Node;
4024    unsigned Flags = ISD::ParamFlags::NoFlagSet;
4025    unsigned OriginalAlignment =
4026      getTargetData()->getABITypeAlignment(Args[i].Ty);
4027
4028    if (Args[i].isSExt)
4029      Flags |= ISD::ParamFlags::SExt;
4030    if (Args[i].isZExt)
4031      Flags |= ISD::ParamFlags::ZExt;
4032    if (Args[i].isInReg)
4033      Flags |= ISD::ParamFlags::InReg;
4034    if (Args[i].isSRet)
4035      Flags |= ISD::ParamFlags::StructReturn;
4036    if (Args[i].isByVal) {
4037      Flags |= ISD::ParamFlags::ByVal;
4038      const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4039      const StructType *STy = cast<StructType>(Ty->getElementType());
4040      unsigned StructAlign =
4041          Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
4042      unsigned StructSize  = getTargetData()->getABITypeSize(STy);
4043      Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
4044      Flags |= (StructSize  << ISD::ParamFlags::ByValSizeOffs);
4045    }
4046    if (Args[i].isNest)
4047      Flags |= ISD::ParamFlags::Nest;
4048    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
4049
4050    switch (getTypeAction(VT)) {
4051    default: assert(0 && "Unknown type action!");
4052    case Legal:
4053      Ops.push_back(Op);
4054      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4055      break;
4056    case Promote:
4057      if (MVT::isInteger(VT)) {
4058        unsigned ExtOp;
4059        if (Args[i].isSExt)
4060          ExtOp = ISD::SIGN_EXTEND;
4061        else if (Args[i].isZExt)
4062          ExtOp = ISD::ZERO_EXTEND;
4063        else
4064          ExtOp = ISD::ANY_EXTEND;
4065        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
4066      } else {
4067        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
4068        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
4069      }
4070      Ops.push_back(Op);
4071      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4072      break;
4073    case Expand: {
4074      MVT::ValueType PartVT = getRegisterType(VT);
4075      unsigned NumParts = getNumRegisters(VT);
4076      SmallVector<SDOperand, 4> Parts(NumParts);
4077      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT);
4078      for (unsigned i = 0; i != NumParts; ++i) {
4079        // if it isn't first piece, alignment must be 1
4080        unsigned MyFlags = Flags;
4081        if (i != 0)
4082          MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
4083            (1 << ISD::ParamFlags::OrigAlignmentOffs);
4084
4085        Ops.push_back(Parts[i]);
4086        Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
4087      }
4088      break;
4089    }
4090    }
4091  }
4092
4093  // Figure out the result value types.
4094  MVT::ValueType VT = getValueType(RetTy);
4095  MVT::ValueType RegisterVT = getRegisterType(VT);
4096  unsigned NumRegs = getNumRegisters(VT);
4097  SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
4098  for (unsigned i = 0; i != NumRegs; ++i)
4099    RetTys[i] = RegisterVT;
4100
4101  RetTys.push_back(MVT::Other);  // Always has a chain.
4102
4103  // Create the CALL node.
4104  SDOperand Res = DAG.getNode(ISD::CALL,
4105                              DAG.getVTList(&RetTys[0], NumRegs + 1),
4106                              &Ops[0], Ops.size());
4107  Chain = Res.getValue(NumRegs);
4108
4109  // Gather up the call result into a single value.
4110  if (RetTy != Type::VoidTy) {
4111    ISD::NodeType AssertOp = ISD::AssertSext;
4112    if (!RetTyIsSigned)
4113      AssertOp = ISD::AssertZext;
4114    SmallVector<SDOperand, 4> Results(NumRegs);
4115    for (unsigned i = 0; i != NumRegs; ++i)
4116      Results[i] = Res.getValue(i);
4117    Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
4118  }
4119
4120  return std::make_pair(Res, Chain);
4121}
4122
4123SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4124  assert(0 && "LowerOperation not implemented for this target!");
4125  abort();
4126  return SDOperand();
4127}
4128
4129SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4130                                                 SelectionDAG &DAG) {
4131  assert(0 && "CustomPromoteOperation not implemented for this target!");
4132  abort();
4133  return SDOperand();
4134}
4135
4136/// getMemsetValue - Vectorized representation of the memset value
4137/// operand.
4138static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4139                                SelectionDAG &DAG) {
4140  MVT::ValueType CurVT = VT;
4141  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4142    uint64_t Val   = C->getValue() & 255;
4143    unsigned Shift = 8;
4144    while (CurVT != MVT::i8) {
4145      Val = (Val << Shift) | Val;
4146      Shift <<= 1;
4147      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4148    }
4149    return DAG.getConstant(Val, VT);
4150  } else {
4151    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4152    unsigned Shift = 8;
4153    while (CurVT != MVT::i8) {
4154      Value =
4155        DAG.getNode(ISD::OR, VT,
4156                    DAG.getNode(ISD::SHL, VT, Value,
4157                                DAG.getConstant(Shift, MVT::i8)), Value);
4158      Shift <<= 1;
4159      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4160    }
4161
4162    return Value;
4163  }
4164}
4165
4166/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4167/// used when a memcpy is turned into a memset when the source is a constant
4168/// string ptr.
4169static SDOperand getMemsetStringVal(MVT::ValueType VT,
4170                                    SelectionDAG &DAG, TargetLowering &TLI,
4171                                    std::string &Str, unsigned Offset) {
4172  uint64_t Val = 0;
4173  unsigned MSB = MVT::getSizeInBits(VT) / 8;
4174  if (TLI.isLittleEndian())
4175    Offset = Offset + MSB - 1;
4176  for (unsigned i = 0; i != MSB; ++i) {
4177    Val = (Val << 8) | (unsigned char)Str[Offset];
4178    Offset += TLI.isLittleEndian() ? -1 : 1;
4179  }
4180  return DAG.getConstant(Val, VT);
4181}
4182
4183/// getMemBasePlusOffset - Returns base and offset node for the
4184static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4185                                      SelectionDAG &DAG, TargetLowering &TLI) {
4186  MVT::ValueType VT = Base.getValueType();
4187  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4188}
4189
4190/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4191/// to replace the memset / memcpy is below the threshold. It also returns the
4192/// types of the sequence of  memory ops to perform memset / memcpy.
4193static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4194                                     unsigned Limit, uint64_t Size,
4195                                     unsigned Align, TargetLowering &TLI) {
4196  MVT::ValueType VT;
4197
4198  if (TLI.allowsUnalignedMemoryAccesses()) {
4199    VT = MVT::i64;
4200  } else {
4201    switch (Align & 7) {
4202    case 0:
4203      VT = MVT::i64;
4204      break;
4205    case 4:
4206      VT = MVT::i32;
4207      break;
4208    case 2:
4209      VT = MVT::i16;
4210      break;
4211    default:
4212      VT = MVT::i8;
4213      break;
4214    }
4215  }
4216
4217  MVT::ValueType LVT = MVT::i64;
4218  while (!TLI.isTypeLegal(LVT))
4219    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4220  assert(MVT::isInteger(LVT));
4221
4222  if (VT > LVT)
4223    VT = LVT;
4224
4225  unsigned NumMemOps = 0;
4226  while (Size != 0) {
4227    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4228    while (VTSize > Size) {
4229      VT = (MVT::ValueType)((unsigned)VT - 1);
4230      VTSize >>= 1;
4231    }
4232    assert(MVT::isInteger(VT));
4233
4234    if (++NumMemOps > Limit)
4235      return false;
4236    MemOps.push_back(VT);
4237    Size -= VTSize;
4238  }
4239
4240  return true;
4241}
4242
4243void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4244  SDOperand Op1 = getValue(I.getOperand(1));
4245  SDOperand Op2 = getValue(I.getOperand(2));
4246  SDOperand Op3 = getValue(I.getOperand(3));
4247  SDOperand Op4 = getValue(I.getOperand(4));
4248  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4249  if (Align == 0) Align = 1;
4250
4251  // If the source and destination are known to not be aliases, we can
4252  // lower memmove as memcpy.
4253  if (Op == ISD::MEMMOVE) {
4254    uint64_t Size = -1ULL;
4255    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4256      Size = C->getValue();
4257    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4258        AliasAnalysis::NoAlias)
4259      Op = ISD::MEMCPY;
4260  }
4261
4262  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4263    std::vector<MVT::ValueType> MemOps;
4264
4265    // Expand memset / memcpy to a series of load / store ops
4266    // if the size operand falls below a certain threshold.
4267    SmallVector<SDOperand, 8> OutChains;
4268    switch (Op) {
4269    default: break;  // Do nothing for now.
4270    case ISD::MEMSET: {
4271      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4272                                   Size->getValue(), Align, TLI)) {
4273        unsigned NumMemOps = MemOps.size();
4274        unsigned Offset = 0;
4275        for (unsigned i = 0; i < NumMemOps; i++) {
4276          MVT::ValueType VT = MemOps[i];
4277          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4278          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4279          SDOperand Store = DAG.getStore(getRoot(), Value,
4280                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4281                                         I.getOperand(1), Offset);
4282          OutChains.push_back(Store);
4283          Offset += VTSize;
4284        }
4285      }
4286      break;
4287    }
4288    case ISD::MEMCPY: {
4289      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4290                                   Size->getValue(), Align, TLI)) {
4291        unsigned NumMemOps = MemOps.size();
4292        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4293        GlobalAddressSDNode *G = NULL;
4294        std::string Str;
4295        bool CopyFromStr = false;
4296
4297        if (Op2.getOpcode() == ISD::GlobalAddress)
4298          G = cast<GlobalAddressSDNode>(Op2);
4299        else if (Op2.getOpcode() == ISD::ADD &&
4300                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4301                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4302          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4303          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4304        }
4305        if (G) {
4306          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4307          if (GV && GV->isConstant()) {
4308            Str = GV->getStringValue(false);
4309            if (!Str.empty()) {
4310              CopyFromStr = true;
4311              SrcOff += SrcDelta;
4312            }
4313          }
4314        }
4315
4316        for (unsigned i = 0; i < NumMemOps; i++) {
4317          MVT::ValueType VT = MemOps[i];
4318          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4319          SDOperand Value, Chain, Store;
4320
4321          if (CopyFromStr) {
4322            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4323            Chain = getRoot();
4324            Store =
4325              DAG.getStore(Chain, Value,
4326                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4327                           I.getOperand(1), DstOff);
4328          } else {
4329            Value = DAG.getLoad(VT, getRoot(),
4330                                getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4331                                I.getOperand(2), SrcOff, false, Align);
4332            Chain = Value.getValue(1);
4333            Store =
4334              DAG.getStore(Chain, Value,
4335                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4336                           I.getOperand(1), DstOff, false, Align);
4337          }
4338          OutChains.push_back(Store);
4339          SrcOff += VTSize;
4340          DstOff += VTSize;
4341        }
4342      }
4343      break;
4344    }
4345    }
4346
4347    if (!OutChains.empty()) {
4348      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4349                  &OutChains[0], OutChains.size()));
4350      return;
4351    }
4352  }
4353
4354  SDOperand AlwaysInline = DAG.getConstant(0, MVT::i1);
4355  SDOperand Node;
4356  switch(Op) {
4357    default:
4358      assert(0 && "Unknown Op");
4359    case ISD::MEMCPY:
4360      Node = DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4361      break;
4362    case ISD::MEMMOVE:
4363      Node = DAG.getMemmove(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4364      break;
4365    case ISD::MEMSET:
4366      Node = DAG.getMemset(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4367      break;
4368  }
4369  DAG.setRoot(Node);
4370}
4371
4372//===----------------------------------------------------------------------===//
4373// SelectionDAGISel code
4374//===----------------------------------------------------------------------===//
4375
4376unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4377  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4378}
4379
4380void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4381  AU.addRequired<AliasAnalysis>();
4382  AU.setPreservesAll();
4383}
4384
4385
4386
4387bool SelectionDAGISel::runOnFunction(Function &Fn) {
4388  // Get alias analysis for load/store combining.
4389  AA = &getAnalysis<AliasAnalysis>();
4390
4391  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4392  RegMap = MF.getSSARegMap();
4393  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4394
4395  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4396
4397  if (ExceptionHandling)
4398    for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4399      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4400        // Mark landing pad.
4401        FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4402
4403  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4404    SelectBasicBlock(I, MF, FuncInfo);
4405
4406  // Add function live-ins to entry block live-in set.
4407  BasicBlock *EntryBB = &Fn.getEntryBlock();
4408  BB = FuncInfo.MBBMap[EntryBB];
4409  if (!MF.livein_empty())
4410    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4411           E = MF.livein_end(); I != E; ++I)
4412      BB->addLiveIn(I->first);
4413
4414#ifndef NDEBUG
4415  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4416         "Not all catch info was assigned to a landing pad!");
4417#endif
4418
4419  return true;
4420}
4421
4422SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4423                                                           unsigned Reg) {
4424  SDOperand Op = getValue(V);
4425  assert((Op.getOpcode() != ISD::CopyFromReg ||
4426          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4427         "Copy from a reg to the same reg!");
4428
4429  MVT::ValueType SrcVT = Op.getValueType();
4430  MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4431  unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4432  SmallVector<SDOperand, 8> Regs(NumRegs);
4433  SmallVector<SDOperand, 8> Chains(NumRegs);
4434
4435  // Copy the value by legal parts into sequential virtual registers.
4436  getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4437  for (unsigned i = 0; i != NumRegs; ++i)
4438    Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4439  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4440}
4441
4442void SelectionDAGISel::
4443LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4444               std::vector<SDOperand> &UnorderedChains) {
4445  // If this is the entry block, emit arguments.
4446  Function &F = *LLVMBB->getParent();
4447  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4448  SDOperand OldRoot = SDL.DAG.getRoot();
4449  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4450
4451  unsigned a = 0;
4452  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4453       AI != E; ++AI, ++a)
4454    if (!AI->use_empty()) {
4455      SDL.setValue(AI, Args[a]);
4456
4457      // If this argument is live outside of the entry block, insert a copy from
4458      // whereever we got it to the vreg that other BB's will reference it as.
4459      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4460      if (VMI != FuncInfo.ValueMap.end()) {
4461        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4462        UnorderedChains.push_back(Copy);
4463      }
4464    }
4465
4466  // Finally, if the target has anything special to do, allow it to do so.
4467  // FIXME: this should insert code into the DAG!
4468  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4469}
4470
4471static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4472                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4473  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4474    if (isSelector(I)) {
4475      // Apply the catch info to DestBB.
4476      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4477#ifndef NDEBUG
4478      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4479        FLI.CatchInfoFound.insert(I);
4480#endif
4481    }
4482}
4483
4484/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
4485/// DAG and fixes their tailcall attribute operand.
4486static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4487                                           TargetLowering& TLI) {
4488  SDNode * Ret = NULL;
4489  SDOperand Terminator = DAG.getRoot();
4490
4491  // Find RET node.
4492  if (Terminator.getOpcode() == ISD::RET) {
4493    Ret = Terminator.Val;
4494  }
4495
4496  // Fix tail call attribute of CALL nodes.
4497  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
4498         BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
4499    if (BI->getOpcode() == ISD::CALL) {
4500      SDOperand OpRet(Ret, 0);
4501      SDOperand OpCall(static_cast<SDNode*>(BI), 0);
4502      bool isMarkedTailCall =
4503        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
4504      // If CALL node has tail call attribute set to true and the call is not
4505      // eligible (no RET or the target rejects) the attribute is fixed to
4506      // false. The TargetLowering::IsEligibleForTailCallOptimization function
4507      // must correctly identify tail call optimizable calls.
4508      if (isMarkedTailCall &&
4509          (Ret==NULL ||
4510           !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) {
4511        SmallVector<SDOperand, 32> Ops;
4512        unsigned idx=0;
4513        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
4514              E=OpCall.Val->op_end(); I!=E; I++, idx++) {
4515          if (idx!=3)
4516            Ops.push_back(*I);
4517          else
4518            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
4519        }
4520        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4521      }
4522    }
4523  }
4524}
4525
4526void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4527       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4528                                         FunctionLoweringInfo &FuncInfo) {
4529  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo);
4530
4531  std::vector<SDOperand> UnorderedChains;
4532
4533  // Lower any arguments needed in this block if this is the entry block.
4534  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4535    LowerArguments(LLVMBB, SDL, UnorderedChains);
4536
4537  BB = FuncInfo.MBBMap[LLVMBB];
4538  SDL.setCurrentBasicBlock(BB);
4539
4540  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4541
4542  if (ExceptionHandling && MMI && BB->isLandingPad()) {
4543    // Add a label to mark the beginning of the landing pad.  Deletion of the
4544    // landing pad can thus be detected via the MachineModuleInfo.
4545    unsigned LabelID = MMI->addLandingPad(BB);
4546    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4547                            DAG.getConstant(LabelID, MVT::i32)));
4548
4549    // Mark exception register as live in.
4550    unsigned Reg = TLI.getExceptionAddressRegister();
4551    if (Reg) BB->addLiveIn(Reg);
4552
4553    // Mark exception selector register as live in.
4554    Reg = TLI.getExceptionSelectorRegister();
4555    if (Reg) BB->addLiveIn(Reg);
4556
4557    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4558    // function and list of typeids logically belong to the invoke (or, if you
4559    // like, the basic block containing the invoke), and need to be associated
4560    // with it in the dwarf exception handling tables.  Currently however the
4561    // information is provided by an intrinsic (eh.selector) that can be moved
4562    // to unexpected places by the optimizers: if the unwind edge is critical,
4563    // then breaking it can result in the intrinsics being in the successor of
4564    // the landing pad, not the landing pad itself.  This results in exceptions
4565    // not being caught because no typeids are associated with the invoke.
4566    // This may not be the only way things can go wrong, but it is the only way
4567    // we try to work around for the moment.
4568    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4569
4570    if (Br && Br->isUnconditional()) { // Critical edge?
4571      BasicBlock::iterator I, E;
4572      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4573        if (isSelector(I))
4574          break;
4575
4576      if (I == E)
4577        // No catch info found - try to extract some from the successor.
4578        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4579    }
4580  }
4581
4582  // Lower all of the non-terminator instructions.
4583  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4584       I != E; ++I)
4585    SDL.visit(*I);
4586
4587  // Ensure that all instructions which are used outside of their defining
4588  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4589  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4590    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4591      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4592      if (VMI != FuncInfo.ValueMap.end())
4593        UnorderedChains.push_back(
4594                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4595    }
4596
4597  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4598  // ensure constants are generated when needed.  Remember the virtual registers
4599  // that need to be added to the Machine PHI nodes as input.  We cannot just
4600  // directly add them, because expansion might result in multiple MBB's for one
4601  // BB.  As such, the start of the BB might correspond to a different MBB than
4602  // the end.
4603  //
4604  TerminatorInst *TI = LLVMBB->getTerminator();
4605
4606  // Emit constants only once even if used by multiple PHI nodes.
4607  std::map<Constant*, unsigned> ConstantsOut;
4608
4609  // Vector bool would be better, but vector<bool> is really slow.
4610  std::vector<unsigned char> SuccsHandled;
4611  if (TI->getNumSuccessors())
4612    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4613
4614  // Check successor nodes' PHI nodes that expect a constant to be available
4615  // from this block.
4616  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4617    BasicBlock *SuccBB = TI->getSuccessor(succ);
4618    if (!isa<PHINode>(SuccBB->begin())) continue;
4619    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4620
4621    // If this terminator has multiple identical successors (common for
4622    // switches), only handle each succ once.
4623    unsigned SuccMBBNo = SuccMBB->getNumber();
4624    if (SuccsHandled[SuccMBBNo]) continue;
4625    SuccsHandled[SuccMBBNo] = true;
4626
4627    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4628    PHINode *PN;
4629
4630    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4631    // nodes and Machine PHI nodes, but the incoming operands have not been
4632    // emitted yet.
4633    for (BasicBlock::iterator I = SuccBB->begin();
4634         (PN = dyn_cast<PHINode>(I)); ++I) {
4635      // Ignore dead phi's.
4636      if (PN->use_empty()) continue;
4637
4638      unsigned Reg;
4639      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4640
4641      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4642        unsigned &RegOut = ConstantsOut[C];
4643        if (RegOut == 0) {
4644          RegOut = FuncInfo.CreateRegForValue(C);
4645          UnorderedChains.push_back(
4646                           SDL.CopyValueToVirtualRegister(C, RegOut));
4647        }
4648        Reg = RegOut;
4649      } else {
4650        Reg = FuncInfo.ValueMap[PHIOp];
4651        if (Reg == 0) {
4652          assert(isa<AllocaInst>(PHIOp) &&
4653                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4654                 "Didn't codegen value into a register!??");
4655          Reg = FuncInfo.CreateRegForValue(PHIOp);
4656          UnorderedChains.push_back(
4657                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4658        }
4659      }
4660
4661      // Remember that this register needs to added to the machine PHI node as
4662      // the input for this MBB.
4663      MVT::ValueType VT = TLI.getValueType(PN->getType());
4664      unsigned NumRegisters = TLI.getNumRegisters(VT);
4665      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4666        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4667    }
4668  }
4669  ConstantsOut.clear();
4670
4671  // Turn all of the unordered chains into one factored node.
4672  if (!UnorderedChains.empty()) {
4673    SDOperand Root = SDL.getRoot();
4674    if (Root.getOpcode() != ISD::EntryToken) {
4675      unsigned i = 0, e = UnorderedChains.size();
4676      for (; i != e; ++i) {
4677        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4678        if (UnorderedChains[i].Val->getOperand(0) == Root)
4679          break;  // Don't add the root if we already indirectly depend on it.
4680      }
4681
4682      if (i == e)
4683        UnorderedChains.push_back(Root);
4684    }
4685    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4686                            &UnorderedChains[0], UnorderedChains.size()));
4687  }
4688
4689  // Lower the terminator after the copies are emitted.
4690  SDL.visit(*LLVMBB->getTerminator());
4691
4692  // Copy over any CaseBlock records that may now exist due to SwitchInst
4693  // lowering, as well as any jump table information.
4694  SwitchCases.clear();
4695  SwitchCases = SDL.SwitchCases;
4696  JTCases.clear();
4697  JTCases = SDL.JTCases;
4698  BitTestCases.clear();
4699  BitTestCases = SDL.BitTestCases;
4700
4701  // Make sure the root of the DAG is up-to-date.
4702  DAG.setRoot(SDL.getRoot());
4703
4704  // Check whether calls in this block are real tail calls. Fix up CALL nodes
4705  // with correct tailcall attribute so that the target can rely on the tailcall
4706  // attribute indicating whether the call is really eligible for tail call
4707  // optimization.
4708  CheckDAGForTailCallsAndFixThem(DAG, TLI);
4709}
4710
4711void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4712  DOUT << "Lowered selection DAG:\n";
4713  DEBUG(DAG.dump());
4714
4715  // Run the DAG combiner in pre-legalize mode.
4716  DAG.Combine(false, *AA);
4717
4718  DOUT << "Optimized lowered selection DAG:\n";
4719  DEBUG(DAG.dump());
4720
4721  // Second step, hack on the DAG until it only uses operations and types that
4722  // the target supports.
4723#if 0  // Enable this some day.
4724  DAG.LegalizeTypes();
4725  // Someday even later, enable a dag combine pass here.
4726#endif
4727  DAG.Legalize();
4728
4729  DOUT << "Legalized selection DAG:\n";
4730  DEBUG(DAG.dump());
4731
4732  // Run the DAG combiner in post-legalize mode.
4733  DAG.Combine(true, *AA);
4734
4735  DOUT << "Optimized legalized selection DAG:\n";
4736  DEBUG(DAG.dump());
4737
4738  if (ViewISelDAGs) DAG.viewGraph();
4739
4740  // Third, instruction select all of the operations to machine code, adding the
4741  // code to the MachineBasicBlock.
4742  InstructionSelectBasicBlock(DAG);
4743
4744  DOUT << "Selected machine code:\n";
4745  DEBUG(BB->dump());
4746}
4747
4748void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4749                                        FunctionLoweringInfo &FuncInfo) {
4750  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4751  {
4752    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4753    CurDAG = &DAG;
4754
4755    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4756    // types that are not supported by the target.
4757    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4758
4759    // Second step, emit the lowered DAG as machine code.
4760    CodeGenAndEmitDAG(DAG);
4761  }
4762
4763  DOUT << "Total amount of phi nodes to update: "
4764       << PHINodesToUpdate.size() << "\n";
4765  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4766          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4767               << ", " << PHINodesToUpdate[i].second << ")\n";);
4768
4769  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4770  // PHI nodes in successors.
4771  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4772    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4773      MachineInstr *PHI = PHINodesToUpdate[i].first;
4774      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4775             "This is not a machine PHI node that we are updating!");
4776      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4777      PHI->addMachineBasicBlockOperand(BB);
4778    }
4779    return;
4780  }
4781
4782  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4783    // Lower header first, if it wasn't already lowered
4784    if (!BitTestCases[i].Emitted) {
4785      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4786      CurDAG = &HSDAG;
4787      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
4788      // Set the current basic block to the mbb we wish to insert the code into
4789      BB = BitTestCases[i].Parent;
4790      HSDL.setCurrentBasicBlock(BB);
4791      // Emit the code
4792      HSDL.visitBitTestHeader(BitTestCases[i]);
4793      HSDAG.setRoot(HSDL.getRoot());
4794      CodeGenAndEmitDAG(HSDAG);
4795    }
4796
4797    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4798      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4799      CurDAG = &BSDAG;
4800      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo);
4801      // Set the current basic block to the mbb we wish to insert the code into
4802      BB = BitTestCases[i].Cases[j].ThisBB;
4803      BSDL.setCurrentBasicBlock(BB);
4804      // Emit the code
4805      if (j+1 != ej)
4806        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4807                              BitTestCases[i].Reg,
4808                              BitTestCases[i].Cases[j]);
4809      else
4810        BSDL.visitBitTestCase(BitTestCases[i].Default,
4811                              BitTestCases[i].Reg,
4812                              BitTestCases[i].Cases[j]);
4813
4814
4815      BSDAG.setRoot(BSDL.getRoot());
4816      CodeGenAndEmitDAG(BSDAG);
4817    }
4818
4819    // Update PHI Nodes
4820    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4821      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4822      MachineBasicBlock *PHIBB = PHI->getParent();
4823      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4824             "This is not a machine PHI node that we are updating!");
4825      // This is "default" BB. We have two jumps to it. From "header" BB and
4826      // from last "case" BB.
4827      if (PHIBB == BitTestCases[i].Default) {
4828        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4829        PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4830        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4831        PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4832      }
4833      // One of "cases" BB.
4834      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4835        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4836        if (cBB->succ_end() !=
4837            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4838          PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4839          PHI->addMachineBasicBlockOperand(cBB);
4840        }
4841      }
4842    }
4843  }
4844
4845  // If the JumpTable record is filled in, then we need to emit a jump table.
4846  // Updating the PHI nodes is tricky in this case, since we need to determine
4847  // whether the PHI is a successor of the range check MBB or the jump table MBB
4848  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4849    // Lower header first, if it wasn't already lowered
4850    if (!JTCases[i].first.Emitted) {
4851      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4852      CurDAG = &HSDAG;
4853      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
4854      // Set the current basic block to the mbb we wish to insert the code into
4855      BB = JTCases[i].first.HeaderBB;
4856      HSDL.setCurrentBasicBlock(BB);
4857      // Emit the code
4858      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4859      HSDAG.setRoot(HSDL.getRoot());
4860      CodeGenAndEmitDAG(HSDAG);
4861    }
4862
4863    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4864    CurDAG = &JSDAG;
4865    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo);
4866    // Set the current basic block to the mbb we wish to insert the code into
4867    BB = JTCases[i].second.MBB;
4868    JSDL.setCurrentBasicBlock(BB);
4869    // Emit the code
4870    JSDL.visitJumpTable(JTCases[i].second);
4871    JSDAG.setRoot(JSDL.getRoot());
4872    CodeGenAndEmitDAG(JSDAG);
4873
4874    // Update PHI Nodes
4875    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4876      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4877      MachineBasicBlock *PHIBB = PHI->getParent();
4878      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4879             "This is not a machine PHI node that we are updating!");
4880      // "default" BB. We can go there only from header BB.
4881      if (PHIBB == JTCases[i].second.Default) {
4882        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4883        PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4884      }
4885      // JT BB. Just iterate over successors here
4886      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4887        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4888        PHI->addMachineBasicBlockOperand(BB);
4889      }
4890    }
4891  }
4892
4893  // If the switch block involved a branch to one of the actual successors, we
4894  // need to update PHI nodes in that block.
4895  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4896    MachineInstr *PHI = PHINodesToUpdate[i].first;
4897    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4898           "This is not a machine PHI node that we are updating!");
4899    if (BB->isSuccessor(PHI->getParent())) {
4900      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4901      PHI->addMachineBasicBlockOperand(BB);
4902    }
4903  }
4904
4905  // If we generated any switch lowering information, build and codegen any
4906  // additional DAGs necessary.
4907  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4908    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4909    CurDAG = &SDAG;
4910    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo);
4911
4912    // Set the current basic block to the mbb we wish to insert the code into
4913    BB = SwitchCases[i].ThisBB;
4914    SDL.setCurrentBasicBlock(BB);
4915
4916    // Emit the code
4917    SDL.visitSwitchCase(SwitchCases[i]);
4918    SDAG.setRoot(SDL.getRoot());
4919    CodeGenAndEmitDAG(SDAG);
4920
4921    // Handle any PHI nodes in successors of this chunk, as if we were coming
4922    // from the original BB before switch expansion.  Note that PHI nodes can
4923    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4924    // handle them the right number of times.
4925    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4926      for (MachineBasicBlock::iterator Phi = BB->begin();
4927           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4928        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4929        for (unsigned pn = 0; ; ++pn) {
4930          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4931          if (PHINodesToUpdate[pn].first == Phi) {
4932            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4933            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4934            break;
4935          }
4936        }
4937      }
4938
4939      // Don't process RHS if same block as LHS.
4940      if (BB == SwitchCases[i].FalseBB)
4941        SwitchCases[i].FalseBB = 0;
4942
4943      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4944      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4945      SwitchCases[i].FalseBB = 0;
4946    }
4947    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4948  }
4949}
4950
4951
4952//===----------------------------------------------------------------------===//
4953/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4954/// target node in the graph.
4955void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4956  if (ViewSchedDAGs) DAG.viewGraph();
4957
4958  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4959
4960  if (!Ctor) {
4961    Ctor = ISHeuristic;
4962    RegisterScheduler::setDefault(Ctor);
4963  }
4964
4965  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4966  BB = SL->Run();
4967
4968  if (ViewSUnitDAGs) SL->viewGraph();
4969
4970  delete SL;
4971}
4972
4973
4974HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4975  return new HazardRecognizer();
4976}
4977
4978//===----------------------------------------------------------------------===//
4979// Helper functions used by the generated instruction selector.
4980//===----------------------------------------------------------------------===//
4981// Calls to these methods are generated by tblgen.
4982
4983/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4984/// the dag combiner simplified the 255, we still want to match.  RHS is the
4985/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4986/// specified in the .td file (e.g. 255).
4987bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4988                                    int64_t DesiredMaskS) const {
4989  uint64_t ActualMask = RHS->getValue();
4990  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4991
4992  // If the actual mask exactly matches, success!
4993  if (ActualMask == DesiredMask)
4994    return true;
4995
4996  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4997  if (ActualMask & ~DesiredMask)
4998    return false;
4999
5000  // Otherwise, the DAG Combiner may have proven that the value coming in is
5001  // either already zero or is not demanded.  Check for known zero input bits.
5002  uint64_t NeededMask = DesiredMask & ~ActualMask;
5003  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5004    return true;
5005
5006  // TODO: check to see if missing bits are just not demanded.
5007
5008  // Otherwise, this pattern doesn't match.
5009  return false;
5010}
5011
5012/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5013/// the dag combiner simplified the 255, we still want to match.  RHS is the
5014/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5015/// specified in the .td file (e.g. 255).
5016bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
5017                                    int64_t DesiredMaskS) const {
5018  uint64_t ActualMask = RHS->getValue();
5019  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
5020
5021  // If the actual mask exactly matches, success!
5022  if (ActualMask == DesiredMask)
5023    return true;
5024
5025  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5026  if (ActualMask & ~DesiredMask)
5027    return false;
5028
5029  // Otherwise, the DAG Combiner may have proven that the value coming in is
5030  // either already zero or is not demanded.  Check for known zero input bits.
5031  uint64_t NeededMask = DesiredMask & ~ActualMask;
5032
5033  uint64_t KnownZero, KnownOne;
5034  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5035
5036  // If all the missing bits in the or are already known to be set, match!
5037  if ((NeededMask & KnownOne) == NeededMask)
5038    return true;
5039
5040  // TODO: check to see if missing bits are just not demanded.
5041
5042  // Otherwise, this pattern doesn't match.
5043  return false;
5044}
5045
5046
5047/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5048/// by tblgen.  Others should not call it.
5049void SelectionDAGISel::
5050SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5051  std::vector<SDOperand> InOps;
5052  std::swap(InOps, Ops);
5053
5054  Ops.push_back(InOps[0]);  // input chain.
5055  Ops.push_back(InOps[1]);  // input asm string.
5056
5057  unsigned i = 2, e = InOps.size();
5058  if (InOps[e-1].getValueType() == MVT::Flag)
5059    --e;  // Don't process a flag operand if it is here.
5060
5061  while (i != e) {
5062    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5063    if ((Flags & 7) != 4 /*MEM*/) {
5064      // Just skip over this operand, copying the operands verbatim.
5065      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5066      i += (Flags >> 3) + 1;
5067    } else {
5068      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5069      // Otherwise, this is a memory operand.  Ask the target to select it.
5070      std::vector<SDOperand> SelOps;
5071      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5072        cerr << "Could not match memory address.  Inline asm failure!\n";
5073        exit(1);
5074      }
5075
5076      // Add this to the output node.
5077      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5078      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5079                                          IntPtrTy));
5080      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5081      i += 2;
5082    }
5083  }
5084
5085  // Add the flag input back if present.
5086  if (e != InOps.size())
5087    Ops.push_back(InOps.back());
5088}
5089
5090char SelectionDAGISel::ID = 0;
5091