TargetSchedule.cpp revision 6a22dba4854a8b3d7427f8493f663c1b52df4477
1//===-- llvm/Target/TargetSchedule.cpp - Sched Machine Model ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a wrapper around MCSchedModel that allows the interface
11// to benefit from information currently only available in TargetInstrInfo.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/TargetSchedule.h"
16#include "llvm/Support/CommandLine.h"
17#include "llvm/Support/raw_ostream.h"
18#include "llvm/Target/TargetInstrInfo.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/Target/TargetSubtargetInfo.h"
22
23using namespace llvm;
24
25static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
26  cl::desc("Use TargetSchedModel for latency lookup"));
27
28static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
29  cl::desc("Use InstrItineraryData for latency lookup"));
30
31bool TargetSchedModel::hasInstrSchedModel() const {
32  return EnableSchedModel && SchedModel.hasInstrSchedModel();
33}
34
35bool TargetSchedModel::hasInstrItineraries() const {
36  return EnableSchedItins && !InstrItins.isEmpty();
37}
38
39static unsigned gcd(unsigned Dividend, unsigned Divisor) {
40  // Dividend and Divisor will be naturally swapped as needed.
41  while(Divisor) {
42    unsigned Rem = Dividend % Divisor;
43    Dividend = Divisor;
44    Divisor = Rem;
45  };
46  return Dividend;
47}
48static unsigned lcm(unsigned A, unsigned B) {
49  unsigned LCM = (uint64_t(A) * B) / gcd(A, B);
50  assert((LCM >= A && LCM >= B) && "LCM overflow");
51  return LCM;
52}
53
54void TargetSchedModel::init(const MCSchedModel &sm,
55                            const TargetSubtargetInfo *sti,
56                            const TargetInstrInfo *tii) {
57  SchedModel = sm;
58  STI = sti;
59  TII = tii;
60  STI->initInstrItins(InstrItins);
61
62  unsigned NumRes = SchedModel.getNumProcResourceKinds();
63  ResourceFactors.resize(NumRes);
64  ResourceLCM = SchedModel.IssueWidth;
65  for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
66    unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
67    if (NumUnits > 0)
68      ResourceLCM = lcm(ResourceLCM, NumUnits);
69  }
70  MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
71  for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
72    unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
73    ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
74  }
75}
76
77unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
78                                          const MCSchedClassDesc *SC) const {
79  if (hasInstrItineraries()) {
80    int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
81    return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, MI);
82  }
83  if (hasInstrSchedModel()) {
84    if (!SC)
85      SC = resolveSchedClass(MI);
86    if (SC->isValid())
87      return SC->NumMicroOps;
88  }
89  return MI->isTransient() ? 0 : 1;
90}
91
92// The machine model may explicitly specify an invalid latency, which
93// effectively means infinite latency. Since users of the TargetSchedule API
94// don't know how to handle this, we convert it to a very large latency that is
95// easy to distinguish when debugging the DAG but won't induce overflow.
96static unsigned convertLatency(int Cycles) {
97  return Cycles >= 0 ? Cycles : 1000;
98}
99
100/// If we can determine the operand latency from the def only, without machine
101/// model or itinerary lookup, do so. Otherwise return -1.
102int TargetSchedModel::getDefLatency(const MachineInstr *DefMI,
103                                    bool FindMin) const {
104
105  // Return a latency based on the itinerary properties and defining instruction
106  // if possible. Some common subtargets don't require per-operand latency,
107  // especially for minimum latencies.
108  if (FindMin) {
109    // If MinLatency is invalid, then use the itinerary for MinLatency. If no
110    // itinerary exists either, then use single cycle latency.
111    if (SchedModel.MinLatency < 0 && !hasInstrItineraries()) {
112      return 1;
113    }
114    return SchedModel.MinLatency;
115  }
116  else if (!hasInstrSchedModel() && !hasInstrItineraries()) {
117    return TII->defaultDefLatency(&SchedModel, DefMI);
118  }
119  // ...operand lookup required
120  return -1;
121}
122
123/// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
124/// evaluation of predicates that depend on instruction operands or flags.
125const MCSchedClassDesc *TargetSchedModel::
126resolveSchedClass(const MachineInstr *MI) const {
127
128  // Get the definition's scheduling class descriptor from this machine model.
129  unsigned SchedClass = MI->getDesc().getSchedClass();
130  const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
131  if (!SCDesc->isValid())
132    return SCDesc;
133
134#ifndef NDEBUG
135  unsigned NIter = 0;
136#endif
137  while (SCDesc->isVariant()) {
138    assert(++NIter < 6 && "Variants are nested deeper than the magic number");
139
140    SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
141    SCDesc = SchedModel.getSchedClassDesc(SchedClass);
142  }
143  return SCDesc;
144}
145
146/// Find the def index of this operand. This index maps to the machine model and
147/// is independent of use operands. Def operands may be reordered with uses or
148/// merged with uses without affecting the def index (e.g. before/after
149/// regalloc). However, an instruction's def operands must never be reordered
150/// with respect to each other.
151static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
152  unsigned DefIdx = 0;
153  for (unsigned i = 0; i != DefOperIdx; ++i) {
154    const MachineOperand &MO = MI->getOperand(i);
155    if (MO.isReg() && MO.isDef())
156      ++DefIdx;
157  }
158  return DefIdx;
159}
160
161/// Find the use index of this operand. This is independent of the instruction's
162/// def operands.
163///
164/// Note that uses are not determined by the operand's isUse property, which
165/// is simply the inverse of isDef. Here we consider any readsReg operand to be
166/// a "use". The machine model allows an operand to be both a Def and Use.
167static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
168  unsigned UseIdx = 0;
169  for (unsigned i = 0; i != UseOperIdx; ++i) {
170    const MachineOperand &MO = MI->getOperand(i);
171    if (MO.isReg() && MO.readsReg())
172      ++UseIdx;
173  }
174  return UseIdx;
175}
176
177// Top-level API for clients that know the operand indices.
178unsigned TargetSchedModel::computeOperandLatency(
179  const MachineInstr *DefMI, unsigned DefOperIdx,
180  const MachineInstr *UseMI, unsigned UseOperIdx,
181  bool FindMin) const {
182
183  int DefLatency = getDefLatency(DefMI, FindMin);
184  if (DefLatency >= 0)
185    return DefLatency;
186
187  if (hasInstrItineraries()) {
188    int OperLatency = 0;
189    if (UseMI) {
190      OperLatency =
191        TII->getOperandLatency(&InstrItins, DefMI, DefOperIdx, UseMI, UseOperIdx);
192    }
193    else {
194      unsigned DefClass = DefMI->getDesc().getSchedClass();
195      OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
196    }
197    if (OperLatency >= 0)
198      return OperLatency;
199
200    // No operand latency was found.
201    unsigned InstrLatency = TII->getInstrLatency(&InstrItins, DefMI);
202
203    // Expected latency is the max of the stage latency and itinerary props.
204    // Rather than directly querying InstrItins stage latency, we call a TII
205    // hook to allow subtargets to specialize latency. This hook is only
206    // applicable to the InstrItins model. InstrSchedModel should model all
207    // special cases without TII hooks.
208    if (!FindMin)
209      InstrLatency = std::max(InstrLatency,
210                              TII->defaultDefLatency(&SchedModel, DefMI));
211    return InstrLatency;
212  }
213  assert(!FindMin && hasInstrSchedModel() &&
214         "Expected a SchedModel for this cpu");
215  const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
216  unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
217  if (DefIdx < SCDesc->NumWriteLatencyEntries) {
218    // Lookup the definition's write latency in SubtargetInfo.
219    const MCWriteLatencyEntry *WLEntry =
220      STI->getWriteLatencyEntry(SCDesc, DefIdx);
221    unsigned WriteID = WLEntry->WriteResourceID;
222    unsigned Latency = convertLatency(WLEntry->Cycles);
223    if (!UseMI)
224      return Latency;
225
226    // Lookup the use's latency adjustment in SubtargetInfo.
227    const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
228    if (UseDesc->NumReadAdvanceEntries == 0)
229      return Latency;
230    unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
231    return Latency - STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
232  }
233  // If DefIdx does not exist in the model (e.g. implicit defs), then return
234  // unit latency (defaultDefLatency may be too conservative).
235#ifndef NDEBUG
236  if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit()
237      && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()) {
238    std::string Err;
239    raw_string_ostream ss(Err);
240    ss << "DefIdx " << DefIdx << " exceeds machine model writes for "
241       << *DefMI;
242    report_fatal_error(ss.str());
243  }
244#endif
245  // FIXME: Automatically giving all implicit defs defaultDefLatency is
246  // undesirable. We should only do it for defs that are known to the MC
247  // desc like flags. Truly implicit defs should get 1 cycle latency.
248  return DefMI->isTransient() ? 0 : TII->defaultDefLatency(&SchedModel, DefMI);
249}
250
251unsigned TargetSchedModel::computeInstrLatency(const MachineInstr *MI) const {
252  // For the itinerary model, fall back to the old subtarget hook.
253  // Allow subtargets to compute Bundle latencies outside the machine model.
254  if (hasInstrItineraries() || MI->isBundle())
255    return TII->getInstrLatency(&InstrItins, MI);
256
257  if (hasInstrSchedModel()) {
258    const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
259    if (SCDesc->isValid()) {
260      unsigned Latency = 0;
261      for (unsigned DefIdx = 0, DefEnd = SCDesc->NumWriteLatencyEntries;
262           DefIdx != DefEnd; ++DefIdx) {
263        // Lookup the definition's write latency in SubtargetInfo.
264        const MCWriteLatencyEntry *WLEntry =
265          STI->getWriteLatencyEntry(SCDesc, DefIdx);
266        Latency = std::max(Latency, convertLatency(WLEntry->Cycles));
267      }
268      return Latency;
269    }
270  }
271  return TII->defaultDefLatency(&SchedModel, MI);
272}
273
274unsigned TargetSchedModel::
275computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
276                     const MachineInstr *DepMI) const {
277  // MinLatency == -1 is for in-order processors that always have unit
278  // MinLatency. MinLatency > 0 is for in-order processors with varying min
279  // latencies, but since this is not a RAW dep, we always use unit latency.
280  if (SchedModel.MinLatency != 0)
281    return 1;
282
283  // MinLatency == 0 indicates an out-of-order processor that can dispatch
284  // WAW dependencies in the same cycle.
285
286  // Treat predication as a data dependency for out-of-order cpus. In-order
287  // cpus do not need to treat predicated writes specially.
288  //
289  // TODO: The following hack exists because predication passes do not
290  // correctly append imp-use operands, and readsReg() strangely returns false
291  // for predicated defs.
292  unsigned Reg = DefMI->getOperand(DefOperIdx).getReg();
293  const MachineFunction &MF = *DefMI->getParent()->getParent();
294  const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
295  if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(DepMI))
296    return computeInstrLatency(DefMI);
297
298  // If we have a per operand scheduling model, check if this def is writing
299  // an unbuffered resource. If so, it treated like an in-order cpu.
300  if (hasInstrSchedModel()) {
301    const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
302    if (SCDesc->isValid()) {
303      for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
304             *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
305        if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->IsBuffered)
306          return 1;
307      }
308    }
309  }
310  return 0;
311}
312