StackProtector.cpp revision 54cf1413aca342753ab846d915c6a55d9c087bc6
1//===-- StackProtector.cpp - Stack Protector Insertion --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass inserts stack protectors into functions which need them. A variable
11// with a random value in it is stored onto the stack before the local variables
12// are allocated. Upon exiting the block, the stored value is checked. If it's
13// changed, then there was some sort of violation and the program aborts.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "stack-protector"
18#include "llvm/CodeGen/Analysis.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/Analysis/Dominators.h"
24#include "llvm/Analysis/ValueTracking.h"
25#include "llvm/IR/Attributes.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/Function.h"
30#include "llvm/IR/GlobalValue.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/IRBuilder.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/Intrinsics.h"
36#include "llvm/IR/Module.h"
37#include "llvm/Pass.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Target/TargetLowering.h"
40#include <cstdlib>
41using namespace llvm;
42
43STATISTIC(NumFunProtected, "Number of functions protected");
44STATISTIC(NumAddrTaken, "Number of local variables that have their address"
45                        " taken.");
46
47static cl::opt<bool>
48EnableSelectionDAGSP("enable-selectiondag-sp", cl::init(true),
49                     cl::Hidden);
50
51namespace {
52  class StackProtector : public FunctionPass {
53    const TargetMachine *TM;
54
55    /// TLI - Keep a pointer of a TargetLowering to consult for determining
56    /// target type sizes.
57    const TargetLoweringBase *TLI;
58    const Triple Trip;
59
60    Function *F;
61    Module *M;
62
63    DominatorTree *DT;
64
65    /// \brief The minimum size of buffers that will receive stack smashing
66    /// protection when -fstack-protection is used.
67    unsigned SSPBufferSize;
68
69    /// VisitedPHIs - The set of PHI nodes visited when determining
70    /// if a variable's reference has been taken.  This set
71    /// is maintained to ensure we don't visit the same PHI node multiple
72    /// times.
73    SmallPtrSet<const PHINode*, 16> VisitedPHIs;
74
75    /// InsertStackProtectors - Insert code into the prologue and epilogue of
76    /// the function.
77    ///
78    ///  - The prologue code loads and stores the stack guard onto the stack.
79    ///  - The epilogue checks the value stored in the prologue against the
80    ///    original value. It calls __stack_chk_fail if they differ.
81    bool InsertStackProtectors();
82
83    /// CreateFailBB - Create a basic block to jump to when the stack protector
84    /// check fails.
85    BasicBlock *CreateFailBB();
86
87    /// ContainsProtectableArray - Check whether the type either is an array or
88    /// contains an array of sufficient size so that we need stack protectors
89    /// for it.
90    bool ContainsProtectableArray(Type *Ty, bool Strong = false,
91                                  bool InStruct = false) const;
92
93    /// \brief Check whether a stack allocation has its address taken.
94    bool HasAddressTaken(const Instruction *AI);
95
96    /// RequiresStackProtector - Check whether or not this function needs a
97    /// stack protector based upon the stack protector level.
98    bool RequiresStackProtector();
99  public:
100    static char ID;             // Pass identification, replacement for typeid.
101    StackProtector() : FunctionPass(ID), TM(0), TLI(0), SSPBufferSize(0) {
102      initializeStackProtectorPass(*PassRegistry::getPassRegistry());
103    }
104    StackProtector(const TargetMachine *TM)
105      : FunctionPass(ID), TM(TM), TLI(0), Trip(TM->getTargetTriple()),
106        SSPBufferSize(8) {
107      initializeStackProtectorPass(*PassRegistry::getPassRegistry());
108    }
109
110    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
111      AU.addPreserved<DominatorTree>();
112    }
113
114    virtual bool runOnFunction(Function &Fn);
115  };
116} // end anonymous namespace
117
118char StackProtector::ID = 0;
119INITIALIZE_PASS(StackProtector, "stack-protector",
120                "Insert stack protectors", false, false)
121
122FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) {
123  return new StackProtector(TM);
124}
125
126bool StackProtector::runOnFunction(Function &Fn) {
127  F = &Fn;
128  M = F->getParent();
129  DT = getAnalysisIfAvailable<DominatorTree>();
130  TLI = TM->getTargetLowering();
131
132  if (!RequiresStackProtector()) return false;
133
134  Attribute Attr =
135    Fn.getAttributes().getAttribute(AttributeSet::FunctionIndex,
136                                    "stack-protector-buffer-size");
137  if (Attr.isStringAttribute())
138    Attr.getValueAsString().getAsInteger(10, SSPBufferSize);
139
140  ++NumFunProtected;
141  return InsertStackProtectors();
142}
143
144/// ContainsProtectableArray - Check whether the type either is an array or
145/// contains a char array of sufficient size so that we need stack protectors
146/// for it.
147bool StackProtector::ContainsProtectableArray(Type *Ty, bool Strong,
148                                              bool InStruct) const {
149  if (!Ty) return false;
150  if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
151    // In strong mode any array, regardless of type and size, triggers a
152    // protector
153    if (Strong)
154      return true;
155    if (!AT->getElementType()->isIntegerTy(8)) {
156      // If we're on a non-Darwin platform or we're inside of a structure, don't
157      // add stack protectors unless the array is a character array.
158      if (InStruct || !Trip.isOSDarwin())
159          return false;
160    }
161
162    // If an array has more than SSPBufferSize bytes of allocated space, then we
163    // emit stack protectors.
164    if (SSPBufferSize <= TLI->getDataLayout()->getTypeAllocSize(AT))
165      return true;
166  }
167
168  const StructType *ST = dyn_cast<StructType>(Ty);
169  if (!ST) return false;
170
171  for (StructType::element_iterator I = ST->element_begin(),
172         E = ST->element_end(); I != E; ++I)
173    if (ContainsProtectableArray(*I, Strong, true))
174      return true;
175
176  return false;
177}
178
179bool StackProtector::HasAddressTaken(const Instruction *AI) {
180  for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
181        UI != UE; ++UI) {
182    const User *U = *UI;
183    if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
184      if (AI == SI->getValueOperand())
185        return true;
186    } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) {
187      if (AI == SI->getOperand(0))
188        return true;
189    } else if (isa<CallInst>(U)) {
190      return true;
191    } else if (isa<InvokeInst>(U)) {
192      return true;
193    } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) {
194      if (HasAddressTaken(SI))
195        return true;
196    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
197      // Keep track of what PHI nodes we have already visited to ensure
198      // they are only visited once.
199      if (VisitedPHIs.insert(PN))
200        if (HasAddressTaken(PN))
201          return true;
202    } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
203      if (HasAddressTaken(GEP))
204        return true;
205    } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
206      if (HasAddressTaken(BI))
207        return true;
208    }
209  }
210  return false;
211}
212
213/// \brief Check whether or not this function needs a stack protector based
214/// upon the stack protector level.
215///
216/// We use two heuristics: a standard (ssp) and strong (sspstrong).
217/// The standard heuristic which will add a guard variable to functions that
218/// call alloca with a either a variable size or a size >= SSPBufferSize,
219/// functions with character buffers larger than SSPBufferSize, and functions
220/// with aggregates containing character buffers larger than SSPBufferSize. The
221/// strong heuristic will add a guard variables to functions that call alloca
222/// regardless of size, functions with any buffer regardless of type and size,
223/// functions with aggregates that contain any buffer regardless of type and
224/// size, and functions that contain stack-based variables that have had their
225/// address taken.
226bool StackProtector::RequiresStackProtector() {
227  bool Strong = false;
228  if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
229                                      Attribute::StackProtectReq))
230    return true;
231  else if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
232                                           Attribute::StackProtectStrong))
233    Strong = true;
234  else if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
235                                            Attribute::StackProtect))
236    return false;
237
238  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
239    BasicBlock *BB = I;
240
241    for (BasicBlock::iterator
242           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
243      if (AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
244        if (AI->isArrayAllocation()) {
245          // SSP-Strong: Enable protectors for any call to alloca, regardless
246          // of size.
247          if (Strong)
248            return true;
249
250          if (const ConstantInt *CI =
251               dyn_cast<ConstantInt>(AI->getArraySize())) {
252            if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize)
253              // A call to alloca with size >= SSPBufferSize requires
254              // stack protectors.
255              return true;
256          } else {
257            // A call to alloca with a variable size requires protectors.
258            return true;
259          }
260        }
261
262        if (ContainsProtectableArray(AI->getAllocatedType(), Strong))
263          return true;
264
265        if (Strong && HasAddressTaken(AI)) {
266          ++NumAddrTaken;
267          return true;
268        }
269      }
270    }
271  }
272
273  return false;
274}
275
276static bool InstructionWillNotHaveChain(const Instruction *I) {
277  return !I->mayHaveSideEffects() && !I->mayReadFromMemory() &&
278    isSafeToSpeculativelyExecute(I);
279}
280
281/// Identify if RI has a previous instruction in the "Tail Position" and return
282/// it. Otherwise return 0.
283///
284/// This is based off of the code in llvm::isInTailCallPosition. The difference
285/// is that it inverts the first part of llvm::isInTailCallPosition since
286/// isInTailCallPosition is checking if a call is in a tail call position, and
287/// we are searching for an unknown tail call that might be in the tail call
288/// position. Once we find the call though, the code uses the same refactored
289/// code, returnTypeIsEligibleForTailCall.
290static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI,
291                                       const TargetLoweringBase *TLI) {
292  // Establish a reasonable upper bound on the maximum amount of instructions we
293  // will look through to find a tail call.
294  unsigned SearchCounter = 0;
295  const unsigned MaxSearch = 4;
296  bool NoInterposingChain = true;
297
298  for (BasicBlock::reverse_iterator I = llvm::next(BB->rbegin()), E = BB->rend();
299       I != E && SearchCounter < MaxSearch; ++I) {
300    Instruction *Inst = &*I;
301
302    // Skip over debug intrinsics and do not allow them to affect our MaxSearch
303    // counter.
304    if (isa<DbgInfoIntrinsic>(Inst))
305      continue;
306
307    // If we find a call and the following conditions are satisifed, then we
308    // have found a tail call that satisfies at least the target independent
309    // requirements of a tail call:
310    //
311    // 1. The call site has the tail marker.
312    //
313    // 2. The call site either will not cause the creation of a chain or if a
314    // chain is necessary there are no instructions in between the callsite and
315    // the call which would create an interposing chain.
316    //
317    // 3. The return type of the function does not impede tail call
318    // optimization.
319    if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
320      if (CI->isTailCall() &&
321          (InstructionWillNotHaveChain(CI) || NoInterposingChain) &&
322          returnTypeIsEligibleForTailCall(BB->getParent(), CI, RI, *TLI))
323        return CI;
324    }
325
326    // If we did not find a call see if we have an instruction that may create
327    // an interposing chain.
328    NoInterposingChain = NoInterposingChain && InstructionWillNotHaveChain(Inst);
329
330    // Increment max search.
331    SearchCounter++;
332  }
333
334  return 0;
335}
336
337/// Insert code into the entry block that stores the __stack_chk_guard
338/// variable onto the stack:
339///
340///   entry:
341///     StackGuardSlot = alloca i8*
342///     StackGuard = load __stack_chk_guard
343///     call void @llvm.stackprotect.create(StackGuard, StackGuardSlot)
344///
345/// Returns true if the platform/triple supports the stackprotectorcreate pseudo
346/// node.
347static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
348                           const TargetLoweringBase *TLI, const Triple &Trip,
349                           AllocaInst *&AI, Value *&StackGuardVar) {
350  bool SupportsSelectionDAGSP = false;
351  PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
352  unsigned AddressSpace, Offset;
353  if (TLI->getStackCookieLocation(AddressSpace, Offset)) {
354    Constant *OffsetVal =
355      ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset);
356
357    StackGuardVar = ConstantExpr::getIntToPtr(OffsetVal,
358                                              PointerType::get(PtrTy,
359                                                               AddressSpace));
360  } else if (Trip.getOS() == llvm::Triple::OpenBSD) {
361    StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy);
362    cast<GlobalValue>(StackGuardVar)
363      ->setVisibility(GlobalValue::HiddenVisibility);
364  } else {
365    SupportsSelectionDAGSP = true;
366    StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy);
367  }
368
369  IRBuilder<> B(&F->getEntryBlock().front());
370  AI = B.CreateAlloca(PtrTy, 0, "StackGuardSlot");
371  LoadInst *LI = B.CreateLoad(StackGuardVar, "StackGuard");
372  B.CreateCall2(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), LI,
373                AI);
374
375  return SupportsSelectionDAGSP;
376}
377
378/// InsertStackProtectors - Insert code into the prologue and epilogue of the
379/// function.
380///
381///  - The prologue code loads and stores the stack guard onto the stack.
382///  - The epilogue checks the value stored in the prologue against the original
383///    value. It calls __stack_chk_fail if they differ.
384bool StackProtector::InsertStackProtectors() {
385  bool HasPrologue = false;
386  bool SupportsSelectionDAGSP =
387    EnableSelectionDAGSP && !TM->Options.EnableFastISel;
388  AllocaInst *AI = 0;           // Place on stack that stores the stack guard.
389  Value *StackGuardVar = 0;     // The stack guard variable.
390
391  for (Function::iterator I = F->begin(), E = F->end(); I != E; ) {
392    BasicBlock *BB = I++;
393    ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
394    if (!RI)
395      continue;
396
397    if (!HasPrologue) {
398      HasPrologue = true;
399      SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, Trip, AI,
400                                               StackGuardVar);
401    }
402
403    if (SupportsSelectionDAGSP) {
404      // Since we have a potential tail call, insert the special stack check
405      // intrinsic.
406      Instruction *InsertionPt = 0;
407      if (CallInst *CI = FindPotentialTailCall(BB, RI, TLI)) {
408        InsertionPt = CI;
409      } else {
410        InsertionPt = RI;
411        // At this point we know that BB has a return statement so it *DOES*
412        // have a terminator.
413        assert(InsertionPt != 0 && "BB must have a terminator instruction at "
414               "this point.");
415      }
416
417      Function *Intrinsic =
418        Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck);
419      CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt);
420
421    } else {
422      // If we do not support SelectionDAG based tail calls, generate IR level
423      // tail calls.
424      //
425      // For each block with a return instruction, convert this:
426      //
427      //   return:
428      //     ...
429      //     ret ...
430      //
431      // into this:
432      //
433      //   return:
434      //     ...
435      //     %1 = load __stack_chk_guard
436      //     %2 = load StackGuardSlot
437      //     %3 = cmp i1 %1, %2
438      //     br i1 %3, label %SP_return, label %CallStackCheckFailBlk
439      //
440      //   SP_return:
441      //     ret ...
442      //
443      //   CallStackCheckFailBlk:
444      //     call void @__stack_chk_fail()
445      //     unreachable
446
447      // Create the FailBB. We duplicate the BB every time since the MI tail
448      // merge pass will merge together all of the various BB into one including
449      // fail BB generated by the stack protector pseudo instruction.
450      BasicBlock *FailBB = CreateFailBB();
451
452      // Split the basic block before the return instruction.
453      BasicBlock *NewBB = BB->splitBasicBlock(RI, "SP_return");
454
455      // Update the dominator tree if we need to.
456      if (DT && DT->isReachableFromEntry(BB)) {
457        DT->addNewBlock(NewBB, BB);
458        DT->addNewBlock(FailBB, BB);
459      }
460
461      // Remove default branch instruction to the new BB.
462      BB->getTerminator()->eraseFromParent();
463
464      // Move the newly created basic block to the point right after the old
465      // basic block so that it's in the "fall through" position.
466      NewBB->moveAfter(BB);
467
468      // Generate the stack protector instructions in the old basic block.
469      IRBuilder<> B(BB);
470      LoadInst *LI1 = B.CreateLoad(StackGuardVar);
471      LoadInst *LI2 = B.CreateLoad(AI);
472      Value *Cmp = B.CreateICmpEQ(LI1, LI2);
473      B.CreateCondBr(Cmp, NewBB, FailBB);
474    }
475  }
476
477  // Return if we didn't modify any basic blocks. I.e., there are no return
478  // statements in the function.
479  if (!HasPrologue)
480    return false;
481
482  return true;
483}
484
485/// CreateFailBB - Create a basic block to jump to when the stack protector
486/// check fails.
487BasicBlock *StackProtector::CreateFailBB() {
488  LLVMContext &Context = F->getContext();
489  BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
490  IRBuilder<> B(FailBB);
491  if (Trip.getOS() == llvm::Triple::OpenBSD) {
492    Constant *StackChkFail = M->getOrInsertFunction(
493        "__stack_smash_handler", Type::getVoidTy(Context),
494        Type::getInt8PtrTy(Context), NULL);
495
496    B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
497  } else {
498    Constant *StackChkFail = M->getOrInsertFunction(
499        "__stack_chk_fail", Type::getVoidTy(Context), NULL);
500    B.CreateCall(StackChkFail);
501  }
502  B.CreateUnreachable();
503  return FailBB;
504}
505