SelectionDAGISel.cpp revision ff6f2bc8452b9fed3bc951818fa1b5b62cb13862
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/CodeGen/FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetIntrinsicInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Support/Compiler.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/Timer.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
56STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
57
58static cl::opt<bool>
59EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
60          cl::desc("Enable verbose messages in the \"fast\" "
61                   "instruction selector"));
62static cl::opt<bool>
63EnableFastISelAbort("fast-isel-abort", cl::Hidden,
64          cl::desc("Enable abort calls when \"fast\" instruction fails"));
65
66#ifndef NDEBUG
67static cl::opt<bool>
68ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
69          cl::desc("Pop up a window to show dags before the first "
70                   "dag combine pass"));
71static cl::opt<bool>
72ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
73          cl::desc("Pop up a window to show dags before legalize types"));
74static cl::opt<bool>
75ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
76          cl::desc("Pop up a window to show dags before legalize"));
77static cl::opt<bool>
78ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the second "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before the post legalize types"
84                   " dag combine pass"));
85static cl::opt<bool>
86ViewISelDAGs("view-isel-dags", cl::Hidden,
87          cl::desc("Pop up a window to show isel dags as they are selected"));
88static cl::opt<bool>
89ViewSchedDAGs("view-sched-dags", cl::Hidden,
90          cl::desc("Pop up a window to show sched dags as they are processed"));
91static cl::opt<bool>
92ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
93      cl::desc("Pop up a window to show SUnit dags after they are processed"));
94#else
95static const bool ViewDAGCombine1 = false,
96                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
97                  ViewDAGCombine2 = false,
98                  ViewDAGCombineLT = false,
99                  ViewISelDAGs = false, ViewSchedDAGs = false,
100                  ViewSUnitDAGs = false;
101#endif
102
103//===---------------------------------------------------------------------===//
104///
105/// RegisterScheduler class - Track the registration of instruction schedulers.
106///
107//===---------------------------------------------------------------------===//
108MachinePassRegistry RegisterScheduler::Registry;
109
110//===---------------------------------------------------------------------===//
111///
112/// ISHeuristic command line option for instruction schedulers.
113///
114//===---------------------------------------------------------------------===//
115static cl::opt<RegisterScheduler::FunctionPassCtor, false,
116               RegisterPassParser<RegisterScheduler> >
117ISHeuristic("pre-RA-sched",
118            cl::init(&createDefaultScheduler),
119            cl::desc("Instruction schedulers available (before register"
120                     " allocation):"));
121
122static RegisterScheduler
123defaultListDAGScheduler("default", "Best scheduler for the target",
124                        createDefaultScheduler);
125
126namespace llvm {
127  //===--------------------------------------------------------------------===//
128  /// createDefaultScheduler - This creates an instruction scheduler appropriate
129  /// for the target.
130  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
131                                             CodeGenOpt::Level OptLevel) {
132    const TargetLowering &TLI = IS->getTargetLowering();
133
134    if (OptLevel == CodeGenOpt::None)
135      return createFastDAGScheduler(IS, OptLevel);
136    if (TLI.getSchedulingPreference() == Sched::Latency)
137      return createTDListDAGScheduler(IS, OptLevel);
138    if (TLI.getSchedulingPreference() == Sched::RegPressure)
139      return createBURRListDAGScheduler(IS, OptLevel);
140    assert(TLI.getSchedulingPreference() == Sched::Hybrid &&
141           "Unknown sched type!");
142    return createHybridListDAGScheduler(IS, OptLevel);
143  }
144}
145
146// EmitInstrWithCustomInserter - This method should be implemented by targets
147// that mark instructions with the 'usesCustomInserter' flag.  These
148// instructions are special in various ways, which require special support to
149// insert.  The specified MachineInstr is created but not inserted into any
150// basic blocks, and this method is called to expand it into a sequence of
151// instructions, potentially also creating new basic blocks and control flow.
152// When new basic blocks are inserted and the edges from MBB to its successors
153// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
154// DenseMap.
155MachineBasicBlock *
156TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
157                                            MachineBasicBlock *MBB) const {
158#ifndef NDEBUG
159  dbgs() << "If a target marks an instruction with "
160          "'usesCustomInserter', it must implement "
161          "TargetLowering::EmitInstrWithCustomInserter!";
162#endif
163  llvm_unreachable(0);
164  return 0;
165}
166
167//===----------------------------------------------------------------------===//
168// SelectionDAGISel code
169//===----------------------------------------------------------------------===//
170
171SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) :
172  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
173  FuncInfo(new FunctionLoweringInfo(TLI)),
174  CurDAG(new SelectionDAG(tm)),
175  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
176  GFI(),
177  OptLevel(OL),
178  DAGSize(0)
179{}
180
181SelectionDAGISel::~SelectionDAGISel() {
182  delete SDB;
183  delete CurDAG;
184  delete FuncInfo;
185}
186
187void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
188  AU.addRequired<AliasAnalysis>();
189  AU.addPreserved<AliasAnalysis>();
190  AU.addRequired<GCModuleInfo>();
191  AU.addPreserved<GCModuleInfo>();
192  MachineFunctionPass::getAnalysisUsage(AU);
193}
194
195/// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
196/// other function that gcc recognizes as "returning twice". This is used to
197/// limit code-gen optimizations on the machine function.
198///
199/// FIXME: Remove after <rdar://problem/8031714> is fixed.
200static bool FunctionCallsSetJmp(const Function *F) {
201  const Module *M = F->getParent();
202  static const char *ReturnsTwiceFns[] = {
203    "setjmp",
204    "sigsetjmp",
205    "setjmp_syscall",
206    "savectx",
207    "qsetjmp",
208    "vfork",
209    "getcontext"
210  };
211#define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
212
213  for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I)
214    if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) {
215      if (!Callee->use_empty())
216        for (Value::const_use_iterator
217               I = Callee->use_begin(), E = Callee->use_end();
218             I != E; ++I)
219          if (const CallInst *CI = dyn_cast<CallInst>(I))
220            if (CI->getParent()->getParent() == F)
221              return true;
222    }
223
224  return false;
225#undef NUM_RETURNS_TWICE_FNS
226}
227
228bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
229  // Do some sanity-checking on the command-line options.
230  assert((!EnableFastISelVerbose || EnableFastISel) &&
231         "-fast-isel-verbose requires -fast-isel");
232  assert((!EnableFastISelAbort || EnableFastISel) &&
233         "-fast-isel-abort requires -fast-isel");
234
235  const Function &Fn = *mf.getFunction();
236  const TargetInstrInfo &TII = *TM.getInstrInfo();
237  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
238
239  MF = &mf;
240  RegInfo = &MF->getRegInfo();
241  AA = &getAnalysis<AliasAnalysis>();
242  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
243
244  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
245
246  CurDAG->init(*MF);
247  FuncInfo->set(Fn, *MF);
248  SDB->init(GFI, *AA);
249
250  SelectAllBasicBlocks(Fn);
251
252  // If the first basic block in the function has live ins that need to be
253  // copied into vregs, emit the copies into the top of the block before
254  // emitting the code for the block.
255  MachineBasicBlock *EntryMBB = MF->begin();
256  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
257
258  DenseMap<unsigned, unsigned> LiveInMap;
259  if (!FuncInfo->ArgDbgValues.empty())
260    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
261           E = RegInfo->livein_end(); LI != E; ++LI)
262      if (LI->second)
263        LiveInMap.insert(std::make_pair(LI->first, LI->second));
264
265  // Insert DBG_VALUE instructions for function arguments to the entry block.
266  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
267    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
268    unsigned Reg = MI->getOperand(0).getReg();
269    if (TargetRegisterInfo::isPhysicalRegister(Reg))
270      EntryMBB->insert(EntryMBB->begin(), MI);
271    else {
272      MachineInstr *Def = RegInfo->getVRegDef(Reg);
273      MachineBasicBlock::iterator InsertPos = Def;
274      // FIXME: VR def may not be in entry block.
275      Def->getParent()->insert(llvm::next(InsertPos), MI);
276    }
277
278    // If Reg is live-in then update debug info to track its copy in a vreg.
279    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
280    if (LDI != LiveInMap.end()) {
281      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
282      MachineBasicBlock::iterator InsertPos = Def;
283      const MDNode *Variable =
284        MI->getOperand(MI->getNumOperands()-1).getMetadata();
285      unsigned Offset = MI->getOperand(1).getImm();
286      // Def is never a terminator here, so it is ok to increment InsertPos.
287      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
288              TII.get(TargetOpcode::DBG_VALUE))
289        .addReg(LDI->second, RegState::Debug)
290        .addImm(Offset).addMetadata(Variable);
291    }
292  }
293
294  // Determine if there are any calls in this machine function.
295  MachineFrameInfo *MFI = MF->getFrameInfo();
296  if (!MFI->hasCalls()) {
297    for (MachineFunction::const_iterator
298           I = MF->begin(), E = MF->end(); I != E; ++I) {
299      const MachineBasicBlock *MBB = I;
300      for (MachineBasicBlock::const_iterator
301             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
302        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
303        if (II->isInlineAsm() || (TID.isCall() && !TID.isReturn())) {
304          MFI->setHasCalls(true);
305          goto done;
306        }
307      }
308    }
309  done:;
310  }
311
312  // Determine if there is a call to setjmp in the machine function.
313  MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
314
315  // Release function-specific state. SDB and CurDAG are already cleared
316  // at this point.
317  FuncInfo->clear();
318
319  return true;
320}
321
322void
323SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
324                                   BasicBlock::const_iterator End,
325                                   bool &HadTailCall) {
326  // Lower all of the non-terminator instructions. If a call is emitted
327  // as a tail call, cease emitting nodes for this block. Terminators
328  // are handled below.
329  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
330    SDB->visit(*I);
331
332  // Make sure the root of the DAG is up-to-date.
333  CurDAG->setRoot(SDB->getControlRoot());
334  HadTailCall = SDB->HasTailCall;
335  SDB->clear();
336
337  // Final step, emit the lowered DAG as machine code.
338  CodeGenAndEmitDAG();
339}
340
341namespace {
342/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
343/// nodes from the worklist.
344class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
345  SmallVector<SDNode*, 128> &Worklist;
346  SmallPtrSet<SDNode*, 128> &InWorklist;
347public:
348  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
349                       SmallPtrSet<SDNode*, 128> &inwl)
350    : Worklist(wl), InWorklist(inwl) {}
351
352  void RemoveFromWorklist(SDNode *N) {
353    if (!InWorklist.erase(N)) return;
354
355    SmallVector<SDNode*, 128>::iterator I =
356    std::find(Worklist.begin(), Worklist.end(), N);
357    assert(I != Worklist.end() && "Not in worklist");
358
359    *I = Worklist.back();
360    Worklist.pop_back();
361  }
362
363  virtual void NodeDeleted(SDNode *N, SDNode *E) {
364    RemoveFromWorklist(N);
365  }
366
367  virtual void NodeUpdated(SDNode *N) {
368    // Ignore updates.
369  }
370};
371}
372
373void SelectionDAGISel::ComputeLiveOutVRegInfo() {
374  SmallPtrSet<SDNode*, 128> VisitedNodes;
375  SmallVector<SDNode*, 128> Worklist;
376
377  Worklist.push_back(CurDAG->getRoot().getNode());
378
379  APInt Mask;
380  APInt KnownZero;
381  APInt KnownOne;
382
383  do {
384    SDNode *N = Worklist.pop_back_val();
385
386    // If we've already seen this node, ignore it.
387    if (!VisitedNodes.insert(N))
388      continue;
389
390    // Otherwise, add all chain operands to the worklist.
391    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
392      if (N->getOperand(i).getValueType() == MVT::Other)
393        Worklist.push_back(N->getOperand(i).getNode());
394
395    // If this is a CopyToReg with a vreg dest, process it.
396    if (N->getOpcode() != ISD::CopyToReg)
397      continue;
398
399    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
400    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
401      continue;
402
403    // Ignore non-scalar or non-integer values.
404    SDValue Src = N->getOperand(2);
405    EVT SrcVT = Src.getValueType();
406    if (!SrcVT.isInteger() || SrcVT.isVector())
407      continue;
408
409    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
410    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
411    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
412
413    // Only install this information if it tells us something.
414    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
415      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
416      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
417        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
418      FunctionLoweringInfo::LiveOutInfo &LOI =
419        FuncInfo->LiveOutRegInfo[DestReg];
420      LOI.NumSignBits = NumSignBits;
421      LOI.KnownOne = KnownOne;
422      LOI.KnownZero = KnownZero;
423    }
424  } while (!Worklist.empty());
425}
426
427void SelectionDAGISel::CodeGenAndEmitDAG() {
428  std::string GroupName;
429  if (TimePassesIsEnabled)
430    GroupName = "Instruction Selection and Scheduling";
431  std::string BlockName;
432  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
433      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
434      ViewSUnitDAGs)
435    BlockName = MF->getFunction()->getNameStr() + ":" +
436                FuncInfo->MBB->getBasicBlock()->getNameStr();
437
438  DEBUG(dbgs() << "Initial selection DAG:\n"; CurDAG->dump());
439
440  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
441
442  // Run the DAG combiner in pre-legalize mode.
443  {
444    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
445    CurDAG->Combine(Unrestricted, *AA, OptLevel);
446  }
447
448  DEBUG(dbgs() << "Optimized lowered selection DAG:\n"; CurDAG->dump());
449
450  // Second step, hack on the DAG until it only uses operations and types that
451  // the target supports.
452  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
453                                               BlockName);
454
455  bool Changed;
456  {
457    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
458    Changed = CurDAG->LegalizeTypes();
459  }
460
461  DEBUG(dbgs() << "Type-legalized selection DAG:\n"; CurDAG->dump());
462
463  if (Changed) {
464    if (ViewDAGCombineLT)
465      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
466
467    // Run the DAG combiner in post-type-legalize mode.
468    {
469      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
470                         TimePassesIsEnabled);
471      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
472    }
473
474    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n";
475          CurDAG->dump());
476  }
477
478  {
479    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
480    Changed = CurDAG->LegalizeVectors();
481  }
482
483  if (Changed) {
484    {
485      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
486      CurDAG->LegalizeTypes();
487    }
488
489    if (ViewDAGCombineLT)
490      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
491
492    // Run the DAG combiner in post-type-legalize mode.
493    {
494      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
495                         TimePassesIsEnabled);
496      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
497    }
498
499    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n";
500          CurDAG->dump());
501  }
502
503  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
504
505  {
506    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
507    CurDAG->Legalize(OptLevel);
508  }
509
510  DEBUG(dbgs() << "Legalized selection DAG:\n"; CurDAG->dump());
511
512  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
513
514  // Run the DAG combiner in post-legalize mode.
515  {
516    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
517    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
518  }
519
520  DEBUG(dbgs() << "Optimized legalized selection DAG:\n"; CurDAG->dump());
521
522  if (OptLevel != CodeGenOpt::None)
523    ComputeLiveOutVRegInfo();
524
525  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
526
527  // Third, instruction select all of the operations to machine code, adding the
528  // code to the MachineBasicBlock.
529  {
530    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
531    DoInstructionSelection();
532  }
533
534  DEBUG(dbgs() << "Selected selection DAG:\n"; CurDAG->dump());
535
536  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
537
538  // Schedule machine code.
539  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
540  {
541    NamedRegionTimer T("Instruction Scheduling", GroupName,
542                       TimePassesIsEnabled);
543    Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
544  }
545
546  if (ViewSUnitDAGs) Scheduler->viewGraph();
547
548  // Emit machine code to BB.  This can change 'BB' to the last block being
549  // inserted into.
550  {
551    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
552    FuncInfo->MBB = Scheduler->EmitSchedule();
553    FuncInfo->InsertPt = Scheduler->InsertPos;
554  }
555
556  // Free the scheduler state.
557  {
558    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
559                       TimePassesIsEnabled);
560    delete Scheduler;
561  }
562
563  // Free the SelectionDAG state, now that we're finished with it.
564  CurDAG->clear();
565}
566
567void SelectionDAGISel::DoInstructionSelection() {
568  DEBUG(errs() << "===== Instruction selection begins:\n");
569
570  PreprocessISelDAG();
571
572  // Select target instructions for the DAG.
573  {
574    // Number all nodes with a topological order and set DAGSize.
575    DAGSize = CurDAG->AssignTopologicalOrder();
576
577    // Create a dummy node (which is not added to allnodes), that adds
578    // a reference to the root node, preventing it from being deleted,
579    // and tracking any changes of the root.
580    HandleSDNode Dummy(CurDAG->getRoot());
581    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
582    ++ISelPosition;
583
584    // The AllNodes list is now topological-sorted. Visit the
585    // nodes by starting at the end of the list (the root of the
586    // graph) and preceding back toward the beginning (the entry
587    // node).
588    while (ISelPosition != CurDAG->allnodes_begin()) {
589      SDNode *Node = --ISelPosition;
590      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
591      // but there are currently some corner cases that it misses. Also, this
592      // makes it theoretically possible to disable the DAGCombiner.
593      if (Node->use_empty())
594        continue;
595
596      SDNode *ResNode = Select(Node);
597
598      // FIXME: This is pretty gross.  'Select' should be changed to not return
599      // anything at all and this code should be nuked with a tactical strike.
600
601      // If node should not be replaced, continue with the next one.
602      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
603        continue;
604      // Replace node.
605      if (ResNode)
606        ReplaceUses(Node, ResNode);
607
608      // If after the replacement this node is not used any more,
609      // remove this dead node.
610      if (Node->use_empty()) { // Don't delete EntryToken, etc.
611        ISelUpdater ISU(ISelPosition);
612        CurDAG->RemoveDeadNode(Node, &ISU);
613      }
614    }
615
616    CurDAG->setRoot(Dummy.getValue());
617  }
618
619  DEBUG(errs() << "===== Instruction selection ends:\n");
620
621  PostprocessISelDAG();
622}
623
624/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
625/// do other setup for EH landing-pad blocks.
626void SelectionDAGISel::PrepareEHLandingPad() {
627  // Add a label to mark the beginning of the landing pad.  Deletion of the
628  // landing pad can thus be detected via the MachineModuleInfo.
629  MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
630
631  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
632  BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
633    .addSym(Label);
634
635  // Mark exception register as live in.
636  unsigned Reg = TLI.getExceptionAddressRegister();
637  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
638
639  // Mark exception selector register as live in.
640  Reg = TLI.getExceptionSelectorRegister();
641  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
642
643  // FIXME: Hack around an exception handling flaw (PR1508): the personality
644  // function and list of typeids logically belong to the invoke (or, if you
645  // like, the basic block containing the invoke), and need to be associated
646  // with it in the dwarf exception handling tables.  Currently however the
647  // information is provided by an intrinsic (eh.selector) that can be moved
648  // to unexpected places by the optimizers: if the unwind edge is critical,
649  // then breaking it can result in the intrinsics being in the successor of
650  // the landing pad, not the landing pad itself.  This results
651  // in exceptions not being caught because no typeids are associated with
652  // the invoke.  This may not be the only way things can go wrong, but it
653  // is the only way we try to work around for the moment.
654  const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
655  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
656
657  if (Br && Br->isUnconditional()) { // Critical edge?
658    BasicBlock::const_iterator I, E;
659    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
660      if (isa<EHSelectorInst>(I))
661        break;
662
663    if (I == E)
664      // No catch info found - try to extract some from the successor.
665      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
666  }
667}
668
669void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
670  // Initialize the Fast-ISel state, if needed.
671  FastISel *FastIS = 0;
672  if (EnableFastISel)
673    FastIS = TLI.createFastISel(*FuncInfo);
674
675  // Iterate over all basic blocks in the function.
676  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
677    const BasicBlock *LLVMBB = &*I;
678    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
679    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
680
681    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
682    BasicBlock::const_iterator const End = LLVMBB->end();
683    BasicBlock::const_iterator BI = End;
684
685    // Before doing SelectionDAG ISel, see if FastISel has been requested.
686    if (FastIS) {
687      FastIS->startNewBlock();
688
689      // Do FastISel on as many instructions as possible.
690      for (; BI != Begin; --BI) {
691        const Instruction *Inst = llvm::prior(BI);
692
693        // If we no longer require this instruction, skip it.
694        if (!Inst->mayWriteToMemory() &&
695            !isa<TerminatorInst>(Inst) &&
696            !isa<DbgInfoIntrinsic>(Inst) &&
697            !FuncInfo->isExportedInst(Inst))
698          continue;
699
700        // Bottom-up: reset the insert pos at the top, after any local-value
701        // instructions.
702        MachineBasicBlock::iterator LVIP = FastIS->getLastLocalValue();
703        if (LVIP != FuncInfo->MBB->end())
704          FuncInfo->InsertPt = next(LVIP);
705        else
706          FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
707
708        // Try to select the instruction with FastISel.
709        if (FastIS->SelectInstruction(Inst))
710          continue;
711
712        // Then handle certain instructions as single-LLVM-Instruction blocks.
713        if (isa<CallInst>(Inst)) {
714          ++NumFastIselFailures;
715          if (EnableFastISelVerbose || EnableFastISelAbort) {
716            dbgs() << "FastISel missed call: ";
717            Inst->dump();
718          }
719
720          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
721            unsigned &R = FuncInfo->ValueMap[Inst];
722            if (!R)
723              R = FuncInfo->CreateRegs(Inst->getType());
724          }
725
726          bool HadTailCall = false;
727          SelectBasicBlock(Inst, BI, HadTailCall);
728
729          // If the call was emitted as a tail call, we're done with the block.
730          if (HadTailCall) {
731            --BI;
732            break;
733          }
734
735          continue;
736        }
737
738        // Otherwise, give up on FastISel for the rest of the block.
739        // For now, be a little lenient about non-branch terminators.
740        if (!isa<TerminatorInst>(Inst) || isa<BranchInst>(Inst)) {
741          ++NumFastIselFailures;
742          if (EnableFastISelVerbose || EnableFastISelAbort) {
743            dbgs() << "FastISel miss: ";
744            Inst->dump();
745          }
746          if (EnableFastISelAbort)
747            // The "fast" selector couldn't handle something and bailed.
748            // For the purpose of debugging, just abort.
749            llvm_unreachable("FastISel didn't select the entire block");
750        }
751        break;
752      }
753    }
754
755    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
756
757    // Setup an EH landing-pad block.
758    if (FuncInfo->MBB->isLandingPad())
759      PrepareEHLandingPad();
760
761    // Lower any arguments needed in this block if this is the entry block.
762    if (LLVMBB == &Fn.getEntryBlock())
763      LowerArguments(LLVMBB);
764
765    // Run SelectionDAG instruction selection on the remainder of the block
766    // not handled by FastISel. If FastISel is not run, this is the entire
767    // block.
768    bool HadTailCall;
769    SelectBasicBlock(Begin, BI, HadTailCall);
770
771    FinishBasicBlock();
772    FuncInfo->PHINodesToUpdate.clear();
773  }
774
775  delete FastIS;
776}
777
778void
779SelectionDAGISel::FinishBasicBlock() {
780
781  DEBUG(dbgs() << "Total amount of phi nodes to update: "
782               << FuncInfo->PHINodesToUpdate.size() << "\n";
783        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
784          dbgs() << "Node " << i << " : ("
785                 << FuncInfo->PHINodesToUpdate[i].first
786                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
787
788  // Next, now that we know what the last MBB the LLVM BB expanded is, update
789  // PHI nodes in successors.
790  if (SDB->SwitchCases.empty() &&
791      SDB->JTCases.empty() &&
792      SDB->BitTestCases.empty()) {
793    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
794      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
795      assert(PHI->isPHI() &&
796             "This is not a machine PHI node that we are updating!");
797      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
798        continue;
799      PHI->addOperand(
800        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
801      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
802    }
803    return;
804  }
805
806  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
807    // Lower header first, if it wasn't already lowered
808    if (!SDB->BitTestCases[i].Emitted) {
809      // Set the current basic block to the mbb we wish to insert the code into
810      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
811      FuncInfo->InsertPt = FuncInfo->MBB->end();
812      // Emit the code
813      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
814      CurDAG->setRoot(SDB->getRoot());
815      SDB->clear();
816      CodeGenAndEmitDAG();
817    }
818
819    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
820      // Set the current basic block to the mbb we wish to insert the code into
821      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
822      FuncInfo->InsertPt = FuncInfo->MBB->end();
823      // Emit the code
824      if (j+1 != ej)
825        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
826                              SDB->BitTestCases[i].Reg,
827                              SDB->BitTestCases[i].Cases[j],
828                              FuncInfo->MBB);
829      else
830        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
831                              SDB->BitTestCases[i].Reg,
832                              SDB->BitTestCases[i].Cases[j],
833                              FuncInfo->MBB);
834
835
836      CurDAG->setRoot(SDB->getRoot());
837      SDB->clear();
838      CodeGenAndEmitDAG();
839    }
840
841    // Update PHI Nodes
842    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
843         pi != pe; ++pi) {
844      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
845      MachineBasicBlock *PHIBB = PHI->getParent();
846      assert(PHI->isPHI() &&
847             "This is not a machine PHI node that we are updating!");
848      // This is "default" BB. We have two jumps to it. From "header" BB and
849      // from last "case" BB.
850      if (PHIBB == SDB->BitTestCases[i].Default) {
851        PHI->addOperand(MachineOperand::
852                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
853                                  false));
854        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
855        PHI->addOperand(MachineOperand::
856                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
857                                  false));
858        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
859                                                  back().ThisBB));
860      }
861      // One of "cases" BB.
862      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
863           j != ej; ++j) {
864        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
865        if (cBB->isSuccessor(PHIBB)) {
866          PHI->addOperand(MachineOperand::
867                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
868                                    false));
869          PHI->addOperand(MachineOperand::CreateMBB(cBB));
870        }
871      }
872    }
873  }
874  SDB->BitTestCases.clear();
875
876  // If the JumpTable record is filled in, then we need to emit a jump table.
877  // Updating the PHI nodes is tricky in this case, since we need to determine
878  // whether the PHI is a successor of the range check MBB or the jump table MBB
879  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
880    // Lower header first, if it wasn't already lowered
881    if (!SDB->JTCases[i].first.Emitted) {
882      // Set the current basic block to the mbb we wish to insert the code into
883      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
884      FuncInfo->InsertPt = FuncInfo->MBB->end();
885      // Emit the code
886      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
887                                FuncInfo->MBB);
888      CurDAG->setRoot(SDB->getRoot());
889      SDB->clear();
890      CodeGenAndEmitDAG();
891    }
892
893    // Set the current basic block to the mbb we wish to insert the code into
894    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
895    FuncInfo->InsertPt = FuncInfo->MBB->end();
896    // Emit the code
897    SDB->visitJumpTable(SDB->JTCases[i].second);
898    CurDAG->setRoot(SDB->getRoot());
899    SDB->clear();
900    CodeGenAndEmitDAG();
901
902    // Update PHI Nodes
903    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
904         pi != pe; ++pi) {
905      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
906      MachineBasicBlock *PHIBB = PHI->getParent();
907      assert(PHI->isPHI() &&
908             "This is not a machine PHI node that we are updating!");
909      // "default" BB. We can go there only from header BB.
910      if (PHIBB == SDB->JTCases[i].second.Default) {
911        PHI->addOperand
912          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
913                                     false));
914        PHI->addOperand
915          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
916      }
917      // JT BB. Just iterate over successors here
918      if (FuncInfo->MBB->isSuccessor(PHIBB)) {
919        PHI->addOperand
920          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
921                                     false));
922        PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
923      }
924    }
925  }
926  SDB->JTCases.clear();
927
928  // If the switch block involved a branch to one of the actual successors, we
929  // need to update PHI nodes in that block.
930  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
931    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
932    assert(PHI->isPHI() &&
933           "This is not a machine PHI node that we are updating!");
934    if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
935      PHI->addOperand(
936        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
937      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
938    }
939  }
940
941  // If we generated any switch lowering information, build and codegen any
942  // additional DAGs necessary.
943  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
944    // Set the current basic block to the mbb we wish to insert the code into
945    MachineBasicBlock *ThisBB = FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
946    FuncInfo->InsertPt = FuncInfo->MBB->end();
947
948    // Determine the unique successors.
949    SmallVector<MachineBasicBlock *, 2> Succs;
950    Succs.push_back(SDB->SwitchCases[i].TrueBB);
951    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
952      Succs.push_back(SDB->SwitchCases[i].FalseBB);
953
954    // Emit the code. Note that this could result in ThisBB being split, so
955    // we need to check for updates.
956    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
957    CurDAG->setRoot(SDB->getRoot());
958    SDB->clear();
959    CodeGenAndEmitDAG();
960    ThisBB = FuncInfo->MBB;
961
962    // Handle any PHI nodes in successors of this chunk, as if we were coming
963    // from the original BB before switch expansion.  Note that PHI nodes can
964    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
965    // handle them the right number of times.
966    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
967      FuncInfo->MBB = Succs[i];
968      FuncInfo->InsertPt = FuncInfo->MBB->end();
969      // FuncInfo->MBB may have been removed from the CFG if a branch was
970      // constant folded.
971      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
972        for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
973             Phi != FuncInfo->MBB->end() && Phi->isPHI();
974             ++Phi) {
975          // This value for this PHI node is recorded in PHINodesToUpdate.
976          for (unsigned pn = 0; ; ++pn) {
977            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
978                   "Didn't find PHI entry!");
979            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
980              Phi->addOperand(MachineOperand::
981                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
982                                        false));
983              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
984              break;
985            }
986          }
987        }
988      }
989    }
990  }
991  SDB->SwitchCases.clear();
992}
993
994
995/// Create the scheduler. If a specific scheduler was specified
996/// via the SchedulerRegistry, use it, otherwise select the
997/// one preferred by the target.
998///
999ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1000  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1001
1002  if (!Ctor) {
1003    Ctor = ISHeuristic;
1004    RegisterScheduler::setDefault(Ctor);
1005  }
1006
1007  return Ctor(this, OptLevel);
1008}
1009
1010ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1011  return new ScheduleHazardRecognizer();
1012}
1013
1014//===----------------------------------------------------------------------===//
1015// Helper functions used by the generated instruction selector.
1016//===----------------------------------------------------------------------===//
1017// Calls to these methods are generated by tblgen.
1018
1019/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1020/// the dag combiner simplified the 255, we still want to match.  RHS is the
1021/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1022/// specified in the .td file (e.g. 255).
1023bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1024                                    int64_t DesiredMaskS) const {
1025  const APInt &ActualMask = RHS->getAPIntValue();
1026  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1027
1028  // If the actual mask exactly matches, success!
1029  if (ActualMask == DesiredMask)
1030    return true;
1031
1032  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1033  if (ActualMask.intersects(~DesiredMask))
1034    return false;
1035
1036  // Otherwise, the DAG Combiner may have proven that the value coming in is
1037  // either already zero or is not demanded.  Check for known zero input bits.
1038  APInt NeededMask = DesiredMask & ~ActualMask;
1039  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1040    return true;
1041
1042  // TODO: check to see if missing bits are just not demanded.
1043
1044  // Otherwise, this pattern doesn't match.
1045  return false;
1046}
1047
1048/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1049/// the dag combiner simplified the 255, we still want to match.  RHS is the
1050/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1051/// specified in the .td file (e.g. 255).
1052bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1053                                   int64_t DesiredMaskS) const {
1054  const APInt &ActualMask = RHS->getAPIntValue();
1055  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1056
1057  // If the actual mask exactly matches, success!
1058  if (ActualMask == DesiredMask)
1059    return true;
1060
1061  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1062  if (ActualMask.intersects(~DesiredMask))
1063    return false;
1064
1065  // Otherwise, the DAG Combiner may have proven that the value coming in is
1066  // either already zero or is not demanded.  Check for known zero input bits.
1067  APInt NeededMask = DesiredMask & ~ActualMask;
1068
1069  APInt KnownZero, KnownOne;
1070  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1071
1072  // If all the missing bits in the or are already known to be set, match!
1073  if ((NeededMask & KnownOne) == NeededMask)
1074    return true;
1075
1076  // TODO: check to see if missing bits are just not demanded.
1077
1078  // Otherwise, this pattern doesn't match.
1079  return false;
1080}
1081
1082
1083/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1084/// by tblgen.  Others should not call it.
1085void SelectionDAGISel::
1086SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1087  std::vector<SDValue> InOps;
1088  std::swap(InOps, Ops);
1089
1090  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1091  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1092  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1093  Ops.push_back(InOps[InlineAsm::Op_IsAlignStack]);  // 3
1094
1095  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1096  if (InOps[e-1].getValueType() == MVT::Flag)
1097    --e;  // Don't process a flag operand if it is here.
1098
1099  while (i != e) {
1100    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1101    if (!InlineAsm::isMemKind(Flags)) {
1102      // Just skip over this operand, copying the operands verbatim.
1103      Ops.insert(Ops.end(), InOps.begin()+i,
1104                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1105      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1106    } else {
1107      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1108             "Memory operand with multiple values?");
1109      // Otherwise, this is a memory operand.  Ask the target to select it.
1110      std::vector<SDValue> SelOps;
1111      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1112        report_fatal_error("Could not match memory address.  Inline asm"
1113                           " failure!");
1114
1115      // Add this to the output node.
1116      unsigned NewFlags =
1117        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1118      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1119      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1120      i += 2;
1121    }
1122  }
1123
1124  // Add the flag input back if present.
1125  if (e != InOps.size())
1126    Ops.push_back(InOps.back());
1127}
1128
1129/// findFlagUse - Return use of EVT::Flag value produced by the specified
1130/// SDNode.
1131///
1132static SDNode *findFlagUse(SDNode *N) {
1133  unsigned FlagResNo = N->getNumValues()-1;
1134  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1135    SDUse &Use = I.getUse();
1136    if (Use.getResNo() == FlagResNo)
1137      return Use.getUser();
1138  }
1139  return NULL;
1140}
1141
1142/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1143/// This function recursively traverses up the operand chain, ignoring
1144/// certain nodes.
1145static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1146                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1147                          bool IgnoreChains) {
1148  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1149  // greater than all of its (recursive) operands.  If we scan to a point where
1150  // 'use' is smaller than the node we're scanning for, then we know we will
1151  // never find it.
1152  //
1153  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1154  // happen because we scan down to newly selected nodes in the case of flag
1155  // uses.
1156  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1157    return false;
1158
1159  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1160  // won't fail if we scan it again.
1161  if (!Visited.insert(Use))
1162    return false;
1163
1164  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1165    // Ignore chain uses, they are validated by HandleMergeInputChains.
1166    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1167      continue;
1168
1169    SDNode *N = Use->getOperand(i).getNode();
1170    if (N == Def) {
1171      if (Use == ImmedUse || Use == Root)
1172        continue;  // We are not looking for immediate use.
1173      assert(N != Root);
1174      return true;
1175    }
1176
1177    // Traverse up the operand chain.
1178    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1179      return true;
1180  }
1181  return false;
1182}
1183
1184/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1185/// operand node N of U during instruction selection that starts at Root.
1186bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1187                                          SDNode *Root) const {
1188  if (OptLevel == CodeGenOpt::None) return false;
1189  return N.hasOneUse();
1190}
1191
1192/// IsLegalToFold - Returns true if the specific operand node N of
1193/// U can be folded during instruction selection that starts at Root.
1194bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1195                                     CodeGenOpt::Level OptLevel,
1196                                     bool IgnoreChains) {
1197  if (OptLevel == CodeGenOpt::None) return false;
1198
1199  // If Root use can somehow reach N through a path that that doesn't contain
1200  // U then folding N would create a cycle. e.g. In the following
1201  // diagram, Root can reach N through X. If N is folded into into Root, then
1202  // X is both a predecessor and a successor of U.
1203  //
1204  //          [N*]           //
1205  //         ^   ^           //
1206  //        /     \          //
1207  //      [U*]    [X]?       //
1208  //        ^     ^          //
1209  //         \   /           //
1210  //          \ /            //
1211  //         [Root*]         //
1212  //
1213  // * indicates nodes to be folded together.
1214  //
1215  // If Root produces a flag, then it gets (even more) interesting. Since it
1216  // will be "glued" together with its flag use in the scheduler, we need to
1217  // check if it might reach N.
1218  //
1219  //          [N*]           //
1220  //         ^   ^           //
1221  //        /     \          //
1222  //      [U*]    [X]?       //
1223  //        ^       ^        //
1224  //         \       \       //
1225  //          \      |       //
1226  //         [Root*] |       //
1227  //          ^      |       //
1228  //          f      |       //
1229  //          |      /       //
1230  //         [Y]    /        //
1231  //           ^   /         //
1232  //           f  /          //
1233  //           | /           //
1234  //          [FU]           //
1235  //
1236  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1237  // (call it Fold), then X is a predecessor of FU and a successor of
1238  // Fold. But since Fold and FU are flagged together, this will create
1239  // a cycle in the scheduling graph.
1240
1241  // If the node has flags, walk down the graph to the "lowest" node in the
1242  // flagged set.
1243  EVT VT = Root->getValueType(Root->getNumValues()-1);
1244  while (VT == MVT::Flag) {
1245    SDNode *FU = findFlagUse(Root);
1246    if (FU == NULL)
1247      break;
1248    Root = FU;
1249    VT = Root->getValueType(Root->getNumValues()-1);
1250
1251    // If our query node has a flag result with a use, we've walked up it.  If
1252    // the user (which has already been selected) has a chain or indirectly uses
1253    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1254    // this, we cannot ignore chains in this predicate.
1255    IgnoreChains = false;
1256  }
1257
1258
1259  SmallPtrSet<SDNode*, 16> Visited;
1260  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1261}
1262
1263SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1264  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1265  SelectInlineAsmMemoryOperands(Ops);
1266
1267  std::vector<EVT> VTs;
1268  VTs.push_back(MVT::Other);
1269  VTs.push_back(MVT::Flag);
1270  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1271                                VTs, &Ops[0], Ops.size());
1272  New->setNodeId(-1);
1273  return New.getNode();
1274}
1275
1276SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1277  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1278}
1279
1280/// GetVBR - decode a vbr encoding whose top bit is set.
1281ALWAYS_INLINE static uint64_t
1282GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1283  assert(Val >= 128 && "Not a VBR");
1284  Val &= 127;  // Remove first vbr bit.
1285
1286  unsigned Shift = 7;
1287  uint64_t NextBits;
1288  do {
1289    NextBits = MatcherTable[Idx++];
1290    Val |= (NextBits&127) << Shift;
1291    Shift += 7;
1292  } while (NextBits & 128);
1293
1294  return Val;
1295}
1296
1297
1298/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1299/// interior flag and chain results to use the new flag and chain results.
1300void SelectionDAGISel::
1301UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1302                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1303                     SDValue InputFlag,
1304                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1305                     bool isMorphNodeTo) {
1306  SmallVector<SDNode*, 4> NowDeadNodes;
1307
1308  ISelUpdater ISU(ISelPosition);
1309
1310  // Now that all the normal results are replaced, we replace the chain and
1311  // flag results if present.
1312  if (!ChainNodesMatched.empty()) {
1313    assert(InputChain.getNode() != 0 &&
1314           "Matched input chains but didn't produce a chain");
1315    // Loop over all of the nodes we matched that produced a chain result.
1316    // Replace all the chain results with the final chain we ended up with.
1317    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1318      SDNode *ChainNode = ChainNodesMatched[i];
1319
1320      // If this node was already deleted, don't look at it.
1321      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1322        continue;
1323
1324      // Don't replace the results of the root node if we're doing a
1325      // MorphNodeTo.
1326      if (ChainNode == NodeToMatch && isMorphNodeTo)
1327        continue;
1328
1329      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1330      if (ChainVal.getValueType() == MVT::Flag)
1331        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1332      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1333      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1334
1335      // If the node became dead and we haven't already seen it, delete it.
1336      if (ChainNode->use_empty() &&
1337          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1338        NowDeadNodes.push_back(ChainNode);
1339    }
1340  }
1341
1342  // If the result produces a flag, update any flag results in the matched
1343  // pattern with the flag result.
1344  if (InputFlag.getNode() != 0) {
1345    // Handle any interior nodes explicitly marked.
1346    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1347      SDNode *FRN = FlagResultNodesMatched[i];
1348
1349      // If this node was already deleted, don't look at it.
1350      if (FRN->getOpcode() == ISD::DELETED_NODE)
1351        continue;
1352
1353      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1354             "Doesn't have a flag result");
1355      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1356                                        InputFlag, &ISU);
1357
1358      // If the node became dead and we haven't already seen it, delete it.
1359      if (FRN->use_empty() &&
1360          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1361        NowDeadNodes.push_back(FRN);
1362    }
1363  }
1364
1365  if (!NowDeadNodes.empty())
1366    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1367
1368  DEBUG(errs() << "ISEL: Match complete!\n");
1369}
1370
1371enum ChainResult {
1372  CR_Simple,
1373  CR_InducesCycle,
1374  CR_LeadsToInteriorNode
1375};
1376
1377/// WalkChainUsers - Walk down the users of the specified chained node that is
1378/// part of the pattern we're matching, looking at all of the users we find.
1379/// This determines whether something is an interior node, whether we have a
1380/// non-pattern node in between two pattern nodes (which prevent folding because
1381/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1382/// between pattern nodes (in which case the TF becomes part of the pattern).
1383///
1384/// The walk we do here is guaranteed to be small because we quickly get down to
1385/// already selected nodes "below" us.
1386static ChainResult
1387WalkChainUsers(SDNode *ChainedNode,
1388               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1389               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1390  ChainResult Result = CR_Simple;
1391
1392  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1393         E = ChainedNode->use_end(); UI != E; ++UI) {
1394    // Make sure the use is of the chain, not some other value we produce.
1395    if (UI.getUse().getValueType() != MVT::Other) continue;
1396
1397    SDNode *User = *UI;
1398
1399    // If we see an already-selected machine node, then we've gone beyond the
1400    // pattern that we're selecting down into the already selected chunk of the
1401    // DAG.
1402    if (User->isMachineOpcode() ||
1403        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1404      continue;
1405
1406    if (User->getOpcode() == ISD::CopyToReg ||
1407        User->getOpcode() == ISD::CopyFromReg ||
1408        User->getOpcode() == ISD::INLINEASM ||
1409        User->getOpcode() == ISD::EH_LABEL) {
1410      // If their node ID got reset to -1 then they've already been selected.
1411      // Treat them like a MachineOpcode.
1412      if (User->getNodeId() == -1)
1413        continue;
1414    }
1415
1416    // If we have a TokenFactor, we handle it specially.
1417    if (User->getOpcode() != ISD::TokenFactor) {
1418      // If the node isn't a token factor and isn't part of our pattern, then it
1419      // must be a random chained node in between two nodes we're selecting.
1420      // This happens when we have something like:
1421      //   x = load ptr
1422      //   call
1423      //   y = x+4
1424      //   store y -> ptr
1425      // Because we structurally match the load/store as a read/modify/write,
1426      // but the call is chained between them.  We cannot fold in this case
1427      // because it would induce a cycle in the graph.
1428      if (!std::count(ChainedNodesInPattern.begin(),
1429                      ChainedNodesInPattern.end(), User))
1430        return CR_InducesCycle;
1431
1432      // Otherwise we found a node that is part of our pattern.  For example in:
1433      //   x = load ptr
1434      //   y = x+4
1435      //   store y -> ptr
1436      // This would happen when we're scanning down from the load and see the
1437      // store as a user.  Record that there is a use of ChainedNode that is
1438      // part of the pattern and keep scanning uses.
1439      Result = CR_LeadsToInteriorNode;
1440      InteriorChainedNodes.push_back(User);
1441      continue;
1442    }
1443
1444    // If we found a TokenFactor, there are two cases to consider: first if the
1445    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1446    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1447    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1448    //     [Load chain]
1449    //         ^
1450    //         |
1451    //       [Load]
1452    //       ^    ^
1453    //       |    \                    DAG's like cheese
1454    //      /       \                       do you?
1455    //     /         |
1456    // [TokenFactor] [Op]
1457    //     ^          ^
1458    //     |          |
1459    //      \        /
1460    //       \      /
1461    //       [Store]
1462    //
1463    // In this case, the TokenFactor becomes part of our match and we rewrite it
1464    // as a new TokenFactor.
1465    //
1466    // To distinguish these two cases, do a recursive walk down the uses.
1467    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1468    case CR_Simple:
1469      // If the uses of the TokenFactor are just already-selected nodes, ignore
1470      // it, it is "below" our pattern.
1471      continue;
1472    case CR_InducesCycle:
1473      // If the uses of the TokenFactor lead to nodes that are not part of our
1474      // pattern that are not selected, folding would turn this into a cycle,
1475      // bail out now.
1476      return CR_InducesCycle;
1477    case CR_LeadsToInteriorNode:
1478      break;  // Otherwise, keep processing.
1479    }
1480
1481    // Okay, we know we're in the interesting interior case.  The TokenFactor
1482    // is now going to be considered part of the pattern so that we rewrite its
1483    // uses (it may have uses that are not part of the pattern) with the
1484    // ultimate chain result of the generated code.  We will also add its chain
1485    // inputs as inputs to the ultimate TokenFactor we create.
1486    Result = CR_LeadsToInteriorNode;
1487    ChainedNodesInPattern.push_back(User);
1488    InteriorChainedNodes.push_back(User);
1489    continue;
1490  }
1491
1492  return Result;
1493}
1494
1495/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1496/// operation for when the pattern matched at least one node with a chains.  The
1497/// input vector contains a list of all of the chained nodes that we match.  We
1498/// must determine if this is a valid thing to cover (i.e. matching it won't
1499/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1500/// be used as the input node chain for the generated nodes.
1501static SDValue
1502HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1503                       SelectionDAG *CurDAG) {
1504  // Walk all of the chained nodes we've matched, recursively scanning down the
1505  // users of the chain result. This adds any TokenFactor nodes that are caught
1506  // in between chained nodes to the chained and interior nodes list.
1507  SmallVector<SDNode*, 3> InteriorChainedNodes;
1508  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1509    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1510                       InteriorChainedNodes) == CR_InducesCycle)
1511      return SDValue(); // Would induce a cycle.
1512  }
1513
1514  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1515  // that we are interested in.  Form our input TokenFactor node.
1516  SmallVector<SDValue, 3> InputChains;
1517  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1518    // Add the input chain of this node to the InputChains list (which will be
1519    // the operands of the generated TokenFactor) if it's not an interior node.
1520    SDNode *N = ChainNodesMatched[i];
1521    if (N->getOpcode() != ISD::TokenFactor) {
1522      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1523        continue;
1524
1525      // Otherwise, add the input chain.
1526      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1527      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1528      InputChains.push_back(InChain);
1529      continue;
1530    }
1531
1532    // If we have a token factor, we want to add all inputs of the token factor
1533    // that are not part of the pattern we're matching.
1534    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1535      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1536                      N->getOperand(op).getNode()))
1537        InputChains.push_back(N->getOperand(op));
1538    }
1539  }
1540
1541  SDValue Res;
1542  if (InputChains.size() == 1)
1543    return InputChains[0];
1544  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1545                         MVT::Other, &InputChains[0], InputChains.size());
1546}
1547
1548/// MorphNode - Handle morphing a node in place for the selector.
1549SDNode *SelectionDAGISel::
1550MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1551          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1552  // It is possible we're using MorphNodeTo to replace a node with no
1553  // normal results with one that has a normal result (or we could be
1554  // adding a chain) and the input could have flags and chains as well.
1555  // In this case we need to shift the operands down.
1556  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1557  // than the old isel though.
1558  int OldFlagResultNo = -1, OldChainResultNo = -1;
1559
1560  unsigned NTMNumResults = Node->getNumValues();
1561  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1562    OldFlagResultNo = NTMNumResults-1;
1563    if (NTMNumResults != 1 &&
1564        Node->getValueType(NTMNumResults-2) == MVT::Other)
1565      OldChainResultNo = NTMNumResults-2;
1566  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1567    OldChainResultNo = NTMNumResults-1;
1568
1569  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1570  // that this deletes operands of the old node that become dead.
1571  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1572
1573  // MorphNodeTo can operate in two ways: if an existing node with the
1574  // specified operands exists, it can just return it.  Otherwise, it
1575  // updates the node in place to have the requested operands.
1576  if (Res == Node) {
1577    // If we updated the node in place, reset the node ID.  To the isel,
1578    // this should be just like a newly allocated machine node.
1579    Res->setNodeId(-1);
1580  }
1581
1582  unsigned ResNumResults = Res->getNumValues();
1583  // Move the flag if needed.
1584  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1585      (unsigned)OldFlagResultNo != ResNumResults-1)
1586    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1587                                      SDValue(Res, ResNumResults-1));
1588
1589  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1590    --ResNumResults;
1591
1592  // Move the chain reference if needed.
1593  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1594      (unsigned)OldChainResultNo != ResNumResults-1)
1595    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1596                                      SDValue(Res, ResNumResults-1));
1597
1598  // Otherwise, no replacement happened because the node already exists. Replace
1599  // Uses of the old node with the new one.
1600  if (Res != Node)
1601    CurDAG->ReplaceAllUsesWith(Node, Res);
1602
1603  return Res;
1604}
1605
1606/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1607ALWAYS_INLINE static bool
1608CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1609          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1610  // Accept if it is exactly the same as a previously recorded node.
1611  unsigned RecNo = MatcherTable[MatcherIndex++];
1612  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1613  return N == RecordedNodes[RecNo];
1614}
1615
1616/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1617ALWAYS_INLINE static bool
1618CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1619                      SelectionDAGISel &SDISel) {
1620  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1621}
1622
1623/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1624ALWAYS_INLINE static bool
1625CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1626                   SelectionDAGISel &SDISel, SDNode *N) {
1627  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1628}
1629
1630ALWAYS_INLINE static bool
1631CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1632            SDNode *N) {
1633  uint16_t Opc = MatcherTable[MatcherIndex++];
1634  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1635  return N->getOpcode() == Opc;
1636}
1637
1638ALWAYS_INLINE static bool
1639CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1640          SDValue N, const TargetLowering &TLI) {
1641  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1642  if (N.getValueType() == VT) return true;
1643
1644  // Handle the case when VT is iPTR.
1645  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1646}
1647
1648ALWAYS_INLINE static bool
1649CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1650               SDValue N, const TargetLowering &TLI,
1651               unsigned ChildNo) {
1652  if (ChildNo >= N.getNumOperands())
1653    return false;  // Match fails if out of range child #.
1654  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1655}
1656
1657
1658ALWAYS_INLINE static bool
1659CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1660              SDValue N) {
1661  return cast<CondCodeSDNode>(N)->get() ==
1662      (ISD::CondCode)MatcherTable[MatcherIndex++];
1663}
1664
1665ALWAYS_INLINE static bool
1666CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1667               SDValue N, const TargetLowering &TLI) {
1668  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1669  if (cast<VTSDNode>(N)->getVT() == VT)
1670    return true;
1671
1672  // Handle the case when VT is iPTR.
1673  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1674}
1675
1676ALWAYS_INLINE static bool
1677CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1678             SDValue N) {
1679  int64_t Val = MatcherTable[MatcherIndex++];
1680  if (Val & 128)
1681    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1682
1683  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1684  return C != 0 && C->getSExtValue() == Val;
1685}
1686
1687ALWAYS_INLINE static bool
1688CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1689            SDValue N, SelectionDAGISel &SDISel) {
1690  int64_t Val = MatcherTable[MatcherIndex++];
1691  if (Val & 128)
1692    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1693
1694  if (N->getOpcode() != ISD::AND) return false;
1695
1696  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1697  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1698}
1699
1700ALWAYS_INLINE static bool
1701CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1702           SDValue N, SelectionDAGISel &SDISel) {
1703  int64_t Val = MatcherTable[MatcherIndex++];
1704  if (Val & 128)
1705    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1706
1707  if (N->getOpcode() != ISD::OR) return false;
1708
1709  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1710  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1711}
1712
1713/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1714/// scope, evaluate the current node.  If the current predicate is known to
1715/// fail, set Result=true and return anything.  If the current predicate is
1716/// known to pass, set Result=false and return the MatcherIndex to continue
1717/// with.  If the current predicate is unknown, set Result=false and return the
1718/// MatcherIndex to continue with.
1719static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1720                                       unsigned Index, SDValue N,
1721                                       bool &Result, SelectionDAGISel &SDISel,
1722                                       SmallVectorImpl<SDValue> &RecordedNodes){
1723  switch (Table[Index++]) {
1724  default:
1725    Result = false;
1726    return Index-1;  // Could not evaluate this predicate.
1727  case SelectionDAGISel::OPC_CheckSame:
1728    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1729    return Index;
1730  case SelectionDAGISel::OPC_CheckPatternPredicate:
1731    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1732    return Index;
1733  case SelectionDAGISel::OPC_CheckPredicate:
1734    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1735    return Index;
1736  case SelectionDAGISel::OPC_CheckOpcode:
1737    Result = !::CheckOpcode(Table, Index, N.getNode());
1738    return Index;
1739  case SelectionDAGISel::OPC_CheckType:
1740    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1741    return Index;
1742  case SelectionDAGISel::OPC_CheckChild0Type:
1743  case SelectionDAGISel::OPC_CheckChild1Type:
1744  case SelectionDAGISel::OPC_CheckChild2Type:
1745  case SelectionDAGISel::OPC_CheckChild3Type:
1746  case SelectionDAGISel::OPC_CheckChild4Type:
1747  case SelectionDAGISel::OPC_CheckChild5Type:
1748  case SelectionDAGISel::OPC_CheckChild6Type:
1749  case SelectionDAGISel::OPC_CheckChild7Type:
1750    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1751                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1752    return Index;
1753  case SelectionDAGISel::OPC_CheckCondCode:
1754    Result = !::CheckCondCode(Table, Index, N);
1755    return Index;
1756  case SelectionDAGISel::OPC_CheckValueType:
1757    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1758    return Index;
1759  case SelectionDAGISel::OPC_CheckInteger:
1760    Result = !::CheckInteger(Table, Index, N);
1761    return Index;
1762  case SelectionDAGISel::OPC_CheckAndImm:
1763    Result = !::CheckAndImm(Table, Index, N, SDISel);
1764    return Index;
1765  case SelectionDAGISel::OPC_CheckOrImm:
1766    Result = !::CheckOrImm(Table, Index, N, SDISel);
1767    return Index;
1768  }
1769}
1770
1771namespace {
1772
1773struct MatchScope {
1774  /// FailIndex - If this match fails, this is the index to continue with.
1775  unsigned FailIndex;
1776
1777  /// NodeStack - The node stack when the scope was formed.
1778  SmallVector<SDValue, 4> NodeStack;
1779
1780  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1781  unsigned NumRecordedNodes;
1782
1783  /// NumMatchedMemRefs - The number of matched memref entries.
1784  unsigned NumMatchedMemRefs;
1785
1786  /// InputChain/InputFlag - The current chain/flag
1787  SDValue InputChain, InputFlag;
1788
1789  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1790  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1791};
1792
1793}
1794
1795SDNode *SelectionDAGISel::
1796SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1797                 unsigned TableSize) {
1798  // FIXME: Should these even be selected?  Handle these cases in the caller?
1799  switch (NodeToMatch->getOpcode()) {
1800  default:
1801    break;
1802  case ISD::EntryToken:       // These nodes remain the same.
1803  case ISD::BasicBlock:
1804  case ISD::Register:
1805  //case ISD::VALUETYPE:
1806  //case ISD::CONDCODE:
1807  case ISD::HANDLENODE:
1808  case ISD::MDNODE_SDNODE:
1809  case ISD::TargetConstant:
1810  case ISD::TargetConstantFP:
1811  case ISD::TargetConstantPool:
1812  case ISD::TargetFrameIndex:
1813  case ISD::TargetExternalSymbol:
1814  case ISD::TargetBlockAddress:
1815  case ISD::TargetJumpTable:
1816  case ISD::TargetGlobalTLSAddress:
1817  case ISD::TargetGlobalAddress:
1818  case ISD::TokenFactor:
1819  case ISD::CopyFromReg:
1820  case ISD::CopyToReg:
1821  case ISD::EH_LABEL:
1822    NodeToMatch->setNodeId(-1); // Mark selected.
1823    return 0;
1824  case ISD::AssertSext:
1825  case ISD::AssertZext:
1826    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1827                                      NodeToMatch->getOperand(0));
1828    return 0;
1829  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1830  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1831  }
1832
1833  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1834
1835  // Set up the node stack with NodeToMatch as the only node on the stack.
1836  SmallVector<SDValue, 8> NodeStack;
1837  SDValue N = SDValue(NodeToMatch, 0);
1838  NodeStack.push_back(N);
1839
1840  // MatchScopes - Scopes used when matching, if a match failure happens, this
1841  // indicates where to continue checking.
1842  SmallVector<MatchScope, 8> MatchScopes;
1843
1844  // RecordedNodes - This is the set of nodes that have been recorded by the
1845  // state machine.
1846  SmallVector<SDValue, 8> RecordedNodes;
1847
1848  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1849  // pattern.
1850  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1851
1852  // These are the current input chain and flag for use when generating nodes.
1853  // Various Emit operations change these.  For example, emitting a copytoreg
1854  // uses and updates these.
1855  SDValue InputChain, InputFlag;
1856
1857  // ChainNodesMatched - If a pattern matches nodes that have input/output
1858  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1859  // which ones they are.  The result is captured into this list so that we can
1860  // update the chain results when the pattern is complete.
1861  SmallVector<SDNode*, 3> ChainNodesMatched;
1862  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1863
1864  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1865        NodeToMatch->dump(CurDAG);
1866        errs() << '\n');
1867
1868  // Determine where to start the interpreter.  Normally we start at opcode #0,
1869  // but if the state machine starts with an OPC_SwitchOpcode, then we
1870  // accelerate the first lookup (which is guaranteed to be hot) with the
1871  // OpcodeOffset table.
1872  unsigned MatcherIndex = 0;
1873
1874  if (!OpcodeOffset.empty()) {
1875    // Already computed the OpcodeOffset table, just index into it.
1876    if (N.getOpcode() < OpcodeOffset.size())
1877      MatcherIndex = OpcodeOffset[N.getOpcode()];
1878    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1879
1880  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1881    // Otherwise, the table isn't computed, but the state machine does start
1882    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1883    // is the first time we're selecting an instruction.
1884    unsigned Idx = 1;
1885    while (1) {
1886      // Get the size of this case.
1887      unsigned CaseSize = MatcherTable[Idx++];
1888      if (CaseSize & 128)
1889        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1890      if (CaseSize == 0) break;
1891
1892      // Get the opcode, add the index to the table.
1893      uint16_t Opc = MatcherTable[Idx++];
1894      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
1895      if (Opc >= OpcodeOffset.size())
1896        OpcodeOffset.resize((Opc+1)*2);
1897      OpcodeOffset[Opc] = Idx;
1898      Idx += CaseSize;
1899    }
1900
1901    // Okay, do the lookup for the first opcode.
1902    if (N.getOpcode() < OpcodeOffset.size())
1903      MatcherIndex = OpcodeOffset[N.getOpcode()];
1904  }
1905
1906  while (1) {
1907    assert(MatcherIndex < TableSize && "Invalid index");
1908#ifndef NDEBUG
1909    unsigned CurrentOpcodeIndex = MatcherIndex;
1910#endif
1911    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
1912    switch (Opcode) {
1913    case OPC_Scope: {
1914      // Okay, the semantics of this operation are that we should push a scope
1915      // then evaluate the first child.  However, pushing a scope only to have
1916      // the first check fail (which then pops it) is inefficient.  If we can
1917      // determine immediately that the first check (or first several) will
1918      // immediately fail, don't even bother pushing a scope for them.
1919      unsigned FailIndex;
1920
1921      while (1) {
1922        unsigned NumToSkip = MatcherTable[MatcherIndex++];
1923        if (NumToSkip & 128)
1924          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
1925        // Found the end of the scope with no match.
1926        if (NumToSkip == 0) {
1927          FailIndex = 0;
1928          break;
1929        }
1930
1931        FailIndex = MatcherIndex+NumToSkip;
1932
1933        unsigned MatcherIndexOfPredicate = MatcherIndex;
1934        (void)MatcherIndexOfPredicate; // silence warning.
1935
1936        // If we can't evaluate this predicate without pushing a scope (e.g. if
1937        // it is a 'MoveParent') or if the predicate succeeds on this node, we
1938        // push the scope and evaluate the full predicate chain.
1939        bool Result;
1940        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
1941                                              Result, *this, RecordedNodes);
1942        if (!Result)
1943          break;
1944
1945        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
1946                     << "index " << MatcherIndexOfPredicate
1947                     << ", continuing at " << FailIndex << "\n");
1948        ++NumDAGIselRetries;
1949
1950        // Otherwise, we know that this case of the Scope is guaranteed to fail,
1951        // move to the next case.
1952        MatcherIndex = FailIndex;
1953      }
1954
1955      // If the whole scope failed to match, bail.
1956      if (FailIndex == 0) break;
1957
1958      // Push a MatchScope which indicates where to go if the first child fails
1959      // to match.
1960      MatchScope NewEntry;
1961      NewEntry.FailIndex = FailIndex;
1962      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
1963      NewEntry.NumRecordedNodes = RecordedNodes.size();
1964      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
1965      NewEntry.InputChain = InputChain;
1966      NewEntry.InputFlag = InputFlag;
1967      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
1968      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
1969      MatchScopes.push_back(NewEntry);
1970      continue;
1971    }
1972    case OPC_RecordNode:
1973      // Remember this node, it may end up being an operand in the pattern.
1974      RecordedNodes.push_back(N);
1975      continue;
1976
1977    case OPC_RecordChild0: case OPC_RecordChild1:
1978    case OPC_RecordChild2: case OPC_RecordChild3:
1979    case OPC_RecordChild4: case OPC_RecordChild5:
1980    case OPC_RecordChild6: case OPC_RecordChild7: {
1981      unsigned ChildNo = Opcode-OPC_RecordChild0;
1982      if (ChildNo >= N.getNumOperands())
1983        break;  // Match fails if out of range child #.
1984
1985      RecordedNodes.push_back(N->getOperand(ChildNo));
1986      continue;
1987    }
1988    case OPC_RecordMemRef:
1989      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
1990      continue;
1991
1992    case OPC_CaptureFlagInput:
1993      // If the current node has an input flag, capture it in InputFlag.
1994      if (N->getNumOperands() != 0 &&
1995          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
1996        InputFlag = N->getOperand(N->getNumOperands()-1);
1997      continue;
1998
1999    case OPC_MoveChild: {
2000      unsigned ChildNo = MatcherTable[MatcherIndex++];
2001      if (ChildNo >= N.getNumOperands())
2002        break;  // Match fails if out of range child #.
2003      N = N.getOperand(ChildNo);
2004      NodeStack.push_back(N);
2005      continue;
2006    }
2007
2008    case OPC_MoveParent:
2009      // Pop the current node off the NodeStack.
2010      NodeStack.pop_back();
2011      assert(!NodeStack.empty() && "Node stack imbalance!");
2012      N = NodeStack.back();
2013      continue;
2014
2015    case OPC_CheckSame:
2016      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2017      continue;
2018    case OPC_CheckPatternPredicate:
2019      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2020      continue;
2021    case OPC_CheckPredicate:
2022      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2023                                N.getNode()))
2024        break;
2025      continue;
2026    case OPC_CheckComplexPat: {
2027      unsigned CPNum = MatcherTable[MatcherIndex++];
2028      unsigned RecNo = MatcherTable[MatcherIndex++];
2029      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2030      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2031                               RecordedNodes))
2032        break;
2033      continue;
2034    }
2035    case OPC_CheckOpcode:
2036      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2037      continue;
2038
2039    case OPC_CheckType:
2040      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2041      continue;
2042
2043    case OPC_SwitchOpcode: {
2044      unsigned CurNodeOpcode = N.getOpcode();
2045      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2046      unsigned CaseSize;
2047      while (1) {
2048        // Get the size of this case.
2049        CaseSize = MatcherTable[MatcherIndex++];
2050        if (CaseSize & 128)
2051          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2052        if (CaseSize == 0) break;
2053
2054        uint16_t Opc = MatcherTable[MatcherIndex++];
2055        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2056
2057        // If the opcode matches, then we will execute this case.
2058        if (CurNodeOpcode == Opc)
2059          break;
2060
2061        // Otherwise, skip over this case.
2062        MatcherIndex += CaseSize;
2063      }
2064
2065      // If no cases matched, bail out.
2066      if (CaseSize == 0) break;
2067
2068      // Otherwise, execute the case we found.
2069      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2070                   << " to " << MatcherIndex << "\n");
2071      continue;
2072    }
2073
2074    case OPC_SwitchType: {
2075      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2076      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2077      unsigned CaseSize;
2078      while (1) {
2079        // Get the size of this case.
2080        CaseSize = MatcherTable[MatcherIndex++];
2081        if (CaseSize & 128)
2082          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2083        if (CaseSize == 0) break;
2084
2085        MVT::SimpleValueType CaseVT =
2086          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2087        if (CaseVT == MVT::iPTR)
2088          CaseVT = TLI.getPointerTy().SimpleTy;
2089
2090        // If the VT matches, then we will execute this case.
2091        if (CurNodeVT == CaseVT)
2092          break;
2093
2094        // Otherwise, skip over this case.
2095        MatcherIndex += CaseSize;
2096      }
2097
2098      // If no cases matched, bail out.
2099      if (CaseSize == 0) break;
2100
2101      // Otherwise, execute the case we found.
2102      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2103                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2104      continue;
2105    }
2106    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2107    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2108    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2109    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2110      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2111                            Opcode-OPC_CheckChild0Type))
2112        break;
2113      continue;
2114    case OPC_CheckCondCode:
2115      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2116      continue;
2117    case OPC_CheckValueType:
2118      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2119      continue;
2120    case OPC_CheckInteger:
2121      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2122      continue;
2123    case OPC_CheckAndImm:
2124      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2125      continue;
2126    case OPC_CheckOrImm:
2127      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2128      continue;
2129
2130    case OPC_CheckFoldableChainNode: {
2131      assert(NodeStack.size() != 1 && "No parent node");
2132      // Verify that all intermediate nodes between the root and this one have
2133      // a single use.
2134      bool HasMultipleUses = false;
2135      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2136        if (!NodeStack[i].hasOneUse()) {
2137          HasMultipleUses = true;
2138          break;
2139        }
2140      if (HasMultipleUses) break;
2141
2142      // Check to see that the target thinks this is profitable to fold and that
2143      // we can fold it without inducing cycles in the graph.
2144      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2145                              NodeToMatch) ||
2146          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2147                         NodeToMatch, OptLevel,
2148                         true/*We validate our own chains*/))
2149        break;
2150
2151      continue;
2152    }
2153    case OPC_EmitInteger: {
2154      MVT::SimpleValueType VT =
2155        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2156      int64_t Val = MatcherTable[MatcherIndex++];
2157      if (Val & 128)
2158        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2159      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2160      continue;
2161    }
2162    case OPC_EmitRegister: {
2163      MVT::SimpleValueType VT =
2164        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2165      unsigned RegNo = MatcherTable[MatcherIndex++];
2166      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2167      continue;
2168    }
2169
2170    case OPC_EmitConvertToTarget:  {
2171      // Convert from IMM/FPIMM to target version.
2172      unsigned RecNo = MatcherTable[MatcherIndex++];
2173      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2174      SDValue Imm = RecordedNodes[RecNo];
2175
2176      if (Imm->getOpcode() == ISD::Constant) {
2177        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2178        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2179      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2180        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2181        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2182      }
2183
2184      RecordedNodes.push_back(Imm);
2185      continue;
2186    }
2187
2188    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2189    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2190      // These are space-optimized forms of OPC_EmitMergeInputChains.
2191      assert(InputChain.getNode() == 0 &&
2192             "EmitMergeInputChains should be the first chain producing node");
2193      assert(ChainNodesMatched.empty() &&
2194             "Should only have one EmitMergeInputChains per match");
2195
2196      // Read all of the chained nodes.
2197      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2198      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2199      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2200
2201      // FIXME: What if other value results of the node have uses not matched
2202      // by this pattern?
2203      if (ChainNodesMatched.back() != NodeToMatch &&
2204          !RecordedNodes[RecNo].hasOneUse()) {
2205        ChainNodesMatched.clear();
2206        break;
2207      }
2208
2209      // Merge the input chains if they are not intra-pattern references.
2210      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2211
2212      if (InputChain.getNode() == 0)
2213        break;  // Failed to merge.
2214      continue;
2215    }
2216
2217    case OPC_EmitMergeInputChains: {
2218      assert(InputChain.getNode() == 0 &&
2219             "EmitMergeInputChains should be the first chain producing node");
2220      // This node gets a list of nodes we matched in the input that have
2221      // chains.  We want to token factor all of the input chains to these nodes
2222      // together.  However, if any of the input chains is actually one of the
2223      // nodes matched in this pattern, then we have an intra-match reference.
2224      // Ignore these because the newly token factored chain should not refer to
2225      // the old nodes.
2226      unsigned NumChains = MatcherTable[MatcherIndex++];
2227      assert(NumChains != 0 && "Can't TF zero chains");
2228
2229      assert(ChainNodesMatched.empty() &&
2230             "Should only have one EmitMergeInputChains per match");
2231
2232      // Read all of the chained nodes.
2233      for (unsigned i = 0; i != NumChains; ++i) {
2234        unsigned RecNo = MatcherTable[MatcherIndex++];
2235        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2236        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2237
2238        // FIXME: What if other value results of the node have uses not matched
2239        // by this pattern?
2240        if (ChainNodesMatched.back() != NodeToMatch &&
2241            !RecordedNodes[RecNo].hasOneUse()) {
2242          ChainNodesMatched.clear();
2243          break;
2244        }
2245      }
2246
2247      // If the inner loop broke out, the match fails.
2248      if (ChainNodesMatched.empty())
2249        break;
2250
2251      // Merge the input chains if they are not intra-pattern references.
2252      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2253
2254      if (InputChain.getNode() == 0)
2255        break;  // Failed to merge.
2256
2257      continue;
2258    }
2259
2260    case OPC_EmitCopyToReg: {
2261      unsigned RecNo = MatcherTable[MatcherIndex++];
2262      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2263      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2264
2265      if (InputChain.getNode() == 0)
2266        InputChain = CurDAG->getEntryNode();
2267
2268      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2269                                        DestPhysReg, RecordedNodes[RecNo],
2270                                        InputFlag);
2271
2272      InputFlag = InputChain.getValue(1);
2273      continue;
2274    }
2275
2276    case OPC_EmitNodeXForm: {
2277      unsigned XFormNo = MatcherTable[MatcherIndex++];
2278      unsigned RecNo = MatcherTable[MatcherIndex++];
2279      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2280      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2281      continue;
2282    }
2283
2284    case OPC_EmitNode:
2285    case OPC_MorphNodeTo: {
2286      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2287      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2288      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2289      // Get the result VT list.
2290      unsigned NumVTs = MatcherTable[MatcherIndex++];
2291      SmallVector<EVT, 4> VTs;
2292      for (unsigned i = 0; i != NumVTs; ++i) {
2293        MVT::SimpleValueType VT =
2294          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2295        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2296        VTs.push_back(VT);
2297      }
2298
2299      if (EmitNodeInfo & OPFL_Chain)
2300        VTs.push_back(MVT::Other);
2301      if (EmitNodeInfo & OPFL_FlagOutput)
2302        VTs.push_back(MVT::Flag);
2303
2304      // This is hot code, so optimize the two most common cases of 1 and 2
2305      // results.
2306      SDVTList VTList;
2307      if (VTs.size() == 1)
2308        VTList = CurDAG->getVTList(VTs[0]);
2309      else if (VTs.size() == 2)
2310        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2311      else
2312        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2313
2314      // Get the operand list.
2315      unsigned NumOps = MatcherTable[MatcherIndex++];
2316      SmallVector<SDValue, 8> Ops;
2317      for (unsigned i = 0; i != NumOps; ++i) {
2318        unsigned RecNo = MatcherTable[MatcherIndex++];
2319        if (RecNo & 128)
2320          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2321
2322        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2323        Ops.push_back(RecordedNodes[RecNo]);
2324      }
2325
2326      // If there are variadic operands to add, handle them now.
2327      if (EmitNodeInfo & OPFL_VariadicInfo) {
2328        // Determine the start index to copy from.
2329        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2330        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2331        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2332               "Invalid variadic node");
2333        // Copy all of the variadic operands, not including a potential flag
2334        // input.
2335        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2336             i != e; ++i) {
2337          SDValue V = NodeToMatch->getOperand(i);
2338          if (V.getValueType() == MVT::Flag) break;
2339          Ops.push_back(V);
2340        }
2341      }
2342
2343      // If this has chain/flag inputs, add them.
2344      if (EmitNodeInfo & OPFL_Chain)
2345        Ops.push_back(InputChain);
2346      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2347        Ops.push_back(InputFlag);
2348
2349      // Create the node.
2350      SDNode *Res = 0;
2351      if (Opcode != OPC_MorphNodeTo) {
2352        // If this is a normal EmitNode command, just create the new node and
2353        // add the results to the RecordedNodes list.
2354        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2355                                     VTList, Ops.data(), Ops.size());
2356
2357        // Add all the non-flag/non-chain results to the RecordedNodes list.
2358        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2359          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2360          RecordedNodes.push_back(SDValue(Res, i));
2361        }
2362
2363      } else {
2364        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2365                        EmitNodeInfo);
2366      }
2367
2368      // If the node had chain/flag results, update our notion of the current
2369      // chain and flag.
2370      if (EmitNodeInfo & OPFL_FlagOutput) {
2371        InputFlag = SDValue(Res, VTs.size()-1);
2372        if (EmitNodeInfo & OPFL_Chain)
2373          InputChain = SDValue(Res, VTs.size()-2);
2374      } else if (EmitNodeInfo & OPFL_Chain)
2375        InputChain = SDValue(Res, VTs.size()-1);
2376
2377      // If the OPFL_MemRefs flag is set on this node, slap all of the
2378      // accumulated memrefs onto it.
2379      //
2380      // FIXME: This is vastly incorrect for patterns with multiple outputs
2381      // instructions that access memory and for ComplexPatterns that match
2382      // loads.
2383      if (EmitNodeInfo & OPFL_MemRefs) {
2384        MachineSDNode::mmo_iterator MemRefs =
2385          MF->allocateMemRefsArray(MatchedMemRefs.size());
2386        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2387        cast<MachineSDNode>(Res)
2388          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2389      }
2390
2391      DEBUG(errs() << "  "
2392                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2393                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2394
2395      // If this was a MorphNodeTo then we're completely done!
2396      if (Opcode == OPC_MorphNodeTo) {
2397        // Update chain and flag uses.
2398        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2399                             InputFlag, FlagResultNodesMatched, true);
2400        return Res;
2401      }
2402
2403      continue;
2404    }
2405
2406    case OPC_MarkFlagResults: {
2407      unsigned NumNodes = MatcherTable[MatcherIndex++];
2408
2409      // Read and remember all the flag-result nodes.
2410      for (unsigned i = 0; i != NumNodes; ++i) {
2411        unsigned RecNo = MatcherTable[MatcherIndex++];
2412        if (RecNo & 128)
2413          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2414
2415        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2416        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2417      }
2418      continue;
2419    }
2420
2421    case OPC_CompleteMatch: {
2422      // The match has been completed, and any new nodes (if any) have been
2423      // created.  Patch up references to the matched dag to use the newly
2424      // created nodes.
2425      unsigned NumResults = MatcherTable[MatcherIndex++];
2426
2427      for (unsigned i = 0; i != NumResults; ++i) {
2428        unsigned ResSlot = MatcherTable[MatcherIndex++];
2429        if (ResSlot & 128)
2430          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2431
2432        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2433        SDValue Res = RecordedNodes[ResSlot];
2434
2435        assert(i < NodeToMatch->getNumValues() &&
2436               NodeToMatch->getValueType(i) != MVT::Other &&
2437               NodeToMatch->getValueType(i) != MVT::Flag &&
2438               "Invalid number of results to complete!");
2439        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2440                NodeToMatch->getValueType(i) == MVT::iPTR ||
2441                Res.getValueType() == MVT::iPTR ||
2442                NodeToMatch->getValueType(i).getSizeInBits() ==
2443                    Res.getValueType().getSizeInBits()) &&
2444               "invalid replacement");
2445        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2446      }
2447
2448      // If the root node defines a flag, add it to the flag nodes to update
2449      // list.
2450      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2451        FlagResultNodesMatched.push_back(NodeToMatch);
2452
2453      // Update chain and flag uses.
2454      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2455                           InputFlag, FlagResultNodesMatched, false);
2456
2457      assert(NodeToMatch->use_empty() &&
2458             "Didn't replace all uses of the node?");
2459
2460      // FIXME: We just return here, which interacts correctly with SelectRoot
2461      // above.  We should fix this to not return an SDNode* anymore.
2462      return 0;
2463    }
2464    }
2465
2466    // If the code reached this point, then the match failed.  See if there is
2467    // another child to try in the current 'Scope', otherwise pop it until we
2468    // find a case to check.
2469    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2470    ++NumDAGIselRetries;
2471    while (1) {
2472      if (MatchScopes.empty()) {
2473        CannotYetSelect(NodeToMatch);
2474        return 0;
2475      }
2476
2477      // Restore the interpreter state back to the point where the scope was
2478      // formed.
2479      MatchScope &LastScope = MatchScopes.back();
2480      RecordedNodes.resize(LastScope.NumRecordedNodes);
2481      NodeStack.clear();
2482      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2483      N = NodeStack.back();
2484
2485      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2486        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2487      MatcherIndex = LastScope.FailIndex;
2488
2489      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2490
2491      InputChain = LastScope.InputChain;
2492      InputFlag = LastScope.InputFlag;
2493      if (!LastScope.HasChainNodesMatched)
2494        ChainNodesMatched.clear();
2495      if (!LastScope.HasFlagResultNodesMatched)
2496        FlagResultNodesMatched.clear();
2497
2498      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2499      // we have reached the end of this scope, otherwise we have another child
2500      // in the current scope to try.
2501      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2502      if (NumToSkip & 128)
2503        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2504
2505      // If we have another child in this scope to match, update FailIndex and
2506      // try it.
2507      if (NumToSkip != 0) {
2508        LastScope.FailIndex = MatcherIndex+NumToSkip;
2509        break;
2510      }
2511
2512      // End of this scope, pop it and try the next child in the containing
2513      // scope.
2514      MatchScopes.pop_back();
2515    }
2516  }
2517}
2518
2519
2520
2521void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2522  std::string msg;
2523  raw_string_ostream Msg(msg);
2524  Msg << "Cannot yet select: ";
2525
2526  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2527      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2528      N->getOpcode() != ISD::INTRINSIC_VOID) {
2529    N->printrFull(Msg, CurDAG);
2530  } else {
2531    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2532    unsigned iid =
2533      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2534    if (iid < Intrinsic::num_intrinsics)
2535      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2536    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2537      Msg << "target intrinsic %" << TII->getName(iid);
2538    else
2539      Msg << "unknown intrinsic #" << iid;
2540  }
2541  report_fatal_error(Msg.str());
2542}
2543
2544char SelectionDAGISel::ID = 0;
2545