StackProtector.cpp revision 62406fdc6f199e4e7df60830be45de4da97b34c7
1//===-- StackProtector.cpp - Stack Protector Insertion --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass inserts stack protectors into functions which need them. A variable
11// with a random value in it is stored onto the stack before the local variables
12// are allocated. Upon exiting the block, the stored value is checked. If it's
13// changed, then there was some sort of violation and the program aborts.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "stack-protector"
18#include "llvm/CodeGen/StackProtector.h"
19#include "llvm/CodeGen/Analysis.h"
20#include "llvm/CodeGen/Passes.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/Dominators.h"
24#include "llvm/Analysis/ValueTracking.h"
25#include "llvm/IR/Attributes.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/Function.h"
30#include "llvm/IR/GlobalValue.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/IRBuilder.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/Intrinsics.h"
36#include "llvm/IR/Module.h"
37#include "llvm/Support/CommandLine.h"
38#include <cstdlib>
39using namespace llvm;
40
41STATISTIC(NumFunProtected, "Number of functions protected");
42STATISTIC(NumAddrTaken, "Number of local variables that have their address"
43                        " taken.");
44
45static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
46                                          cl::init(true), cl::Hidden);
47
48char StackProtector::ID = 0;
49INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors",
50                false, true)
51
52FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) {
53  return new StackProtector(TM);
54}
55
56StackProtector::SSPLayoutKind
57StackProtector::getSSPLayout(const AllocaInst *AI) const {
58  return AI ? Layout.lookup(AI) : SSPLK_None;
59}
60
61bool StackProtector::runOnFunction(Function &Fn) {
62  F = &Fn;
63  M = F->getParent();
64  DT = getAnalysisIfAvailable<DominatorTree>();
65  TLI = TM->getTargetLowering();
66
67  if (!RequiresStackProtector())
68    return false;
69
70  Attribute Attr = Fn.getAttributes().getAttribute(
71      AttributeSet::FunctionIndex, "stack-protector-buffer-size");
72  if (Attr.isStringAttribute())
73    Attr.getValueAsString().getAsInteger(10, SSPBufferSize);
74
75  ++NumFunProtected;
76  return InsertStackProtectors();
77}
78
79/// \param [out] IsLarge is set to true if a protectable array is found and
80/// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
81/// multiple arrays, this gets set if any of them is large.
82bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
83                                              bool Strong,
84                                              bool InStruct) const {
85  if (!Ty)
86    return false;
87  if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
88    if (!AT->getElementType()->isIntegerTy(8)) {
89      // If we're on a non-Darwin platform or we're inside of a structure, don't
90      // add stack protectors unless the array is a character array.
91      // However, in strong mode any array, regardless of type and size,
92      // triggers a protector.
93      if (!Strong && (InStruct || !Trip.isOSDarwin()))
94        return false;
95    }
96
97    // If an array has more than SSPBufferSize bytes of allocated space, then we
98    // emit stack protectors.
99    if (SSPBufferSize <= TLI->getDataLayout()->getTypeAllocSize(AT)) {
100      IsLarge = true;
101      return true;
102    }
103
104    if (Strong)
105      // Require a protector for all arrays in strong mode
106      return true;
107  }
108
109  const StructType *ST = dyn_cast<StructType>(Ty);
110  if (!ST)
111    return false;
112
113  bool NeedsProtector = false;
114  for (StructType::element_iterator I = ST->element_begin(),
115                                    E = ST->element_end();
116       I != E; ++I)
117    if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
118      // If the element is a protectable array and is large (>= SSPBufferSize)
119      // then we are done.  If the protectable array is not large, then
120      // keep looking in case a subsequent element is a large array.
121      if (IsLarge)
122        return true;
123      NeedsProtector = true;
124    }
125
126  return NeedsProtector;
127}
128
129bool StackProtector::HasAddressTaken(const Instruction *AI) {
130  for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
131       UI != UE; ++UI) {
132    const User *U = *UI;
133    if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
134      if (AI == SI->getValueOperand())
135        return true;
136    } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) {
137      if (AI == SI->getOperand(0))
138        return true;
139    } else if (isa<CallInst>(U)) {
140      return true;
141    } else if (isa<InvokeInst>(U)) {
142      return true;
143    } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) {
144      if (HasAddressTaken(SI))
145        return true;
146    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
147      // Keep track of what PHI nodes we have already visited to ensure
148      // they are only visited once.
149      if (VisitedPHIs.insert(PN))
150        if (HasAddressTaken(PN))
151          return true;
152    } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
153      if (HasAddressTaken(GEP))
154        return true;
155    } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
156      if (HasAddressTaken(BI))
157        return true;
158    }
159  }
160  return false;
161}
162
163/// \brief Check whether or not this function needs a stack protector based
164/// upon the stack protector level.
165///
166/// We use two heuristics: a standard (ssp) and strong (sspstrong).
167/// The standard heuristic which will add a guard variable to functions that
168/// call alloca with a either a variable size or a size >= SSPBufferSize,
169/// functions with character buffers larger than SSPBufferSize, and functions
170/// with aggregates containing character buffers larger than SSPBufferSize. The
171/// strong heuristic will add a guard variables to functions that call alloca
172/// regardless of size, functions with any buffer regardless of type and size,
173/// functions with aggregates that contain any buffer regardless of type and
174/// size, and functions that contain stack-based variables that have had their
175/// address taken.
176bool StackProtector::RequiresStackProtector() {
177  bool Strong = false;
178  bool NeedsProtector = false;
179  if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
180                                      Attribute::StackProtectReq)) {
181    NeedsProtector = true;
182    Strong = true; // Use the same heuristic as strong to determine SSPLayout
183  } else if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
184                                             Attribute::StackProtectStrong))
185    Strong = true;
186  else if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
187                                            Attribute::StackProtect))
188    return false;
189
190  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
191    BasicBlock *BB = I;
192
193    for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;
194         ++II) {
195      if (AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
196        if (AI->isArrayAllocation()) {
197          // SSP-Strong: Enable protectors for any call to alloca, regardless
198          // of size.
199          if (Strong)
200            return true;
201
202          if (const ConstantInt *CI =
203                  dyn_cast<ConstantInt>(AI->getArraySize())) {
204            if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
205              // A call to alloca with size >= SSPBufferSize requires
206              // stack protectors.
207              Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
208              NeedsProtector = true;
209            } else if (Strong) {
210              // Require protectors for all alloca calls in strong mode.
211              Layout.insert(std::make_pair(AI, SSPLK_SmallArray));
212              NeedsProtector = true;
213            }
214          } else {
215            // A call to alloca with a variable size requires protectors.
216            Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
217            NeedsProtector = true;
218          }
219          continue;
220        }
221
222        bool IsLarge = false;
223        if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
224          Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray
225                                                   : SSPLK_SmallArray));
226          NeedsProtector = true;
227          continue;
228        }
229
230        if (Strong && HasAddressTaken(AI)) {
231          ++NumAddrTaken;
232          Layout.insert(std::make_pair(AI, SSPLK_AddrOf));
233          NeedsProtector = true;
234        }
235      }
236    }
237  }
238
239  return NeedsProtector;
240}
241
242static bool InstructionWillNotHaveChain(const Instruction *I) {
243  return !I->mayHaveSideEffects() && !I->mayReadFromMemory() &&
244         isSafeToSpeculativelyExecute(I);
245}
246
247/// Identify if RI has a previous instruction in the "Tail Position" and return
248/// it. Otherwise return 0.
249///
250/// This is based off of the code in llvm::isInTailCallPosition. The difference
251/// is that it inverts the first part of llvm::isInTailCallPosition since
252/// isInTailCallPosition is checking if a call is in a tail call position, and
253/// we are searching for an unknown tail call that might be in the tail call
254/// position. Once we find the call though, the code uses the same refactored
255/// code, returnTypeIsEligibleForTailCall.
256static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI,
257                                       const TargetLoweringBase *TLI) {
258  // Establish a reasonable upper bound on the maximum amount of instructions we
259  // will look through to find a tail call.
260  unsigned SearchCounter = 0;
261  const unsigned MaxSearch = 4;
262  bool NoInterposingChain = true;
263
264  for (BasicBlock::reverse_iterator I = llvm::next(BB->rbegin()),
265                                    E = BB->rend();
266       I != E && SearchCounter < MaxSearch; ++I) {
267    Instruction *Inst = &*I;
268
269    // Skip over debug intrinsics and do not allow them to affect our MaxSearch
270    // counter.
271    if (isa<DbgInfoIntrinsic>(Inst))
272      continue;
273
274    // If we find a call and the following conditions are satisifed, then we
275    // have found a tail call that satisfies at least the target independent
276    // requirements of a tail call:
277    //
278    // 1. The call site has the tail marker.
279    //
280    // 2. The call site either will not cause the creation of a chain or if a
281    // chain is necessary there are no instructions in between the callsite and
282    // the call which would create an interposing chain.
283    //
284    // 3. The return type of the function does not impede tail call
285    // optimization.
286    if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
287      if (CI->isTailCall() &&
288          (InstructionWillNotHaveChain(CI) || NoInterposingChain) &&
289          returnTypeIsEligibleForTailCall(BB->getParent(), CI, RI, *TLI))
290        return CI;
291    }
292
293    // If we did not find a call see if we have an instruction that may create
294    // an interposing chain.
295    NoInterposingChain =
296        NoInterposingChain && InstructionWillNotHaveChain(Inst);
297
298    // Increment max search.
299    SearchCounter++;
300  }
301
302  return 0;
303}
304
305/// Insert code into the entry block that stores the __stack_chk_guard
306/// variable onto the stack:
307///
308///   entry:
309///     StackGuardSlot = alloca i8*
310///     StackGuard = load __stack_chk_guard
311///     call void @llvm.stackprotect.create(StackGuard, StackGuardSlot)
312///
313/// Returns true if the platform/triple supports the stackprotectorcreate pseudo
314/// node.
315static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
316                           const TargetLoweringBase *TLI, const Triple &Trip,
317                           AllocaInst *&AI, Value *&StackGuardVar) {
318  bool SupportsSelectionDAGSP = false;
319  PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
320  unsigned AddressSpace, Offset;
321  if (TLI->getStackCookieLocation(AddressSpace, Offset)) {
322    Constant *OffsetVal =
323        ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset);
324
325    StackGuardVar = ConstantExpr::getIntToPtr(
326        OffsetVal, PointerType::get(PtrTy, AddressSpace));
327  } else if (Trip.getOS() == llvm::Triple::OpenBSD) {
328    StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy);
329    cast<GlobalValue>(StackGuardVar)
330        ->setVisibility(GlobalValue::HiddenVisibility);
331  } else {
332    SupportsSelectionDAGSP = true;
333    StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy);
334  }
335
336  IRBuilder<> B(&F->getEntryBlock().front());
337  AI = B.CreateAlloca(PtrTy, 0, "StackGuardSlot");
338  LoadInst *LI = B.CreateLoad(StackGuardVar, "StackGuard");
339  B.CreateCall2(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), LI,
340                AI);
341
342  return SupportsSelectionDAGSP;
343}
344
345/// InsertStackProtectors - Insert code into the prologue and epilogue of the
346/// function.
347///
348///  - The prologue code loads and stores the stack guard onto the stack.
349///  - The epilogue checks the value stored in the prologue against the original
350///    value. It calls __stack_chk_fail if they differ.
351bool StackProtector::InsertStackProtectors() {
352  bool HasPrologue = false;
353  bool SupportsSelectionDAGSP =
354      EnableSelectionDAGSP && !TM->Options.EnableFastISel;
355  AllocaInst *AI = 0;       // Place on stack that stores the stack guard.
356  Value *StackGuardVar = 0; // The stack guard variable.
357
358  for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
359    BasicBlock *BB = I++;
360    ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
361    if (!RI)
362      continue;
363
364    if (!HasPrologue) {
365      HasPrologue = true;
366      SupportsSelectionDAGSP &=
367          CreatePrologue(F, M, RI, TLI, Trip, AI, StackGuardVar);
368    }
369
370    if (SupportsSelectionDAGSP) {
371      // Since we have a potential tail call, insert the special stack check
372      // intrinsic.
373      Instruction *InsertionPt = 0;
374      if (CallInst *CI = FindPotentialTailCall(BB, RI, TLI)) {
375        InsertionPt = CI;
376      } else {
377        InsertionPt = RI;
378        // At this point we know that BB has a return statement so it *DOES*
379        // have a terminator.
380        assert(InsertionPt != 0 && "BB must have a terminator instruction at "
381                                   "this point.");
382      }
383
384      Function *Intrinsic =
385          Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck);
386      CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt);
387
388    } else {
389      // If we do not support SelectionDAG based tail calls, generate IR level
390      // tail calls.
391      //
392      // For each block with a return instruction, convert this:
393      //
394      //   return:
395      //     ...
396      //     ret ...
397      //
398      // into this:
399      //
400      //   return:
401      //     ...
402      //     %1 = load __stack_chk_guard
403      //     %2 = load StackGuardSlot
404      //     %3 = cmp i1 %1, %2
405      //     br i1 %3, label %SP_return, label %CallStackCheckFailBlk
406      //
407      //   SP_return:
408      //     ret ...
409      //
410      //   CallStackCheckFailBlk:
411      //     call void @__stack_chk_fail()
412      //     unreachable
413
414      // Create the FailBB. We duplicate the BB every time since the MI tail
415      // merge pass will merge together all of the various BB into one including
416      // fail BB generated by the stack protector pseudo instruction.
417      BasicBlock *FailBB = CreateFailBB();
418
419      // Split the basic block before the return instruction.
420      BasicBlock *NewBB = BB->splitBasicBlock(RI, "SP_return");
421
422      // Update the dominator tree if we need to.
423      if (DT && DT->isReachableFromEntry(BB)) {
424        DT->addNewBlock(NewBB, BB);
425        DT->addNewBlock(FailBB, BB);
426      }
427
428      // Remove default branch instruction to the new BB.
429      BB->getTerminator()->eraseFromParent();
430
431      // Move the newly created basic block to the point right after the old
432      // basic block so that it's in the "fall through" position.
433      NewBB->moveAfter(BB);
434
435      // Generate the stack protector instructions in the old basic block.
436      IRBuilder<> B(BB);
437      LoadInst *LI1 = B.CreateLoad(StackGuardVar);
438      LoadInst *LI2 = B.CreateLoad(AI);
439      Value *Cmp = B.CreateICmpEQ(LI1, LI2);
440      B.CreateCondBr(Cmp, NewBB, FailBB);
441    }
442  }
443
444  // Return if we didn't modify any basic blocks. I.e., there are no return
445  // statements in the function.
446  if (!HasPrologue)
447    return false;
448
449  return true;
450}
451
452/// CreateFailBB - Create a basic block to jump to when the stack protector
453/// check fails.
454BasicBlock *StackProtector::CreateFailBB() {
455  LLVMContext &Context = F->getContext();
456  BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
457  IRBuilder<> B(FailBB);
458  if (Trip.getOS() == llvm::Triple::OpenBSD) {
459    Constant *StackChkFail = M->getOrInsertFunction(
460        "__stack_smash_handler", Type::getVoidTy(Context),
461        Type::getInt8PtrTy(Context), NULL);
462
463    B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
464  } else {
465    Constant *StackChkFail = M->getOrInsertFunction(
466        "__stack_chk_fail", Type::getVoidTy(Context), NULL);
467    B.CreateCall(StackChkFail);
468  }
469  B.CreateUnreachable();
470  return FailBB;
471}
472