1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_arm64.h"
18
19#include <inttypes.h>
20
21#include <string>
22#include <sstream>
23
24#include "backend_arm64.h"
25#include "base/logging.h"
26#include "dex/mir_graph.h"
27#include "dex/quick/mir_to_lir-inl.h"
28#include "dex/reg_storage_eq.h"
29
30namespace art {
31
32static constexpr RegStorage core_regs_arr[] =
33    {rs_w0, rs_w1, rs_w2, rs_w3, rs_w4, rs_w5, rs_w6, rs_w7,
34     rs_w8, rs_w9, rs_w10, rs_w11, rs_w12, rs_w13, rs_w14, rs_w15,
35     rs_w16, rs_w17, rs_w18, rs_w19, rs_w20, rs_w21, rs_w22, rs_w23,
36     rs_w24, rs_w25, rs_w26, rs_w27, rs_w28, rs_w29, rs_w30, rs_w31,
37     rs_wzr};
38static constexpr RegStorage core64_regs_arr[] =
39    {rs_x0, rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7,
40     rs_x8, rs_x9, rs_x10, rs_x11, rs_x12, rs_x13, rs_x14, rs_x15,
41     rs_x16, rs_x17, rs_x18, rs_x19, rs_x20, rs_x21, rs_x22, rs_x23,
42     rs_x24, rs_x25, rs_x26, rs_x27, rs_x28, rs_x29, rs_x30, rs_x31,
43     rs_xzr};
44static constexpr RegStorage sp_regs_arr[] =
45    {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7,
46     rs_f8, rs_f9, rs_f10, rs_f11, rs_f12, rs_f13, rs_f14, rs_f15,
47     rs_f16, rs_f17, rs_f18, rs_f19, rs_f20, rs_f21, rs_f22, rs_f23,
48     rs_f24, rs_f25, rs_f26, rs_f27, rs_f28, rs_f29, rs_f30, rs_f31};
49static constexpr RegStorage dp_regs_arr[] =
50    {rs_d0, rs_d1, rs_d2, rs_d3, rs_d4, rs_d5, rs_d6, rs_d7,
51     rs_d8, rs_d9, rs_d10, rs_d11, rs_d12, rs_d13, rs_d14, rs_d15,
52     rs_d16, rs_d17, rs_d18, rs_d19, rs_d20, rs_d21, rs_d22, rs_d23,
53     rs_d24, rs_d25, rs_d26, rs_d27, rs_d28, rs_d29, rs_d30, rs_d31};
54// Note: we are not able to call to C function since rs_xSELF is a special register need to be
55// preserved but would be scratched by native functions follow aapcs64.
56static constexpr RegStorage reserved_regs_arr[] = {rs_wSELF, rs_wsp, rs_wLR, rs_wzr};
57static constexpr RegStorage reserved64_regs_arr[] = {rs_xSELF, rs_sp, rs_xLR, rs_xzr};
58
59static constexpr RegStorage core_temps_arr[] =
60    {rs_w0, rs_w1, rs_w2, rs_w3, rs_w4, rs_w5, rs_w6, rs_w7,
61     rs_w8, rs_w9, rs_w10, rs_w11, rs_w12, rs_w13, rs_w14, rs_w15, rs_w16,
62     rs_w17};
63static constexpr RegStorage core64_temps_arr[] =
64    {rs_x0, rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7,
65     rs_x8, rs_x9, rs_x10, rs_x11, rs_x12, rs_x13, rs_x14, rs_x15, rs_x16,
66     rs_x17};
67static constexpr RegStorage sp_temps_arr[] =
68    {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7,
69     rs_f16, rs_f17, rs_f18, rs_f19, rs_f20, rs_f21, rs_f22, rs_f23,
70     rs_f24, rs_f25, rs_f26, rs_f27, rs_f28, rs_f29, rs_f30, rs_f31};
71static constexpr RegStorage dp_temps_arr[] =
72    {rs_d0, rs_d1, rs_d2, rs_d3, rs_d4, rs_d5, rs_d6, rs_d7,
73     rs_d16, rs_d17, rs_d18, rs_d19, rs_d20, rs_d21, rs_d22, rs_d23,
74     rs_d24, rs_d25, rs_d26, rs_d27, rs_d28, rs_d29, rs_d30, rs_d31};
75
76static constexpr ArrayRef<const RegStorage> core_regs(core_regs_arr);
77static constexpr ArrayRef<const RegStorage> core64_regs(core64_regs_arr);
78static constexpr ArrayRef<const RegStorage> sp_regs(sp_regs_arr);
79static constexpr ArrayRef<const RegStorage> dp_regs(dp_regs_arr);
80static constexpr ArrayRef<const RegStorage> reserved_regs(reserved_regs_arr);
81static constexpr ArrayRef<const RegStorage> reserved64_regs(reserved64_regs_arr);
82static constexpr ArrayRef<const RegStorage> core_temps(core_temps_arr);
83static constexpr ArrayRef<const RegStorage> core64_temps(core64_temps_arr);
84static constexpr ArrayRef<const RegStorage> sp_temps(sp_temps_arr);
85static constexpr ArrayRef<const RegStorage> dp_temps(dp_temps_arr);
86
87RegLocation Arm64Mir2Lir::LocCReturn() {
88  return a64_loc_c_return;
89}
90
91RegLocation Arm64Mir2Lir::LocCReturnRef() {
92  return a64_loc_c_return_ref;
93}
94
95RegLocation Arm64Mir2Lir::LocCReturnWide() {
96  return a64_loc_c_return_wide;
97}
98
99RegLocation Arm64Mir2Lir::LocCReturnFloat() {
100  return a64_loc_c_return_float;
101}
102
103RegLocation Arm64Mir2Lir::LocCReturnDouble() {
104  return a64_loc_c_return_double;
105}
106
107// Return a target-dependent special register.
108RegStorage Arm64Mir2Lir::TargetReg(SpecialTargetRegister reg) {
109  RegStorage res_reg = RegStorage::InvalidReg();
110  switch (reg) {
111    case kSelf: res_reg = rs_wSELF; break;
112    case kSuspend: res_reg = RegStorage::InvalidReg(); break;
113    case kLr: res_reg =  rs_wLR; break;
114    case kPc: res_reg = RegStorage::InvalidReg(); break;
115    case kSp: res_reg =  rs_wsp; break;
116    case kArg0: res_reg = rs_w0; break;
117    case kArg1: res_reg = rs_w1; break;
118    case kArg2: res_reg = rs_w2; break;
119    case kArg3: res_reg = rs_w3; break;
120    case kArg4: res_reg = rs_w4; break;
121    case kArg5: res_reg = rs_w5; break;
122    case kArg6: res_reg = rs_w6; break;
123    case kArg7: res_reg = rs_w7; break;
124    case kFArg0: res_reg = rs_f0; break;
125    case kFArg1: res_reg = rs_f1; break;
126    case kFArg2: res_reg = rs_f2; break;
127    case kFArg3: res_reg = rs_f3; break;
128    case kFArg4: res_reg = rs_f4; break;
129    case kFArg5: res_reg = rs_f5; break;
130    case kFArg6: res_reg = rs_f6; break;
131    case kFArg7: res_reg = rs_f7; break;
132    case kRet0: res_reg = rs_w0; break;
133    case kRet1: res_reg = rs_w1; break;
134    case kInvokeTgt: res_reg = rs_wLR; break;
135    case kHiddenArg: res_reg = rs_wIP1; break;
136    case kHiddenFpArg: res_reg = RegStorage::InvalidReg(); break;
137    case kCount: res_reg = RegStorage::InvalidReg(); break;
138    default: res_reg = RegStorage::InvalidReg();
139  }
140  return res_reg;
141}
142
143/*
144 * Decode the register id. This routine makes assumptions on the encoding made by RegStorage.
145 */
146ResourceMask Arm64Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
147  // TODO(Arm64): this function depends too much on the internal RegStorage encoding. Refactor.
148
149  // Check if the shape mask is zero (i.e. invalid).
150  if (UNLIKELY(reg == rs_wzr || reg == rs_xzr)) {
151    // The zero register is not a true register. It is just an immediate zero.
152    return kEncodeNone;
153  }
154
155  return ResourceMask::Bit(
156      // FP register starts at bit position 32.
157      (reg.IsFloat() ? kA64FPReg0 : 0) + reg.GetRegNum());
158}
159
160ResourceMask Arm64Mir2Lir::GetPCUseDefEncoding() const {
161  // Note: On arm64, we are not able to set pc except branch instructions, which is regarded as a
162  //       kind of barrier. All other instructions only use pc, which has no dependency between any
163  //       of them. So it is fine to just return kEncodeNone here.
164  return kEncodeNone;
165}
166
167// Arm64 specific setup.  TODO: inline?:
168void Arm64Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
169                                            ResourceMask* use_mask, ResourceMask* def_mask) {
170  DCHECK_EQ(cu_->instruction_set, kArm64);
171  DCHECK(!lir->flags.use_def_invalid);
172
173  // Note: REG_USE_PC is ignored, the reason is the same with what we do in GetPCUseDefEncoding().
174  // These flags are somewhat uncommon - bypass if we can.
175  if ((flags & (REG_DEF_SP | REG_USE_SP | REG_DEF_LR)) != 0) {
176    if (flags & REG_DEF_SP) {
177      def_mask->SetBit(kA64RegSP);
178    }
179
180    if (flags & REG_USE_SP) {
181      use_mask->SetBit(kA64RegSP);
182    }
183
184    if (flags & REG_DEF_LR) {
185      def_mask->SetBit(kA64RegLR);
186    }
187  }
188}
189
190ArmConditionCode Arm64Mir2Lir::ArmConditionEncoding(ConditionCode ccode) {
191  ArmConditionCode res;
192  switch (ccode) {
193    case kCondEq: res = kArmCondEq; break;
194    case kCondNe: res = kArmCondNe; break;
195    case kCondCs: res = kArmCondCs; break;
196    case kCondCc: res = kArmCondCc; break;
197    case kCondUlt: res = kArmCondCc; break;
198    case kCondUge: res = kArmCondCs; break;
199    case kCondMi: res = kArmCondMi; break;
200    case kCondPl: res = kArmCondPl; break;
201    case kCondVs: res = kArmCondVs; break;
202    case kCondVc: res = kArmCondVc; break;
203    case kCondHi: res = kArmCondHi; break;
204    case kCondLs: res = kArmCondLs; break;
205    case kCondGe: res = kArmCondGe; break;
206    case kCondLt: res = kArmCondLt; break;
207    case kCondGt: res = kArmCondGt; break;
208    case kCondLe: res = kArmCondLe; break;
209    case kCondAl: res = kArmCondAl; break;
210    case kCondNv: res = kArmCondNv; break;
211    default:
212      LOG(FATAL) << "Bad condition code " << ccode;
213      res = static_cast<ArmConditionCode>(0);  // Quiet gcc
214  }
215  return res;
216}
217
218static const char *shift_names[4] = {
219  "lsl",
220  "lsr",
221  "asr",
222  "ror"
223};
224
225static const char* extend_names[8] = {
226  "uxtb",
227  "uxth",
228  "uxtw",
229  "uxtx",
230  "sxtb",
231  "sxth",
232  "sxtw",
233  "sxtx",
234};
235
236/* Decode and print a register extension (e.g. ", uxtb #1") */
237static void DecodeRegExtendOrShift(int operand, char *buf, size_t buf_size) {
238  if ((operand & (1 << 6)) == 0) {
239    const char *shift_name = shift_names[(operand >> 7) & 0x3];
240    int amount = operand & 0x3f;
241    snprintf(buf, buf_size, ", %s #%d", shift_name, amount);
242  } else {
243    const char *extend_name = extend_names[(operand >> 3) & 0x7];
244    int amount = operand & 0x7;
245    if (amount == 0) {
246      snprintf(buf, buf_size, ", %s", extend_name);
247    } else {
248      snprintf(buf, buf_size, ", %s #%d", extend_name, amount);
249    }
250  }
251}
252
253static uint64_t bit_mask(unsigned width) {
254  DCHECK_LE(width, 64U);
255  return (width == 64) ? static_cast<uint64_t>(-1) : ((UINT64_C(1) << (width)) - UINT64_C(1));
256}
257
258static uint64_t RotateRight(uint64_t value, unsigned rotate, unsigned width) {
259  DCHECK_LE(width, 64U);
260  rotate &= 63;
261  value = value & bit_mask(width);
262  return ((value & bit_mask(rotate)) << (width - rotate)) | (value >> rotate);
263}
264
265static uint64_t RepeatBitsAcrossReg(bool is_wide, uint64_t value, unsigned width) {
266  unsigned i;
267  unsigned reg_size = (is_wide) ? 64 : 32;
268  uint64_t result = value & bit_mask(width);
269  for (i = width; i < reg_size; i *= 2) {
270    result |= (result << i);
271  }
272  DCHECK_EQ(i, reg_size);
273  return result;
274}
275
276/**
277 * @brief Decode an immediate in the form required by logical instructions.
278 *
279 * @param is_wide Whether @p value encodes a 64-bit (as opposed to 32-bit) immediate.
280 * @param value The encoded logical immediates that is to be decoded.
281 * @return The decoded logical immediate.
282 * @note This is the inverse of Arm64Mir2Lir::EncodeLogicalImmediate().
283 */
284uint64_t Arm64Mir2Lir::DecodeLogicalImmediate(bool is_wide, int value) {
285  unsigned n     = (value >> 12) & 0x01;
286  unsigned imm_r = (value >>  6) & 0x3f;
287  unsigned imm_s = (value >>  0) & 0x3f;
288
289  // An integer is constructed from the n, imm_s and imm_r bits according to
290  // the following table:
291  //
292  // N   imms immr  size S             R
293  // 1 ssssss rrrrrr 64  UInt(ssssss) UInt(rrrrrr)
294  // 0 0sssss xrrrrr 32  UInt(sssss)  UInt(rrrrr)
295  // 0 10ssss xxrrrr 16  UInt(ssss)   UInt(rrrr)
296  // 0 110sss xxxrrr 8   UInt(sss)    UInt(rrr)
297  // 0 1110ss xxxxrr 4   UInt(ss)     UInt(rr)
298  // 0 11110s xxxxxr 2   UInt(s)      UInt(r)
299  // (s bits must not be all set)
300  //
301  // A pattern is constructed of size bits, where the least significant S+1
302  // bits are set. The pattern is rotated right by R, and repeated across a
303  // 32 or 64-bit value, depending on destination register width.
304
305  if (n == 1) {
306    DCHECK_NE(imm_s, 0x3fU);
307    uint64_t bits = bit_mask(imm_s + 1);
308    return RotateRight(bits, imm_r, 64);
309  } else {
310    DCHECK_NE((imm_s >> 1), 0x1fU);
311    for (unsigned width = 0x20; width >= 0x2; width >>= 1) {
312      if ((imm_s & width) == 0) {
313        unsigned mask = (unsigned)(width - 1);
314        DCHECK_NE((imm_s & mask), mask);
315        uint64_t bits = bit_mask((imm_s & mask) + 1);
316        return RepeatBitsAcrossReg(is_wide, RotateRight(bits, imm_r & mask, width), width);
317      }
318    }
319  }
320  return 0;
321}
322
323/**
324 * @brief Decode an 8-bit single point number encoded with EncodeImmSingle().
325 */
326static float DecodeImmSingle(uint8_t small_float) {
327  int mantissa = (small_float & 0x0f) + 0x10;
328  int sign = ((small_float & 0x80) == 0) ? 1 : -1;
329  float signed_mantissa = static_cast<float>(sign*mantissa);
330  int exponent = (((small_float >> 4) & 0x7) + 4) & 0x7;
331  return signed_mantissa*static_cast<float>(1 << exponent)*0.0078125f;
332}
333
334static const char* cc_names[] = {"eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
335                                 "hi", "ls", "ge", "lt", "gt", "le", "al", "nv"};
336/*
337 * Interpret a format string and build a string no longer than size
338 * See format key in assemble_arm64.cc.
339 */
340std::string Arm64Mir2Lir::BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) {
341  std::string buf;
342  const char* fmt_end = &fmt[strlen(fmt)];
343  char tbuf[256];
344  const char* name;
345  char nc;
346  while (fmt < fmt_end) {
347    int operand;
348    if (*fmt == '!') {
349      fmt++;
350      DCHECK_LT(fmt, fmt_end);
351      nc = *fmt++;
352      if (nc == '!') {
353        strcpy(tbuf, "!");
354      } else {
355         DCHECK_LT(fmt, fmt_end);
356         DCHECK_LT(static_cast<unsigned>(nc-'0'), 4U);
357         operand = lir->operands[nc-'0'];
358         switch (*fmt++) {
359           case 'e':  {
360               // Omit ", uxtw #0" in strings like "add w0, w1, w3, uxtw #0" and
361               // ", uxtx #0" in strings like "add x0, x1, x3, uxtx #0"
362               int omittable = ((IS_WIDE(lir->opcode)) ? EncodeExtend(kA64Uxtw, 0) :
363                                EncodeExtend(kA64Uxtw, 0));
364               if (LIKELY(operand == omittable)) {
365                 strcpy(tbuf, "");
366               } else {
367                 DecodeRegExtendOrShift(operand, tbuf, arraysize(tbuf));
368               }
369             }
370             break;
371           case 'o':
372             // Omit ", lsl #0"
373             if (LIKELY(operand == EncodeShift(kA64Lsl, 0))) {
374               strcpy(tbuf, "");
375             } else {
376               DecodeRegExtendOrShift(operand, tbuf, arraysize(tbuf));
377             }
378             break;
379           case 'B':
380             switch (operand) {
381               case kSY:
382                 name = "sy";
383                 break;
384               case kST:
385                 name = "st";
386                 break;
387               case kISH:
388                 name = "ish";
389                 break;
390               case kISHST:
391                 name = "ishst";
392                 break;
393               case kNSH:
394                 name = "nsh";
395                 break;
396               case kNSHST:
397                 name = "shst";
398                 break;
399               default:
400                 name = "DecodeError2";
401                 break;
402             }
403             strcpy(tbuf, name);
404             break;
405           case 's':
406             snprintf(tbuf, arraysize(tbuf), "s%d", operand & RegStorage::kRegNumMask);
407             break;
408           case 'S':
409             snprintf(tbuf, arraysize(tbuf), "d%d", operand & RegStorage::kRegNumMask);
410             break;
411           case 'f':
412             snprintf(tbuf, arraysize(tbuf), "%c%d", (IS_WIDE(lir->opcode)) ? 'd' : 's',
413                      operand & RegStorage::kRegNumMask);
414             break;
415           case 'l': {
416               bool is_wide = IS_WIDE(lir->opcode);
417               uint64_t imm = DecodeLogicalImmediate(is_wide, operand);
418               snprintf(tbuf, arraysize(tbuf), "%" PRId64 " (%#" PRIx64 ")", imm, imm);
419             }
420             break;
421           case 'I':
422             snprintf(tbuf, arraysize(tbuf), "%f", DecodeImmSingle(operand));
423             break;
424           case 'M':
425             if (LIKELY(operand == 0))
426               strcpy(tbuf, "");
427             else
428               snprintf(tbuf, arraysize(tbuf), ", lsl #%d", 16*operand);
429             break;
430           case 'd':
431             snprintf(tbuf, arraysize(tbuf), "%d", operand);
432             break;
433           case 'w':
434             if (LIKELY(operand != rwzr))
435               snprintf(tbuf, arraysize(tbuf), "w%d", operand & RegStorage::kRegNumMask);
436             else
437               strcpy(tbuf, "wzr");
438             break;
439           case 'W':
440             if (LIKELY(operand != rwsp))
441               snprintf(tbuf, arraysize(tbuf), "w%d", operand & RegStorage::kRegNumMask);
442             else
443               strcpy(tbuf, "wsp");
444             break;
445           case 'x':
446             if (LIKELY(operand != rxzr))
447               snprintf(tbuf, arraysize(tbuf), "x%d", operand & RegStorage::kRegNumMask);
448             else
449               strcpy(tbuf, "xzr");
450             break;
451           case 'X':
452             if (LIKELY(operand != rsp))
453               snprintf(tbuf, arraysize(tbuf), "x%d", operand & RegStorage::kRegNumMask);
454             else
455               strcpy(tbuf, "sp");
456             break;
457           case 'D':
458             snprintf(tbuf, arraysize(tbuf), "%d", operand*((IS_WIDE(lir->opcode)) ? 8 : 4));
459             break;
460           case 'E':
461             snprintf(tbuf, arraysize(tbuf), "%d", operand*4);
462             break;
463           case 'F':
464             snprintf(tbuf, arraysize(tbuf), "%d", operand*2);
465             break;
466           case 'G':
467             if (LIKELY(operand == 0))
468               strcpy(tbuf, "");
469             else
470               strcpy(tbuf, (IS_WIDE(lir->opcode)) ? ", lsl #3" : ", lsl #2");
471             break;
472           case 'c':
473             strcpy(tbuf, cc_names[operand]);
474             break;
475           case 't':
476             snprintf(tbuf, arraysize(tbuf), "0x%08" PRIxPTR " (L%p)",
477                 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + (operand << 2),
478                 lir->target);
479             break;
480           case 'r': {
481               bool is_wide = IS_WIDE(lir->opcode);
482               if (LIKELY(operand != rwzr && operand != rxzr)) {
483                 snprintf(tbuf, arraysize(tbuf), "%c%d", (is_wide) ? 'x' : 'w',
484                          operand & RegStorage::kRegNumMask);
485               } else {
486                 strcpy(tbuf, (is_wide) ? "xzr" : "wzr");
487               }
488             }
489             break;
490           case 'R': {
491               bool is_wide = IS_WIDE(lir->opcode);
492               if (LIKELY(operand != rwsp && operand != rsp)) {
493                 snprintf(tbuf, arraysize(tbuf), "%c%d", (is_wide) ? 'x' : 'w',
494                          operand & RegStorage::kRegNumMask);
495               } else {
496                 strcpy(tbuf, (is_wide) ? "sp" : "wsp");
497               }
498             }
499             break;
500           case 'p':
501             snprintf(tbuf, arraysize(tbuf), ".+%d (addr %#" PRIxPTR ")", 4*operand,
502                      reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4*operand);
503             break;
504           case 'T':
505             if (LIKELY(operand == 0))
506               strcpy(tbuf, "");
507             else if (operand == 1)
508               strcpy(tbuf, ", lsl #12");
509             else
510               strcpy(tbuf, ", DecodeError3");
511             break;
512           case 'h':
513             snprintf(tbuf, arraysize(tbuf), "%d", operand);
514             break;
515           default:
516             strcpy(tbuf, "DecodeError1");
517             break;
518        }
519        buf += tbuf;
520      }
521    } else {
522       buf += *fmt++;
523    }
524  }
525  // Dump thread offset.
526  std::string fmt_str = GetTargetInstFmt(lir->opcode);
527  if (std::string::npos != fmt_str.find(", [!1X, #!2") && rxSELF == lir->operands[1] &&
528      std::string::npos != buf.find(", [")) {
529    int offset = lir->operands[2];
530    if (std::string::npos != fmt_str.find("#!2d")) {
531    } else if (std::string::npos != fmt_str.find("#!2D")) {
532      offset *= (IS_WIDE(lir->opcode)) ? 8 : 4;
533    } else if (std::string::npos != fmt_str.find("#!2F")) {
534      offset *= 2;
535    } else {
536      LOG(FATAL) << "Should not reach here";
537    }
538    std::ostringstream tmp_stream;
539    Thread::DumpThreadOffset<8>(tmp_stream, offset);
540    buf += "  ; ";
541    buf += tmp_stream.str();
542  }
543  return buf;
544}
545
546void Arm64Mir2Lir::DumpResourceMask(LIR* arm_lir, const ResourceMask& mask, const char* prefix) {
547  char buf[256];
548  buf[0] = 0;
549
550  if (mask.Equals(kEncodeAll)) {
551    strcpy(buf, "all");
552  } else {
553    char num[8];
554    int i;
555
556    for (i = 0; i < kA64RegEnd; i++) {
557      if (mask.HasBit(i)) {
558        snprintf(num, arraysize(num), "%d ", i);
559        strcat(buf, num);
560      }
561    }
562
563    if (mask.HasBit(ResourceMask::kCCode)) {
564      strcat(buf, "cc ");
565    }
566    if (mask.HasBit(ResourceMask::kFPStatus)) {
567      strcat(buf, "fpcc ");
568    }
569
570    /* Memory bits */
571    if (arm_lir && (mask.HasBit(ResourceMask::kDalvikReg))) {
572      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
573               DECODE_ALIAS_INFO_REG(arm_lir->flags.alias_info),
574               DECODE_ALIAS_INFO_WIDE(arm_lir->flags.alias_info) ? "(+1)" : "");
575    }
576    if (mask.HasBit(ResourceMask::kLiteral)) {
577      strcat(buf, "lit ");
578    }
579
580    if (mask.HasBit(ResourceMask::kHeapRef)) {
581      strcat(buf, "heap ");
582    }
583    if (mask.HasBit(ResourceMask::kMustNotAlias)) {
584      strcat(buf, "noalias ");
585    }
586  }
587  if (buf[0]) {
588    LOG(INFO) << prefix << ": " << buf;
589  }
590}
591
592bool Arm64Mir2Lir::IsUnconditionalBranch(LIR* lir) {
593  return (lir->opcode == kA64B1t);
594}
595
596RegisterClass Arm64Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
597  if (UNLIKELY(is_volatile)) {
598    // On arm64, fp register load/store is atomic only for single bytes.
599    if (size != kSignedByte && size != kUnsignedByte) {
600      return (size == kReference) ? kRefReg : kCoreReg;
601    }
602  }
603  return RegClassBySize(size);
604}
605
606Arm64Mir2Lir::Arm64Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
607    : Mir2Lir(cu, mir_graph, arena),
608      call_method_insns_(arena->Adapter()),
609      dex_cache_access_insns_(arena->Adapter()) {
610  // Sanity check - make sure encoding map lines up.
611  for (int i = 0; i < kA64Last; i++) {
612    DCHECK_EQ(UNWIDE(Arm64Mir2Lir::EncodingMap[i].opcode), i)
613        << "Encoding order for " << Arm64Mir2Lir::EncodingMap[i].name
614        << " is wrong: expecting " << i << ", seeing "
615        << static_cast<int>(Arm64Mir2Lir::EncodingMap[i].opcode);
616  }
617}
618
619Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
620                            ArenaAllocator* const arena) {
621  return new Arm64Mir2Lir(cu, mir_graph, arena);
622}
623
624void Arm64Mir2Lir::CompilerInitializeRegAlloc() {
625  reg_pool_.reset(new (arena_) RegisterPool(this, arena_, core_regs, core64_regs, sp_regs, dp_regs,
626                                            reserved_regs, reserved64_regs,
627                                            core_temps, core64_temps, sp_temps, dp_temps));
628
629  // Target-specific adjustments.
630  // Alias single precision float registers to corresponding double registers.
631  for (RegisterInfo* info : reg_pool_->sp_regs_) {
632    int fp_reg_num = info->GetReg().GetRegNum();
633    RegStorage dp_reg = RegStorage::FloatSolo64(fp_reg_num);
634    RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
635    // Double precision register's master storage should refer to itself.
636    DCHECK_EQ(dp_reg_info, dp_reg_info->Master());
637    // Redirect single precision's master storage to master.
638    info->SetMaster(dp_reg_info);
639    // Singles should show a single 32-bit mask bit, at first referring to the low half.
640    DCHECK_EQ(info->StorageMask(), 0x1U);
641  }
642
643  // Alias 32bit W registers to corresponding 64bit X registers.
644  for (RegisterInfo* info : reg_pool_->core_regs_) {
645    int x_reg_num = info->GetReg().GetRegNum();
646    RegStorage x_reg = RegStorage::Solo64(x_reg_num);
647    RegisterInfo* x_reg_info = GetRegInfo(x_reg);
648    // 64bit X register's master storage should refer to itself.
649    DCHECK_EQ(x_reg_info, x_reg_info->Master());
650    // Redirect 32bit W master storage to 64bit X.
651    info->SetMaster(x_reg_info);
652    // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
653    DCHECK_EQ(info->StorageMask(), 0x1U);
654  }
655
656  // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
657  // TODO: adjust when we roll to hard float calling convention.
658  reg_pool_->next_core_reg_ = 2;
659  reg_pool_->next_sp_reg_ = 0;
660  reg_pool_->next_dp_reg_ = 0;
661}
662
663/*
664 * TUNING: is true leaf?  Can't just use METHOD_IS_LEAF to determine as some
665 * instructions might call out to C/assembly helper functions.  Until
666 * machinery is in place, always spill lr.
667 */
668
669void Arm64Mir2Lir::AdjustSpillMask() {
670  core_spill_mask_ |= (1 << rs_xLR.GetRegNum());
671  num_core_spills_++;
672}
673
674/* Clobber all regs that might be used by an external C call */
675void Arm64Mir2Lir::ClobberCallerSave() {
676  Clobber(rs_x0);
677  Clobber(rs_x1);
678  Clobber(rs_x2);
679  Clobber(rs_x3);
680  Clobber(rs_x4);
681  Clobber(rs_x5);
682  Clobber(rs_x6);
683  Clobber(rs_x7);
684  Clobber(rs_x8);
685  Clobber(rs_x9);
686  Clobber(rs_x10);
687  Clobber(rs_x11);
688  Clobber(rs_x12);
689  Clobber(rs_x13);
690  Clobber(rs_x14);
691  Clobber(rs_x15);
692  Clobber(rs_x16);
693  Clobber(rs_x17);
694  Clobber(rs_x30);
695
696  Clobber(rs_f0);
697  Clobber(rs_f1);
698  Clobber(rs_f2);
699  Clobber(rs_f3);
700  Clobber(rs_f4);
701  Clobber(rs_f5);
702  Clobber(rs_f6);
703  Clobber(rs_f7);
704  Clobber(rs_f16);
705  Clobber(rs_f17);
706  Clobber(rs_f18);
707  Clobber(rs_f19);
708  Clobber(rs_f20);
709  Clobber(rs_f21);
710  Clobber(rs_f22);
711  Clobber(rs_f23);
712  Clobber(rs_f24);
713  Clobber(rs_f25);
714  Clobber(rs_f26);
715  Clobber(rs_f27);
716  Clobber(rs_f28);
717  Clobber(rs_f29);
718  Clobber(rs_f30);
719  Clobber(rs_f31);
720}
721
722RegLocation Arm64Mir2Lir::GetReturnWideAlt() {
723  RegLocation res = LocCReturnWide();
724  res.reg.SetReg(rx2);
725  res.reg.SetHighReg(rx3);
726  Clobber(rs_x2);
727  Clobber(rs_x3);
728  MarkInUse(rs_x2);
729  MarkInUse(rs_x3);
730  MarkWide(res.reg);
731  return res;
732}
733
734RegLocation Arm64Mir2Lir::GetReturnAlt() {
735  RegLocation res = LocCReturn();
736  res.reg.SetReg(rx1);
737  Clobber(rs_x1);
738  MarkInUse(rs_x1);
739  return res;
740}
741
742/* To be used when explicitly managing register use */
743void Arm64Mir2Lir::LockCallTemps() {
744  // TODO: needs cleanup.
745  LockTemp(rs_x0);
746  LockTemp(rs_x1);
747  LockTemp(rs_x2);
748  LockTemp(rs_x3);
749  LockTemp(rs_x4);
750  LockTemp(rs_x5);
751  LockTemp(rs_x6);
752  LockTemp(rs_x7);
753  LockTemp(rs_f0);
754  LockTemp(rs_f1);
755  LockTemp(rs_f2);
756  LockTemp(rs_f3);
757  LockTemp(rs_f4);
758  LockTemp(rs_f5);
759  LockTemp(rs_f6);
760  LockTemp(rs_f7);
761}
762
763/* To be used when explicitly managing register use */
764void Arm64Mir2Lir::FreeCallTemps() {
765  // TODO: needs cleanup.
766  FreeTemp(rs_x0);
767  FreeTemp(rs_x1);
768  FreeTemp(rs_x2);
769  FreeTemp(rs_x3);
770  FreeTemp(rs_x4);
771  FreeTemp(rs_x5);
772  FreeTemp(rs_x6);
773  FreeTemp(rs_x7);
774  FreeTemp(rs_f0);
775  FreeTemp(rs_f1);
776  FreeTemp(rs_f2);
777  FreeTemp(rs_f3);
778  FreeTemp(rs_f4);
779  FreeTemp(rs_f5);
780  FreeTemp(rs_f6);
781  FreeTemp(rs_f7);
782  FreeTemp(TargetReg(kHiddenArg));
783}
784
785RegStorage Arm64Mir2Lir::LoadHelper(QuickEntrypointEnum trampoline) {
786  // TODO(Arm64): use LoadWordDisp instead.
787  //   e.g. LoadWordDisp(rs_rA64_SELF, offset.Int32Value(), rs_rA64_LR);
788  LoadBaseDisp(rs_xSELF, GetThreadOffset<8>(trampoline).Int32Value(), rs_xLR, k64, kNotVolatile);
789  return rs_xLR;
790}
791
792LIR* Arm64Mir2Lir::CheckSuspendUsingLoad() {
793  RegStorage tmp = rs_x0;
794  LoadWordDisp(rs_xSELF, Thread::ThreadSuspendTriggerOffset<8>().Int32Value(), tmp);
795  LIR* load2 = LoadWordDisp(tmp, 0, tmp);
796  return load2;
797}
798
799uint64_t Arm64Mir2Lir::GetTargetInstFlags(int opcode) {
800  DCHECK(!IsPseudoLirOp(opcode));
801  return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].flags;
802}
803
804const char* Arm64Mir2Lir::GetTargetInstName(int opcode) {
805  DCHECK(!IsPseudoLirOp(opcode));
806  return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].name;
807}
808
809const char* Arm64Mir2Lir::GetTargetInstFmt(int opcode) {
810  DCHECK(!IsPseudoLirOp(opcode));
811  return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].fmt;
812}
813
814RegStorage Arm64Mir2Lir::InToRegStorageArm64Mapper::GetNextReg(ShortyArg arg) {
815  const RegStorage coreArgMappingToPhysicalReg[] =
816      {rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7};
817  const size_t coreArgMappingToPhysicalRegSize = arraysize(coreArgMappingToPhysicalReg);
818  const RegStorage fpArgMappingToPhysicalReg[] =
819      {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7};
820  const size_t fpArgMappingToPhysicalRegSize = arraysize(fpArgMappingToPhysicalReg);
821
822  RegStorage result = RegStorage::InvalidReg();
823  if (arg.IsFP()) {
824    if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
825      DCHECK(!arg.IsRef());
826      result = fpArgMappingToPhysicalReg[cur_fp_reg_++];
827      if (result.Valid()) {
828        // TODO: switching between widths remains a bit ugly.  Better way?
829        int res_reg = result.GetReg();
830        result = arg.IsWide() ? RegStorage::FloatSolo64(res_reg) : RegStorage::FloatSolo32(res_reg);
831      }
832    }
833  } else {
834    if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
835      result = coreArgMappingToPhysicalReg[cur_core_reg_++];
836      if (result.Valid()) {
837        // TODO: switching between widths remains a bit ugly.  Better way?
838        int res_reg = result.GetReg();
839        DCHECK(!(arg.IsWide() && arg.IsRef()));
840        result = (arg.IsWide() || arg.IsRef()) ?
841                 RegStorage::Solo64(res_reg) : RegStorage::Solo32(res_reg);
842      }
843    }
844  }
845  return result;
846}
847
848void Arm64Mir2Lir::InstallLiteralPools() {
849  patches_.reserve(call_method_insns_.size() + dex_cache_access_insns_.size());
850
851  // PC-relative calls to methods.
852  for (LIR* p : call_method_insns_) {
853      DCHECK_EQ(p->opcode, kA64Bl1t);
854      uint32_t target_method_idx = p->operands[1];
855      const DexFile* target_dex_file = UnwrapPointer<DexFile>(p->operands[2]);
856      patches_.push_back(LinkerPatch::RelativeCodePatch(p->offset,
857                                                        target_dex_file, target_method_idx));
858  }
859
860  // PC-relative references to dex cache arrays.
861  for (LIR* p : dex_cache_access_insns_) {
862    auto non_wide = UNWIDE(p->opcode);  // May be a wide load for ArtMethod*.
863    DCHECK(non_wide == kA64Adrp2xd || non_wide == kA64Ldr3rXD) << p->opcode << " " << non_wide;
864    const LIR* adrp = UnwrapPointer<LIR>(p->operands[4]);
865    DCHECK_EQ(adrp->opcode, kA64Adrp2xd);
866    const DexFile* dex_file = UnwrapPointer<DexFile>(adrp->operands[2]);
867    uint32_t offset = adrp->operands[3];
868    DCHECK(!p->flags.is_nop);
869    DCHECK(!adrp->flags.is_nop);
870    patches_.push_back(LinkerPatch::DexCacheArrayPatch(p->offset, dex_file, adrp->offset, offset));
871  }
872
873  // And do the normal processing.
874  Mir2Lir::InstallLiteralPools();
875}
876
877int Arm64Mir2Lir::GenDalvikArgsBulkCopy(CallInfo* /*info*/, int /*first*/, int count) {
878  /*
879   * TODO: Improve by adding block copy for large number of arguments.  For now, just
880   * copy a Dalvik vreg at a time.
881   */
882  return count;
883}
884
885void Arm64Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
886  UNUSED(bb);
887  DCHECK(MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode));
888  RegLocation rl_src[3];
889  RegLocation rl_dest = mir_graph_->GetBadLoc();
890  rl_src[0] = rl_src[1] = rl_src[2] = mir_graph_->GetBadLoc();
891  ExtendedMIROpcode opcode = static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode);
892  switch (opcode) {
893    case kMirOpMaddInt:
894    case kMirOpMsubInt:
895      rl_dest = mir_graph_->GetDest(mir);
896      rl_src[0] = mir_graph_->GetSrc(mir, 0);
897      rl_src[1] = mir_graph_->GetSrc(mir, 1);
898      rl_src[2]= mir_graph_->GetSrc(mir, 2);
899      GenMaddMsubInt(rl_dest, rl_src[0], rl_src[1], rl_src[2], opcode == kMirOpMsubInt);
900      break;
901    case kMirOpMaddLong:
902    case kMirOpMsubLong:
903      rl_dest = mir_graph_->GetDestWide(mir);
904      rl_src[0] = mir_graph_->GetSrcWide(mir, 0);
905      rl_src[1] = mir_graph_->GetSrcWide(mir, 2);
906      rl_src[2] = mir_graph_->GetSrcWide(mir, 4);
907      GenMaddMsubLong(rl_dest, rl_src[0], rl_src[1], rl_src[2], opcode == kMirOpMsubLong);
908      break;
909    default:
910      LOG(FATAL) << "Unexpected opcode: " << static_cast<int>(opcode);
911  }
912}
913
914}  // namespace art
915