X86ISelDAGToDAG.cpp revision 15d39adbcaf5e9e779e66ebd252502142c683e18
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Instructions.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Type.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/SelectionDAGISel.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/ADT/Statistic.h"
40using namespace llvm;
41
42STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
43
44//===----------------------------------------------------------------------===//
45//                      Pattern Matcher Implementation
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
50  /// SDValue's instead of register numbers for the leaves of the matched
51  /// tree.
52  struct X86ISelAddressMode {
53    enum {
54      RegBase,
55      FrameIndexBase
56    } BaseType;
57
58    // This is really a union, discriminated by BaseType!
59    SDValue Base_Reg;
60    int Base_FrameIndex;
61
62    unsigned Scale;
63    SDValue IndexReg;
64    int32_t Disp;
65    SDValue Segment;
66    const GlobalValue *GV;
67    const Constant *CP;
68    const BlockAddress *BlockAddr;
69    const char *ES;
70    int JT;
71    unsigned Align;    // CP alignment.
72    unsigned char SymbolFlags;  // X86II::MO_*
73
74    X86ISelAddressMode()
75      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
76        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
77        SymbolFlags(X86II::MO_NO_FLAG) {
78    }
79
80    bool hasSymbolicDisplacement() const {
81      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
82    }
83
84    bool hasBaseOrIndexReg() const {
85      return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
86    }
87
88    /// isRIPRelative - Return true if this addressing mode is already RIP
89    /// relative.
90    bool isRIPRelative() const {
91      if (BaseType != RegBase) return false;
92      if (RegisterSDNode *RegNode =
93            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
94        return RegNode->getReg() == X86::RIP;
95      return false;
96    }
97
98    void setBaseReg(SDValue Reg) {
99      BaseType = RegBase;
100      Base_Reg = Reg;
101    }
102
103    void dump() {
104      dbgs() << "X86ISelAddressMode " << this << '\n';
105      dbgs() << "Base_Reg ";
106      if (Base_Reg.getNode() != 0)
107        Base_Reg.getNode()->dump();
108      else
109        dbgs() << "nul";
110      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
111             << " Scale" << Scale << '\n'
112             << "IndexReg ";
113      if (IndexReg.getNode() != 0)
114        IndexReg.getNode()->dump();
115      else
116        dbgs() << "nul";
117      dbgs() << " Disp " << Disp << '\n'
118             << "GV ";
119      if (GV)
120        GV->dump();
121      else
122        dbgs() << "nul";
123      dbgs() << " CP ";
124      if (CP)
125        CP->dump();
126      else
127        dbgs() << "nul";
128      dbgs() << '\n'
129             << "ES ";
130      if (ES)
131        dbgs() << ES;
132      else
133        dbgs() << "nul";
134      dbgs() << " JT" << JT << " Align" << Align << '\n';
135    }
136  };
137}
138
139namespace {
140  //===--------------------------------------------------------------------===//
141  /// ISel - X86 specific code to select X86 machine instructions for
142  /// SelectionDAG operations.
143  ///
144  class X86DAGToDAGISel : public SelectionDAGISel {
145    /// X86Lowering - This object fully describes how to lower LLVM code to an
146    /// X86-specific SelectionDAG.
147    const X86TargetLowering &X86Lowering;
148
149    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
150    /// make the right decision when generating code for different targets.
151    const X86Subtarget *Subtarget;
152
153    /// OptForSize - If true, selector should try to optimize for code size
154    /// instead of performance.
155    bool OptForSize;
156
157  public:
158    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
159      : SelectionDAGISel(tm, OptLevel),
160        X86Lowering(*tm.getTargetLowering()),
161        Subtarget(&tm.getSubtarget<X86Subtarget>()),
162        OptForSize(false) {}
163
164    virtual const char *getPassName() const {
165      return "X86 DAG->DAG Instruction Selection";
166    }
167
168    virtual void EmitFunctionEntryCode();
169
170    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
171
172    virtual void PreprocessISelDAG();
173
174    inline bool immSext8(SDNode *N) const {
175      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
176    }
177
178    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
179    // sign extended field.
180    inline bool i64immSExt32(SDNode *N) const {
181      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
182      return (int64_t)v == (int32_t)v;
183    }
184
185// Include the pieces autogenerated from the target description.
186#include "X86GenDAGISel.inc"
187
188  private:
189    SDNode *Select(SDNode *N);
190    SDNode *SelectGather(SDNode *N, unsigned Opc);
191    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
192    SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
193    SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT);
194
195    bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
196    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
197    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
198    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
199    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
200                                 unsigned Depth);
201    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
202    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
203                    SDValue &Scale, SDValue &Index, SDValue &Disp,
204                    SDValue &Segment);
205    bool SelectLEAAddr(SDValue N, SDValue &Base,
206                       SDValue &Scale, SDValue &Index, SDValue &Disp,
207                       SDValue &Segment);
208    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
209                           SDValue &Scale, SDValue &Index, SDValue &Disp,
210                           SDValue &Segment);
211    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
212                             SDValue &Base, SDValue &Scale,
213                             SDValue &Index, SDValue &Disp,
214                             SDValue &Segment,
215                             SDValue &NodeWithChain);
216
217    bool TryFoldLoad(SDNode *P, SDValue N,
218                     SDValue &Base, SDValue &Scale,
219                     SDValue &Index, SDValue &Disp,
220                     SDValue &Segment);
221
222    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
223    /// inline asm expressions.
224    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
225                                              char ConstraintCode,
226                                              std::vector<SDValue> &OutOps);
227
228    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
229
230    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
231                                   SDValue &Scale, SDValue &Index,
232                                   SDValue &Disp, SDValue &Segment) {
233      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
234        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
235        AM.Base_Reg;
236      Scale = getI8Imm(AM.Scale);
237      Index = AM.IndexReg;
238      // These are 32-bit even in 64-bit mode since RIP relative offset
239      // is 32-bit.
240      if (AM.GV)
241        Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
242                                              MVT::i32, AM.Disp,
243                                              AM.SymbolFlags);
244      else if (AM.CP)
245        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
246                                             AM.Align, AM.Disp, AM.SymbolFlags);
247      else if (AM.ES)
248        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
249      else if (AM.JT != -1)
250        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
251      else if (AM.BlockAddr)
252        Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
253                                       true, AM.SymbolFlags);
254      else
255        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
256
257      if (AM.Segment.getNode())
258        Segment = AM.Segment;
259      else
260        Segment = CurDAG->getRegister(0, MVT::i32);
261    }
262
263    /// getI8Imm - Return a target constant with the specified value, of type
264    /// i8.
265    inline SDValue getI8Imm(unsigned Imm) {
266      return CurDAG->getTargetConstant(Imm, MVT::i8);
267    }
268
269    /// getI32Imm - Return a target constant with the specified value, of type
270    /// i32.
271    inline SDValue getI32Imm(unsigned Imm) {
272      return CurDAG->getTargetConstant(Imm, MVT::i32);
273    }
274
275    /// getGlobalBaseReg - Return an SDNode that returns the value of
276    /// the global base register. Output instructions required to
277    /// initialize the global base register, if necessary.
278    ///
279    SDNode *getGlobalBaseReg();
280
281    /// getTargetMachine - Return a reference to the TargetMachine, casted
282    /// to the target-specific type.
283    const X86TargetMachine &getTargetMachine() {
284      return static_cast<const X86TargetMachine &>(TM);
285    }
286
287    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
288    /// to the target-specific type.
289    const X86InstrInfo *getInstrInfo() {
290      return getTargetMachine().getInstrInfo();
291    }
292  };
293}
294
295
296bool
297X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
298  if (OptLevel == CodeGenOpt::None) return false;
299
300  if (!N.hasOneUse())
301    return false;
302
303  if (N.getOpcode() != ISD::LOAD)
304    return true;
305
306  // If N is a load, do additional profitability checks.
307  if (U == Root) {
308    switch (U->getOpcode()) {
309    default: break;
310    case X86ISD::ADD:
311    case X86ISD::SUB:
312    case X86ISD::AND:
313    case X86ISD::XOR:
314    case X86ISD::OR:
315    case ISD::ADD:
316    case ISD::ADDC:
317    case ISD::ADDE:
318    case ISD::AND:
319    case ISD::OR:
320    case ISD::XOR: {
321      SDValue Op1 = U->getOperand(1);
322
323      // If the other operand is a 8-bit immediate we should fold the immediate
324      // instead. This reduces code size.
325      // e.g.
326      // movl 4(%esp), %eax
327      // addl $4, %eax
328      // vs.
329      // movl $4, %eax
330      // addl 4(%esp), %eax
331      // The former is 2 bytes shorter. In case where the increment is 1, then
332      // the saving can be 4 bytes (by using incl %eax).
333      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
334        if (Imm->getAPIntValue().isSignedIntN(8))
335          return false;
336
337      // If the other operand is a TLS address, we should fold it instead.
338      // This produces
339      // movl    %gs:0, %eax
340      // leal    i@NTPOFF(%eax), %eax
341      // instead of
342      // movl    $i@NTPOFF, %eax
343      // addl    %gs:0, %eax
344      // if the block also has an access to a second TLS address this will save
345      // a load.
346      // FIXME: This is probably also true for non TLS addresses.
347      if (Op1.getOpcode() == X86ISD::Wrapper) {
348        SDValue Val = Op1.getOperand(0);
349        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
350          return false;
351      }
352    }
353    }
354  }
355
356  return true;
357}
358
359/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
360/// load's chain operand and move load below the call's chain operand.
361static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
362                                  SDValue Call, SDValue OrigChain) {
363  SmallVector<SDValue, 8> Ops;
364  SDValue Chain = OrigChain.getOperand(0);
365  if (Chain.getNode() == Load.getNode())
366    Ops.push_back(Load.getOperand(0));
367  else {
368    assert(Chain.getOpcode() == ISD::TokenFactor &&
369           "Unexpected chain operand");
370    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
371      if (Chain.getOperand(i).getNode() == Load.getNode())
372        Ops.push_back(Load.getOperand(0));
373      else
374        Ops.push_back(Chain.getOperand(i));
375    SDValue NewChain =
376      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
377                      MVT::Other, &Ops[0], Ops.size());
378    Ops.clear();
379    Ops.push_back(NewChain);
380  }
381  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
382    Ops.push_back(OrigChain.getOperand(i));
383  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
384  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
385                             Load.getOperand(1), Load.getOperand(2));
386  Ops.clear();
387  Ops.push_back(SDValue(Load.getNode(), 1));
388  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
389    Ops.push_back(Call.getOperand(i));
390  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
391}
392
393/// isCalleeLoad - Return true if call address is a load and it can be
394/// moved below CALLSEQ_START and the chains leading up to the call.
395/// Return the CALLSEQ_START by reference as a second output.
396/// In the case of a tail call, there isn't a callseq node between the call
397/// chain and the load.
398static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
399  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
400    return false;
401  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
402  if (!LD ||
403      LD->isVolatile() ||
404      LD->getAddressingMode() != ISD::UNINDEXED ||
405      LD->getExtensionType() != ISD::NON_EXTLOAD)
406    return false;
407
408  // Now let's find the callseq_start.
409  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
410    if (!Chain.hasOneUse())
411      return false;
412    Chain = Chain.getOperand(0);
413  }
414
415  if (!Chain.getNumOperands())
416    return false;
417  if (Chain.getOperand(0).getNode() == Callee.getNode())
418    return true;
419  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
420      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
421      Callee.getValue(1).hasOneUse())
422    return true;
423  return false;
424}
425
426void X86DAGToDAGISel::PreprocessISelDAG() {
427  // OptForSize is used in pattern predicates that isel is matching.
428  OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize);
429
430  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
431       E = CurDAG->allnodes_end(); I != E; ) {
432    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
433
434    if (OptLevel != CodeGenOpt::None &&
435        (N->getOpcode() == X86ISD::CALL ||
436         N->getOpcode() == X86ISD::TC_RETURN)) {
437      /// Also try moving call address load from outside callseq_start to just
438      /// before the call to allow it to be folded.
439      ///
440      ///     [Load chain]
441      ///         ^
442      ///         |
443      ///       [Load]
444      ///       ^    ^
445      ///       |    |
446      ///      /      \--
447      ///     /          |
448      ///[CALLSEQ_START] |
449      ///     ^          |
450      ///     |          |
451      /// [LOAD/C2Reg]   |
452      ///     |          |
453      ///      \        /
454      ///       \      /
455      ///       [CALL]
456      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
457      SDValue Chain = N->getOperand(0);
458      SDValue Load  = N->getOperand(1);
459      if (!isCalleeLoad(Load, Chain, HasCallSeq))
460        continue;
461      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
462      ++NumLoadMoved;
463      continue;
464    }
465
466    // Lower fpround and fpextend nodes that target the FP stack to be store and
467    // load to the stack.  This is a gross hack.  We would like to simply mark
468    // these as being illegal, but when we do that, legalize produces these when
469    // it expands calls, then expands these in the same legalize pass.  We would
470    // like dag combine to be able to hack on these between the call expansion
471    // and the node legalization.  As such this pass basically does "really
472    // late" legalization of these inline with the X86 isel pass.
473    // FIXME: This should only happen when not compiled with -O0.
474    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
475      continue;
476
477    EVT SrcVT = N->getOperand(0).getValueType();
478    EVT DstVT = N->getValueType(0);
479
480    // If any of the sources are vectors, no fp stack involved.
481    if (SrcVT.isVector() || DstVT.isVector())
482      continue;
483
484    // If the source and destination are SSE registers, then this is a legal
485    // conversion that should not be lowered.
486    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
487    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
488    if (SrcIsSSE && DstIsSSE)
489      continue;
490
491    if (!SrcIsSSE && !DstIsSSE) {
492      // If this is an FPStack extension, it is a noop.
493      if (N->getOpcode() == ISD::FP_EXTEND)
494        continue;
495      // If this is a value-preserving FPStack truncation, it is a noop.
496      if (N->getConstantOperandVal(1))
497        continue;
498    }
499
500    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
501    // FPStack has extload and truncstore.  SSE can fold direct loads into other
502    // operations.  Based on this, decide what we want to do.
503    EVT MemVT;
504    if (N->getOpcode() == ISD::FP_ROUND)
505      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
506    else
507      MemVT = SrcIsSSE ? SrcVT : DstVT;
508
509    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
510    DebugLoc dl = N->getDebugLoc();
511
512    // FIXME: optimize the case where the src/dest is a load or store?
513    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
514                                          N->getOperand(0),
515                                          MemTmp, MachinePointerInfo(), MemVT,
516                                          false, false, 0);
517    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
518                                        MachinePointerInfo(),
519                                        MemVT, false, false, 0);
520
521    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
522    // extload we created.  This will cause general havok on the dag because
523    // anything below the conversion could be folded into other existing nodes.
524    // To avoid invalidating 'I', back it up to the convert node.
525    --I;
526    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
527
528    // Now that we did that, the node is dead.  Increment the iterator to the
529    // next node to process, then delete N.
530    ++I;
531    CurDAG->DeleteNode(N);
532  }
533}
534
535
536/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
537/// the main function.
538void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
539                                             MachineFrameInfo *MFI) {
540  const TargetInstrInfo *TII = TM.getInstrInfo();
541  if (Subtarget->isTargetCygMing()) {
542    unsigned CallOp =
543      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
544    BuildMI(BB, DebugLoc(),
545            TII->get(CallOp)).addExternalSymbol("__main");
546  }
547}
548
549void X86DAGToDAGISel::EmitFunctionEntryCode() {
550  // If this is main, emit special code for main.
551  if (const Function *Fn = MF->getFunction())
552    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
553      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
554}
555
556static bool isDispSafeForFrameIndex(int64_t Val) {
557  // On 64-bit platforms, we can run into an issue where a frame index
558  // includes a displacement that, when added to the explicit displacement,
559  // will overflow the displacement field. Assuming that the frame index
560  // displacement fits into a 31-bit integer  (which is only slightly more
561  // aggressive than the current fundamental assumption that it fits into
562  // a 32-bit integer), a 31-bit disp should always be safe.
563  return isInt<31>(Val);
564}
565
566bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
567                                            X86ISelAddressMode &AM) {
568  int64_t Val = AM.Disp + Offset;
569  CodeModel::Model M = TM.getCodeModel();
570  if (Subtarget->is64Bit()) {
571    if (!X86::isOffsetSuitableForCodeModel(Val, M,
572                                           AM.hasSymbolicDisplacement()))
573      return true;
574    // In addition to the checks required for a register base, check that
575    // we do not try to use an unsafe Disp with a frame index.
576    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
577        !isDispSafeForFrameIndex(Val))
578      return true;
579  }
580  AM.Disp = Val;
581  return false;
582
583}
584
585bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
586  SDValue Address = N->getOperand(1);
587
588  // load gs:0 -> GS segment register.
589  // load fs:0 -> FS segment register.
590  //
591  // This optimization is valid because the GNU TLS model defines that
592  // gs:0 (or fs:0 on X86-64) contains its own address.
593  // For more information see http://people.redhat.com/drepper/tls.pdf
594  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
595    if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
596        Subtarget->isTargetELF())
597      switch (N->getPointerInfo().getAddrSpace()) {
598      case 256:
599        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
600        return false;
601      case 257:
602        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
603        return false;
604      }
605
606  return true;
607}
608
609/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
610/// into an addressing mode.  These wrap things that will resolve down into a
611/// symbol reference.  If no match is possible, this returns true, otherwise it
612/// returns false.
613bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
614  // If the addressing mode already has a symbol as the displacement, we can
615  // never match another symbol.
616  if (AM.hasSymbolicDisplacement())
617    return true;
618
619  SDValue N0 = N.getOperand(0);
620  CodeModel::Model M = TM.getCodeModel();
621
622  // Handle X86-64 rip-relative addresses.  We check this before checking direct
623  // folding because RIP is preferable to non-RIP accesses.
624  if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
625      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
626      // they cannot be folded into immediate fields.
627      // FIXME: This can be improved for kernel and other models?
628      (M == CodeModel::Small || M == CodeModel::Kernel)) {
629    // Base and index reg must be 0 in order to use %rip as base.
630    if (AM.hasBaseOrIndexReg())
631      return true;
632    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
633      X86ISelAddressMode Backup = AM;
634      AM.GV = G->getGlobal();
635      AM.SymbolFlags = G->getTargetFlags();
636      if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
637        AM = Backup;
638        return true;
639      }
640    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
641      X86ISelAddressMode Backup = AM;
642      AM.CP = CP->getConstVal();
643      AM.Align = CP->getAlignment();
644      AM.SymbolFlags = CP->getTargetFlags();
645      if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
646        AM = Backup;
647        return true;
648      }
649    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
650      AM.ES = S->getSymbol();
651      AM.SymbolFlags = S->getTargetFlags();
652    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
653      AM.JT = J->getIndex();
654      AM.SymbolFlags = J->getTargetFlags();
655    } else {
656      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
657      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
658    }
659
660    if (N.getOpcode() == X86ISD::WrapperRIP)
661      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
662    return false;
663  }
664
665  // Handle the case when globals fit in our immediate field: This is true for
666  // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit
667  // mode, this only applies to a non-RIP-relative computation.
668  if (!Subtarget->is64Bit() ||
669      M == CodeModel::Small || M == CodeModel::Kernel) {
670    assert(N.getOpcode() != X86ISD::WrapperRIP &&
671           "RIP-relative addressing already handled");
672    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
673      AM.GV = G->getGlobal();
674      AM.Disp += G->getOffset();
675      AM.SymbolFlags = G->getTargetFlags();
676    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
677      AM.CP = CP->getConstVal();
678      AM.Align = CP->getAlignment();
679      AM.Disp += CP->getOffset();
680      AM.SymbolFlags = CP->getTargetFlags();
681    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
682      AM.ES = S->getSymbol();
683      AM.SymbolFlags = S->getTargetFlags();
684    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
685      AM.JT = J->getIndex();
686      AM.SymbolFlags = J->getTargetFlags();
687    } else {
688      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
689      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
690    }
691    return false;
692  }
693
694  return true;
695}
696
697/// MatchAddress - Add the specified node to the specified addressing mode,
698/// returning true if it cannot be done.  This just pattern matches for the
699/// addressing mode.
700bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
701  if (MatchAddressRecursively(N, AM, 0))
702    return true;
703
704  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
705  // a smaller encoding and avoids a scaled-index.
706  if (AM.Scale == 2 &&
707      AM.BaseType == X86ISelAddressMode::RegBase &&
708      AM.Base_Reg.getNode() == 0) {
709    AM.Base_Reg = AM.IndexReg;
710    AM.Scale = 1;
711  }
712
713  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
714  // because it has a smaller encoding.
715  // TODO: Which other code models can use this?
716  if (TM.getCodeModel() == CodeModel::Small &&
717      Subtarget->is64Bit() &&
718      AM.Scale == 1 &&
719      AM.BaseType == X86ISelAddressMode::RegBase &&
720      AM.Base_Reg.getNode() == 0 &&
721      AM.IndexReg.getNode() == 0 &&
722      AM.SymbolFlags == X86II::MO_NO_FLAG &&
723      AM.hasSymbolicDisplacement())
724    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
725
726  return false;
727}
728
729// Insert a node into the DAG at least before the Pos node's position. This
730// will reposition the node as needed, and will assign it a node ID that is <=
731// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
732// IDs! The selection DAG must no longer depend on their uniqueness when this
733// is used.
734static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
735  if (N.getNode()->getNodeId() == -1 ||
736      N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
737    DAG.RepositionNode(Pos.getNode(), N.getNode());
738    N.getNode()->setNodeId(Pos.getNode()->getNodeId());
739  }
740}
741
742// Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
743// allows us to convert the shift and and into an h-register extract and
744// a scaled index. Returns false if the simplification is performed.
745static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
746                                      uint64_t Mask,
747                                      SDValue Shift, SDValue X,
748                                      X86ISelAddressMode &AM) {
749  if (Shift.getOpcode() != ISD::SRL ||
750      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
751      !Shift.hasOneUse())
752    return true;
753
754  int ScaleLog = 8 - Shift.getConstantOperandVal(1);
755  if (ScaleLog <= 0 || ScaleLog >= 4 ||
756      Mask != (0xffu << ScaleLog))
757    return true;
758
759  EVT VT = N.getValueType();
760  DebugLoc DL = N.getDebugLoc();
761  SDValue Eight = DAG.getConstant(8, MVT::i8);
762  SDValue NewMask = DAG.getConstant(0xff, VT);
763  SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
764  SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
765  SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
766  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
767
768  // Insert the new nodes into the topological ordering. We must do this in
769  // a valid topological ordering as nothing is going to go back and re-sort
770  // these nodes. We continually insert before 'N' in sequence as this is
771  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
772  // hierarchy left to express.
773  InsertDAGNode(DAG, N, Eight);
774  InsertDAGNode(DAG, N, Srl);
775  InsertDAGNode(DAG, N, NewMask);
776  InsertDAGNode(DAG, N, And);
777  InsertDAGNode(DAG, N, ShlCount);
778  InsertDAGNode(DAG, N, Shl);
779  DAG.ReplaceAllUsesWith(N, Shl);
780  AM.IndexReg = And;
781  AM.Scale = (1 << ScaleLog);
782  return false;
783}
784
785// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
786// allows us to fold the shift into this addressing mode. Returns false if the
787// transform succeeded.
788static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
789                                        uint64_t Mask,
790                                        SDValue Shift, SDValue X,
791                                        X86ISelAddressMode &AM) {
792  if (Shift.getOpcode() != ISD::SHL ||
793      !isa<ConstantSDNode>(Shift.getOperand(1)))
794    return true;
795
796  // Not likely to be profitable if either the AND or SHIFT node has more
797  // than one use (unless all uses are for address computation). Besides,
798  // isel mechanism requires their node ids to be reused.
799  if (!N.hasOneUse() || !Shift.hasOneUse())
800    return true;
801
802  // Verify that the shift amount is something we can fold.
803  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
804  if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
805    return true;
806
807  EVT VT = N.getValueType();
808  DebugLoc DL = N.getDebugLoc();
809  SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
810  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
811  SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
812
813  // Insert the new nodes into the topological ordering. We must do this in
814  // a valid topological ordering as nothing is going to go back and re-sort
815  // these nodes. We continually insert before 'N' in sequence as this is
816  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
817  // hierarchy left to express.
818  InsertDAGNode(DAG, N, NewMask);
819  InsertDAGNode(DAG, N, NewAnd);
820  InsertDAGNode(DAG, N, NewShift);
821  DAG.ReplaceAllUsesWith(N, NewShift);
822
823  AM.Scale = 1 << ShiftAmt;
824  AM.IndexReg = NewAnd;
825  return false;
826}
827
828// Implement some heroics to detect shifts of masked values where the mask can
829// be replaced by extending the shift and undoing that in the addressing mode
830// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
831// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
832// the addressing mode. This results in code such as:
833//
834//   int f(short *y, int *lookup_table) {
835//     ...
836//     return *y + lookup_table[*y >> 11];
837//   }
838//
839// Turning into:
840//   movzwl (%rdi), %eax
841//   movl %eax, %ecx
842//   shrl $11, %ecx
843//   addl (%rsi,%rcx,4), %eax
844//
845// Instead of:
846//   movzwl (%rdi), %eax
847//   movl %eax, %ecx
848//   shrl $9, %ecx
849//   andl $124, %rcx
850//   addl (%rsi,%rcx), %eax
851//
852// Note that this function assumes the mask is provided as a mask *after* the
853// value is shifted. The input chain may or may not match that, but computing
854// such a mask is trivial.
855static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
856                                    uint64_t Mask,
857                                    SDValue Shift, SDValue X,
858                                    X86ISelAddressMode &AM) {
859  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
860      !isa<ConstantSDNode>(Shift.getOperand(1)))
861    return true;
862
863  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
864  unsigned MaskLZ = CountLeadingZeros_64(Mask);
865  unsigned MaskTZ = CountTrailingZeros_64(Mask);
866
867  // The amount of shift we're trying to fit into the addressing mode is taken
868  // from the trailing zeros of the mask.
869  unsigned AMShiftAmt = MaskTZ;
870
871  // There is nothing we can do here unless the mask is removing some bits.
872  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
873  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
874
875  // We also need to ensure that mask is a continuous run of bits.
876  if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
877
878  // Scale the leading zero count down based on the actual size of the value.
879  // Also scale it down based on the size of the shift.
880  MaskLZ -= (64 - X.getValueSizeInBits()) + ShiftAmt;
881
882  // The final check is to ensure that any masked out high bits of X are
883  // already known to be zero. Otherwise, the mask has a semantic impact
884  // other than masking out a couple of low bits. Unfortunately, because of
885  // the mask, zero extensions will be removed from operands in some cases.
886  // This code works extra hard to look through extensions because we can
887  // replace them with zero extensions cheaply if necessary.
888  bool ReplacingAnyExtend = false;
889  if (X.getOpcode() == ISD::ANY_EXTEND) {
890    unsigned ExtendBits =
891      X.getValueSizeInBits() - X.getOperand(0).getValueSizeInBits();
892    // Assume that we'll replace the any-extend with a zero-extend, and
893    // narrow the search to the extended value.
894    X = X.getOperand(0);
895    MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
896    ReplacingAnyExtend = true;
897  }
898  APInt MaskedHighBits = APInt::getHighBitsSet(X.getValueSizeInBits(),
899                                               MaskLZ);
900  APInt KnownZero, KnownOne;
901  DAG.ComputeMaskedBits(X, KnownZero, KnownOne);
902  if (MaskedHighBits != KnownZero) return true;
903
904  // We've identified a pattern that can be transformed into a single shift
905  // and an addressing mode. Make it so.
906  EVT VT = N.getValueType();
907  if (ReplacingAnyExtend) {
908    assert(X.getValueType() != VT);
909    // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
910    SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, X.getDebugLoc(), VT, X);
911    InsertDAGNode(DAG, N, NewX);
912    X = NewX;
913  }
914  DebugLoc DL = N.getDebugLoc();
915  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
916  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
917  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
918  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
919
920  // Insert the new nodes into the topological ordering. We must do this in
921  // a valid topological ordering as nothing is going to go back and re-sort
922  // these nodes. We continually insert before 'N' in sequence as this is
923  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
924  // hierarchy left to express.
925  InsertDAGNode(DAG, N, NewSRLAmt);
926  InsertDAGNode(DAG, N, NewSRL);
927  InsertDAGNode(DAG, N, NewSHLAmt);
928  InsertDAGNode(DAG, N, NewSHL);
929  DAG.ReplaceAllUsesWith(N, NewSHL);
930
931  AM.Scale = 1 << AMShiftAmt;
932  AM.IndexReg = NewSRL;
933  return false;
934}
935
936bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
937                                              unsigned Depth) {
938  DebugLoc dl = N.getDebugLoc();
939  DEBUG({
940      dbgs() << "MatchAddress: ";
941      AM.dump();
942    });
943  // Limit recursion.
944  if (Depth > 5)
945    return MatchAddressBase(N, AM);
946
947  // If this is already a %rip relative address, we can only merge immediates
948  // into it.  Instead of handling this in every case, we handle it here.
949  // RIP relative addressing: %rip + 32-bit displacement!
950  if (AM.isRIPRelative()) {
951    // FIXME: JumpTable and ExternalSymbol address currently don't like
952    // displacements.  It isn't very important, but this should be fixed for
953    // consistency.
954    if (!AM.ES && AM.JT != -1) return true;
955
956    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
957      if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
958        return false;
959    return true;
960  }
961
962  switch (N.getOpcode()) {
963  default: break;
964  case ISD::Constant: {
965    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
966    if (!FoldOffsetIntoAddress(Val, AM))
967      return false;
968    break;
969  }
970
971  case X86ISD::Wrapper:
972  case X86ISD::WrapperRIP:
973    if (!MatchWrapper(N, AM))
974      return false;
975    break;
976
977  case ISD::LOAD:
978    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
979      return false;
980    break;
981
982  case ISD::FrameIndex:
983    if (AM.BaseType == X86ISelAddressMode::RegBase &&
984        AM.Base_Reg.getNode() == 0 &&
985        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
986      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
987      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
988      return false;
989    }
990    break;
991
992  case ISD::SHL:
993    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
994      break;
995
996    if (ConstantSDNode
997          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
998      unsigned Val = CN->getZExtValue();
999      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1000      // that the base operand remains free for further matching. If
1001      // the base doesn't end up getting used, a post-processing step
1002      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1003      if (Val == 1 || Val == 2 || Val == 3) {
1004        AM.Scale = 1 << Val;
1005        SDValue ShVal = N.getNode()->getOperand(0);
1006
1007        // Okay, we know that we have a scale by now.  However, if the scaled
1008        // value is an add of something and a constant, we can fold the
1009        // constant into the disp field here.
1010        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1011          AM.IndexReg = ShVal.getNode()->getOperand(0);
1012          ConstantSDNode *AddVal =
1013            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1014          uint64_t Disp = AddVal->getSExtValue() << Val;
1015          if (!FoldOffsetIntoAddress(Disp, AM))
1016            return false;
1017        }
1018
1019        AM.IndexReg = ShVal;
1020        return false;
1021      }
1022    break;
1023    }
1024
1025  case ISD::SRL: {
1026    // Scale must not be used already.
1027    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1028
1029    SDValue And = N.getOperand(0);
1030    if (And.getOpcode() != ISD::AND) break;
1031    SDValue X = And.getOperand(0);
1032
1033    // We only handle up to 64-bit values here as those are what matter for
1034    // addressing mode optimizations.
1035    if (X.getValueSizeInBits() > 64) break;
1036
1037    // The mask used for the transform is expected to be post-shift, but we
1038    // found the shift first so just apply the shift to the mask before passing
1039    // it down.
1040    if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1041        !isa<ConstantSDNode>(And.getOperand(1)))
1042      break;
1043    uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1044
1045    // Try to fold the mask and shift into the scale, and return false if we
1046    // succeed.
1047    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1048      return false;
1049    break;
1050  }
1051
1052  case ISD::SMUL_LOHI:
1053  case ISD::UMUL_LOHI:
1054    // A mul_lohi where we need the low part can be folded as a plain multiply.
1055    if (N.getResNo() != 0) break;
1056    // FALL THROUGH
1057  case ISD::MUL:
1058  case X86ISD::MUL_IMM:
1059    // X*[3,5,9] -> X+X*[2,4,8]
1060    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1061        AM.Base_Reg.getNode() == 0 &&
1062        AM.IndexReg.getNode() == 0) {
1063      if (ConstantSDNode
1064            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1065        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1066            CN->getZExtValue() == 9) {
1067          AM.Scale = unsigned(CN->getZExtValue())-1;
1068
1069          SDValue MulVal = N.getNode()->getOperand(0);
1070          SDValue Reg;
1071
1072          // Okay, we know that we have a scale by now.  However, if the scaled
1073          // value is an add of something and a constant, we can fold the
1074          // constant into the disp field here.
1075          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1076              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1077            Reg = MulVal.getNode()->getOperand(0);
1078            ConstantSDNode *AddVal =
1079              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1080            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1081            if (FoldOffsetIntoAddress(Disp, AM))
1082              Reg = N.getNode()->getOperand(0);
1083          } else {
1084            Reg = N.getNode()->getOperand(0);
1085          }
1086
1087          AM.IndexReg = AM.Base_Reg = Reg;
1088          return false;
1089        }
1090    }
1091    break;
1092
1093  case ISD::SUB: {
1094    // Given A-B, if A can be completely folded into the address and
1095    // the index field with the index field unused, use -B as the index.
1096    // This is a win if a has multiple parts that can be folded into
1097    // the address. Also, this saves a mov if the base register has
1098    // other uses, since it avoids a two-address sub instruction, however
1099    // it costs an additional mov if the index register has other uses.
1100
1101    // Add an artificial use to this node so that we can keep track of
1102    // it if it gets CSE'd with a different node.
1103    HandleSDNode Handle(N);
1104
1105    // Test if the LHS of the sub can be folded.
1106    X86ISelAddressMode Backup = AM;
1107    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1108      AM = Backup;
1109      break;
1110    }
1111    // Test if the index field is free for use.
1112    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1113      AM = Backup;
1114      break;
1115    }
1116
1117    int Cost = 0;
1118    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1119    // If the RHS involves a register with multiple uses, this
1120    // transformation incurs an extra mov, due to the neg instruction
1121    // clobbering its operand.
1122    if (!RHS.getNode()->hasOneUse() ||
1123        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1124        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1125        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1126        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1127         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1128      ++Cost;
1129    // If the base is a register with multiple uses, this
1130    // transformation may save a mov.
1131    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1132         AM.Base_Reg.getNode() &&
1133         !AM.Base_Reg.getNode()->hasOneUse()) ||
1134        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1135      --Cost;
1136    // If the folded LHS was interesting, this transformation saves
1137    // address arithmetic.
1138    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1139        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1140        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1141      --Cost;
1142    // If it doesn't look like it may be an overall win, don't do it.
1143    if (Cost >= 0) {
1144      AM = Backup;
1145      break;
1146    }
1147
1148    // Ok, the transformation is legal and appears profitable. Go for it.
1149    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1150    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1151    AM.IndexReg = Neg;
1152    AM.Scale = 1;
1153
1154    // Insert the new nodes into the topological ordering.
1155    InsertDAGNode(*CurDAG, N, Zero);
1156    InsertDAGNode(*CurDAG, N, Neg);
1157    return false;
1158  }
1159
1160  case ISD::ADD: {
1161    // Add an artificial use to this node so that we can keep track of
1162    // it if it gets CSE'd with a different node.
1163    HandleSDNode Handle(N);
1164
1165    X86ISelAddressMode Backup = AM;
1166    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1167        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1168      return false;
1169    AM = Backup;
1170
1171    // Try again after commuting the operands.
1172    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
1173        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1174      return false;
1175    AM = Backup;
1176
1177    // If we couldn't fold both operands into the address at the same time,
1178    // see if we can just put each operand into a register and fold at least
1179    // the add.
1180    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1181        !AM.Base_Reg.getNode() &&
1182        !AM.IndexReg.getNode()) {
1183      N = Handle.getValue();
1184      AM.Base_Reg = N.getOperand(0);
1185      AM.IndexReg = N.getOperand(1);
1186      AM.Scale = 1;
1187      return false;
1188    }
1189    N = Handle.getValue();
1190    break;
1191  }
1192
1193  case ISD::OR:
1194    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1195    if (CurDAG->isBaseWithConstantOffset(N)) {
1196      X86ISelAddressMode Backup = AM;
1197      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
1198
1199      // Start with the LHS as an addr mode.
1200      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1201          !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
1202        return false;
1203      AM = Backup;
1204    }
1205    break;
1206
1207  case ISD::AND: {
1208    // Perform some heroic transforms on an and of a constant-count shift
1209    // with a constant to enable use of the scaled offset field.
1210
1211    // Scale must not be used already.
1212    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1213
1214    SDValue Shift = N.getOperand(0);
1215    if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1216    SDValue X = Shift.getOperand(0);
1217
1218    // We only handle up to 64-bit values here as those are what matter for
1219    // addressing mode optimizations.
1220    if (X.getValueSizeInBits() > 64) break;
1221
1222    if (!isa<ConstantSDNode>(N.getOperand(1)))
1223      break;
1224    uint64_t Mask = N.getConstantOperandVal(1);
1225
1226    // Try to fold the mask and shift into an extract and scale.
1227    if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1228      return false;
1229
1230    // Try to fold the mask and shift directly into the scale.
1231    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1232      return false;
1233
1234    // Try to swap the mask and shift to place shifts which can be done as
1235    // a scale on the outside of the mask.
1236    if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1237      return false;
1238    break;
1239  }
1240  }
1241
1242  return MatchAddressBase(N, AM);
1243}
1244
1245/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1246/// specified addressing mode without any further recursion.
1247bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1248  // Is the base register already occupied?
1249  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1250    // If so, check to see if the scale index register is set.
1251    if (AM.IndexReg.getNode() == 0) {
1252      AM.IndexReg = N;
1253      AM.Scale = 1;
1254      return false;
1255    }
1256
1257    // Otherwise, we cannot select it.
1258    return true;
1259  }
1260
1261  // Default, generate it as a register.
1262  AM.BaseType = X86ISelAddressMode::RegBase;
1263  AM.Base_Reg = N;
1264  return false;
1265}
1266
1267/// SelectAddr - returns true if it is able pattern match an addressing mode.
1268/// It returns the operands which make up the maximal addressing mode it can
1269/// match by reference.
1270///
1271/// Parent is the parent node of the addr operand that is being matched.  It
1272/// is always a load, store, atomic node, or null.  It is only null when
1273/// checking memory operands for inline asm nodes.
1274bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1275                                 SDValue &Scale, SDValue &Index,
1276                                 SDValue &Disp, SDValue &Segment) {
1277  X86ISelAddressMode AM;
1278
1279  if (Parent &&
1280      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1281      // that are not a MemSDNode, and thus don't have proper addrspace info.
1282      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1283      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1284      Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme
1285    unsigned AddrSpace =
1286      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1287    // AddrSpace 256 -> GS, 257 -> FS.
1288    if (AddrSpace == 256)
1289      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1290    if (AddrSpace == 257)
1291      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1292  }
1293
1294  if (MatchAddress(N, AM))
1295    return false;
1296
1297  EVT VT = N.getValueType();
1298  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1299    if (!AM.Base_Reg.getNode())
1300      AM.Base_Reg = CurDAG->getRegister(0, VT);
1301  }
1302
1303  if (!AM.IndexReg.getNode())
1304    AM.IndexReg = CurDAG->getRegister(0, VT);
1305
1306  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1307  return true;
1308}
1309
1310/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1311/// match a load whose top elements are either undef or zeros.  The load flavor
1312/// is derived from the type of N, which is either v4f32 or v2f64.
1313///
1314/// We also return:
1315///   PatternChainNode: this is the matched node that has a chain input and
1316///   output.
1317bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1318                                          SDValue N, SDValue &Base,
1319                                          SDValue &Scale, SDValue &Index,
1320                                          SDValue &Disp, SDValue &Segment,
1321                                          SDValue &PatternNodeWithChain) {
1322  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1323    PatternNodeWithChain = N.getOperand(0);
1324    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1325        PatternNodeWithChain.hasOneUse() &&
1326        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1327        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1328      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1329      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1330        return false;
1331      return true;
1332    }
1333  }
1334
1335  // Also handle the case where we explicitly require zeros in the top
1336  // elements.  This is a vector shuffle from the zero vector.
1337  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1338      // Check to see if the top elements are all zeros (or bitcast of zeros).
1339      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1340      N.getOperand(0).getNode()->hasOneUse() &&
1341      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1342      N.getOperand(0).getOperand(0).hasOneUse() &&
1343      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1344      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1345    // Okay, this is a zero extending load.  Fold it.
1346    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1347    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1348      return false;
1349    PatternNodeWithChain = SDValue(LD, 0);
1350    return true;
1351  }
1352  return false;
1353}
1354
1355
1356/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1357/// mode it matches can be cost effectively emitted as an LEA instruction.
1358bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1359                                    SDValue &Base, SDValue &Scale,
1360                                    SDValue &Index, SDValue &Disp,
1361                                    SDValue &Segment) {
1362  X86ISelAddressMode AM;
1363
1364  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1365  // segments.
1366  SDValue Copy = AM.Segment;
1367  SDValue T = CurDAG->getRegister(0, MVT::i32);
1368  AM.Segment = T;
1369  if (MatchAddress(N, AM))
1370    return false;
1371  assert (T == AM.Segment);
1372  AM.Segment = Copy;
1373
1374  EVT VT = N.getValueType();
1375  unsigned Complexity = 0;
1376  if (AM.BaseType == X86ISelAddressMode::RegBase)
1377    if (AM.Base_Reg.getNode())
1378      Complexity = 1;
1379    else
1380      AM.Base_Reg = CurDAG->getRegister(0, VT);
1381  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1382    Complexity = 4;
1383
1384  if (AM.IndexReg.getNode())
1385    Complexity++;
1386  else
1387    AM.IndexReg = CurDAG->getRegister(0, VT);
1388
1389  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1390  // a simple shift.
1391  if (AM.Scale > 1)
1392    Complexity++;
1393
1394  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1395  // to a LEA. This is determined with some expermentation but is by no means
1396  // optimal (especially for code size consideration). LEA is nice because of
1397  // its three-address nature. Tweak the cost function again when we can run
1398  // convertToThreeAddress() at register allocation time.
1399  if (AM.hasSymbolicDisplacement()) {
1400    // For X86-64, we should always use lea to materialize RIP relative
1401    // addresses.
1402    if (Subtarget->is64Bit())
1403      Complexity = 4;
1404    else
1405      Complexity += 2;
1406  }
1407
1408  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1409    Complexity++;
1410
1411  // If it isn't worth using an LEA, reject it.
1412  if (Complexity <= 2)
1413    return false;
1414
1415  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1416  return true;
1417}
1418
1419/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1420bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1421                                        SDValue &Scale, SDValue &Index,
1422                                        SDValue &Disp, SDValue &Segment) {
1423  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1424  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1425
1426  X86ISelAddressMode AM;
1427  AM.GV = GA->getGlobal();
1428  AM.Disp += GA->getOffset();
1429  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1430  AM.SymbolFlags = GA->getTargetFlags();
1431
1432  if (N.getValueType() == MVT::i32) {
1433    AM.Scale = 1;
1434    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1435  } else {
1436    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1437  }
1438
1439  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1440  return true;
1441}
1442
1443
1444bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1445                                  SDValue &Base, SDValue &Scale,
1446                                  SDValue &Index, SDValue &Disp,
1447                                  SDValue &Segment) {
1448  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1449      !IsProfitableToFold(N, P, P) ||
1450      !IsLegalToFold(N, P, P, OptLevel))
1451    return false;
1452
1453  return SelectAddr(N.getNode(),
1454                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1455}
1456
1457/// getGlobalBaseReg - Return an SDNode that returns the value of
1458/// the global base register. Output instructions required to
1459/// initialize the global base register, if necessary.
1460///
1461SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1462  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1463  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1464}
1465
1466SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1467  SDValue Chain = Node->getOperand(0);
1468  SDValue In1 = Node->getOperand(1);
1469  SDValue In2L = Node->getOperand(2);
1470  SDValue In2H = Node->getOperand(3);
1471  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1472  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1473    return NULL;
1474  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1475  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1476  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1477  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1478                                           MVT::i32, MVT::i32, MVT::Other, Ops,
1479                                           array_lengthof(Ops));
1480  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1481  return ResNode;
1482}
1483
1484// FIXME: Figure out some way to unify this with the 'or' and other code
1485// below.
1486SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1487  if (Node->hasAnyUseOfValue(0))
1488    return 0;
1489
1490  // Optimize common patterns for __sync_add_and_fetch and
1491  // __sync_sub_and_fetch where the result is not used. This allows us
1492  // to use "lock" version of add, sub, inc, dec instructions.
1493  // FIXME: Do not use special instructions but instead add the "lock"
1494  // prefix to the target node somehow. The extra information will then be
1495  // transferred to machine instruction and it denotes the prefix.
1496  SDValue Chain = Node->getOperand(0);
1497  SDValue Ptr = Node->getOperand(1);
1498  SDValue Val = Node->getOperand(2);
1499  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1500  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1501    return 0;
1502
1503  bool isInc = false, isDec = false, isSub = false, isCN = false;
1504  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1505  if (CN && CN->getSExtValue() == (int32_t)CN->getSExtValue()) {
1506    isCN = true;
1507    int64_t CNVal = CN->getSExtValue();
1508    if (CNVal == 1)
1509      isInc = true;
1510    else if (CNVal == -1)
1511      isDec = true;
1512    else if (CNVal >= 0)
1513      Val = CurDAG->getTargetConstant(CNVal, NVT);
1514    else {
1515      isSub = true;
1516      Val = CurDAG->getTargetConstant(-CNVal, NVT);
1517    }
1518  } else if (Val.hasOneUse() &&
1519             Val.getOpcode() == ISD::SUB &&
1520             X86::isZeroNode(Val.getOperand(0))) {
1521    isSub = true;
1522    Val = Val.getOperand(1);
1523  }
1524
1525  DebugLoc dl = Node->getDebugLoc();
1526  unsigned Opc = 0;
1527  switch (NVT.getSimpleVT().SimpleTy) {
1528  default: return 0;
1529  case MVT::i8:
1530    if (isInc)
1531      Opc = X86::LOCK_INC8m;
1532    else if (isDec)
1533      Opc = X86::LOCK_DEC8m;
1534    else if (isSub) {
1535      if (isCN)
1536        Opc = X86::LOCK_SUB8mi;
1537      else
1538        Opc = X86::LOCK_SUB8mr;
1539    } else {
1540      if (isCN)
1541        Opc = X86::LOCK_ADD8mi;
1542      else
1543        Opc = X86::LOCK_ADD8mr;
1544    }
1545    break;
1546  case MVT::i16:
1547    if (isInc)
1548      Opc = X86::LOCK_INC16m;
1549    else if (isDec)
1550      Opc = X86::LOCK_DEC16m;
1551    else if (isSub) {
1552      if (isCN) {
1553        if (immSext8(Val.getNode()))
1554          Opc = X86::LOCK_SUB16mi8;
1555        else
1556          Opc = X86::LOCK_SUB16mi;
1557      } else
1558        Opc = X86::LOCK_SUB16mr;
1559    } else {
1560      if (isCN) {
1561        if (immSext8(Val.getNode()))
1562          Opc = X86::LOCK_ADD16mi8;
1563        else
1564          Opc = X86::LOCK_ADD16mi;
1565      } else
1566        Opc = X86::LOCK_ADD16mr;
1567    }
1568    break;
1569  case MVT::i32:
1570    if (isInc)
1571      Opc = X86::LOCK_INC32m;
1572    else if (isDec)
1573      Opc = X86::LOCK_DEC32m;
1574    else if (isSub) {
1575      if (isCN) {
1576        if (immSext8(Val.getNode()))
1577          Opc = X86::LOCK_SUB32mi8;
1578        else
1579          Opc = X86::LOCK_SUB32mi;
1580      } else
1581        Opc = X86::LOCK_SUB32mr;
1582    } else {
1583      if (isCN) {
1584        if (immSext8(Val.getNode()))
1585          Opc = X86::LOCK_ADD32mi8;
1586        else
1587          Opc = X86::LOCK_ADD32mi;
1588      } else
1589        Opc = X86::LOCK_ADD32mr;
1590    }
1591    break;
1592  case MVT::i64:
1593    if (isInc)
1594      Opc = X86::LOCK_INC64m;
1595    else if (isDec)
1596      Opc = X86::LOCK_DEC64m;
1597    else if (isSub) {
1598      Opc = X86::LOCK_SUB64mr;
1599      if (isCN) {
1600        if (immSext8(Val.getNode()))
1601          Opc = X86::LOCK_SUB64mi8;
1602        else if (i64immSExt32(Val.getNode()))
1603          Opc = X86::LOCK_SUB64mi32;
1604      }
1605    } else {
1606      Opc = X86::LOCK_ADD64mr;
1607      if (isCN) {
1608        if (immSext8(Val.getNode()))
1609          Opc = X86::LOCK_ADD64mi8;
1610        else if (i64immSExt32(Val.getNode()))
1611          Opc = X86::LOCK_ADD64mi32;
1612      }
1613    }
1614    break;
1615  }
1616
1617  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1618                                                 dl, NVT), 0);
1619  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1620  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1621  if (isInc || isDec) {
1622    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1623    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
1624    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1625    SDValue RetVals[] = { Undef, Ret };
1626    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1627  } else {
1628    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1629    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1630    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1631    SDValue RetVals[] = { Undef, Ret };
1632    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1633  }
1634}
1635
1636enum AtomicOpc {
1637  OR,
1638  AND,
1639  XOR,
1640  AtomicOpcEnd
1641};
1642
1643enum AtomicSz {
1644  ConstantI8,
1645  I8,
1646  SextConstantI16,
1647  ConstantI16,
1648  I16,
1649  SextConstantI32,
1650  ConstantI32,
1651  I32,
1652  SextConstantI64,
1653  ConstantI64,
1654  I64,
1655  AtomicSzEnd
1656};
1657
1658static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1659  {
1660    X86::LOCK_OR8mi,
1661    X86::LOCK_OR8mr,
1662    X86::LOCK_OR16mi8,
1663    X86::LOCK_OR16mi,
1664    X86::LOCK_OR16mr,
1665    X86::LOCK_OR32mi8,
1666    X86::LOCK_OR32mi,
1667    X86::LOCK_OR32mr,
1668    X86::LOCK_OR64mi8,
1669    X86::LOCK_OR64mi32,
1670    X86::LOCK_OR64mr
1671  },
1672  {
1673    X86::LOCK_AND8mi,
1674    X86::LOCK_AND8mr,
1675    X86::LOCK_AND16mi8,
1676    X86::LOCK_AND16mi,
1677    X86::LOCK_AND16mr,
1678    X86::LOCK_AND32mi8,
1679    X86::LOCK_AND32mi,
1680    X86::LOCK_AND32mr,
1681    X86::LOCK_AND64mi8,
1682    X86::LOCK_AND64mi32,
1683    X86::LOCK_AND64mr
1684  },
1685  {
1686    X86::LOCK_XOR8mi,
1687    X86::LOCK_XOR8mr,
1688    X86::LOCK_XOR16mi8,
1689    X86::LOCK_XOR16mi,
1690    X86::LOCK_XOR16mr,
1691    X86::LOCK_XOR32mi8,
1692    X86::LOCK_XOR32mi,
1693    X86::LOCK_XOR32mr,
1694    X86::LOCK_XOR64mi8,
1695    X86::LOCK_XOR64mi32,
1696    X86::LOCK_XOR64mr
1697  }
1698};
1699
1700SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) {
1701  if (Node->hasAnyUseOfValue(0))
1702    return 0;
1703
1704  // Optimize common patterns for __sync_or_and_fetch and similar arith
1705  // operations where the result is not used. This allows us to use the "lock"
1706  // version of the arithmetic instruction.
1707  // FIXME: Same as for 'add' and 'sub', try to merge those down here.
1708  SDValue Chain = Node->getOperand(0);
1709  SDValue Ptr = Node->getOperand(1);
1710  SDValue Val = Node->getOperand(2);
1711  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1712  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1713    return 0;
1714
1715  // Which index into the table.
1716  enum AtomicOpc Op;
1717  switch (Node->getOpcode()) {
1718    case ISD::ATOMIC_LOAD_OR:
1719      Op = OR;
1720      break;
1721    case ISD::ATOMIC_LOAD_AND:
1722      Op = AND;
1723      break;
1724    case ISD::ATOMIC_LOAD_XOR:
1725      Op = XOR;
1726      break;
1727    default:
1728      return 0;
1729  }
1730
1731  bool isCN = false;
1732  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1733  if (CN && (int32_t)CN->getSExtValue() == CN->getSExtValue()) {
1734    isCN = true;
1735    Val = CurDAG->getTargetConstant(CN->getSExtValue(), NVT);
1736  }
1737
1738  unsigned Opc = 0;
1739  switch (NVT.getSimpleVT().SimpleTy) {
1740    default: return 0;
1741    case MVT::i8:
1742      if (isCN)
1743        Opc = AtomicOpcTbl[Op][ConstantI8];
1744      else
1745        Opc = AtomicOpcTbl[Op][I8];
1746      break;
1747    case MVT::i16:
1748      if (isCN) {
1749        if (immSext8(Val.getNode()))
1750          Opc = AtomicOpcTbl[Op][SextConstantI16];
1751        else
1752          Opc = AtomicOpcTbl[Op][ConstantI16];
1753      } else
1754        Opc = AtomicOpcTbl[Op][I16];
1755      break;
1756    case MVT::i32:
1757      if (isCN) {
1758        if (immSext8(Val.getNode()))
1759          Opc = AtomicOpcTbl[Op][SextConstantI32];
1760        else
1761          Opc = AtomicOpcTbl[Op][ConstantI32];
1762      } else
1763        Opc = AtomicOpcTbl[Op][I32];
1764      break;
1765    case MVT::i64:
1766      Opc = AtomicOpcTbl[Op][I64];
1767      if (isCN) {
1768        if (immSext8(Val.getNode()))
1769          Opc = AtomicOpcTbl[Op][SextConstantI64];
1770        else if (i64immSExt32(Val.getNode()))
1771          Opc = AtomicOpcTbl[Op][ConstantI64];
1772      }
1773      break;
1774  }
1775
1776  assert(Opc != 0 && "Invalid arith lock transform!");
1777
1778  DebugLoc dl = Node->getDebugLoc();
1779  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1780                                                 dl, NVT), 0);
1781  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1782  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1783  SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1784  SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1785  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1786  SDValue RetVals[] = { Undef, Ret };
1787  return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1788}
1789
1790/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1791/// any uses which require the SF or OF bits to be accurate.
1792static bool HasNoSignedComparisonUses(SDNode *N) {
1793  // Examine each user of the node.
1794  for (SDNode::use_iterator UI = N->use_begin(),
1795         UE = N->use_end(); UI != UE; ++UI) {
1796    // Only examine CopyToReg uses.
1797    if (UI->getOpcode() != ISD::CopyToReg)
1798      return false;
1799    // Only examine CopyToReg uses that copy to EFLAGS.
1800    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1801          X86::EFLAGS)
1802      return false;
1803    // Examine each user of the CopyToReg use.
1804    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1805           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1806      // Only examine the Flag result.
1807      if (FlagUI.getUse().getResNo() != 1) continue;
1808      // Anything unusual: assume conservatively.
1809      if (!FlagUI->isMachineOpcode()) return false;
1810      // Examine the opcode of the user.
1811      switch (FlagUI->getMachineOpcode()) {
1812      // These comparisons don't treat the most significant bit specially.
1813      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1814      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1815      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1816      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1817      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1818      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1819      case X86::CMOVA16rr: case X86::CMOVA16rm:
1820      case X86::CMOVA32rr: case X86::CMOVA32rm:
1821      case X86::CMOVA64rr: case X86::CMOVA64rm:
1822      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1823      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1824      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1825      case X86::CMOVB16rr: case X86::CMOVB16rm:
1826      case X86::CMOVB32rr: case X86::CMOVB32rm:
1827      case X86::CMOVB64rr: case X86::CMOVB64rm:
1828      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1829      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1830      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1831      case X86::CMOVE16rr: case X86::CMOVE16rm:
1832      case X86::CMOVE32rr: case X86::CMOVE32rm:
1833      case X86::CMOVE64rr: case X86::CMOVE64rm:
1834      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1835      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1836      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1837      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1838      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1839      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1840      case X86::CMOVP16rr: case X86::CMOVP16rm:
1841      case X86::CMOVP32rr: case X86::CMOVP32rm:
1842      case X86::CMOVP64rr: case X86::CMOVP64rm:
1843        continue;
1844      // Anything else: assume conservatively.
1845      default: return false;
1846      }
1847    }
1848  }
1849  return true;
1850}
1851
1852/// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
1853/// is suitable for doing the {load; increment or decrement; store} to modify
1854/// transformation.
1855static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
1856                                SDValue StoredVal, SelectionDAG *CurDAG,
1857                                LoadSDNode* &LoadNode, SDValue &InputChain) {
1858
1859  // is the value stored the result of a DEC or INC?
1860  if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
1861
1862  // is the stored value result 0 of the load?
1863  if (StoredVal.getResNo() != 0) return false;
1864
1865  // are there other uses of the loaded value than the inc or dec?
1866  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
1867
1868  // is the store non-extending and non-indexed?
1869  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1870    return false;
1871
1872  SDValue Load = StoredVal->getOperand(0);
1873  // Is the stored value a non-extending and non-indexed load?
1874  if (!ISD::isNormalLoad(Load.getNode())) return false;
1875
1876  // Return LoadNode by reference.
1877  LoadNode = cast<LoadSDNode>(Load);
1878  // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
1879  EVT LdVT = LoadNode->getMemoryVT();
1880  if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
1881      LdVT != MVT::i8)
1882    return false;
1883
1884  // Is store the only read of the loaded value?
1885  if (!Load.hasOneUse())
1886    return false;
1887
1888  // Is the address of the store the same as the load?
1889  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1890      LoadNode->getOffset() != StoreNode->getOffset())
1891    return false;
1892
1893  // Check if the chain is produced by the load or is a TokenFactor with
1894  // the load output chain as an operand. Return InputChain by reference.
1895  SDValue Chain = StoreNode->getChain();
1896
1897  bool ChainCheck = false;
1898  if (Chain == Load.getValue(1)) {
1899    ChainCheck = true;
1900    InputChain = LoadNode->getChain();
1901  } else if (Chain.getOpcode() == ISD::TokenFactor) {
1902    SmallVector<SDValue, 4> ChainOps;
1903    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1904      SDValue Op = Chain.getOperand(i);
1905      if (Op == Load.getValue(1)) {
1906        ChainCheck = true;
1907        continue;
1908      }
1909
1910      // Make sure using Op as part of the chain would not cause a cycle here.
1911      // In theory, we could check whether the chain node is a predecessor of
1912      // the load. But that can be very expensive. Instead visit the uses and
1913      // make sure they all have smaller node id than the load.
1914      int LoadId = LoadNode->getNodeId();
1915      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
1916             UE = UI->use_end(); UI != UE; ++UI) {
1917        if (UI.getUse().getResNo() != 0)
1918          continue;
1919        if (UI->getNodeId() > LoadId)
1920          return false;
1921      }
1922
1923      ChainOps.push_back(Op);
1924    }
1925
1926    if (ChainCheck)
1927      // Make a new TokenFactor with all the other input chains except
1928      // for the load.
1929      InputChain = CurDAG->getNode(ISD::TokenFactor, Chain.getDebugLoc(),
1930                                   MVT::Other, &ChainOps[0], ChainOps.size());
1931  }
1932  if (!ChainCheck)
1933    return false;
1934
1935  return true;
1936}
1937
1938/// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
1939/// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
1940static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
1941  if (Opc == X86ISD::DEC) {
1942    if (LdVT == MVT::i64) return X86::DEC64m;
1943    if (LdVT == MVT::i32) return X86::DEC32m;
1944    if (LdVT == MVT::i16) return X86::DEC16m;
1945    if (LdVT == MVT::i8)  return X86::DEC8m;
1946  } else {
1947    assert(Opc == X86ISD::INC && "unrecognized opcode");
1948    if (LdVT == MVT::i64) return X86::INC64m;
1949    if (LdVT == MVT::i32) return X86::INC32m;
1950    if (LdVT == MVT::i16) return X86::INC16m;
1951    if (LdVT == MVT::i8)  return X86::INC8m;
1952  }
1953  llvm_unreachable("unrecognized size for LdVT");
1954}
1955
1956/// SelectGather - Customized ISel for GATHER operations.
1957///
1958SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
1959  // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
1960  SDValue Chain = Node->getOperand(0);
1961  SDValue VSrc = Node->getOperand(2);
1962  SDValue Base = Node->getOperand(3);
1963  SDValue VIdx = Node->getOperand(4);
1964  SDValue VMask = Node->getOperand(5);
1965  ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
1966  if (!Scale)
1967    return 0;
1968
1969  // Memory Operands: Base, Scale, Index, Disp, Segment
1970  SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
1971  SDValue Segment = CurDAG->getRegister(0, MVT::i32);
1972  const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
1973                          Disp, Segment, VMask, Chain};
1974  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1975                                           VSrc.getValueType(), MVT::Other,
1976                                           Ops, array_lengthof(Ops));
1977  return ResNode;
1978}
1979
1980SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1981  EVT NVT = Node->getValueType(0);
1982  unsigned Opc, MOpc;
1983  unsigned Opcode = Node->getOpcode();
1984  DebugLoc dl = Node->getDebugLoc();
1985
1986  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1987
1988  if (Node->isMachineOpcode()) {
1989    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
1990    return NULL;   // Already selected.
1991  }
1992
1993  switch (Opcode) {
1994  default: break;
1995  case ISD::INTRINSIC_W_CHAIN: {
1996    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
1997    switch (IntNo) {
1998    default: break;
1999    case Intrinsic::x86_avx2_gather_d_pd:
2000    case Intrinsic::x86_avx2_gather_d_pd_256:
2001    case Intrinsic::x86_avx2_gather_q_pd:
2002    case Intrinsic::x86_avx2_gather_q_pd_256:
2003    case Intrinsic::x86_avx2_gather_d_ps:
2004    case Intrinsic::x86_avx2_gather_d_ps_256:
2005    case Intrinsic::x86_avx2_gather_q_ps:
2006    case Intrinsic::x86_avx2_gather_q_ps_256:
2007    case Intrinsic::x86_avx2_gather_d_q:
2008    case Intrinsic::x86_avx2_gather_d_q_256:
2009    case Intrinsic::x86_avx2_gather_q_q:
2010    case Intrinsic::x86_avx2_gather_q_q_256:
2011    case Intrinsic::x86_avx2_gather_d_d:
2012    case Intrinsic::x86_avx2_gather_d_d_256:
2013    case Intrinsic::x86_avx2_gather_q_d:
2014    case Intrinsic::x86_avx2_gather_q_d_256: {
2015      unsigned Opc;
2016      switch (IntNo) {
2017      default: llvm_unreachable("Impossible intrinsic.");
2018      case Intrinsic::x86_avx2_gather_d_pd:     Opc = X86::VGATHERDPDrm;  break;
2019      case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
2020      case Intrinsic::x86_avx2_gather_q_pd:     Opc = X86::VGATHERQPDrm;  break;
2021      case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
2022      case Intrinsic::x86_avx2_gather_d_ps:     Opc = X86::VGATHERDPSrm;  break;
2023      case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
2024      case Intrinsic::x86_avx2_gather_q_ps:     Opc = X86::VGATHERQPSrm;  break;
2025      case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
2026      case Intrinsic::x86_avx2_gather_d_q:      Opc = X86::VPGATHERDQrm;  break;
2027      case Intrinsic::x86_avx2_gather_d_q_256:  Opc = X86::VPGATHERDQYrm; break;
2028      case Intrinsic::x86_avx2_gather_q_q:      Opc = X86::VPGATHERQQrm;  break;
2029      case Intrinsic::x86_avx2_gather_q_q_256:  Opc = X86::VPGATHERQQYrm; break;
2030      case Intrinsic::x86_avx2_gather_d_d:      Opc = X86::VPGATHERDDrm;  break;
2031      case Intrinsic::x86_avx2_gather_d_d_256:  Opc = X86::VPGATHERDDYrm; break;
2032      case Intrinsic::x86_avx2_gather_q_d:      Opc = X86::VPGATHERQDrm;  break;
2033      case Intrinsic::x86_avx2_gather_q_d_256:  Opc = X86::VPGATHERQDYrm; break;
2034      }
2035      SDNode *RetVal = SelectGather(Node, Opc);
2036      if (RetVal)
2037        return RetVal;
2038    }
2039    }
2040    break;
2041  }
2042  case X86ISD::GlobalBaseReg:
2043    return getGlobalBaseReg();
2044
2045  case X86ISD::ATOMOR64_DAG:
2046    return SelectAtomic64(Node, X86::ATOMOR6432);
2047  case X86ISD::ATOMXOR64_DAG:
2048    return SelectAtomic64(Node, X86::ATOMXOR6432);
2049  case X86ISD::ATOMADD64_DAG:
2050    return SelectAtomic64(Node, X86::ATOMADD6432);
2051  case X86ISD::ATOMSUB64_DAG:
2052    return SelectAtomic64(Node, X86::ATOMSUB6432);
2053  case X86ISD::ATOMNAND64_DAG:
2054    return SelectAtomic64(Node, X86::ATOMNAND6432);
2055  case X86ISD::ATOMAND64_DAG:
2056    return SelectAtomic64(Node, X86::ATOMAND6432);
2057  case X86ISD::ATOMSWAP64_DAG:
2058    return SelectAtomic64(Node, X86::ATOMSWAP6432);
2059
2060  case ISD::ATOMIC_LOAD_ADD: {
2061    SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
2062    if (RetVal)
2063      return RetVal;
2064    break;
2065  }
2066  case ISD::ATOMIC_LOAD_XOR:
2067  case ISD::ATOMIC_LOAD_AND:
2068  case ISD::ATOMIC_LOAD_OR: {
2069    SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
2070    if (RetVal)
2071      return RetVal;
2072    break;
2073  }
2074  case ISD::AND:
2075  case ISD::OR:
2076  case ISD::XOR: {
2077    // For operations of the form (x << C1) op C2, check if we can use a smaller
2078    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2079    SDValue N0 = Node->getOperand(0);
2080    SDValue N1 = Node->getOperand(1);
2081
2082    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2083      break;
2084
2085    // i8 is unshrinkable, i16 should be promoted to i32.
2086    if (NVT != MVT::i32 && NVT != MVT::i64)
2087      break;
2088
2089    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
2090    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2091    if (!Cst || !ShlCst)
2092      break;
2093
2094    int64_t Val = Cst->getSExtValue();
2095    uint64_t ShlVal = ShlCst->getZExtValue();
2096
2097    // Make sure that we don't change the operation by removing bits.
2098    // This only matters for OR and XOR, AND is unaffected.
2099    if (Opcode != ISD::AND && ((Val >> ShlVal) << ShlVal) != Val)
2100      break;
2101
2102    unsigned ShlOp, Op = 0;
2103    EVT CstVT = NVT;
2104
2105    // Check the minimum bitwidth for the new constant.
2106    // TODO: AND32ri is the same as AND64ri32 with zext imm.
2107    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2108    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2109    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2110      CstVT = MVT::i8;
2111    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2112      CstVT = MVT::i32;
2113
2114    // Bail if there is no smaller encoding.
2115    if (NVT == CstVT)
2116      break;
2117
2118    switch (NVT.getSimpleVT().SimpleTy) {
2119    default: llvm_unreachable("Unsupported VT!");
2120    case MVT::i32:
2121      assert(CstVT == MVT::i8);
2122      ShlOp = X86::SHL32ri;
2123
2124      switch (Opcode) {
2125      case ISD::AND: Op = X86::AND32ri8; break;
2126      case ISD::OR:  Op =  X86::OR32ri8; break;
2127      case ISD::XOR: Op = X86::XOR32ri8; break;
2128      }
2129      break;
2130    case MVT::i64:
2131      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
2132      ShlOp = X86::SHL64ri;
2133
2134      switch (Opcode) {
2135      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
2136      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
2137      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2138      }
2139      break;
2140    }
2141
2142    // Emit the smaller op and the shift.
2143    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
2144    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2145    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2146                                getI8Imm(ShlVal));
2147  }
2148  case X86ISD::UMUL: {
2149    SDValue N0 = Node->getOperand(0);
2150    SDValue N1 = Node->getOperand(1);
2151
2152    unsigned LoReg;
2153    switch (NVT.getSimpleVT().SimpleTy) {
2154    default: llvm_unreachable("Unsupported VT!");
2155    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
2156    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
2157    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2158    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2159    }
2160
2161    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2162                                          N0, SDValue()).getValue(1);
2163
2164    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2165    SDValue Ops[] = {N1, InFlag};
2166    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
2167
2168    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2169    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2170    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2171    return NULL;
2172  }
2173
2174  case ISD::SMUL_LOHI:
2175  case ISD::UMUL_LOHI: {
2176    SDValue N0 = Node->getOperand(0);
2177    SDValue N1 = Node->getOperand(1);
2178
2179    bool isSigned = Opcode == ISD::SMUL_LOHI;
2180    if (!isSigned) {
2181      switch (NVT.getSimpleVT().SimpleTy) {
2182      default: llvm_unreachable("Unsupported VT!");
2183      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
2184      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2185      case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
2186      case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
2187      }
2188    } else {
2189      switch (NVT.getSimpleVT().SimpleTy) {
2190      default: llvm_unreachable("Unsupported VT!");
2191      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
2192      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2193      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2194      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2195      }
2196    }
2197
2198    unsigned LoReg, HiReg;
2199    switch (NVT.getSimpleVT().SimpleTy) {
2200    default: llvm_unreachable("Unsupported VT!");
2201    case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
2202    case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
2203    case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
2204    case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
2205    }
2206
2207    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2208    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2209    // Multiply is commmutative.
2210    if (!foldedLoad) {
2211      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2212      if (foldedLoad)
2213        std::swap(N0, N1);
2214    }
2215
2216    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2217                                          N0, SDValue()).getValue(1);
2218
2219    if (foldedLoad) {
2220      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2221                        InFlag };
2222      SDNode *CNode =
2223        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
2224                               array_lengthof(Ops));
2225      InFlag = SDValue(CNode, 1);
2226
2227      // Update the chain.
2228      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2229    } else {
2230      SDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag);
2231      InFlag = SDValue(CNode, 0);
2232    }
2233
2234    // Prevent use of AH in a REX instruction by referencing AX instead.
2235    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2236        !SDValue(Node, 1).use_empty()) {
2237      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2238                                              X86::AX, MVT::i16, InFlag);
2239      InFlag = Result.getValue(2);
2240      // Get the low part if needed. Don't use getCopyFromReg for aliasing
2241      // registers.
2242      if (!SDValue(Node, 0).use_empty())
2243        ReplaceUses(SDValue(Node, 1),
2244          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2245
2246      // Shift AX down 8 bits.
2247      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2248                                              Result,
2249                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
2250      // Then truncate it down to i8.
2251      ReplaceUses(SDValue(Node, 1),
2252        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2253    }
2254    // Copy the low half of the result, if it is needed.
2255    if (!SDValue(Node, 0).use_empty()) {
2256      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2257                                              LoReg, NVT, InFlag);
2258      InFlag = Result.getValue(2);
2259      ReplaceUses(SDValue(Node, 0), Result);
2260      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2261    }
2262    // Copy the high half of the result, if it is needed.
2263    if (!SDValue(Node, 1).use_empty()) {
2264      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2265                                              HiReg, NVT, InFlag);
2266      InFlag = Result.getValue(2);
2267      ReplaceUses(SDValue(Node, 1), Result);
2268      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2269    }
2270
2271    return NULL;
2272  }
2273
2274  case ISD::SDIVREM:
2275  case ISD::UDIVREM: {
2276    SDValue N0 = Node->getOperand(0);
2277    SDValue N1 = Node->getOperand(1);
2278
2279    bool isSigned = Opcode == ISD::SDIVREM;
2280    if (!isSigned) {
2281      switch (NVT.getSimpleVT().SimpleTy) {
2282      default: llvm_unreachable("Unsupported VT!");
2283      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
2284      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2285      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2286      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2287      }
2288    } else {
2289      switch (NVT.getSimpleVT().SimpleTy) {
2290      default: llvm_unreachable("Unsupported VT!");
2291      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
2292      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2293      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2294      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2295      }
2296    }
2297
2298    unsigned LoReg, HiReg, ClrReg;
2299    unsigned ClrOpcode, SExtOpcode;
2300    switch (NVT.getSimpleVT().SimpleTy) {
2301    default: llvm_unreachable("Unsupported VT!");
2302    case MVT::i8:
2303      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
2304      ClrOpcode  = 0;
2305      SExtOpcode = X86::CBW;
2306      break;
2307    case MVT::i16:
2308      LoReg = X86::AX;  HiReg = X86::DX;
2309      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
2310      SExtOpcode = X86::CWD;
2311      break;
2312    case MVT::i32:
2313      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2314      ClrOpcode  = X86::MOV32r0;
2315      SExtOpcode = X86::CDQ;
2316      break;
2317    case MVT::i64:
2318      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2319      ClrOpcode  = X86::MOV64r0;
2320      SExtOpcode = X86::CQO;
2321      break;
2322    }
2323
2324    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2325    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2326    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2327
2328    SDValue InFlag;
2329    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2330      // Special case for div8, just use a move with zero extension to AX to
2331      // clear the upper 8 bits (AH).
2332      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2333      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2334        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2335        Move =
2336          SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2337                                         MVT::Other, Ops,
2338                                         array_lengthof(Ops)), 0);
2339        Chain = Move.getValue(1);
2340        ReplaceUses(N0.getValue(1), Chain);
2341      } else {
2342        Move =
2343          SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2344        Chain = CurDAG->getEntryNode();
2345      }
2346      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2347      InFlag = Chain.getValue(1);
2348    } else {
2349      InFlag =
2350        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2351                             LoReg, N0, SDValue()).getValue(1);
2352      if (isSigned && !signBitIsZero) {
2353        // Sign extend the low part into the high part.
2354        InFlag =
2355          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2356      } else {
2357        // Zero out the high part, effectively zero extending the input.
2358        SDValue ClrNode =
2359          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
2360        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2361                                      ClrNode, InFlag).getValue(1);
2362      }
2363    }
2364
2365    if (foldedLoad) {
2366      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2367                        InFlag };
2368      SDNode *CNode =
2369        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
2370                               array_lengthof(Ops));
2371      InFlag = SDValue(CNode, 1);
2372      // Update the chain.
2373      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2374    } else {
2375      InFlag =
2376        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2377    }
2378
2379    // Prevent use of AH in a REX instruction by referencing AX instead.
2380    // Shift it down 8 bits.
2381    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2382        !SDValue(Node, 1).use_empty()) {
2383      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2384                                              X86::AX, MVT::i16, InFlag);
2385      InFlag = Result.getValue(2);
2386
2387      // If we also need AL (the quotient), get it by extracting a subreg from
2388      // Result. The fast register allocator does not like multiple CopyFromReg
2389      // nodes using aliasing registers.
2390      if (!SDValue(Node, 0).use_empty())
2391        ReplaceUses(SDValue(Node, 0),
2392          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2393
2394      // Shift AX right by 8 bits instead of using AH.
2395      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2396                                         Result,
2397                                         CurDAG->getTargetConstant(8, MVT::i8)),
2398                       0);
2399      ReplaceUses(SDValue(Node, 1),
2400        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2401    }
2402    // Copy the division (low) result, if it is needed.
2403    if (!SDValue(Node, 0).use_empty()) {
2404      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2405                                                LoReg, NVT, InFlag);
2406      InFlag = Result.getValue(2);
2407      ReplaceUses(SDValue(Node, 0), Result);
2408      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2409    }
2410    // Copy the remainder (high) result, if it is needed.
2411    if (!SDValue(Node, 1).use_empty()) {
2412      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2413                                              HiReg, NVT, InFlag);
2414      InFlag = Result.getValue(2);
2415      ReplaceUses(SDValue(Node, 1), Result);
2416      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2417    }
2418    return NULL;
2419  }
2420
2421  case X86ISD::CMP: {
2422    SDValue N0 = Node->getOperand(0);
2423    SDValue N1 = Node->getOperand(1);
2424
2425    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2426    // use a smaller encoding.
2427    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2428        HasNoSignedComparisonUses(Node))
2429      // Look past the truncate if CMP is the only use of it.
2430      N0 = N0.getOperand(0);
2431    if ((N0.getNode()->getOpcode() == ISD::AND ||
2432         (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2433        N0.getNode()->hasOneUse() &&
2434        N0.getValueType() != MVT::i8 &&
2435        X86::isZeroNode(N1)) {
2436      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2437      if (!C) break;
2438
2439      // For example, convert "testl %eax, $8" to "testb %al, $8"
2440      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2441          (!(C->getZExtValue() & 0x80) ||
2442           HasNoSignedComparisonUses(Node))) {
2443        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2444        SDValue Reg = N0.getNode()->getOperand(0);
2445
2446        // On x86-32, only the ABCD registers have 8-bit subregisters.
2447        if (!Subtarget->is64Bit()) {
2448          const TargetRegisterClass *TRC;
2449          switch (N0.getValueType().getSimpleVT().SimpleTy) {
2450          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2451          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2452          default: llvm_unreachable("Unsupported TEST operand type!");
2453          }
2454          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2455          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2456                                               Reg.getValueType(), Reg, RC), 0);
2457        }
2458
2459        // Extract the l-register.
2460        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2461                                                        MVT::i8, Reg);
2462
2463        // Emit a testb.
2464        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
2465      }
2466
2467      // For example, "testl %eax, $2048" to "testb %ah, $8".
2468      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2469          (!(C->getZExtValue() & 0x8000) ||
2470           HasNoSignedComparisonUses(Node))) {
2471        // Shift the immediate right by 8 bits.
2472        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2473                                                       MVT::i8);
2474        SDValue Reg = N0.getNode()->getOperand(0);
2475
2476        // Put the value in an ABCD register.
2477        const TargetRegisterClass *TRC;
2478        switch (N0.getValueType().getSimpleVT().SimpleTy) {
2479        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2480        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2481        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2482        default: llvm_unreachable("Unsupported TEST operand type!");
2483        }
2484        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2485        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2486                                             Reg.getValueType(), Reg, RC), 0);
2487
2488        // Extract the h-register.
2489        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2490                                                        MVT::i8, Reg);
2491
2492        // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
2493        // target GR8_NOREX registers, so make sure the register class is
2494        // forced.
2495        return CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl, MVT::i32,
2496                                      Subreg, ShiftedImm);
2497      }
2498
2499      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2500      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2501          N0.getValueType() != MVT::i16 &&
2502          (!(C->getZExtValue() & 0x8000) ||
2503           HasNoSignedComparisonUses(Node))) {
2504        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2505        SDValue Reg = N0.getNode()->getOperand(0);
2506
2507        // Extract the 16-bit subregister.
2508        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2509                                                        MVT::i16, Reg);
2510
2511        // Emit a testw.
2512        return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
2513      }
2514
2515      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2516      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2517          N0.getValueType() == MVT::i64 &&
2518          (!(C->getZExtValue() & 0x80000000) ||
2519           HasNoSignedComparisonUses(Node))) {
2520        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2521        SDValue Reg = N0.getNode()->getOperand(0);
2522
2523        // Extract the 32-bit subregister.
2524        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2525                                                        MVT::i32, Reg);
2526
2527        // Emit a testl.
2528        return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
2529      }
2530    }
2531    break;
2532  }
2533  case ISD::STORE: {
2534    // Change a chain of {load; incr or dec; store} of the same value into
2535    // a simple increment or decrement through memory of that value, if the
2536    // uses of the modified value and its address are suitable.
2537    // The DEC64m tablegen pattern is currently not able to match the case where
2538    // the EFLAGS on the original DEC are used. (This also applies to
2539    // {INC,DEC}X{64,32,16,8}.)
2540    // We'll need to improve tablegen to allow flags to be transferred from a
2541    // node in the pattern to the result node.  probably with a new keyword
2542    // for example, we have this
2543    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2544    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2545    //   (implicit EFLAGS)]>;
2546    // but maybe need something like this
2547    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2548    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2549    //   (transferrable EFLAGS)]>;
2550
2551    StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2552    SDValue StoredVal = StoreNode->getOperand(1);
2553    unsigned Opc = StoredVal->getOpcode();
2554
2555    LoadSDNode *LoadNode = 0;
2556    SDValue InputChain;
2557    if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
2558                             LoadNode, InputChain))
2559      break;
2560
2561    SDValue Base, Scale, Index, Disp, Segment;
2562    if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
2563                    Base, Scale, Index, Disp, Segment))
2564      break;
2565
2566    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2567    MemOp[0] = StoreNode->getMemOperand();
2568    MemOp[1] = LoadNode->getMemOperand();
2569    const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2570    EVT LdVT = LoadNode->getMemoryVT();
2571    unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
2572    MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
2573                                                   Node->getDebugLoc(),
2574                                                   MVT::i32, MVT::Other, Ops,
2575                                                   array_lengthof(Ops));
2576    Result->setMemRefs(MemOp, MemOp + 2);
2577
2578    ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2579    ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2580
2581    return Result;
2582  }
2583  }
2584
2585  SDNode *ResNode = SelectCode(Node);
2586
2587  DEBUG(dbgs() << "=> ";
2588        if (ResNode == NULL || ResNode == Node)
2589          Node->dump(CurDAG);
2590        else
2591          ResNode->dump(CurDAG);
2592        dbgs() << '\n');
2593
2594  return ResNode;
2595}
2596
2597bool X86DAGToDAGISel::
2598SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2599                             std::vector<SDValue> &OutOps) {
2600  SDValue Op0, Op1, Op2, Op3, Op4;
2601  switch (ConstraintCode) {
2602  case 'o':   // offsetable        ??
2603  case 'v':   // not offsetable    ??
2604  default: return true;
2605  case 'm':   // memory
2606    if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2607      return true;
2608    break;
2609  }
2610
2611  OutOps.push_back(Op0);
2612  OutOps.push_back(Op1);
2613  OutOps.push_back(Op2);
2614  OutOps.push_back(Op3);
2615  OutOps.push_back(Op4);
2616  return false;
2617}
2618
2619/// createX86ISelDag - This pass converts a legalized DAG into a
2620/// X86-specific DAG, ready for instruction scheduling.
2621///
2622FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2623                                     CodeGenOpt::Level OptLevel) {
2624  return new X86DAGToDAGISel(TM, OptLevel);
2625}
2626