X86ISelDAGToDAG.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/SelectionDAGISel.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Type.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Target/TargetOptions.h"
37using namespace llvm;
38
39STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
40
41//===----------------------------------------------------------------------===//
42//                      Pattern Matcher Implementation
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
47  /// SDValue's instead of register numbers for the leaves of the matched
48  /// tree.
49  struct X86ISelAddressMode {
50    enum {
51      RegBase,
52      FrameIndexBase
53    } BaseType;
54
55    // This is really a union, discriminated by BaseType!
56    SDValue Base_Reg;
57    int Base_FrameIndex;
58
59    unsigned Scale;
60    SDValue IndexReg;
61    int32_t Disp;
62    SDValue Segment;
63    const GlobalValue *GV;
64    const Constant *CP;
65    const BlockAddress *BlockAddr;
66    const char *ES;
67    int JT;
68    unsigned Align;    // CP alignment.
69    unsigned char SymbolFlags;  // X86II::MO_*
70
71    X86ISelAddressMode()
72      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
73        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
74        SymbolFlags(X86II::MO_NO_FLAG) {
75    }
76
77    bool hasSymbolicDisplacement() const {
78      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
79    }
80
81    bool hasBaseOrIndexReg() const {
82      return BaseType == FrameIndexBase ||
83             IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
84    }
85
86    /// isRIPRelative - Return true if this addressing mode is already RIP
87    /// relative.
88    bool isRIPRelative() const {
89      if (BaseType != RegBase) return false;
90      if (RegisterSDNode *RegNode =
91            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
92        return RegNode->getReg() == X86::RIP;
93      return false;
94    }
95
96    void setBaseReg(SDValue Reg) {
97      BaseType = RegBase;
98      Base_Reg = Reg;
99    }
100
101#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
102    void dump() {
103      dbgs() << "X86ISelAddressMode " << this << '\n';
104      dbgs() << "Base_Reg ";
105      if (Base_Reg.getNode() != 0)
106        Base_Reg.getNode()->dump();
107      else
108        dbgs() << "nul";
109      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
110             << " Scale" << Scale << '\n'
111             << "IndexReg ";
112      if (IndexReg.getNode() != 0)
113        IndexReg.getNode()->dump();
114      else
115        dbgs() << "nul";
116      dbgs() << " Disp " << Disp << '\n'
117             << "GV ";
118      if (GV)
119        GV->dump();
120      else
121        dbgs() << "nul";
122      dbgs() << " CP ";
123      if (CP)
124        CP->dump();
125      else
126        dbgs() << "nul";
127      dbgs() << '\n'
128             << "ES ";
129      if (ES)
130        dbgs() << ES;
131      else
132        dbgs() << "nul";
133      dbgs() << " JT" << JT << " Align" << Align << '\n';
134    }
135#endif
136  };
137}
138
139namespace {
140  //===--------------------------------------------------------------------===//
141  /// ISel - X86 specific code to select X86 machine instructions for
142  /// SelectionDAG operations.
143  ///
144  class X86DAGToDAGISel final : public SelectionDAGISel {
145    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
146    /// make the right decision when generating code for different targets.
147    const X86Subtarget *Subtarget;
148
149    /// OptForSize - If true, selector should try to optimize for code size
150    /// instead of performance.
151    bool OptForSize;
152
153  public:
154    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
155      : SelectionDAGISel(tm, OptLevel),
156        Subtarget(&tm.getSubtarget<X86Subtarget>()),
157        OptForSize(false) {}
158
159    const char *getPassName() const override {
160      return "X86 DAG->DAG Instruction Selection";
161    }
162
163    void EmitFunctionEntryCode() override;
164
165    bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
166
167    void PreprocessISelDAG() override;
168
169    inline bool immSext8(SDNode *N) const {
170      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
171    }
172
173    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
174    // sign extended field.
175    inline bool i64immSExt32(SDNode *N) const {
176      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
177      return (int64_t)v == (int32_t)v;
178    }
179
180// Include the pieces autogenerated from the target description.
181#include "X86GenDAGISel.inc"
182
183  private:
184    SDNode *Select(SDNode *N) override;
185    SDNode *SelectGather(SDNode *N, unsigned Opc);
186    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
187    SDNode *SelectAtomicLoadArith(SDNode *Node, MVT NVT);
188
189    bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
190    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
191    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
192    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
193    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
194                                 unsigned Depth);
195    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
196    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
197                    SDValue &Scale, SDValue &Index, SDValue &Disp,
198                    SDValue &Segment);
199    bool SelectMOV64Imm32(SDValue N, SDValue &Imm);
200    bool SelectLEAAddr(SDValue N, SDValue &Base,
201                       SDValue &Scale, SDValue &Index, SDValue &Disp,
202                       SDValue &Segment);
203    bool SelectLEA64_32Addr(SDValue N, SDValue &Base,
204                            SDValue &Scale, SDValue &Index, SDValue &Disp,
205                            SDValue &Segment);
206    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
207                           SDValue &Scale, SDValue &Index, SDValue &Disp,
208                           SDValue &Segment);
209    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
210                             SDValue &Base, SDValue &Scale,
211                             SDValue &Index, SDValue &Disp,
212                             SDValue &Segment,
213                             SDValue &NodeWithChain);
214
215    bool TryFoldLoad(SDNode *P, SDValue N,
216                     SDValue &Base, SDValue &Scale,
217                     SDValue &Index, SDValue &Disp,
218                     SDValue &Segment);
219
220    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
221    /// inline asm expressions.
222    bool SelectInlineAsmMemoryOperand(const SDValue &Op,
223                                      char ConstraintCode,
224                                      std::vector<SDValue> &OutOps) override;
225
226    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
227
228    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
229                                   SDValue &Scale, SDValue &Index,
230                                   SDValue &Disp, SDValue &Segment) {
231      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
232        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex,
233                                    getTargetLowering()->getPointerTy()) :
234        AM.Base_Reg;
235      Scale = getI8Imm(AM.Scale);
236      Index = AM.IndexReg;
237      // These are 32-bit even in 64-bit mode since RIP relative offset
238      // is 32-bit.
239      if (AM.GV)
240        Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
241                                              MVT::i32, AM.Disp,
242                                              AM.SymbolFlags);
243      else if (AM.CP)
244        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
245                                             AM.Align, AM.Disp, AM.SymbolFlags);
246      else if (AM.ES) {
247        assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
248        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
249      } else if (AM.JT != -1) {
250        assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
251        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
252      } else if (AM.BlockAddr)
253        Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
254                                             AM.SymbolFlags);
255      else
256        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
257
258      if (AM.Segment.getNode())
259        Segment = AM.Segment;
260      else
261        Segment = CurDAG->getRegister(0, MVT::i32);
262    }
263
264    /// getI8Imm - Return a target constant with the specified value, of type
265    /// i8.
266    inline SDValue getI8Imm(unsigned Imm) {
267      return CurDAG->getTargetConstant(Imm, MVT::i8);
268    }
269
270    /// getI32Imm - Return a target constant with the specified value, of type
271    /// i32.
272    inline SDValue getI32Imm(unsigned Imm) {
273      return CurDAG->getTargetConstant(Imm, MVT::i32);
274    }
275
276    /// getGlobalBaseReg - Return an SDNode that returns the value of
277    /// the global base register. Output instructions required to
278    /// initialize the global base register, if necessary.
279    ///
280    SDNode *getGlobalBaseReg();
281
282    /// getTargetMachine - Return a reference to the TargetMachine, casted
283    /// to the target-specific type.
284    const X86TargetMachine &getTargetMachine() const {
285      return static_cast<const X86TargetMachine &>(TM);
286    }
287
288    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
289    /// to the target-specific type.
290    const X86InstrInfo *getInstrInfo() const {
291      return getTargetMachine().getInstrInfo();
292    }
293  };
294}
295
296
297bool
298X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
299  if (OptLevel == CodeGenOpt::None) return false;
300
301  if (!N.hasOneUse())
302    return false;
303
304  if (N.getOpcode() != ISD::LOAD)
305    return true;
306
307  // If N is a load, do additional profitability checks.
308  if (U == Root) {
309    switch (U->getOpcode()) {
310    default: break;
311    case X86ISD::ADD:
312    case X86ISD::SUB:
313    case X86ISD::AND:
314    case X86ISD::XOR:
315    case X86ISD::OR:
316    case ISD::ADD:
317    case ISD::ADDC:
318    case ISD::ADDE:
319    case ISD::AND:
320    case ISD::OR:
321    case ISD::XOR: {
322      SDValue Op1 = U->getOperand(1);
323
324      // If the other operand is a 8-bit immediate we should fold the immediate
325      // instead. This reduces code size.
326      // e.g.
327      // movl 4(%esp), %eax
328      // addl $4, %eax
329      // vs.
330      // movl $4, %eax
331      // addl 4(%esp), %eax
332      // The former is 2 bytes shorter. In case where the increment is 1, then
333      // the saving can be 4 bytes (by using incl %eax).
334      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
335        if (Imm->getAPIntValue().isSignedIntN(8))
336          return false;
337
338      // If the other operand is a TLS address, we should fold it instead.
339      // This produces
340      // movl    %gs:0, %eax
341      // leal    i@NTPOFF(%eax), %eax
342      // instead of
343      // movl    $i@NTPOFF, %eax
344      // addl    %gs:0, %eax
345      // if the block also has an access to a second TLS address this will save
346      // a load.
347      // FIXME: This is probably also true for non-TLS addresses.
348      if (Op1.getOpcode() == X86ISD::Wrapper) {
349        SDValue Val = Op1.getOperand(0);
350        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
351          return false;
352      }
353    }
354    }
355  }
356
357  return true;
358}
359
360/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
361/// load's chain operand and move load below the call's chain operand.
362static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
363                               SDValue Call, SDValue OrigChain) {
364  SmallVector<SDValue, 8> Ops;
365  SDValue Chain = OrigChain.getOperand(0);
366  if (Chain.getNode() == Load.getNode())
367    Ops.push_back(Load.getOperand(0));
368  else {
369    assert(Chain.getOpcode() == ISD::TokenFactor &&
370           "Unexpected chain operand");
371    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
372      if (Chain.getOperand(i).getNode() == Load.getNode())
373        Ops.push_back(Load.getOperand(0));
374      else
375        Ops.push_back(Chain.getOperand(i));
376    SDValue NewChain =
377      CurDAG->getNode(ISD::TokenFactor, SDLoc(Load),
378                      MVT::Other, &Ops[0], Ops.size());
379    Ops.clear();
380    Ops.push_back(NewChain);
381  }
382  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
383    Ops.push_back(OrigChain.getOperand(i));
384  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
385  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
386                             Load.getOperand(1), Load.getOperand(2));
387
388  unsigned NumOps = Call.getNode()->getNumOperands();
389  Ops.clear();
390  Ops.push_back(SDValue(Load.getNode(), 1));
391  for (unsigned i = 1, e = NumOps; i != e; ++i)
392    Ops.push_back(Call.getOperand(i));
393  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], NumOps);
394}
395
396/// isCalleeLoad - Return true if call address is a load and it can be
397/// moved below CALLSEQ_START and the chains leading up to the call.
398/// Return the CALLSEQ_START by reference as a second output.
399/// In the case of a tail call, there isn't a callseq node between the call
400/// chain and the load.
401static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
402  // The transformation is somewhat dangerous if the call's chain was glued to
403  // the call. After MoveBelowOrigChain the load is moved between the call and
404  // the chain, this can create a cycle if the load is not folded. So it is
405  // *really* important that we are sure the load will be folded.
406  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
407    return false;
408  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
409  if (!LD ||
410      LD->isVolatile() ||
411      LD->getAddressingMode() != ISD::UNINDEXED ||
412      LD->getExtensionType() != ISD::NON_EXTLOAD)
413    return false;
414
415  // Now let's find the callseq_start.
416  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
417    if (!Chain.hasOneUse())
418      return false;
419    Chain = Chain.getOperand(0);
420  }
421
422  if (!Chain.getNumOperands())
423    return false;
424  // Since we are not checking for AA here, conservatively abort if the chain
425  // writes to memory. It's not safe to move the callee (a load) across a store.
426  if (isa<MemSDNode>(Chain.getNode()) &&
427      cast<MemSDNode>(Chain.getNode())->writeMem())
428    return false;
429  if (Chain.getOperand(0).getNode() == Callee.getNode())
430    return true;
431  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
432      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
433      Callee.getValue(1).hasOneUse())
434    return true;
435  return false;
436}
437
438void X86DAGToDAGISel::PreprocessISelDAG() {
439  // OptForSize is used in pattern predicates that isel is matching.
440  OptForSize = MF->getFunction()->getAttributes().
441    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
442
443  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
444       E = CurDAG->allnodes_end(); I != E; ) {
445    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
446
447    if (OptLevel != CodeGenOpt::None &&
448        // Only does this when target favors doesn't favor register indirect
449        // call.
450        ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) ||
451         (N->getOpcode() == X86ISD::TC_RETURN &&
452          // Only does this if load can be folded into TC_RETURN.
453          (Subtarget->is64Bit() ||
454           getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
455      /// Also try moving call address load from outside callseq_start to just
456      /// before the call to allow it to be folded.
457      ///
458      ///     [Load chain]
459      ///         ^
460      ///         |
461      ///       [Load]
462      ///       ^    ^
463      ///       |    |
464      ///      /      \--
465      ///     /          |
466      ///[CALLSEQ_START] |
467      ///     ^          |
468      ///     |          |
469      /// [LOAD/C2Reg]   |
470      ///     |          |
471      ///      \        /
472      ///       \      /
473      ///       [CALL]
474      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
475      SDValue Chain = N->getOperand(0);
476      SDValue Load  = N->getOperand(1);
477      if (!isCalleeLoad(Load, Chain, HasCallSeq))
478        continue;
479      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
480      ++NumLoadMoved;
481      continue;
482    }
483
484    // Lower fpround and fpextend nodes that target the FP stack to be store and
485    // load to the stack.  This is a gross hack.  We would like to simply mark
486    // these as being illegal, but when we do that, legalize produces these when
487    // it expands calls, then expands these in the same legalize pass.  We would
488    // like dag combine to be able to hack on these between the call expansion
489    // and the node legalization.  As such this pass basically does "really
490    // late" legalization of these inline with the X86 isel pass.
491    // FIXME: This should only happen when not compiled with -O0.
492    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
493      continue;
494
495    MVT SrcVT = N->getOperand(0).getSimpleValueType();
496    MVT DstVT = N->getSimpleValueType(0);
497
498    // If any of the sources are vectors, no fp stack involved.
499    if (SrcVT.isVector() || DstVT.isVector())
500      continue;
501
502    // If the source and destination are SSE registers, then this is a legal
503    // conversion that should not be lowered.
504    const X86TargetLowering *X86Lowering =
505        static_cast<const X86TargetLowering *>(getTargetLowering());
506    bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
507    bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
508    if (SrcIsSSE && DstIsSSE)
509      continue;
510
511    if (!SrcIsSSE && !DstIsSSE) {
512      // If this is an FPStack extension, it is a noop.
513      if (N->getOpcode() == ISD::FP_EXTEND)
514        continue;
515      // If this is a value-preserving FPStack truncation, it is a noop.
516      if (N->getConstantOperandVal(1))
517        continue;
518    }
519
520    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
521    // FPStack has extload and truncstore.  SSE can fold direct loads into other
522    // operations.  Based on this, decide what we want to do.
523    MVT MemVT;
524    if (N->getOpcode() == ISD::FP_ROUND)
525      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
526    else
527      MemVT = SrcIsSSE ? SrcVT : DstVT;
528
529    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
530    SDLoc dl(N);
531
532    // FIXME: optimize the case where the src/dest is a load or store?
533    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
534                                          N->getOperand(0),
535                                          MemTmp, MachinePointerInfo(), MemVT,
536                                          false, false, 0);
537    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
538                                        MachinePointerInfo(),
539                                        MemVT, false, false, 0);
540
541    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
542    // extload we created.  This will cause general havok on the dag because
543    // anything below the conversion could be folded into other existing nodes.
544    // To avoid invalidating 'I', back it up to the convert node.
545    --I;
546    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
547
548    // Now that we did that, the node is dead.  Increment the iterator to the
549    // next node to process, then delete N.
550    ++I;
551    CurDAG->DeleteNode(N);
552  }
553}
554
555
556/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
557/// the main function.
558void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
559                                             MachineFrameInfo *MFI) {
560  const TargetInstrInfo *TII = TM.getInstrInfo();
561  if (Subtarget->isTargetCygMing()) {
562    unsigned CallOp =
563      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
564    BuildMI(BB, DebugLoc(),
565            TII->get(CallOp)).addExternalSymbol("__main");
566  }
567}
568
569void X86DAGToDAGISel::EmitFunctionEntryCode() {
570  // If this is main, emit special code for main.
571  if (const Function *Fn = MF->getFunction())
572    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
573      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
574}
575
576static bool isDispSafeForFrameIndex(int64_t Val) {
577  // On 64-bit platforms, we can run into an issue where a frame index
578  // includes a displacement that, when added to the explicit displacement,
579  // will overflow the displacement field. Assuming that the frame index
580  // displacement fits into a 31-bit integer  (which is only slightly more
581  // aggressive than the current fundamental assumption that it fits into
582  // a 32-bit integer), a 31-bit disp should always be safe.
583  return isInt<31>(Val);
584}
585
586bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
587                                            X86ISelAddressMode &AM) {
588  int64_t Val = AM.Disp + Offset;
589  CodeModel::Model M = TM.getCodeModel();
590  if (Subtarget->is64Bit()) {
591    if (!X86::isOffsetSuitableForCodeModel(Val, M,
592                                           AM.hasSymbolicDisplacement()))
593      return true;
594    // In addition to the checks required for a register base, check that
595    // we do not try to use an unsafe Disp with a frame index.
596    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
597        !isDispSafeForFrameIndex(Val))
598      return true;
599  }
600  AM.Disp = Val;
601  return false;
602
603}
604
605bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
606  SDValue Address = N->getOperand(1);
607
608  // load gs:0 -> GS segment register.
609  // load fs:0 -> FS segment register.
610  //
611  // This optimization is valid because the GNU TLS model defines that
612  // gs:0 (or fs:0 on X86-64) contains its own address.
613  // For more information see http://people.redhat.com/drepper/tls.pdf
614  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
615    if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
616        Subtarget->isTargetLinux())
617      switch (N->getPointerInfo().getAddrSpace()) {
618      case 256:
619        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
620        return false;
621      case 257:
622        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
623        return false;
624      }
625
626  return true;
627}
628
629/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
630/// into an addressing mode.  These wrap things that will resolve down into a
631/// symbol reference.  If no match is possible, this returns true, otherwise it
632/// returns false.
633bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
634  // If the addressing mode already has a symbol as the displacement, we can
635  // never match another symbol.
636  if (AM.hasSymbolicDisplacement())
637    return true;
638
639  SDValue N0 = N.getOperand(0);
640  CodeModel::Model M = TM.getCodeModel();
641
642  // Handle X86-64 rip-relative addresses.  We check this before checking direct
643  // folding because RIP is preferable to non-RIP accesses.
644  if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
645      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
646      // they cannot be folded into immediate fields.
647      // FIXME: This can be improved for kernel and other models?
648      (M == CodeModel::Small || M == CodeModel::Kernel)) {
649    // Base and index reg must be 0 in order to use %rip as base.
650    if (AM.hasBaseOrIndexReg())
651      return true;
652    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
653      X86ISelAddressMode Backup = AM;
654      AM.GV = G->getGlobal();
655      AM.SymbolFlags = G->getTargetFlags();
656      if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
657        AM = Backup;
658        return true;
659      }
660    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
661      X86ISelAddressMode Backup = AM;
662      AM.CP = CP->getConstVal();
663      AM.Align = CP->getAlignment();
664      AM.SymbolFlags = CP->getTargetFlags();
665      if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
666        AM = Backup;
667        return true;
668      }
669    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
670      AM.ES = S->getSymbol();
671      AM.SymbolFlags = S->getTargetFlags();
672    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
673      AM.JT = J->getIndex();
674      AM.SymbolFlags = J->getTargetFlags();
675    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
676      X86ISelAddressMode Backup = AM;
677      AM.BlockAddr = BA->getBlockAddress();
678      AM.SymbolFlags = BA->getTargetFlags();
679      if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
680        AM = Backup;
681        return true;
682      }
683    } else
684      llvm_unreachable("Unhandled symbol reference node.");
685
686    if (N.getOpcode() == X86ISD::WrapperRIP)
687      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
688    return false;
689  }
690
691  // Handle the case when globals fit in our immediate field: This is true for
692  // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit
693  // mode, this only applies to a non-RIP-relative computation.
694  if (!Subtarget->is64Bit() ||
695      M == CodeModel::Small || M == CodeModel::Kernel) {
696    assert(N.getOpcode() != X86ISD::WrapperRIP &&
697           "RIP-relative addressing already handled");
698    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
699      AM.GV = G->getGlobal();
700      AM.Disp += G->getOffset();
701      AM.SymbolFlags = G->getTargetFlags();
702    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
703      AM.CP = CP->getConstVal();
704      AM.Align = CP->getAlignment();
705      AM.Disp += CP->getOffset();
706      AM.SymbolFlags = CP->getTargetFlags();
707    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
708      AM.ES = S->getSymbol();
709      AM.SymbolFlags = S->getTargetFlags();
710    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
711      AM.JT = J->getIndex();
712      AM.SymbolFlags = J->getTargetFlags();
713    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
714      AM.BlockAddr = BA->getBlockAddress();
715      AM.Disp += BA->getOffset();
716      AM.SymbolFlags = BA->getTargetFlags();
717    } else
718      llvm_unreachable("Unhandled symbol reference node.");
719    return false;
720  }
721
722  return true;
723}
724
725/// MatchAddress - Add the specified node to the specified addressing mode,
726/// returning true if it cannot be done.  This just pattern matches for the
727/// addressing mode.
728bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
729  if (MatchAddressRecursively(N, AM, 0))
730    return true;
731
732  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
733  // a smaller encoding and avoids a scaled-index.
734  if (AM.Scale == 2 &&
735      AM.BaseType == X86ISelAddressMode::RegBase &&
736      AM.Base_Reg.getNode() == 0) {
737    AM.Base_Reg = AM.IndexReg;
738    AM.Scale = 1;
739  }
740
741  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
742  // because it has a smaller encoding.
743  // TODO: Which other code models can use this?
744  if (TM.getCodeModel() == CodeModel::Small &&
745      Subtarget->is64Bit() &&
746      AM.Scale == 1 &&
747      AM.BaseType == X86ISelAddressMode::RegBase &&
748      AM.Base_Reg.getNode() == 0 &&
749      AM.IndexReg.getNode() == 0 &&
750      AM.SymbolFlags == X86II::MO_NO_FLAG &&
751      AM.hasSymbolicDisplacement())
752    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
753
754  return false;
755}
756
757// Insert a node into the DAG at least before the Pos node's position. This
758// will reposition the node as needed, and will assign it a node ID that is <=
759// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
760// IDs! The selection DAG must no longer depend on their uniqueness when this
761// is used.
762static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
763  if (N.getNode()->getNodeId() == -1 ||
764      N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
765    DAG.RepositionNode(Pos.getNode(), N.getNode());
766    N.getNode()->setNodeId(Pos.getNode()->getNodeId());
767  }
768}
769
770// Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
771// allows us to convert the shift and and into an h-register extract and
772// a scaled index. Returns false if the simplification is performed.
773static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
774                                      uint64_t Mask,
775                                      SDValue Shift, SDValue X,
776                                      X86ISelAddressMode &AM) {
777  if (Shift.getOpcode() != ISD::SRL ||
778      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
779      !Shift.hasOneUse())
780    return true;
781
782  int ScaleLog = 8 - Shift.getConstantOperandVal(1);
783  if (ScaleLog <= 0 || ScaleLog >= 4 ||
784      Mask != (0xffu << ScaleLog))
785    return true;
786
787  MVT VT = N.getSimpleValueType();
788  SDLoc DL(N);
789  SDValue Eight = DAG.getConstant(8, MVT::i8);
790  SDValue NewMask = DAG.getConstant(0xff, VT);
791  SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
792  SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
793  SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
794  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
795
796  // Insert the new nodes into the topological ordering. We must do this in
797  // a valid topological ordering as nothing is going to go back and re-sort
798  // these nodes. We continually insert before 'N' in sequence as this is
799  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
800  // hierarchy left to express.
801  InsertDAGNode(DAG, N, Eight);
802  InsertDAGNode(DAG, N, Srl);
803  InsertDAGNode(DAG, N, NewMask);
804  InsertDAGNode(DAG, N, And);
805  InsertDAGNode(DAG, N, ShlCount);
806  InsertDAGNode(DAG, N, Shl);
807  DAG.ReplaceAllUsesWith(N, Shl);
808  AM.IndexReg = And;
809  AM.Scale = (1 << ScaleLog);
810  return false;
811}
812
813// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
814// allows us to fold the shift into this addressing mode. Returns false if the
815// transform succeeded.
816static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
817                                        uint64_t Mask,
818                                        SDValue Shift, SDValue X,
819                                        X86ISelAddressMode &AM) {
820  if (Shift.getOpcode() != ISD::SHL ||
821      !isa<ConstantSDNode>(Shift.getOperand(1)))
822    return true;
823
824  // Not likely to be profitable if either the AND or SHIFT node has more
825  // than one use (unless all uses are for address computation). Besides,
826  // isel mechanism requires their node ids to be reused.
827  if (!N.hasOneUse() || !Shift.hasOneUse())
828    return true;
829
830  // Verify that the shift amount is something we can fold.
831  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
832  if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
833    return true;
834
835  MVT VT = N.getSimpleValueType();
836  SDLoc DL(N);
837  SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
838  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
839  SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
840
841  // Insert the new nodes into the topological ordering. We must do this in
842  // a valid topological ordering as nothing is going to go back and re-sort
843  // these nodes. We continually insert before 'N' in sequence as this is
844  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
845  // hierarchy left to express.
846  InsertDAGNode(DAG, N, NewMask);
847  InsertDAGNode(DAG, N, NewAnd);
848  InsertDAGNode(DAG, N, NewShift);
849  DAG.ReplaceAllUsesWith(N, NewShift);
850
851  AM.Scale = 1 << ShiftAmt;
852  AM.IndexReg = NewAnd;
853  return false;
854}
855
856// Implement some heroics to detect shifts of masked values where the mask can
857// be replaced by extending the shift and undoing that in the addressing mode
858// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
859// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
860// the addressing mode. This results in code such as:
861//
862//   int f(short *y, int *lookup_table) {
863//     ...
864//     return *y + lookup_table[*y >> 11];
865//   }
866//
867// Turning into:
868//   movzwl (%rdi), %eax
869//   movl %eax, %ecx
870//   shrl $11, %ecx
871//   addl (%rsi,%rcx,4), %eax
872//
873// Instead of:
874//   movzwl (%rdi), %eax
875//   movl %eax, %ecx
876//   shrl $9, %ecx
877//   andl $124, %rcx
878//   addl (%rsi,%rcx), %eax
879//
880// Note that this function assumes the mask is provided as a mask *after* the
881// value is shifted. The input chain may or may not match that, but computing
882// such a mask is trivial.
883static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
884                                    uint64_t Mask,
885                                    SDValue Shift, SDValue X,
886                                    X86ISelAddressMode &AM) {
887  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
888      !isa<ConstantSDNode>(Shift.getOperand(1)))
889    return true;
890
891  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
892  unsigned MaskLZ = countLeadingZeros(Mask);
893  unsigned MaskTZ = countTrailingZeros(Mask);
894
895  // The amount of shift we're trying to fit into the addressing mode is taken
896  // from the trailing zeros of the mask.
897  unsigned AMShiftAmt = MaskTZ;
898
899  // There is nothing we can do here unless the mask is removing some bits.
900  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
901  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
902
903  // We also need to ensure that mask is a continuous run of bits.
904  if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
905
906  // Scale the leading zero count down based on the actual size of the value.
907  // Also scale it down based on the size of the shift.
908  MaskLZ -= (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
909
910  // The final check is to ensure that any masked out high bits of X are
911  // already known to be zero. Otherwise, the mask has a semantic impact
912  // other than masking out a couple of low bits. Unfortunately, because of
913  // the mask, zero extensions will be removed from operands in some cases.
914  // This code works extra hard to look through extensions because we can
915  // replace them with zero extensions cheaply if necessary.
916  bool ReplacingAnyExtend = false;
917  if (X.getOpcode() == ISD::ANY_EXTEND) {
918    unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
919                          X.getOperand(0).getSimpleValueType().getSizeInBits();
920    // Assume that we'll replace the any-extend with a zero-extend, and
921    // narrow the search to the extended value.
922    X = X.getOperand(0);
923    MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
924    ReplacingAnyExtend = true;
925  }
926  APInt MaskedHighBits =
927    APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
928  APInt KnownZero, KnownOne;
929  DAG.ComputeMaskedBits(X, KnownZero, KnownOne);
930  if (MaskedHighBits != KnownZero) return true;
931
932  // We've identified a pattern that can be transformed into a single shift
933  // and an addressing mode. Make it so.
934  MVT VT = N.getSimpleValueType();
935  if (ReplacingAnyExtend) {
936    assert(X.getValueType() != VT);
937    // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
938    SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
939    InsertDAGNode(DAG, N, NewX);
940    X = NewX;
941  }
942  SDLoc DL(N);
943  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
944  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
945  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
946  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
947
948  // Insert the new nodes into the topological ordering. We must do this in
949  // a valid topological ordering as nothing is going to go back and re-sort
950  // these nodes. We continually insert before 'N' in sequence as this is
951  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
952  // hierarchy left to express.
953  InsertDAGNode(DAG, N, NewSRLAmt);
954  InsertDAGNode(DAG, N, NewSRL);
955  InsertDAGNode(DAG, N, NewSHLAmt);
956  InsertDAGNode(DAG, N, NewSHL);
957  DAG.ReplaceAllUsesWith(N, NewSHL);
958
959  AM.Scale = 1 << AMShiftAmt;
960  AM.IndexReg = NewSRL;
961  return false;
962}
963
964bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
965                                              unsigned Depth) {
966  SDLoc dl(N);
967  DEBUG({
968      dbgs() << "MatchAddress: ";
969      AM.dump();
970    });
971  // Limit recursion.
972  if (Depth > 5)
973    return MatchAddressBase(N, AM);
974
975  // If this is already a %rip relative address, we can only merge immediates
976  // into it.  Instead of handling this in every case, we handle it here.
977  // RIP relative addressing: %rip + 32-bit displacement!
978  if (AM.isRIPRelative()) {
979    // FIXME: JumpTable and ExternalSymbol address currently don't like
980    // displacements.  It isn't very important, but this should be fixed for
981    // consistency.
982    if (!AM.ES && AM.JT != -1) return true;
983
984    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
985      if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
986        return false;
987    return true;
988  }
989
990  switch (N.getOpcode()) {
991  default: break;
992  case ISD::Constant: {
993    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
994    if (!FoldOffsetIntoAddress(Val, AM))
995      return false;
996    break;
997  }
998
999  case X86ISD::Wrapper:
1000  case X86ISD::WrapperRIP:
1001    if (!MatchWrapper(N, AM))
1002      return false;
1003    break;
1004
1005  case ISD::LOAD:
1006    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
1007      return false;
1008    break;
1009
1010  case ISD::FrameIndex:
1011    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1012        AM.Base_Reg.getNode() == 0 &&
1013        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1014      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1015      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1016      return false;
1017    }
1018    break;
1019
1020  case ISD::SHL:
1021    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
1022      break;
1023
1024    if (ConstantSDNode
1025          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
1026      unsigned Val = CN->getZExtValue();
1027      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1028      // that the base operand remains free for further matching. If
1029      // the base doesn't end up getting used, a post-processing step
1030      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1031      if (Val == 1 || Val == 2 || Val == 3) {
1032        AM.Scale = 1 << Val;
1033        SDValue ShVal = N.getNode()->getOperand(0);
1034
1035        // Okay, we know that we have a scale by now.  However, if the scaled
1036        // value is an add of something and a constant, we can fold the
1037        // constant into the disp field here.
1038        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1039          AM.IndexReg = ShVal.getNode()->getOperand(0);
1040          ConstantSDNode *AddVal =
1041            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1042          uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1043          if (!FoldOffsetIntoAddress(Disp, AM))
1044            return false;
1045        }
1046
1047        AM.IndexReg = ShVal;
1048        return false;
1049      }
1050    }
1051    break;
1052
1053  case ISD::SRL: {
1054    // Scale must not be used already.
1055    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1056
1057    SDValue And = N.getOperand(0);
1058    if (And.getOpcode() != ISD::AND) break;
1059    SDValue X = And.getOperand(0);
1060
1061    // We only handle up to 64-bit values here as those are what matter for
1062    // addressing mode optimizations.
1063    if (X.getSimpleValueType().getSizeInBits() > 64) break;
1064
1065    // The mask used for the transform is expected to be post-shift, but we
1066    // found the shift first so just apply the shift to the mask before passing
1067    // it down.
1068    if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1069        !isa<ConstantSDNode>(And.getOperand(1)))
1070      break;
1071    uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1072
1073    // Try to fold the mask and shift into the scale, and return false if we
1074    // succeed.
1075    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1076      return false;
1077    break;
1078  }
1079
1080  case ISD::SMUL_LOHI:
1081  case ISD::UMUL_LOHI:
1082    // A mul_lohi where we need the low part can be folded as a plain multiply.
1083    if (N.getResNo() != 0) break;
1084    // FALL THROUGH
1085  case ISD::MUL:
1086  case X86ISD::MUL_IMM:
1087    // X*[3,5,9] -> X+X*[2,4,8]
1088    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1089        AM.Base_Reg.getNode() == 0 &&
1090        AM.IndexReg.getNode() == 0) {
1091      if (ConstantSDNode
1092            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1093        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1094            CN->getZExtValue() == 9) {
1095          AM.Scale = unsigned(CN->getZExtValue())-1;
1096
1097          SDValue MulVal = N.getNode()->getOperand(0);
1098          SDValue Reg;
1099
1100          // Okay, we know that we have a scale by now.  However, if the scaled
1101          // value is an add of something and a constant, we can fold the
1102          // constant into the disp field here.
1103          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1104              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1105            Reg = MulVal.getNode()->getOperand(0);
1106            ConstantSDNode *AddVal =
1107              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1108            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1109            if (FoldOffsetIntoAddress(Disp, AM))
1110              Reg = N.getNode()->getOperand(0);
1111          } else {
1112            Reg = N.getNode()->getOperand(0);
1113          }
1114
1115          AM.IndexReg = AM.Base_Reg = Reg;
1116          return false;
1117        }
1118    }
1119    break;
1120
1121  case ISD::SUB: {
1122    // Given A-B, if A can be completely folded into the address and
1123    // the index field with the index field unused, use -B as the index.
1124    // This is a win if a has multiple parts that can be folded into
1125    // the address. Also, this saves a mov if the base register has
1126    // other uses, since it avoids a two-address sub instruction, however
1127    // it costs an additional mov if the index register has other uses.
1128
1129    // Add an artificial use to this node so that we can keep track of
1130    // it if it gets CSE'd with a different node.
1131    HandleSDNode Handle(N);
1132
1133    // Test if the LHS of the sub can be folded.
1134    X86ISelAddressMode Backup = AM;
1135    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1136      AM = Backup;
1137      break;
1138    }
1139    // Test if the index field is free for use.
1140    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1141      AM = Backup;
1142      break;
1143    }
1144
1145    int Cost = 0;
1146    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1147    // If the RHS involves a register with multiple uses, this
1148    // transformation incurs an extra mov, due to the neg instruction
1149    // clobbering its operand.
1150    if (!RHS.getNode()->hasOneUse() ||
1151        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1152        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1153        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1154        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1155         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1156      ++Cost;
1157    // If the base is a register with multiple uses, this
1158    // transformation may save a mov.
1159    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1160         AM.Base_Reg.getNode() &&
1161         !AM.Base_Reg.getNode()->hasOneUse()) ||
1162        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1163      --Cost;
1164    // If the folded LHS was interesting, this transformation saves
1165    // address arithmetic.
1166    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1167        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1168        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1169      --Cost;
1170    // If it doesn't look like it may be an overall win, don't do it.
1171    if (Cost >= 0) {
1172      AM = Backup;
1173      break;
1174    }
1175
1176    // Ok, the transformation is legal and appears profitable. Go for it.
1177    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1178    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1179    AM.IndexReg = Neg;
1180    AM.Scale = 1;
1181
1182    // Insert the new nodes into the topological ordering.
1183    InsertDAGNode(*CurDAG, N, Zero);
1184    InsertDAGNode(*CurDAG, N, Neg);
1185    return false;
1186  }
1187
1188  case ISD::ADD: {
1189    // Add an artificial use to this node so that we can keep track of
1190    // it if it gets CSE'd with a different node.
1191    HandleSDNode Handle(N);
1192
1193    X86ISelAddressMode Backup = AM;
1194    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1195        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1196      return false;
1197    AM = Backup;
1198
1199    // Try again after commuting the operands.
1200    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
1201        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1202      return false;
1203    AM = Backup;
1204
1205    // If we couldn't fold both operands into the address at the same time,
1206    // see if we can just put each operand into a register and fold at least
1207    // the add.
1208    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1209        !AM.Base_Reg.getNode() &&
1210        !AM.IndexReg.getNode()) {
1211      N = Handle.getValue();
1212      AM.Base_Reg = N.getOperand(0);
1213      AM.IndexReg = N.getOperand(1);
1214      AM.Scale = 1;
1215      return false;
1216    }
1217    N = Handle.getValue();
1218    break;
1219  }
1220
1221  case ISD::OR:
1222    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1223    if (CurDAG->isBaseWithConstantOffset(N)) {
1224      X86ISelAddressMode Backup = AM;
1225      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
1226
1227      // Start with the LHS as an addr mode.
1228      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1229          !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
1230        return false;
1231      AM = Backup;
1232    }
1233    break;
1234
1235  case ISD::AND: {
1236    // Perform some heroic transforms on an and of a constant-count shift
1237    // with a constant to enable use of the scaled offset field.
1238
1239    // Scale must not be used already.
1240    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1241
1242    SDValue Shift = N.getOperand(0);
1243    if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1244    SDValue X = Shift.getOperand(0);
1245
1246    // We only handle up to 64-bit values here as those are what matter for
1247    // addressing mode optimizations.
1248    if (X.getSimpleValueType().getSizeInBits() > 64) break;
1249
1250    if (!isa<ConstantSDNode>(N.getOperand(1)))
1251      break;
1252    uint64_t Mask = N.getConstantOperandVal(1);
1253
1254    // Try to fold the mask and shift into an extract and scale.
1255    if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1256      return false;
1257
1258    // Try to fold the mask and shift directly into the scale.
1259    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1260      return false;
1261
1262    // Try to swap the mask and shift to place shifts which can be done as
1263    // a scale on the outside of the mask.
1264    if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1265      return false;
1266    break;
1267  }
1268  }
1269
1270  return MatchAddressBase(N, AM);
1271}
1272
1273/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1274/// specified addressing mode without any further recursion.
1275bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1276  // Is the base register already occupied?
1277  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1278    // If so, check to see if the scale index register is set.
1279    if (AM.IndexReg.getNode() == 0) {
1280      AM.IndexReg = N;
1281      AM.Scale = 1;
1282      return false;
1283    }
1284
1285    // Otherwise, we cannot select it.
1286    return true;
1287  }
1288
1289  // Default, generate it as a register.
1290  AM.BaseType = X86ISelAddressMode::RegBase;
1291  AM.Base_Reg = N;
1292  return false;
1293}
1294
1295/// SelectAddr - returns true if it is able pattern match an addressing mode.
1296/// It returns the operands which make up the maximal addressing mode it can
1297/// match by reference.
1298///
1299/// Parent is the parent node of the addr operand that is being matched.  It
1300/// is always a load, store, atomic node, or null.  It is only null when
1301/// checking memory operands for inline asm nodes.
1302bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1303                                 SDValue &Scale, SDValue &Index,
1304                                 SDValue &Disp, SDValue &Segment) {
1305  X86ISelAddressMode AM;
1306
1307  if (Parent &&
1308      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1309      // that are not a MemSDNode, and thus don't have proper addrspace info.
1310      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1311      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1312      Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
1313      Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
1314      Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
1315    unsigned AddrSpace =
1316      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1317    // AddrSpace 256 -> GS, 257 -> FS.
1318    if (AddrSpace == 256)
1319      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1320    if (AddrSpace == 257)
1321      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1322  }
1323
1324  if (MatchAddress(N, AM))
1325    return false;
1326
1327  MVT VT = N.getSimpleValueType();
1328  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1329    if (!AM.Base_Reg.getNode())
1330      AM.Base_Reg = CurDAG->getRegister(0, VT);
1331  }
1332
1333  if (!AM.IndexReg.getNode())
1334    AM.IndexReg = CurDAG->getRegister(0, VT);
1335
1336  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1337  return true;
1338}
1339
1340/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1341/// match a load whose top elements are either undef or zeros.  The load flavor
1342/// is derived from the type of N, which is either v4f32 or v2f64.
1343///
1344/// We also return:
1345///   PatternChainNode: this is the matched node that has a chain input and
1346///   output.
1347bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1348                                          SDValue N, SDValue &Base,
1349                                          SDValue &Scale, SDValue &Index,
1350                                          SDValue &Disp, SDValue &Segment,
1351                                          SDValue &PatternNodeWithChain) {
1352  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1353    PatternNodeWithChain = N.getOperand(0);
1354    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1355        PatternNodeWithChain.hasOneUse() &&
1356        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1357        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1358      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1359      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1360        return false;
1361      return true;
1362    }
1363  }
1364
1365  // Also handle the case where we explicitly require zeros in the top
1366  // elements.  This is a vector shuffle from the zero vector.
1367  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1368      // Check to see if the top elements are all zeros (or bitcast of zeros).
1369      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1370      N.getOperand(0).getNode()->hasOneUse() &&
1371      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1372      N.getOperand(0).getOperand(0).hasOneUse() &&
1373      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1374      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1375    // Okay, this is a zero extending load.  Fold it.
1376    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1377    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1378      return false;
1379    PatternNodeWithChain = SDValue(LD, 0);
1380    return true;
1381  }
1382  return false;
1383}
1384
1385
1386bool X86DAGToDAGISel::SelectMOV64Imm32(SDValue N, SDValue &Imm) {
1387  if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1388    uint64_t ImmVal = CN->getZExtValue();
1389    if ((uint32_t)ImmVal != (uint64_t)ImmVal)
1390      return false;
1391
1392    Imm = CurDAG->getTargetConstant(ImmVal, MVT::i64);
1393    return true;
1394  }
1395
1396  // In static codegen with small code model, we can get the address of a label
1397  // into a register with 'movl'. TableGen has already made sure we're looking
1398  // at a label of some kind.
1399  assert(N->getOpcode() == X86ISD::Wrapper &&
1400         "Unexpected node type for MOV32ri64");
1401  N = N.getOperand(0);
1402
1403  if (N->getOpcode() != ISD::TargetConstantPool &&
1404      N->getOpcode() != ISD::TargetJumpTable &&
1405      N->getOpcode() != ISD::TargetGlobalAddress &&
1406      N->getOpcode() != ISD::TargetExternalSymbol &&
1407      N->getOpcode() != ISD::TargetBlockAddress)
1408    return false;
1409
1410  Imm = N;
1411  return TM.getCodeModel() == CodeModel::Small;
1412}
1413
1414bool X86DAGToDAGISel::SelectLEA64_32Addr(SDValue N, SDValue &Base,
1415                                         SDValue &Scale, SDValue &Index,
1416                                         SDValue &Disp, SDValue &Segment) {
1417  if (!SelectLEAAddr(N, Base, Scale, Index, Disp, Segment))
1418    return false;
1419
1420  SDLoc DL(N);
1421  RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
1422  if (RN && RN->getReg() == 0)
1423    Base = CurDAG->getRegister(0, MVT::i64);
1424  else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(N)) {
1425    // Base could already be %rip, particularly in the x32 ABI.
1426    Base = SDValue(CurDAG->getMachineNode(
1427                       TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1428                       CurDAG->getTargetConstant(0, MVT::i64),
1429                       Base,
1430                       CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1431                   0);
1432  }
1433
1434  RN = dyn_cast<RegisterSDNode>(Index);
1435  if (RN && RN->getReg() == 0)
1436    Index = CurDAG->getRegister(0, MVT::i64);
1437  else {
1438    assert(Index.getValueType() == MVT::i32 &&
1439           "Expect to be extending 32-bit registers for use in LEA");
1440    Index = SDValue(CurDAG->getMachineNode(
1441                        TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1442                        CurDAG->getTargetConstant(0, MVT::i64),
1443                        Index,
1444                        CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1445                    0);
1446  }
1447
1448  return true;
1449}
1450
1451/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1452/// mode it matches can be cost effectively emitted as an LEA instruction.
1453bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1454                                    SDValue &Base, SDValue &Scale,
1455                                    SDValue &Index, SDValue &Disp,
1456                                    SDValue &Segment) {
1457  X86ISelAddressMode AM;
1458
1459  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1460  // segments.
1461  SDValue Copy = AM.Segment;
1462  SDValue T = CurDAG->getRegister(0, MVT::i32);
1463  AM.Segment = T;
1464  if (MatchAddress(N, AM))
1465    return false;
1466  assert (T == AM.Segment);
1467  AM.Segment = Copy;
1468
1469  MVT VT = N.getSimpleValueType();
1470  unsigned Complexity = 0;
1471  if (AM.BaseType == X86ISelAddressMode::RegBase)
1472    if (AM.Base_Reg.getNode())
1473      Complexity = 1;
1474    else
1475      AM.Base_Reg = CurDAG->getRegister(0, VT);
1476  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1477    Complexity = 4;
1478
1479  if (AM.IndexReg.getNode())
1480    Complexity++;
1481  else
1482    AM.IndexReg = CurDAG->getRegister(0, VT);
1483
1484  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1485  // a simple shift.
1486  if (AM.Scale > 1)
1487    Complexity++;
1488
1489  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1490  // to a LEA. This is determined with some expermentation but is by no means
1491  // optimal (especially for code size consideration). LEA is nice because of
1492  // its three-address nature. Tweak the cost function again when we can run
1493  // convertToThreeAddress() at register allocation time.
1494  if (AM.hasSymbolicDisplacement()) {
1495    // For X86-64, we should always use lea to materialize RIP relative
1496    // addresses.
1497    if (Subtarget->is64Bit())
1498      Complexity = 4;
1499    else
1500      Complexity += 2;
1501  }
1502
1503  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1504    Complexity++;
1505
1506  // If it isn't worth using an LEA, reject it.
1507  if (Complexity <= 2)
1508    return false;
1509
1510  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1511  return true;
1512}
1513
1514/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1515bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1516                                        SDValue &Scale, SDValue &Index,
1517                                        SDValue &Disp, SDValue &Segment) {
1518  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1519  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1520
1521  X86ISelAddressMode AM;
1522  AM.GV = GA->getGlobal();
1523  AM.Disp += GA->getOffset();
1524  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1525  AM.SymbolFlags = GA->getTargetFlags();
1526
1527  if (N.getValueType() == MVT::i32) {
1528    AM.Scale = 1;
1529    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1530  } else {
1531    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1532  }
1533
1534  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1535  return true;
1536}
1537
1538
1539bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1540                                  SDValue &Base, SDValue &Scale,
1541                                  SDValue &Index, SDValue &Disp,
1542                                  SDValue &Segment) {
1543  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1544      !IsProfitableToFold(N, P, P) ||
1545      !IsLegalToFold(N, P, P, OptLevel))
1546    return false;
1547
1548  return SelectAddr(N.getNode(),
1549                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1550}
1551
1552/// getGlobalBaseReg - Return an SDNode that returns the value of
1553/// the global base register. Output instructions required to
1554/// initialize the global base register, if necessary.
1555///
1556SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1557  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1558  return CurDAG->getRegister(GlobalBaseReg,
1559                             getTargetLowering()->getPointerTy()).getNode();
1560}
1561
1562SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1563  SDValue Chain = Node->getOperand(0);
1564  SDValue In1 = Node->getOperand(1);
1565  SDValue In2L = Node->getOperand(2);
1566  SDValue In2H = Node->getOperand(3);
1567
1568  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1569  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1570    return NULL;
1571  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1572  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1573  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1574  SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node),
1575                                           MVT::i32, MVT::i32, MVT::Other, Ops);
1576  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1577  return ResNode;
1578}
1579
1580/// Atomic opcode table
1581///
1582enum AtomicOpc {
1583  ADD,
1584  SUB,
1585  INC,
1586  DEC,
1587  OR,
1588  AND,
1589  XOR,
1590  AtomicOpcEnd
1591};
1592
1593enum AtomicSz {
1594  ConstantI8,
1595  I8,
1596  SextConstantI16,
1597  ConstantI16,
1598  I16,
1599  SextConstantI32,
1600  ConstantI32,
1601  I32,
1602  SextConstantI64,
1603  ConstantI64,
1604  I64,
1605  AtomicSzEnd
1606};
1607
1608static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1609  {
1610    X86::LOCK_ADD8mi,
1611    X86::LOCK_ADD8mr,
1612    X86::LOCK_ADD16mi8,
1613    X86::LOCK_ADD16mi,
1614    X86::LOCK_ADD16mr,
1615    X86::LOCK_ADD32mi8,
1616    X86::LOCK_ADD32mi,
1617    X86::LOCK_ADD32mr,
1618    X86::LOCK_ADD64mi8,
1619    X86::LOCK_ADD64mi32,
1620    X86::LOCK_ADD64mr,
1621  },
1622  {
1623    X86::LOCK_SUB8mi,
1624    X86::LOCK_SUB8mr,
1625    X86::LOCK_SUB16mi8,
1626    X86::LOCK_SUB16mi,
1627    X86::LOCK_SUB16mr,
1628    X86::LOCK_SUB32mi8,
1629    X86::LOCK_SUB32mi,
1630    X86::LOCK_SUB32mr,
1631    X86::LOCK_SUB64mi8,
1632    X86::LOCK_SUB64mi32,
1633    X86::LOCK_SUB64mr,
1634  },
1635  {
1636    0,
1637    X86::LOCK_INC8m,
1638    0,
1639    0,
1640    X86::LOCK_INC16m,
1641    0,
1642    0,
1643    X86::LOCK_INC32m,
1644    0,
1645    0,
1646    X86::LOCK_INC64m,
1647  },
1648  {
1649    0,
1650    X86::LOCK_DEC8m,
1651    0,
1652    0,
1653    X86::LOCK_DEC16m,
1654    0,
1655    0,
1656    X86::LOCK_DEC32m,
1657    0,
1658    0,
1659    X86::LOCK_DEC64m,
1660  },
1661  {
1662    X86::LOCK_OR8mi,
1663    X86::LOCK_OR8mr,
1664    X86::LOCK_OR16mi8,
1665    X86::LOCK_OR16mi,
1666    X86::LOCK_OR16mr,
1667    X86::LOCK_OR32mi8,
1668    X86::LOCK_OR32mi,
1669    X86::LOCK_OR32mr,
1670    X86::LOCK_OR64mi8,
1671    X86::LOCK_OR64mi32,
1672    X86::LOCK_OR64mr,
1673  },
1674  {
1675    X86::LOCK_AND8mi,
1676    X86::LOCK_AND8mr,
1677    X86::LOCK_AND16mi8,
1678    X86::LOCK_AND16mi,
1679    X86::LOCK_AND16mr,
1680    X86::LOCK_AND32mi8,
1681    X86::LOCK_AND32mi,
1682    X86::LOCK_AND32mr,
1683    X86::LOCK_AND64mi8,
1684    X86::LOCK_AND64mi32,
1685    X86::LOCK_AND64mr,
1686  },
1687  {
1688    X86::LOCK_XOR8mi,
1689    X86::LOCK_XOR8mr,
1690    X86::LOCK_XOR16mi8,
1691    X86::LOCK_XOR16mi,
1692    X86::LOCK_XOR16mr,
1693    X86::LOCK_XOR32mi8,
1694    X86::LOCK_XOR32mi,
1695    X86::LOCK_XOR32mr,
1696    X86::LOCK_XOR64mi8,
1697    X86::LOCK_XOR64mi32,
1698    X86::LOCK_XOR64mr,
1699  }
1700};
1701
1702// Return the target constant operand for atomic-load-op and do simple
1703// translations, such as from atomic-load-add to lock-sub. The return value is
1704// one of the following 3 cases:
1705// + target-constant, the operand could be supported as a target constant.
1706// + empty, the operand is not needed any more with the new op selected.
1707// + non-empty, otherwise.
1708static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
1709                                                SDLoc dl,
1710                                                enum AtomicOpc &Op, MVT NVT,
1711                                                SDValue Val) {
1712  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
1713    int64_t CNVal = CN->getSExtValue();
1714    // Quit if not 32-bit imm.
1715    if ((int32_t)CNVal != CNVal)
1716      return Val;
1717    // For atomic-load-add, we could do some optimizations.
1718    if (Op == ADD) {
1719      // Translate to INC/DEC if ADD by 1 or -1.
1720      if ((CNVal == 1) || (CNVal == -1)) {
1721        Op = (CNVal == 1) ? INC : DEC;
1722        // No more constant operand after being translated into INC/DEC.
1723        return SDValue();
1724      }
1725      // Translate to SUB if ADD by negative value.
1726      if (CNVal < 0) {
1727        Op = SUB;
1728        CNVal = -CNVal;
1729      }
1730    }
1731    return CurDAG->getTargetConstant(CNVal, NVT);
1732  }
1733
1734  // If the value operand is single-used, try to optimize it.
1735  if (Op == ADD && Val.hasOneUse()) {
1736    // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
1737    if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
1738      Op = SUB;
1739      return Val.getOperand(1);
1740    }
1741    // A special case for i16, which needs truncating as, in most cases, it's
1742    // promoted to i32. We will translate
1743    // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
1744    if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
1745        Val.getOperand(0).getOpcode() == ISD::SUB &&
1746        X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
1747      Op = SUB;
1748      Val = Val.getOperand(0);
1749      return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
1750                                            Val.getOperand(1));
1751    }
1752  }
1753
1754  return Val;
1755}
1756
1757SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, MVT NVT) {
1758  if (Node->hasAnyUseOfValue(0))
1759    return 0;
1760
1761  SDLoc dl(Node);
1762
1763  // Optimize common patterns for __sync_or_and_fetch and similar arith
1764  // operations where the result is not used. This allows us to use the "lock"
1765  // version of the arithmetic instruction.
1766  SDValue Chain = Node->getOperand(0);
1767  SDValue Ptr = Node->getOperand(1);
1768  SDValue Val = Node->getOperand(2);
1769  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1770  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1771    return 0;
1772
1773  // Which index into the table.
1774  enum AtomicOpc Op;
1775  switch (Node->getOpcode()) {
1776    default:
1777      return 0;
1778    case ISD::ATOMIC_LOAD_OR:
1779      Op = OR;
1780      break;
1781    case ISD::ATOMIC_LOAD_AND:
1782      Op = AND;
1783      break;
1784    case ISD::ATOMIC_LOAD_XOR:
1785      Op = XOR;
1786      break;
1787    case ISD::ATOMIC_LOAD_ADD:
1788      Op = ADD;
1789      break;
1790  }
1791
1792  Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val);
1793  bool isUnOp = !Val.getNode();
1794  bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
1795
1796  unsigned Opc = 0;
1797  switch (NVT.SimpleTy) {
1798    default: return 0;
1799    case MVT::i8:
1800      if (isCN)
1801        Opc = AtomicOpcTbl[Op][ConstantI8];
1802      else
1803        Opc = AtomicOpcTbl[Op][I8];
1804      break;
1805    case MVT::i16:
1806      if (isCN) {
1807        if (immSext8(Val.getNode()))
1808          Opc = AtomicOpcTbl[Op][SextConstantI16];
1809        else
1810          Opc = AtomicOpcTbl[Op][ConstantI16];
1811      } else
1812        Opc = AtomicOpcTbl[Op][I16];
1813      break;
1814    case MVT::i32:
1815      if (isCN) {
1816        if (immSext8(Val.getNode()))
1817          Opc = AtomicOpcTbl[Op][SextConstantI32];
1818        else
1819          Opc = AtomicOpcTbl[Op][ConstantI32];
1820      } else
1821        Opc = AtomicOpcTbl[Op][I32];
1822      break;
1823    case MVT::i64:
1824      Opc = AtomicOpcTbl[Op][I64];
1825      if (isCN) {
1826        if (immSext8(Val.getNode()))
1827          Opc = AtomicOpcTbl[Op][SextConstantI64];
1828        else if (i64immSExt32(Val.getNode()))
1829          Opc = AtomicOpcTbl[Op][ConstantI64];
1830      }
1831      break;
1832  }
1833
1834  assert(Opc != 0 && "Invalid arith lock transform!");
1835
1836  SDValue Ret;
1837  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1838                                                 dl, NVT), 0);
1839  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1840  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1841  if (isUnOp) {
1842    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1843    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1844  } else {
1845    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1846    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1847  }
1848  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1849  SDValue RetVals[] = { Undef, Ret };
1850  return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1851}
1852
1853/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1854/// any uses which require the SF or OF bits to be accurate.
1855static bool HasNoSignedComparisonUses(SDNode *N) {
1856  // Examine each user of the node.
1857  for (SDNode::use_iterator UI = N->use_begin(),
1858         UE = N->use_end(); UI != UE; ++UI) {
1859    // Only examine CopyToReg uses.
1860    if (UI->getOpcode() != ISD::CopyToReg)
1861      return false;
1862    // Only examine CopyToReg uses that copy to EFLAGS.
1863    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1864          X86::EFLAGS)
1865      return false;
1866    // Examine each user of the CopyToReg use.
1867    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1868           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1869      // Only examine the Flag result.
1870      if (FlagUI.getUse().getResNo() != 1) continue;
1871      // Anything unusual: assume conservatively.
1872      if (!FlagUI->isMachineOpcode()) return false;
1873      // Examine the opcode of the user.
1874      switch (FlagUI->getMachineOpcode()) {
1875      // These comparisons don't treat the most significant bit specially.
1876      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1877      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1878      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1879      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1880      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1881      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1882      case X86::CMOVA16rr: case X86::CMOVA16rm:
1883      case X86::CMOVA32rr: case X86::CMOVA32rm:
1884      case X86::CMOVA64rr: case X86::CMOVA64rm:
1885      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1886      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1887      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1888      case X86::CMOVB16rr: case X86::CMOVB16rm:
1889      case X86::CMOVB32rr: case X86::CMOVB32rm:
1890      case X86::CMOVB64rr: case X86::CMOVB64rm:
1891      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1892      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1893      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1894      case X86::CMOVE16rr: case X86::CMOVE16rm:
1895      case X86::CMOVE32rr: case X86::CMOVE32rm:
1896      case X86::CMOVE64rr: case X86::CMOVE64rm:
1897      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1898      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1899      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1900      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1901      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1902      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1903      case X86::CMOVP16rr: case X86::CMOVP16rm:
1904      case X86::CMOVP32rr: case X86::CMOVP32rm:
1905      case X86::CMOVP64rr: case X86::CMOVP64rm:
1906        continue;
1907      // Anything else: assume conservatively.
1908      default: return false;
1909      }
1910    }
1911  }
1912  return true;
1913}
1914
1915/// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
1916/// is suitable for doing the {load; increment or decrement; store} to modify
1917/// transformation.
1918static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
1919                                SDValue StoredVal, SelectionDAG *CurDAG,
1920                                LoadSDNode* &LoadNode, SDValue &InputChain) {
1921
1922  // is the value stored the result of a DEC or INC?
1923  if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
1924
1925  // is the stored value result 0 of the load?
1926  if (StoredVal.getResNo() != 0) return false;
1927
1928  // are there other uses of the loaded value than the inc or dec?
1929  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
1930
1931  // is the store non-extending and non-indexed?
1932  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1933    return false;
1934
1935  SDValue Load = StoredVal->getOperand(0);
1936  // Is the stored value a non-extending and non-indexed load?
1937  if (!ISD::isNormalLoad(Load.getNode())) return false;
1938
1939  // Return LoadNode by reference.
1940  LoadNode = cast<LoadSDNode>(Load);
1941  // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
1942  EVT LdVT = LoadNode->getMemoryVT();
1943  if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
1944      LdVT != MVT::i8)
1945    return false;
1946
1947  // Is store the only read of the loaded value?
1948  if (!Load.hasOneUse())
1949    return false;
1950
1951  // Is the address of the store the same as the load?
1952  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1953      LoadNode->getOffset() != StoreNode->getOffset())
1954    return false;
1955
1956  // Check if the chain is produced by the load or is a TokenFactor with
1957  // the load output chain as an operand. Return InputChain by reference.
1958  SDValue Chain = StoreNode->getChain();
1959
1960  bool ChainCheck = false;
1961  if (Chain == Load.getValue(1)) {
1962    ChainCheck = true;
1963    InputChain = LoadNode->getChain();
1964  } else if (Chain.getOpcode() == ISD::TokenFactor) {
1965    SmallVector<SDValue, 4> ChainOps;
1966    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1967      SDValue Op = Chain.getOperand(i);
1968      if (Op == Load.getValue(1)) {
1969        ChainCheck = true;
1970        continue;
1971      }
1972
1973      // Make sure using Op as part of the chain would not cause a cycle here.
1974      // In theory, we could check whether the chain node is a predecessor of
1975      // the load. But that can be very expensive. Instead visit the uses and
1976      // make sure they all have smaller node id than the load.
1977      int LoadId = LoadNode->getNodeId();
1978      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
1979             UE = UI->use_end(); UI != UE; ++UI) {
1980        if (UI.getUse().getResNo() != 0)
1981          continue;
1982        if (UI->getNodeId() > LoadId)
1983          return false;
1984      }
1985
1986      ChainOps.push_back(Op);
1987    }
1988
1989    if (ChainCheck)
1990      // Make a new TokenFactor with all the other input chains except
1991      // for the load.
1992      InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
1993                                   MVT::Other, &ChainOps[0], ChainOps.size());
1994  }
1995  if (!ChainCheck)
1996    return false;
1997
1998  return true;
1999}
2000
2001/// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
2002/// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
2003static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
2004  if (Opc == X86ISD::DEC) {
2005    if (LdVT == MVT::i64) return X86::DEC64m;
2006    if (LdVT == MVT::i32) return X86::DEC32m;
2007    if (LdVT == MVT::i16) return X86::DEC16m;
2008    if (LdVT == MVT::i8)  return X86::DEC8m;
2009  } else {
2010    assert(Opc == X86ISD::INC && "unrecognized opcode");
2011    if (LdVT == MVT::i64) return X86::INC64m;
2012    if (LdVT == MVT::i32) return X86::INC32m;
2013    if (LdVT == MVT::i16) return X86::INC16m;
2014    if (LdVT == MVT::i8)  return X86::INC8m;
2015  }
2016  llvm_unreachable("unrecognized size for LdVT");
2017}
2018
2019/// SelectGather - Customized ISel for GATHER operations.
2020///
2021SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
2022  // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
2023  SDValue Chain = Node->getOperand(0);
2024  SDValue VSrc = Node->getOperand(2);
2025  SDValue Base = Node->getOperand(3);
2026  SDValue VIdx = Node->getOperand(4);
2027  SDValue VMask = Node->getOperand(5);
2028  ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
2029  if (!Scale)
2030    return 0;
2031
2032  SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
2033                                   MVT::Other);
2034
2035  // Memory Operands: Base, Scale, Index, Disp, Segment
2036  SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
2037  SDValue Segment = CurDAG->getRegister(0, MVT::i32);
2038  const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
2039                          Disp, Segment, VMask, Chain};
2040  SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), VTs, Ops);
2041  // Node has 2 outputs: VDst and MVT::Other.
2042  // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
2043  // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
2044  // of ResNode.
2045  ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
2046  ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
2047  return ResNode;
2048}
2049
2050SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
2051  MVT NVT = Node->getSimpleValueType(0);
2052  unsigned Opc, MOpc;
2053  unsigned Opcode = Node->getOpcode();
2054  SDLoc dl(Node);
2055
2056  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
2057
2058  if (Node->isMachineOpcode()) {
2059    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
2060    Node->setNodeId(-1);
2061    return NULL;   // Already selected.
2062  }
2063
2064  switch (Opcode) {
2065  default: break;
2066  case ISD::INTRINSIC_W_CHAIN: {
2067    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
2068    switch (IntNo) {
2069    default: break;
2070    case Intrinsic::x86_avx2_gather_d_pd:
2071    case Intrinsic::x86_avx2_gather_d_pd_256:
2072    case Intrinsic::x86_avx2_gather_q_pd:
2073    case Intrinsic::x86_avx2_gather_q_pd_256:
2074    case Intrinsic::x86_avx2_gather_d_ps:
2075    case Intrinsic::x86_avx2_gather_d_ps_256:
2076    case Intrinsic::x86_avx2_gather_q_ps:
2077    case Intrinsic::x86_avx2_gather_q_ps_256:
2078    case Intrinsic::x86_avx2_gather_d_q:
2079    case Intrinsic::x86_avx2_gather_d_q_256:
2080    case Intrinsic::x86_avx2_gather_q_q:
2081    case Intrinsic::x86_avx2_gather_q_q_256:
2082    case Intrinsic::x86_avx2_gather_d_d:
2083    case Intrinsic::x86_avx2_gather_d_d_256:
2084    case Intrinsic::x86_avx2_gather_q_d:
2085    case Intrinsic::x86_avx2_gather_q_d_256: {
2086      if (!Subtarget->hasAVX2())
2087        break;
2088      unsigned Opc;
2089      switch (IntNo) {
2090      default: llvm_unreachable("Impossible intrinsic");
2091      case Intrinsic::x86_avx2_gather_d_pd:     Opc = X86::VGATHERDPDrm;  break;
2092      case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
2093      case Intrinsic::x86_avx2_gather_q_pd:     Opc = X86::VGATHERQPDrm;  break;
2094      case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
2095      case Intrinsic::x86_avx2_gather_d_ps:     Opc = X86::VGATHERDPSrm;  break;
2096      case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
2097      case Intrinsic::x86_avx2_gather_q_ps:     Opc = X86::VGATHERQPSrm;  break;
2098      case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
2099      case Intrinsic::x86_avx2_gather_d_q:      Opc = X86::VPGATHERDQrm;  break;
2100      case Intrinsic::x86_avx2_gather_d_q_256:  Opc = X86::VPGATHERDQYrm; break;
2101      case Intrinsic::x86_avx2_gather_q_q:      Opc = X86::VPGATHERQQrm;  break;
2102      case Intrinsic::x86_avx2_gather_q_q_256:  Opc = X86::VPGATHERQQYrm; break;
2103      case Intrinsic::x86_avx2_gather_d_d:      Opc = X86::VPGATHERDDrm;  break;
2104      case Intrinsic::x86_avx2_gather_d_d_256:  Opc = X86::VPGATHERDDYrm; break;
2105      case Intrinsic::x86_avx2_gather_q_d:      Opc = X86::VPGATHERQDrm;  break;
2106      case Intrinsic::x86_avx2_gather_q_d_256:  Opc = X86::VPGATHERQDYrm; break;
2107      }
2108      SDNode *RetVal = SelectGather(Node, Opc);
2109      if (RetVal)
2110        // We already called ReplaceUses inside SelectGather.
2111        return NULL;
2112      break;
2113    }
2114    }
2115    break;
2116  }
2117  case X86ISD::GlobalBaseReg:
2118    return getGlobalBaseReg();
2119
2120
2121  case X86ISD::ATOMOR64_DAG:
2122  case X86ISD::ATOMXOR64_DAG:
2123  case X86ISD::ATOMADD64_DAG:
2124  case X86ISD::ATOMSUB64_DAG:
2125  case X86ISD::ATOMNAND64_DAG:
2126  case X86ISD::ATOMAND64_DAG:
2127  case X86ISD::ATOMMAX64_DAG:
2128  case X86ISD::ATOMMIN64_DAG:
2129  case X86ISD::ATOMUMAX64_DAG:
2130  case X86ISD::ATOMUMIN64_DAG:
2131  case X86ISD::ATOMSWAP64_DAG: {
2132    unsigned Opc;
2133    switch (Opcode) {
2134    default: llvm_unreachable("Impossible opcode");
2135    case X86ISD::ATOMOR64_DAG:   Opc = X86::ATOMOR6432;   break;
2136    case X86ISD::ATOMXOR64_DAG:  Opc = X86::ATOMXOR6432;  break;
2137    case X86ISD::ATOMADD64_DAG:  Opc = X86::ATOMADD6432;  break;
2138    case X86ISD::ATOMSUB64_DAG:  Opc = X86::ATOMSUB6432;  break;
2139    case X86ISD::ATOMNAND64_DAG: Opc = X86::ATOMNAND6432; break;
2140    case X86ISD::ATOMAND64_DAG:  Opc = X86::ATOMAND6432;  break;
2141    case X86ISD::ATOMMAX64_DAG:  Opc = X86::ATOMMAX6432;  break;
2142    case X86ISD::ATOMMIN64_DAG:  Opc = X86::ATOMMIN6432;  break;
2143    case X86ISD::ATOMUMAX64_DAG: Opc = X86::ATOMUMAX6432; break;
2144    case X86ISD::ATOMUMIN64_DAG: Opc = X86::ATOMUMIN6432; break;
2145    case X86ISD::ATOMSWAP64_DAG: Opc = X86::ATOMSWAP6432; break;
2146    }
2147    SDNode *RetVal = SelectAtomic64(Node, Opc);
2148    if (RetVal)
2149      return RetVal;
2150    break;
2151  }
2152
2153  case ISD::ATOMIC_LOAD_XOR:
2154  case ISD::ATOMIC_LOAD_AND:
2155  case ISD::ATOMIC_LOAD_OR:
2156  case ISD::ATOMIC_LOAD_ADD: {
2157    SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
2158    if (RetVal)
2159      return RetVal;
2160    break;
2161  }
2162  case ISD::AND:
2163  case ISD::OR:
2164  case ISD::XOR: {
2165    // For operations of the form (x << C1) op C2, check if we can use a smaller
2166    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2167    SDValue N0 = Node->getOperand(0);
2168    SDValue N1 = Node->getOperand(1);
2169
2170    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2171      break;
2172
2173    // i8 is unshrinkable, i16 should be promoted to i32.
2174    if (NVT != MVT::i32 && NVT != MVT::i64)
2175      break;
2176
2177    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
2178    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2179    if (!Cst || !ShlCst)
2180      break;
2181
2182    int64_t Val = Cst->getSExtValue();
2183    uint64_t ShlVal = ShlCst->getZExtValue();
2184
2185    // Make sure that we don't change the operation by removing bits.
2186    // This only matters for OR and XOR, AND is unaffected.
2187    uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
2188    if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
2189      break;
2190
2191    unsigned ShlOp, Op;
2192    MVT CstVT = NVT;
2193
2194    // Check the minimum bitwidth for the new constant.
2195    // TODO: AND32ri is the same as AND64ri32 with zext imm.
2196    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2197    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2198    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2199      CstVT = MVT::i8;
2200    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2201      CstVT = MVT::i32;
2202
2203    // Bail if there is no smaller encoding.
2204    if (NVT == CstVT)
2205      break;
2206
2207    switch (NVT.SimpleTy) {
2208    default: llvm_unreachable("Unsupported VT!");
2209    case MVT::i32:
2210      assert(CstVT == MVT::i8);
2211      ShlOp = X86::SHL32ri;
2212
2213      switch (Opcode) {
2214      default: llvm_unreachable("Impossible opcode");
2215      case ISD::AND: Op = X86::AND32ri8; break;
2216      case ISD::OR:  Op =  X86::OR32ri8; break;
2217      case ISD::XOR: Op = X86::XOR32ri8; break;
2218      }
2219      break;
2220    case MVT::i64:
2221      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
2222      ShlOp = X86::SHL64ri;
2223
2224      switch (Opcode) {
2225      default: llvm_unreachable("Impossible opcode");
2226      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
2227      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
2228      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2229      }
2230      break;
2231    }
2232
2233    // Emit the smaller op and the shift.
2234    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
2235    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2236    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2237                                getI8Imm(ShlVal));
2238  }
2239  case X86ISD::UMUL: {
2240    SDValue N0 = Node->getOperand(0);
2241    SDValue N1 = Node->getOperand(1);
2242
2243    unsigned LoReg;
2244    switch (NVT.SimpleTy) {
2245    default: llvm_unreachable("Unsupported VT!");
2246    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
2247    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
2248    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2249    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2250    }
2251
2252    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2253                                          N0, SDValue()).getValue(1);
2254
2255    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2256    SDValue Ops[] = {N1, InFlag};
2257    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2258
2259    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2260    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2261    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2262    return NULL;
2263  }
2264
2265  case ISD::SMUL_LOHI:
2266  case ISD::UMUL_LOHI: {
2267    SDValue N0 = Node->getOperand(0);
2268    SDValue N1 = Node->getOperand(1);
2269
2270    bool isSigned = Opcode == ISD::SMUL_LOHI;
2271    bool hasBMI2 = Subtarget->hasBMI2();
2272    if (!isSigned) {
2273      switch (NVT.SimpleTy) {
2274      default: llvm_unreachable("Unsupported VT!");
2275      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
2276      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2277      case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
2278                     MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
2279      case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
2280                     MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
2281      }
2282    } else {
2283      switch (NVT.SimpleTy) {
2284      default: llvm_unreachable("Unsupported VT!");
2285      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
2286      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2287      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2288      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2289      }
2290    }
2291
2292    unsigned SrcReg, LoReg, HiReg;
2293    switch (Opc) {
2294    default: llvm_unreachable("Unknown MUL opcode!");
2295    case X86::IMUL8r:
2296    case X86::MUL8r:
2297      SrcReg = LoReg = X86::AL; HiReg = X86::AH;
2298      break;
2299    case X86::IMUL16r:
2300    case X86::MUL16r:
2301      SrcReg = LoReg = X86::AX; HiReg = X86::DX;
2302      break;
2303    case X86::IMUL32r:
2304    case X86::MUL32r:
2305      SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
2306      break;
2307    case X86::IMUL64r:
2308    case X86::MUL64r:
2309      SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
2310      break;
2311    case X86::MULX32rr:
2312      SrcReg = X86::EDX; LoReg = HiReg = 0;
2313      break;
2314    case X86::MULX64rr:
2315      SrcReg = X86::RDX; LoReg = HiReg = 0;
2316      break;
2317    }
2318
2319    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2320    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2321    // Multiply is commmutative.
2322    if (!foldedLoad) {
2323      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2324      if (foldedLoad)
2325        std::swap(N0, N1);
2326    }
2327
2328    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
2329                                          N0, SDValue()).getValue(1);
2330    SDValue ResHi, ResLo;
2331
2332    if (foldedLoad) {
2333      SDValue Chain;
2334      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2335                        InFlag };
2336      if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
2337        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
2338        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2339        ResHi = SDValue(CNode, 0);
2340        ResLo = SDValue(CNode, 1);
2341        Chain = SDValue(CNode, 2);
2342        InFlag = SDValue(CNode, 3);
2343      } else {
2344        SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
2345        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2346        Chain = SDValue(CNode, 0);
2347        InFlag = SDValue(CNode, 1);
2348      }
2349
2350      // Update the chain.
2351      ReplaceUses(N1.getValue(1), Chain);
2352    } else {
2353      SDValue Ops[] = { N1, InFlag };
2354      if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
2355        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
2356        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2357        ResHi = SDValue(CNode, 0);
2358        ResLo = SDValue(CNode, 1);
2359        InFlag = SDValue(CNode, 2);
2360      } else {
2361        SDVTList VTs = CurDAG->getVTList(MVT::Glue);
2362        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2363        InFlag = SDValue(CNode, 0);
2364      }
2365    }
2366
2367    // Prevent use of AH in a REX instruction by referencing AX instead.
2368    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2369        !SDValue(Node, 1).use_empty()) {
2370      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2371                                              X86::AX, MVT::i16, InFlag);
2372      InFlag = Result.getValue(2);
2373      // Get the low part if needed. Don't use getCopyFromReg for aliasing
2374      // registers.
2375      if (!SDValue(Node, 0).use_empty())
2376        ReplaceUses(SDValue(Node, 1),
2377          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2378
2379      // Shift AX down 8 bits.
2380      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2381                                              Result,
2382                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
2383      // Then truncate it down to i8.
2384      ReplaceUses(SDValue(Node, 1),
2385        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2386    }
2387    // Copy the low half of the result, if it is needed.
2388    if (!SDValue(Node, 0).use_empty()) {
2389      if (ResLo.getNode() == 0) {
2390        assert(LoReg && "Register for low half is not defined!");
2391        ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
2392                                       InFlag);
2393        InFlag = ResLo.getValue(2);
2394      }
2395      ReplaceUses(SDValue(Node, 0), ResLo);
2396      DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
2397    }
2398    // Copy the high half of the result, if it is needed.
2399    if (!SDValue(Node, 1).use_empty()) {
2400      if (ResHi.getNode() == 0) {
2401        assert(HiReg && "Register for high half is not defined!");
2402        ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
2403                                       InFlag);
2404        InFlag = ResHi.getValue(2);
2405      }
2406      ReplaceUses(SDValue(Node, 1), ResHi);
2407      DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
2408    }
2409
2410    return NULL;
2411  }
2412
2413  case ISD::SDIVREM:
2414  case ISD::UDIVREM: {
2415    SDValue N0 = Node->getOperand(0);
2416    SDValue N1 = Node->getOperand(1);
2417
2418    bool isSigned = Opcode == ISD::SDIVREM;
2419    if (!isSigned) {
2420      switch (NVT.SimpleTy) {
2421      default: llvm_unreachable("Unsupported VT!");
2422      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
2423      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2424      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2425      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2426      }
2427    } else {
2428      switch (NVT.SimpleTy) {
2429      default: llvm_unreachable("Unsupported VT!");
2430      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
2431      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2432      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2433      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2434      }
2435    }
2436
2437    unsigned LoReg, HiReg, ClrReg;
2438    unsigned SExtOpcode;
2439    switch (NVT.SimpleTy) {
2440    default: llvm_unreachable("Unsupported VT!");
2441    case MVT::i8:
2442      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
2443      SExtOpcode = X86::CBW;
2444      break;
2445    case MVT::i16:
2446      LoReg = X86::AX;  HiReg = X86::DX;
2447      ClrReg = X86::DX;
2448      SExtOpcode = X86::CWD;
2449      break;
2450    case MVT::i32:
2451      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2452      SExtOpcode = X86::CDQ;
2453      break;
2454    case MVT::i64:
2455      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2456      SExtOpcode = X86::CQO;
2457      break;
2458    }
2459
2460    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2461    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2462    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2463
2464    SDValue InFlag;
2465    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2466      // Special case for div8, just use a move with zero extension to AX to
2467      // clear the upper 8 bits (AH).
2468      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2469      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2470        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2471        Move =
2472          SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2473                                         MVT::Other, Ops), 0);
2474        Chain = Move.getValue(1);
2475        ReplaceUses(N0.getValue(1), Chain);
2476      } else {
2477        Move =
2478          SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2479        Chain = CurDAG->getEntryNode();
2480      }
2481      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2482      InFlag = Chain.getValue(1);
2483    } else {
2484      InFlag =
2485        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2486                             LoReg, N0, SDValue()).getValue(1);
2487      if (isSigned && !signBitIsZero) {
2488        // Sign extend the low part into the high part.
2489        InFlag =
2490          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2491      } else {
2492        // Zero out the high part, effectively zero extending the input.
2493        SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
2494        switch (NVT.SimpleTy) {
2495        case MVT::i16:
2496          ClrNode =
2497              SDValue(CurDAG->getMachineNode(
2498                          TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
2499                          CurDAG->getTargetConstant(X86::sub_16bit, MVT::i32)),
2500                      0);
2501          break;
2502        case MVT::i32:
2503          break;
2504        case MVT::i64:
2505          ClrNode =
2506              SDValue(CurDAG->getMachineNode(
2507                          TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
2508                          CurDAG->getTargetConstant(0, MVT::i64), ClrNode,
2509                          CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
2510                      0);
2511          break;
2512        default:
2513          llvm_unreachable("Unexpected division source");
2514        }
2515
2516        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2517                                      ClrNode, InFlag).getValue(1);
2518      }
2519    }
2520
2521    if (foldedLoad) {
2522      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2523                        InFlag };
2524      SDNode *CNode =
2525        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
2526      InFlag = SDValue(CNode, 1);
2527      // Update the chain.
2528      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2529    } else {
2530      InFlag =
2531        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2532    }
2533
2534    // Prevent use of AH in a REX instruction by referencing AX instead.
2535    // Shift it down 8 bits.
2536    //
2537    // The current assumption of the register allocator is that isel
2538    // won't generate explicit references to the GPR8_NOREX registers. If
2539    // the allocator and/or the backend get enhanced to be more robust in
2540    // that regard, this can be, and should be, removed.
2541    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2542        !SDValue(Node, 1).use_empty()) {
2543      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2544                                              X86::AX, MVT::i16, InFlag);
2545      InFlag = Result.getValue(2);
2546
2547      // If we also need AL (the quotient), get it by extracting a subreg from
2548      // Result. The fast register allocator does not like multiple CopyFromReg
2549      // nodes using aliasing registers.
2550      if (!SDValue(Node, 0).use_empty())
2551        ReplaceUses(SDValue(Node, 0),
2552          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2553
2554      // Shift AX right by 8 bits instead of using AH.
2555      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2556                                         Result,
2557                                         CurDAG->getTargetConstant(8, MVT::i8)),
2558                       0);
2559      ReplaceUses(SDValue(Node, 1),
2560        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2561    }
2562    // Copy the division (low) result, if it is needed.
2563    if (!SDValue(Node, 0).use_empty()) {
2564      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2565                                                LoReg, NVT, InFlag);
2566      InFlag = Result.getValue(2);
2567      ReplaceUses(SDValue(Node, 0), Result);
2568      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2569    }
2570    // Copy the remainder (high) result, if it is needed.
2571    if (!SDValue(Node, 1).use_empty()) {
2572      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2573                                              HiReg, NVT, InFlag);
2574      InFlag = Result.getValue(2);
2575      ReplaceUses(SDValue(Node, 1), Result);
2576      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2577    }
2578    return NULL;
2579  }
2580
2581  case X86ISD::CMP:
2582  case X86ISD::SUB: {
2583    // Sometimes a SUB is used to perform comparison.
2584    if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
2585      // This node is not a CMP.
2586      break;
2587    SDValue N0 = Node->getOperand(0);
2588    SDValue N1 = Node->getOperand(1);
2589
2590    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2591    // use a smaller encoding.
2592    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2593        HasNoSignedComparisonUses(Node))
2594      // Look past the truncate if CMP is the only use of it.
2595      N0 = N0.getOperand(0);
2596    if ((N0.getNode()->getOpcode() == ISD::AND ||
2597         (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2598        N0.getNode()->hasOneUse() &&
2599        N0.getValueType() != MVT::i8 &&
2600        X86::isZeroNode(N1)) {
2601      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2602      if (!C) break;
2603
2604      // For example, convert "testl %eax, $8" to "testb %al, $8"
2605      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2606          (!(C->getZExtValue() & 0x80) ||
2607           HasNoSignedComparisonUses(Node))) {
2608        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2609        SDValue Reg = N0.getNode()->getOperand(0);
2610
2611        // On x86-32, only the ABCD registers have 8-bit subregisters.
2612        if (!Subtarget->is64Bit()) {
2613          const TargetRegisterClass *TRC;
2614          switch (N0.getSimpleValueType().SimpleTy) {
2615          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2616          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2617          default: llvm_unreachable("Unsupported TEST operand type!");
2618          }
2619          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2620          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2621                                               Reg.getValueType(), Reg, RC), 0);
2622        }
2623
2624        // Extract the l-register.
2625        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2626                                                        MVT::i8, Reg);
2627
2628        // Emit a testb.
2629        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2630                                                 Subreg, Imm);
2631        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2632        // one, do not call ReplaceAllUsesWith.
2633        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2634                    SDValue(NewNode, 0));
2635        return NULL;
2636      }
2637
2638      // For example, "testl %eax, $2048" to "testb %ah, $8".
2639      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2640          (!(C->getZExtValue() & 0x8000) ||
2641           HasNoSignedComparisonUses(Node))) {
2642        // Shift the immediate right by 8 bits.
2643        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2644                                                       MVT::i8);
2645        SDValue Reg = N0.getNode()->getOperand(0);
2646
2647        // Put the value in an ABCD register.
2648        const TargetRegisterClass *TRC;
2649        switch (N0.getSimpleValueType().SimpleTy) {
2650        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2651        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2652        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2653        default: llvm_unreachable("Unsupported TEST operand type!");
2654        }
2655        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2656        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2657                                             Reg.getValueType(), Reg, RC), 0);
2658
2659        // Extract the h-register.
2660        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2661                                                        MVT::i8, Reg);
2662
2663        // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
2664        // target GR8_NOREX registers, so make sure the register class is
2665        // forced.
2666        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
2667                                                 MVT::i32, Subreg, ShiftedImm);
2668        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2669        // one, do not call ReplaceAllUsesWith.
2670        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2671                    SDValue(NewNode, 0));
2672        return NULL;
2673      }
2674
2675      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2676      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2677          N0.getValueType() != MVT::i16 &&
2678          (!(C->getZExtValue() & 0x8000) ||
2679           HasNoSignedComparisonUses(Node))) {
2680        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2681        SDValue Reg = N0.getNode()->getOperand(0);
2682
2683        // Extract the 16-bit subregister.
2684        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2685                                                        MVT::i16, Reg);
2686
2687        // Emit a testw.
2688        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
2689                                                 Subreg, Imm);
2690        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2691        // one, do not call ReplaceAllUsesWith.
2692        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2693                    SDValue(NewNode, 0));
2694        return NULL;
2695      }
2696
2697      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2698      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2699          N0.getValueType() == MVT::i64 &&
2700          (!(C->getZExtValue() & 0x80000000) ||
2701           HasNoSignedComparisonUses(Node))) {
2702        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2703        SDValue Reg = N0.getNode()->getOperand(0);
2704
2705        // Extract the 32-bit subregister.
2706        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2707                                                        MVT::i32, Reg);
2708
2709        // Emit a testl.
2710        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
2711                                                 Subreg, Imm);
2712        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2713        // one, do not call ReplaceAllUsesWith.
2714        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2715                    SDValue(NewNode, 0));
2716        return NULL;
2717      }
2718    }
2719    break;
2720  }
2721  case ISD::STORE: {
2722    // Change a chain of {load; incr or dec; store} of the same value into
2723    // a simple increment or decrement through memory of that value, if the
2724    // uses of the modified value and its address are suitable.
2725    // The DEC64m tablegen pattern is currently not able to match the case where
2726    // the EFLAGS on the original DEC are used. (This also applies to
2727    // {INC,DEC}X{64,32,16,8}.)
2728    // We'll need to improve tablegen to allow flags to be transferred from a
2729    // node in the pattern to the result node.  probably with a new keyword
2730    // for example, we have this
2731    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2732    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2733    //   (implicit EFLAGS)]>;
2734    // but maybe need something like this
2735    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2736    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2737    //   (transferrable EFLAGS)]>;
2738
2739    StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2740    SDValue StoredVal = StoreNode->getOperand(1);
2741    unsigned Opc = StoredVal->getOpcode();
2742
2743    LoadSDNode *LoadNode = 0;
2744    SDValue InputChain;
2745    if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
2746                             LoadNode, InputChain))
2747      break;
2748
2749    SDValue Base, Scale, Index, Disp, Segment;
2750    if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
2751                    Base, Scale, Index, Disp, Segment))
2752      break;
2753
2754    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2755    MemOp[0] = StoreNode->getMemOperand();
2756    MemOp[1] = LoadNode->getMemOperand();
2757    const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2758    EVT LdVT = LoadNode->getMemoryVT();
2759    unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
2760    MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
2761                                                   SDLoc(Node),
2762                                                   MVT::i32, MVT::Other, Ops);
2763    Result->setMemRefs(MemOp, MemOp + 2);
2764
2765    ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2766    ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2767
2768    return Result;
2769  }
2770  }
2771
2772  SDNode *ResNode = SelectCode(Node);
2773
2774  DEBUG(dbgs() << "=> ";
2775        if (ResNode == NULL || ResNode == Node)
2776          Node->dump(CurDAG);
2777        else
2778          ResNode->dump(CurDAG);
2779        dbgs() << '\n');
2780
2781  return ResNode;
2782}
2783
2784bool X86DAGToDAGISel::
2785SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2786                             std::vector<SDValue> &OutOps) {
2787  SDValue Op0, Op1, Op2, Op3, Op4;
2788  switch (ConstraintCode) {
2789  case 'o':   // offsetable        ??
2790  case 'v':   // not offsetable    ??
2791  default: return true;
2792  case 'm':   // memory
2793    if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2794      return true;
2795    break;
2796  }
2797
2798  OutOps.push_back(Op0);
2799  OutOps.push_back(Op1);
2800  OutOps.push_back(Op2);
2801  OutOps.push_back(Op3);
2802  OutOps.push_back(Op4);
2803  return false;
2804}
2805
2806/// createX86ISelDag - This pass converts a legalized DAG into a
2807/// X86-specific DAG, ready for instruction scheduling.
2808///
2809FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2810                                     CodeGenOpt::Level OptLevel) {
2811  return new X86DAGToDAGISel(TM, OptLevel);
2812}
2813