X86ISelDAGToDAG.cpp revision 50c023d4960ee492014391b6b84a259e1e02da82
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/SelectionDAGISel.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Type.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Target/TargetOptions.h"
37using namespace llvm;
38
39STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
40
41//===----------------------------------------------------------------------===//
42//                      Pattern Matcher Implementation
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
47  /// SDValue's instead of register numbers for the leaves of the matched
48  /// tree.
49  struct X86ISelAddressMode {
50    enum {
51      RegBase,
52      FrameIndexBase
53    } BaseType;
54
55    // This is really a union, discriminated by BaseType!
56    SDValue Base_Reg;
57    int Base_FrameIndex;
58
59    unsigned Scale;
60    SDValue IndexReg;
61    int32_t Disp;
62    SDValue Segment;
63    const GlobalValue *GV;
64    const Constant *CP;
65    const BlockAddress *BlockAddr;
66    const char *ES;
67    int JT;
68    unsigned Align;    // CP alignment.
69    unsigned char SymbolFlags;  // X86II::MO_*
70
71    X86ISelAddressMode()
72      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
73        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
74        SymbolFlags(X86II::MO_NO_FLAG) {
75    }
76
77    bool hasSymbolicDisplacement() const {
78      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
79    }
80
81    bool hasBaseOrIndexReg() const {
82      return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
83    }
84
85    /// isRIPRelative - Return true if this addressing mode is already RIP
86    /// relative.
87    bool isRIPRelative() const {
88      if (BaseType != RegBase) return false;
89      if (RegisterSDNode *RegNode =
90            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
91        return RegNode->getReg() == X86::RIP;
92      return false;
93    }
94
95    void setBaseReg(SDValue Reg) {
96      BaseType = RegBase;
97      Base_Reg = Reg;
98    }
99
100#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
101    void dump() {
102      dbgs() << "X86ISelAddressMode " << this << '\n';
103      dbgs() << "Base_Reg ";
104      if (Base_Reg.getNode() != 0)
105        Base_Reg.getNode()->dump();
106      else
107        dbgs() << "nul";
108      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
109             << " Scale" << Scale << '\n'
110             << "IndexReg ";
111      if (IndexReg.getNode() != 0)
112        IndexReg.getNode()->dump();
113      else
114        dbgs() << "nul";
115      dbgs() << " Disp " << Disp << '\n'
116             << "GV ";
117      if (GV)
118        GV->dump();
119      else
120        dbgs() << "nul";
121      dbgs() << " CP ";
122      if (CP)
123        CP->dump();
124      else
125        dbgs() << "nul";
126      dbgs() << '\n'
127             << "ES ";
128      if (ES)
129        dbgs() << ES;
130      else
131        dbgs() << "nul";
132      dbgs() << " JT" << JT << " Align" << Align << '\n';
133    }
134#endif
135  };
136}
137
138namespace {
139  //===--------------------------------------------------------------------===//
140  /// ISel - X86 specific code to select X86 machine instructions for
141  /// SelectionDAG operations.
142  ///
143  class X86DAGToDAGISel : public SelectionDAGISel {
144    /// X86Lowering - This object fully describes how to lower LLVM code to an
145    /// X86-specific SelectionDAG.
146    const X86TargetLowering &X86Lowering;
147
148    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
149    /// make the right decision when generating code for different targets.
150    const X86Subtarget *Subtarget;
151
152    /// OptForSize - If true, selector should try to optimize for code size
153    /// instead of performance.
154    bool OptForSize;
155
156  public:
157    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
158      : SelectionDAGISel(tm, OptLevel),
159        X86Lowering(*tm.getTargetLowering()),
160        Subtarget(&tm.getSubtarget<X86Subtarget>()),
161        OptForSize(false) {}
162
163    virtual const char *getPassName() const {
164      return "X86 DAG->DAG Instruction Selection";
165    }
166
167    virtual void EmitFunctionEntryCode();
168
169    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
170
171    virtual void PreprocessISelDAG();
172
173    inline bool immSext8(SDNode *N) const {
174      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
175    }
176
177    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
178    // sign extended field.
179    inline bool i64immSExt32(SDNode *N) const {
180      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
181      return (int64_t)v == (int32_t)v;
182    }
183
184// Include the pieces autogenerated from the target description.
185#include "X86GenDAGISel.inc"
186
187  private:
188    SDNode *Select(SDNode *N);
189    SDNode *SelectGather(SDNode *N, unsigned Opc);
190    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
191    SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT);
192
193    bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
194    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
195    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
196    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
197    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
198                                 unsigned Depth);
199    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
200    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
201                    SDValue &Scale, SDValue &Index, SDValue &Disp,
202                    SDValue &Segment);
203    bool SelectLEAAddr(SDValue N, SDValue &Base,
204                       SDValue &Scale, SDValue &Index, SDValue &Disp,
205                       SDValue &Segment);
206    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
207                           SDValue &Scale, SDValue &Index, SDValue &Disp,
208                           SDValue &Segment);
209    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
210                             SDValue &Base, SDValue &Scale,
211                             SDValue &Index, SDValue &Disp,
212                             SDValue &Segment,
213                             SDValue &NodeWithChain);
214
215    bool TryFoldLoad(SDNode *P, SDValue N,
216                     SDValue &Base, SDValue &Scale,
217                     SDValue &Index, SDValue &Disp,
218                     SDValue &Segment);
219
220    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
221    /// inline asm expressions.
222    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
223                                              char ConstraintCode,
224                                              std::vector<SDValue> &OutOps);
225
226    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
227
228    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
229                                   SDValue &Scale, SDValue &Index,
230                                   SDValue &Disp, SDValue &Segment) {
231      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
232        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
233        AM.Base_Reg;
234      Scale = getI8Imm(AM.Scale);
235      Index = AM.IndexReg;
236      // These are 32-bit even in 64-bit mode since RIP relative offset
237      // is 32-bit.
238      if (AM.GV)
239        Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
240                                              MVT::i32, AM.Disp,
241                                              AM.SymbolFlags);
242      else if (AM.CP)
243        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
244                                             AM.Align, AM.Disp, AM.SymbolFlags);
245      else if (AM.ES) {
246        assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
247        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
248      } else if (AM.JT != -1) {
249        assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
250        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
251      } else if (AM.BlockAddr)
252        Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
253                                             AM.SymbolFlags);
254      else
255        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
256
257      if (AM.Segment.getNode())
258        Segment = AM.Segment;
259      else
260        Segment = CurDAG->getRegister(0, MVT::i32);
261    }
262
263    /// getI8Imm - Return a target constant with the specified value, of type
264    /// i8.
265    inline SDValue getI8Imm(unsigned Imm) {
266      return CurDAG->getTargetConstant(Imm, MVT::i8);
267    }
268
269    /// getI32Imm - Return a target constant with the specified value, of type
270    /// i32.
271    inline SDValue getI32Imm(unsigned Imm) {
272      return CurDAG->getTargetConstant(Imm, MVT::i32);
273    }
274
275    /// getGlobalBaseReg - Return an SDNode that returns the value of
276    /// the global base register. Output instructions required to
277    /// initialize the global base register, if necessary.
278    ///
279    SDNode *getGlobalBaseReg();
280
281    /// getTargetMachine - Return a reference to the TargetMachine, casted
282    /// to the target-specific type.
283    const X86TargetMachine &getTargetMachine() {
284      return static_cast<const X86TargetMachine &>(TM);
285    }
286
287    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
288    /// to the target-specific type.
289    const X86InstrInfo *getInstrInfo() {
290      return getTargetMachine().getInstrInfo();
291    }
292  };
293}
294
295
296bool
297X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
298  if (OptLevel == CodeGenOpt::None) return false;
299
300  if (!N.hasOneUse())
301    return false;
302
303  if (N.getOpcode() != ISD::LOAD)
304    return true;
305
306  // If N is a load, do additional profitability checks.
307  if (U == Root) {
308    switch (U->getOpcode()) {
309    default: break;
310    case X86ISD::ADD:
311    case X86ISD::SUB:
312    case X86ISD::AND:
313    case X86ISD::XOR:
314    case X86ISD::OR:
315    case ISD::ADD:
316    case ISD::ADDC:
317    case ISD::ADDE:
318    case ISD::AND:
319    case ISD::OR:
320    case ISD::XOR: {
321      SDValue Op1 = U->getOperand(1);
322
323      // If the other operand is a 8-bit immediate we should fold the immediate
324      // instead. This reduces code size.
325      // e.g.
326      // movl 4(%esp), %eax
327      // addl $4, %eax
328      // vs.
329      // movl $4, %eax
330      // addl 4(%esp), %eax
331      // The former is 2 bytes shorter. In case where the increment is 1, then
332      // the saving can be 4 bytes (by using incl %eax).
333      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
334        if (Imm->getAPIntValue().isSignedIntN(8))
335          return false;
336
337      // If the other operand is a TLS address, we should fold it instead.
338      // This produces
339      // movl    %gs:0, %eax
340      // leal    i@NTPOFF(%eax), %eax
341      // instead of
342      // movl    $i@NTPOFF, %eax
343      // addl    %gs:0, %eax
344      // if the block also has an access to a second TLS address this will save
345      // a load.
346      // FIXME: This is probably also true for non TLS addresses.
347      if (Op1.getOpcode() == X86ISD::Wrapper) {
348        SDValue Val = Op1.getOperand(0);
349        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
350          return false;
351      }
352    }
353    }
354  }
355
356  return true;
357}
358
359/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
360/// load's chain operand and move load below the call's chain operand.
361static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
362                               SDValue Call, SDValue OrigChain) {
363  SmallVector<SDValue, 8> Ops;
364  SDValue Chain = OrigChain.getOperand(0);
365  if (Chain.getNode() == Load.getNode())
366    Ops.push_back(Load.getOperand(0));
367  else {
368    assert(Chain.getOpcode() == ISD::TokenFactor &&
369           "Unexpected chain operand");
370    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
371      if (Chain.getOperand(i).getNode() == Load.getNode())
372        Ops.push_back(Load.getOperand(0));
373      else
374        Ops.push_back(Chain.getOperand(i));
375    SDValue NewChain =
376      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
377                      MVT::Other, &Ops[0], Ops.size());
378    Ops.clear();
379    Ops.push_back(NewChain);
380  }
381  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
382    Ops.push_back(OrigChain.getOperand(i));
383  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
384  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
385                             Load.getOperand(1), Load.getOperand(2));
386
387  unsigned NumOps = Call.getNode()->getNumOperands();
388  Ops.clear();
389  Ops.push_back(SDValue(Load.getNode(), 1));
390  for (unsigned i = 1, e = NumOps; i != e; ++i)
391    Ops.push_back(Call.getOperand(i));
392  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], NumOps);
393}
394
395/// isCalleeLoad - Return true if call address is a load and it can be
396/// moved below CALLSEQ_START and the chains leading up to the call.
397/// Return the CALLSEQ_START by reference as a second output.
398/// In the case of a tail call, there isn't a callseq node between the call
399/// chain and the load.
400static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
401  // The transformation is somewhat dangerous if the call's chain was glued to
402  // the call. After MoveBelowOrigChain the load is moved between the call and
403  // the chain, this can create a cycle if the load is not folded. So it is
404  // *really* important that we are sure the load will be folded.
405  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
406    return false;
407  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
408  if (!LD ||
409      LD->isVolatile() ||
410      LD->getAddressingMode() != ISD::UNINDEXED ||
411      LD->getExtensionType() != ISD::NON_EXTLOAD)
412    return false;
413
414  // Now let's find the callseq_start.
415  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
416    if (!Chain.hasOneUse())
417      return false;
418    Chain = Chain.getOperand(0);
419  }
420
421  if (!Chain.getNumOperands())
422    return false;
423  // Since we are not checking for AA here, conservatively abort if the chain
424  // writes to memory. It's not safe to move the callee (a load) across a store.
425  if (isa<MemSDNode>(Chain.getNode()) &&
426      cast<MemSDNode>(Chain.getNode())->writeMem())
427    return false;
428  if (Chain.getOperand(0).getNode() == Callee.getNode())
429    return true;
430  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
431      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
432      Callee.getValue(1).hasOneUse())
433    return true;
434  return false;
435}
436
437void X86DAGToDAGISel::PreprocessISelDAG() {
438  // OptForSize is used in pattern predicates that isel is matching.
439  OptForSize = MF->getFunction()->getAttributes().
440    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
441
442  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
443       E = CurDAG->allnodes_end(); I != E; ) {
444    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
445
446    if (OptLevel != CodeGenOpt::None &&
447        (N->getOpcode() == X86ISD::CALL ||
448         (N->getOpcode() == X86ISD::TC_RETURN &&
449          // Only does this if load can be folded into TC_RETURN.
450          (Subtarget->is64Bit() ||
451           getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
452      /// Also try moving call address load from outside callseq_start to just
453      /// before the call to allow it to be folded.
454      ///
455      ///     [Load chain]
456      ///         ^
457      ///         |
458      ///       [Load]
459      ///       ^    ^
460      ///       |    |
461      ///      /      \--
462      ///     /          |
463      ///[CALLSEQ_START] |
464      ///     ^          |
465      ///     |          |
466      /// [LOAD/C2Reg]   |
467      ///     |          |
468      ///      \        /
469      ///       \      /
470      ///       [CALL]
471      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
472      SDValue Chain = N->getOperand(0);
473      SDValue Load  = N->getOperand(1);
474      if (!isCalleeLoad(Load, Chain, HasCallSeq))
475        continue;
476      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
477      ++NumLoadMoved;
478      continue;
479    }
480
481    // Lower fpround and fpextend nodes that target the FP stack to be store and
482    // load to the stack.  This is a gross hack.  We would like to simply mark
483    // these as being illegal, but when we do that, legalize produces these when
484    // it expands calls, then expands these in the same legalize pass.  We would
485    // like dag combine to be able to hack on these between the call expansion
486    // and the node legalization.  As such this pass basically does "really
487    // late" legalization of these inline with the X86 isel pass.
488    // FIXME: This should only happen when not compiled with -O0.
489    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
490      continue;
491
492    EVT SrcVT = N->getOperand(0).getValueType();
493    EVT DstVT = N->getValueType(0);
494
495    // If any of the sources are vectors, no fp stack involved.
496    if (SrcVT.isVector() || DstVT.isVector())
497      continue;
498
499    // If the source and destination are SSE registers, then this is a legal
500    // conversion that should not be lowered.
501    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
502    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
503    if (SrcIsSSE && DstIsSSE)
504      continue;
505
506    if (!SrcIsSSE && !DstIsSSE) {
507      // If this is an FPStack extension, it is a noop.
508      if (N->getOpcode() == ISD::FP_EXTEND)
509        continue;
510      // If this is a value-preserving FPStack truncation, it is a noop.
511      if (N->getConstantOperandVal(1))
512        continue;
513    }
514
515    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
516    // FPStack has extload and truncstore.  SSE can fold direct loads into other
517    // operations.  Based on this, decide what we want to do.
518    EVT MemVT;
519    if (N->getOpcode() == ISD::FP_ROUND)
520      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
521    else
522      MemVT = SrcIsSSE ? SrcVT : DstVT;
523
524    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
525    DebugLoc dl = N->getDebugLoc();
526
527    // FIXME: optimize the case where the src/dest is a load or store?
528    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
529                                          N->getOperand(0),
530                                          MemTmp, MachinePointerInfo(), MemVT,
531                                          false, false, 0);
532    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
533                                        MachinePointerInfo(),
534                                        MemVT, false, false, 0);
535
536    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
537    // extload we created.  This will cause general havok on the dag because
538    // anything below the conversion could be folded into other existing nodes.
539    // To avoid invalidating 'I', back it up to the convert node.
540    --I;
541    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
542
543    // Now that we did that, the node is dead.  Increment the iterator to the
544    // next node to process, then delete N.
545    ++I;
546    CurDAG->DeleteNode(N);
547  }
548}
549
550
551/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
552/// the main function.
553void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
554                                             MachineFrameInfo *MFI) {
555  const TargetInstrInfo *TII = TM.getInstrInfo();
556  if (Subtarget->isTargetCygMing()) {
557    unsigned CallOp =
558      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
559    BuildMI(BB, DebugLoc(),
560            TII->get(CallOp)).addExternalSymbol("__main");
561  }
562}
563
564void X86DAGToDAGISel::EmitFunctionEntryCode() {
565  // If this is main, emit special code for main.
566  if (const Function *Fn = MF->getFunction())
567    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
568      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
569}
570
571static bool isDispSafeForFrameIndex(int64_t Val) {
572  // On 64-bit platforms, we can run into an issue where a frame index
573  // includes a displacement that, when added to the explicit displacement,
574  // will overflow the displacement field. Assuming that the frame index
575  // displacement fits into a 31-bit integer  (which is only slightly more
576  // aggressive than the current fundamental assumption that it fits into
577  // a 32-bit integer), a 31-bit disp should always be safe.
578  return isInt<31>(Val);
579}
580
581bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
582                                            X86ISelAddressMode &AM) {
583  int64_t Val = AM.Disp + Offset;
584  CodeModel::Model M = TM.getCodeModel();
585  if (Subtarget->is64Bit()) {
586    if (!X86::isOffsetSuitableForCodeModel(Val, M,
587                                           AM.hasSymbolicDisplacement()))
588      return true;
589    // In addition to the checks required for a register base, check that
590    // we do not try to use an unsafe Disp with a frame index.
591    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
592        !isDispSafeForFrameIndex(Val))
593      return true;
594  }
595  AM.Disp = Val;
596  return false;
597
598}
599
600bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
601  SDValue Address = N->getOperand(1);
602
603  // load gs:0 -> GS segment register.
604  // load fs:0 -> FS segment register.
605  //
606  // This optimization is valid because the GNU TLS model defines that
607  // gs:0 (or fs:0 on X86-64) contains its own address.
608  // For more information see http://people.redhat.com/drepper/tls.pdf
609  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
610    if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
611        Subtarget->isTargetLinux())
612      switch (N->getPointerInfo().getAddrSpace()) {
613      case 256:
614        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
615        return false;
616      case 257:
617        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
618        return false;
619      }
620
621  return true;
622}
623
624/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
625/// into an addressing mode.  These wrap things that will resolve down into a
626/// symbol reference.  If no match is possible, this returns true, otherwise it
627/// returns false.
628bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
629  // If the addressing mode already has a symbol as the displacement, we can
630  // never match another symbol.
631  if (AM.hasSymbolicDisplacement())
632    return true;
633
634  SDValue N0 = N.getOperand(0);
635  CodeModel::Model M = TM.getCodeModel();
636
637  // Handle X86-64 rip-relative addresses.  We check this before checking direct
638  // folding because RIP is preferable to non-RIP accesses.
639  if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
640      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
641      // they cannot be folded into immediate fields.
642      // FIXME: This can be improved for kernel and other models?
643      (M == CodeModel::Small || M == CodeModel::Kernel)) {
644    // Base and index reg must be 0 in order to use %rip as base.
645    if (AM.hasBaseOrIndexReg())
646      return true;
647    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
648      X86ISelAddressMode Backup = AM;
649      AM.GV = G->getGlobal();
650      AM.SymbolFlags = G->getTargetFlags();
651      if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
652        AM = Backup;
653        return true;
654      }
655    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
656      X86ISelAddressMode Backup = AM;
657      AM.CP = CP->getConstVal();
658      AM.Align = CP->getAlignment();
659      AM.SymbolFlags = CP->getTargetFlags();
660      if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
661        AM = Backup;
662        return true;
663      }
664    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
665      AM.ES = S->getSymbol();
666      AM.SymbolFlags = S->getTargetFlags();
667    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
668      AM.JT = J->getIndex();
669      AM.SymbolFlags = J->getTargetFlags();
670    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
671      X86ISelAddressMode Backup = AM;
672      AM.BlockAddr = BA->getBlockAddress();
673      AM.SymbolFlags = BA->getTargetFlags();
674      if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
675        AM = Backup;
676        return true;
677      }
678    } else
679      llvm_unreachable("Unhandled symbol reference node.");
680
681    if (N.getOpcode() == X86ISD::WrapperRIP)
682      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
683    return false;
684  }
685
686  // Handle the case when globals fit in our immediate field: This is true for
687  // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit
688  // mode, this only applies to a non-RIP-relative computation.
689  if (!Subtarget->is64Bit() ||
690      M == CodeModel::Small || M == CodeModel::Kernel) {
691    assert(N.getOpcode() != X86ISD::WrapperRIP &&
692           "RIP-relative addressing already handled");
693    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
694      AM.GV = G->getGlobal();
695      AM.Disp += G->getOffset();
696      AM.SymbolFlags = G->getTargetFlags();
697    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
698      AM.CP = CP->getConstVal();
699      AM.Align = CP->getAlignment();
700      AM.Disp += CP->getOffset();
701      AM.SymbolFlags = CP->getTargetFlags();
702    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
703      AM.ES = S->getSymbol();
704      AM.SymbolFlags = S->getTargetFlags();
705    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
706      AM.JT = J->getIndex();
707      AM.SymbolFlags = J->getTargetFlags();
708    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
709      AM.BlockAddr = BA->getBlockAddress();
710      AM.Disp += BA->getOffset();
711      AM.SymbolFlags = BA->getTargetFlags();
712    } else
713      llvm_unreachable("Unhandled symbol reference node.");
714    return false;
715  }
716
717  return true;
718}
719
720/// MatchAddress - Add the specified node to the specified addressing mode,
721/// returning true if it cannot be done.  This just pattern matches for the
722/// addressing mode.
723bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
724  if (MatchAddressRecursively(N, AM, 0))
725    return true;
726
727  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
728  // a smaller encoding and avoids a scaled-index.
729  if (AM.Scale == 2 &&
730      AM.BaseType == X86ISelAddressMode::RegBase &&
731      AM.Base_Reg.getNode() == 0) {
732    AM.Base_Reg = AM.IndexReg;
733    AM.Scale = 1;
734  }
735
736  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
737  // because it has a smaller encoding.
738  // TODO: Which other code models can use this?
739  if (TM.getCodeModel() == CodeModel::Small &&
740      Subtarget->is64Bit() &&
741      AM.Scale == 1 &&
742      AM.BaseType == X86ISelAddressMode::RegBase &&
743      AM.Base_Reg.getNode() == 0 &&
744      AM.IndexReg.getNode() == 0 &&
745      AM.SymbolFlags == X86II::MO_NO_FLAG &&
746      AM.hasSymbolicDisplacement())
747    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
748
749  return false;
750}
751
752// Insert a node into the DAG at least before the Pos node's position. This
753// will reposition the node as needed, and will assign it a node ID that is <=
754// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
755// IDs! The selection DAG must no longer depend on their uniqueness when this
756// is used.
757static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
758  if (N.getNode()->getNodeId() == -1 ||
759      N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
760    DAG.RepositionNode(Pos.getNode(), N.getNode());
761    N.getNode()->setNodeId(Pos.getNode()->getNodeId());
762  }
763}
764
765// Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
766// allows us to convert the shift and and into an h-register extract and
767// a scaled index. Returns false if the simplification is performed.
768static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
769                                      uint64_t Mask,
770                                      SDValue Shift, SDValue X,
771                                      X86ISelAddressMode &AM) {
772  if (Shift.getOpcode() != ISD::SRL ||
773      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
774      !Shift.hasOneUse())
775    return true;
776
777  int ScaleLog = 8 - Shift.getConstantOperandVal(1);
778  if (ScaleLog <= 0 || ScaleLog >= 4 ||
779      Mask != (0xffu << ScaleLog))
780    return true;
781
782  EVT VT = N.getValueType();
783  DebugLoc DL = N.getDebugLoc();
784  SDValue Eight = DAG.getConstant(8, MVT::i8);
785  SDValue NewMask = DAG.getConstant(0xff, VT);
786  SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
787  SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
788  SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
789  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
790
791  // Insert the new nodes into the topological ordering. We must do this in
792  // a valid topological ordering as nothing is going to go back and re-sort
793  // these nodes. We continually insert before 'N' in sequence as this is
794  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
795  // hierarchy left to express.
796  InsertDAGNode(DAG, N, Eight);
797  InsertDAGNode(DAG, N, Srl);
798  InsertDAGNode(DAG, N, NewMask);
799  InsertDAGNode(DAG, N, And);
800  InsertDAGNode(DAG, N, ShlCount);
801  InsertDAGNode(DAG, N, Shl);
802  DAG.ReplaceAllUsesWith(N, Shl);
803  AM.IndexReg = And;
804  AM.Scale = (1 << ScaleLog);
805  return false;
806}
807
808// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
809// allows us to fold the shift into this addressing mode. Returns false if the
810// transform succeeded.
811static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
812                                        uint64_t Mask,
813                                        SDValue Shift, SDValue X,
814                                        X86ISelAddressMode &AM) {
815  if (Shift.getOpcode() != ISD::SHL ||
816      !isa<ConstantSDNode>(Shift.getOperand(1)))
817    return true;
818
819  // Not likely to be profitable if either the AND or SHIFT node has more
820  // than one use (unless all uses are for address computation). Besides,
821  // isel mechanism requires their node ids to be reused.
822  if (!N.hasOneUse() || !Shift.hasOneUse())
823    return true;
824
825  // Verify that the shift amount is something we can fold.
826  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
827  if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
828    return true;
829
830  EVT VT = N.getValueType();
831  DebugLoc DL = N.getDebugLoc();
832  SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
833  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
834  SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
835
836  // Insert the new nodes into the topological ordering. We must do this in
837  // a valid topological ordering as nothing is going to go back and re-sort
838  // these nodes. We continually insert before 'N' in sequence as this is
839  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
840  // hierarchy left to express.
841  InsertDAGNode(DAG, N, NewMask);
842  InsertDAGNode(DAG, N, NewAnd);
843  InsertDAGNode(DAG, N, NewShift);
844  DAG.ReplaceAllUsesWith(N, NewShift);
845
846  AM.Scale = 1 << ShiftAmt;
847  AM.IndexReg = NewAnd;
848  return false;
849}
850
851// Implement some heroics to detect shifts of masked values where the mask can
852// be replaced by extending the shift and undoing that in the addressing mode
853// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
854// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
855// the addressing mode. This results in code such as:
856//
857//   int f(short *y, int *lookup_table) {
858//     ...
859//     return *y + lookup_table[*y >> 11];
860//   }
861//
862// Turning into:
863//   movzwl (%rdi), %eax
864//   movl %eax, %ecx
865//   shrl $11, %ecx
866//   addl (%rsi,%rcx,4), %eax
867//
868// Instead of:
869//   movzwl (%rdi), %eax
870//   movl %eax, %ecx
871//   shrl $9, %ecx
872//   andl $124, %rcx
873//   addl (%rsi,%rcx), %eax
874//
875// Note that this function assumes the mask is provided as a mask *after* the
876// value is shifted. The input chain may or may not match that, but computing
877// such a mask is trivial.
878static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
879                                    uint64_t Mask,
880                                    SDValue Shift, SDValue X,
881                                    X86ISelAddressMode &AM) {
882  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
883      !isa<ConstantSDNode>(Shift.getOperand(1)))
884    return true;
885
886  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
887  unsigned MaskLZ = CountLeadingZeros_64(Mask);
888  unsigned MaskTZ = CountTrailingZeros_64(Mask);
889
890  // The amount of shift we're trying to fit into the addressing mode is taken
891  // from the trailing zeros of the mask.
892  unsigned AMShiftAmt = MaskTZ;
893
894  // There is nothing we can do here unless the mask is removing some bits.
895  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
896  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
897
898  // We also need to ensure that mask is a continuous run of bits.
899  if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
900
901  // Scale the leading zero count down based on the actual size of the value.
902  // Also scale it down based on the size of the shift.
903  MaskLZ -= (64 - X.getValueSizeInBits()) + ShiftAmt;
904
905  // The final check is to ensure that any masked out high bits of X are
906  // already known to be zero. Otherwise, the mask has a semantic impact
907  // other than masking out a couple of low bits. Unfortunately, because of
908  // the mask, zero extensions will be removed from operands in some cases.
909  // This code works extra hard to look through extensions because we can
910  // replace them with zero extensions cheaply if necessary.
911  bool ReplacingAnyExtend = false;
912  if (X.getOpcode() == ISD::ANY_EXTEND) {
913    unsigned ExtendBits =
914      X.getValueSizeInBits() - X.getOperand(0).getValueSizeInBits();
915    // Assume that we'll replace the any-extend with a zero-extend, and
916    // narrow the search to the extended value.
917    X = X.getOperand(0);
918    MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
919    ReplacingAnyExtend = true;
920  }
921  APInt MaskedHighBits = APInt::getHighBitsSet(X.getValueSizeInBits(),
922                                               MaskLZ);
923  APInt KnownZero, KnownOne;
924  DAG.ComputeMaskedBits(X, KnownZero, KnownOne);
925  if (MaskedHighBits != KnownZero) return true;
926
927  // We've identified a pattern that can be transformed into a single shift
928  // and an addressing mode. Make it so.
929  EVT VT = N.getValueType();
930  if (ReplacingAnyExtend) {
931    assert(X.getValueType() != VT);
932    // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
933    SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, X.getDebugLoc(), VT, X);
934    InsertDAGNode(DAG, N, NewX);
935    X = NewX;
936  }
937  DebugLoc DL = N.getDebugLoc();
938  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
939  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
940  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
941  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
942
943  // Insert the new nodes into the topological ordering. We must do this in
944  // a valid topological ordering as nothing is going to go back and re-sort
945  // these nodes. We continually insert before 'N' in sequence as this is
946  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
947  // hierarchy left to express.
948  InsertDAGNode(DAG, N, NewSRLAmt);
949  InsertDAGNode(DAG, N, NewSRL);
950  InsertDAGNode(DAG, N, NewSHLAmt);
951  InsertDAGNode(DAG, N, NewSHL);
952  DAG.ReplaceAllUsesWith(N, NewSHL);
953
954  AM.Scale = 1 << AMShiftAmt;
955  AM.IndexReg = NewSRL;
956  return false;
957}
958
959bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
960                                              unsigned Depth) {
961  DebugLoc dl = N.getDebugLoc();
962  DEBUG({
963      dbgs() << "MatchAddress: ";
964      AM.dump();
965    });
966  // Limit recursion.
967  if (Depth > 5)
968    return MatchAddressBase(N, AM);
969
970  // If this is already a %rip relative address, we can only merge immediates
971  // into it.  Instead of handling this in every case, we handle it here.
972  // RIP relative addressing: %rip + 32-bit displacement!
973  if (AM.isRIPRelative()) {
974    // FIXME: JumpTable and ExternalSymbol address currently don't like
975    // displacements.  It isn't very important, but this should be fixed for
976    // consistency.
977    if (!AM.ES && AM.JT != -1) return true;
978
979    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
980      if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
981        return false;
982    return true;
983  }
984
985  switch (N.getOpcode()) {
986  default: break;
987  case ISD::Constant: {
988    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
989    if (!FoldOffsetIntoAddress(Val, AM))
990      return false;
991    break;
992  }
993
994  case X86ISD::Wrapper:
995  case X86ISD::WrapperRIP:
996    if (!MatchWrapper(N, AM))
997      return false;
998    break;
999
1000  case ISD::LOAD:
1001    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
1002      return false;
1003    break;
1004
1005  case ISD::FrameIndex:
1006    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1007        AM.Base_Reg.getNode() == 0 &&
1008        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1009      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1010      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1011      return false;
1012    }
1013    break;
1014
1015  case ISD::SHL:
1016    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
1017      break;
1018
1019    if (ConstantSDNode
1020          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
1021      unsigned Val = CN->getZExtValue();
1022      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1023      // that the base operand remains free for further matching. If
1024      // the base doesn't end up getting used, a post-processing step
1025      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1026      if (Val == 1 || Val == 2 || Val == 3) {
1027        AM.Scale = 1 << Val;
1028        SDValue ShVal = N.getNode()->getOperand(0);
1029
1030        // Okay, we know that we have a scale by now.  However, if the scaled
1031        // value is an add of something and a constant, we can fold the
1032        // constant into the disp field here.
1033        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1034          AM.IndexReg = ShVal.getNode()->getOperand(0);
1035          ConstantSDNode *AddVal =
1036            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1037          uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1038          if (!FoldOffsetIntoAddress(Disp, AM))
1039            return false;
1040        }
1041
1042        AM.IndexReg = ShVal;
1043        return false;
1044      }
1045    }
1046    break;
1047
1048  case ISD::SRL: {
1049    // Scale must not be used already.
1050    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1051
1052    SDValue And = N.getOperand(0);
1053    if (And.getOpcode() != ISD::AND) break;
1054    SDValue X = And.getOperand(0);
1055
1056    // We only handle up to 64-bit values here as those are what matter for
1057    // addressing mode optimizations.
1058    if (X.getValueSizeInBits() > 64) break;
1059
1060    // The mask used for the transform is expected to be post-shift, but we
1061    // found the shift first so just apply the shift to the mask before passing
1062    // it down.
1063    if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1064        !isa<ConstantSDNode>(And.getOperand(1)))
1065      break;
1066    uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1067
1068    // Try to fold the mask and shift into the scale, and return false if we
1069    // succeed.
1070    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1071      return false;
1072    break;
1073  }
1074
1075  case ISD::SMUL_LOHI:
1076  case ISD::UMUL_LOHI:
1077    // A mul_lohi where we need the low part can be folded as a plain multiply.
1078    if (N.getResNo() != 0) break;
1079    // FALL THROUGH
1080  case ISD::MUL:
1081  case X86ISD::MUL_IMM:
1082    // X*[3,5,9] -> X+X*[2,4,8]
1083    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1084        AM.Base_Reg.getNode() == 0 &&
1085        AM.IndexReg.getNode() == 0) {
1086      if (ConstantSDNode
1087            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1088        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1089            CN->getZExtValue() == 9) {
1090          AM.Scale = unsigned(CN->getZExtValue())-1;
1091
1092          SDValue MulVal = N.getNode()->getOperand(0);
1093          SDValue Reg;
1094
1095          // Okay, we know that we have a scale by now.  However, if the scaled
1096          // value is an add of something and a constant, we can fold the
1097          // constant into the disp field here.
1098          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1099              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1100            Reg = MulVal.getNode()->getOperand(0);
1101            ConstantSDNode *AddVal =
1102              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1103            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1104            if (FoldOffsetIntoAddress(Disp, AM))
1105              Reg = N.getNode()->getOperand(0);
1106          } else {
1107            Reg = N.getNode()->getOperand(0);
1108          }
1109
1110          AM.IndexReg = AM.Base_Reg = Reg;
1111          return false;
1112        }
1113    }
1114    break;
1115
1116  case ISD::SUB: {
1117    // Given A-B, if A can be completely folded into the address and
1118    // the index field with the index field unused, use -B as the index.
1119    // This is a win if a has multiple parts that can be folded into
1120    // the address. Also, this saves a mov if the base register has
1121    // other uses, since it avoids a two-address sub instruction, however
1122    // it costs an additional mov if the index register has other uses.
1123
1124    // Add an artificial use to this node so that we can keep track of
1125    // it if it gets CSE'd with a different node.
1126    HandleSDNode Handle(N);
1127
1128    // Test if the LHS of the sub can be folded.
1129    X86ISelAddressMode Backup = AM;
1130    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1131      AM = Backup;
1132      break;
1133    }
1134    // Test if the index field is free for use.
1135    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1136      AM = Backup;
1137      break;
1138    }
1139
1140    int Cost = 0;
1141    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1142    // If the RHS involves a register with multiple uses, this
1143    // transformation incurs an extra mov, due to the neg instruction
1144    // clobbering its operand.
1145    if (!RHS.getNode()->hasOneUse() ||
1146        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1147        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1148        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1149        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1150         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1151      ++Cost;
1152    // If the base is a register with multiple uses, this
1153    // transformation may save a mov.
1154    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1155         AM.Base_Reg.getNode() &&
1156         !AM.Base_Reg.getNode()->hasOneUse()) ||
1157        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1158      --Cost;
1159    // If the folded LHS was interesting, this transformation saves
1160    // address arithmetic.
1161    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1162        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1163        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1164      --Cost;
1165    // If it doesn't look like it may be an overall win, don't do it.
1166    if (Cost >= 0) {
1167      AM = Backup;
1168      break;
1169    }
1170
1171    // Ok, the transformation is legal and appears profitable. Go for it.
1172    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1173    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1174    AM.IndexReg = Neg;
1175    AM.Scale = 1;
1176
1177    // Insert the new nodes into the topological ordering.
1178    InsertDAGNode(*CurDAG, N, Zero);
1179    InsertDAGNode(*CurDAG, N, Neg);
1180    return false;
1181  }
1182
1183  case ISD::ADD: {
1184    // Add an artificial use to this node so that we can keep track of
1185    // it if it gets CSE'd with a different node.
1186    HandleSDNode Handle(N);
1187
1188    X86ISelAddressMode Backup = AM;
1189    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1190        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1191      return false;
1192    AM = Backup;
1193
1194    // Try again after commuting the operands.
1195    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
1196        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1197      return false;
1198    AM = Backup;
1199
1200    // If we couldn't fold both operands into the address at the same time,
1201    // see if we can just put each operand into a register and fold at least
1202    // the add.
1203    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1204        !AM.Base_Reg.getNode() &&
1205        !AM.IndexReg.getNode()) {
1206      N = Handle.getValue();
1207      AM.Base_Reg = N.getOperand(0);
1208      AM.IndexReg = N.getOperand(1);
1209      AM.Scale = 1;
1210      return false;
1211    }
1212    N = Handle.getValue();
1213    break;
1214  }
1215
1216  case ISD::OR:
1217    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1218    if (CurDAG->isBaseWithConstantOffset(N)) {
1219      X86ISelAddressMode Backup = AM;
1220      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
1221
1222      // Start with the LHS as an addr mode.
1223      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1224          !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
1225        return false;
1226      AM = Backup;
1227    }
1228    break;
1229
1230  case ISD::AND: {
1231    // Perform some heroic transforms on an and of a constant-count shift
1232    // with a constant to enable use of the scaled offset field.
1233
1234    // Scale must not be used already.
1235    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1236
1237    SDValue Shift = N.getOperand(0);
1238    if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1239    SDValue X = Shift.getOperand(0);
1240
1241    // We only handle up to 64-bit values here as those are what matter for
1242    // addressing mode optimizations.
1243    if (X.getValueSizeInBits() > 64) break;
1244
1245    if (!isa<ConstantSDNode>(N.getOperand(1)))
1246      break;
1247    uint64_t Mask = N.getConstantOperandVal(1);
1248
1249    // Try to fold the mask and shift into an extract and scale.
1250    if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1251      return false;
1252
1253    // Try to fold the mask and shift directly into the scale.
1254    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1255      return false;
1256
1257    // Try to swap the mask and shift to place shifts which can be done as
1258    // a scale on the outside of the mask.
1259    if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1260      return false;
1261    break;
1262  }
1263  }
1264
1265  return MatchAddressBase(N, AM);
1266}
1267
1268/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1269/// specified addressing mode without any further recursion.
1270bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1271  // Is the base register already occupied?
1272  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1273    // If so, check to see if the scale index register is set.
1274    if (AM.IndexReg.getNode() == 0) {
1275      AM.IndexReg = N;
1276      AM.Scale = 1;
1277      return false;
1278    }
1279
1280    // Otherwise, we cannot select it.
1281    return true;
1282  }
1283
1284  // Default, generate it as a register.
1285  AM.BaseType = X86ISelAddressMode::RegBase;
1286  AM.Base_Reg = N;
1287  return false;
1288}
1289
1290/// SelectAddr - returns true if it is able pattern match an addressing mode.
1291/// It returns the operands which make up the maximal addressing mode it can
1292/// match by reference.
1293///
1294/// Parent is the parent node of the addr operand that is being matched.  It
1295/// is always a load, store, atomic node, or null.  It is only null when
1296/// checking memory operands for inline asm nodes.
1297bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1298                                 SDValue &Scale, SDValue &Index,
1299                                 SDValue &Disp, SDValue &Segment) {
1300  X86ISelAddressMode AM;
1301
1302  if (Parent &&
1303      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1304      // that are not a MemSDNode, and thus don't have proper addrspace info.
1305      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1306      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1307      Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
1308      Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
1309      Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
1310    unsigned AddrSpace =
1311      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1312    // AddrSpace 256 -> GS, 257 -> FS.
1313    if (AddrSpace == 256)
1314      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1315    if (AddrSpace == 257)
1316      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1317  }
1318
1319  if (MatchAddress(N, AM))
1320    return false;
1321
1322  EVT VT = N.getValueType();
1323  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1324    if (!AM.Base_Reg.getNode())
1325      AM.Base_Reg = CurDAG->getRegister(0, VT);
1326  }
1327
1328  if (!AM.IndexReg.getNode())
1329    AM.IndexReg = CurDAG->getRegister(0, VT);
1330
1331  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1332  return true;
1333}
1334
1335/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1336/// match a load whose top elements are either undef or zeros.  The load flavor
1337/// is derived from the type of N, which is either v4f32 or v2f64.
1338///
1339/// We also return:
1340///   PatternChainNode: this is the matched node that has a chain input and
1341///   output.
1342bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1343                                          SDValue N, SDValue &Base,
1344                                          SDValue &Scale, SDValue &Index,
1345                                          SDValue &Disp, SDValue &Segment,
1346                                          SDValue &PatternNodeWithChain) {
1347  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1348    PatternNodeWithChain = N.getOperand(0);
1349    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1350        PatternNodeWithChain.hasOneUse() &&
1351        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1352        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1353      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1354      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1355        return false;
1356      return true;
1357    }
1358  }
1359
1360  // Also handle the case where we explicitly require zeros in the top
1361  // elements.  This is a vector shuffle from the zero vector.
1362  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1363      // Check to see if the top elements are all zeros (or bitcast of zeros).
1364      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1365      N.getOperand(0).getNode()->hasOneUse() &&
1366      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1367      N.getOperand(0).getOperand(0).hasOneUse() &&
1368      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1369      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1370    // Okay, this is a zero extending load.  Fold it.
1371    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1372    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1373      return false;
1374    PatternNodeWithChain = SDValue(LD, 0);
1375    return true;
1376  }
1377  return false;
1378}
1379
1380
1381/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1382/// mode it matches can be cost effectively emitted as an LEA instruction.
1383bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1384                                    SDValue &Base, SDValue &Scale,
1385                                    SDValue &Index, SDValue &Disp,
1386                                    SDValue &Segment) {
1387  X86ISelAddressMode AM;
1388
1389  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1390  // segments.
1391  SDValue Copy = AM.Segment;
1392  SDValue T = CurDAG->getRegister(0, MVT::i32);
1393  AM.Segment = T;
1394  if (MatchAddress(N, AM))
1395    return false;
1396  assert (T == AM.Segment);
1397  AM.Segment = Copy;
1398
1399  EVT VT = N.getValueType();
1400  unsigned Complexity = 0;
1401  if (AM.BaseType == X86ISelAddressMode::RegBase)
1402    if (AM.Base_Reg.getNode())
1403      Complexity = 1;
1404    else
1405      AM.Base_Reg = CurDAG->getRegister(0, VT);
1406  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1407    Complexity = 4;
1408
1409  if (AM.IndexReg.getNode())
1410    Complexity++;
1411  else
1412    AM.IndexReg = CurDAG->getRegister(0, VT);
1413
1414  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1415  // a simple shift.
1416  if (AM.Scale > 1)
1417    Complexity++;
1418
1419  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1420  // to a LEA. This is determined with some expermentation but is by no means
1421  // optimal (especially for code size consideration). LEA is nice because of
1422  // its three-address nature. Tweak the cost function again when we can run
1423  // convertToThreeAddress() at register allocation time.
1424  if (AM.hasSymbolicDisplacement()) {
1425    // For X86-64, we should always use lea to materialize RIP relative
1426    // addresses.
1427    if (Subtarget->is64Bit())
1428      Complexity = 4;
1429    else
1430      Complexity += 2;
1431  }
1432
1433  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1434    Complexity++;
1435
1436  // If it isn't worth using an LEA, reject it.
1437  if (Complexity <= 2)
1438    return false;
1439
1440  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1441  return true;
1442}
1443
1444/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1445bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1446                                        SDValue &Scale, SDValue &Index,
1447                                        SDValue &Disp, SDValue &Segment) {
1448  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1449  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1450
1451  X86ISelAddressMode AM;
1452  AM.GV = GA->getGlobal();
1453  AM.Disp += GA->getOffset();
1454  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1455  AM.SymbolFlags = GA->getTargetFlags();
1456
1457  if (N.getValueType() == MVT::i32) {
1458    AM.Scale = 1;
1459    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1460  } else {
1461    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1462  }
1463
1464  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1465  return true;
1466}
1467
1468
1469bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1470                                  SDValue &Base, SDValue &Scale,
1471                                  SDValue &Index, SDValue &Disp,
1472                                  SDValue &Segment) {
1473  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1474      !IsProfitableToFold(N, P, P) ||
1475      !IsLegalToFold(N, P, P, OptLevel))
1476    return false;
1477
1478  return SelectAddr(N.getNode(),
1479                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1480}
1481
1482/// getGlobalBaseReg - Return an SDNode that returns the value of
1483/// the global base register. Output instructions required to
1484/// initialize the global base register, if necessary.
1485///
1486SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1487  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1488  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1489}
1490
1491SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1492  SDValue Chain = Node->getOperand(0);
1493  SDValue In1 = Node->getOperand(1);
1494  SDValue In2L = Node->getOperand(2);
1495  SDValue In2H = Node->getOperand(3);
1496
1497  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1498  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1499    return NULL;
1500  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1501  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1502  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1503  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1504                                           MVT::i32, MVT::i32, MVT::Other, Ops,
1505                                           array_lengthof(Ops));
1506  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1507  return ResNode;
1508}
1509
1510/// Atomic opcode table
1511///
1512enum AtomicOpc {
1513  ADD,
1514  SUB,
1515  INC,
1516  DEC,
1517  OR,
1518  AND,
1519  XOR,
1520  AtomicOpcEnd
1521};
1522
1523enum AtomicSz {
1524  ConstantI8,
1525  I8,
1526  SextConstantI16,
1527  ConstantI16,
1528  I16,
1529  SextConstantI32,
1530  ConstantI32,
1531  I32,
1532  SextConstantI64,
1533  ConstantI64,
1534  I64,
1535  AtomicSzEnd
1536};
1537
1538static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1539  {
1540    X86::LOCK_ADD8mi,
1541    X86::LOCK_ADD8mr,
1542    X86::LOCK_ADD16mi8,
1543    X86::LOCK_ADD16mi,
1544    X86::LOCK_ADD16mr,
1545    X86::LOCK_ADD32mi8,
1546    X86::LOCK_ADD32mi,
1547    X86::LOCK_ADD32mr,
1548    X86::LOCK_ADD64mi8,
1549    X86::LOCK_ADD64mi32,
1550    X86::LOCK_ADD64mr,
1551  },
1552  {
1553    X86::LOCK_SUB8mi,
1554    X86::LOCK_SUB8mr,
1555    X86::LOCK_SUB16mi8,
1556    X86::LOCK_SUB16mi,
1557    X86::LOCK_SUB16mr,
1558    X86::LOCK_SUB32mi8,
1559    X86::LOCK_SUB32mi,
1560    X86::LOCK_SUB32mr,
1561    X86::LOCK_SUB64mi8,
1562    X86::LOCK_SUB64mi32,
1563    X86::LOCK_SUB64mr,
1564  },
1565  {
1566    0,
1567    X86::LOCK_INC8m,
1568    0,
1569    0,
1570    X86::LOCK_INC16m,
1571    0,
1572    0,
1573    X86::LOCK_INC32m,
1574    0,
1575    0,
1576    X86::LOCK_INC64m,
1577  },
1578  {
1579    0,
1580    X86::LOCK_DEC8m,
1581    0,
1582    0,
1583    X86::LOCK_DEC16m,
1584    0,
1585    0,
1586    X86::LOCK_DEC32m,
1587    0,
1588    0,
1589    X86::LOCK_DEC64m,
1590  },
1591  {
1592    X86::LOCK_OR8mi,
1593    X86::LOCK_OR8mr,
1594    X86::LOCK_OR16mi8,
1595    X86::LOCK_OR16mi,
1596    X86::LOCK_OR16mr,
1597    X86::LOCK_OR32mi8,
1598    X86::LOCK_OR32mi,
1599    X86::LOCK_OR32mr,
1600    X86::LOCK_OR64mi8,
1601    X86::LOCK_OR64mi32,
1602    X86::LOCK_OR64mr,
1603  },
1604  {
1605    X86::LOCK_AND8mi,
1606    X86::LOCK_AND8mr,
1607    X86::LOCK_AND16mi8,
1608    X86::LOCK_AND16mi,
1609    X86::LOCK_AND16mr,
1610    X86::LOCK_AND32mi8,
1611    X86::LOCK_AND32mi,
1612    X86::LOCK_AND32mr,
1613    X86::LOCK_AND64mi8,
1614    X86::LOCK_AND64mi32,
1615    X86::LOCK_AND64mr,
1616  },
1617  {
1618    X86::LOCK_XOR8mi,
1619    X86::LOCK_XOR8mr,
1620    X86::LOCK_XOR16mi8,
1621    X86::LOCK_XOR16mi,
1622    X86::LOCK_XOR16mr,
1623    X86::LOCK_XOR32mi8,
1624    X86::LOCK_XOR32mi,
1625    X86::LOCK_XOR32mr,
1626    X86::LOCK_XOR64mi8,
1627    X86::LOCK_XOR64mi32,
1628    X86::LOCK_XOR64mr,
1629  }
1630};
1631
1632// Return the target constant operand for atomic-load-op and do simple
1633// translations, such as from atomic-load-add to lock-sub. The return value is
1634// one of the following 3 cases:
1635// + target-constant, the operand could be supported as a target constant.
1636// + empty, the operand is not needed any more with the new op selected.
1637// + non-empty, otherwise.
1638static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
1639                                                DebugLoc dl,
1640                                                enum AtomicOpc &Op, EVT NVT,
1641                                                SDValue Val) {
1642  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
1643    int64_t CNVal = CN->getSExtValue();
1644    // Quit if not 32-bit imm.
1645    if ((int32_t)CNVal != CNVal)
1646      return Val;
1647    // For atomic-load-add, we could do some optimizations.
1648    if (Op == ADD) {
1649      // Translate to INC/DEC if ADD by 1 or -1.
1650      if ((CNVal == 1) || (CNVal == -1)) {
1651        Op = (CNVal == 1) ? INC : DEC;
1652        // No more constant operand after being translated into INC/DEC.
1653        return SDValue();
1654      }
1655      // Translate to SUB if ADD by negative value.
1656      if (CNVal < 0) {
1657        Op = SUB;
1658        CNVal = -CNVal;
1659      }
1660    }
1661    return CurDAG->getTargetConstant(CNVal, NVT);
1662  }
1663
1664  // If the value operand is single-used, try to optimize it.
1665  if (Op == ADD && Val.hasOneUse()) {
1666    // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
1667    if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
1668      Op = SUB;
1669      return Val.getOperand(1);
1670    }
1671    // A special case for i16, which needs truncating as, in most cases, it's
1672    // promoted to i32. We will translate
1673    // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
1674    if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
1675        Val.getOperand(0).getOpcode() == ISD::SUB &&
1676        X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
1677      Op = SUB;
1678      Val = Val.getOperand(0);
1679      return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
1680                                            Val.getOperand(1));
1681    }
1682  }
1683
1684  return Val;
1685}
1686
1687SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) {
1688  if (Node->hasAnyUseOfValue(0))
1689    return 0;
1690
1691  DebugLoc dl = Node->getDebugLoc();
1692
1693  // Optimize common patterns for __sync_or_and_fetch and similar arith
1694  // operations where the result is not used. This allows us to use the "lock"
1695  // version of the arithmetic instruction.
1696  SDValue Chain = Node->getOperand(0);
1697  SDValue Ptr = Node->getOperand(1);
1698  SDValue Val = Node->getOperand(2);
1699  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1700  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1701    return 0;
1702
1703  // Which index into the table.
1704  enum AtomicOpc Op;
1705  switch (Node->getOpcode()) {
1706    default:
1707      return 0;
1708    case ISD::ATOMIC_LOAD_OR:
1709      Op = OR;
1710      break;
1711    case ISD::ATOMIC_LOAD_AND:
1712      Op = AND;
1713      break;
1714    case ISD::ATOMIC_LOAD_XOR:
1715      Op = XOR;
1716      break;
1717    case ISD::ATOMIC_LOAD_ADD:
1718      Op = ADD;
1719      break;
1720  }
1721
1722  Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val);
1723  bool isUnOp = !Val.getNode();
1724  bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
1725
1726  unsigned Opc = 0;
1727  switch (NVT.getSimpleVT().SimpleTy) {
1728    default: return 0;
1729    case MVT::i8:
1730      if (isCN)
1731        Opc = AtomicOpcTbl[Op][ConstantI8];
1732      else
1733        Opc = AtomicOpcTbl[Op][I8];
1734      break;
1735    case MVT::i16:
1736      if (isCN) {
1737        if (immSext8(Val.getNode()))
1738          Opc = AtomicOpcTbl[Op][SextConstantI16];
1739        else
1740          Opc = AtomicOpcTbl[Op][ConstantI16];
1741      } else
1742        Opc = AtomicOpcTbl[Op][I16];
1743      break;
1744    case MVT::i32:
1745      if (isCN) {
1746        if (immSext8(Val.getNode()))
1747          Opc = AtomicOpcTbl[Op][SextConstantI32];
1748        else
1749          Opc = AtomicOpcTbl[Op][ConstantI32];
1750      } else
1751        Opc = AtomicOpcTbl[Op][I32];
1752      break;
1753    case MVT::i64:
1754      Opc = AtomicOpcTbl[Op][I64];
1755      if (isCN) {
1756        if (immSext8(Val.getNode()))
1757          Opc = AtomicOpcTbl[Op][SextConstantI64];
1758        else if (i64immSExt32(Val.getNode()))
1759          Opc = AtomicOpcTbl[Op][ConstantI64];
1760      }
1761      break;
1762  }
1763
1764  assert(Opc != 0 && "Invalid arith lock transform!");
1765
1766  SDValue Ret;
1767  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1768                                                 dl, NVT), 0);
1769  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1770  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1771  if (isUnOp) {
1772    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1773    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops,
1774                                         array_lengthof(Ops)), 0);
1775  } else {
1776    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1777    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops,
1778                                         array_lengthof(Ops)), 0);
1779  }
1780  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1781  SDValue RetVals[] = { Undef, Ret };
1782  return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1783}
1784
1785/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1786/// any uses which require the SF or OF bits to be accurate.
1787static bool HasNoSignedComparisonUses(SDNode *N) {
1788  // Examine each user of the node.
1789  for (SDNode::use_iterator UI = N->use_begin(),
1790         UE = N->use_end(); UI != UE; ++UI) {
1791    // Only examine CopyToReg uses.
1792    if (UI->getOpcode() != ISD::CopyToReg)
1793      return false;
1794    // Only examine CopyToReg uses that copy to EFLAGS.
1795    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1796          X86::EFLAGS)
1797      return false;
1798    // Examine each user of the CopyToReg use.
1799    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1800           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1801      // Only examine the Flag result.
1802      if (FlagUI.getUse().getResNo() != 1) continue;
1803      // Anything unusual: assume conservatively.
1804      if (!FlagUI->isMachineOpcode()) return false;
1805      // Examine the opcode of the user.
1806      switch (FlagUI->getMachineOpcode()) {
1807      // These comparisons don't treat the most significant bit specially.
1808      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1809      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1810      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1811      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1812      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1813      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1814      case X86::CMOVA16rr: case X86::CMOVA16rm:
1815      case X86::CMOVA32rr: case X86::CMOVA32rm:
1816      case X86::CMOVA64rr: case X86::CMOVA64rm:
1817      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1818      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1819      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1820      case X86::CMOVB16rr: case X86::CMOVB16rm:
1821      case X86::CMOVB32rr: case X86::CMOVB32rm:
1822      case X86::CMOVB64rr: case X86::CMOVB64rm:
1823      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1824      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1825      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1826      case X86::CMOVE16rr: case X86::CMOVE16rm:
1827      case X86::CMOVE32rr: case X86::CMOVE32rm:
1828      case X86::CMOVE64rr: case X86::CMOVE64rm:
1829      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1830      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1831      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1832      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1833      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1834      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1835      case X86::CMOVP16rr: case X86::CMOVP16rm:
1836      case X86::CMOVP32rr: case X86::CMOVP32rm:
1837      case X86::CMOVP64rr: case X86::CMOVP64rm:
1838        continue;
1839      // Anything else: assume conservatively.
1840      default: return false;
1841      }
1842    }
1843  }
1844  return true;
1845}
1846
1847/// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
1848/// is suitable for doing the {load; increment or decrement; store} to modify
1849/// transformation.
1850static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
1851                                SDValue StoredVal, SelectionDAG *CurDAG,
1852                                LoadSDNode* &LoadNode, SDValue &InputChain) {
1853
1854  // is the value stored the result of a DEC or INC?
1855  if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
1856
1857  // is the stored value result 0 of the load?
1858  if (StoredVal.getResNo() != 0) return false;
1859
1860  // are there other uses of the loaded value than the inc or dec?
1861  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
1862
1863  // is the store non-extending and non-indexed?
1864  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1865    return false;
1866
1867  SDValue Load = StoredVal->getOperand(0);
1868  // Is the stored value a non-extending and non-indexed load?
1869  if (!ISD::isNormalLoad(Load.getNode())) return false;
1870
1871  // Return LoadNode by reference.
1872  LoadNode = cast<LoadSDNode>(Load);
1873  // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
1874  EVT LdVT = LoadNode->getMemoryVT();
1875  if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
1876      LdVT != MVT::i8)
1877    return false;
1878
1879  // Is store the only read of the loaded value?
1880  if (!Load.hasOneUse())
1881    return false;
1882
1883  // Is the address of the store the same as the load?
1884  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1885      LoadNode->getOffset() != StoreNode->getOffset())
1886    return false;
1887
1888  // Check if the chain is produced by the load or is a TokenFactor with
1889  // the load output chain as an operand. Return InputChain by reference.
1890  SDValue Chain = StoreNode->getChain();
1891
1892  bool ChainCheck = false;
1893  if (Chain == Load.getValue(1)) {
1894    ChainCheck = true;
1895    InputChain = LoadNode->getChain();
1896  } else if (Chain.getOpcode() == ISD::TokenFactor) {
1897    SmallVector<SDValue, 4> ChainOps;
1898    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1899      SDValue Op = Chain.getOperand(i);
1900      if (Op == Load.getValue(1)) {
1901        ChainCheck = true;
1902        continue;
1903      }
1904
1905      // Make sure using Op as part of the chain would not cause a cycle here.
1906      // In theory, we could check whether the chain node is a predecessor of
1907      // the load. But that can be very expensive. Instead visit the uses and
1908      // make sure they all have smaller node id than the load.
1909      int LoadId = LoadNode->getNodeId();
1910      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
1911             UE = UI->use_end(); UI != UE; ++UI) {
1912        if (UI.getUse().getResNo() != 0)
1913          continue;
1914        if (UI->getNodeId() > LoadId)
1915          return false;
1916      }
1917
1918      ChainOps.push_back(Op);
1919    }
1920
1921    if (ChainCheck)
1922      // Make a new TokenFactor with all the other input chains except
1923      // for the load.
1924      InputChain = CurDAG->getNode(ISD::TokenFactor, Chain.getDebugLoc(),
1925                                   MVT::Other, &ChainOps[0], ChainOps.size());
1926  }
1927  if (!ChainCheck)
1928    return false;
1929
1930  return true;
1931}
1932
1933/// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
1934/// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
1935static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
1936  if (Opc == X86ISD::DEC) {
1937    if (LdVT == MVT::i64) return X86::DEC64m;
1938    if (LdVT == MVT::i32) return X86::DEC32m;
1939    if (LdVT == MVT::i16) return X86::DEC16m;
1940    if (LdVT == MVT::i8)  return X86::DEC8m;
1941  } else {
1942    assert(Opc == X86ISD::INC && "unrecognized opcode");
1943    if (LdVT == MVT::i64) return X86::INC64m;
1944    if (LdVT == MVT::i32) return X86::INC32m;
1945    if (LdVT == MVT::i16) return X86::INC16m;
1946    if (LdVT == MVT::i8)  return X86::INC8m;
1947  }
1948  llvm_unreachable("unrecognized size for LdVT");
1949}
1950
1951/// SelectGather - Customized ISel for GATHER operations.
1952///
1953SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
1954  // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
1955  SDValue Chain = Node->getOperand(0);
1956  SDValue VSrc = Node->getOperand(2);
1957  SDValue Base = Node->getOperand(3);
1958  SDValue VIdx = Node->getOperand(4);
1959  SDValue VMask = Node->getOperand(5);
1960  ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
1961  if (!Scale)
1962    return 0;
1963
1964  SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
1965                                   MVT::Other);
1966
1967  // Memory Operands: Base, Scale, Index, Disp, Segment
1968  SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
1969  SDValue Segment = CurDAG->getRegister(0, MVT::i32);
1970  const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
1971                          Disp, Segment, VMask, Chain};
1972  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1973                                           VTs, Ops, array_lengthof(Ops));
1974  // Node has 2 outputs: VDst and MVT::Other.
1975  // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
1976  // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
1977  // of ResNode.
1978  ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
1979  ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
1980  return ResNode;
1981}
1982
1983SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1984  EVT NVT = Node->getValueType(0);
1985  unsigned Opc, MOpc;
1986  unsigned Opcode = Node->getOpcode();
1987  DebugLoc dl = Node->getDebugLoc();
1988
1989  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1990
1991  if (Node->isMachineOpcode()) {
1992    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
1993    return NULL;   // Already selected.
1994  }
1995
1996  switch (Opcode) {
1997  default: break;
1998  case ISD::INTRINSIC_W_CHAIN: {
1999    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
2000    switch (IntNo) {
2001    default: break;
2002    case Intrinsic::x86_avx2_gather_d_pd:
2003    case Intrinsic::x86_avx2_gather_d_pd_256:
2004    case Intrinsic::x86_avx2_gather_q_pd:
2005    case Intrinsic::x86_avx2_gather_q_pd_256:
2006    case Intrinsic::x86_avx2_gather_d_ps:
2007    case Intrinsic::x86_avx2_gather_d_ps_256:
2008    case Intrinsic::x86_avx2_gather_q_ps:
2009    case Intrinsic::x86_avx2_gather_q_ps_256:
2010    case Intrinsic::x86_avx2_gather_d_q:
2011    case Intrinsic::x86_avx2_gather_d_q_256:
2012    case Intrinsic::x86_avx2_gather_q_q:
2013    case Intrinsic::x86_avx2_gather_q_q_256:
2014    case Intrinsic::x86_avx2_gather_d_d:
2015    case Intrinsic::x86_avx2_gather_d_d_256:
2016    case Intrinsic::x86_avx2_gather_q_d:
2017    case Intrinsic::x86_avx2_gather_q_d_256: {
2018      unsigned Opc;
2019      switch (IntNo) {
2020      default: llvm_unreachable("Impossible intrinsic");
2021      case Intrinsic::x86_avx2_gather_d_pd:     Opc = X86::VGATHERDPDrm;  break;
2022      case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
2023      case Intrinsic::x86_avx2_gather_q_pd:     Opc = X86::VGATHERQPDrm;  break;
2024      case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
2025      case Intrinsic::x86_avx2_gather_d_ps:     Opc = X86::VGATHERDPSrm;  break;
2026      case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
2027      case Intrinsic::x86_avx2_gather_q_ps:     Opc = X86::VGATHERQPSrm;  break;
2028      case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
2029      case Intrinsic::x86_avx2_gather_d_q:      Opc = X86::VPGATHERDQrm;  break;
2030      case Intrinsic::x86_avx2_gather_d_q_256:  Opc = X86::VPGATHERDQYrm; break;
2031      case Intrinsic::x86_avx2_gather_q_q:      Opc = X86::VPGATHERQQrm;  break;
2032      case Intrinsic::x86_avx2_gather_q_q_256:  Opc = X86::VPGATHERQQYrm; break;
2033      case Intrinsic::x86_avx2_gather_d_d:      Opc = X86::VPGATHERDDrm;  break;
2034      case Intrinsic::x86_avx2_gather_d_d_256:  Opc = X86::VPGATHERDDYrm; break;
2035      case Intrinsic::x86_avx2_gather_q_d:      Opc = X86::VPGATHERQDrm;  break;
2036      case Intrinsic::x86_avx2_gather_q_d_256:  Opc = X86::VPGATHERQDYrm; break;
2037      }
2038      SDNode *RetVal = SelectGather(Node, Opc);
2039      if (RetVal)
2040        // We already called ReplaceUses inside SelectGather.
2041        return NULL;
2042      break;
2043    }
2044    }
2045    break;
2046  }
2047  case X86ISD::GlobalBaseReg:
2048    return getGlobalBaseReg();
2049
2050
2051  case X86ISD::ATOMOR64_DAG:
2052  case X86ISD::ATOMXOR64_DAG:
2053  case X86ISD::ATOMADD64_DAG:
2054  case X86ISD::ATOMSUB64_DAG:
2055  case X86ISD::ATOMNAND64_DAG:
2056  case X86ISD::ATOMAND64_DAG:
2057  case X86ISD::ATOMMAX64_DAG:
2058  case X86ISD::ATOMMIN64_DAG:
2059  case X86ISD::ATOMUMAX64_DAG:
2060  case X86ISD::ATOMUMIN64_DAG:
2061  case X86ISD::ATOMSWAP64_DAG: {
2062    unsigned Opc;
2063    switch (Opcode) {
2064    default: llvm_unreachable("Impossible opcode");
2065    case X86ISD::ATOMOR64_DAG:   Opc = X86::ATOMOR6432;   break;
2066    case X86ISD::ATOMXOR64_DAG:  Opc = X86::ATOMXOR6432;  break;
2067    case X86ISD::ATOMADD64_DAG:  Opc = X86::ATOMADD6432;  break;
2068    case X86ISD::ATOMSUB64_DAG:  Opc = X86::ATOMSUB6432;  break;
2069    case X86ISD::ATOMNAND64_DAG: Opc = X86::ATOMNAND6432; break;
2070    case X86ISD::ATOMAND64_DAG:  Opc = X86::ATOMAND6432;  break;
2071    case X86ISD::ATOMMAX64_DAG:  Opc = X86::ATOMMAX6432;  break;
2072    case X86ISD::ATOMMIN64_DAG:  Opc = X86::ATOMMIN6432;  break;
2073    case X86ISD::ATOMUMAX64_DAG: Opc = X86::ATOMUMAX6432; break;
2074    case X86ISD::ATOMUMIN64_DAG: Opc = X86::ATOMUMIN6432; break;
2075    case X86ISD::ATOMSWAP64_DAG: Opc = X86::ATOMSWAP6432; break;
2076    }
2077    SDNode *RetVal = SelectAtomic64(Node, Opc);
2078    if (RetVal)
2079      return RetVal;
2080    break;
2081  }
2082
2083  case ISD::ATOMIC_LOAD_XOR:
2084  case ISD::ATOMIC_LOAD_AND:
2085  case ISD::ATOMIC_LOAD_OR:
2086  case ISD::ATOMIC_LOAD_ADD: {
2087    SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
2088    if (RetVal)
2089      return RetVal;
2090    break;
2091  }
2092  case ISD::AND:
2093  case ISD::OR:
2094  case ISD::XOR: {
2095    // For operations of the form (x << C1) op C2, check if we can use a smaller
2096    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2097    SDValue N0 = Node->getOperand(0);
2098    SDValue N1 = Node->getOperand(1);
2099
2100    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2101      break;
2102
2103    // i8 is unshrinkable, i16 should be promoted to i32.
2104    if (NVT != MVT::i32 && NVT != MVT::i64)
2105      break;
2106
2107    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
2108    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2109    if (!Cst || !ShlCst)
2110      break;
2111
2112    int64_t Val = Cst->getSExtValue();
2113    uint64_t ShlVal = ShlCst->getZExtValue();
2114
2115    // Make sure that we don't change the operation by removing bits.
2116    // This only matters for OR and XOR, AND is unaffected.
2117    uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
2118    if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
2119      break;
2120
2121    unsigned ShlOp, Op;
2122    EVT CstVT = NVT;
2123
2124    // Check the minimum bitwidth for the new constant.
2125    // TODO: AND32ri is the same as AND64ri32 with zext imm.
2126    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2127    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2128    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2129      CstVT = MVT::i8;
2130    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2131      CstVT = MVT::i32;
2132
2133    // Bail if there is no smaller encoding.
2134    if (NVT == CstVT)
2135      break;
2136
2137    switch (NVT.getSimpleVT().SimpleTy) {
2138    default: llvm_unreachable("Unsupported VT!");
2139    case MVT::i32:
2140      assert(CstVT == MVT::i8);
2141      ShlOp = X86::SHL32ri;
2142
2143      switch (Opcode) {
2144      default: llvm_unreachable("Impossible opcode");
2145      case ISD::AND: Op = X86::AND32ri8; break;
2146      case ISD::OR:  Op =  X86::OR32ri8; break;
2147      case ISD::XOR: Op = X86::XOR32ri8; break;
2148      }
2149      break;
2150    case MVT::i64:
2151      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
2152      ShlOp = X86::SHL64ri;
2153
2154      switch (Opcode) {
2155      default: llvm_unreachable("Impossible opcode");
2156      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
2157      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
2158      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2159      }
2160      break;
2161    }
2162
2163    // Emit the smaller op and the shift.
2164    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
2165    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2166    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2167                                getI8Imm(ShlVal));
2168  }
2169  case X86ISD::UMUL: {
2170    SDValue N0 = Node->getOperand(0);
2171    SDValue N1 = Node->getOperand(1);
2172
2173    unsigned LoReg;
2174    switch (NVT.getSimpleVT().SimpleTy) {
2175    default: llvm_unreachable("Unsupported VT!");
2176    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
2177    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
2178    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2179    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2180    }
2181
2182    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2183                                          N0, SDValue()).getValue(1);
2184
2185    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2186    SDValue Ops[] = {N1, InFlag};
2187    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
2188
2189    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2190    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2191    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2192    return NULL;
2193  }
2194
2195  case ISD::SMUL_LOHI:
2196  case ISD::UMUL_LOHI: {
2197    SDValue N0 = Node->getOperand(0);
2198    SDValue N1 = Node->getOperand(1);
2199
2200    bool isSigned = Opcode == ISD::SMUL_LOHI;
2201    bool hasBMI2 = Subtarget->hasBMI2();
2202    if (!isSigned) {
2203      switch (NVT.getSimpleVT().SimpleTy) {
2204      default: llvm_unreachable("Unsupported VT!");
2205      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
2206      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2207      case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
2208                     MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
2209      case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
2210                     MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
2211      }
2212    } else {
2213      switch (NVT.getSimpleVT().SimpleTy) {
2214      default: llvm_unreachable("Unsupported VT!");
2215      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
2216      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2217      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2218      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2219      }
2220    }
2221
2222    unsigned SrcReg, LoReg, HiReg;
2223    switch (Opc) {
2224    default: llvm_unreachable("Unknown MUL opcode!");
2225    case X86::IMUL8r:
2226    case X86::MUL8r:
2227      SrcReg = LoReg = X86::AL; HiReg = X86::AH;
2228      break;
2229    case X86::IMUL16r:
2230    case X86::MUL16r:
2231      SrcReg = LoReg = X86::AX; HiReg = X86::DX;
2232      break;
2233    case X86::IMUL32r:
2234    case X86::MUL32r:
2235      SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
2236      break;
2237    case X86::IMUL64r:
2238    case X86::MUL64r:
2239      SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
2240      break;
2241    case X86::MULX32rr:
2242      SrcReg = X86::EDX; LoReg = HiReg = 0;
2243      break;
2244    case X86::MULX64rr:
2245      SrcReg = X86::RDX; LoReg = HiReg = 0;
2246      break;
2247    }
2248
2249    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2250    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2251    // Multiply is commmutative.
2252    if (!foldedLoad) {
2253      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2254      if (foldedLoad)
2255        std::swap(N0, N1);
2256    }
2257
2258    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
2259                                          N0, SDValue()).getValue(1);
2260    SDValue ResHi, ResLo;
2261
2262    if (foldedLoad) {
2263      SDValue Chain;
2264      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2265                        InFlag };
2266      if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
2267        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
2268        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops,
2269                                               array_lengthof(Ops));
2270        ResHi = SDValue(CNode, 0);
2271        ResLo = SDValue(CNode, 1);
2272        Chain = SDValue(CNode, 2);
2273        InFlag = SDValue(CNode, 3);
2274      } else {
2275        SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
2276        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops,
2277                                               array_lengthof(Ops));
2278        Chain = SDValue(CNode, 0);
2279        InFlag = SDValue(CNode, 1);
2280      }
2281
2282      // Update the chain.
2283      ReplaceUses(N1.getValue(1), Chain);
2284    } else {
2285      SDValue Ops[] = { N1, InFlag };
2286      if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
2287        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
2288        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops,
2289                                               array_lengthof(Ops));
2290        ResHi = SDValue(CNode, 0);
2291        ResLo = SDValue(CNode, 1);
2292        InFlag = SDValue(CNode, 2);
2293      } else {
2294        SDVTList VTs = CurDAG->getVTList(MVT::Glue);
2295        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops,
2296                                               array_lengthof(Ops));
2297        InFlag = SDValue(CNode, 0);
2298      }
2299    }
2300
2301    // Prevent use of AH in a REX instruction by referencing AX instead.
2302    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2303        !SDValue(Node, 1).use_empty()) {
2304      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2305                                              X86::AX, MVT::i16, InFlag);
2306      InFlag = Result.getValue(2);
2307      // Get the low part if needed. Don't use getCopyFromReg for aliasing
2308      // registers.
2309      if (!SDValue(Node, 0).use_empty())
2310        ReplaceUses(SDValue(Node, 1),
2311          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2312
2313      // Shift AX down 8 bits.
2314      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2315                                              Result,
2316                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
2317      // Then truncate it down to i8.
2318      ReplaceUses(SDValue(Node, 1),
2319        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2320    }
2321    // Copy the low half of the result, if it is needed.
2322    if (!SDValue(Node, 0).use_empty()) {
2323      if (ResLo.getNode() == 0) {
2324        assert(LoReg && "Register for low half is not defined!");
2325        ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
2326                                       InFlag);
2327        InFlag = ResLo.getValue(2);
2328      }
2329      ReplaceUses(SDValue(Node, 0), ResLo);
2330      DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
2331    }
2332    // Copy the high half of the result, if it is needed.
2333    if (!SDValue(Node, 1).use_empty()) {
2334      if (ResHi.getNode() == 0) {
2335        assert(HiReg && "Register for high half is not defined!");
2336        ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
2337                                       InFlag);
2338        InFlag = ResHi.getValue(2);
2339      }
2340      ReplaceUses(SDValue(Node, 1), ResHi);
2341      DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
2342    }
2343
2344    return NULL;
2345  }
2346
2347  case ISD::SDIVREM:
2348  case ISD::UDIVREM: {
2349    SDValue N0 = Node->getOperand(0);
2350    SDValue N1 = Node->getOperand(1);
2351
2352    bool isSigned = Opcode == ISD::SDIVREM;
2353    if (!isSigned) {
2354      switch (NVT.getSimpleVT().SimpleTy) {
2355      default: llvm_unreachable("Unsupported VT!");
2356      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
2357      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2358      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2359      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2360      }
2361    } else {
2362      switch (NVT.getSimpleVT().SimpleTy) {
2363      default: llvm_unreachable("Unsupported VT!");
2364      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
2365      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2366      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2367      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2368      }
2369    }
2370
2371    unsigned LoReg, HiReg, ClrReg;
2372    unsigned ClrOpcode, SExtOpcode;
2373    switch (NVT.getSimpleVT().SimpleTy) {
2374    default: llvm_unreachable("Unsupported VT!");
2375    case MVT::i8:
2376      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
2377      ClrOpcode  = 0;
2378      SExtOpcode = X86::CBW;
2379      break;
2380    case MVT::i16:
2381      LoReg = X86::AX;  HiReg = X86::DX;
2382      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
2383      SExtOpcode = X86::CWD;
2384      break;
2385    case MVT::i32:
2386      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2387      ClrOpcode  = X86::MOV32r0;
2388      SExtOpcode = X86::CDQ;
2389      break;
2390    case MVT::i64:
2391      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2392      ClrOpcode  = X86::MOV64r0;
2393      SExtOpcode = X86::CQO;
2394      break;
2395    }
2396
2397    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2398    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2399    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2400
2401    SDValue InFlag;
2402    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2403      // Special case for div8, just use a move with zero extension to AX to
2404      // clear the upper 8 bits (AH).
2405      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2406      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2407        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2408        Move =
2409          SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2410                                         MVT::Other, Ops,
2411                                         array_lengthof(Ops)), 0);
2412        Chain = Move.getValue(1);
2413        ReplaceUses(N0.getValue(1), Chain);
2414      } else {
2415        Move =
2416          SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2417        Chain = CurDAG->getEntryNode();
2418      }
2419      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2420      InFlag = Chain.getValue(1);
2421    } else {
2422      InFlag =
2423        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2424                             LoReg, N0, SDValue()).getValue(1);
2425      if (isSigned && !signBitIsZero) {
2426        // Sign extend the low part into the high part.
2427        InFlag =
2428          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2429      } else {
2430        // Zero out the high part, effectively zero extending the input.
2431        SDValue ClrNode =
2432          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
2433        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2434                                      ClrNode, InFlag).getValue(1);
2435      }
2436    }
2437
2438    if (foldedLoad) {
2439      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2440                        InFlag };
2441      SDNode *CNode =
2442        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
2443                               array_lengthof(Ops));
2444      InFlag = SDValue(CNode, 1);
2445      // Update the chain.
2446      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2447    } else {
2448      InFlag =
2449        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2450    }
2451
2452    // Prevent use of AH in a REX instruction by referencing AX instead.
2453    // Shift it down 8 bits.
2454    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2455        !SDValue(Node, 1).use_empty()) {
2456      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2457                                              X86::AX, MVT::i16, InFlag);
2458      InFlag = Result.getValue(2);
2459
2460      // If we also need AL (the quotient), get it by extracting a subreg from
2461      // Result. The fast register allocator does not like multiple CopyFromReg
2462      // nodes using aliasing registers.
2463      if (!SDValue(Node, 0).use_empty())
2464        ReplaceUses(SDValue(Node, 0),
2465          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2466
2467      // Shift AX right by 8 bits instead of using AH.
2468      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2469                                         Result,
2470                                         CurDAG->getTargetConstant(8, MVT::i8)),
2471                       0);
2472      ReplaceUses(SDValue(Node, 1),
2473        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2474    }
2475    // Copy the division (low) result, if it is needed.
2476    if (!SDValue(Node, 0).use_empty()) {
2477      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2478                                                LoReg, NVT, InFlag);
2479      InFlag = Result.getValue(2);
2480      ReplaceUses(SDValue(Node, 0), Result);
2481      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2482    }
2483    // Copy the remainder (high) result, if it is needed.
2484    if (!SDValue(Node, 1).use_empty()) {
2485      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2486                                              HiReg, NVT, InFlag);
2487      InFlag = Result.getValue(2);
2488      ReplaceUses(SDValue(Node, 1), Result);
2489      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2490    }
2491    return NULL;
2492  }
2493
2494  case X86ISD::CMP:
2495  case X86ISD::SUB: {
2496    // Sometimes a SUB is used to perform comparison.
2497    if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
2498      // This node is not a CMP.
2499      break;
2500    SDValue N0 = Node->getOperand(0);
2501    SDValue N1 = Node->getOperand(1);
2502
2503    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2504    // use a smaller encoding.
2505    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2506        HasNoSignedComparisonUses(Node))
2507      // Look past the truncate if CMP is the only use of it.
2508      N0 = N0.getOperand(0);
2509    if ((N0.getNode()->getOpcode() == ISD::AND ||
2510         (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2511        N0.getNode()->hasOneUse() &&
2512        N0.getValueType() != MVT::i8 &&
2513        X86::isZeroNode(N1)) {
2514      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2515      if (!C) break;
2516
2517      // For example, convert "testl %eax, $8" to "testb %al, $8"
2518      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2519          (!(C->getZExtValue() & 0x80) ||
2520           HasNoSignedComparisonUses(Node))) {
2521        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2522        SDValue Reg = N0.getNode()->getOperand(0);
2523
2524        // On x86-32, only the ABCD registers have 8-bit subregisters.
2525        if (!Subtarget->is64Bit()) {
2526          const TargetRegisterClass *TRC;
2527          switch (N0.getValueType().getSimpleVT().SimpleTy) {
2528          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2529          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2530          default: llvm_unreachable("Unsupported TEST operand type!");
2531          }
2532          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2533          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2534                                               Reg.getValueType(), Reg, RC), 0);
2535        }
2536
2537        // Extract the l-register.
2538        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2539                                                        MVT::i8, Reg);
2540
2541        // Emit a testb.
2542        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2543                                                 Subreg, Imm);
2544        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2545        // one, do not call ReplaceAllUsesWith.
2546        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2547                    SDValue(NewNode, 0));
2548        return NULL;
2549      }
2550
2551      // For example, "testl %eax, $2048" to "testb %ah, $8".
2552      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2553          (!(C->getZExtValue() & 0x8000) ||
2554           HasNoSignedComparisonUses(Node))) {
2555        // Shift the immediate right by 8 bits.
2556        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2557                                                       MVT::i8);
2558        SDValue Reg = N0.getNode()->getOperand(0);
2559
2560        // Put the value in an ABCD register.
2561        const TargetRegisterClass *TRC;
2562        switch (N0.getValueType().getSimpleVT().SimpleTy) {
2563        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2564        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2565        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2566        default: llvm_unreachable("Unsupported TEST operand type!");
2567        }
2568        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2569        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2570                                             Reg.getValueType(), Reg, RC), 0);
2571
2572        // Extract the h-register.
2573        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2574                                                        MVT::i8, Reg);
2575
2576        // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
2577        // target GR8_NOREX registers, so make sure the register class is
2578        // forced.
2579        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
2580                                                 MVT::i32, Subreg, ShiftedImm);
2581        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2582        // one, do not call ReplaceAllUsesWith.
2583        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2584                    SDValue(NewNode, 0));
2585        return NULL;
2586      }
2587
2588      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2589      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2590          N0.getValueType() != MVT::i16 &&
2591          (!(C->getZExtValue() & 0x8000) ||
2592           HasNoSignedComparisonUses(Node))) {
2593        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2594        SDValue Reg = N0.getNode()->getOperand(0);
2595
2596        // Extract the 16-bit subregister.
2597        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2598                                                        MVT::i16, Reg);
2599
2600        // Emit a testw.
2601        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
2602                                                 Subreg, Imm);
2603        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2604        // one, do not call ReplaceAllUsesWith.
2605        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2606                    SDValue(NewNode, 0));
2607        return NULL;
2608      }
2609
2610      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2611      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2612          N0.getValueType() == MVT::i64 &&
2613          (!(C->getZExtValue() & 0x80000000) ||
2614           HasNoSignedComparisonUses(Node))) {
2615        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2616        SDValue Reg = N0.getNode()->getOperand(0);
2617
2618        // Extract the 32-bit subregister.
2619        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2620                                                        MVT::i32, Reg);
2621
2622        // Emit a testl.
2623        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
2624                                                 Subreg, Imm);
2625        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2626        // one, do not call ReplaceAllUsesWith.
2627        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2628                    SDValue(NewNode, 0));
2629        return NULL;
2630      }
2631    }
2632    break;
2633  }
2634  case ISD::STORE: {
2635    // Change a chain of {load; incr or dec; store} of the same value into
2636    // a simple increment or decrement through memory of that value, if the
2637    // uses of the modified value and its address are suitable.
2638    // The DEC64m tablegen pattern is currently not able to match the case where
2639    // the EFLAGS on the original DEC are used. (This also applies to
2640    // {INC,DEC}X{64,32,16,8}.)
2641    // We'll need to improve tablegen to allow flags to be transferred from a
2642    // node in the pattern to the result node.  probably with a new keyword
2643    // for example, we have this
2644    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2645    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2646    //   (implicit EFLAGS)]>;
2647    // but maybe need something like this
2648    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2649    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2650    //   (transferrable EFLAGS)]>;
2651
2652    StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2653    SDValue StoredVal = StoreNode->getOperand(1);
2654    unsigned Opc = StoredVal->getOpcode();
2655
2656    LoadSDNode *LoadNode = 0;
2657    SDValue InputChain;
2658    if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
2659                             LoadNode, InputChain))
2660      break;
2661
2662    SDValue Base, Scale, Index, Disp, Segment;
2663    if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
2664                    Base, Scale, Index, Disp, Segment))
2665      break;
2666
2667    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2668    MemOp[0] = StoreNode->getMemOperand();
2669    MemOp[1] = LoadNode->getMemOperand();
2670    const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2671    EVT LdVT = LoadNode->getMemoryVT();
2672    unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
2673    MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
2674                                                   Node->getDebugLoc(),
2675                                                   MVT::i32, MVT::Other, Ops,
2676                                                   array_lengthof(Ops));
2677    Result->setMemRefs(MemOp, MemOp + 2);
2678
2679    ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2680    ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2681
2682    return Result;
2683  }
2684  }
2685
2686  SDNode *ResNode = SelectCode(Node);
2687
2688  DEBUG(dbgs() << "=> ";
2689        if (ResNode == NULL || ResNode == Node)
2690          Node->dump(CurDAG);
2691        else
2692          ResNode->dump(CurDAG);
2693        dbgs() << '\n');
2694
2695  return ResNode;
2696}
2697
2698bool X86DAGToDAGISel::
2699SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2700                             std::vector<SDValue> &OutOps) {
2701  SDValue Op0, Op1, Op2, Op3, Op4;
2702  switch (ConstraintCode) {
2703  case 'o':   // offsetable        ??
2704  case 'v':   // not offsetable    ??
2705  default: return true;
2706  case 'm':   // memory
2707    if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2708      return true;
2709    break;
2710  }
2711
2712  OutOps.push_back(Op0);
2713  OutOps.push_back(Op1);
2714  OutOps.push_back(Op2);
2715  OutOps.push_back(Op3);
2716  OutOps.push_back(Op4);
2717  return false;
2718}
2719
2720/// createX86ISelDag - This pass converts a legalized DAG into a
2721/// X86-specific DAG, ready for instruction scheduling.
2722///
2723FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2724                                     CodeGenOpt::Level OptLevel) {
2725  return new X86DAGToDAGISel(TM, OptLevel);
2726}
2727