1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPCCallingConv.h"
17#include "PPCMachineFunctionInfo.h"
18#include "PPCPerfectShuffle.h"
19#include "PPCTargetMachine.h"
20#include "PPCTargetObjectFile.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/StringSwitch.h"
23#include "llvm/ADT/Triple.h"
24#include "llvm/CodeGen/CallingConvLower.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineLoopInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/SelectionDAG.h"
31#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
32#include "llvm/IR/CallingConv.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DerivedTypes.h"
35#include "llvm/IR/Function.h"
36#include "llvm/IR/Intrinsics.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/Target/TargetOptions.h"
42using namespace llvm;
43
44// FIXME: Remove this once soft-float is supported.
45static cl::opt<bool> DisablePPCFloatInVariadic("disable-ppc-float-in-variadic",
46cl::desc("disable saving float registers for va_start on PPC"), cl::Hidden);
47
48static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
49cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
50
51static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
52cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
53
54static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
55cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
56
57// FIXME: Remove this once the bug has been fixed!
58extern cl::opt<bool> ANDIGlueBug;
59
60PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
61                                     const PPCSubtarget &STI)
62    : TargetLowering(TM), Subtarget(STI) {
63  // Use _setjmp/_longjmp instead of setjmp/longjmp.
64  setUseUnderscoreSetJmp(true);
65  setUseUnderscoreLongJmp(true);
66
67  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
68  // arguments are at least 4/8 bytes aligned.
69  bool isPPC64 = Subtarget.isPPC64();
70  setMinStackArgumentAlignment(isPPC64 ? 8:4);
71
72  // Set up the register classes.
73  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
74  addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
75  addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
76
77  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
78  for (MVT VT : MVT::integer_valuetypes()) {
79    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
80    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
81  }
82
83  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
84
85  // PowerPC has pre-inc load and store's.
86  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
87  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
88  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
89  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
90  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
91  setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
92  setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
93  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
94  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
95  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
96  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
98  setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
99  setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
100
101  if (Subtarget.useCRBits()) {
102    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
103
104    if (isPPC64 || Subtarget.hasFPCVT()) {
105      setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
106      AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
107                         isPPC64 ? MVT::i64 : MVT::i32);
108      setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
109      AddPromotedToType (ISD::UINT_TO_FP, MVT::i1,
110                         isPPC64 ? MVT::i64 : MVT::i32);
111    } else {
112      setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
113      setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
114    }
115
116    // PowerPC does not support direct load / store of condition registers
117    setOperationAction(ISD::LOAD, MVT::i1, Custom);
118    setOperationAction(ISD::STORE, MVT::i1, Custom);
119
120    // FIXME: Remove this once the ANDI glue bug is fixed:
121    if (ANDIGlueBug)
122      setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
123
124    for (MVT VT : MVT::integer_valuetypes()) {
125      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
126      setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
127      setTruncStoreAction(VT, MVT::i1, Expand);
128    }
129
130    addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
131  }
132
133  // This is used in the ppcf128->int sequence.  Note it has different semantics
134  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
135  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
136
137  // We do not currently implement these libm ops for PowerPC.
138  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
139  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
140  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
141  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
142  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
143  setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
144
145  // PowerPC has no SREM/UREM instructions
146  setOperationAction(ISD::SREM, MVT::i32, Expand);
147  setOperationAction(ISD::UREM, MVT::i32, Expand);
148  setOperationAction(ISD::SREM, MVT::i64, Expand);
149  setOperationAction(ISD::UREM, MVT::i64, Expand);
150
151  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
152  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
153  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
154  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
155  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
156  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
157  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
158  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
159  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
160
161  // We don't support sin/cos/sqrt/fmod/pow
162  setOperationAction(ISD::FSIN , MVT::f64, Expand);
163  setOperationAction(ISD::FCOS , MVT::f64, Expand);
164  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
165  setOperationAction(ISD::FREM , MVT::f64, Expand);
166  setOperationAction(ISD::FPOW , MVT::f64, Expand);
167  setOperationAction(ISD::FMA  , MVT::f64, Legal);
168  setOperationAction(ISD::FSIN , MVT::f32, Expand);
169  setOperationAction(ISD::FCOS , MVT::f32, Expand);
170  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
171  setOperationAction(ISD::FREM , MVT::f32, Expand);
172  setOperationAction(ISD::FPOW , MVT::f32, Expand);
173  setOperationAction(ISD::FMA  , MVT::f32, Legal);
174
175  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
176
177  // If we're enabling GP optimizations, use hardware square root
178  if (!Subtarget.hasFSQRT() &&
179      !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
180        Subtarget.hasFRE()))
181    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
182
183  if (!Subtarget.hasFSQRT() &&
184      !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
185        Subtarget.hasFRES()))
186    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
187
188  if (Subtarget.hasFCPSGN()) {
189    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
190    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
191  } else {
192    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
193    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
194  }
195
196  if (Subtarget.hasFPRND()) {
197    setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
198    setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
199    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
200    setOperationAction(ISD::FROUND, MVT::f64, Legal);
201
202    setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
203    setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
204    setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
205    setOperationAction(ISD::FROUND, MVT::f32, Legal);
206  }
207
208  // PowerPC does not have BSWAP, CTPOP or CTTZ
209  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
210  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
211  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
212  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
213  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
214  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
215  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
216  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
217
218  if (Subtarget.hasPOPCNTD()) {
219    setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
220    setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
221  } else {
222    setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
223    setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
224  }
225
226  // PowerPC does not have ROTR
227  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
228  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
229
230  if (!Subtarget.useCRBits()) {
231    // PowerPC does not have Select
232    setOperationAction(ISD::SELECT, MVT::i32, Expand);
233    setOperationAction(ISD::SELECT, MVT::i64, Expand);
234    setOperationAction(ISD::SELECT, MVT::f32, Expand);
235    setOperationAction(ISD::SELECT, MVT::f64, Expand);
236  }
237
238  // PowerPC wants to turn select_cc of FP into fsel when possible.
239  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
240  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
241
242  // PowerPC wants to optimize integer setcc a bit
243  if (!Subtarget.useCRBits())
244    setOperationAction(ISD::SETCC, MVT::i32, Custom);
245
246  // PowerPC does not have BRCOND which requires SetCC
247  if (!Subtarget.useCRBits())
248    setOperationAction(ISD::BRCOND, MVT::Other, Expand);
249
250  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
251
252  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
253  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
254
255  // PowerPC does not have [U|S]INT_TO_FP
256  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
257  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
258
259  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
260  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
261  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
262  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
263
264  // We cannot sextinreg(i1).  Expand to shifts.
265  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
266
267  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
268  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
269  // support continuation, user-level threading, and etc.. As a result, no
270  // other SjLj exception interfaces are implemented and please don't build
271  // your own exception handling based on them.
272  // LLVM/Clang supports zero-cost DWARF exception handling.
273  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
274  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
275
276  // We want to legalize GlobalAddress and ConstantPool nodes into the
277  // appropriate instructions to materialize the address.
278  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
279  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
280  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
281  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
282  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
283  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
284  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
285  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
286  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
287  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
288
289  // TRAP is legal.
290  setOperationAction(ISD::TRAP, MVT::Other, Legal);
291
292  // TRAMPOLINE is custom lowered.
293  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
294  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
295
296  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
297  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
298
299  if (Subtarget.isSVR4ABI()) {
300    if (isPPC64) {
301      // VAARG always uses double-word chunks, so promote anything smaller.
302      setOperationAction(ISD::VAARG, MVT::i1, Promote);
303      AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
304      setOperationAction(ISD::VAARG, MVT::i8, Promote);
305      AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
306      setOperationAction(ISD::VAARG, MVT::i16, Promote);
307      AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
308      setOperationAction(ISD::VAARG, MVT::i32, Promote);
309      AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
310      setOperationAction(ISD::VAARG, MVT::Other, Expand);
311    } else {
312      // VAARG is custom lowered with the 32-bit SVR4 ABI.
313      setOperationAction(ISD::VAARG, MVT::Other, Custom);
314      setOperationAction(ISD::VAARG, MVT::i64, Custom);
315    }
316  } else
317    setOperationAction(ISD::VAARG, MVT::Other, Expand);
318
319  if (Subtarget.isSVR4ABI() && !isPPC64)
320    // VACOPY is custom lowered with the 32-bit SVR4 ABI.
321    setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
322  else
323    setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
324
325  // Use the default implementation.
326  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
327  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
328  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
329  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
330  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
331
332  // We want to custom lower some of our intrinsics.
333  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
334
335  // To handle counter-based loop conditions.
336  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
337
338  // Comparisons that require checking two conditions.
339  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
340  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
341  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
342  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
343  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
344  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
345  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
346  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
347  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
348  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
349  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
350  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
351
352  if (Subtarget.has64BitSupport()) {
353    // They also have instructions for converting between i64 and fp.
354    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
355    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
356    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
357    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
358    // This is just the low 32 bits of a (signed) fp->i64 conversion.
359    // We cannot do this with Promote because i64 is not a legal type.
360    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
361
362    if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
363      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
364  } else {
365    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
366    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
367  }
368
369  // With the instructions enabled under FPCVT, we can do everything.
370  if (Subtarget.hasFPCVT()) {
371    if (Subtarget.has64BitSupport()) {
372      setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
373      setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
374      setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
375      setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
376    }
377
378    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
379    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
380    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
381    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
382  }
383
384  if (Subtarget.use64BitRegs()) {
385    // 64-bit PowerPC implementations can support i64 types directly
386    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
387    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
388    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
389    // 64-bit PowerPC wants to expand i128 shifts itself.
390    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
391    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
392    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
393  } else {
394    // 32-bit PowerPC wants to expand i64 shifts itself.
395    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
396    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
397    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
398  }
399
400  if (Subtarget.hasAltivec()) {
401    // First set operation action for all vector types to expand. Then we
402    // will selectively turn on ones that can be effectively codegen'd.
403    for (MVT VT : MVT::vector_valuetypes()) {
404      // add/sub are legal for all supported vector VT's.
405      setOperationAction(ISD::ADD , VT, Legal);
406      setOperationAction(ISD::SUB , VT, Legal);
407
408      // Vector instructions introduced in P8
409      if (Subtarget.hasP8Altivec()) {
410        setOperationAction(ISD::CTPOP, VT, Legal);
411        setOperationAction(ISD::CTLZ, VT, Legal);
412      }
413      else {
414        setOperationAction(ISD::CTPOP, VT, Expand);
415        setOperationAction(ISD::CTLZ, VT, Expand);
416      }
417
418      // We promote all shuffles to v16i8.
419      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
420      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
421
422      // We promote all non-typed operations to v4i32.
423      setOperationAction(ISD::AND   , VT, Promote);
424      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
425      setOperationAction(ISD::OR    , VT, Promote);
426      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
427      setOperationAction(ISD::XOR   , VT, Promote);
428      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
429      setOperationAction(ISD::LOAD  , VT, Promote);
430      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
431      setOperationAction(ISD::SELECT, VT, Promote);
432      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
433      setOperationAction(ISD::STORE, VT, Promote);
434      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
435
436      // No other operations are legal.
437      setOperationAction(ISD::MUL , VT, Expand);
438      setOperationAction(ISD::SDIV, VT, Expand);
439      setOperationAction(ISD::SREM, VT, Expand);
440      setOperationAction(ISD::UDIV, VT, Expand);
441      setOperationAction(ISD::UREM, VT, Expand);
442      setOperationAction(ISD::FDIV, VT, Expand);
443      setOperationAction(ISD::FREM, VT, Expand);
444      setOperationAction(ISD::FNEG, VT, Expand);
445      setOperationAction(ISD::FSQRT, VT, Expand);
446      setOperationAction(ISD::FLOG, VT, Expand);
447      setOperationAction(ISD::FLOG10, VT, Expand);
448      setOperationAction(ISD::FLOG2, VT, Expand);
449      setOperationAction(ISD::FEXP, VT, Expand);
450      setOperationAction(ISD::FEXP2, VT, Expand);
451      setOperationAction(ISD::FSIN, VT, Expand);
452      setOperationAction(ISD::FCOS, VT, Expand);
453      setOperationAction(ISD::FABS, VT, Expand);
454      setOperationAction(ISD::FPOWI, VT, Expand);
455      setOperationAction(ISD::FFLOOR, VT, Expand);
456      setOperationAction(ISD::FCEIL,  VT, Expand);
457      setOperationAction(ISD::FTRUNC, VT, Expand);
458      setOperationAction(ISD::FRINT,  VT, Expand);
459      setOperationAction(ISD::FNEARBYINT, VT, Expand);
460      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
461      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
462      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
463      setOperationAction(ISD::MULHU, VT, Expand);
464      setOperationAction(ISD::MULHS, VT, Expand);
465      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
466      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
467      setOperationAction(ISD::UDIVREM, VT, Expand);
468      setOperationAction(ISD::SDIVREM, VT, Expand);
469      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
470      setOperationAction(ISD::FPOW, VT, Expand);
471      setOperationAction(ISD::BSWAP, VT, Expand);
472      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
473      setOperationAction(ISD::CTTZ, VT, Expand);
474      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
475      setOperationAction(ISD::VSELECT, VT, Expand);
476      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
477
478      for (MVT InnerVT : MVT::vector_valuetypes()) {
479        setTruncStoreAction(VT, InnerVT, Expand);
480        setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
481        setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
482        setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
483      }
484    }
485
486    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
487    // with merges, splats, etc.
488    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
489
490    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
491    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
492    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
493    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
494    setOperationAction(ISD::SELECT, MVT::v4i32,
495                       Subtarget.useCRBits() ? Legal : Expand);
496    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
497    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
498    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
499    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
500    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
501    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
502    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
503    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
504    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
505
506    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
507    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
508    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
509    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
510
511    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
512    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
513
514    if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
515      setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
516      setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
517    }
518
519
520    if (Subtarget.hasP8Altivec())
521      setOperationAction(ISD::MUL, MVT::v4i32, Legal);
522    else
523      setOperationAction(ISD::MUL, MVT::v4i32, Custom);
524
525    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
526    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
527
528    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
529    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
530
531    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
532    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
533    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
534    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
535
536    // Altivec does not contain unordered floating-point compare instructions
537    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
538    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
539    setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
540    setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
541
542    if (Subtarget.hasVSX()) {
543      setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
544      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
545
546      setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
547      setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
548      setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
549      setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
550      setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
551
552      setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
553
554      setOperationAction(ISD::MUL, MVT::v2f64, Legal);
555      setOperationAction(ISD::FMA, MVT::v2f64, Legal);
556
557      setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
558      setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
559
560      setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
561      setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
562      setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
563      setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
564      setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
565
566      // Share the Altivec comparison restrictions.
567      setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
568      setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
569      setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
570      setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
571
572      setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
573      setOperationAction(ISD::STORE, MVT::v2f64, Legal);
574
575      setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
576
577      addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
578
579      addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
580      addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
581
582      if (Subtarget.hasP8Altivec()) {
583        setOperationAction(ISD::SHL, MVT::v2i64, Legal);
584        setOperationAction(ISD::SRA, MVT::v2i64, Legal);
585        setOperationAction(ISD::SRL, MVT::v2i64, Legal);
586
587        setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
588      }
589      else {
590        setOperationAction(ISD::SHL, MVT::v2i64, Expand);
591        setOperationAction(ISD::SRA, MVT::v2i64, Expand);
592        setOperationAction(ISD::SRL, MVT::v2i64, Expand);
593
594        setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
595
596        // VSX v2i64 only supports non-arithmetic operations.
597        setOperationAction(ISD::ADD, MVT::v2i64, Expand);
598        setOperationAction(ISD::SUB, MVT::v2i64, Expand);
599      }
600
601      setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
602      AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
603      setOperationAction(ISD::STORE, MVT::v2i64, Promote);
604      AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
605
606      setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
607
608      setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
609      setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
610      setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
611      setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
612
613      // Vector operation legalization checks the result type of
614      // SIGN_EXTEND_INREG, overall legalization checks the inner type.
615      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
616      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
617      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
618      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
619
620      addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
621    }
622
623    if (Subtarget.hasP8Altivec())
624      addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
625  }
626
627  if (Subtarget.hasQPX()) {
628    setOperationAction(ISD::FADD, MVT::v4f64, Legal);
629    setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
630    setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
631    setOperationAction(ISD::FREM, MVT::v4f64, Expand);
632
633    setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
634    setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
635
636    setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
637    setOperationAction(ISD::STORE , MVT::v4f64, Custom);
638
639    setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
640    setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
641
642    if (!Subtarget.useCRBits())
643      setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
644    setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
645
646    setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
647    setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
648    setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
649    setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
650    setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
651    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
652    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
653
654    setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
655    setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
656
657    setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
658    setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
659    setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
660
661    setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
662    setOperationAction(ISD::FABS , MVT::v4f64, Legal);
663    setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
664    setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
665    setOperationAction(ISD::FPOWI , MVT::v4f64, Expand);
666    setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
667    setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
668    setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
669    setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
670    setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
671    setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
672
673    setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
674    setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
675
676    setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
677    setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
678
679    addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
680
681    setOperationAction(ISD::FADD, MVT::v4f32, Legal);
682    setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
683    setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
684    setOperationAction(ISD::FREM, MVT::v4f32, Expand);
685
686    setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
687    setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
688
689    setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
690    setOperationAction(ISD::STORE , MVT::v4f32, Custom);
691
692    if (!Subtarget.useCRBits())
693      setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
694    setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
695
696    setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
697    setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
698    setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
699    setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
700    setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
701    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
702    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
703
704    setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
705    setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
706
707    setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
708    setOperationAction(ISD::FABS , MVT::v4f32, Legal);
709    setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
710    setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
711    setOperationAction(ISD::FPOWI , MVT::v4f32, Expand);
712    setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
713    setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
714    setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
715    setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
716    setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
717    setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
718
719    setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
720    setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
721
722    setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
723    setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
724
725    addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
726
727    setOperationAction(ISD::AND , MVT::v4i1, Legal);
728    setOperationAction(ISD::OR , MVT::v4i1, Legal);
729    setOperationAction(ISD::XOR , MVT::v4i1, Legal);
730
731    if (!Subtarget.useCRBits())
732      setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
733    setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
734
735    setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
736    setOperationAction(ISD::STORE , MVT::v4i1, Custom);
737
738    setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
739    setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
740    setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
741    setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
742    setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
743    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
744    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
745
746    setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
747    setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
748
749    addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
750
751    setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
752    setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
753    setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
754    setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
755
756    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
757    setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
758    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
759    setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
760
761    setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
762    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
763
764    // These need to set FE_INEXACT, and so cannot be vectorized here.
765    setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
766    setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
767
768    if (TM.Options.UnsafeFPMath) {
769      setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
770      setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
771
772      setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
773      setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
774    } else {
775      setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
776      setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
777
778      setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
779      setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
780    }
781  }
782
783  if (Subtarget.has64BitSupport())
784    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
785
786  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
787
788  if (!isPPC64) {
789    setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
790    setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
791  }
792
793  setBooleanContents(ZeroOrOneBooleanContent);
794
795  if (Subtarget.hasAltivec()) {
796    // Altivec instructions set fields to all zeros or all ones.
797    setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
798  }
799
800  if (!isPPC64) {
801    // These libcalls are not available in 32-bit.
802    setLibcallName(RTLIB::SHL_I128, nullptr);
803    setLibcallName(RTLIB::SRL_I128, nullptr);
804    setLibcallName(RTLIB::SRA_I128, nullptr);
805  }
806
807  if (isPPC64) {
808    setStackPointerRegisterToSaveRestore(PPC::X1);
809    setExceptionPointerRegister(PPC::X3);
810    setExceptionSelectorRegister(PPC::X4);
811  } else {
812    setStackPointerRegisterToSaveRestore(PPC::R1);
813    setExceptionPointerRegister(PPC::R3);
814    setExceptionSelectorRegister(PPC::R4);
815  }
816
817  // We have target-specific dag combine patterns for the following nodes:
818  setTargetDAGCombine(ISD::SINT_TO_FP);
819  if (Subtarget.hasFPCVT())
820    setTargetDAGCombine(ISD::UINT_TO_FP);
821  setTargetDAGCombine(ISD::LOAD);
822  setTargetDAGCombine(ISD::STORE);
823  setTargetDAGCombine(ISD::BR_CC);
824  if (Subtarget.useCRBits())
825    setTargetDAGCombine(ISD::BRCOND);
826  setTargetDAGCombine(ISD::BSWAP);
827  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
828  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
829  setTargetDAGCombine(ISD::INTRINSIC_VOID);
830
831  setTargetDAGCombine(ISD::SIGN_EXTEND);
832  setTargetDAGCombine(ISD::ZERO_EXTEND);
833  setTargetDAGCombine(ISD::ANY_EXTEND);
834
835  if (Subtarget.useCRBits()) {
836    setTargetDAGCombine(ISD::TRUNCATE);
837    setTargetDAGCombine(ISD::SETCC);
838    setTargetDAGCombine(ISD::SELECT_CC);
839  }
840
841  // Use reciprocal estimates.
842  if (TM.Options.UnsafeFPMath) {
843    setTargetDAGCombine(ISD::FDIV);
844    setTargetDAGCombine(ISD::FSQRT);
845  }
846
847  // Darwin long double math library functions have $LDBL128 appended.
848  if (Subtarget.isDarwin()) {
849    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
850    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
851    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
852    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
853    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
854    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
855    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
856    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
857    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
858    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
859  }
860
861  // With 32 condition bits, we don't need to sink (and duplicate) compares
862  // aggressively in CodeGenPrep.
863  if (Subtarget.useCRBits()) {
864    setHasMultipleConditionRegisters();
865    setJumpIsExpensive();
866  }
867
868  setMinFunctionAlignment(2);
869  if (Subtarget.isDarwin())
870    setPrefFunctionAlignment(4);
871
872  switch (Subtarget.getDarwinDirective()) {
873  default: break;
874  case PPC::DIR_970:
875  case PPC::DIR_A2:
876  case PPC::DIR_E500mc:
877  case PPC::DIR_E5500:
878  case PPC::DIR_PWR4:
879  case PPC::DIR_PWR5:
880  case PPC::DIR_PWR5X:
881  case PPC::DIR_PWR6:
882  case PPC::DIR_PWR6X:
883  case PPC::DIR_PWR7:
884  case PPC::DIR_PWR8:
885    setPrefFunctionAlignment(4);
886    setPrefLoopAlignment(4);
887    break;
888  }
889
890  setInsertFencesForAtomic(true);
891
892  if (Subtarget.enableMachineScheduler())
893    setSchedulingPreference(Sched::Source);
894  else
895    setSchedulingPreference(Sched::Hybrid);
896
897  computeRegisterProperties(STI.getRegisterInfo());
898
899  // The Freescale cores do better with aggressive inlining of memcpy and
900  // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
901  if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
902      Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
903    MaxStoresPerMemset = 32;
904    MaxStoresPerMemsetOptSize = 16;
905    MaxStoresPerMemcpy = 32;
906    MaxStoresPerMemcpyOptSize = 8;
907    MaxStoresPerMemmove = 32;
908    MaxStoresPerMemmoveOptSize = 8;
909  } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
910    // The A2 also benefits from (very) aggressive inlining of memcpy and
911    // friends. The overhead of a the function call, even when warm, can be
912    // over one hundred cycles.
913    MaxStoresPerMemset = 128;
914    MaxStoresPerMemcpy = 128;
915    MaxStoresPerMemmove = 128;
916  }
917}
918
919/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
920/// the desired ByVal argument alignment.
921static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
922                             unsigned MaxMaxAlign) {
923  if (MaxAlign == MaxMaxAlign)
924    return;
925  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
926    if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
927      MaxAlign = 32;
928    else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
929      MaxAlign = 16;
930  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
931    unsigned EltAlign = 0;
932    getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
933    if (EltAlign > MaxAlign)
934      MaxAlign = EltAlign;
935  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
936    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
937      unsigned EltAlign = 0;
938      getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign);
939      if (EltAlign > MaxAlign)
940        MaxAlign = EltAlign;
941      if (MaxAlign == MaxMaxAlign)
942        break;
943    }
944  }
945}
946
947/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
948/// function arguments in the caller parameter area.
949unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
950  // Darwin passes everything on 4 byte boundary.
951  if (Subtarget.isDarwin())
952    return 4;
953
954  // 16byte and wider vectors are passed on 16byte boundary.
955  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
956  unsigned Align = Subtarget.isPPC64() ? 8 : 4;
957  if (Subtarget.hasAltivec() || Subtarget.hasQPX())
958    getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
959  return Align;
960}
961
962const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
963  switch (Opcode) {
964  default: return nullptr;
965  case PPCISD::FSEL:            return "PPCISD::FSEL";
966  case PPCISD::FCFID:           return "PPCISD::FCFID";
967  case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
968  case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
969  case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
970  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
971  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
972  case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
973  case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
974  case PPCISD::FRE:             return "PPCISD::FRE";
975  case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
976  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
977  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
978  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
979  case PPCISD::VPERM:           return "PPCISD::VPERM";
980  case PPCISD::CMPB:            return "PPCISD::CMPB";
981  case PPCISD::Hi:              return "PPCISD::Hi";
982  case PPCISD::Lo:              return "PPCISD::Lo";
983  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
984  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
985  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
986  case PPCISD::SRL:             return "PPCISD::SRL";
987  case PPCISD::SRA:             return "PPCISD::SRA";
988  case PPCISD::SHL:             return "PPCISD::SHL";
989  case PPCISD::CALL:            return "PPCISD::CALL";
990  case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
991  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
992  case PPCISD::BCTRL:           return "PPCISD::BCTRL";
993  case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
994  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
995  case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
996  case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
997  case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
998  case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
999  case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1000  case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1001  case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1002  case PPCISD::VCMP:            return "PPCISD::VCMP";
1003  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1004  case PPCISD::LBRX:            return "PPCISD::LBRX";
1005  case PPCISD::STBRX:           return "PPCISD::STBRX";
1006  case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1007  case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1008  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1009  case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1010  case PPCISD::BDZ:             return "PPCISD::BDZ";
1011  case PPCISD::MFFS:            return "PPCISD::MFFS";
1012  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1013  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1014  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1015  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1016  case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1017  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1018  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1019  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1020  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1021  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1022  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1023  case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1024  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1025  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1026  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1027  case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1028  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1029  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1030  case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1031  case PPCISD::SC:              return "PPCISD::SC";
1032  case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1033  case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1034  case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1035  case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1036  case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1037  case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1038  }
1039}
1040
1041EVT PPCTargetLowering::getSetCCResultType(LLVMContext &C, EVT VT) const {
1042  if (!VT.isVector())
1043    return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1044
1045  if (Subtarget.hasQPX())
1046    return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1047
1048  return VT.changeVectorElementTypeToInteger();
1049}
1050
1051bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1052  assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1053  return true;
1054}
1055
1056//===----------------------------------------------------------------------===//
1057// Node matching predicates, for use by the tblgen matching code.
1058//===----------------------------------------------------------------------===//
1059
1060/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1061static bool isFloatingPointZero(SDValue Op) {
1062  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1063    return CFP->getValueAPF().isZero();
1064  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1065    // Maybe this has already been legalized into the constant pool?
1066    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1067      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1068        return CFP->getValueAPF().isZero();
1069  }
1070  return false;
1071}
1072
1073/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1074/// true if Op is undef or if it matches the specified value.
1075static bool isConstantOrUndef(int Op, int Val) {
1076  return Op < 0 || Op == Val;
1077}
1078
1079/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1080/// VPKUHUM instruction.
1081/// The ShuffleKind distinguishes between big-endian operations with
1082/// two different inputs (0), either-endian operations with two identical
1083/// inputs (1), and little-endian operantion with two different inputs (2).
1084/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1085bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1086                               SelectionDAG &DAG) {
1087  bool IsLE = DAG.getTarget().getDataLayout()->isLittleEndian();
1088  if (ShuffleKind == 0) {
1089    if (IsLE)
1090      return false;
1091    for (unsigned i = 0; i != 16; ++i)
1092      if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1093        return false;
1094  } else if (ShuffleKind == 2) {
1095    if (!IsLE)
1096      return false;
1097    for (unsigned i = 0; i != 16; ++i)
1098      if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1099        return false;
1100  } else if (ShuffleKind == 1) {
1101    unsigned j = IsLE ? 0 : 1;
1102    for (unsigned i = 0; i != 8; ++i)
1103      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1104          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1105        return false;
1106  }
1107  return true;
1108}
1109
1110/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1111/// VPKUWUM instruction.
1112/// The ShuffleKind distinguishes between big-endian operations with
1113/// two different inputs (0), either-endian operations with two identical
1114/// inputs (1), and little-endian operantion with two different inputs (2).
1115/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1116bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1117                               SelectionDAG &DAG) {
1118  bool IsLE = DAG.getTarget().getDataLayout()->isLittleEndian();
1119  if (ShuffleKind == 0) {
1120    if (IsLE)
1121      return false;
1122    for (unsigned i = 0; i != 16; i += 2)
1123      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1124          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1125        return false;
1126  } else if (ShuffleKind == 2) {
1127    if (!IsLE)
1128      return false;
1129    for (unsigned i = 0; i != 16; i += 2)
1130      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1131          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1132        return false;
1133  } else if (ShuffleKind == 1) {
1134    unsigned j = IsLE ? 0 : 2;
1135    for (unsigned i = 0; i != 8; i += 2)
1136      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1137          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1138          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1139          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1140        return false;
1141  }
1142  return true;
1143}
1144
1145/// isVMerge - Common function, used to match vmrg* shuffles.
1146///
1147static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1148                     unsigned LHSStart, unsigned RHSStart) {
1149  if (N->getValueType(0) != MVT::v16i8)
1150    return false;
1151  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1152         "Unsupported merge size!");
1153
1154  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1155    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1156      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1157                             LHSStart+j+i*UnitSize) ||
1158          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1159                             RHSStart+j+i*UnitSize))
1160        return false;
1161    }
1162  return true;
1163}
1164
1165/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1166/// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1167/// The ShuffleKind distinguishes between big-endian merges with two
1168/// different inputs (0), either-endian merges with two identical inputs (1),
1169/// and little-endian merges with two different inputs (2).  For the latter,
1170/// the input operands are swapped (see PPCInstrAltivec.td).
1171bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1172                             unsigned ShuffleKind, SelectionDAG &DAG) {
1173  if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
1174    if (ShuffleKind == 1) // unary
1175      return isVMerge(N, UnitSize, 0, 0);
1176    else if (ShuffleKind == 2) // swapped
1177      return isVMerge(N, UnitSize, 0, 16);
1178    else
1179      return false;
1180  } else {
1181    if (ShuffleKind == 1) // unary
1182      return isVMerge(N, UnitSize, 8, 8);
1183    else if (ShuffleKind == 0) // normal
1184      return isVMerge(N, UnitSize, 8, 24);
1185    else
1186      return false;
1187  }
1188}
1189
1190/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1191/// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1192/// The ShuffleKind distinguishes between big-endian merges with two
1193/// different inputs (0), either-endian merges with two identical inputs (1),
1194/// and little-endian merges with two different inputs (2).  For the latter,
1195/// the input operands are swapped (see PPCInstrAltivec.td).
1196bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1197                             unsigned ShuffleKind, SelectionDAG &DAG) {
1198  if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
1199    if (ShuffleKind == 1) // unary
1200      return isVMerge(N, UnitSize, 8, 8);
1201    else if (ShuffleKind == 2) // swapped
1202      return isVMerge(N, UnitSize, 8, 24);
1203    else
1204      return false;
1205  } else {
1206    if (ShuffleKind == 1) // unary
1207      return isVMerge(N, UnitSize, 0, 0);
1208    else if (ShuffleKind == 0) // normal
1209      return isVMerge(N, UnitSize, 0, 16);
1210    else
1211      return false;
1212  }
1213}
1214
1215
1216/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1217/// amount, otherwise return -1.
1218/// The ShuffleKind distinguishes between big-endian operations with two
1219/// different inputs (0), either-endian operations with two identical inputs
1220/// (1), and little-endian operations with two different inputs (2).  For the
1221/// latter, the input operands are swapped (see PPCInstrAltivec.td).
1222int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1223                             SelectionDAG &DAG) {
1224  if (N->getValueType(0) != MVT::v16i8)
1225    return -1;
1226
1227  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1228
1229  // Find the first non-undef value in the shuffle mask.
1230  unsigned i;
1231  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1232    /*search*/;
1233
1234  if (i == 16) return -1;  // all undef.
1235
1236  // Otherwise, check to see if the rest of the elements are consecutively
1237  // numbered from this value.
1238  unsigned ShiftAmt = SVOp->getMaskElt(i);
1239  if (ShiftAmt < i) return -1;
1240
1241  ShiftAmt -= i;
1242  bool isLE = DAG.getTarget().getDataLayout()->isLittleEndian();
1243
1244  if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1245    // Check the rest of the elements to see if they are consecutive.
1246    for (++i; i != 16; ++i)
1247      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1248        return -1;
1249  } else if (ShuffleKind == 1) {
1250    // Check the rest of the elements to see if they are consecutive.
1251    for (++i; i != 16; ++i)
1252      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1253        return -1;
1254  } else
1255    return -1;
1256
1257  if (ShuffleKind == 2 && isLE)
1258    ShiftAmt = 16 - ShiftAmt;
1259
1260  return ShiftAmt;
1261}
1262
1263/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1264/// specifies a splat of a single element that is suitable for input to
1265/// VSPLTB/VSPLTH/VSPLTW.
1266bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1267  assert(N->getValueType(0) == MVT::v16i8 &&
1268         (EltSize == 1 || EltSize == 2 || EltSize == 4));
1269
1270  // This is a splat operation if each element of the permute is the same, and
1271  // if the value doesn't reference the second vector.
1272  unsigned ElementBase = N->getMaskElt(0);
1273
1274  // FIXME: Handle UNDEF elements too!
1275  if (ElementBase >= 16)
1276    return false;
1277
1278  // Check that the indices are consecutive, in the case of a multi-byte element
1279  // splatted with a v16i8 mask.
1280  for (unsigned i = 1; i != EltSize; ++i)
1281    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1282      return false;
1283
1284  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1285    if (N->getMaskElt(i) < 0) continue;
1286    for (unsigned j = 0; j != EltSize; ++j)
1287      if (N->getMaskElt(i+j) != N->getMaskElt(j))
1288        return false;
1289  }
1290  return true;
1291}
1292
1293/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1294/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
1295unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1296                                SelectionDAG &DAG) {
1297  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1298  assert(isSplatShuffleMask(SVOp, EltSize));
1299  if (DAG.getTarget().getDataLayout()->isLittleEndian())
1300    return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1301  else
1302    return SVOp->getMaskElt(0) / EltSize;
1303}
1304
1305/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1306/// by using a vspltis[bhw] instruction of the specified element size, return
1307/// the constant being splatted.  The ByteSize field indicates the number of
1308/// bytes of each element [124] -> [bhw].
1309SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1310  SDValue OpVal(nullptr, 0);
1311
1312  // If ByteSize of the splat is bigger than the element size of the
1313  // build_vector, then we have a case where we are checking for a splat where
1314  // multiple elements of the buildvector are folded together into a single
1315  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1316  unsigned EltSize = 16/N->getNumOperands();
1317  if (EltSize < ByteSize) {
1318    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
1319    SDValue UniquedVals[4];
1320    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1321
1322    // See if all of the elements in the buildvector agree across.
1323    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1324      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1325      // If the element isn't a constant, bail fully out.
1326      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1327
1328
1329      if (!UniquedVals[i&(Multiple-1)].getNode())
1330        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1331      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1332        return SDValue();  // no match.
1333    }
1334
1335    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1336    // either constant or undef values that are identical for each chunk.  See
1337    // if these chunks can form into a larger vspltis*.
1338
1339    // Check to see if all of the leading entries are either 0 or -1.  If
1340    // neither, then this won't fit into the immediate field.
1341    bool LeadingZero = true;
1342    bool LeadingOnes = true;
1343    for (unsigned i = 0; i != Multiple-1; ++i) {
1344      if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
1345
1346      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
1347      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
1348    }
1349    // Finally, check the least significant entry.
1350    if (LeadingZero) {
1351      if (!UniquedVals[Multiple-1].getNode())
1352        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
1353      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1354      if (Val < 16)
1355        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
1356    }
1357    if (LeadingOnes) {
1358      if (!UniquedVals[Multiple-1].getNode())
1359        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
1360      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1361      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
1362        return DAG.getTargetConstant(Val, MVT::i32);
1363    }
1364
1365    return SDValue();
1366  }
1367
1368  // Check to see if this buildvec has a single non-undef value in its elements.
1369  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1370    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1371    if (!OpVal.getNode())
1372      OpVal = N->getOperand(i);
1373    else if (OpVal != N->getOperand(i))
1374      return SDValue();
1375  }
1376
1377  if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
1378
1379  unsigned ValSizeInBytes = EltSize;
1380  uint64_t Value = 0;
1381  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1382    Value = CN->getZExtValue();
1383  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1384    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
1385    Value = FloatToBits(CN->getValueAPF().convertToFloat());
1386  }
1387
1388  // If the splat value is larger than the element value, then we can never do
1389  // this splat.  The only case that we could fit the replicated bits into our
1390  // immediate field for would be zero, and we prefer to use vxor for it.
1391  if (ValSizeInBytes < ByteSize) return SDValue();
1392
1393  // If the element value is larger than the splat value, check if it consists
1394  // of a repeated bit pattern of size ByteSize.
1395  if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
1396    return SDValue();
1397
1398  // Properly sign extend the value.
1399  int MaskVal = SignExtend32(Value, ByteSize * 8);
1400
1401  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
1402  if (MaskVal == 0) return SDValue();
1403
1404  // Finally, if this value fits in a 5 bit sext field, return it
1405  if (SignExtend32<5>(MaskVal) == MaskVal)
1406    return DAG.getTargetConstant(MaskVal, MVT::i32);
1407  return SDValue();
1408}
1409
1410/// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
1411/// amount, otherwise return -1.
1412int PPC::isQVALIGNIShuffleMask(SDNode *N) {
1413  EVT VT = N->getValueType(0);
1414  if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
1415    return -1;
1416
1417  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1418
1419  // Find the first non-undef value in the shuffle mask.
1420  unsigned i;
1421  for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
1422    /*search*/;
1423
1424  if (i == 4) return -1;  // all undef.
1425
1426  // Otherwise, check to see if the rest of the elements are consecutively
1427  // numbered from this value.
1428  unsigned ShiftAmt = SVOp->getMaskElt(i);
1429  if (ShiftAmt < i) return -1;
1430  ShiftAmt -= i;
1431
1432  // Check the rest of the elements to see if they are consecutive.
1433  for (++i; i != 4; ++i)
1434    if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1435      return -1;
1436
1437  return ShiftAmt;
1438}
1439
1440//===----------------------------------------------------------------------===//
1441//  Addressing Mode Selection
1442//===----------------------------------------------------------------------===//
1443
1444/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
1445/// or 64-bit immediate, and if the value can be accurately represented as a
1446/// sign extension from a 16-bit value.  If so, this returns true and the
1447/// immediate.
1448static bool isIntS16Immediate(SDNode *N, short &Imm) {
1449  if (!isa<ConstantSDNode>(N))
1450    return false;
1451
1452  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
1453  if (N->getValueType(0) == MVT::i32)
1454    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
1455  else
1456    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
1457}
1458static bool isIntS16Immediate(SDValue Op, short &Imm) {
1459  return isIntS16Immediate(Op.getNode(), Imm);
1460}
1461
1462
1463/// SelectAddressRegReg - Given the specified addressed, check to see if it
1464/// can be represented as an indexed [r+r] operation.  Returns false if it
1465/// can be more efficiently represented with [r+imm].
1466bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
1467                                            SDValue &Index,
1468                                            SelectionDAG &DAG) const {
1469  short imm = 0;
1470  if (N.getOpcode() == ISD::ADD) {
1471    if (isIntS16Immediate(N.getOperand(1), imm))
1472      return false;    // r+i
1473    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1474      return false;    // r+i
1475
1476    Base = N.getOperand(0);
1477    Index = N.getOperand(1);
1478    return true;
1479  } else if (N.getOpcode() == ISD::OR) {
1480    if (isIntS16Immediate(N.getOperand(1), imm))
1481      return false;    // r+i can fold it if we can.
1482
1483    // If this is an or of disjoint bitfields, we can codegen this as an add
1484    // (for better address arithmetic) if the LHS and RHS of the OR are provably
1485    // disjoint.
1486    APInt LHSKnownZero, LHSKnownOne;
1487    APInt RHSKnownZero, RHSKnownOne;
1488    DAG.computeKnownBits(N.getOperand(0),
1489                         LHSKnownZero, LHSKnownOne);
1490
1491    if (LHSKnownZero.getBoolValue()) {
1492      DAG.computeKnownBits(N.getOperand(1),
1493                           RHSKnownZero, RHSKnownOne);
1494      // If all of the bits are known zero on the LHS or RHS, the add won't
1495      // carry.
1496      if (~(LHSKnownZero | RHSKnownZero) == 0) {
1497        Base = N.getOperand(0);
1498        Index = N.getOperand(1);
1499        return true;
1500      }
1501    }
1502  }
1503
1504  return false;
1505}
1506
1507// If we happen to be doing an i64 load or store into a stack slot that has
1508// less than a 4-byte alignment, then the frame-index elimination may need to
1509// use an indexed load or store instruction (because the offset may not be a
1510// multiple of 4). The extra register needed to hold the offset comes from the
1511// register scavenger, and it is possible that the scavenger will need to use
1512// an emergency spill slot. As a result, we need to make sure that a spill slot
1513// is allocated when doing an i64 load/store into a less-than-4-byte-aligned
1514// stack slot.
1515static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
1516  // FIXME: This does not handle the LWA case.
1517  if (VT != MVT::i64)
1518    return;
1519
1520  // NOTE: We'll exclude negative FIs here, which come from argument
1521  // lowering, because there are no known test cases triggering this problem
1522  // using packed structures (or similar). We can remove this exclusion if
1523  // we find such a test case. The reason why this is so test-case driven is
1524  // because this entire 'fixup' is only to prevent crashes (from the
1525  // register scavenger) on not-really-valid inputs. For example, if we have:
1526  //   %a = alloca i1
1527  //   %b = bitcast i1* %a to i64*
1528  //   store i64* a, i64 b
1529  // then the store should really be marked as 'align 1', but is not. If it
1530  // were marked as 'align 1' then the indexed form would have been
1531  // instruction-selected initially, and the problem this 'fixup' is preventing
1532  // won't happen regardless.
1533  if (FrameIdx < 0)
1534    return;
1535
1536  MachineFunction &MF = DAG.getMachineFunction();
1537  MachineFrameInfo *MFI = MF.getFrameInfo();
1538
1539  unsigned Align = MFI->getObjectAlignment(FrameIdx);
1540  if (Align >= 4)
1541    return;
1542
1543  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1544  FuncInfo->setHasNonRISpills();
1545}
1546
1547/// Returns true if the address N can be represented by a base register plus
1548/// a signed 16-bit displacement [r+imm], and if it is not better
1549/// represented as reg+reg.  If Aligned is true, only accept displacements
1550/// suitable for STD and friends, i.e. multiples of 4.
1551bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1552                                            SDValue &Base,
1553                                            SelectionDAG &DAG,
1554                                            bool Aligned) const {
1555  // FIXME dl should come from parent load or store, not from address
1556  SDLoc dl(N);
1557  // If this can be more profitably realized as r+r, fail.
1558  if (SelectAddressRegReg(N, Disp, Base, DAG))
1559    return false;
1560
1561  if (N.getOpcode() == ISD::ADD) {
1562    short imm = 0;
1563    if (isIntS16Immediate(N.getOperand(1), imm) &&
1564        (!Aligned || (imm & 3) == 0)) {
1565      Disp = DAG.getTargetConstant(imm, N.getValueType());
1566      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1567        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1568        fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1569      } else {
1570        Base = N.getOperand(0);
1571      }
1572      return true; // [r+i]
1573    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1574      // Match LOAD (ADD (X, Lo(G))).
1575      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1576             && "Cannot handle constant offsets yet!");
1577      Disp = N.getOperand(1).getOperand(0);  // The global address.
1578      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1579             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1580             Disp.getOpcode() == ISD::TargetConstantPool ||
1581             Disp.getOpcode() == ISD::TargetJumpTable);
1582      Base = N.getOperand(0);
1583      return true;  // [&g+r]
1584    }
1585  } else if (N.getOpcode() == ISD::OR) {
1586    short imm = 0;
1587    if (isIntS16Immediate(N.getOperand(1), imm) &&
1588        (!Aligned || (imm & 3) == 0)) {
1589      // If this is an or of disjoint bitfields, we can codegen this as an add
1590      // (for better address arithmetic) if the LHS and RHS of the OR are
1591      // provably disjoint.
1592      APInt LHSKnownZero, LHSKnownOne;
1593      DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1594
1595      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1596        // If all of the bits are known zero on the LHS or RHS, the add won't
1597        // carry.
1598        if (FrameIndexSDNode *FI =
1599              dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1600          Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1601          fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1602        } else {
1603          Base = N.getOperand(0);
1604        }
1605        Disp = DAG.getTargetConstant(imm, N.getValueType());
1606        return true;
1607      }
1608    }
1609  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1610    // Loading from a constant address.
1611
1612    // If this address fits entirely in a 16-bit sext immediate field, codegen
1613    // this as "d, 0"
1614    short Imm;
1615    if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1616      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
1617      Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1618                             CN->getValueType(0));
1619      return true;
1620    }
1621
1622    // Handle 32-bit sext immediates with LIS + addr mode.
1623    if ((CN->getValueType(0) == MVT::i32 ||
1624         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1625        (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1626      int Addr = (int)CN->getZExtValue();
1627
1628      // Otherwise, break this down into an LIS + disp.
1629      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
1630
1631      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
1632      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1633      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1634      return true;
1635    }
1636  }
1637
1638  Disp = DAG.getTargetConstant(0, getPointerTy());
1639  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
1640    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1641    fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1642  } else
1643    Base = N;
1644  return true;      // [r+0]
1645}
1646
1647/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1648/// represented as an indexed [r+r] operation.
1649bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1650                                                SDValue &Index,
1651                                                SelectionDAG &DAG) const {
1652  // Check to see if we can easily represent this as an [r+r] address.  This
1653  // will fail if it thinks that the address is more profitably represented as
1654  // reg+imm, e.g. where imm = 0.
1655  if (SelectAddressRegReg(N, Base, Index, DAG))
1656    return true;
1657
1658  // If the operand is an addition, always emit this as [r+r], since this is
1659  // better (for code size, and execution, as the memop does the add for free)
1660  // than emitting an explicit add.
1661  if (N.getOpcode() == ISD::ADD) {
1662    Base = N.getOperand(0);
1663    Index = N.getOperand(1);
1664    return true;
1665  }
1666
1667  // Otherwise, do it the hard way, using R0 as the base register.
1668  Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1669                         N.getValueType());
1670  Index = N;
1671  return true;
1672}
1673
1674/// getPreIndexedAddressParts - returns true by value, base pointer and
1675/// offset pointer and addressing mode by reference if the node's address
1676/// can be legally represented as pre-indexed load / store address.
1677bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1678                                                  SDValue &Offset,
1679                                                  ISD::MemIndexedMode &AM,
1680                                                  SelectionDAG &DAG) const {
1681  if (DisablePPCPreinc) return false;
1682
1683  bool isLoad = true;
1684  SDValue Ptr;
1685  EVT VT;
1686  unsigned Alignment;
1687  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1688    Ptr = LD->getBasePtr();
1689    VT = LD->getMemoryVT();
1690    Alignment = LD->getAlignment();
1691  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1692    Ptr = ST->getBasePtr();
1693    VT  = ST->getMemoryVT();
1694    Alignment = ST->getAlignment();
1695    isLoad = false;
1696  } else
1697    return false;
1698
1699  // PowerPC doesn't have preinc load/store instructions for vectors (except
1700  // for QPX, which does have preinc r+r forms).
1701  if (VT.isVector()) {
1702    if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
1703      return false;
1704    } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
1705      AM = ISD::PRE_INC;
1706      return true;
1707    }
1708  }
1709
1710  if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1711
1712    // Common code will reject creating a pre-inc form if the base pointer
1713    // is a frame index, or if N is a store and the base pointer is either
1714    // the same as or a predecessor of the value being stored.  Check for
1715    // those situations here, and try with swapped Base/Offset instead.
1716    bool Swap = false;
1717
1718    if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1719      Swap = true;
1720    else if (!isLoad) {
1721      SDValue Val = cast<StoreSDNode>(N)->getValue();
1722      if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1723        Swap = true;
1724    }
1725
1726    if (Swap)
1727      std::swap(Base, Offset);
1728
1729    AM = ISD::PRE_INC;
1730    return true;
1731  }
1732
1733  // LDU/STU can only handle immediates that are a multiple of 4.
1734  if (VT != MVT::i64) {
1735    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
1736      return false;
1737  } else {
1738    // LDU/STU need an address with at least 4-byte alignment.
1739    if (Alignment < 4)
1740      return false;
1741
1742    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
1743      return false;
1744  }
1745
1746  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1747    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1748    // sext i32 to i64 when addr mode is r+i.
1749    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1750        LD->getExtensionType() == ISD::SEXTLOAD &&
1751        isa<ConstantSDNode>(Offset))
1752      return false;
1753  }
1754
1755  AM = ISD::PRE_INC;
1756  return true;
1757}
1758
1759//===----------------------------------------------------------------------===//
1760//  LowerOperation implementation
1761//===----------------------------------------------------------------------===//
1762
1763/// GetLabelAccessInfo - Return true if we should reference labels using a
1764/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1765static bool GetLabelAccessInfo(const TargetMachine &TM,
1766                               const PPCSubtarget &Subtarget,
1767                               unsigned &HiOpFlags, unsigned &LoOpFlags,
1768                               const GlobalValue *GV = nullptr) {
1769  HiOpFlags = PPCII::MO_HA;
1770  LoOpFlags = PPCII::MO_LO;
1771
1772  // Don't use the pic base if not in PIC relocation model.
1773  bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
1774
1775  if (isPIC) {
1776    HiOpFlags |= PPCII::MO_PIC_FLAG;
1777    LoOpFlags |= PPCII::MO_PIC_FLAG;
1778  }
1779
1780  // If this is a reference to a global value that requires a non-lazy-ptr, make
1781  // sure that instruction lowering adds it.
1782  if (GV && Subtarget.hasLazyResolverStub(GV)) {
1783    HiOpFlags |= PPCII::MO_NLP_FLAG;
1784    LoOpFlags |= PPCII::MO_NLP_FLAG;
1785
1786    if (GV->hasHiddenVisibility()) {
1787      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1788      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1789    }
1790  }
1791
1792  return isPIC;
1793}
1794
1795static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1796                             SelectionDAG &DAG) {
1797  EVT PtrVT = HiPart.getValueType();
1798  SDValue Zero = DAG.getConstant(0, PtrVT);
1799  SDLoc DL(HiPart);
1800
1801  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1802  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1803
1804  // With PIC, the first instruction is actually "GR+hi(&G)".
1805  if (isPIC)
1806    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1807                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1808
1809  // Generate non-pic code that has direct accesses to the constant pool.
1810  // The address of the global is just (hi(&g)+lo(&g)).
1811  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1812}
1813
1814static void setUsesTOCBasePtr(MachineFunction &MF) {
1815  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1816  FuncInfo->setUsesTOCBasePtr();
1817}
1818
1819static void setUsesTOCBasePtr(SelectionDAG &DAG) {
1820  setUsesTOCBasePtr(DAG.getMachineFunction());
1821}
1822
1823static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit,
1824                           SDValue GA) {
1825  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1826  SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
1827                DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
1828
1829  SDValue Ops[] = { GA, Reg };
1830  return DAG.getMemIntrinsicNode(PPCISD::TOC_ENTRY, dl,
1831                                 DAG.getVTList(VT, MVT::Other), Ops, VT,
1832                                 MachinePointerInfo::getGOT(), 0, false, true,
1833                                 false, 0);
1834}
1835
1836SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1837                                             SelectionDAG &DAG) const {
1838  EVT PtrVT = Op.getValueType();
1839  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1840  const Constant *C = CP->getConstVal();
1841
1842  // 64-bit SVR4 ABI code is always position-independent.
1843  // The actual address of the GlobalValue is stored in the TOC.
1844  if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
1845    setUsesTOCBasePtr(DAG);
1846    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1847    return getTOCEntry(DAG, SDLoc(CP), true, GA);
1848  }
1849
1850  unsigned MOHiFlag, MOLoFlag;
1851  bool isPIC =
1852      GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
1853
1854  if (isPIC && Subtarget.isSVR4ABI()) {
1855    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
1856                                           PPCII::MO_PIC_FLAG);
1857    return getTOCEntry(DAG, SDLoc(CP), false, GA);
1858  }
1859
1860  SDValue CPIHi =
1861    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1862  SDValue CPILo =
1863    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1864  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1865}
1866
1867SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1868  EVT PtrVT = Op.getValueType();
1869  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1870
1871  // 64-bit SVR4 ABI code is always position-independent.
1872  // The actual address of the GlobalValue is stored in the TOC.
1873  if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
1874    setUsesTOCBasePtr(DAG);
1875    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1876    return getTOCEntry(DAG, SDLoc(JT), true, GA);
1877  }
1878
1879  unsigned MOHiFlag, MOLoFlag;
1880  bool isPIC =
1881      GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
1882
1883  if (isPIC && Subtarget.isSVR4ABI()) {
1884    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
1885                                        PPCII::MO_PIC_FLAG);
1886    return getTOCEntry(DAG, SDLoc(GA), false, GA);
1887  }
1888
1889  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1890  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1891  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1892}
1893
1894SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1895                                             SelectionDAG &DAG) const {
1896  EVT PtrVT = Op.getValueType();
1897  BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
1898  const BlockAddress *BA = BASDN->getBlockAddress();
1899
1900  // 64-bit SVR4 ABI code is always position-independent.
1901  // The actual BlockAddress is stored in the TOC.
1902  if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
1903    setUsesTOCBasePtr(DAG);
1904    SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
1905    return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
1906  }
1907
1908  unsigned MOHiFlag, MOLoFlag;
1909  bool isPIC =
1910      GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
1911  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1912  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1913  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1914}
1915
1916SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1917                                              SelectionDAG &DAG) const {
1918
1919  // FIXME: TLS addresses currently use medium model code sequences,
1920  // which is the most useful form.  Eventually support for small and
1921  // large models could be added if users need it, at the cost of
1922  // additional complexity.
1923  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1924  SDLoc dl(GA);
1925  const GlobalValue *GV = GA->getGlobal();
1926  EVT PtrVT = getPointerTy();
1927  bool is64bit = Subtarget.isPPC64();
1928  const Module *M = DAG.getMachineFunction().getFunction()->getParent();
1929  PICLevel::Level picLevel = M->getPICLevel();
1930
1931  TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
1932
1933  if (Model == TLSModel::LocalExec) {
1934    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1935                                               PPCII::MO_TPREL_HA);
1936    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1937                                               PPCII::MO_TPREL_LO);
1938    SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1939                                     is64bit ? MVT::i64 : MVT::i32);
1940    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1941    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1942  }
1943
1944  if (Model == TLSModel::InitialExec) {
1945    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1946    SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1947                                                PPCII::MO_TLS);
1948    SDValue GOTPtr;
1949    if (is64bit) {
1950      setUsesTOCBasePtr(DAG);
1951      SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1952      GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
1953                           PtrVT, GOTReg, TGA);
1954    } else
1955      GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
1956    SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
1957                                   PtrVT, TGA, GOTPtr);
1958    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
1959  }
1960
1961  if (Model == TLSModel::GeneralDynamic) {
1962    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1963    SDValue GOTPtr;
1964    if (is64bit) {
1965      setUsesTOCBasePtr(DAG);
1966      SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1967      GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
1968                                   GOTReg, TGA);
1969    } else {
1970      if (picLevel == PICLevel::Small)
1971        GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
1972      else
1973        GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
1974    }
1975    return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
1976                       GOTPtr, TGA, TGA);
1977  }
1978
1979  if (Model == TLSModel::LocalDynamic) {
1980    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1981    SDValue GOTPtr;
1982    if (is64bit) {
1983      setUsesTOCBasePtr(DAG);
1984      SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1985      GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
1986                           GOTReg, TGA);
1987    } else {
1988      if (picLevel == PICLevel::Small)
1989        GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
1990      else
1991        GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
1992    }
1993    SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
1994                                  PtrVT, GOTPtr, TGA, TGA);
1995    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
1996                                      PtrVT, TLSAddr, TGA);
1997    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
1998  }
1999
2000  llvm_unreachable("Unknown TLS model!");
2001}
2002
2003SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2004                                              SelectionDAG &DAG) const {
2005  EVT PtrVT = Op.getValueType();
2006  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2007  SDLoc DL(GSDN);
2008  const GlobalValue *GV = GSDN->getGlobal();
2009
2010  // 64-bit SVR4 ABI code is always position-independent.
2011  // The actual address of the GlobalValue is stored in the TOC.
2012  if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2013    setUsesTOCBasePtr(DAG);
2014    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2015    return getTOCEntry(DAG, DL, true, GA);
2016  }
2017
2018  unsigned MOHiFlag, MOLoFlag;
2019  bool isPIC =
2020      GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV);
2021
2022  if (isPIC && Subtarget.isSVR4ABI()) {
2023    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2024                                            GSDN->getOffset(),
2025                                            PPCII::MO_PIC_FLAG);
2026    return getTOCEntry(DAG, DL, false, GA);
2027  }
2028
2029  SDValue GAHi =
2030    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2031  SDValue GALo =
2032    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2033
2034  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
2035
2036  // If the global reference is actually to a non-lazy-pointer, we have to do an
2037  // extra load to get the address of the global.
2038  if (MOHiFlag & PPCII::MO_NLP_FLAG)
2039    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
2040                      false, false, false, 0);
2041  return Ptr;
2042}
2043
2044SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2045  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2046  SDLoc dl(Op);
2047
2048  if (Op.getValueType() == MVT::v2i64) {
2049    // When the operands themselves are v2i64 values, we need to do something
2050    // special because VSX has no underlying comparison operations for these.
2051    if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2052      // Equality can be handled by casting to the legal type for Altivec
2053      // comparisons, everything else needs to be expanded.
2054      if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2055        return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2056                 DAG.getSetCC(dl, MVT::v4i32,
2057                   DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2058                   DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2059                   CC));
2060      }
2061
2062      return SDValue();
2063    }
2064
2065    // We handle most of these in the usual way.
2066    return Op;
2067  }
2068
2069  // If we're comparing for equality to zero, expose the fact that this is
2070  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
2071  // fold the new nodes.
2072  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2073    if (C->isNullValue() && CC == ISD::SETEQ) {
2074      EVT VT = Op.getOperand(0).getValueType();
2075      SDValue Zext = Op.getOperand(0);
2076      if (VT.bitsLT(MVT::i32)) {
2077        VT = MVT::i32;
2078        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
2079      }
2080      unsigned Log2b = Log2_32(VT.getSizeInBits());
2081      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
2082      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
2083                                DAG.getConstant(Log2b, MVT::i32));
2084      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
2085    }
2086    // Leave comparisons against 0 and -1 alone for now, since they're usually
2087    // optimized.  FIXME: revisit this when we can custom lower all setcc
2088    // optimizations.
2089    if (C->isAllOnesValue() || C->isNullValue())
2090      return SDValue();
2091  }
2092
2093  // If we have an integer seteq/setne, turn it into a compare against zero
2094  // by xor'ing the rhs with the lhs, which is faster than setting a
2095  // condition register, reading it back out, and masking the correct bit.  The
2096  // normal approach here uses sub to do this instead of xor.  Using xor exposes
2097  // the result to other bit-twiddling opportunities.
2098  EVT LHSVT = Op.getOperand(0).getValueType();
2099  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2100    EVT VT = Op.getValueType();
2101    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2102                                Op.getOperand(1));
2103    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
2104  }
2105  return SDValue();
2106}
2107
2108SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
2109                                      const PPCSubtarget &Subtarget) const {
2110  SDNode *Node = Op.getNode();
2111  EVT VT = Node->getValueType(0);
2112  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2113  SDValue InChain = Node->getOperand(0);
2114  SDValue VAListPtr = Node->getOperand(1);
2115  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2116  SDLoc dl(Node);
2117
2118  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2119
2120  // gpr_index
2121  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2122                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
2123                                    false, false, false, 0);
2124  InChain = GprIndex.getValue(1);
2125
2126  if (VT == MVT::i64) {
2127    // Check if GprIndex is even
2128    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2129                                 DAG.getConstant(1, MVT::i32));
2130    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2131                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
2132    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2133                                          DAG.getConstant(1, MVT::i32));
2134    // Align GprIndex to be even if it isn't
2135    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2136                           GprIndex);
2137  }
2138
2139  // fpr index is 1 byte after gpr
2140  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2141                               DAG.getConstant(1, MVT::i32));
2142
2143  // fpr
2144  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2145                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
2146                                    false, false, false, 0);
2147  InChain = FprIndex.getValue(1);
2148
2149  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2150                                       DAG.getConstant(8, MVT::i32));
2151
2152  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2153                                        DAG.getConstant(4, MVT::i32));
2154
2155  // areas
2156  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
2157                                     MachinePointerInfo(), false, false,
2158                                     false, 0);
2159  InChain = OverflowArea.getValue(1);
2160
2161  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
2162                                    MachinePointerInfo(), false, false,
2163                                    false, 0);
2164  InChain = RegSaveArea.getValue(1);
2165
2166  // select overflow_area if index > 8
2167  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2168                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
2169
2170  // adjustment constant gpr_index * 4/8
2171  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2172                                    VT.isInteger() ? GprIndex : FprIndex,
2173                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
2174                                                    MVT::i32));
2175
2176  // OurReg = RegSaveArea + RegConstant
2177  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2178                               RegConstant);
2179
2180  // Floating types are 32 bytes into RegSaveArea
2181  if (VT.isFloatingPoint())
2182    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2183                         DAG.getConstant(32, MVT::i32));
2184
2185  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2186  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2187                                   VT.isInteger() ? GprIndex : FprIndex,
2188                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
2189                                                   MVT::i32));
2190
2191  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2192                              VT.isInteger() ? VAListPtr : FprPtr,
2193                              MachinePointerInfo(SV),
2194                              MVT::i8, false, false, 0);
2195
2196  // determine if we should load from reg_save_area or overflow_area
2197  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2198
2199  // increase overflow_area by 4/8 if gpr/fpr > 8
2200  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2201                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
2202                                          MVT::i32));
2203
2204  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2205                             OverflowAreaPlusN);
2206
2207  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
2208                              OverflowAreaPtr,
2209                              MachinePointerInfo(),
2210                              MVT::i32, false, false, 0);
2211
2212  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
2213                     false, false, false, 0);
2214}
2215
2216SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
2217                                       const PPCSubtarget &Subtarget) const {
2218  assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2219
2220  // We have to copy the entire va_list struct:
2221  // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2222  return DAG.getMemcpy(Op.getOperand(0), Op,
2223                       Op.getOperand(1), Op.getOperand(2),
2224                       DAG.getConstant(12, MVT::i32), 8, false, true, false,
2225                       MachinePointerInfo(), MachinePointerInfo());
2226}
2227
2228SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2229                                                  SelectionDAG &DAG) const {
2230  return Op.getOperand(0);
2231}
2232
2233SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2234                                                SelectionDAG &DAG) const {
2235  SDValue Chain = Op.getOperand(0);
2236  SDValue Trmp = Op.getOperand(1); // trampoline
2237  SDValue FPtr = Op.getOperand(2); // nested function
2238  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2239  SDLoc dl(Op);
2240
2241  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2242  bool isPPC64 = (PtrVT == MVT::i64);
2243  Type *IntPtrTy =
2244    DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
2245                                                             *DAG.getContext());
2246
2247  TargetLowering::ArgListTy Args;
2248  TargetLowering::ArgListEntry Entry;
2249
2250  Entry.Ty = IntPtrTy;
2251  Entry.Node = Trmp; Args.push_back(Entry);
2252
2253  // TrampSize == (isPPC64 ? 48 : 40);
2254  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
2255                               isPPC64 ? MVT::i64 : MVT::i32);
2256  Args.push_back(Entry);
2257
2258  Entry.Node = FPtr; Args.push_back(Entry);
2259  Entry.Node = Nest; Args.push_back(Entry);
2260
2261  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
2262  TargetLowering::CallLoweringInfo CLI(DAG);
2263  CLI.setDebugLoc(dl).setChain(Chain)
2264    .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
2265               DAG.getExternalSymbol("__trampoline_setup", PtrVT),
2266               std::move(Args), 0);
2267
2268  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2269  return CallResult.second;
2270}
2271
2272SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
2273                                        const PPCSubtarget &Subtarget) const {
2274  MachineFunction &MF = DAG.getMachineFunction();
2275  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2276
2277  SDLoc dl(Op);
2278
2279  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
2280    // vastart just stores the address of the VarArgsFrameIndex slot into the
2281    // memory location argument.
2282    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2283    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2284    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2285    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2286                        MachinePointerInfo(SV),
2287                        false, false, 0);
2288  }
2289
2290  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
2291  // We suppose the given va_list is already allocated.
2292  //
2293  // typedef struct {
2294  //  char gpr;     /* index into the array of 8 GPRs
2295  //                 * stored in the register save area
2296  //                 * gpr=0 corresponds to r3,
2297  //                 * gpr=1 to r4, etc.
2298  //                 */
2299  //  char fpr;     /* index into the array of 8 FPRs
2300  //                 * stored in the register save area
2301  //                 * fpr=0 corresponds to f1,
2302  //                 * fpr=1 to f2, etc.
2303  //                 */
2304  //  char *overflow_arg_area;
2305  //                /* location on stack that holds
2306  //                 * the next overflow argument
2307  //                 */
2308  //  char *reg_save_area;
2309  //               /* where r3:r10 and f1:f8 (if saved)
2310  //                * are stored
2311  //                */
2312  // } va_list[1];
2313
2314
2315  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
2316  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
2317
2318
2319  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2320
2321  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
2322                                            PtrVT);
2323  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2324                                 PtrVT);
2325
2326  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2327  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
2328
2329  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2330  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
2331
2332  uint64_t FPROffset = 1;
2333  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
2334
2335  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2336
2337  // Store first byte : number of int regs
2338  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
2339                                         Op.getOperand(1),
2340                                         MachinePointerInfo(SV),
2341                                         MVT::i8, false, false, 0);
2342  uint64_t nextOffset = FPROffset;
2343  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2344                                  ConstFPROffset);
2345
2346  // Store second byte : number of float regs
2347  SDValue secondStore =
2348    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2349                      MachinePointerInfo(SV, nextOffset), MVT::i8,
2350                      false, false, 0);
2351  nextOffset += StackOffset;
2352  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2353
2354  // Store second word : arguments given on stack
2355  SDValue thirdStore =
2356    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2357                 MachinePointerInfo(SV, nextOffset),
2358                 false, false, 0);
2359  nextOffset += FrameOffset;
2360  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2361
2362  // Store third word : arguments given in registers
2363  return DAG.getStore(thirdStore, dl, FR, nextPtr,
2364                      MachinePointerInfo(SV, nextOffset),
2365                      false, false, 0);
2366
2367}
2368
2369#include "PPCGenCallingConv.inc"
2370
2371// Function whose sole purpose is to kill compiler warnings
2372// stemming from unused functions included from PPCGenCallingConv.inc.
2373CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2374  return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
2375}
2376
2377bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
2378                                      CCValAssign::LocInfo &LocInfo,
2379                                      ISD::ArgFlagsTy &ArgFlags,
2380                                      CCState &State) {
2381  return true;
2382}
2383
2384bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
2385                                             MVT &LocVT,
2386                                             CCValAssign::LocInfo &LocInfo,
2387                                             ISD::ArgFlagsTy &ArgFlags,
2388                                             CCState &State) {
2389  static const MCPhysReg ArgRegs[] = {
2390    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2391    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2392  };
2393  const unsigned NumArgRegs = array_lengthof(ArgRegs);
2394
2395  unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2396
2397  // Skip one register if the first unallocated register has an even register
2398  // number and there are still argument registers available which have not been
2399  // allocated yet. RegNum is actually an index into ArgRegs, which means we
2400  // need to skip a register if RegNum is odd.
2401  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
2402    State.AllocateReg(ArgRegs[RegNum]);
2403  }
2404
2405  // Always return false here, as this function only makes sure that the first
2406  // unallocated register has an odd register number and does not actually
2407  // allocate a register for the current argument.
2408  return false;
2409}
2410
2411bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
2412                                               MVT &LocVT,
2413                                               CCValAssign::LocInfo &LocInfo,
2414                                               ISD::ArgFlagsTy &ArgFlags,
2415                                               CCState &State) {
2416  static const MCPhysReg ArgRegs[] = {
2417    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2418    PPC::F8
2419  };
2420
2421  const unsigned NumArgRegs = array_lengthof(ArgRegs);
2422
2423  unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2424
2425  // If there is only one Floating-point register left we need to put both f64
2426  // values of a split ppc_fp128 value on the stack.
2427  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
2428    State.AllocateReg(ArgRegs[RegNum]);
2429  }
2430
2431  // Always return false here, as this function only makes sure that the two f64
2432  // values a ppc_fp128 value is split into are both passed in registers or both
2433  // passed on the stack and does not actually allocate a register for the
2434  // current argument.
2435  return false;
2436}
2437
2438/// FPR - The set of FP registers that should be allocated for arguments,
2439/// on Darwin.
2440static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
2441                                PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
2442                                PPC::F11, PPC::F12, PPC::F13};
2443
2444/// QFPR - The set of QPX registers that should be allocated for arguments.
2445static const MCPhysReg QFPR[] = {
2446    PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
2447    PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
2448
2449/// CalculateStackSlotSize - Calculates the size reserved for this argument on
2450/// the stack.
2451static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
2452                                       unsigned PtrByteSize) {
2453  unsigned ArgSize = ArgVT.getStoreSize();
2454  if (Flags.isByVal())
2455    ArgSize = Flags.getByValSize();
2456
2457  // Round up to multiples of the pointer size, except for array members,
2458  // which are always packed.
2459  if (!Flags.isInConsecutiveRegs())
2460    ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2461
2462  return ArgSize;
2463}
2464
2465/// CalculateStackSlotAlignment - Calculates the alignment of this argument
2466/// on the stack.
2467static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
2468                                            ISD::ArgFlagsTy Flags,
2469                                            unsigned PtrByteSize) {
2470  unsigned Align = PtrByteSize;
2471
2472  // Altivec parameters are padded to a 16 byte boundary.
2473  if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2474      ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2475      ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64)
2476    Align = 16;
2477  // QPX vector types stored in double-precision are padded to a 32 byte
2478  // boundary.
2479  else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
2480    Align = 32;
2481
2482  // ByVal parameters are aligned as requested.
2483  if (Flags.isByVal()) {
2484    unsigned BVAlign = Flags.getByValAlign();
2485    if (BVAlign > PtrByteSize) {
2486      if (BVAlign % PtrByteSize != 0)
2487          llvm_unreachable(
2488            "ByVal alignment is not a multiple of the pointer size");
2489
2490      Align = BVAlign;
2491    }
2492  }
2493
2494  // Array members are always packed to their original alignment.
2495  if (Flags.isInConsecutiveRegs()) {
2496    // If the array member was split into multiple registers, the first
2497    // needs to be aligned to the size of the full type.  (Except for
2498    // ppcf128, which is only aligned as its f64 components.)
2499    if (Flags.isSplit() && OrigVT != MVT::ppcf128)
2500      Align = OrigVT.getStoreSize();
2501    else
2502      Align = ArgVT.getStoreSize();
2503  }
2504
2505  return Align;
2506}
2507
2508/// CalculateStackSlotUsed - Return whether this argument will use its
2509/// stack slot (instead of being passed in registers).  ArgOffset,
2510/// AvailableFPRs, and AvailableVRs must hold the current argument
2511/// position, and will be updated to account for this argument.
2512static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
2513                                   ISD::ArgFlagsTy Flags,
2514                                   unsigned PtrByteSize,
2515                                   unsigned LinkageSize,
2516                                   unsigned ParamAreaSize,
2517                                   unsigned &ArgOffset,
2518                                   unsigned &AvailableFPRs,
2519                                   unsigned &AvailableVRs, bool HasQPX) {
2520  bool UseMemory = false;
2521
2522  // Respect alignment of argument on the stack.
2523  unsigned Align =
2524    CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
2525  ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
2526  // If there's no space left in the argument save area, we must
2527  // use memory (this check also catches zero-sized arguments).
2528  if (ArgOffset >= LinkageSize + ParamAreaSize)
2529    UseMemory = true;
2530
2531  // Allocate argument on the stack.
2532  ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2533  if (Flags.isInConsecutiveRegsLast())
2534    ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2535  // If we overran the argument save area, we must use memory
2536  // (this check catches arguments passed partially in memory)
2537  if (ArgOffset > LinkageSize + ParamAreaSize)
2538    UseMemory = true;
2539
2540  // However, if the argument is actually passed in an FPR or a VR,
2541  // we don't use memory after all.
2542  if (!Flags.isByVal()) {
2543    if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
2544        // QPX registers overlap with the scalar FP registers.
2545        (HasQPX && (ArgVT == MVT::v4f32 ||
2546                    ArgVT == MVT::v4f64 ||
2547                    ArgVT == MVT::v4i1)))
2548      if (AvailableFPRs > 0) {
2549        --AvailableFPRs;
2550        return false;
2551      }
2552    if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2553        ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2554        ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64)
2555      if (AvailableVRs > 0) {
2556        --AvailableVRs;
2557        return false;
2558      }
2559  }
2560
2561  return UseMemory;
2562}
2563
2564/// EnsureStackAlignment - Round stack frame size up from NumBytes to
2565/// ensure minimum alignment required for target.
2566static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
2567                                     unsigned NumBytes) {
2568  unsigned TargetAlign = Lowering->getStackAlignment();
2569  unsigned AlignMask = TargetAlign - 1;
2570  NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2571  return NumBytes;
2572}
2573
2574SDValue
2575PPCTargetLowering::LowerFormalArguments(SDValue Chain,
2576                                        CallingConv::ID CallConv, bool isVarArg,
2577                                        const SmallVectorImpl<ISD::InputArg>
2578                                          &Ins,
2579                                        SDLoc dl, SelectionDAG &DAG,
2580                                        SmallVectorImpl<SDValue> &InVals)
2581                                          const {
2582  if (Subtarget.isSVR4ABI()) {
2583    if (Subtarget.isPPC64())
2584      return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
2585                                         dl, DAG, InVals);
2586    else
2587      return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
2588                                         dl, DAG, InVals);
2589  } else {
2590    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
2591                                       dl, DAG, InVals);
2592  }
2593}
2594
2595SDValue
2596PPCTargetLowering::LowerFormalArguments_32SVR4(
2597                                      SDValue Chain,
2598                                      CallingConv::ID CallConv, bool isVarArg,
2599                                      const SmallVectorImpl<ISD::InputArg>
2600                                        &Ins,
2601                                      SDLoc dl, SelectionDAG &DAG,
2602                                      SmallVectorImpl<SDValue> &InVals) const {
2603
2604  // 32-bit SVR4 ABI Stack Frame Layout:
2605  //              +-----------------------------------+
2606  //        +-->  |            Back chain             |
2607  //        |     +-----------------------------------+
2608  //        |     | Floating-point register save area |
2609  //        |     +-----------------------------------+
2610  //        |     |    General register save area     |
2611  //        |     +-----------------------------------+
2612  //        |     |          CR save word             |
2613  //        |     +-----------------------------------+
2614  //        |     |         VRSAVE save word          |
2615  //        |     +-----------------------------------+
2616  //        |     |         Alignment padding         |
2617  //        |     +-----------------------------------+
2618  //        |     |     Vector register save area     |
2619  //        |     +-----------------------------------+
2620  //        |     |       Local variable space        |
2621  //        |     +-----------------------------------+
2622  //        |     |        Parameter list area        |
2623  //        |     +-----------------------------------+
2624  //        |     |           LR save word            |
2625  //        |     +-----------------------------------+
2626  // SP-->  +---  |            Back chain             |
2627  //              +-----------------------------------+
2628  //
2629  // Specifications:
2630  //   System V Application Binary Interface PowerPC Processor Supplement
2631  //   AltiVec Technology Programming Interface Manual
2632
2633  MachineFunction &MF = DAG.getMachineFunction();
2634  MachineFrameInfo *MFI = MF.getFrameInfo();
2635  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2636
2637  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2638  // Potential tail calls could cause overwriting of argument stack slots.
2639  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2640                       (CallConv == CallingConv::Fast));
2641  unsigned PtrByteSize = 4;
2642
2643  // Assign locations to all of the incoming arguments.
2644  SmallVector<CCValAssign, 16> ArgLocs;
2645  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2646                 *DAG.getContext());
2647
2648  // Reserve space for the linkage area on the stack.
2649  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
2650  CCInfo.AllocateStack(LinkageSize, PtrByteSize);
2651
2652  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
2653
2654  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2655    CCValAssign &VA = ArgLocs[i];
2656
2657    // Arguments stored in registers.
2658    if (VA.isRegLoc()) {
2659      const TargetRegisterClass *RC;
2660      EVT ValVT = VA.getValVT();
2661
2662      switch (ValVT.getSimpleVT().SimpleTy) {
2663        default:
2664          llvm_unreachable("ValVT not supported by formal arguments Lowering");
2665        case MVT::i1:
2666        case MVT::i32:
2667          RC = &PPC::GPRCRegClass;
2668          break;
2669        case MVT::f32:
2670          RC = &PPC::F4RCRegClass;
2671          break;
2672        case MVT::f64:
2673          if (Subtarget.hasVSX())
2674            RC = &PPC::VSFRCRegClass;
2675          else
2676            RC = &PPC::F8RCRegClass;
2677          break;
2678        case MVT::v16i8:
2679        case MVT::v8i16:
2680        case MVT::v4i32:
2681          RC = &PPC::VRRCRegClass;
2682          break;
2683        case MVT::v4f32:
2684          RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
2685          break;
2686        case MVT::v2f64:
2687        case MVT::v2i64:
2688          RC = &PPC::VSHRCRegClass;
2689          break;
2690        case MVT::v4f64:
2691          RC = &PPC::QFRCRegClass;
2692          break;
2693        case MVT::v4i1:
2694          RC = &PPC::QBRCRegClass;
2695          break;
2696      }
2697
2698      // Transform the arguments stored in physical registers into virtual ones.
2699      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2700      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
2701                                            ValVT == MVT::i1 ? MVT::i32 : ValVT);
2702
2703      if (ValVT == MVT::i1)
2704        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
2705
2706      InVals.push_back(ArgValue);
2707    } else {
2708      // Argument stored in memory.
2709      assert(VA.isMemLoc());
2710
2711      unsigned ArgSize = VA.getLocVT().getStoreSize();
2712      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
2713                                      isImmutable);
2714
2715      // Create load nodes to retrieve arguments from the stack.
2716      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2717      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2718                                   MachinePointerInfo(),
2719                                   false, false, false, 0));
2720    }
2721  }
2722
2723  // Assign locations to all of the incoming aggregate by value arguments.
2724  // Aggregates passed by value are stored in the local variable space of the
2725  // caller's stack frame, right above the parameter list area.
2726  SmallVector<CCValAssign, 16> ByValArgLocs;
2727  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2728                      ByValArgLocs, *DAG.getContext());
2729
2730  // Reserve stack space for the allocations in CCInfo.
2731  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2732
2733  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
2734
2735  // Area that is at least reserved in the caller of this function.
2736  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
2737  MinReservedArea = std::max(MinReservedArea, LinkageSize);
2738
2739  // Set the size that is at least reserved in caller of this function.  Tail
2740  // call optimized function's reserved stack space needs to be aligned so that
2741  // taking the difference between two stack areas will result in an aligned
2742  // stack.
2743  MinReservedArea =
2744      EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
2745  FuncInfo->setMinReservedArea(MinReservedArea);
2746
2747  SmallVector<SDValue, 8> MemOps;
2748
2749  // If the function takes variable number of arguments, make a frame index for
2750  // the start of the first vararg value... for expansion of llvm.va_start.
2751  if (isVarArg) {
2752    static const MCPhysReg GPArgRegs[] = {
2753      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2754      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2755    };
2756    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2757
2758    static const MCPhysReg FPArgRegs[] = {
2759      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2760      PPC::F8
2761    };
2762    unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2763    if (DisablePPCFloatInVariadic)
2764      NumFPArgRegs = 0;
2765
2766    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
2767    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
2768
2769    // Make room for NumGPArgRegs and NumFPArgRegs.
2770    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2771                NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
2772
2773    FuncInfo->setVarArgsStackOffset(
2774      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2775                             CCInfo.getNextStackOffset(), true));
2776
2777    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2778    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2779
2780    // The fixed integer arguments of a variadic function are stored to the
2781    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2782    // the result of va_next.
2783    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2784      // Get an existing live-in vreg, or add a new one.
2785      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2786      if (!VReg)
2787        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2788
2789      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2790      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2791                                   MachinePointerInfo(), false, false, 0);
2792      MemOps.push_back(Store);
2793      // Increment the address by four for the next argument to store
2794      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2795      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2796    }
2797
2798    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2799    // is set.
2800    // The double arguments are stored to the VarArgsFrameIndex
2801    // on the stack.
2802    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2803      // Get an existing live-in vreg, or add a new one.
2804      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2805      if (!VReg)
2806        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2807
2808      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2809      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2810                                   MachinePointerInfo(), false, false, 0);
2811      MemOps.push_back(Store);
2812      // Increment the address by eight for the next argument to store
2813      SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
2814                                         PtrVT);
2815      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2816    }
2817  }
2818
2819  if (!MemOps.empty())
2820    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
2821
2822  return Chain;
2823}
2824
2825// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2826// value to MVT::i64 and then truncate to the correct register size.
2827SDValue
2828PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
2829                                     SelectionDAG &DAG, SDValue ArgVal,
2830                                     SDLoc dl) const {
2831  if (Flags.isSExt())
2832    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2833                         DAG.getValueType(ObjectVT));
2834  else if (Flags.isZExt())
2835    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2836                         DAG.getValueType(ObjectVT));
2837
2838  return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
2839}
2840
2841SDValue
2842PPCTargetLowering::LowerFormalArguments_64SVR4(
2843                                      SDValue Chain,
2844                                      CallingConv::ID CallConv, bool isVarArg,
2845                                      const SmallVectorImpl<ISD::InputArg>
2846                                        &Ins,
2847                                      SDLoc dl, SelectionDAG &DAG,
2848                                      SmallVectorImpl<SDValue> &InVals) const {
2849  // TODO: add description of PPC stack frame format, or at least some docs.
2850  //
2851  bool isELFv2ABI = Subtarget.isELFv2ABI();
2852  bool isLittleEndian = Subtarget.isLittleEndian();
2853  MachineFunction &MF = DAG.getMachineFunction();
2854  MachineFrameInfo *MFI = MF.getFrameInfo();
2855  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2856
2857  assert(!(CallConv == CallingConv::Fast && isVarArg) &&
2858         "fastcc not supported on varargs functions");
2859
2860  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2861  // Potential tail calls could cause overwriting of argument stack slots.
2862  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2863                       (CallConv == CallingConv::Fast));
2864  unsigned PtrByteSize = 8;
2865  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
2866
2867  static const MCPhysReg GPR[] = {
2868    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2869    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2870  };
2871  static const MCPhysReg VR[] = {
2872    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2873    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2874  };
2875  static const MCPhysReg VSRH[] = {
2876    PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
2877    PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
2878  };
2879
2880  const unsigned Num_GPR_Regs = array_lengthof(GPR);
2881  const unsigned Num_FPR_Regs = 13;
2882  const unsigned Num_VR_Regs  = array_lengthof(VR);
2883  const unsigned Num_QFPR_Regs = Num_FPR_Regs;
2884
2885  // Do a first pass over the arguments to determine whether the ABI
2886  // guarantees that our caller has allocated the parameter save area
2887  // on its stack frame.  In the ELFv1 ABI, this is always the case;
2888  // in the ELFv2 ABI, it is true if this is a vararg function or if
2889  // any parameter is located in a stack slot.
2890
2891  bool HasParameterArea = !isELFv2ABI || isVarArg;
2892  unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
2893  unsigned NumBytes = LinkageSize;
2894  unsigned AvailableFPRs = Num_FPR_Regs;
2895  unsigned AvailableVRs = Num_VR_Regs;
2896  for (unsigned i = 0, e = Ins.size(); i != e; ++i)
2897    if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
2898                               PtrByteSize, LinkageSize, ParamAreaSize,
2899                               NumBytes, AvailableFPRs, AvailableVRs,
2900                               Subtarget.hasQPX()))
2901      HasParameterArea = true;
2902
2903  // Add DAG nodes to load the arguments or copy them out of registers.  On
2904  // entry to a function on PPC, the arguments start after the linkage area,
2905  // although the first ones are often in registers.
2906
2907  unsigned ArgOffset = LinkageSize;
2908  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2909  unsigned &QFPR_idx = FPR_idx;
2910  SmallVector<SDValue, 8> MemOps;
2911  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2912  unsigned CurArgIdx = 0;
2913  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2914    SDValue ArgVal;
2915    bool needsLoad = false;
2916    EVT ObjectVT = Ins[ArgNo].VT;
2917    EVT OrigVT = Ins[ArgNo].ArgVT;
2918    unsigned ObjSize = ObjectVT.getStoreSize();
2919    unsigned ArgSize = ObjSize;
2920    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2921    if (Ins[ArgNo].isOrigArg()) {
2922      std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
2923      CurArgIdx = Ins[ArgNo].getOrigArgIndex();
2924    }
2925    // We re-align the argument offset for each argument, except when using the
2926    // fast calling convention, when we need to make sure we do that only when
2927    // we'll actually use a stack slot.
2928    unsigned CurArgOffset, Align;
2929    auto ComputeArgOffset = [&]() {
2930      /* Respect alignment of argument on the stack.  */
2931      Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
2932      ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
2933      CurArgOffset = ArgOffset;
2934    };
2935
2936    if (CallConv != CallingConv::Fast) {
2937      ComputeArgOffset();
2938
2939      /* Compute GPR index associated with argument offset.  */
2940      GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
2941      GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
2942    }
2943
2944    // FIXME the codegen can be much improved in some cases.
2945    // We do not have to keep everything in memory.
2946    if (Flags.isByVal()) {
2947      assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
2948
2949      if (CallConv == CallingConv::Fast)
2950        ComputeArgOffset();
2951
2952      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2953      ObjSize = Flags.getByValSize();
2954      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2955      // Empty aggregate parameters do not take up registers.  Examples:
2956      //   struct { } a;
2957      //   union  { } b;
2958      //   int c[0];
2959      // etc.  However, we have to provide a place-holder in InVals, so
2960      // pretend we have an 8-byte item at the current address for that
2961      // purpose.
2962      if (!ObjSize) {
2963        int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2964        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2965        InVals.push_back(FIN);
2966        continue;
2967      }
2968
2969      // Create a stack object covering all stack doublewords occupied
2970      // by the argument.  If the argument is (fully or partially) on
2971      // the stack, or if the argument is fully in registers but the
2972      // caller has allocated the parameter save anyway, we can refer
2973      // directly to the caller's stack frame.  Otherwise, create a
2974      // local copy in our own frame.
2975      int FI;
2976      if (HasParameterArea ||
2977          ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
2978        FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true);
2979      else
2980        FI = MFI->CreateStackObject(ArgSize, Align, false);
2981      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2982
2983      // Handle aggregates smaller than 8 bytes.
2984      if (ObjSize < PtrByteSize) {
2985        // The value of the object is its address, which differs from the
2986        // address of the enclosing doubleword on big-endian systems.
2987        SDValue Arg = FIN;
2988        if (!isLittleEndian) {
2989          SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, PtrVT);
2990          Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
2991        }
2992        InVals.push_back(Arg);
2993
2994        if (GPR_idx != Num_GPR_Regs) {
2995          unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
2996          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2997          SDValue Store;
2998
2999          if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3000            EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3001                           (ObjSize == 2 ? MVT::i16 : MVT::i32));
3002            Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3003                                      MachinePointerInfo(FuncArg),
3004                                      ObjType, false, false, 0);
3005          } else {
3006            // For sizes that don't fit a truncating store (3, 5, 6, 7),
3007            // store the whole register as-is to the parameter save area
3008            // slot.
3009            Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3010                                 MachinePointerInfo(FuncArg),
3011                                 false, false, 0);
3012          }
3013
3014          MemOps.push_back(Store);
3015        }
3016        // Whether we copied from a register or not, advance the offset
3017        // into the parameter save area by a full doubleword.
3018        ArgOffset += PtrByteSize;
3019        continue;
3020      }
3021
3022      // The value of the object is its address, which is the address of
3023      // its first stack doubleword.
3024      InVals.push_back(FIN);
3025
3026      // Store whatever pieces of the object are in registers to memory.
3027      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3028        if (GPR_idx == Num_GPR_Regs)
3029          break;
3030
3031        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3032        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3033        SDValue Addr = FIN;
3034        if (j) {
3035          SDValue Off = DAG.getConstant(j, PtrVT);
3036          Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3037        }
3038        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3039                                     MachinePointerInfo(FuncArg, j),
3040                                     false, false, 0);
3041        MemOps.push_back(Store);
3042        ++GPR_idx;
3043      }
3044      ArgOffset += ArgSize;
3045      continue;
3046    }
3047
3048    switch (ObjectVT.getSimpleVT().SimpleTy) {
3049    default: llvm_unreachable("Unhandled argument type!");
3050    case MVT::i1:
3051    case MVT::i32:
3052    case MVT::i64:
3053      // These can be scalar arguments or elements of an integer array type
3054      // passed directly.  Clang may use those instead of "byval" aggregate
3055      // types to avoid forcing arguments to memory unnecessarily.
3056      if (GPR_idx != Num_GPR_Regs) {
3057        unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3058        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3059
3060        if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3061          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3062          // value to MVT::i64 and then truncate to the correct register size.
3063          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3064      } else {
3065        if (CallConv == CallingConv::Fast)
3066          ComputeArgOffset();
3067
3068        needsLoad = true;
3069        ArgSize = PtrByteSize;
3070      }
3071      if (CallConv != CallingConv::Fast || needsLoad)
3072        ArgOffset += 8;
3073      break;
3074
3075    case MVT::f32:
3076    case MVT::f64:
3077      // These can be scalar arguments or elements of a float array type
3078      // passed directly.  The latter are used to implement ELFv2 homogenous
3079      // float aggregates.
3080      if (FPR_idx != Num_FPR_Regs) {
3081        unsigned VReg;
3082
3083        if (ObjectVT == MVT::f32)
3084          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
3085        else
3086          VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3087                                                ? &PPC::VSFRCRegClass
3088                                                : &PPC::F8RCRegClass);
3089
3090        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3091        ++FPR_idx;
3092      } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3093        // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3094        // once we support fp <-> gpr moves.
3095
3096        // This can only ever happen in the presence of f32 array types,
3097        // since otherwise we never run out of FPRs before running out
3098        // of GPRs.
3099        unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3100        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3101
3102        if (ObjectVT == MVT::f32) {
3103          if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3104            ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3105                                 DAG.getConstant(32, MVT::i32));
3106          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3107        }
3108
3109        ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3110      } else {
3111        if (CallConv == CallingConv::Fast)
3112          ComputeArgOffset();
3113
3114        needsLoad = true;
3115      }
3116
3117      // When passing an array of floats, the array occupies consecutive
3118      // space in the argument area; only round up to the next doubleword
3119      // at the end of the array.  Otherwise, each float takes 8 bytes.
3120      if (CallConv != CallingConv::Fast || needsLoad) {
3121        ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3122        ArgOffset += ArgSize;
3123        if (Flags.isInConsecutiveRegsLast())
3124          ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3125      }
3126      break;
3127    case MVT::v4f32:
3128    case MVT::v4i32:
3129    case MVT::v8i16:
3130    case MVT::v16i8:
3131    case MVT::v2f64:
3132    case MVT::v2i64:
3133      if (!Subtarget.hasQPX()) {
3134      // These can be scalar arguments or elements of a vector array type
3135      // passed directly.  The latter are used to implement ELFv2 homogenous
3136      // vector aggregates.
3137      if (VR_idx != Num_VR_Regs) {
3138        unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
3139                        MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
3140                        MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3141        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3142        ++VR_idx;
3143      } else {
3144        if (CallConv == CallingConv::Fast)
3145          ComputeArgOffset();
3146
3147        needsLoad = true;
3148      }
3149      if (CallConv != CallingConv::Fast || needsLoad)
3150        ArgOffset += 16;
3151      break;
3152      } // not QPX
3153
3154      assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3155             "Invalid QPX parameter type");
3156      /* fall through */
3157
3158    case MVT::v4f64:
3159    case MVT::v4i1:
3160      // QPX vectors are treated like their scalar floating-point subregisters
3161      // (except that they're larger).
3162      unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3163      if (QFPR_idx != Num_QFPR_Regs) {
3164        const TargetRegisterClass *RC;
3165        switch (ObjectVT.getSimpleVT().SimpleTy) {
3166        case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3167        case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3168        default:         RC = &PPC::QBRCRegClass; break;
3169        }
3170
3171        unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3172        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3173        ++QFPR_idx;
3174      } else {
3175        if (CallConv == CallingConv::Fast)
3176          ComputeArgOffset();
3177        needsLoad = true;
3178      }
3179      if (CallConv != CallingConv::Fast || needsLoad)
3180        ArgOffset += Sz;
3181      break;
3182    }
3183
3184    // We need to load the argument to a virtual register if we determined
3185    // above that we ran out of physical registers of the appropriate type.
3186    if (needsLoad) {
3187      if (ObjSize < ArgSize && !isLittleEndian)
3188        CurArgOffset += ArgSize - ObjSize;
3189      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3190      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3191      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3192                           false, false, false, 0);
3193    }
3194
3195    InVals.push_back(ArgVal);
3196  }
3197
3198  // Area that is at least reserved in the caller of this function.
3199  unsigned MinReservedArea;
3200  if (HasParameterArea)
3201    MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3202  else
3203    MinReservedArea = LinkageSize;
3204
3205  // Set the size that is at least reserved in caller of this function.  Tail
3206  // call optimized functions' reserved stack space needs to be aligned so that
3207  // taking the difference between two stack areas will result in an aligned
3208  // stack.
3209  MinReservedArea =
3210      EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3211  FuncInfo->setMinReservedArea(MinReservedArea);
3212
3213  // If the function takes variable number of arguments, make a frame index for
3214  // the start of the first vararg value... for expansion of llvm.va_start.
3215  if (isVarArg) {
3216    int Depth = ArgOffset;
3217
3218    FuncInfo->setVarArgsFrameIndex(
3219      MFI->CreateFixedObject(PtrByteSize, Depth, true));
3220    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3221
3222    // If this function is vararg, store any remaining integer argument regs
3223    // to their spots on the stack so that they may be loaded by deferencing the
3224    // result of va_next.
3225    for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3226         GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3227      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3228      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3229      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3230                                   MachinePointerInfo(), false, false, 0);
3231      MemOps.push_back(Store);
3232      // Increment the address by four for the next argument to store
3233      SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
3234      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3235    }
3236  }
3237
3238  if (!MemOps.empty())
3239    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3240
3241  return Chain;
3242}
3243
3244SDValue
3245PPCTargetLowering::LowerFormalArguments_Darwin(
3246                                      SDValue Chain,
3247                                      CallingConv::ID CallConv, bool isVarArg,
3248                                      const SmallVectorImpl<ISD::InputArg>
3249                                        &Ins,
3250                                      SDLoc dl, SelectionDAG &DAG,
3251                                      SmallVectorImpl<SDValue> &InVals) const {
3252  // TODO: add description of PPC stack frame format, or at least some docs.
3253  //
3254  MachineFunction &MF = DAG.getMachineFunction();
3255  MachineFrameInfo *MFI = MF.getFrameInfo();
3256  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3257
3258  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3259  bool isPPC64 = PtrVT == MVT::i64;
3260  // Potential tail calls could cause overwriting of argument stack slots.
3261  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3262                       (CallConv == CallingConv::Fast));
3263  unsigned PtrByteSize = isPPC64 ? 8 : 4;
3264  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3265  unsigned ArgOffset = LinkageSize;
3266  // Area that is at least reserved in caller of this function.
3267  unsigned MinReservedArea = ArgOffset;
3268
3269  static const MCPhysReg GPR_32[] = {           // 32-bit registers.
3270    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3271    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3272  };
3273  static const MCPhysReg GPR_64[] = {           // 64-bit registers.
3274    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3275    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3276  };
3277  static const MCPhysReg VR[] = {
3278    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3279    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3280  };
3281
3282  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
3283  const unsigned Num_FPR_Regs = 13;
3284  const unsigned Num_VR_Regs  = array_lengthof( VR);
3285
3286  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3287
3288  const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
3289
3290  // In 32-bit non-varargs functions, the stack space for vectors is after the
3291  // stack space for non-vectors.  We do not use this space unless we have
3292  // too many vectors to fit in registers, something that only occurs in
3293  // constructed examples:), but we have to walk the arglist to figure
3294  // that out...for the pathological case, compute VecArgOffset as the
3295  // start of the vector parameter area.  Computing VecArgOffset is the
3296  // entire point of the following loop.
3297  unsigned VecArgOffset = ArgOffset;
3298  if (!isVarArg && !isPPC64) {
3299    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
3300         ++ArgNo) {
3301      EVT ObjectVT = Ins[ArgNo].VT;
3302      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3303
3304      if (Flags.isByVal()) {
3305        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
3306        unsigned ObjSize = Flags.getByValSize();
3307        unsigned ArgSize =
3308                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3309        VecArgOffset += ArgSize;
3310        continue;
3311      }
3312
3313      switch(ObjectVT.getSimpleVT().SimpleTy) {
3314      default: llvm_unreachable("Unhandled argument type!");
3315      case MVT::i1:
3316      case MVT::i32:
3317      case MVT::f32:
3318        VecArgOffset += 4;
3319        break;
3320      case MVT::i64:  // PPC64
3321      case MVT::f64:
3322        // FIXME: We are guaranteed to be !isPPC64 at this point.
3323        // Does MVT::i64 apply?
3324        VecArgOffset += 8;
3325        break;
3326      case MVT::v4f32:
3327      case MVT::v4i32:
3328      case MVT::v8i16:
3329      case MVT::v16i8:
3330        // Nothing to do, we're only looking at Nonvector args here.
3331        break;
3332      }
3333    }
3334  }
3335  // We've found where the vector parameter area in memory is.  Skip the
3336  // first 12 parameters; these don't use that memory.
3337  VecArgOffset = ((VecArgOffset+15)/16)*16;
3338  VecArgOffset += 12*16;
3339
3340  // Add DAG nodes to load the arguments or copy them out of registers.  On
3341  // entry to a function on PPC, the arguments start after the linkage area,
3342  // although the first ones are often in registers.
3343
3344  SmallVector<SDValue, 8> MemOps;
3345  unsigned nAltivecParamsAtEnd = 0;
3346  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3347  unsigned CurArgIdx = 0;
3348  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3349    SDValue ArgVal;
3350    bool needsLoad = false;
3351    EVT ObjectVT = Ins[ArgNo].VT;
3352    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
3353    unsigned ArgSize = ObjSize;
3354    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3355    if (Ins[ArgNo].isOrigArg()) {
3356      std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3357      CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3358    }
3359    unsigned CurArgOffset = ArgOffset;
3360
3361    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
3362    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
3363        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
3364      if (isVarArg || isPPC64) {
3365        MinReservedArea = ((MinReservedArea+15)/16)*16;
3366        MinReservedArea += CalculateStackSlotSize(ObjectVT,
3367                                                  Flags,
3368                                                  PtrByteSize);
3369      } else  nAltivecParamsAtEnd++;
3370    } else
3371      // Calculate min reserved area.
3372      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
3373                                                Flags,
3374                                                PtrByteSize);
3375
3376    // FIXME the codegen can be much improved in some cases.
3377    // We do not have to keep everything in memory.
3378    if (Flags.isByVal()) {
3379      assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3380
3381      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3382      ObjSize = Flags.getByValSize();
3383      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3384      // Objects of size 1 and 2 are right justified, everything else is
3385      // left justified.  This means the memory address is adjusted forwards.
3386      if (ObjSize==1 || ObjSize==2) {
3387        CurArgOffset = CurArgOffset + (4 - ObjSize);
3388      }
3389      // The value of the object is its address.
3390      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true);
3391      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3392      InVals.push_back(FIN);
3393      if (ObjSize==1 || ObjSize==2) {
3394        if (GPR_idx != Num_GPR_Regs) {
3395          unsigned VReg;
3396          if (isPPC64)
3397            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3398          else
3399            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3400          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3401          EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
3402          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
3403                                            MachinePointerInfo(FuncArg),
3404                                            ObjType, false, false, 0);
3405          MemOps.push_back(Store);
3406          ++GPR_idx;
3407        }
3408
3409        ArgOffset += PtrByteSize;
3410
3411        continue;
3412      }
3413      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3414        // Store whatever pieces of the object are in registers
3415        // to memory.  ArgOffset will be the address of the beginning
3416        // of the object.
3417        if (GPR_idx != Num_GPR_Regs) {
3418          unsigned VReg;
3419          if (isPPC64)
3420            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3421          else
3422            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3423          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
3424          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3425          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3426          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3427                                       MachinePointerInfo(FuncArg, j),
3428                                       false, false, 0);
3429          MemOps.push_back(Store);
3430          ++GPR_idx;
3431          ArgOffset += PtrByteSize;
3432        } else {
3433          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
3434          break;
3435        }
3436      }
3437      continue;
3438    }
3439
3440    switch (ObjectVT.getSimpleVT().SimpleTy) {
3441    default: llvm_unreachable("Unhandled argument type!");
3442    case MVT::i1:
3443    case MVT::i32:
3444      if (!isPPC64) {
3445        if (GPR_idx != Num_GPR_Regs) {
3446          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3447          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3448
3449          if (ObjectVT == MVT::i1)
3450            ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
3451
3452          ++GPR_idx;
3453        } else {
3454          needsLoad = true;
3455          ArgSize = PtrByteSize;
3456        }
3457        // All int arguments reserve stack space in the Darwin ABI.
3458        ArgOffset += PtrByteSize;
3459        break;
3460      }
3461      // FALLTHROUGH
3462    case MVT::i64:  // PPC64
3463      if (GPR_idx != Num_GPR_Regs) {
3464        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3465        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3466
3467        if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3468          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3469          // value to MVT::i64 and then truncate to the correct register size.
3470          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3471
3472        ++GPR_idx;
3473      } else {
3474        needsLoad = true;
3475        ArgSize = PtrByteSize;
3476      }
3477      // All int arguments reserve stack space in the Darwin ABI.
3478      ArgOffset += 8;
3479      break;
3480
3481    case MVT::f32:
3482    case MVT::f64:
3483      // Every 4 bytes of argument space consumes one of the GPRs available for
3484      // argument passing.
3485      if (GPR_idx != Num_GPR_Regs) {
3486        ++GPR_idx;
3487        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
3488          ++GPR_idx;
3489      }
3490      if (FPR_idx != Num_FPR_Regs) {
3491        unsigned VReg;
3492
3493        if (ObjectVT == MVT::f32)
3494          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
3495        else
3496          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
3497
3498        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3499        ++FPR_idx;
3500      } else {
3501        needsLoad = true;
3502      }
3503
3504      // All FP arguments reserve stack space in the Darwin ABI.
3505      ArgOffset += isPPC64 ? 8 : ObjSize;
3506      break;
3507    case MVT::v4f32:
3508    case MVT::v4i32:
3509    case MVT::v8i16:
3510    case MVT::v16i8:
3511      // Note that vector arguments in registers don't reserve stack space,
3512      // except in varargs functions.
3513      if (VR_idx != Num_VR_Regs) {
3514        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3515        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3516        if (isVarArg) {
3517          while ((ArgOffset % 16) != 0) {
3518            ArgOffset += PtrByteSize;
3519            if (GPR_idx != Num_GPR_Regs)
3520              GPR_idx++;
3521          }
3522          ArgOffset += 16;
3523          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
3524        }
3525        ++VR_idx;
3526      } else {
3527        if (!isVarArg && !isPPC64) {
3528          // Vectors go after all the nonvectors.
3529          CurArgOffset = VecArgOffset;
3530          VecArgOffset += 16;
3531        } else {
3532          // Vectors are aligned.
3533          ArgOffset = ((ArgOffset+15)/16)*16;
3534          CurArgOffset = ArgOffset;
3535          ArgOffset += 16;
3536        }
3537        needsLoad = true;
3538      }
3539      break;
3540    }
3541
3542    // We need to load the argument to a virtual register if we determined above
3543    // that we ran out of physical registers of the appropriate type.
3544    if (needsLoad) {
3545      int FI = MFI->CreateFixedObject(ObjSize,
3546                                      CurArgOffset + (ArgSize - ObjSize),
3547                                      isImmutable);
3548      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3549      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3550                           false, false, false, 0);
3551    }
3552
3553    InVals.push_back(ArgVal);
3554  }
3555
3556  // Allow for Altivec parameters at the end, if needed.
3557  if (nAltivecParamsAtEnd) {
3558    MinReservedArea = ((MinReservedArea+15)/16)*16;
3559    MinReservedArea += 16*nAltivecParamsAtEnd;
3560  }
3561
3562  // Area that is at least reserved in the caller of this function.
3563  MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
3564
3565  // Set the size that is at least reserved in caller of this function.  Tail
3566  // call optimized functions' reserved stack space needs to be aligned so that
3567  // taking the difference between two stack areas will result in an aligned
3568  // stack.
3569  MinReservedArea =
3570      EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3571  FuncInfo->setMinReservedArea(MinReservedArea);
3572
3573  // If the function takes variable number of arguments, make a frame index for
3574  // the start of the first vararg value... for expansion of llvm.va_start.
3575  if (isVarArg) {
3576    int Depth = ArgOffset;
3577
3578    FuncInfo->setVarArgsFrameIndex(
3579      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
3580                             Depth, true));
3581    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3582
3583    // If this function is vararg, store any remaining integer argument regs
3584    // to their spots on the stack so that they may be loaded by deferencing the
3585    // result of va_next.
3586    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
3587      unsigned VReg;
3588
3589      if (isPPC64)
3590        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3591      else
3592        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3593
3594      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3595      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3596                                   MachinePointerInfo(), false, false, 0);
3597      MemOps.push_back(Store);
3598      // Increment the address by four for the next argument to store
3599      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
3600      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3601    }
3602  }
3603
3604  if (!MemOps.empty())
3605    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3606
3607  return Chain;
3608}
3609
3610/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
3611/// adjusted to accommodate the arguments for the tailcall.
3612static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
3613                                   unsigned ParamSize) {
3614
3615  if (!isTailCall) return 0;
3616
3617  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
3618  unsigned CallerMinReservedArea = FI->getMinReservedArea();
3619  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
3620  // Remember only if the new adjustement is bigger.
3621  if (SPDiff < FI->getTailCallSPDelta())
3622    FI->setTailCallSPDelta(SPDiff);
3623
3624  return SPDiff;
3625}
3626
3627/// IsEligibleForTailCallOptimization - Check whether the call is eligible
3628/// for tail call optimization. Targets which want to do tail call
3629/// optimization should implement this function.
3630bool
3631PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3632                                                     CallingConv::ID CalleeCC,
3633                                                     bool isVarArg,
3634                                      const SmallVectorImpl<ISD::InputArg> &Ins,
3635                                                     SelectionDAG& DAG) const {
3636  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
3637    return false;
3638
3639  // Variable argument functions are not supported.
3640  if (isVarArg)
3641    return false;
3642
3643  MachineFunction &MF = DAG.getMachineFunction();
3644  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
3645  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
3646    // Functions containing by val parameters are not supported.
3647    for (unsigned i = 0; i != Ins.size(); i++) {
3648       ISD::ArgFlagsTy Flags = Ins[i].Flags;
3649       if (Flags.isByVal()) return false;
3650    }
3651
3652    // Non-PIC/GOT tail calls are supported.
3653    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
3654      return true;
3655
3656    // At the moment we can only do local tail calls (in same module, hidden
3657    // or protected) if we are generating PIC.
3658    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3659      return G->getGlobal()->hasHiddenVisibility()
3660          || G->getGlobal()->hasProtectedVisibility();
3661  }
3662
3663  return false;
3664}
3665
3666/// isCallCompatibleAddress - Return the immediate to use if the specified
3667/// 32-bit value is representable in the immediate field of a BxA instruction.
3668static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
3669  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3670  if (!C) return nullptr;
3671
3672  int Addr = C->getZExtValue();
3673  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
3674      SignExtend32<26>(Addr) != Addr)
3675    return nullptr;  // Top 6 bits have to be sext of immediate.
3676
3677  return DAG.getConstant((int)C->getZExtValue() >> 2,
3678                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
3679}
3680
3681namespace {
3682
3683struct TailCallArgumentInfo {
3684  SDValue Arg;
3685  SDValue FrameIdxOp;
3686  int       FrameIdx;
3687
3688  TailCallArgumentInfo() : FrameIdx(0) {}
3689};
3690
3691}
3692
3693/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
3694static void
3695StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
3696                                           SDValue Chain,
3697                   const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
3698                   SmallVectorImpl<SDValue> &MemOpChains,
3699                   SDLoc dl) {
3700  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
3701    SDValue Arg = TailCallArgs[i].Arg;
3702    SDValue FIN = TailCallArgs[i].FrameIdxOp;
3703    int FI = TailCallArgs[i].FrameIdx;
3704    // Store relative to framepointer.
3705    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
3706                                       MachinePointerInfo::getFixedStack(FI),
3707                                       false, false, 0));
3708  }
3709}
3710
3711/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
3712/// the appropriate stack slot for the tail call optimized function call.
3713static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
3714                                               MachineFunction &MF,
3715                                               SDValue Chain,
3716                                               SDValue OldRetAddr,
3717                                               SDValue OldFP,
3718                                               int SPDiff,
3719                                               bool isPPC64,
3720                                               bool isDarwinABI,
3721                                               SDLoc dl) {
3722  if (SPDiff) {
3723    // Calculate the new stack slot for the return address.
3724    int SlotSize = isPPC64 ? 8 : 4;
3725    const PPCFrameLowering *FL =
3726        MF.getSubtarget<PPCSubtarget>().getFrameLowering();
3727    int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
3728    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3729                                                          NewRetAddrLoc, true);
3730    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3731    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
3732    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
3733                         MachinePointerInfo::getFixedStack(NewRetAddr),
3734                         false, false, 0);
3735
3736    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
3737    // slot as the FP is never overwritten.
3738    if (isDarwinABI) {
3739      int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
3740      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
3741                                                          true);
3742      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
3743      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
3744                           MachinePointerInfo::getFixedStack(NewFPIdx),
3745                           false, false, 0);
3746    }
3747  }
3748  return Chain;
3749}
3750
3751/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
3752/// the position of the argument.
3753static void
3754CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
3755                         SDValue Arg, int SPDiff, unsigned ArgOffset,
3756                     SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
3757  int Offset = ArgOffset + SPDiff;
3758  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
3759  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3760  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3761  SDValue FIN = DAG.getFrameIndex(FI, VT);
3762  TailCallArgumentInfo Info;
3763  Info.Arg = Arg;
3764  Info.FrameIdxOp = FIN;
3765  Info.FrameIdx = FI;
3766  TailCallArguments.push_back(Info);
3767}
3768
3769/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
3770/// stack slot. Returns the chain as result and the loaded frame pointers in
3771/// LROpOut/FPOpout. Used when tail calling.
3772SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
3773                                                        int SPDiff,
3774                                                        SDValue Chain,
3775                                                        SDValue &LROpOut,
3776                                                        SDValue &FPOpOut,
3777                                                        bool isDarwinABI,
3778                                                        SDLoc dl) const {
3779  if (SPDiff) {
3780    // Load the LR and FP stack slot for later adjusting.
3781    EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
3782    LROpOut = getReturnAddrFrameIndex(DAG);
3783    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
3784                          false, false, false, 0);
3785    Chain = SDValue(LROpOut.getNode(), 1);
3786
3787    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
3788    // slot as the FP is never overwritten.
3789    if (isDarwinABI) {
3790      FPOpOut = getFramePointerFrameIndex(DAG);
3791      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
3792                            false, false, false, 0);
3793      Chain = SDValue(FPOpOut.getNode(), 1);
3794    }
3795  }
3796  return Chain;
3797}
3798
3799/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
3800/// by "Src" to address "Dst" of size "Size".  Alignment information is
3801/// specified by the specific parameter attribute. The copy will be passed as
3802/// a byval function parameter.
3803/// Sometimes what we are copying is the end of a larger object, the part that
3804/// does not fit in registers.
3805static SDValue
3806CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
3807                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
3808                          SDLoc dl) {
3809  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
3810  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
3811                       false, false, false, MachinePointerInfo(),
3812                       MachinePointerInfo());
3813}
3814
3815/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
3816/// tail calls.
3817static void
3818LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
3819                 SDValue Arg, SDValue PtrOff, int SPDiff,
3820                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
3821                 bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
3822                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
3823                 SDLoc dl) {
3824  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3825  if (!isTailCall) {
3826    if (isVector) {
3827      SDValue StackPtr;
3828      if (isPPC64)
3829        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3830      else
3831        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3832      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3833                           DAG.getConstant(ArgOffset, PtrVT));
3834    }
3835    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3836                                       MachinePointerInfo(), false, false, 0));
3837  // Calculate and remember argument location.
3838  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
3839                                  TailCallArguments);
3840}
3841
3842static
3843void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
3844                     SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
3845                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
3846                     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
3847  MachineFunction &MF = DAG.getMachineFunction();
3848
3849  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
3850  // might overwrite each other in case of tail call optimization.
3851  SmallVector<SDValue, 8> MemOpChains2;
3852  // Do not flag preceding copytoreg stuff together with the following stuff.
3853  InFlag = SDValue();
3854  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
3855                                    MemOpChains2, dl);
3856  if (!MemOpChains2.empty())
3857    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
3858
3859  // Store the return address to the appropriate stack slot.
3860  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
3861                                        isPPC64, isDarwinABI, dl);
3862
3863  // Emit callseq_end just before tailcall node.
3864  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3865                             DAG.getIntPtrConstant(0, true), InFlag, dl);
3866  InFlag = Chain.getValue(1);
3867}
3868
3869// Is this global address that of a function that can be called by name? (as
3870// opposed to something that must hold a descriptor for an indirect call).
3871static bool isFunctionGlobalAddress(SDValue Callee) {
3872  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3873    if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
3874        Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
3875      return false;
3876
3877    return G->getGlobal()->getType()->getElementType()->isFunctionTy();
3878  }
3879
3880  return false;
3881}
3882
3883static
3884unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
3885                     SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff,
3886                     bool isTailCall, bool IsPatchPoint,
3887                     SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
3888                     SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
3889                     ImmutableCallSite *CS, const PPCSubtarget &Subtarget) {
3890
3891  bool isPPC64 = Subtarget.isPPC64();
3892  bool isSVR4ABI = Subtarget.isSVR4ABI();
3893  bool isELFv2ABI = Subtarget.isELFv2ABI();
3894
3895  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3896  NodeTys.push_back(MVT::Other);   // Returns a chain
3897  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
3898
3899  unsigned CallOpc = PPCISD::CALL;
3900
3901  bool needIndirectCall = true;
3902  if (!isSVR4ABI || !isPPC64)
3903    if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
3904      // If this is an absolute destination address, use the munged value.
3905      Callee = SDValue(Dest, 0);
3906      needIndirectCall = false;
3907    }
3908
3909  if (isFunctionGlobalAddress(Callee)) {
3910    GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
3911    // A call to a TLS address is actually an indirect call to a
3912    // thread-specific pointer.
3913    unsigned OpFlags = 0;
3914    if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
3915         (Subtarget.getTargetTriple().isMacOSX() &&
3916          Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
3917         (G->getGlobal()->isDeclaration() ||
3918          G->getGlobal()->isWeakForLinker())) ||
3919        (Subtarget.isTargetELF() && !isPPC64 &&
3920         !G->getGlobal()->hasLocalLinkage() &&
3921         DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
3922      // PC-relative references to external symbols should go through $stub,
3923      // unless we're building with the leopard linker or later, which
3924      // automatically synthesizes these stubs.
3925      OpFlags = PPCII::MO_PLT_OR_STUB;
3926    }
3927
3928    // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
3929    // every direct call is) turn it into a TargetGlobalAddress /
3930    // TargetExternalSymbol node so that legalize doesn't hack it.
3931    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3932                                        Callee.getValueType(), 0, OpFlags);
3933    needIndirectCall = false;
3934  }
3935
3936  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3937    unsigned char OpFlags = 0;
3938
3939    if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
3940         (Subtarget.getTargetTriple().isMacOSX() &&
3941          Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) ||
3942        (Subtarget.isTargetELF() && !isPPC64 &&
3943         DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
3944      // PC-relative references to external symbols should go through $stub,
3945      // unless we're building with the leopard linker or later, which
3946      // automatically synthesizes these stubs.
3947      OpFlags = PPCII::MO_PLT_OR_STUB;
3948    }
3949
3950    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
3951                                         OpFlags);
3952    needIndirectCall = false;
3953  }
3954
3955  if (IsPatchPoint) {
3956    // We'll form an invalid direct call when lowering a patchpoint; the full
3957    // sequence for an indirect call is complicated, and many of the
3958    // instructions introduced might have side effects (and, thus, can't be
3959    // removed later). The call itself will be removed as soon as the
3960    // argument/return lowering is complete, so the fact that it has the wrong
3961    // kind of operands should not really matter.
3962    needIndirectCall = false;
3963  }
3964
3965  if (needIndirectCall) {
3966    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
3967    // to do the call, we can't use PPCISD::CALL.
3968    SDValue MTCTROps[] = {Chain, Callee, InFlag};
3969
3970    if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
3971      // Function pointers in the 64-bit SVR4 ABI do not point to the function
3972      // entry point, but to the function descriptor (the function entry point
3973      // address is part of the function descriptor though).
3974      // The function descriptor is a three doubleword structure with the
3975      // following fields: function entry point, TOC base address and
3976      // environment pointer.
3977      // Thus for a call through a function pointer, the following actions need
3978      // to be performed:
3979      //   1. Save the TOC of the caller in the TOC save area of its stack
3980      //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
3981      //   2. Load the address of the function entry point from the function
3982      //      descriptor.
3983      //   3. Load the TOC of the callee from the function descriptor into r2.
3984      //   4. Load the environment pointer from the function descriptor into
3985      //      r11.
3986      //   5. Branch to the function entry point address.
3987      //   6. On return of the callee, the TOC of the caller needs to be
3988      //      restored (this is done in FinishCall()).
3989      //
3990      // The loads are scheduled at the beginning of the call sequence, and the
3991      // register copies are flagged together to ensure that no other
3992      // operations can be scheduled in between. E.g. without flagging the
3993      // copies together, a TOC access in the caller could be scheduled between
3994      // the assignment of the callee TOC and the branch to the callee, which
3995      // results in the TOC access going through the TOC of the callee instead
3996      // of going through the TOC of the caller, which leads to incorrect code.
3997
3998      // Load the address of the function entry point from the function
3999      // descriptor.
4000      SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4001      if (LDChain.getValueType() == MVT::Glue)
4002        LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4003
4004      bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors();
4005
4006      MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr);
4007      SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4008                                        false, false, LoadsInv, 8);
4009
4010      // Load environment pointer into r11.
4011      SDValue PtrOff = DAG.getIntPtrConstant(16);
4012      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4013      SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr,
4014                                       MPI.getWithOffset(16), false, false,
4015                                       LoadsInv, 8);
4016
4017      SDValue TOCOff = DAG.getIntPtrConstant(8);
4018      SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4019      SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC,
4020                                   MPI.getWithOffset(8), false, false,
4021                                   LoadsInv, 8);
4022
4023      setUsesTOCBasePtr(DAG);
4024      SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4025                                        InFlag);
4026      Chain = TOCVal.getValue(0);
4027      InFlag = TOCVal.getValue(1);
4028
4029      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4030                                        InFlag);
4031
4032      Chain = EnvVal.getValue(0);
4033      InFlag = EnvVal.getValue(1);
4034
4035      MTCTROps[0] = Chain;
4036      MTCTROps[1] = LoadFuncPtr;
4037      MTCTROps[2] = InFlag;
4038    }
4039
4040    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4041                        makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4042    InFlag = Chain.getValue(1);
4043
4044    NodeTys.clear();
4045    NodeTys.push_back(MVT::Other);
4046    NodeTys.push_back(MVT::Glue);
4047    Ops.push_back(Chain);
4048    CallOpc = PPCISD::BCTRL;
4049    Callee.setNode(nullptr);
4050    // Add use of X11 (holding environment pointer)
4051    if (isSVR4ABI && isPPC64 && !isELFv2ABI)
4052      Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4053    // Add CTR register as callee so a bctr can be emitted later.
4054    if (isTailCall)
4055      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4056  }
4057
4058  // If this is a direct call, pass the chain and the callee.
4059  if (Callee.getNode()) {
4060    Ops.push_back(Chain);
4061    Ops.push_back(Callee);
4062  }
4063  // If this is a tail call add stack pointer delta.
4064  if (isTailCall)
4065    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
4066
4067  // Add argument registers to the end of the list so that they are known live
4068  // into the call.
4069  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
4070    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
4071                                  RegsToPass[i].second.getValueType()));
4072
4073  // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
4074  // into the call.
4075  if (isSVR4ABI && isPPC64 && !IsPatchPoint) {
4076    setUsesTOCBasePtr(DAG);
4077    Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
4078  }
4079
4080  return CallOpc;
4081}
4082
4083static
4084bool isLocalCall(const SDValue &Callee)
4085{
4086  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4087    return !G->getGlobal()->isDeclaration() &&
4088           !G->getGlobal()->isWeakForLinker();
4089  return false;
4090}
4091
4092SDValue
4093PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
4094                                   CallingConv::ID CallConv, bool isVarArg,
4095                                   const SmallVectorImpl<ISD::InputArg> &Ins,
4096                                   SDLoc dl, SelectionDAG &DAG,
4097                                   SmallVectorImpl<SDValue> &InVals) const {
4098
4099  SmallVector<CCValAssign, 16> RVLocs;
4100  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4101                    *DAG.getContext());
4102  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
4103
4104  // Copy all of the result registers out of their specified physreg.
4105  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4106    CCValAssign &VA = RVLocs[i];
4107    assert(VA.isRegLoc() && "Can only return in registers!");
4108
4109    SDValue Val = DAG.getCopyFromReg(Chain, dl,
4110                                     VA.getLocReg(), VA.getLocVT(), InFlag);
4111    Chain = Val.getValue(1);
4112    InFlag = Val.getValue(2);
4113
4114    switch (VA.getLocInfo()) {
4115    default: llvm_unreachable("Unknown loc info!");
4116    case CCValAssign::Full: break;
4117    case CCValAssign::AExt:
4118      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4119      break;
4120    case CCValAssign::ZExt:
4121      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4122                        DAG.getValueType(VA.getValVT()));
4123      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4124      break;
4125    case CCValAssign::SExt:
4126      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4127                        DAG.getValueType(VA.getValVT()));
4128      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4129      break;
4130    }
4131
4132    InVals.push_back(Val);
4133  }
4134
4135  return Chain;
4136}
4137
4138SDValue
4139PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
4140                              bool isTailCall, bool isVarArg, bool IsPatchPoint,
4141                              SelectionDAG &DAG,
4142                              SmallVector<std::pair<unsigned, SDValue>, 8>
4143                                &RegsToPass,
4144                              SDValue InFlag, SDValue Chain,
4145                              SDValue CallSeqStart, SDValue &Callee,
4146                              int SPDiff, unsigned NumBytes,
4147                              const SmallVectorImpl<ISD::InputArg> &Ins,
4148                              SmallVectorImpl<SDValue> &InVals,
4149                              ImmutableCallSite *CS) const {
4150
4151  std::vector<EVT> NodeTys;
4152  SmallVector<SDValue, 8> Ops;
4153  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
4154                                 SPDiff, isTailCall, IsPatchPoint, RegsToPass,
4155                                 Ops, NodeTys, CS, Subtarget);
4156
4157  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
4158  if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
4159    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
4160
4161  // When performing tail call optimization the callee pops its arguments off
4162  // the stack. Account for this here so these bytes can be pushed back on in
4163  // PPCFrameLowering::eliminateCallFramePseudoInstr.
4164  int BytesCalleePops =
4165    (CallConv == CallingConv::Fast &&
4166     getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
4167
4168  // Add a register mask operand representing the call-preserved registers.
4169  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
4170  const uint32_t *Mask =
4171      TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
4172  assert(Mask && "Missing call preserved mask for calling convention");
4173  Ops.push_back(DAG.getRegisterMask(Mask));
4174
4175  if (InFlag.getNode())
4176    Ops.push_back(InFlag);
4177
4178  // Emit tail call.
4179  if (isTailCall) {
4180    assert(((Callee.getOpcode() == ISD::Register &&
4181             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
4182            Callee.getOpcode() == ISD::TargetExternalSymbol ||
4183            Callee.getOpcode() == ISD::TargetGlobalAddress ||
4184            isa<ConstantSDNode>(Callee)) &&
4185    "Expecting an global address, external symbol, absolute value or register");
4186
4187    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
4188  }
4189
4190  // Add a NOP immediately after the branch instruction when using the 64-bit
4191  // SVR4 ABI. At link time, if caller and callee are in a different module and
4192  // thus have a different TOC, the call will be replaced with a call to a stub
4193  // function which saves the current TOC, loads the TOC of the callee and
4194  // branches to the callee. The NOP will be replaced with a load instruction
4195  // which restores the TOC of the caller from the TOC save slot of the current
4196  // stack frame. If caller and callee belong to the same module (and have the
4197  // same TOC), the NOP will remain unchanged.
4198
4199  if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
4200      !IsPatchPoint) {
4201    if (CallOpc == PPCISD::BCTRL) {
4202      // This is a call through a function pointer.
4203      // Restore the caller TOC from the save area into R2.
4204      // See PrepareCall() for more information about calls through function
4205      // pointers in the 64-bit SVR4 ABI.
4206      // We are using a target-specific load with r2 hard coded, because the
4207      // result of a target-independent load would never go directly into r2,
4208      // since r2 is a reserved register (which prevents the register allocator
4209      // from allocating it), resulting in an additional register being
4210      // allocated and an unnecessary move instruction being generated.
4211      CallOpc = PPCISD::BCTRL_LOAD_TOC;
4212
4213      EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4214      SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
4215      unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
4216      SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset);
4217      SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
4218
4219      // The address needs to go after the chain input but before the flag (or
4220      // any other variadic arguments).
4221      Ops.insert(std::next(Ops.begin()), AddTOC);
4222    } else if ((CallOpc == PPCISD::CALL) &&
4223               (!isLocalCall(Callee) ||
4224                DAG.getTarget().getRelocationModel() == Reloc::PIC_))
4225      // Otherwise insert NOP for non-local calls.
4226      CallOpc = PPCISD::CALL_NOP;
4227  }
4228
4229  Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
4230  InFlag = Chain.getValue(1);
4231
4232  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
4233                             DAG.getIntPtrConstant(BytesCalleePops, true),
4234                             InFlag, dl);
4235  if (!Ins.empty())
4236    InFlag = Chain.getValue(1);
4237
4238  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
4239                         Ins, dl, DAG, InVals);
4240}
4241
4242SDValue
4243PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
4244                             SmallVectorImpl<SDValue> &InVals) const {
4245  SelectionDAG &DAG                     = CLI.DAG;
4246  SDLoc &dl                             = CLI.DL;
4247  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
4248  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
4249  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
4250  SDValue Chain                         = CLI.Chain;
4251  SDValue Callee                        = CLI.Callee;
4252  bool &isTailCall                      = CLI.IsTailCall;
4253  CallingConv::ID CallConv              = CLI.CallConv;
4254  bool isVarArg                         = CLI.IsVarArg;
4255  bool IsPatchPoint                     = CLI.IsPatchPoint;
4256  ImmutableCallSite *CS                 = CLI.CS;
4257
4258  if (isTailCall)
4259    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
4260                                                   Ins, DAG);
4261
4262  if (!isTailCall && CS && CS->isMustTailCall())
4263    report_fatal_error("failed to perform tail call elimination on a call "
4264                       "site marked musttail");
4265
4266  if (Subtarget.isSVR4ABI()) {
4267    if (Subtarget.isPPC64())
4268      return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
4269                              isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4270                              dl, DAG, InVals, CS);
4271    else
4272      return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
4273                              isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4274                              dl, DAG, InVals, CS);
4275  }
4276
4277  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
4278                          isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4279                          dl, DAG, InVals, CS);
4280}
4281
4282SDValue
4283PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
4284                                    CallingConv::ID CallConv, bool isVarArg,
4285                                    bool isTailCall, bool IsPatchPoint,
4286                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
4287                                    const SmallVectorImpl<SDValue> &OutVals,
4288                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4289                                    SDLoc dl, SelectionDAG &DAG,
4290                                    SmallVectorImpl<SDValue> &InVals,
4291                                    ImmutableCallSite *CS) const {
4292  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
4293  // of the 32-bit SVR4 ABI stack frame layout.
4294
4295  assert((CallConv == CallingConv::C ||
4296          CallConv == CallingConv::Fast) && "Unknown calling convention!");
4297
4298  unsigned PtrByteSize = 4;
4299
4300  MachineFunction &MF = DAG.getMachineFunction();
4301
4302  // Mark this function as potentially containing a function that contains a
4303  // tail call. As a consequence the frame pointer will be used for dynamicalloc
4304  // and restoring the callers stack pointer in this functions epilog. This is
4305  // done because by tail calling the called function might overwrite the value
4306  // in this function's (MF) stack pointer stack slot 0(SP).
4307  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4308      CallConv == CallingConv::Fast)
4309    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4310
4311  // Count how many bytes are to be pushed on the stack, including the linkage
4312  // area, parameter list area and the part of the local variable space which
4313  // contains copies of aggregates which are passed by value.
4314
4315  // Assign locations to all of the outgoing arguments.
4316  SmallVector<CCValAssign, 16> ArgLocs;
4317  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4318                 *DAG.getContext());
4319
4320  // Reserve space for the linkage area on the stack.
4321  CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
4322                       PtrByteSize);
4323
4324  if (isVarArg) {
4325    // Handle fixed and variable vector arguments differently.
4326    // Fixed vector arguments go into registers as long as registers are
4327    // available. Variable vector arguments always go into memory.
4328    unsigned NumArgs = Outs.size();
4329
4330    for (unsigned i = 0; i != NumArgs; ++i) {
4331      MVT ArgVT = Outs[i].VT;
4332      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
4333      bool Result;
4334
4335      if (Outs[i].IsFixed) {
4336        Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
4337                               CCInfo);
4338      } else {
4339        Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
4340                                      ArgFlags, CCInfo);
4341      }
4342
4343      if (Result) {
4344#ifndef NDEBUG
4345        errs() << "Call operand #" << i << " has unhandled type "
4346             << EVT(ArgVT).getEVTString() << "\n";
4347#endif
4348        llvm_unreachable(nullptr);
4349      }
4350    }
4351  } else {
4352    // All arguments are treated the same.
4353    CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
4354  }
4355
4356  // Assign locations to all of the outgoing aggregate by value arguments.
4357  SmallVector<CCValAssign, 16> ByValArgLocs;
4358  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4359                      ByValArgLocs, *DAG.getContext());
4360
4361  // Reserve stack space for the allocations in CCInfo.
4362  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
4363
4364  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
4365
4366  // Size of the linkage area, parameter list area and the part of the local
4367  // space variable where copies of aggregates which are passed by value are
4368  // stored.
4369  unsigned NumBytes = CCByValInfo.getNextStackOffset();
4370
4371  // Calculate by how many bytes the stack has to be adjusted in case of tail
4372  // call optimization.
4373  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4374
4375  // Adjust the stack pointer for the new arguments...
4376  // These operations are automatically eliminated by the prolog/epilog pass
4377  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
4378                               dl);
4379  SDValue CallSeqStart = Chain;
4380
4381  // Load the return address and frame pointer so it can be moved somewhere else
4382  // later.
4383  SDValue LROp, FPOp;
4384  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
4385                                       dl);
4386
4387  // Set up a copy of the stack pointer for use loading and storing any
4388  // arguments that may not fit in the registers available for argument
4389  // passing.
4390  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4391
4392  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4393  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4394  SmallVector<SDValue, 8> MemOpChains;
4395
4396  bool seenFloatArg = false;
4397  // Walk the register/memloc assignments, inserting copies/loads.
4398  for (unsigned i = 0, j = 0, e = ArgLocs.size();
4399       i != e;
4400       ++i) {
4401    CCValAssign &VA = ArgLocs[i];
4402    SDValue Arg = OutVals[i];
4403    ISD::ArgFlagsTy Flags = Outs[i].Flags;
4404
4405    if (Flags.isByVal()) {
4406      // Argument is an aggregate which is passed by value, thus we need to
4407      // create a copy of it in the local variable space of the current stack
4408      // frame (which is the stack frame of the caller) and pass the address of
4409      // this copy to the callee.
4410      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
4411      CCValAssign &ByValVA = ByValArgLocs[j++];
4412      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
4413
4414      // Memory reserved in the local variable space of the callers stack frame.
4415      unsigned LocMemOffset = ByValVA.getLocMemOffset();
4416
4417      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
4418      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
4419
4420      // Create a copy of the argument in the local area of the current
4421      // stack frame.
4422      SDValue MemcpyCall =
4423        CreateCopyOfByValArgument(Arg, PtrOff,
4424                                  CallSeqStart.getNode()->getOperand(0),
4425                                  Flags, DAG, dl);
4426
4427      // This must go outside the CALLSEQ_START..END.
4428      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4429                           CallSeqStart.getNode()->getOperand(1),
4430                           SDLoc(MemcpyCall));
4431      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4432                             NewCallSeqStart.getNode());
4433      Chain = CallSeqStart = NewCallSeqStart;
4434
4435      // Pass the address of the aggregate copy on the stack either in a
4436      // physical register or in the parameter list area of the current stack
4437      // frame to the callee.
4438      Arg = PtrOff;
4439    }
4440
4441    if (VA.isRegLoc()) {
4442      if (Arg.getValueType() == MVT::i1)
4443        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
4444
4445      seenFloatArg |= VA.getLocVT().isFloatingPoint();
4446      // Put argument in a physical register.
4447      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
4448    } else {
4449      // Put argument in the parameter list area of the current stack frame.
4450      assert(VA.isMemLoc());
4451      unsigned LocMemOffset = VA.getLocMemOffset();
4452
4453      if (!isTailCall) {
4454        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
4455        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
4456
4457        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
4458                                           MachinePointerInfo(),
4459                                           false, false, 0));
4460      } else {
4461        // Calculate and remember argument location.
4462        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
4463                                 TailCallArguments);
4464      }
4465    }
4466  }
4467
4468  if (!MemOpChains.empty())
4469    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
4470
4471  // Build a sequence of copy-to-reg nodes chained together with token chain
4472  // and flag operands which copy the outgoing args into the appropriate regs.
4473  SDValue InFlag;
4474  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4475    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4476                             RegsToPass[i].second, InFlag);
4477    InFlag = Chain.getValue(1);
4478  }
4479
4480  // Set CR bit 6 to true if this is a vararg call with floating args passed in
4481  // registers.
4482  if (isVarArg) {
4483    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
4484    SDValue Ops[] = { Chain, InFlag };
4485
4486    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
4487                        dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
4488
4489    InFlag = Chain.getValue(1);
4490  }
4491
4492  if (isTailCall)
4493    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
4494                    false, TailCallArguments);
4495
4496  return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG,
4497                    RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
4498                    NumBytes, Ins, InVals, CS);
4499}
4500
4501// Copy an argument into memory, being careful to do this outside the
4502// call sequence for the call to which the argument belongs.
4503SDValue
4504PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
4505                                              SDValue CallSeqStart,
4506                                              ISD::ArgFlagsTy Flags,
4507                                              SelectionDAG &DAG,
4508                                              SDLoc dl) const {
4509  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
4510                        CallSeqStart.getNode()->getOperand(0),
4511                        Flags, DAG, dl);
4512  // The MEMCPY must go outside the CALLSEQ_START..END.
4513  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4514                             CallSeqStart.getNode()->getOperand(1),
4515                             SDLoc(MemcpyCall));
4516  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4517                         NewCallSeqStart.getNode());
4518  return NewCallSeqStart;
4519}
4520
4521SDValue
4522PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
4523                                    CallingConv::ID CallConv, bool isVarArg,
4524                                    bool isTailCall, bool IsPatchPoint,
4525                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
4526                                    const SmallVectorImpl<SDValue> &OutVals,
4527                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4528                                    SDLoc dl, SelectionDAG &DAG,
4529                                    SmallVectorImpl<SDValue> &InVals,
4530                                    ImmutableCallSite *CS) const {
4531
4532  bool isELFv2ABI = Subtarget.isELFv2ABI();
4533  bool isLittleEndian = Subtarget.isLittleEndian();
4534  unsigned NumOps = Outs.size();
4535
4536  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4537  unsigned PtrByteSize = 8;
4538
4539  MachineFunction &MF = DAG.getMachineFunction();
4540
4541  // Mark this function as potentially containing a function that contains a
4542  // tail call. As a consequence the frame pointer will be used for dynamicalloc
4543  // and restoring the callers stack pointer in this functions epilog. This is
4544  // done because by tail calling the called function might overwrite the value
4545  // in this function's (MF) stack pointer stack slot 0(SP).
4546  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4547      CallConv == CallingConv::Fast)
4548    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4549
4550  assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4551         "fastcc not supported on varargs functions");
4552
4553  // Count how many bytes are to be pushed on the stack, including the linkage
4554  // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
4555  // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
4556  // area is 32 bytes reserved space for [SP][CR][LR][TOC].
4557  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4558  unsigned NumBytes = LinkageSize;
4559  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4560  unsigned &QFPR_idx = FPR_idx;
4561
4562  static const MCPhysReg GPR[] = {
4563    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4564    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4565  };
4566  static const MCPhysReg VR[] = {
4567    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4568    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4569  };
4570  static const MCPhysReg VSRH[] = {
4571    PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
4572    PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
4573  };
4574
4575  const unsigned NumGPRs = array_lengthof(GPR);
4576  const unsigned NumFPRs = 13;
4577  const unsigned NumVRs  = array_lengthof(VR);
4578  const unsigned NumQFPRs = NumFPRs;
4579
4580  // When using the fast calling convention, we don't provide backing for
4581  // arguments that will be in registers.
4582  unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
4583
4584  // Add up all the space actually used.
4585  for (unsigned i = 0; i != NumOps; ++i) {
4586    ISD::ArgFlagsTy Flags = Outs[i].Flags;
4587    EVT ArgVT = Outs[i].VT;
4588    EVT OrigVT = Outs[i].ArgVT;
4589
4590    if (CallConv == CallingConv::Fast) {
4591      if (Flags.isByVal())
4592        NumGPRsUsed += (Flags.getByValSize()+7)/8;
4593      else
4594        switch (ArgVT.getSimpleVT().SimpleTy) {
4595        default: llvm_unreachable("Unexpected ValueType for argument!");
4596        case MVT::i1:
4597        case MVT::i32:
4598        case MVT::i64:
4599          if (++NumGPRsUsed <= NumGPRs)
4600            continue;
4601          break;
4602        case MVT::v4i32:
4603        case MVT::v8i16:
4604        case MVT::v16i8:
4605        case MVT::v2f64:
4606        case MVT::v2i64:
4607          if (++NumVRsUsed <= NumVRs)
4608            continue;
4609          break;
4610        case MVT::v4f32:
4611	  // When using QPX, this is handled like a FP register, otherwise, it
4612	  // is an Altivec register.
4613          if (Subtarget.hasQPX()) {
4614            if (++NumFPRsUsed <= NumFPRs)
4615              continue;
4616          } else {
4617            if (++NumVRsUsed <= NumVRs)
4618              continue;
4619          }
4620          break;
4621        case MVT::f32:
4622        case MVT::f64:
4623        case MVT::v4f64: // QPX
4624        case MVT::v4i1:  // QPX
4625          if (++NumFPRsUsed <= NumFPRs)
4626            continue;
4627          break;
4628        }
4629    }
4630
4631    /* Respect alignment of argument on the stack.  */
4632    unsigned Align =
4633      CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
4634    NumBytes = ((NumBytes + Align - 1) / Align) * Align;
4635
4636    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
4637    if (Flags.isInConsecutiveRegsLast())
4638      NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4639  }
4640
4641  unsigned NumBytesActuallyUsed = NumBytes;
4642
4643  // The prolog code of the callee may store up to 8 GPR argument registers to
4644  // the stack, allowing va_start to index over them in memory if its varargs.
4645  // Because we cannot tell if this is needed on the caller side, we have to
4646  // conservatively assume that it is needed.  As such, make sure we have at
4647  // least enough stack space for the caller to store the 8 GPRs.
4648  // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
4649  NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
4650
4651  // Tail call needs the stack to be aligned.
4652  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4653      CallConv == CallingConv::Fast)
4654    NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
4655
4656  // Calculate by how many bytes the stack has to be adjusted in case of tail
4657  // call optimization.
4658  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4659
4660  // To protect arguments on the stack from being clobbered in a tail call,
4661  // force all the loads to happen before doing any other lowering.
4662  if (isTailCall)
4663    Chain = DAG.getStackArgumentTokenFactor(Chain);
4664
4665  // Adjust the stack pointer for the new arguments...
4666  // These operations are automatically eliminated by the prolog/epilog pass
4667  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
4668                               dl);
4669  SDValue CallSeqStart = Chain;
4670
4671  // Load the return address and frame pointer so it can be move somewhere else
4672  // later.
4673  SDValue LROp, FPOp;
4674  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4675                                       dl);
4676
4677  // Set up a copy of the stack pointer for use loading and storing any
4678  // arguments that may not fit in the registers available for argument
4679  // passing.
4680  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4681
4682  // Figure out which arguments are going to go in registers, and which in
4683  // memory.  Also, if this is a vararg function, floating point operations
4684  // must be stored to our stack, and loaded into integer regs as well, if
4685  // any integer regs are available for argument passing.
4686  unsigned ArgOffset = LinkageSize;
4687
4688  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4689  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4690
4691  SmallVector<SDValue, 8> MemOpChains;
4692  for (unsigned i = 0; i != NumOps; ++i) {
4693    SDValue Arg = OutVals[i];
4694    ISD::ArgFlagsTy Flags = Outs[i].Flags;
4695    EVT ArgVT = Outs[i].VT;
4696    EVT OrigVT = Outs[i].ArgVT;
4697
4698    // PtrOff will be used to store the current argument to the stack if a
4699    // register cannot be found for it.
4700    SDValue PtrOff;
4701
4702    // We re-align the argument offset for each argument, except when using the
4703    // fast calling convention, when we need to make sure we do that only when
4704    // we'll actually use a stack slot.
4705    auto ComputePtrOff = [&]() {
4706      /* Respect alignment of argument on the stack.  */
4707      unsigned Align =
4708        CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
4709      ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
4710
4711      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4712
4713      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4714    };
4715
4716    if (CallConv != CallingConv::Fast) {
4717      ComputePtrOff();
4718
4719      /* Compute GPR index associated with argument offset.  */
4720      GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4721      GPR_idx = std::min(GPR_idx, NumGPRs);
4722    }
4723
4724    // Promote integers to 64-bit values.
4725    if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
4726      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4727      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4728      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4729    }
4730
4731    // FIXME memcpy is used way more than necessary.  Correctness first.
4732    // Note: "by value" is code for passing a structure by value, not
4733    // basic types.
4734    if (Flags.isByVal()) {
4735      // Note: Size includes alignment padding, so
4736      //   struct x { short a; char b; }
4737      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
4738      // These are the proper values we need for right-justifying the
4739      // aggregate in a parameter register.
4740      unsigned Size = Flags.getByValSize();
4741
4742      // An empty aggregate parameter takes up no storage and no
4743      // registers.
4744      if (Size == 0)
4745        continue;
4746
4747      if (CallConv == CallingConv::Fast)
4748        ComputePtrOff();
4749
4750      // All aggregates smaller than 8 bytes must be passed right-justified.
4751      if (Size==1 || Size==2 || Size==4) {
4752        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
4753        if (GPR_idx != NumGPRs) {
4754          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4755                                        MachinePointerInfo(), VT,
4756                                        false, false, false, 0);
4757          MemOpChains.push_back(Load.getValue(1));
4758          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4759
4760          ArgOffset += PtrByteSize;
4761          continue;
4762        }
4763      }
4764
4765      if (GPR_idx == NumGPRs && Size < 8) {
4766        SDValue AddPtr = PtrOff;
4767        if (!isLittleEndian) {
4768          SDValue Const = DAG.getConstant(PtrByteSize - Size,
4769                                          PtrOff.getValueType());
4770          AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4771        }
4772        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4773                                                          CallSeqStart,
4774                                                          Flags, DAG, dl);
4775        ArgOffset += PtrByteSize;
4776        continue;
4777      }
4778      // Copy entire object into memory.  There are cases where gcc-generated
4779      // code assumes it is there, even if it could be put entirely into
4780      // registers.  (This is not what the doc says.)
4781
4782      // FIXME: The above statement is likely due to a misunderstanding of the
4783      // documents.  All arguments must be copied into the parameter area BY
4784      // THE CALLEE in the event that the callee takes the address of any
4785      // formal argument.  That has not yet been implemented.  However, it is
4786      // reasonable to use the stack area as a staging area for the register
4787      // load.
4788
4789      // Skip this for small aggregates, as we will use the same slot for a
4790      // right-justified copy, below.
4791      if (Size >= 8)
4792        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4793                                                          CallSeqStart,
4794                                                          Flags, DAG, dl);
4795
4796      // When a register is available, pass a small aggregate right-justified.
4797      if (Size < 8 && GPR_idx != NumGPRs) {
4798        // The easiest way to get this right-justified in a register
4799        // is to copy the structure into the rightmost portion of a
4800        // local variable slot, then load the whole slot into the
4801        // register.
4802        // FIXME: The memcpy seems to produce pretty awful code for
4803        // small aggregates, particularly for packed ones.
4804        // FIXME: It would be preferable to use the slot in the
4805        // parameter save area instead of a new local variable.
4806        SDValue AddPtr = PtrOff;
4807        if (!isLittleEndian) {
4808          SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
4809          AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4810        }
4811        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4812                                                          CallSeqStart,
4813                                                          Flags, DAG, dl);
4814
4815        // Load the slot into the register.
4816        SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
4817                                   MachinePointerInfo(),
4818                                   false, false, false, 0);
4819        MemOpChains.push_back(Load.getValue(1));
4820        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4821
4822        // Done with this argument.
4823        ArgOffset += PtrByteSize;
4824        continue;
4825      }
4826
4827      // For aggregates larger than PtrByteSize, copy the pieces of the
4828      // object that fit into registers from the parameter save area.
4829      for (unsigned j=0; j<Size; j+=PtrByteSize) {
4830        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4831        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4832        if (GPR_idx != NumGPRs) {
4833          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4834                                     MachinePointerInfo(),
4835                                     false, false, false, 0);
4836          MemOpChains.push_back(Load.getValue(1));
4837          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4838          ArgOffset += PtrByteSize;
4839        } else {
4840          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4841          break;
4842        }
4843      }
4844      continue;
4845    }
4846
4847    switch (Arg.getSimpleValueType().SimpleTy) {
4848    default: llvm_unreachable("Unexpected ValueType for argument!");
4849    case MVT::i1:
4850    case MVT::i32:
4851    case MVT::i64:
4852      // These can be scalar arguments or elements of an integer array type
4853      // passed directly.  Clang may use those instead of "byval" aggregate
4854      // types to avoid forcing arguments to memory unnecessarily.
4855      if (GPR_idx != NumGPRs) {
4856        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4857      } else {
4858        if (CallConv == CallingConv::Fast)
4859          ComputePtrOff();
4860
4861        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4862                         true, isTailCall, false, MemOpChains,
4863                         TailCallArguments, dl);
4864        if (CallConv == CallingConv::Fast)
4865          ArgOffset += PtrByteSize;
4866      }
4867      if (CallConv != CallingConv::Fast)
4868        ArgOffset += PtrByteSize;
4869      break;
4870    case MVT::f32:
4871    case MVT::f64: {
4872      // These can be scalar arguments or elements of a float array type
4873      // passed directly.  The latter are used to implement ELFv2 homogenous
4874      // float aggregates.
4875
4876      // Named arguments go into FPRs first, and once they overflow, the
4877      // remaining arguments go into GPRs and then the parameter save area.
4878      // Unnamed arguments for vararg functions always go to GPRs and
4879      // then the parameter save area.  For now, put all arguments to vararg
4880      // routines always in both locations (FPR *and* GPR or stack slot).
4881      bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
4882      bool NeededLoad = false;
4883
4884      // First load the argument into the next available FPR.
4885      if (FPR_idx != NumFPRs)
4886        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4887
4888      // Next, load the argument into GPR or stack slot if needed.
4889      if (!NeedGPROrStack)
4890        ;
4891      else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
4892        // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4893        // once we support fp <-> gpr moves.
4894
4895        // In the non-vararg case, this can only ever happen in the
4896        // presence of f32 array types, since otherwise we never run
4897        // out of FPRs before running out of GPRs.
4898        SDValue ArgVal;
4899
4900        // Double values are always passed in a single GPR.
4901        if (Arg.getValueType() != MVT::f32) {
4902          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
4903
4904        // Non-array float values are extended and passed in a GPR.
4905        } else if (!Flags.isInConsecutiveRegs()) {
4906          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
4907          ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
4908
4909        // If we have an array of floats, we collect every odd element
4910        // together with its predecessor into one GPR.
4911        } else if (ArgOffset % PtrByteSize != 0) {
4912          SDValue Lo, Hi;
4913          Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
4914          Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
4915          if (!isLittleEndian)
4916            std::swap(Lo, Hi);
4917          ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
4918
4919        // The final element, if even, goes into the first half of a GPR.
4920        } else if (Flags.isInConsecutiveRegsLast()) {
4921          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
4922          ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
4923          if (!isLittleEndian)
4924            ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
4925                                 DAG.getConstant(32, MVT::i32));
4926
4927        // Non-final even elements are skipped; they will be handled
4928        // together the with subsequent argument on the next go-around.
4929        } else
4930          ArgVal = SDValue();
4931
4932        if (ArgVal.getNode())
4933          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
4934      } else {
4935        if (CallConv == CallingConv::Fast)
4936          ComputePtrOff();
4937
4938        // Single-precision floating-point values are mapped to the
4939        // second (rightmost) word of the stack doubleword.
4940        if (Arg.getValueType() == MVT::f32 &&
4941            !isLittleEndian && !Flags.isInConsecutiveRegs()) {
4942          SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4943          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4944        }
4945
4946        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4947                         true, isTailCall, false, MemOpChains,
4948                         TailCallArguments, dl);
4949
4950        NeededLoad = true;
4951      }
4952      // When passing an array of floats, the array occupies consecutive
4953      // space in the argument area; only round up to the next doubleword
4954      // at the end of the array.  Otherwise, each float takes 8 bytes.
4955      if (CallConv != CallingConv::Fast || NeededLoad) {
4956        ArgOffset += (Arg.getValueType() == MVT::f32 &&
4957                      Flags.isInConsecutiveRegs()) ? 4 : 8;
4958        if (Flags.isInConsecutiveRegsLast())
4959          ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4960      }
4961      break;
4962    }
4963    case MVT::v4f32:
4964    case MVT::v4i32:
4965    case MVT::v8i16:
4966    case MVT::v16i8:
4967    case MVT::v2f64:
4968    case MVT::v2i64:
4969      if (!Subtarget.hasQPX()) {
4970      // These can be scalar arguments or elements of a vector array type
4971      // passed directly.  The latter are used to implement ELFv2 homogenous
4972      // vector aggregates.
4973
4974      // For a varargs call, named arguments go into VRs or on the stack as
4975      // usual; unnamed arguments always go to the stack or the corresponding
4976      // GPRs when within range.  For now, we always put the value in both
4977      // locations (or even all three).
4978      if (isVarArg) {
4979        // We could elide this store in the case where the object fits
4980        // entirely in R registers.  Maybe later.
4981        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4982                                     MachinePointerInfo(), false, false, 0);
4983        MemOpChains.push_back(Store);
4984        if (VR_idx != NumVRs) {
4985          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4986                                     MachinePointerInfo(),
4987                                     false, false, false, 0);
4988          MemOpChains.push_back(Load.getValue(1));
4989
4990          unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
4991                           Arg.getSimpleValueType() == MVT::v2i64) ?
4992                          VSRH[VR_idx] : VR[VR_idx];
4993          ++VR_idx;
4994
4995          RegsToPass.push_back(std::make_pair(VReg, Load));
4996        }
4997        ArgOffset += 16;
4998        for (unsigned i=0; i<16; i+=PtrByteSize) {
4999          if (GPR_idx == NumGPRs)
5000            break;
5001          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5002                                  DAG.getConstant(i, PtrVT));
5003          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5004                                     false, false, false, 0);
5005          MemOpChains.push_back(Load.getValue(1));
5006          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5007        }
5008        break;
5009      }
5010
5011      // Non-varargs Altivec params go into VRs or on the stack.
5012      if (VR_idx != NumVRs) {
5013        unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
5014                         Arg.getSimpleValueType() == MVT::v2i64) ?
5015                        VSRH[VR_idx] : VR[VR_idx];
5016        ++VR_idx;
5017
5018        RegsToPass.push_back(std::make_pair(VReg, Arg));
5019      } else {
5020        if (CallConv == CallingConv::Fast)
5021          ComputePtrOff();
5022
5023        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5024                         true, isTailCall, true, MemOpChains,
5025                         TailCallArguments, dl);
5026        if (CallConv == CallingConv::Fast)
5027          ArgOffset += 16;
5028      }
5029
5030      if (CallConv != CallingConv::Fast)
5031        ArgOffset += 16;
5032      break;
5033      } // not QPX
5034
5035      assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
5036             "Invalid QPX parameter type");
5037
5038      /* fall through */
5039    case MVT::v4f64:
5040    case MVT::v4i1: {
5041      bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
5042      if (isVarArg) {
5043        // We could elide this store in the case where the object fits
5044        // entirely in R registers.  Maybe later.
5045        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5046                                     MachinePointerInfo(), false, false, 0);
5047        MemOpChains.push_back(Store);
5048        if (QFPR_idx != NumQFPRs) {
5049          SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl,
5050                                     Store, PtrOff, MachinePointerInfo(),
5051                                     false, false, false, 0);
5052          MemOpChains.push_back(Load.getValue(1));
5053          RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
5054        }
5055        ArgOffset += (IsF32 ? 16 : 32);
5056        for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
5057          if (GPR_idx == NumGPRs)
5058            break;
5059          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5060                                  DAG.getConstant(i, PtrVT));
5061          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5062                                     false, false, false, 0);
5063          MemOpChains.push_back(Load.getValue(1));
5064          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5065        }
5066        break;
5067      }
5068
5069      // Non-varargs QPX params go into registers or on the stack.
5070      if (QFPR_idx != NumQFPRs) {
5071        RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
5072      } else {
5073        if (CallConv == CallingConv::Fast)
5074          ComputePtrOff();
5075
5076        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5077                         true, isTailCall, true, MemOpChains,
5078                         TailCallArguments, dl);
5079        if (CallConv == CallingConv::Fast)
5080          ArgOffset += (IsF32 ? 16 : 32);
5081      }
5082
5083      if (CallConv != CallingConv::Fast)
5084        ArgOffset += (IsF32 ? 16 : 32);
5085      break;
5086      }
5087    }
5088  }
5089
5090  assert(NumBytesActuallyUsed == ArgOffset);
5091  (void)NumBytesActuallyUsed;
5092
5093  if (!MemOpChains.empty())
5094    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5095
5096  // Check if this is an indirect call (MTCTR/BCTRL).
5097  // See PrepareCall() for more information about calls through function
5098  // pointers in the 64-bit SVR4 ABI.
5099  if (!isTailCall && !IsPatchPoint &&
5100      !isFunctionGlobalAddress(Callee) &&
5101      !isa<ExternalSymbolSDNode>(Callee)) {
5102    // Load r2 into a virtual register and store it to the TOC save area.
5103    setUsesTOCBasePtr(DAG);
5104    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
5105    // TOC save area offset.
5106    unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5107    SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset);
5108    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5109    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
5110                         MachinePointerInfo::getStack(TOCSaveOffset),
5111                         false, false, 0);
5112    // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
5113    // This does not mean the MTCTR instruction must use R12; it's easier
5114    // to model this as an extra parameter, so do that.
5115    if (isELFv2ABI && !IsPatchPoint)
5116      RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
5117  }
5118
5119  // Build a sequence of copy-to-reg nodes chained together with token chain
5120  // and flag operands which copy the outgoing args into the appropriate regs.
5121  SDValue InFlag;
5122  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5123    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5124                             RegsToPass[i].second, InFlag);
5125    InFlag = Chain.getValue(1);
5126  }
5127
5128  if (isTailCall)
5129    PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
5130                    FPOp, true, TailCallArguments);
5131
5132  return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG,
5133                    RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5134                    NumBytes, Ins, InVals, CS);
5135}
5136
5137SDValue
5138PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
5139                                    CallingConv::ID CallConv, bool isVarArg,
5140                                    bool isTailCall, bool IsPatchPoint,
5141                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
5142                                    const SmallVectorImpl<SDValue> &OutVals,
5143                                    const SmallVectorImpl<ISD::InputArg> &Ins,
5144                                    SDLoc dl, SelectionDAG &DAG,
5145                                    SmallVectorImpl<SDValue> &InVals,
5146                                    ImmutableCallSite *CS) const {
5147
5148  unsigned NumOps = Outs.size();
5149
5150  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5151  bool isPPC64 = PtrVT == MVT::i64;
5152  unsigned PtrByteSize = isPPC64 ? 8 : 4;
5153
5154  MachineFunction &MF = DAG.getMachineFunction();
5155
5156  // Mark this function as potentially containing a function that contains a
5157  // tail call. As a consequence the frame pointer will be used for dynamicalloc
5158  // and restoring the callers stack pointer in this functions epilog. This is
5159  // done because by tail calling the called function might overwrite the value
5160  // in this function's (MF) stack pointer stack slot 0(SP).
5161  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5162      CallConv == CallingConv::Fast)
5163    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5164
5165  // Count how many bytes are to be pushed on the stack, including the linkage
5166  // area, and parameter passing area.  We start with 24/48 bytes, which is
5167  // prereserved space for [SP][CR][LR][3 x unused].
5168  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5169  unsigned NumBytes = LinkageSize;
5170
5171  // Add up all the space actually used.
5172  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
5173  // they all go in registers, but we must reserve stack space for them for
5174  // possible use by the caller.  In varargs or 64-bit calls, parameters are
5175  // assigned stack space in order, with padding so Altivec parameters are
5176  // 16-byte aligned.
5177  unsigned nAltivecParamsAtEnd = 0;
5178  for (unsigned i = 0; i != NumOps; ++i) {
5179    ISD::ArgFlagsTy Flags = Outs[i].Flags;
5180    EVT ArgVT = Outs[i].VT;
5181    // Varargs Altivec parameters are padded to a 16 byte boundary.
5182    if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
5183        ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
5184        ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
5185      if (!isVarArg && !isPPC64) {
5186        // Non-varargs Altivec parameters go after all the non-Altivec
5187        // parameters; handle those later so we know how much padding we need.
5188        nAltivecParamsAtEnd++;
5189        continue;
5190      }
5191      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
5192      NumBytes = ((NumBytes+15)/16)*16;
5193    }
5194    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5195  }
5196
5197  // Allow for Altivec parameters at the end, if needed.
5198  if (nAltivecParamsAtEnd) {
5199    NumBytes = ((NumBytes+15)/16)*16;
5200    NumBytes += 16*nAltivecParamsAtEnd;
5201  }
5202
5203  // The prolog code of the callee may store up to 8 GPR argument registers to
5204  // the stack, allowing va_start to index over them in memory if its varargs.
5205  // Because we cannot tell if this is needed on the caller side, we have to
5206  // conservatively assume that it is needed.  As such, make sure we have at
5207  // least enough stack space for the caller to store the 8 GPRs.
5208  NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5209
5210  // Tail call needs the stack to be aligned.
5211  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5212      CallConv == CallingConv::Fast)
5213    NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5214
5215  // Calculate by how many bytes the stack has to be adjusted in case of tail
5216  // call optimization.
5217  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5218
5219  // To protect arguments on the stack from being clobbered in a tail call,
5220  // force all the loads to happen before doing any other lowering.
5221  if (isTailCall)
5222    Chain = DAG.getStackArgumentTokenFactor(Chain);
5223
5224  // Adjust the stack pointer for the new arguments...
5225  // These operations are automatically eliminated by the prolog/epilog pass
5226  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
5227                               dl);
5228  SDValue CallSeqStart = Chain;
5229
5230  // Load the return address and frame pointer so it can be move somewhere else
5231  // later.
5232  SDValue LROp, FPOp;
5233  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
5234                                       dl);
5235
5236  // Set up a copy of the stack pointer for use loading and storing any
5237  // arguments that may not fit in the registers available for argument
5238  // passing.
5239  SDValue StackPtr;
5240  if (isPPC64)
5241    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5242  else
5243    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5244
5245  // Figure out which arguments are going to go in registers, and which in
5246  // memory.  Also, if this is a vararg function, floating point operations
5247  // must be stored to our stack, and loaded into integer regs as well, if
5248  // any integer regs are available for argument passing.
5249  unsigned ArgOffset = LinkageSize;
5250  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5251
5252  static const MCPhysReg GPR_32[] = {           // 32-bit registers.
5253    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
5254    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
5255  };
5256  static const MCPhysReg GPR_64[] = {           // 64-bit registers.
5257    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5258    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5259  };
5260  static const MCPhysReg VR[] = {
5261    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5262    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5263  };
5264  const unsigned NumGPRs = array_lengthof(GPR_32);
5265  const unsigned NumFPRs = 13;
5266  const unsigned NumVRs  = array_lengthof(VR);
5267
5268  const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
5269
5270  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5271  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5272
5273  SmallVector<SDValue, 8> MemOpChains;
5274  for (unsigned i = 0; i != NumOps; ++i) {
5275    SDValue Arg = OutVals[i];
5276    ISD::ArgFlagsTy Flags = Outs[i].Flags;
5277
5278    // PtrOff will be used to store the current argument to the stack if a
5279    // register cannot be found for it.
5280    SDValue PtrOff;
5281
5282    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
5283
5284    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5285
5286    // On PPC64, promote integers to 64-bit values.
5287    if (isPPC64 && Arg.getValueType() == MVT::i32) {
5288      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5289      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5290      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5291    }
5292
5293    // FIXME memcpy is used way more than necessary.  Correctness first.
5294    // Note: "by value" is code for passing a structure by value, not
5295    // basic types.
5296    if (Flags.isByVal()) {
5297      unsigned Size = Flags.getByValSize();
5298      // Very small objects are passed right-justified.  Everything else is
5299      // passed left-justified.
5300      if (Size==1 || Size==2) {
5301        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
5302        if (GPR_idx != NumGPRs) {
5303          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5304                                        MachinePointerInfo(), VT,
5305                                        false, false, false, 0);
5306          MemOpChains.push_back(Load.getValue(1));
5307          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5308
5309          ArgOffset += PtrByteSize;
5310        } else {
5311          SDValue Const = DAG.getConstant(PtrByteSize - Size,
5312                                          PtrOff.getValueType());
5313          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5314          Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5315                                                            CallSeqStart,
5316                                                            Flags, DAG, dl);
5317          ArgOffset += PtrByteSize;
5318        }
5319        continue;
5320      }
5321      // Copy entire object into memory.  There are cases where gcc-generated
5322      // code assumes it is there, even if it could be put entirely into
5323      // registers.  (This is not what the doc says.)
5324      Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5325                                                        CallSeqStart,
5326                                                        Flags, DAG, dl);
5327
5328      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
5329      // copy the pieces of the object that fit into registers from the
5330      // parameter save area.
5331      for (unsigned j=0; j<Size; j+=PtrByteSize) {
5332        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
5333        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5334        if (GPR_idx != NumGPRs) {
5335          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
5336                                     MachinePointerInfo(),
5337                                     false, false, false, 0);
5338          MemOpChains.push_back(Load.getValue(1));
5339          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5340          ArgOffset += PtrByteSize;
5341        } else {
5342          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5343          break;
5344        }
5345      }
5346      continue;
5347    }
5348
5349    switch (Arg.getSimpleValueType().SimpleTy) {
5350    default: llvm_unreachable("Unexpected ValueType for argument!");
5351    case MVT::i1:
5352    case MVT::i32:
5353    case MVT::i64:
5354      if (GPR_idx != NumGPRs) {
5355        if (Arg.getValueType() == MVT::i1)
5356          Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
5357
5358        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5359      } else {
5360        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5361                         isPPC64, isTailCall, false, MemOpChains,
5362                         TailCallArguments, dl);
5363      }
5364      ArgOffset += PtrByteSize;
5365      break;
5366    case MVT::f32:
5367    case MVT::f64:
5368      if (FPR_idx != NumFPRs) {
5369        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5370
5371        if (isVarArg) {
5372          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5373                                       MachinePointerInfo(), false, false, 0);
5374          MemOpChains.push_back(Store);
5375
5376          // Float varargs are always shadowed in available integer registers
5377          if (GPR_idx != NumGPRs) {
5378            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5379                                       MachinePointerInfo(), false, false,
5380                                       false, 0);
5381            MemOpChains.push_back(Load.getValue(1));
5382            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5383          }
5384          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
5385            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
5386            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5387            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5388                                       MachinePointerInfo(),
5389                                       false, false, false, 0);
5390            MemOpChains.push_back(Load.getValue(1));
5391            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5392          }
5393        } else {
5394          // If we have any FPRs remaining, we may also have GPRs remaining.
5395          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
5396          // GPRs.
5397          if (GPR_idx != NumGPRs)
5398            ++GPR_idx;
5399          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
5400              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
5401            ++GPR_idx;
5402        }
5403      } else
5404        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5405                         isPPC64, isTailCall, false, MemOpChains,
5406                         TailCallArguments, dl);
5407      if (isPPC64)
5408        ArgOffset += 8;
5409      else
5410        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
5411      break;
5412    case MVT::v4f32:
5413    case MVT::v4i32:
5414    case MVT::v8i16:
5415    case MVT::v16i8:
5416      if (isVarArg) {
5417        // These go aligned on the stack, or in the corresponding R registers
5418        // when within range.  The Darwin PPC ABI doc claims they also go in
5419        // V registers; in fact gcc does this only for arguments that are
5420        // prototyped, not for those that match the ...  We do it for all
5421        // arguments, seems to work.
5422        while (ArgOffset % 16 !=0) {
5423          ArgOffset += PtrByteSize;
5424          if (GPR_idx != NumGPRs)
5425            GPR_idx++;
5426        }
5427        // We could elide this store in the case where the object fits
5428        // entirely in R registers.  Maybe later.
5429        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5430                            DAG.getConstant(ArgOffset, PtrVT));
5431        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5432                                     MachinePointerInfo(), false, false, 0);
5433        MemOpChains.push_back(Store);
5434        if (VR_idx != NumVRs) {
5435          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
5436                                     MachinePointerInfo(),
5437                                     false, false, false, 0);
5438          MemOpChains.push_back(Load.getValue(1));
5439          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
5440        }
5441        ArgOffset += 16;
5442        for (unsigned i=0; i<16; i+=PtrByteSize) {
5443          if (GPR_idx == NumGPRs)
5444            break;
5445          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5446                                  DAG.getConstant(i, PtrVT));
5447          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5448                                     false, false, false, 0);
5449          MemOpChains.push_back(Load.getValue(1));
5450          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5451        }
5452        break;
5453      }
5454
5455      // Non-varargs Altivec params generally go in registers, but have
5456      // stack space allocated at the end.
5457      if (VR_idx != NumVRs) {
5458        // Doesn't have GPR space allocated.
5459        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
5460      } else if (nAltivecParamsAtEnd==0) {
5461        // We are emitting Altivec params in order.
5462        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5463                         isPPC64, isTailCall, true, MemOpChains,
5464                         TailCallArguments, dl);
5465        ArgOffset += 16;
5466      }
5467      break;
5468    }
5469  }
5470  // If all Altivec parameters fit in registers, as they usually do,
5471  // they get stack space following the non-Altivec parameters.  We
5472  // don't track this here because nobody below needs it.
5473  // If there are more Altivec parameters than fit in registers emit
5474  // the stores here.
5475  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
5476    unsigned j = 0;
5477    // Offset is aligned; skip 1st 12 params which go in V registers.
5478    ArgOffset = ((ArgOffset+15)/16)*16;
5479    ArgOffset += 12*16;
5480    for (unsigned i = 0; i != NumOps; ++i) {
5481      SDValue Arg = OutVals[i];
5482      EVT ArgType = Outs[i].VT;
5483      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
5484          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
5485        if (++j > NumVRs) {
5486          SDValue PtrOff;
5487          // We are emitting Altivec params in order.
5488          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5489                           isPPC64, isTailCall, true, MemOpChains,
5490                           TailCallArguments, dl);
5491          ArgOffset += 16;
5492        }
5493      }
5494    }
5495  }
5496
5497  if (!MemOpChains.empty())
5498    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5499
5500  // On Darwin, R12 must contain the address of an indirect callee.  This does
5501  // not mean the MTCTR instruction must use R12; it's easier to model this as
5502  // an extra parameter, so do that.
5503  if (!isTailCall &&
5504      !isFunctionGlobalAddress(Callee) &&
5505      !isa<ExternalSymbolSDNode>(Callee) &&
5506      !isBLACompatibleAddress(Callee, DAG))
5507    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
5508                                                   PPC::R12), Callee));
5509
5510  // Build a sequence of copy-to-reg nodes chained together with token chain
5511  // and flag operands which copy the outgoing args into the appropriate regs.
5512  SDValue InFlag;
5513  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5514    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5515                             RegsToPass[i].second, InFlag);
5516    InFlag = Chain.getValue(1);
5517  }
5518
5519  if (isTailCall)
5520    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
5521                    FPOp, true, TailCallArguments);
5522
5523  return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG,
5524                    RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5525                    NumBytes, Ins, InVals, CS);
5526}
5527
5528bool
5529PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
5530                                  MachineFunction &MF, bool isVarArg,
5531                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
5532                                  LLVMContext &Context) const {
5533  SmallVector<CCValAssign, 16> RVLocs;
5534  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
5535  return CCInfo.CheckReturn(Outs, RetCC_PPC);
5536}
5537
5538SDValue
5539PPCTargetLowering::LowerReturn(SDValue Chain,
5540                               CallingConv::ID CallConv, bool isVarArg,
5541                               const SmallVectorImpl<ISD::OutputArg> &Outs,
5542                               const SmallVectorImpl<SDValue> &OutVals,
5543                               SDLoc dl, SelectionDAG &DAG) const {
5544
5545  SmallVector<CCValAssign, 16> RVLocs;
5546  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5547                 *DAG.getContext());
5548  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
5549
5550  SDValue Flag;
5551  SmallVector<SDValue, 4> RetOps(1, Chain);
5552
5553  // Copy the result values into the output registers.
5554  for (unsigned i = 0; i != RVLocs.size(); ++i) {
5555    CCValAssign &VA = RVLocs[i];
5556    assert(VA.isRegLoc() && "Can only return in registers!");
5557
5558    SDValue Arg = OutVals[i];
5559
5560    switch (VA.getLocInfo()) {
5561    default: llvm_unreachable("Unknown loc info!");
5562    case CCValAssign::Full: break;
5563    case CCValAssign::AExt:
5564      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
5565      break;
5566    case CCValAssign::ZExt:
5567      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
5568      break;
5569    case CCValAssign::SExt:
5570      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
5571      break;
5572    }
5573
5574    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
5575    Flag = Chain.getValue(1);
5576    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
5577  }
5578
5579  RetOps[0] = Chain;  // Update chain.
5580
5581  // Add the flag if we have it.
5582  if (Flag.getNode())
5583    RetOps.push_back(Flag);
5584
5585  return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
5586}
5587
5588SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
5589                                   const PPCSubtarget &Subtarget) const {
5590  // When we pop the dynamic allocation we need to restore the SP link.
5591  SDLoc dl(Op);
5592
5593  // Get the corect type for pointers.
5594  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5595
5596  // Construct the stack pointer operand.
5597  bool isPPC64 = Subtarget.isPPC64();
5598  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
5599  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
5600
5601  // Get the operands for the STACKRESTORE.
5602  SDValue Chain = Op.getOperand(0);
5603  SDValue SaveSP = Op.getOperand(1);
5604
5605  // Load the old link SP.
5606  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
5607                                   MachinePointerInfo(),
5608                                   false, false, false, 0);
5609
5610  // Restore the stack pointer.
5611  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
5612
5613  // Store the old link SP.
5614  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
5615                      false, false, 0);
5616}
5617
5618
5619
5620SDValue
5621PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
5622  MachineFunction &MF = DAG.getMachineFunction();
5623  bool isPPC64 = Subtarget.isPPC64();
5624  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5625
5626  // Get current frame pointer save index.  The users of this index will be
5627  // primarily DYNALLOC instructions.
5628  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
5629  int RASI = FI->getReturnAddrSaveIndex();
5630
5631  // If the frame pointer save index hasn't been defined yet.
5632  if (!RASI) {
5633    // Find out what the fix offset of the frame pointer save area.
5634    int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
5635    // Allocate the frame index for frame pointer save area.
5636    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
5637    // Save the result.
5638    FI->setReturnAddrSaveIndex(RASI);
5639  }
5640  return DAG.getFrameIndex(RASI, PtrVT);
5641}
5642
5643SDValue
5644PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
5645  MachineFunction &MF = DAG.getMachineFunction();
5646  bool isPPC64 = Subtarget.isPPC64();
5647  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5648
5649  // Get current frame pointer save index.  The users of this index will be
5650  // primarily DYNALLOC instructions.
5651  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
5652  int FPSI = FI->getFramePointerSaveIndex();
5653
5654  // If the frame pointer save index hasn't been defined yet.
5655  if (!FPSI) {
5656    // Find out what the fix offset of the frame pointer save area.
5657    int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
5658    // Allocate the frame index for frame pointer save area.
5659    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
5660    // Save the result.
5661    FI->setFramePointerSaveIndex(FPSI);
5662  }
5663  return DAG.getFrameIndex(FPSI, PtrVT);
5664}
5665
5666SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5667                                         SelectionDAG &DAG,
5668                                         const PPCSubtarget &Subtarget) const {
5669  // Get the inputs.
5670  SDValue Chain = Op.getOperand(0);
5671  SDValue Size  = Op.getOperand(1);
5672  SDLoc dl(Op);
5673
5674  // Get the corect type for pointers.
5675  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5676  // Negate the size.
5677  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
5678                                  DAG.getConstant(0, PtrVT), Size);
5679  // Construct a node for the frame pointer save index.
5680  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
5681  // Build a DYNALLOC node.
5682  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
5683  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
5684  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
5685}
5686
5687SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
5688                                               SelectionDAG &DAG) const {
5689  SDLoc DL(Op);
5690  return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
5691                     DAG.getVTList(MVT::i32, MVT::Other),
5692                     Op.getOperand(0), Op.getOperand(1));
5693}
5694
5695SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
5696                                                SelectionDAG &DAG) const {
5697  SDLoc DL(Op);
5698  return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
5699                     Op.getOperand(0), Op.getOperand(1));
5700}
5701
5702SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
5703  if (Op.getValueType().isVector())
5704    return LowerVectorLoad(Op, DAG);
5705
5706  assert(Op.getValueType() == MVT::i1 &&
5707         "Custom lowering only for i1 loads");
5708
5709  // First, load 8 bits into 32 bits, then truncate to 1 bit.
5710
5711  SDLoc dl(Op);
5712  LoadSDNode *LD = cast<LoadSDNode>(Op);
5713
5714  SDValue Chain = LD->getChain();
5715  SDValue BasePtr = LD->getBasePtr();
5716  MachineMemOperand *MMO = LD->getMemOperand();
5717
5718  SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(), Chain,
5719                                 BasePtr, MVT::i8, MMO);
5720  SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
5721
5722  SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
5723  return DAG.getMergeValues(Ops, dl);
5724}
5725
5726SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
5727  if (Op.getOperand(1).getValueType().isVector())
5728    return LowerVectorStore(Op, DAG);
5729
5730  assert(Op.getOperand(1).getValueType() == MVT::i1 &&
5731         "Custom lowering only for i1 stores");
5732
5733  // First, zero extend to 32 bits, then use a truncating store to 8 bits.
5734
5735  SDLoc dl(Op);
5736  StoreSDNode *ST = cast<StoreSDNode>(Op);
5737
5738  SDValue Chain = ST->getChain();
5739  SDValue BasePtr = ST->getBasePtr();
5740  SDValue Value = ST->getValue();
5741  MachineMemOperand *MMO = ST->getMemOperand();
5742
5743  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(), Value);
5744  return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
5745}
5746
5747// FIXME: Remove this once the ANDI glue bug is fixed:
5748SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
5749  assert(Op.getValueType() == MVT::i1 &&
5750         "Custom lowering only for i1 results");
5751
5752  SDLoc DL(Op);
5753  return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
5754                     Op.getOperand(0));
5755}
5756
5757/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
5758/// possible.
5759SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
5760  // Not FP? Not a fsel.
5761  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
5762      !Op.getOperand(2).getValueType().isFloatingPoint())
5763    return Op;
5764
5765  // We might be able to do better than this under some circumstances, but in
5766  // general, fsel-based lowering of select is a finite-math-only optimization.
5767  // For more information, see section F.3 of the 2.06 ISA specification.
5768  if (!DAG.getTarget().Options.NoInfsFPMath ||
5769      !DAG.getTarget().Options.NoNaNsFPMath)
5770    return Op;
5771
5772  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5773
5774  EVT ResVT = Op.getValueType();
5775  EVT CmpVT = Op.getOperand(0).getValueType();
5776  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5777  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
5778  SDLoc dl(Op);
5779
5780  // If the RHS of the comparison is a 0.0, we don't need to do the
5781  // subtraction at all.
5782  SDValue Sel1;
5783  if (isFloatingPointZero(RHS))
5784    switch (CC) {
5785    default: break;       // SETUO etc aren't handled by fsel.
5786    case ISD::SETNE:
5787      std::swap(TV, FV);
5788    case ISD::SETEQ:
5789      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
5790        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
5791      Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
5792      if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
5793        Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
5794      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
5795                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
5796    case ISD::SETULT:
5797    case ISD::SETLT:
5798      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
5799    case ISD::SETOGE:
5800    case ISD::SETGE:
5801      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
5802        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
5803      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
5804    case ISD::SETUGT:
5805    case ISD::SETGT:
5806      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
5807    case ISD::SETOLE:
5808    case ISD::SETLE:
5809      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
5810        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
5811      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
5812                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
5813    }
5814
5815  SDValue Cmp;
5816  switch (CC) {
5817  default: break;       // SETUO etc aren't handled by fsel.
5818  case ISD::SETNE:
5819    std::swap(TV, FV);
5820  case ISD::SETEQ:
5821    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
5822    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
5823      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5824    Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
5825    if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
5826      Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
5827    return DAG.getNode(PPCISD::FSEL, dl, ResVT,
5828                       DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
5829  case ISD::SETULT:
5830  case ISD::SETLT:
5831    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
5832    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
5833      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5834    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
5835  case ISD::SETOGE:
5836  case ISD::SETGE:
5837    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
5838    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
5839      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5840    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
5841  case ISD::SETUGT:
5842  case ISD::SETGT:
5843    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
5844    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
5845      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5846    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
5847  case ISD::SETOLE:
5848  case ISD::SETLE:
5849    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
5850    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
5851      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5852    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
5853  }
5854  return Op;
5855}
5856
5857void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
5858                                               SelectionDAG &DAG,
5859                                               SDLoc dl) const {
5860  assert(Op.getOperand(0).getValueType().isFloatingPoint());
5861  SDValue Src = Op.getOperand(0);
5862  if (Src.getValueType() == MVT::f32)
5863    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
5864
5865  SDValue Tmp;
5866  switch (Op.getSimpleValueType().SimpleTy) {
5867  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
5868  case MVT::i32:
5869    Tmp = DAG.getNode(
5870        Op.getOpcode() == ISD::FP_TO_SINT
5871            ? PPCISD::FCTIWZ
5872            : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
5873        dl, MVT::f64, Src);
5874    break;
5875  case MVT::i64:
5876    assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
5877           "i64 FP_TO_UINT is supported only with FPCVT");
5878    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
5879                                                        PPCISD::FCTIDUZ,
5880                      dl, MVT::f64, Src);
5881    break;
5882  }
5883
5884  // Convert the FP value to an int value through memory.
5885  bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
5886    (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
5887  SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
5888  int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
5889  MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
5890
5891  // Emit a store to the stack slot.
5892  SDValue Chain;
5893  if (i32Stack) {
5894    MachineFunction &MF = DAG.getMachineFunction();
5895    MachineMemOperand *MMO =
5896      MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
5897    SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
5898    Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
5899              DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
5900  } else
5901    Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
5902                         MPI, false, false, 0);
5903
5904  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
5905  // add in a bias.
5906  if (Op.getValueType() == MVT::i32 && !i32Stack) {
5907    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
5908                        DAG.getConstant(4, FIPtr.getValueType()));
5909    MPI = MPI.getWithOffset(4);
5910  }
5911
5912  RLI.Chain = Chain;
5913  RLI.Ptr = FIPtr;
5914  RLI.MPI = MPI;
5915}
5916
5917/// \brief Custom lowers floating point to integer conversions to use
5918/// the direct move instructions available in ISA 2.07 to avoid the
5919/// need for load/store combinations.
5920SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
5921                                                    SelectionDAG &DAG,
5922                                                    SDLoc dl) const {
5923  assert(Op.getOperand(0).getValueType().isFloatingPoint());
5924  SDValue Src = Op.getOperand(0);
5925
5926  if (Src.getValueType() == MVT::f32)
5927    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
5928
5929  SDValue Tmp;
5930  switch (Op.getSimpleValueType().SimpleTy) {
5931  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
5932  case MVT::i32:
5933    Tmp = DAG.getNode(
5934        Op.getOpcode() == ISD::FP_TO_SINT
5935            ? PPCISD::FCTIWZ
5936            : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
5937        dl, MVT::f64, Src);
5938    Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
5939    break;
5940  case MVT::i64:
5941    assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
5942           "i64 FP_TO_UINT is supported only with FPCVT");
5943    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
5944                                                        PPCISD::FCTIDUZ,
5945                      dl, MVT::f64, Src);
5946    Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
5947    break;
5948  }
5949  return Tmp;
5950}
5951
5952SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
5953                                          SDLoc dl) const {
5954  if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
5955    return LowerFP_TO_INTDirectMove(Op, DAG, dl);
5956
5957  ReuseLoadInfo RLI;
5958  LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
5959
5960  return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
5961                     false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
5962                     RLI.Ranges);
5963}
5964
5965// We're trying to insert a regular store, S, and then a load, L. If the
5966// incoming value, O, is a load, we might just be able to have our load use the
5967// address used by O. However, we don't know if anything else will store to
5968// that address before we can load from it. To prevent this situation, we need
5969// to insert our load, L, into the chain as a peer of O. To do this, we give L
5970// the same chain operand as O, we create a token factor from the chain results
5971// of O and L, and we replace all uses of O's chain result with that token
5972// factor (see spliceIntoChain below for this last part).
5973bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
5974                                            ReuseLoadInfo &RLI,
5975                                            SelectionDAG &DAG,
5976                                            ISD::LoadExtType ET) const {
5977  SDLoc dl(Op);
5978  if (ET == ISD::NON_EXTLOAD &&
5979      (Op.getOpcode() == ISD::FP_TO_UINT ||
5980       Op.getOpcode() == ISD::FP_TO_SINT) &&
5981      isOperationLegalOrCustom(Op.getOpcode(),
5982                               Op.getOperand(0).getValueType())) {
5983
5984    LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
5985    return true;
5986  }
5987
5988  LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
5989  if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
5990      LD->isNonTemporal())
5991    return false;
5992  if (LD->getMemoryVT() != MemVT)
5993    return false;
5994
5995  RLI.Ptr = LD->getBasePtr();
5996  if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) {
5997    assert(LD->getAddressingMode() == ISD::PRE_INC &&
5998           "Non-pre-inc AM on PPC?");
5999    RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
6000                          LD->getOffset());
6001  }
6002
6003  RLI.Chain = LD->getChain();
6004  RLI.MPI = LD->getPointerInfo();
6005  RLI.IsInvariant = LD->isInvariant();
6006  RLI.Alignment = LD->getAlignment();
6007  RLI.AAInfo = LD->getAAInfo();
6008  RLI.Ranges = LD->getRanges();
6009
6010  RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
6011  return true;
6012}
6013
6014// Given the head of the old chain, ResChain, insert a token factor containing
6015// it and NewResChain, and make users of ResChain now be users of that token
6016// factor.
6017void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
6018                                        SDValue NewResChain,
6019                                        SelectionDAG &DAG) const {
6020  if (!ResChain)
6021    return;
6022
6023  SDLoc dl(NewResChain);
6024
6025  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6026                           NewResChain, DAG.getUNDEF(MVT::Other));
6027  assert(TF.getNode() != NewResChain.getNode() &&
6028         "A new TF really is required here");
6029
6030  DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
6031  DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
6032}
6033
6034/// \brief Custom lowers integer to floating point conversions to use
6035/// the direct move instructions available in ISA 2.07 to avoid the
6036/// need for load/store combinations.
6037SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
6038                                                    SelectionDAG &DAG,
6039                                                    SDLoc dl) const {
6040  assert((Op.getValueType() == MVT::f32 ||
6041          Op.getValueType() == MVT::f64) &&
6042         "Invalid floating point type as target of conversion");
6043  assert(Subtarget.hasFPCVT() &&
6044         "Int to FP conversions with direct moves require FPCVT");
6045  SDValue FP;
6046  SDValue Src = Op.getOperand(0);
6047  bool SinglePrec = Op.getValueType() == MVT::f32;
6048  bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
6049  bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
6050  unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
6051                             (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
6052
6053  if (WordInt) {
6054    FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
6055                     dl, MVT::f64, Src);
6056    FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6057  }
6058  else {
6059    FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
6060    FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6061  }
6062
6063  return FP;
6064}
6065
6066SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
6067                                          SelectionDAG &DAG) const {
6068  SDLoc dl(Op);
6069
6070  if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
6071    if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
6072      return SDValue();
6073
6074    SDValue Value = Op.getOperand(0);
6075    // The values are now known to be -1 (false) or 1 (true). To convert this
6076    // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
6077    // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
6078    Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
6079
6080    SDValue FPHalfs = DAG.getConstantFP(0.5, MVT::f64);
6081    FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
6082                          FPHalfs, FPHalfs, FPHalfs, FPHalfs);
6083
6084    Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
6085
6086    if (Op.getValueType() != MVT::v4f64)
6087      Value = DAG.getNode(ISD::FP_ROUND, dl,
6088                          Op.getValueType(), Value, DAG.getIntPtrConstant(1));
6089    return Value;
6090  }
6091
6092  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
6093  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
6094    return SDValue();
6095
6096  if (Op.getOperand(0).getValueType() == MVT::i1)
6097    return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
6098                       DAG.getConstantFP(1.0, Op.getValueType()),
6099                       DAG.getConstantFP(0.0, Op.getValueType()));
6100
6101  // If we have direct moves, we can do all the conversion, skip the store/load
6102  // however, without FPCVT we can't do most conversions.
6103  if (Subtarget.hasDirectMove() && Subtarget.isPPC64() && Subtarget.hasFPCVT())
6104    return LowerINT_TO_FPDirectMove(Op, DAG, dl);
6105
6106  assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
6107         "UINT_TO_FP is supported only with FPCVT");
6108
6109  // If we have FCFIDS, then use it when converting to single-precision.
6110  // Otherwise, convert to double-precision and then round.
6111  unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6112                       ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
6113                                                            : PPCISD::FCFIDS)
6114                       : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
6115                                                            : PPCISD::FCFID);
6116  MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6117                  ? MVT::f32
6118                  : MVT::f64;
6119
6120  if (Op.getOperand(0).getValueType() == MVT::i64) {
6121    SDValue SINT = Op.getOperand(0);
6122    // When converting to single-precision, we actually need to convert
6123    // to double-precision first and then round to single-precision.
6124    // To avoid double-rounding effects during that operation, we have
6125    // to prepare the input operand.  Bits that might be truncated when
6126    // converting to double-precision are replaced by a bit that won't
6127    // be lost at this stage, but is below the single-precision rounding
6128    // position.
6129    //
6130    // However, if -enable-unsafe-fp-math is in effect, accept double
6131    // rounding to avoid the extra overhead.
6132    if (Op.getValueType() == MVT::f32 &&
6133        !Subtarget.hasFPCVT() &&
6134        !DAG.getTarget().Options.UnsafeFPMath) {
6135
6136      // Twiddle input to make sure the low 11 bits are zero.  (If this
6137      // is the case, we are guaranteed the value will fit into the 53 bit
6138      // mantissa of an IEEE double-precision value without rounding.)
6139      // If any of those low 11 bits were not zero originally, make sure
6140      // bit 12 (value 2048) is set instead, so that the final rounding
6141      // to single-precision gets the correct result.
6142      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6143                                  SINT, DAG.getConstant(2047, MVT::i64));
6144      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
6145                          Round, DAG.getConstant(2047, MVT::i64));
6146      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
6147      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6148                          Round, DAG.getConstant(-2048, MVT::i64));
6149
6150      // However, we cannot use that value unconditionally: if the magnitude
6151      // of the input value is small, the bit-twiddling we did above might
6152      // end up visibly changing the output.  Fortunately, in that case, we
6153      // don't need to twiddle bits since the original input will convert
6154      // exactly to double-precision floating-point already.  Therefore,
6155      // construct a conditional to use the original value if the top 11
6156      // bits are all sign-bit copies, and use the rounded value computed
6157      // above otherwise.
6158      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
6159                                 SINT, DAG.getConstant(53, MVT::i32));
6160      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
6161                         Cond, DAG.getConstant(1, MVT::i64));
6162      Cond = DAG.getSetCC(dl, MVT::i32,
6163                          Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
6164
6165      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
6166    }
6167
6168    ReuseLoadInfo RLI;
6169    SDValue Bits;
6170
6171    MachineFunction &MF = DAG.getMachineFunction();
6172    if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
6173      Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
6174                         false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
6175                         RLI.Ranges);
6176      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6177    } else if (Subtarget.hasLFIWAX() &&
6178               canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
6179      MachineMemOperand *MMO =
6180        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6181                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6182      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6183      Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
6184                                     DAG.getVTList(MVT::f64, MVT::Other),
6185                                     Ops, MVT::i32, MMO);
6186      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6187    } else if (Subtarget.hasFPCVT() &&
6188               canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
6189      MachineMemOperand *MMO =
6190        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6191                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6192      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6193      Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
6194                                     DAG.getVTList(MVT::f64, MVT::Other),
6195                                     Ops, MVT::i32, MMO);
6196      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6197    } else if (((Subtarget.hasLFIWAX() &&
6198                 SINT.getOpcode() == ISD::SIGN_EXTEND) ||
6199                (Subtarget.hasFPCVT() &&
6200                 SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
6201               SINT.getOperand(0).getValueType() == MVT::i32) {
6202      MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6203      EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
6204
6205      int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6206      SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6207
6208      SDValue Store =
6209        DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
6210                     MachinePointerInfo::getFixedStack(FrameIdx),
6211                     false, false, 0);
6212
6213      assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6214             "Expected an i32 store");
6215
6216      RLI.Ptr = FIdx;
6217      RLI.Chain = Store;
6218      RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx);
6219      RLI.Alignment = 4;
6220
6221      MachineMemOperand *MMO =
6222        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6223                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6224      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6225      Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
6226                                     PPCISD::LFIWZX : PPCISD::LFIWAX,
6227                                     dl, DAG.getVTList(MVT::f64, MVT::Other),
6228                                     Ops, MVT::i32, MMO);
6229    } else
6230      Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
6231
6232    SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
6233
6234    if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6235      FP = DAG.getNode(ISD::FP_ROUND, dl,
6236                       MVT::f32, FP, DAG.getIntPtrConstant(0));
6237    return FP;
6238  }
6239
6240  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
6241         "Unhandled INT_TO_FP type in custom expander!");
6242  // Since we only generate this in 64-bit mode, we can take advantage of
6243  // 64-bit registers.  In particular, sign extend the input value into the
6244  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
6245  // then lfd it and fcfid it.
6246  MachineFunction &MF = DAG.getMachineFunction();
6247  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6248  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
6249
6250  SDValue Ld;
6251  if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
6252    ReuseLoadInfo RLI;
6253    bool ReusingLoad;
6254    if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
6255                                            DAG))) {
6256      int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6257      SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6258
6259      SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
6260                                   MachinePointerInfo::getFixedStack(FrameIdx),
6261                                   false, false, 0);
6262
6263      assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6264             "Expected an i32 store");
6265
6266      RLI.Ptr = FIdx;
6267      RLI.Chain = Store;
6268      RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx);
6269      RLI.Alignment = 4;
6270    }
6271
6272    MachineMemOperand *MMO =
6273      MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6274                              RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6275    SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6276    Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
6277                                   PPCISD::LFIWZX : PPCISD::LFIWAX,
6278                                 dl, DAG.getVTList(MVT::f64, MVT::Other),
6279                                 Ops, MVT::i32, MMO);
6280    if (ReusingLoad)
6281      spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
6282  } else {
6283    assert(Subtarget.isPPC64() &&
6284           "i32->FP without LFIWAX supported only on PPC64");
6285
6286    int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
6287    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6288
6289    SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
6290                                Op.getOperand(0));
6291
6292    // STD the extended value into the stack slot.
6293    SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
6294                                 MachinePointerInfo::getFixedStack(FrameIdx),
6295                                 false, false, 0);
6296
6297    // Load the value as a double.
6298    Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
6299                     MachinePointerInfo::getFixedStack(FrameIdx),
6300                     false, false, false, 0);
6301  }
6302
6303  // FCFID it and return it.
6304  SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
6305  if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6306    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
6307  return FP;
6308}
6309
6310SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
6311                                            SelectionDAG &DAG) const {
6312  SDLoc dl(Op);
6313  /*
6314   The rounding mode is in bits 30:31 of FPSR, and has the following
6315   settings:
6316     00 Round to nearest
6317     01 Round to 0
6318     10 Round to +inf
6319     11 Round to -inf
6320
6321  FLT_ROUNDS, on the other hand, expects the following:
6322    -1 Undefined
6323     0 Round to 0
6324     1 Round to nearest
6325     2 Round to +inf
6326     3 Round to -inf
6327
6328  To perform the conversion, we do:
6329    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
6330  */
6331
6332  MachineFunction &MF = DAG.getMachineFunction();
6333  EVT VT = Op.getValueType();
6334  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
6335
6336  // Save FP Control Word to register
6337  EVT NodeTys[] = {
6338    MVT::f64,    // return register
6339    MVT::Glue    // unused in this context
6340  };
6341  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
6342
6343  // Save FP register to stack slot
6344  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
6345  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
6346  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
6347                               StackSlot, MachinePointerInfo(), false, false,0);
6348
6349  // Load FP Control Word from low 32 bits of stack slot.
6350  SDValue Four = DAG.getConstant(4, PtrVT);
6351  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
6352  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
6353                            false, false, false, 0);
6354
6355  // Transform as necessary
6356  SDValue CWD1 =
6357    DAG.getNode(ISD::AND, dl, MVT::i32,
6358                CWD, DAG.getConstant(3, MVT::i32));
6359  SDValue CWD2 =
6360    DAG.getNode(ISD::SRL, dl, MVT::i32,
6361                DAG.getNode(ISD::AND, dl, MVT::i32,
6362                            DAG.getNode(ISD::XOR, dl, MVT::i32,
6363                                        CWD, DAG.getConstant(3, MVT::i32)),
6364                            DAG.getConstant(3, MVT::i32)),
6365                DAG.getConstant(1, MVT::i32));
6366
6367  SDValue RetVal =
6368    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
6369
6370  return DAG.getNode((VT.getSizeInBits() < 16 ?
6371                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6372}
6373
6374SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6375  EVT VT = Op.getValueType();
6376  unsigned BitWidth = VT.getSizeInBits();
6377  SDLoc dl(Op);
6378  assert(Op.getNumOperands() == 3 &&
6379         VT == Op.getOperand(1).getValueType() &&
6380         "Unexpected SHL!");
6381
6382  // Expand into a bunch of logical ops.  Note that these ops
6383  // depend on the PPC behavior for oversized shift amounts.
6384  SDValue Lo = Op.getOperand(0);
6385  SDValue Hi = Op.getOperand(1);
6386  SDValue Amt = Op.getOperand(2);
6387  EVT AmtVT = Amt.getValueType();
6388
6389  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6390                             DAG.getConstant(BitWidth, AmtVT), Amt);
6391  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
6392  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
6393  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
6394  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6395                             DAG.getConstant(-BitWidth, AmtVT));
6396  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
6397  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6398  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
6399  SDValue OutOps[] = { OutLo, OutHi };
6400  return DAG.getMergeValues(OutOps, dl);
6401}
6402
6403SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6404  EVT VT = Op.getValueType();
6405  SDLoc dl(Op);
6406  unsigned BitWidth = VT.getSizeInBits();
6407  assert(Op.getNumOperands() == 3 &&
6408         VT == Op.getOperand(1).getValueType() &&
6409         "Unexpected SRL!");
6410
6411  // Expand into a bunch of logical ops.  Note that these ops
6412  // depend on the PPC behavior for oversized shift amounts.
6413  SDValue Lo = Op.getOperand(0);
6414  SDValue Hi = Op.getOperand(1);
6415  SDValue Amt = Op.getOperand(2);
6416  EVT AmtVT = Amt.getValueType();
6417
6418  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6419                             DAG.getConstant(BitWidth, AmtVT), Amt);
6420  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6421  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
6422  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
6423  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6424                             DAG.getConstant(-BitWidth, AmtVT));
6425  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
6426  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6427  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
6428  SDValue OutOps[] = { OutLo, OutHi };
6429  return DAG.getMergeValues(OutOps, dl);
6430}
6431
6432SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
6433  SDLoc dl(Op);
6434  EVT VT = Op.getValueType();
6435  unsigned BitWidth = VT.getSizeInBits();
6436  assert(Op.getNumOperands() == 3 &&
6437         VT == Op.getOperand(1).getValueType() &&
6438         "Unexpected SRA!");
6439
6440  // Expand into a bunch of logical ops, followed by a select_cc.
6441  SDValue Lo = Op.getOperand(0);
6442  SDValue Hi = Op.getOperand(1);
6443  SDValue Amt = Op.getOperand(2);
6444  EVT AmtVT = Amt.getValueType();
6445
6446  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6447                             DAG.getConstant(BitWidth, AmtVT), Amt);
6448  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6449  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
6450  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
6451  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6452                             DAG.getConstant(-BitWidth, AmtVT));
6453  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
6454  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
6455  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
6456                                  Tmp4, Tmp6, ISD::SETLE);
6457  SDValue OutOps[] = { OutLo, OutHi };
6458  return DAG.getMergeValues(OutOps, dl);
6459}
6460
6461//===----------------------------------------------------------------------===//
6462// Vector related lowering.
6463//
6464
6465/// BuildSplatI - Build a canonical splati of Val with an element size of
6466/// SplatSize.  Cast the result to VT.
6467static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
6468                             SelectionDAG &DAG, SDLoc dl) {
6469  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
6470
6471  static const MVT VTys[] = { // canonical VT to use for each size.
6472    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
6473  };
6474
6475  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
6476
6477  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
6478  if (Val == -1)
6479    SplatSize = 1;
6480
6481  EVT CanonicalVT = VTys[SplatSize-1];
6482
6483  // Build a canonical splat for this value.
6484  SDValue Elt = DAG.getConstant(Val, MVT::i32);
6485  SmallVector<SDValue, 8> Ops;
6486  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
6487  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops);
6488  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
6489}
6490
6491/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
6492/// specified intrinsic ID.
6493static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
6494                                SelectionDAG &DAG, SDLoc dl,
6495                                EVT DestVT = MVT::Other) {
6496  if (DestVT == MVT::Other) DestVT = Op.getValueType();
6497  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6498                     DAG.getConstant(IID, MVT::i32), Op);
6499}
6500
6501/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
6502/// specified intrinsic ID.
6503static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
6504                                SelectionDAG &DAG, SDLoc dl,
6505                                EVT DestVT = MVT::Other) {
6506  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
6507  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6508                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
6509}
6510
6511/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
6512/// specified intrinsic ID.
6513static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
6514                                SDValue Op2, SelectionDAG &DAG,
6515                                SDLoc dl, EVT DestVT = MVT::Other) {
6516  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
6517  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6518                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
6519}
6520
6521
6522/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
6523/// amount.  The result has the specified value type.
6524static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
6525                             EVT VT, SelectionDAG &DAG, SDLoc dl) {
6526  // Force LHS/RHS to be the right type.
6527  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
6528  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
6529
6530  int Ops[16];
6531  for (unsigned i = 0; i != 16; ++i)
6532    Ops[i] = i + Amt;
6533  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
6534  return DAG.getNode(ISD::BITCAST, dl, VT, T);
6535}
6536
6537// If this is a case we can't handle, return null and let the default
6538// expansion code take care of it.  If we CAN select this case, and if it
6539// selects to a single instruction, return Op.  Otherwise, if we can codegen
6540// this case more efficiently than a constant pool load, lower it to the
6541// sequence of ops that should be used.
6542SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
6543                                             SelectionDAG &DAG) const {
6544  SDLoc dl(Op);
6545  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6546  assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
6547
6548  if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
6549    // We first build an i32 vector, load it into a QPX register,
6550    // then convert it to a floating-point vector and compare it
6551    // to a zero vector to get the boolean result.
6552    MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
6553    int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
6554    MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx);
6555    EVT PtrVT = getPointerTy();
6556    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6557
6558    assert(BVN->getNumOperands() == 4 &&
6559      "BUILD_VECTOR for v4i1 does not have 4 operands");
6560
6561    bool IsConst = true;
6562    for (unsigned i = 0; i < 4; ++i) {
6563      if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue;
6564      if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
6565        IsConst = false;
6566        break;
6567      }
6568    }
6569
6570    if (IsConst) {
6571      Constant *One =
6572        ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
6573      Constant *NegOne =
6574        ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
6575
6576      SmallVector<Constant*, 4> CV(4, NegOne);
6577      for (unsigned i = 0; i < 4; ++i) {
6578        if (BVN->getOperand(i).getOpcode() == ISD::UNDEF)
6579          CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
6580        else if (cast<ConstantSDNode>(BVN->getOperand(i))->
6581                   getConstantIntValue()->isZero())
6582          continue;
6583        else
6584          CV[i] = One;
6585      }
6586
6587      Constant *CP = ConstantVector::get(CV);
6588      SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(),
6589                      16 /* alignment */);
6590
6591      SmallVector<SDValue, 2> Ops;
6592      Ops.push_back(DAG.getEntryNode());
6593      Ops.push_back(CPIdx);
6594
6595      SmallVector<EVT, 2> ValueVTs;
6596      ValueVTs.push_back(MVT::v4i1);
6597      ValueVTs.push_back(MVT::Other); // chain
6598      SDVTList VTs = DAG.getVTList(ValueVTs);
6599
6600      return DAG.getMemIntrinsicNode(PPCISD::QVLFSb,
6601        dl, VTs, Ops, MVT::v4f32,
6602        MachinePointerInfo::getConstantPool());
6603    }
6604
6605    SmallVector<SDValue, 4> Stores;
6606    for (unsigned i = 0; i < 4; ++i) {
6607      if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue;
6608
6609      unsigned Offset = 4*i;
6610      SDValue Idx = DAG.getConstant(Offset, FIdx.getValueType());
6611      Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
6612
6613      unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
6614      if (StoreSize > 4) {
6615        Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
6616                                           BVN->getOperand(i), Idx,
6617                                           PtrInfo.getWithOffset(Offset),
6618                                           MVT::i32, false, false, 0));
6619      } else {
6620        SDValue StoreValue = BVN->getOperand(i);
6621        if (StoreSize < 4)
6622          StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
6623
6624        Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
6625                                      StoreValue, Idx,
6626                                      PtrInfo.getWithOffset(Offset),
6627                                      false, false, 0));
6628      }
6629    }
6630
6631    SDValue StoreChain;
6632    if (!Stores.empty())
6633      StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6634    else
6635      StoreChain = DAG.getEntryNode();
6636
6637    // Now load from v4i32 into the QPX register; this will extend it to
6638    // v4i64 but not yet convert it to a floating point. Nevertheless, this
6639    // is typed as v4f64 because the QPX register integer states are not
6640    // explicitly represented.
6641
6642    SmallVector<SDValue, 2> Ops;
6643    Ops.push_back(StoreChain);
6644    Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, MVT::i32));
6645    Ops.push_back(FIdx);
6646
6647    SmallVector<EVT, 2> ValueVTs;
6648    ValueVTs.push_back(MVT::v4f64);
6649    ValueVTs.push_back(MVT::Other); // chain
6650    SDVTList VTs = DAG.getVTList(ValueVTs);
6651
6652    SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
6653      dl, VTs, Ops, MVT::v4i32, PtrInfo);
6654    LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
6655      DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, MVT::i32),
6656      LoadedVect);
6657
6658    SDValue FPZeros = DAG.getConstantFP(0.0, MVT::f64);
6659    FPZeros = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
6660                          FPZeros, FPZeros, FPZeros, FPZeros);
6661
6662    return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
6663  }
6664
6665  // All other QPX vectors are handled by generic code.
6666  if (Subtarget.hasQPX())
6667    return SDValue();
6668
6669  // Check if this is a splat of a constant value.
6670  APInt APSplatBits, APSplatUndef;
6671  unsigned SplatBitSize;
6672  bool HasAnyUndefs;
6673  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
6674                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
6675      SplatBitSize > 32)
6676    return SDValue();
6677
6678  unsigned SplatBits = APSplatBits.getZExtValue();
6679  unsigned SplatUndef = APSplatUndef.getZExtValue();
6680  unsigned SplatSize = SplatBitSize / 8;
6681
6682  // First, handle single instruction cases.
6683
6684  // All zeros?
6685  if (SplatBits == 0) {
6686    // Canonicalize all zero vectors to be v4i32.
6687    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
6688      SDValue Z = DAG.getConstant(0, MVT::i32);
6689      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
6690      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
6691    }
6692    return Op;
6693  }
6694
6695  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
6696  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
6697                    (32-SplatBitSize));
6698  if (SextVal >= -16 && SextVal <= 15)
6699    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
6700
6701
6702  // Two instruction sequences.
6703
6704  // If this value is in the range [-32,30] and is even, use:
6705  //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
6706  // If this value is in the range [17,31] and is odd, use:
6707  //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
6708  // If this value is in the range [-31,-17] and is odd, use:
6709  //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
6710  // Note the last two are three-instruction sequences.
6711  if (SextVal >= -32 && SextVal <= 31) {
6712    // To avoid having these optimizations undone by constant folding,
6713    // we convert to a pseudo that will be expanded later into one of
6714    // the above forms.
6715    SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
6716    EVT VT = (SplatSize == 1 ? MVT::v16i8 :
6717              (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
6718    SDValue EltSize = DAG.getConstant(SplatSize, MVT::i32);
6719    SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
6720    if (VT == Op.getValueType())
6721      return RetVal;
6722    else
6723      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
6724  }
6725
6726  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
6727  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
6728  // for fneg/fabs.
6729  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
6730    // Make -1 and vspltisw -1:
6731    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
6732
6733    // Make the VSLW intrinsic, computing 0x8000_0000.
6734    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
6735                                   OnesV, DAG, dl);
6736
6737    // xor by OnesV to invert it.
6738    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
6739    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
6740  }
6741
6742  // Check to see if this is a wide variety of vsplti*, binop self cases.
6743  static const signed char SplatCsts[] = {
6744    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
6745    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
6746  };
6747
6748  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
6749    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
6750    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
6751    int i = SplatCsts[idx];
6752
6753    // Figure out what shift amount will be used by altivec if shifted by i in
6754    // this splat size.
6755    unsigned TypeShiftAmt = i & (SplatBitSize-1);
6756
6757    // vsplti + shl self.
6758    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
6759      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
6760      static const unsigned IIDs[] = { // Intrinsic to use for each size.
6761        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
6762        Intrinsic::ppc_altivec_vslw
6763      };
6764      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
6765      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
6766    }
6767
6768    // vsplti + srl self.
6769    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
6770      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
6771      static const unsigned IIDs[] = { // Intrinsic to use for each size.
6772        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
6773        Intrinsic::ppc_altivec_vsrw
6774      };
6775      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
6776      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
6777    }
6778
6779    // vsplti + sra self.
6780    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
6781      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
6782      static const unsigned IIDs[] = { // Intrinsic to use for each size.
6783        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
6784        Intrinsic::ppc_altivec_vsraw
6785      };
6786      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
6787      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
6788    }
6789
6790    // vsplti + rol self.
6791    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
6792                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
6793      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
6794      static const unsigned IIDs[] = { // Intrinsic to use for each size.
6795        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
6796        Intrinsic::ppc_altivec_vrlw
6797      };
6798      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
6799      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
6800    }
6801
6802    // t = vsplti c, result = vsldoi t, t, 1
6803    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
6804      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
6805      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
6806    }
6807    // t = vsplti c, result = vsldoi t, t, 2
6808    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
6809      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
6810      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
6811    }
6812    // t = vsplti c, result = vsldoi t, t, 3
6813    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
6814      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
6815      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
6816    }
6817  }
6818
6819  return SDValue();
6820}
6821
6822/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6823/// the specified operations to build the shuffle.
6824static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
6825                                      SDValue RHS, SelectionDAG &DAG,
6826                                      SDLoc dl) {
6827  unsigned OpNum = (PFEntry >> 26) & 0x0F;
6828  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
6829  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
6830
6831  enum {
6832    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6833    OP_VMRGHW,
6834    OP_VMRGLW,
6835    OP_VSPLTISW0,
6836    OP_VSPLTISW1,
6837    OP_VSPLTISW2,
6838    OP_VSPLTISW3,
6839    OP_VSLDOI4,
6840    OP_VSLDOI8,
6841    OP_VSLDOI12
6842  };
6843
6844  if (OpNum == OP_COPY) {
6845    if (LHSID == (1*9+2)*9+3) return LHS;
6846    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
6847    return RHS;
6848  }
6849
6850  SDValue OpLHS, OpRHS;
6851  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6852  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6853
6854  int ShufIdxs[16];
6855  switch (OpNum) {
6856  default: llvm_unreachable("Unknown i32 permute!");
6857  case OP_VMRGHW:
6858    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
6859    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
6860    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
6861    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
6862    break;
6863  case OP_VMRGLW:
6864    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
6865    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
6866    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
6867    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
6868    break;
6869  case OP_VSPLTISW0:
6870    for (unsigned i = 0; i != 16; ++i)
6871      ShufIdxs[i] = (i&3)+0;
6872    break;
6873  case OP_VSPLTISW1:
6874    for (unsigned i = 0; i != 16; ++i)
6875      ShufIdxs[i] = (i&3)+4;
6876    break;
6877  case OP_VSPLTISW2:
6878    for (unsigned i = 0; i != 16; ++i)
6879      ShufIdxs[i] = (i&3)+8;
6880    break;
6881  case OP_VSPLTISW3:
6882    for (unsigned i = 0; i != 16; ++i)
6883      ShufIdxs[i] = (i&3)+12;
6884    break;
6885  case OP_VSLDOI4:
6886    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
6887  case OP_VSLDOI8:
6888    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
6889  case OP_VSLDOI12:
6890    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
6891  }
6892  EVT VT = OpLHS.getValueType();
6893  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
6894  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
6895  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
6896  return DAG.getNode(ISD::BITCAST, dl, VT, T);
6897}
6898
6899/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
6900/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
6901/// return the code it can be lowered into.  Worst case, it can always be
6902/// lowered into a vperm.
6903SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
6904                                               SelectionDAG &DAG) const {
6905  SDLoc dl(Op);
6906  SDValue V1 = Op.getOperand(0);
6907  SDValue V2 = Op.getOperand(1);
6908  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6909  EVT VT = Op.getValueType();
6910  bool isLittleEndian = Subtarget.isLittleEndian();
6911
6912  if (Subtarget.hasQPX()) {
6913    if (VT.getVectorNumElements() != 4)
6914      return SDValue();
6915
6916    if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
6917
6918    int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
6919    if (AlignIdx != -1) {
6920      return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
6921                         DAG.getConstant(AlignIdx, MVT::i32));
6922    } else if (SVOp->isSplat()) {
6923      int SplatIdx = SVOp->getSplatIndex();
6924      if (SplatIdx >= 4) {
6925        std::swap(V1, V2);
6926        SplatIdx -= 4;
6927      }
6928
6929      // FIXME: If SplatIdx == 0 and the input came from a load, then there is
6930      // nothing to do.
6931
6932      return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
6933                         DAG.getConstant(SplatIdx, MVT::i32));
6934    }
6935
6936    // Lower this into a qvgpci/qvfperm pair.
6937
6938    // Compute the qvgpci literal
6939    unsigned idx = 0;
6940    for (unsigned i = 0; i < 4; ++i) {
6941      int m = SVOp->getMaskElt(i);
6942      unsigned mm = m >= 0 ? (unsigned) m : i;
6943      idx |= mm << (3-i)*3;
6944    }
6945
6946    SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
6947                             DAG.getConstant(idx, MVT::i32));
6948    return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
6949  }
6950
6951  // Cases that are handled by instructions that take permute immediates
6952  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
6953  // selected by the instruction selector.
6954  if (V2.getOpcode() == ISD::UNDEF) {
6955    if (PPC::isSplatShuffleMask(SVOp, 1) ||
6956        PPC::isSplatShuffleMask(SVOp, 2) ||
6957        PPC::isSplatShuffleMask(SVOp, 4) ||
6958        PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
6959        PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
6960        PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
6961        PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
6962        PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
6963        PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
6964        PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
6965        PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
6966        PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG)) {
6967      return Op;
6968    }
6969  }
6970
6971  // Altivec has a variety of "shuffle immediates" that take two vector inputs
6972  // and produce a fixed permutation.  If any of these match, do not lower to
6973  // VPERM.
6974  unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
6975  if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
6976      PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
6977      PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
6978      PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
6979      PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
6980      PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
6981      PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
6982      PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
6983      PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG))
6984    return Op;
6985
6986  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
6987  // perfect shuffle table to emit an optimal matching sequence.
6988  ArrayRef<int> PermMask = SVOp->getMask();
6989
6990  unsigned PFIndexes[4];
6991  bool isFourElementShuffle = true;
6992  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
6993    unsigned EltNo = 8;   // Start out undef.
6994    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
6995      if (PermMask[i*4+j] < 0)
6996        continue;   // Undef, ignore it.
6997
6998      unsigned ByteSource = PermMask[i*4+j];
6999      if ((ByteSource & 3) != j) {
7000        isFourElementShuffle = false;
7001        break;
7002      }
7003
7004      if (EltNo == 8) {
7005        EltNo = ByteSource/4;
7006      } else if (EltNo != ByteSource/4) {
7007        isFourElementShuffle = false;
7008        break;
7009      }
7010    }
7011    PFIndexes[i] = EltNo;
7012  }
7013
7014  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
7015  // perfect shuffle vector to determine if it is cost effective to do this as
7016  // discrete instructions, or whether we should use a vperm.
7017  // For now, we skip this for little endian until such time as we have a
7018  // little-endian perfect shuffle table.
7019  if (isFourElementShuffle && !isLittleEndian) {
7020    // Compute the index in the perfect shuffle table.
7021    unsigned PFTableIndex =
7022      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7023
7024    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7025    unsigned Cost  = (PFEntry >> 30);
7026
7027    // Determining when to avoid vperm is tricky.  Many things affect the cost
7028    // of vperm, particularly how many times the perm mask needs to be computed.
7029    // For example, if the perm mask can be hoisted out of a loop or is already
7030    // used (perhaps because there are multiple permutes with the same shuffle
7031    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
7032    // the loop requires an extra register.
7033    //
7034    // As a compromise, we only emit discrete instructions if the shuffle can be
7035    // generated in 3 or fewer operations.  When we have loop information
7036    // available, if this block is within a loop, we should avoid using vperm
7037    // for 3-operation perms and use a constant pool load instead.
7038    if (Cost < 3)
7039      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7040  }
7041
7042  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
7043  // vector that will get spilled to the constant pool.
7044  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
7045
7046  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
7047  // that it is in input element units, not in bytes.  Convert now.
7048
7049  // For little endian, the order of the input vectors is reversed, and
7050  // the permutation mask is complemented with respect to 31.  This is
7051  // necessary to produce proper semantics with the big-endian-biased vperm
7052  // instruction.
7053  EVT EltVT = V1.getValueType().getVectorElementType();
7054  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
7055
7056  SmallVector<SDValue, 16> ResultMask;
7057  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
7058    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
7059
7060    for (unsigned j = 0; j != BytesPerElement; ++j)
7061      if (isLittleEndian)
7062        ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement+j),
7063                                             MVT::i32));
7064      else
7065        ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
7066                                             MVT::i32));
7067  }
7068
7069  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
7070                                  ResultMask);
7071  if (isLittleEndian)
7072    return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7073                       V2, V1, VPermMask);
7074  else
7075    return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7076                       V1, V2, VPermMask);
7077}
7078
7079/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
7080/// altivec comparison.  If it is, return true and fill in Opc/isDot with
7081/// information about the intrinsic.
7082static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
7083                                  bool &isDot, const PPCSubtarget &Subtarget) {
7084  unsigned IntrinsicID =
7085    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
7086  CompareOpc = -1;
7087  isDot = false;
7088  switch (IntrinsicID) {
7089  default: return false;
7090    // Comparison predicates.
7091  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
7092  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
7093  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
7094  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
7095  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
7096  case Intrinsic::ppc_altivec_vcmpequd_p:
7097    if (Subtarget.hasP8Altivec()) {
7098      CompareOpc = 199;
7099      isDot = 1;
7100    }
7101    else
7102      return false;
7103
7104    break;
7105  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
7106  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
7107  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
7108  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
7109  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
7110  case Intrinsic::ppc_altivec_vcmpgtsd_p:
7111    if (Subtarget.hasP8Altivec()) {
7112      CompareOpc = 967;
7113      isDot = 1;
7114    }
7115    else
7116      return false;
7117
7118    break;
7119  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
7120  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
7121  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
7122  case Intrinsic::ppc_altivec_vcmpgtud_p:
7123    if (Subtarget.hasP8Altivec()) {
7124      CompareOpc = 711;
7125      isDot = 1;
7126    }
7127    else
7128      return false;
7129
7130    break;
7131
7132    // Normal Comparisons.
7133  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
7134  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
7135  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
7136  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
7137  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
7138  case Intrinsic::ppc_altivec_vcmpequd:
7139    if (Subtarget.hasP8Altivec()) {
7140      CompareOpc = 199;
7141      isDot = 0;
7142    }
7143    else
7144      return false;
7145
7146    break;
7147  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
7148  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
7149  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
7150  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
7151  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
7152  case Intrinsic::ppc_altivec_vcmpgtsd:
7153    if (Subtarget.hasP8Altivec()) {
7154      CompareOpc = 967;
7155      isDot = 0;
7156    }
7157    else
7158      return false;
7159
7160    break;
7161  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
7162  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
7163  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
7164  case Intrinsic::ppc_altivec_vcmpgtud:
7165    if (Subtarget.hasP8Altivec()) {
7166      CompareOpc = 711;
7167      isDot = 0;
7168    }
7169    else
7170      return false;
7171
7172    break;
7173  }
7174  return true;
7175}
7176
7177/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
7178/// lower, do it, otherwise return null.
7179SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
7180                                                   SelectionDAG &DAG) const {
7181  // If this is a lowered altivec predicate compare, CompareOpc is set to the
7182  // opcode number of the comparison.
7183  SDLoc dl(Op);
7184  int CompareOpc;
7185  bool isDot;
7186  if (!getAltivecCompareInfo(Op, CompareOpc, isDot, Subtarget))
7187    return SDValue();    // Don't custom lower most intrinsics.
7188
7189  // If this is a non-dot comparison, make the VCMP node and we are done.
7190  if (!isDot) {
7191    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
7192                              Op.getOperand(1), Op.getOperand(2),
7193                              DAG.getConstant(CompareOpc, MVT::i32));
7194    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
7195  }
7196
7197  // Create the PPCISD altivec 'dot' comparison node.
7198  SDValue Ops[] = {
7199    Op.getOperand(2),  // LHS
7200    Op.getOperand(3),  // RHS
7201    DAG.getConstant(CompareOpc, MVT::i32)
7202  };
7203  EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
7204  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
7205
7206  // Now that we have the comparison, emit a copy from the CR to a GPR.
7207  // This is flagged to the above dot comparison.
7208  SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
7209                                DAG.getRegister(PPC::CR6, MVT::i32),
7210                                CompNode.getValue(1));
7211
7212  // Unpack the result based on how the target uses it.
7213  unsigned BitNo;   // Bit # of CR6.
7214  bool InvertBit;   // Invert result?
7215  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
7216  default:  // Can't happen, don't crash on invalid number though.
7217  case 0:   // Return the value of the EQ bit of CR6.
7218    BitNo = 0; InvertBit = false;
7219    break;
7220  case 1:   // Return the inverted value of the EQ bit of CR6.
7221    BitNo = 0; InvertBit = true;
7222    break;
7223  case 2:   // Return the value of the LT bit of CR6.
7224    BitNo = 2; InvertBit = false;
7225    break;
7226  case 3:   // Return the inverted value of the LT bit of CR6.
7227    BitNo = 2; InvertBit = true;
7228    break;
7229  }
7230
7231  // Shift the bit into the low position.
7232  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
7233                      DAG.getConstant(8-(3-BitNo), MVT::i32));
7234  // Isolate the bit.
7235  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
7236                      DAG.getConstant(1, MVT::i32));
7237
7238  // If we are supposed to, toggle the bit.
7239  if (InvertBit)
7240    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
7241                        DAG.getConstant(1, MVT::i32));
7242  return Flags;
7243}
7244
7245SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
7246                                                  SelectionDAG &DAG) const {
7247  SDLoc dl(Op);
7248  // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
7249  // instructions), but for smaller types, we need to first extend up to v2i32
7250  // before doing going farther.
7251  if (Op.getValueType() == MVT::v2i64) {
7252    EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
7253    if (ExtVT != MVT::v2i32) {
7254      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
7255      Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
7256                       DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
7257                                        ExtVT.getVectorElementType(), 4)));
7258      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
7259      Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
7260                       DAG.getValueType(MVT::v2i32));
7261    }
7262
7263    return Op;
7264  }
7265
7266  return SDValue();
7267}
7268
7269SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
7270                                                   SelectionDAG &DAG) const {
7271  SDLoc dl(Op);
7272  // Create a stack slot that is 16-byte aligned.
7273  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7274  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7275  EVT PtrVT = getPointerTy();
7276  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7277
7278  // Store the input value into Value#0 of the stack slot.
7279  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
7280                               Op.getOperand(0), FIdx, MachinePointerInfo(),
7281                               false, false, 0);
7282  // Load it out.
7283  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
7284                     false, false, false, 0);
7285}
7286
7287SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7288                                                   SelectionDAG &DAG) const {
7289  SDLoc dl(Op);
7290  SDNode *N = Op.getNode();
7291
7292  assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
7293         "Unknown extract_vector_elt type");
7294
7295  SDValue Value = N->getOperand(0);
7296
7297  // The first part of this is like the store lowering except that we don't
7298  // need to track the chain.
7299
7300  // The values are now known to be -1 (false) or 1 (true). To convert this
7301  // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7302  // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7303  Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7304
7305  // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
7306  // understand how to form the extending load.
7307  SDValue FPHalfs = DAG.getConstantFP(0.5, MVT::f64);
7308  FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
7309                        FPHalfs, FPHalfs, FPHalfs, FPHalfs);
7310
7311  Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7312
7313  // Now convert to an integer and store.
7314  Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7315    DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, MVT::i32),
7316    Value);
7317
7318  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7319  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7320  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx);
7321  EVT PtrVT = getPointerTy();
7322  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7323
7324  SDValue StoreChain = DAG.getEntryNode();
7325  SmallVector<SDValue, 2> Ops;
7326  Ops.push_back(StoreChain);
7327  Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, MVT::i32));
7328  Ops.push_back(Value);
7329  Ops.push_back(FIdx);
7330
7331  SmallVector<EVT, 2> ValueVTs;
7332  ValueVTs.push_back(MVT::Other); // chain
7333  SDVTList VTs = DAG.getVTList(ValueVTs);
7334
7335  StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
7336    dl, VTs, Ops, MVT::v4i32, PtrInfo);
7337
7338  // Extract the value requested.
7339  unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7340  SDValue Idx = DAG.getConstant(Offset, FIdx.getValueType());
7341  Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7342
7343  SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
7344                               PtrInfo.getWithOffset(Offset),
7345                               false, false, false, 0);
7346
7347  if (!Subtarget.useCRBits())
7348    return IntVal;
7349
7350  return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
7351}
7352
7353/// Lowering for QPX v4i1 loads
7354SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
7355                                           SelectionDAG &DAG) const {
7356  SDLoc dl(Op);
7357  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
7358  SDValue LoadChain = LN->getChain();
7359  SDValue BasePtr = LN->getBasePtr();
7360
7361  if (Op.getValueType() == MVT::v4f64 ||
7362      Op.getValueType() == MVT::v4f32) {
7363    EVT MemVT = LN->getMemoryVT();
7364    unsigned Alignment = LN->getAlignment();
7365
7366    // If this load is properly aligned, then it is legal.
7367    if (Alignment >= MemVT.getStoreSize())
7368      return Op;
7369
7370    EVT ScalarVT = Op.getValueType().getScalarType(),
7371        ScalarMemVT = MemVT.getScalarType();
7372    unsigned Stride = ScalarMemVT.getStoreSize();
7373
7374    SmallVector<SDValue, 8> Vals, LoadChains;
7375    for (unsigned Idx = 0; Idx < 4; ++Idx) {
7376      SDValue Load;
7377      if (ScalarVT != ScalarMemVT)
7378        Load =
7379          DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
7380                         BasePtr,
7381                         LN->getPointerInfo().getWithOffset(Idx*Stride),
7382                         ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(),
7383                         LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7384                         LN->getAAInfo());
7385      else
7386        Load =
7387          DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
7388                       LN->getPointerInfo().getWithOffset(Idx*Stride),
7389                       LN->isVolatile(), LN->isNonTemporal(),
7390                       LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7391                       LN->getAAInfo());
7392
7393      if (Idx == 0 && LN->isIndexed()) {
7394        assert(LN->getAddressingMode() == ISD::PRE_INC &&
7395               "Unknown addressing mode on vector load");
7396        Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
7397                                  LN->getAddressingMode());
7398      }
7399
7400      Vals.push_back(Load);
7401      LoadChains.push_back(Load.getValue(1));
7402
7403      BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
7404                            DAG.getConstant(Stride, BasePtr.getValueType()));
7405    }
7406
7407    SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
7408    SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
7409                                   Op.getValueType(), Vals);
7410
7411    if (LN->isIndexed()) {
7412      SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
7413      return DAG.getMergeValues(RetOps, dl);
7414    }
7415
7416    SDValue RetOps[] = { Value, TF };
7417    return DAG.getMergeValues(RetOps, dl);
7418  }
7419
7420  assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
7421  assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
7422
7423  // To lower v4i1 from a byte array, we load the byte elements of the
7424  // vector and then reuse the BUILD_VECTOR logic.
7425
7426  SmallVector<SDValue, 4> VectElmts, VectElmtChains;
7427  for (unsigned i = 0; i < 4; ++i) {
7428    SDValue Idx = DAG.getConstant(i, BasePtr.getValueType());
7429    Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
7430
7431    VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD,
7432                        dl, MVT::i32, LoadChain, Idx,
7433                        LN->getPointerInfo().getWithOffset(i),
7434                        MVT::i8 /* memory type */,
7435                        LN->isVolatile(), LN->isNonTemporal(),
7436                        LN->isInvariant(),
7437                        1 /* alignment */, LN->getAAInfo()));
7438    VectElmtChains.push_back(VectElmts[i].getValue(1));
7439  }
7440
7441  LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
7442  SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts);
7443
7444  SDValue RVals[] = { Value, LoadChain };
7445  return DAG.getMergeValues(RVals, dl);
7446}
7447
7448/// Lowering for QPX v4i1 stores
7449SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
7450                                            SelectionDAG &DAG) const {
7451  SDLoc dl(Op);
7452  StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
7453  SDValue StoreChain = SN->getChain();
7454  SDValue BasePtr = SN->getBasePtr();
7455  SDValue Value = SN->getValue();
7456
7457  if (Value.getValueType() == MVT::v4f64 ||
7458      Value.getValueType() == MVT::v4f32) {
7459    EVT MemVT = SN->getMemoryVT();
7460    unsigned Alignment = SN->getAlignment();
7461
7462    // If this store is properly aligned, then it is legal.
7463    if (Alignment >= MemVT.getStoreSize())
7464      return Op;
7465
7466    EVT ScalarVT = Value.getValueType().getScalarType(),
7467        ScalarMemVT = MemVT.getScalarType();
7468    unsigned Stride = ScalarMemVT.getStoreSize();
7469
7470    SmallVector<SDValue, 8> Stores;
7471    for (unsigned Idx = 0; Idx < 4; ++Idx) {
7472      SDValue Ex =
7473        DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
7474                    DAG.getConstant(Idx, getVectorIdxTy()));
7475      SDValue Store;
7476      if (ScalarVT != ScalarMemVT)
7477        Store =
7478          DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
7479                            SN->getPointerInfo().getWithOffset(Idx*Stride),
7480                            ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(),
7481                            MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
7482      else
7483        Store =
7484          DAG.getStore(StoreChain, dl, Ex, BasePtr,
7485                       SN->getPointerInfo().getWithOffset(Idx*Stride),
7486                       SN->isVolatile(), SN->isNonTemporal(),
7487                       MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
7488
7489      if (Idx == 0 && SN->isIndexed()) {
7490        assert(SN->getAddressingMode() == ISD::PRE_INC &&
7491               "Unknown addressing mode on vector store");
7492        Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
7493                                    SN->getAddressingMode());
7494      }
7495
7496      BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
7497                            DAG.getConstant(Stride, BasePtr.getValueType()));
7498      Stores.push_back(Store);
7499    }
7500
7501    SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7502
7503    if (SN->isIndexed()) {
7504      SDValue RetOps[] = { TF, Stores[0].getValue(1) };
7505      return DAG.getMergeValues(RetOps, dl);
7506    }
7507
7508    return TF;
7509  }
7510
7511  assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
7512  assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
7513
7514  // The values are now known to be -1 (false) or 1 (true). To convert this
7515  // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7516  // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7517  Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7518
7519  // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
7520  // understand how to form the extending load.
7521  SDValue FPHalfs = DAG.getConstantFP(0.5, MVT::f64);
7522  FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
7523                        FPHalfs, FPHalfs, FPHalfs, FPHalfs);
7524
7525  Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7526
7527  // Now convert to an integer and store.
7528  Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7529    DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, MVT::i32),
7530    Value);
7531
7532  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7533  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7534  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx);
7535  EVT PtrVT = getPointerTy();
7536  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7537
7538  SmallVector<SDValue, 2> Ops;
7539  Ops.push_back(StoreChain);
7540  Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, MVT::i32));
7541  Ops.push_back(Value);
7542  Ops.push_back(FIdx);
7543
7544  SmallVector<EVT, 2> ValueVTs;
7545  ValueVTs.push_back(MVT::Other); // chain
7546  SDVTList VTs = DAG.getVTList(ValueVTs);
7547
7548  StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
7549    dl, VTs, Ops, MVT::v4i32, PtrInfo);
7550
7551  // Move data into the byte array.
7552  SmallVector<SDValue, 4> Loads, LoadChains;
7553  for (unsigned i = 0; i < 4; ++i) {
7554    unsigned Offset = 4*i;
7555    SDValue Idx = DAG.getConstant(Offset, FIdx.getValueType());
7556    Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7557
7558    Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
7559                                   PtrInfo.getWithOffset(Offset),
7560                                   false, false, false, 0));
7561    LoadChains.push_back(Loads[i].getValue(1));
7562  }
7563
7564  StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
7565
7566  SmallVector<SDValue, 4> Stores;
7567  for (unsigned i = 0; i < 4; ++i) {
7568    SDValue Idx = DAG.getConstant(i, BasePtr.getValueType());
7569    Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
7570
7571    Stores.push_back(DAG.getTruncStore(StoreChain, dl, Loads[i], Idx,
7572                                       SN->getPointerInfo().getWithOffset(i),
7573                                       MVT::i8 /* memory type */,
7574                                       SN->isNonTemporal(), SN->isVolatile(),
7575                                       1 /* alignment */, SN->getAAInfo()));
7576  }
7577
7578  StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7579
7580  return StoreChain;
7581}
7582
7583SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
7584  SDLoc dl(Op);
7585  if (Op.getValueType() == MVT::v4i32) {
7586    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7587
7588    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
7589    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
7590
7591    SDValue RHSSwap =   // = vrlw RHS, 16
7592      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
7593
7594    // Shrinkify inputs to v8i16.
7595    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
7596    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
7597    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
7598
7599    // Low parts multiplied together, generating 32-bit results (we ignore the
7600    // top parts).
7601    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
7602                                        LHS, RHS, DAG, dl, MVT::v4i32);
7603
7604    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
7605                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
7606    // Shift the high parts up 16 bits.
7607    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
7608                              Neg16, DAG, dl);
7609    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
7610  } else if (Op.getValueType() == MVT::v8i16) {
7611    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7612
7613    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
7614
7615    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
7616                            LHS, RHS, Zero, DAG, dl);
7617  } else if (Op.getValueType() == MVT::v16i8) {
7618    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7619    bool isLittleEndian = Subtarget.isLittleEndian();
7620
7621    // Multiply the even 8-bit parts, producing 16-bit sums.
7622    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
7623                                           LHS, RHS, DAG, dl, MVT::v8i16);
7624    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
7625
7626    // Multiply the odd 8-bit parts, producing 16-bit sums.
7627    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
7628                                          LHS, RHS, DAG, dl, MVT::v8i16);
7629    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
7630
7631    // Merge the results together.  Because vmuleub and vmuloub are
7632    // instructions with a big-endian bias, we must reverse the
7633    // element numbering and reverse the meaning of "odd" and "even"
7634    // when generating little endian code.
7635    int Ops[16];
7636    for (unsigned i = 0; i != 8; ++i) {
7637      if (isLittleEndian) {
7638        Ops[i*2  ] = 2*i;
7639        Ops[i*2+1] = 2*i+16;
7640      } else {
7641        Ops[i*2  ] = 2*i+1;
7642        Ops[i*2+1] = 2*i+1+16;
7643      }
7644    }
7645    if (isLittleEndian)
7646      return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
7647    else
7648      return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
7649  } else {
7650    llvm_unreachable("Unknown mul to lower!");
7651  }
7652}
7653
7654/// LowerOperation - Provide custom lowering hooks for some operations.
7655///
7656SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7657  switch (Op.getOpcode()) {
7658  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
7659  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7660  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7661  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7662  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7663  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7664  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7665  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
7666  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
7667  case ISD::VASTART:
7668    return LowerVASTART(Op, DAG, Subtarget);
7669
7670  case ISD::VAARG:
7671    return LowerVAARG(Op, DAG, Subtarget);
7672
7673  case ISD::VACOPY:
7674    return LowerVACOPY(Op, DAG, Subtarget);
7675
7676  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, Subtarget);
7677  case ISD::DYNAMIC_STACKALLOC:
7678    return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget);
7679
7680  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
7681  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
7682
7683  case ISD::LOAD:               return LowerLOAD(Op, DAG);
7684  case ISD::STORE:              return LowerSTORE(Op, DAG);
7685  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
7686  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
7687  case ISD::FP_TO_UINT:
7688  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
7689                                                      SDLoc(Op));
7690  case ISD::UINT_TO_FP:
7691  case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
7692  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7693
7694  // Lower 64-bit shifts.
7695  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
7696  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
7697  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
7698
7699  // Vector-related lowering.
7700  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7701  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7702  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7703  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7704  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
7705  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7706  case ISD::MUL:                return LowerMUL(Op, DAG);
7707
7708  // For counter-based loop handling.
7709  case ISD::INTRINSIC_W_CHAIN:  return SDValue();
7710
7711  // Frame & Return address.
7712  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7713  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7714  }
7715}
7716
7717void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
7718                                           SmallVectorImpl<SDValue>&Results,
7719                                           SelectionDAG &DAG) const {
7720  SDLoc dl(N);
7721  switch (N->getOpcode()) {
7722  default:
7723    llvm_unreachable("Do not know how to custom type legalize this operation!");
7724  case ISD::READCYCLECOUNTER: {
7725    SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7726    SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
7727
7728    Results.push_back(RTB);
7729    Results.push_back(RTB.getValue(1));
7730    Results.push_back(RTB.getValue(2));
7731    break;
7732  }
7733  case ISD::INTRINSIC_W_CHAIN: {
7734    if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
7735        Intrinsic::ppc_is_decremented_ctr_nonzero)
7736      break;
7737
7738    assert(N->getValueType(0) == MVT::i1 &&
7739           "Unexpected result type for CTR decrement intrinsic");
7740    EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
7741    SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
7742    SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
7743                                 N->getOperand(1));
7744
7745    Results.push_back(NewInt);
7746    Results.push_back(NewInt.getValue(1));
7747    break;
7748  }
7749  case ISD::VAARG: {
7750    if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
7751      return;
7752
7753    EVT VT = N->getValueType(0);
7754
7755    if (VT == MVT::i64) {
7756      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget);
7757
7758      Results.push_back(NewNode);
7759      Results.push_back(NewNode.getValue(1));
7760    }
7761    return;
7762  }
7763  case ISD::FP_ROUND_INREG: {
7764    assert(N->getValueType(0) == MVT::ppcf128);
7765    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
7766    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7767                             MVT::f64, N->getOperand(0),
7768                             DAG.getIntPtrConstant(0));
7769    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7770                             MVT::f64, N->getOperand(0),
7771                             DAG.getIntPtrConstant(1));
7772
7773    // Add the two halves of the long double in round-to-zero mode.
7774    SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7775
7776    // We know the low half is about to be thrown away, so just use something
7777    // convenient.
7778    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
7779                                FPreg, FPreg));
7780    return;
7781  }
7782  case ISD::FP_TO_SINT:
7783  case ISD::FP_TO_UINT:
7784    // LowerFP_TO_INT() can only handle f32 and f64.
7785    if (N->getOperand(0).getValueType() == MVT::ppcf128)
7786      return;
7787    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
7788    return;
7789  }
7790}
7791
7792
7793//===----------------------------------------------------------------------===//
7794//  Other Lowering Code
7795//===----------------------------------------------------------------------===//
7796
7797static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
7798  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
7799  Function *Func = Intrinsic::getDeclaration(M, Id);
7800  return Builder.CreateCall(Func);
7801}
7802
7803// The mappings for emitLeading/TrailingFence is taken from
7804// http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
7805Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
7806                                         AtomicOrdering Ord, bool IsStore,
7807                                         bool IsLoad) const {
7808  if (Ord == SequentiallyConsistent)
7809    return callIntrinsic(Builder, Intrinsic::ppc_sync);
7810  else if (isAtLeastRelease(Ord))
7811    return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
7812  else
7813    return nullptr;
7814}
7815
7816Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
7817                                          AtomicOrdering Ord, bool IsStore,
7818                                          bool IsLoad) const {
7819  if (IsLoad && isAtLeastAcquire(Ord))
7820    return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
7821  // FIXME: this is too conservative, a dependent branch + isync is enough.
7822  // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
7823  // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
7824  // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
7825  else
7826    return nullptr;
7827}
7828
7829MachineBasicBlock *
7830PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
7831                                    unsigned AtomicSize,
7832                                    unsigned BinOpcode) const {
7833  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
7834  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
7835
7836  auto LoadMnemonic = PPC::LDARX;
7837  auto StoreMnemonic = PPC::STDCX;
7838  switch (AtomicSize) {
7839  default:
7840    llvm_unreachable("Unexpected size of atomic entity");
7841  case 1:
7842    LoadMnemonic = PPC::LBARX;
7843    StoreMnemonic = PPC::STBCX;
7844    assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
7845    break;
7846  case 2:
7847    LoadMnemonic = PPC::LHARX;
7848    StoreMnemonic = PPC::STHCX;
7849    assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
7850    break;
7851  case 4:
7852    LoadMnemonic = PPC::LWARX;
7853    StoreMnemonic = PPC::STWCX;
7854    break;
7855  case 8:
7856    LoadMnemonic = PPC::LDARX;
7857    StoreMnemonic = PPC::STDCX;
7858    break;
7859  }
7860
7861  const BasicBlock *LLVM_BB = BB->getBasicBlock();
7862  MachineFunction *F = BB->getParent();
7863  MachineFunction::iterator It = BB;
7864  ++It;
7865
7866  unsigned dest = MI->getOperand(0).getReg();
7867  unsigned ptrA = MI->getOperand(1).getReg();
7868  unsigned ptrB = MI->getOperand(2).getReg();
7869  unsigned incr = MI->getOperand(3).getReg();
7870  DebugLoc dl = MI->getDebugLoc();
7871
7872  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
7873  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
7874  F->insert(It, loopMBB);
7875  F->insert(It, exitMBB);
7876  exitMBB->splice(exitMBB->begin(), BB,
7877                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
7878  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
7879
7880  MachineRegisterInfo &RegInfo = F->getRegInfo();
7881  unsigned TmpReg = (!BinOpcode) ? incr :
7882    RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
7883                                           : &PPC::GPRCRegClass);
7884
7885  //  thisMBB:
7886  //   ...
7887  //   fallthrough --> loopMBB
7888  BB->addSuccessor(loopMBB);
7889
7890  //  loopMBB:
7891  //   l[wd]arx dest, ptr
7892  //   add r0, dest, incr
7893  //   st[wd]cx. r0, ptr
7894  //   bne- loopMBB
7895  //   fallthrough --> exitMBB
7896  BB = loopMBB;
7897  BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
7898    .addReg(ptrA).addReg(ptrB);
7899  if (BinOpcode)
7900    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
7901  BuildMI(BB, dl, TII->get(StoreMnemonic))
7902    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
7903  BuildMI(BB, dl, TII->get(PPC::BCC))
7904    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
7905  BB->addSuccessor(loopMBB);
7906  BB->addSuccessor(exitMBB);
7907
7908  //  exitMBB:
7909  //   ...
7910  BB = exitMBB;
7911  return BB;
7912}
7913
7914MachineBasicBlock *
7915PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
7916                                            MachineBasicBlock *BB,
7917                                            bool is8bit,    // operation
7918                                            unsigned BinOpcode) const {
7919  // If we support part-word atomic mnemonics, just use them
7920  if (Subtarget.hasPartwordAtomics())
7921    return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode);
7922
7923  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
7924  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
7925  // In 64 bit mode we have to use 64 bits for addresses, even though the
7926  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
7927  // registers without caring whether they're 32 or 64, but here we're
7928  // doing actual arithmetic on the addresses.
7929  bool is64bit = Subtarget.isPPC64();
7930  unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
7931
7932  const BasicBlock *LLVM_BB = BB->getBasicBlock();
7933  MachineFunction *F = BB->getParent();
7934  MachineFunction::iterator It = BB;
7935  ++It;
7936
7937  unsigned dest = MI->getOperand(0).getReg();
7938  unsigned ptrA = MI->getOperand(1).getReg();
7939  unsigned ptrB = MI->getOperand(2).getReg();
7940  unsigned incr = MI->getOperand(3).getReg();
7941  DebugLoc dl = MI->getDebugLoc();
7942
7943  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
7944  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
7945  F->insert(It, loopMBB);
7946  F->insert(It, exitMBB);
7947  exitMBB->splice(exitMBB->begin(), BB,
7948                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
7949  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
7950
7951  MachineRegisterInfo &RegInfo = F->getRegInfo();
7952  const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
7953                                          : &PPC::GPRCRegClass;
7954  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
7955  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
7956  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
7957  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
7958  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
7959  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
7960  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
7961  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
7962  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
7963  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
7964  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
7965  unsigned Ptr1Reg;
7966  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
7967
7968  //  thisMBB:
7969  //   ...
7970  //   fallthrough --> loopMBB
7971  BB->addSuccessor(loopMBB);
7972
7973  // The 4-byte load must be aligned, while a char or short may be
7974  // anywhere in the word.  Hence all this nasty bookkeeping code.
7975  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
7976  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
7977  //   xori shift, shift1, 24 [16]
7978  //   rlwinm ptr, ptr1, 0, 0, 29
7979  //   slw incr2, incr, shift
7980  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
7981  //   slw mask, mask2, shift
7982  //  loopMBB:
7983  //   lwarx tmpDest, ptr
7984  //   add tmp, tmpDest, incr2
7985  //   andc tmp2, tmpDest, mask
7986  //   and tmp3, tmp, mask
7987  //   or tmp4, tmp3, tmp2
7988  //   stwcx. tmp4, ptr
7989  //   bne- loopMBB
7990  //   fallthrough --> exitMBB
7991  //   srw dest, tmpDest, shift
7992  if (ptrA != ZeroReg) {
7993    Ptr1Reg = RegInfo.createVirtualRegister(RC);
7994    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
7995      .addReg(ptrA).addReg(ptrB);
7996  } else {
7997    Ptr1Reg = ptrB;
7998  }
7999  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
8000      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
8001  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
8002      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
8003  if (is64bit)
8004    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
8005      .addReg(Ptr1Reg).addImm(0).addImm(61);
8006  else
8007    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
8008      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
8009  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
8010      .addReg(incr).addReg(ShiftReg);
8011  if (is8bit)
8012    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
8013  else {
8014    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
8015    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
8016  }
8017  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
8018      .addReg(Mask2Reg).addReg(ShiftReg);
8019
8020  BB = loopMBB;
8021  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
8022    .addReg(ZeroReg).addReg(PtrReg);
8023  if (BinOpcode)
8024    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
8025      .addReg(Incr2Reg).addReg(TmpDestReg);
8026  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
8027    .addReg(TmpDestReg).addReg(MaskReg);
8028  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
8029    .addReg(TmpReg).addReg(MaskReg);
8030  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
8031    .addReg(Tmp3Reg).addReg(Tmp2Reg);
8032  BuildMI(BB, dl, TII->get(PPC::STWCX))
8033    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
8034  BuildMI(BB, dl, TII->get(PPC::BCC))
8035    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8036  BB->addSuccessor(loopMBB);
8037  BB->addSuccessor(exitMBB);
8038
8039  //  exitMBB:
8040  //   ...
8041  BB = exitMBB;
8042  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
8043    .addReg(ShiftReg);
8044  return BB;
8045}
8046
8047llvm::MachineBasicBlock*
8048PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
8049                                    MachineBasicBlock *MBB) const {
8050  DebugLoc DL = MI->getDebugLoc();
8051  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8052
8053  MachineFunction *MF = MBB->getParent();
8054  MachineRegisterInfo &MRI = MF->getRegInfo();
8055
8056  const BasicBlock *BB = MBB->getBasicBlock();
8057  MachineFunction::iterator I = MBB;
8058  ++I;
8059
8060  // Memory Reference
8061  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
8062  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
8063
8064  unsigned DstReg = MI->getOperand(0).getReg();
8065  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
8066  assert(RC->hasType(MVT::i32) && "Invalid destination!");
8067  unsigned mainDstReg = MRI.createVirtualRegister(RC);
8068  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
8069
8070  MVT PVT = getPointerTy();
8071  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8072         "Invalid Pointer Size!");
8073  // For v = setjmp(buf), we generate
8074  //
8075  // thisMBB:
8076  //  SjLjSetup mainMBB
8077  //  bl mainMBB
8078  //  v_restore = 1
8079  //  b sinkMBB
8080  //
8081  // mainMBB:
8082  //  buf[LabelOffset] = LR
8083  //  v_main = 0
8084  //
8085  // sinkMBB:
8086  //  v = phi(main, restore)
8087  //
8088
8089  MachineBasicBlock *thisMBB = MBB;
8090  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
8091  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
8092  MF->insert(I, mainMBB);
8093  MF->insert(I, sinkMBB);
8094
8095  MachineInstrBuilder MIB;
8096
8097  // Transfer the remainder of BB and its successor edges to sinkMBB.
8098  sinkMBB->splice(sinkMBB->begin(), MBB,
8099                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
8100  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
8101
8102  // Note that the structure of the jmp_buf used here is not compatible
8103  // with that used by libc, and is not designed to be. Specifically, it
8104  // stores only those 'reserved' registers that LLVM does not otherwise
8105  // understand how to spill. Also, by convention, by the time this
8106  // intrinsic is called, Clang has already stored the frame address in the
8107  // first slot of the buffer and stack address in the third. Following the
8108  // X86 target code, we'll store the jump address in the second slot. We also
8109  // need to save the TOC pointer (R2) to handle jumps between shared
8110  // libraries, and that will be stored in the fourth slot. The thread
8111  // identifier (R13) is not affected.
8112
8113  // thisMBB:
8114  const int64_t LabelOffset = 1 * PVT.getStoreSize();
8115  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
8116  const int64_t BPOffset    = 4 * PVT.getStoreSize();
8117
8118  // Prepare IP either in reg.
8119  const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
8120  unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
8121  unsigned BufReg = MI->getOperand(1).getReg();
8122
8123  if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
8124    setUsesTOCBasePtr(*MBB->getParent());
8125    MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
8126            .addReg(PPC::X2)
8127            .addImm(TOCOffset)
8128            .addReg(BufReg);
8129    MIB.setMemRefs(MMOBegin, MMOEnd);
8130  }
8131
8132  // Naked functions never have a base pointer, and so we use r1. For all
8133  // other functions, this decision must be delayed until during PEI.
8134  unsigned BaseReg;
8135  if (MF->getFunction()->hasFnAttribute(Attribute::Naked))
8136    BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
8137  else
8138    BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
8139
8140  MIB = BuildMI(*thisMBB, MI, DL,
8141                TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
8142            .addReg(BaseReg)
8143            .addImm(BPOffset)
8144            .addReg(BufReg);
8145  MIB.setMemRefs(MMOBegin, MMOEnd);
8146
8147  // Setup
8148  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
8149  const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
8150  MIB.addRegMask(TRI->getNoPreservedMask());
8151
8152  BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
8153
8154  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
8155          .addMBB(mainMBB);
8156  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
8157
8158  thisMBB->addSuccessor(mainMBB, /* weight */ 0);
8159  thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
8160
8161  // mainMBB:
8162  //  mainDstReg = 0
8163  MIB =
8164      BuildMI(mainMBB, DL,
8165              TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
8166
8167  // Store IP
8168  if (Subtarget.isPPC64()) {
8169    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
8170            .addReg(LabelReg)
8171            .addImm(LabelOffset)
8172            .addReg(BufReg);
8173  } else {
8174    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
8175            .addReg(LabelReg)
8176            .addImm(LabelOffset)
8177            .addReg(BufReg);
8178  }
8179
8180  MIB.setMemRefs(MMOBegin, MMOEnd);
8181
8182  BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
8183  mainMBB->addSuccessor(sinkMBB);
8184
8185  // sinkMBB:
8186  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
8187          TII->get(PPC::PHI), DstReg)
8188    .addReg(mainDstReg).addMBB(mainMBB)
8189    .addReg(restoreDstReg).addMBB(thisMBB);
8190
8191  MI->eraseFromParent();
8192  return sinkMBB;
8193}
8194
8195MachineBasicBlock *
8196PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
8197                                     MachineBasicBlock *MBB) const {
8198  DebugLoc DL = MI->getDebugLoc();
8199  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8200
8201  MachineFunction *MF = MBB->getParent();
8202  MachineRegisterInfo &MRI = MF->getRegInfo();
8203
8204  // Memory Reference
8205  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
8206  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
8207
8208  MVT PVT = getPointerTy();
8209  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8210         "Invalid Pointer Size!");
8211
8212  const TargetRegisterClass *RC =
8213    (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
8214  unsigned Tmp = MRI.createVirtualRegister(RC);
8215  // Since FP is only updated here but NOT referenced, it's treated as GPR.
8216  unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
8217  unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
8218  unsigned BP =
8219      (PVT == MVT::i64)
8220          ? PPC::X30
8221          : (Subtarget.isSVR4ABI() &&
8222                     MF->getTarget().getRelocationModel() == Reloc::PIC_
8223                 ? PPC::R29
8224                 : PPC::R30);
8225
8226  MachineInstrBuilder MIB;
8227
8228  const int64_t LabelOffset = 1 * PVT.getStoreSize();
8229  const int64_t SPOffset    = 2 * PVT.getStoreSize();
8230  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
8231  const int64_t BPOffset    = 4 * PVT.getStoreSize();
8232
8233  unsigned BufReg = MI->getOperand(0).getReg();
8234
8235  // Reload FP (the jumped-to function may not have had a
8236  // frame pointer, and if so, then its r31 will be restored
8237  // as necessary).
8238  if (PVT == MVT::i64) {
8239    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
8240            .addImm(0)
8241            .addReg(BufReg);
8242  } else {
8243    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
8244            .addImm(0)
8245            .addReg(BufReg);
8246  }
8247  MIB.setMemRefs(MMOBegin, MMOEnd);
8248
8249  // Reload IP
8250  if (PVT == MVT::i64) {
8251    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
8252            .addImm(LabelOffset)
8253            .addReg(BufReg);
8254  } else {
8255    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
8256            .addImm(LabelOffset)
8257            .addReg(BufReg);
8258  }
8259  MIB.setMemRefs(MMOBegin, MMOEnd);
8260
8261  // Reload SP
8262  if (PVT == MVT::i64) {
8263    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
8264            .addImm(SPOffset)
8265            .addReg(BufReg);
8266  } else {
8267    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
8268            .addImm(SPOffset)
8269            .addReg(BufReg);
8270  }
8271  MIB.setMemRefs(MMOBegin, MMOEnd);
8272
8273  // Reload BP
8274  if (PVT == MVT::i64) {
8275    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
8276            .addImm(BPOffset)
8277            .addReg(BufReg);
8278  } else {
8279    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
8280            .addImm(BPOffset)
8281            .addReg(BufReg);
8282  }
8283  MIB.setMemRefs(MMOBegin, MMOEnd);
8284
8285  // Reload TOC
8286  if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
8287    setUsesTOCBasePtr(*MBB->getParent());
8288    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
8289            .addImm(TOCOffset)
8290            .addReg(BufReg);
8291
8292    MIB.setMemRefs(MMOBegin, MMOEnd);
8293  }
8294
8295  // Jump
8296  BuildMI(*MBB, MI, DL,
8297          TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
8298  BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
8299
8300  MI->eraseFromParent();
8301  return MBB;
8302}
8303
8304MachineBasicBlock *
8305PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8306                                               MachineBasicBlock *BB) const {
8307  if (MI->getOpcode() == TargetOpcode::STACKMAP ||
8308      MI->getOpcode() == TargetOpcode::PATCHPOINT) {
8309    if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
8310        MI->getOpcode() == TargetOpcode::PATCHPOINT) {
8311      // Call lowering should have added an r2 operand to indicate a dependence
8312      // on the TOC base pointer value. It can't however, because there is no
8313      // way to mark the dependence as implicit there, and so the stackmap code
8314      // will confuse it with a regular operand. Instead, add the dependence
8315      // here.
8316      setUsesTOCBasePtr(*BB->getParent());
8317      MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
8318    }
8319
8320    return emitPatchPoint(MI, BB);
8321  }
8322
8323  if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
8324      MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
8325    return emitEHSjLjSetJmp(MI, BB);
8326  } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
8327             MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
8328    return emitEHSjLjLongJmp(MI, BB);
8329  }
8330
8331  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8332
8333  // To "insert" these instructions we actually have to insert their
8334  // control-flow patterns.
8335  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8336  MachineFunction::iterator It = BB;
8337  ++It;
8338
8339  MachineFunction *F = BB->getParent();
8340
8341  if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8342                              MI->getOpcode() == PPC::SELECT_CC_I8 ||
8343                              MI->getOpcode() == PPC::SELECT_I4 ||
8344                              MI->getOpcode() == PPC::SELECT_I8)) {
8345    SmallVector<MachineOperand, 2> Cond;
8346    if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8347        MI->getOpcode() == PPC::SELECT_CC_I8)
8348      Cond.push_back(MI->getOperand(4));
8349    else
8350      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
8351    Cond.push_back(MI->getOperand(1));
8352
8353    DebugLoc dl = MI->getDebugLoc();
8354    TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
8355                      Cond, MI->getOperand(2).getReg(),
8356                      MI->getOperand(3).getReg());
8357  } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8358             MI->getOpcode() == PPC::SELECT_CC_I8 ||
8359             MI->getOpcode() == PPC::SELECT_CC_F4 ||
8360             MI->getOpcode() == PPC::SELECT_CC_F8 ||
8361             MI->getOpcode() == PPC::SELECT_CC_QFRC ||
8362             MI->getOpcode() == PPC::SELECT_CC_QSRC ||
8363             MI->getOpcode() == PPC::SELECT_CC_QBRC ||
8364             MI->getOpcode() == PPC::SELECT_CC_VRRC ||
8365             MI->getOpcode() == PPC::SELECT_CC_VSFRC ||
8366             MI->getOpcode() == PPC::SELECT_CC_VSRC ||
8367             MI->getOpcode() == PPC::SELECT_I4 ||
8368             MI->getOpcode() == PPC::SELECT_I8 ||
8369             MI->getOpcode() == PPC::SELECT_F4 ||
8370             MI->getOpcode() == PPC::SELECT_F8 ||
8371             MI->getOpcode() == PPC::SELECT_QFRC ||
8372             MI->getOpcode() == PPC::SELECT_QSRC ||
8373             MI->getOpcode() == PPC::SELECT_QBRC ||
8374             MI->getOpcode() == PPC::SELECT_VRRC ||
8375             MI->getOpcode() == PPC::SELECT_VSFRC ||
8376             MI->getOpcode() == PPC::SELECT_VSRC) {
8377    // The incoming instruction knows the destination vreg to set, the
8378    // condition code register to branch on, the true/false values to
8379    // select between, and a branch opcode to use.
8380
8381    //  thisMBB:
8382    //  ...
8383    //   TrueVal = ...
8384    //   cmpTY ccX, r1, r2
8385    //   bCC copy1MBB
8386    //   fallthrough --> copy0MBB
8387    MachineBasicBlock *thisMBB = BB;
8388    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8389    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8390    DebugLoc dl = MI->getDebugLoc();
8391    F->insert(It, copy0MBB);
8392    F->insert(It, sinkMBB);
8393
8394    // Transfer the remainder of BB and its successor edges to sinkMBB.
8395    sinkMBB->splice(sinkMBB->begin(), BB,
8396                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
8397    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8398
8399    // Next, add the true and fallthrough blocks as its successors.
8400    BB->addSuccessor(copy0MBB);
8401    BB->addSuccessor(sinkMBB);
8402
8403    if (MI->getOpcode() == PPC::SELECT_I4 ||
8404        MI->getOpcode() == PPC::SELECT_I8 ||
8405        MI->getOpcode() == PPC::SELECT_F4 ||
8406        MI->getOpcode() == PPC::SELECT_F8 ||
8407        MI->getOpcode() == PPC::SELECT_QFRC ||
8408        MI->getOpcode() == PPC::SELECT_QSRC ||
8409        MI->getOpcode() == PPC::SELECT_QBRC ||
8410        MI->getOpcode() == PPC::SELECT_VRRC ||
8411        MI->getOpcode() == PPC::SELECT_VSFRC ||
8412        MI->getOpcode() == PPC::SELECT_VSRC) {
8413      BuildMI(BB, dl, TII->get(PPC::BC))
8414        .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
8415    } else {
8416      unsigned SelectPred = MI->getOperand(4).getImm();
8417      BuildMI(BB, dl, TII->get(PPC::BCC))
8418        .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
8419    }
8420
8421    //  copy0MBB:
8422    //   %FalseValue = ...
8423    //   # fallthrough to sinkMBB
8424    BB = copy0MBB;
8425
8426    // Update machine-CFG edges
8427    BB->addSuccessor(sinkMBB);
8428
8429    //  sinkMBB:
8430    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8431    //  ...
8432    BB = sinkMBB;
8433    BuildMI(*BB, BB->begin(), dl,
8434            TII->get(PPC::PHI), MI->getOperand(0).getReg())
8435      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
8436      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8437  } else if (MI->getOpcode() == PPC::ReadTB) {
8438    // To read the 64-bit time-base register on a 32-bit target, we read the
8439    // two halves. Should the counter have wrapped while it was being read, we
8440    // need to try again.
8441    // ...
8442    // readLoop:
8443    // mfspr Rx,TBU # load from TBU
8444    // mfspr Ry,TB  # load from TB
8445    // mfspr Rz,TBU # load from TBU
8446    // cmpw crX,Rx,Rz # check if ‘old’=’new’
8447    // bne readLoop   # branch if they're not equal
8448    // ...
8449
8450    MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
8451    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8452    DebugLoc dl = MI->getDebugLoc();
8453    F->insert(It, readMBB);
8454    F->insert(It, sinkMBB);
8455
8456    // Transfer the remainder of BB and its successor edges to sinkMBB.
8457    sinkMBB->splice(sinkMBB->begin(), BB,
8458                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
8459    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8460
8461    BB->addSuccessor(readMBB);
8462    BB = readMBB;
8463
8464    MachineRegisterInfo &RegInfo = F->getRegInfo();
8465    unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
8466    unsigned LoReg = MI->getOperand(0).getReg();
8467    unsigned HiReg = MI->getOperand(1).getReg();
8468
8469    BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
8470    BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
8471    BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
8472
8473    unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
8474
8475    BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
8476      .addReg(HiReg).addReg(ReadAgainReg);
8477    BuildMI(BB, dl, TII->get(PPC::BCC))
8478      .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
8479
8480    BB->addSuccessor(readMBB);
8481    BB->addSuccessor(sinkMBB);
8482  }
8483  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
8484    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
8485  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
8486    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
8487  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
8488    BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
8489  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
8490    BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
8491
8492  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
8493    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
8494  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
8495    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
8496  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
8497    BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
8498  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
8499    BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
8500
8501  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
8502    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
8503  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
8504    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
8505  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
8506    BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
8507  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
8508    BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
8509
8510  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
8511    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
8512  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
8513    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
8514  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
8515    BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
8516  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
8517    BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
8518
8519  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
8520    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
8521  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
8522    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
8523  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
8524    BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
8525  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
8526    BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
8527
8528  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
8529    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
8530  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
8531    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
8532  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
8533    BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
8534  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
8535    BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
8536
8537  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
8538    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
8539  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
8540    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
8541  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
8542    BB = EmitAtomicBinary(MI, BB, 4, 0);
8543  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
8544    BB = EmitAtomicBinary(MI, BB, 8, 0);
8545
8546  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
8547           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
8548           (Subtarget.hasPartwordAtomics() &&
8549            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
8550           (Subtarget.hasPartwordAtomics() &&
8551            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
8552    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
8553
8554    auto LoadMnemonic = PPC::LDARX;
8555    auto StoreMnemonic = PPC::STDCX;
8556    switch(MI->getOpcode()) {
8557    default:
8558      llvm_unreachable("Compare and swap of unknown size");
8559    case PPC::ATOMIC_CMP_SWAP_I8:
8560      LoadMnemonic = PPC::LBARX;
8561      StoreMnemonic = PPC::STBCX;
8562      assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
8563      break;
8564    case PPC::ATOMIC_CMP_SWAP_I16:
8565      LoadMnemonic = PPC::LHARX;
8566      StoreMnemonic = PPC::STHCX;
8567      assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
8568      break;
8569    case PPC::ATOMIC_CMP_SWAP_I32:
8570      LoadMnemonic = PPC::LWARX;
8571      StoreMnemonic = PPC::STWCX;
8572      break;
8573    case PPC::ATOMIC_CMP_SWAP_I64:
8574      LoadMnemonic = PPC::LDARX;
8575      StoreMnemonic = PPC::STDCX;
8576      break;
8577    }
8578    unsigned dest   = MI->getOperand(0).getReg();
8579    unsigned ptrA   = MI->getOperand(1).getReg();
8580    unsigned ptrB   = MI->getOperand(2).getReg();
8581    unsigned oldval = MI->getOperand(3).getReg();
8582    unsigned newval = MI->getOperand(4).getReg();
8583    DebugLoc dl     = MI->getDebugLoc();
8584
8585    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
8586    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
8587    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
8588    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8589    F->insert(It, loop1MBB);
8590    F->insert(It, loop2MBB);
8591    F->insert(It, midMBB);
8592    F->insert(It, exitMBB);
8593    exitMBB->splice(exitMBB->begin(), BB,
8594                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
8595    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8596
8597    //  thisMBB:
8598    //   ...
8599    //   fallthrough --> loopMBB
8600    BB->addSuccessor(loop1MBB);
8601
8602    // loop1MBB:
8603    //   l[bhwd]arx dest, ptr
8604    //   cmp[wd] dest, oldval
8605    //   bne- midMBB
8606    // loop2MBB:
8607    //   st[bhwd]cx. newval, ptr
8608    //   bne- loopMBB
8609    //   b exitBB
8610    // midMBB:
8611    //   st[bhwd]cx. dest, ptr
8612    // exitBB:
8613    BB = loop1MBB;
8614    BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
8615      .addReg(ptrA).addReg(ptrB);
8616    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
8617      .addReg(oldval).addReg(dest);
8618    BuildMI(BB, dl, TII->get(PPC::BCC))
8619      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
8620    BB->addSuccessor(loop2MBB);
8621    BB->addSuccessor(midMBB);
8622
8623    BB = loop2MBB;
8624    BuildMI(BB, dl, TII->get(StoreMnemonic))
8625      .addReg(newval).addReg(ptrA).addReg(ptrB);
8626    BuildMI(BB, dl, TII->get(PPC::BCC))
8627      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
8628    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
8629    BB->addSuccessor(loop1MBB);
8630    BB->addSuccessor(exitMBB);
8631
8632    BB = midMBB;
8633    BuildMI(BB, dl, TII->get(StoreMnemonic))
8634      .addReg(dest).addReg(ptrA).addReg(ptrB);
8635    BB->addSuccessor(exitMBB);
8636
8637    //  exitMBB:
8638    //   ...
8639    BB = exitMBB;
8640  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
8641             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
8642    // We must use 64-bit registers for addresses when targeting 64-bit,
8643    // since we're actually doing arithmetic on them.  Other registers
8644    // can be 32-bit.
8645    bool is64bit = Subtarget.isPPC64();
8646    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
8647
8648    unsigned dest   = MI->getOperand(0).getReg();
8649    unsigned ptrA   = MI->getOperand(1).getReg();
8650    unsigned ptrB   = MI->getOperand(2).getReg();
8651    unsigned oldval = MI->getOperand(3).getReg();
8652    unsigned newval = MI->getOperand(4).getReg();
8653    DebugLoc dl     = MI->getDebugLoc();
8654
8655    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
8656    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
8657    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
8658    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8659    F->insert(It, loop1MBB);
8660    F->insert(It, loop2MBB);
8661    F->insert(It, midMBB);
8662    F->insert(It, exitMBB);
8663    exitMBB->splice(exitMBB->begin(), BB,
8664                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
8665    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8666
8667    MachineRegisterInfo &RegInfo = F->getRegInfo();
8668    const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
8669                                            : &PPC::GPRCRegClass;
8670    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
8671    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
8672    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
8673    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
8674    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
8675    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
8676    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
8677    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
8678    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
8679    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
8680    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
8681    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
8682    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
8683    unsigned Ptr1Reg;
8684    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
8685    unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
8686    //  thisMBB:
8687    //   ...
8688    //   fallthrough --> loopMBB
8689    BB->addSuccessor(loop1MBB);
8690
8691    // The 4-byte load must be aligned, while a char or short may be
8692    // anywhere in the word.  Hence all this nasty bookkeeping code.
8693    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
8694    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
8695    //   xori shift, shift1, 24 [16]
8696    //   rlwinm ptr, ptr1, 0, 0, 29
8697    //   slw newval2, newval, shift
8698    //   slw oldval2, oldval,shift
8699    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
8700    //   slw mask, mask2, shift
8701    //   and newval3, newval2, mask
8702    //   and oldval3, oldval2, mask
8703    // loop1MBB:
8704    //   lwarx tmpDest, ptr
8705    //   and tmp, tmpDest, mask
8706    //   cmpw tmp, oldval3
8707    //   bne- midMBB
8708    // loop2MBB:
8709    //   andc tmp2, tmpDest, mask
8710    //   or tmp4, tmp2, newval3
8711    //   stwcx. tmp4, ptr
8712    //   bne- loop1MBB
8713    //   b exitBB
8714    // midMBB:
8715    //   stwcx. tmpDest, ptr
8716    // exitBB:
8717    //   srw dest, tmpDest, shift
8718    if (ptrA != ZeroReg) {
8719      Ptr1Reg = RegInfo.createVirtualRegister(RC);
8720      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
8721        .addReg(ptrA).addReg(ptrB);
8722    } else {
8723      Ptr1Reg = ptrB;
8724    }
8725    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
8726        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
8727    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
8728        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
8729    if (is64bit)
8730      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
8731        .addReg(Ptr1Reg).addImm(0).addImm(61);
8732    else
8733      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
8734        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
8735    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
8736        .addReg(newval).addReg(ShiftReg);
8737    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
8738        .addReg(oldval).addReg(ShiftReg);
8739    if (is8bit)
8740      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
8741    else {
8742      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
8743      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
8744        .addReg(Mask3Reg).addImm(65535);
8745    }
8746    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
8747        .addReg(Mask2Reg).addReg(ShiftReg);
8748    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
8749        .addReg(NewVal2Reg).addReg(MaskReg);
8750    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
8751        .addReg(OldVal2Reg).addReg(MaskReg);
8752
8753    BB = loop1MBB;
8754    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
8755        .addReg(ZeroReg).addReg(PtrReg);
8756    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
8757        .addReg(TmpDestReg).addReg(MaskReg);
8758    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
8759        .addReg(TmpReg).addReg(OldVal3Reg);
8760    BuildMI(BB, dl, TII->get(PPC::BCC))
8761        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
8762    BB->addSuccessor(loop2MBB);
8763    BB->addSuccessor(midMBB);
8764
8765    BB = loop2MBB;
8766    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
8767        .addReg(TmpDestReg).addReg(MaskReg);
8768    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
8769        .addReg(Tmp2Reg).addReg(NewVal3Reg);
8770    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
8771        .addReg(ZeroReg).addReg(PtrReg);
8772    BuildMI(BB, dl, TII->get(PPC::BCC))
8773      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
8774    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
8775    BB->addSuccessor(loop1MBB);
8776    BB->addSuccessor(exitMBB);
8777
8778    BB = midMBB;
8779    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
8780      .addReg(ZeroReg).addReg(PtrReg);
8781    BB->addSuccessor(exitMBB);
8782
8783    //  exitMBB:
8784    //   ...
8785    BB = exitMBB;
8786    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
8787      .addReg(ShiftReg);
8788  } else if (MI->getOpcode() == PPC::FADDrtz) {
8789    // This pseudo performs an FADD with rounding mode temporarily forced
8790    // to round-to-zero.  We emit this via custom inserter since the FPSCR
8791    // is not modeled at the SelectionDAG level.
8792    unsigned Dest = MI->getOperand(0).getReg();
8793    unsigned Src1 = MI->getOperand(1).getReg();
8794    unsigned Src2 = MI->getOperand(2).getReg();
8795    DebugLoc dl   = MI->getDebugLoc();
8796
8797    MachineRegisterInfo &RegInfo = F->getRegInfo();
8798    unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
8799
8800    // Save FPSCR value.
8801    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
8802
8803    // Set rounding mode to round-to-zero.
8804    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
8805    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
8806
8807    // Perform addition.
8808    BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
8809
8810    // Restore FPSCR value.
8811    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
8812  } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
8813             MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
8814             MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
8815             MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
8816    unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
8817                       MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
8818                      PPC::ANDIo8 : PPC::ANDIo;
8819    bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
8820                 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
8821
8822    MachineRegisterInfo &RegInfo = F->getRegInfo();
8823    unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
8824                                                  &PPC::GPRCRegClass :
8825                                                  &PPC::G8RCRegClass);
8826
8827    DebugLoc dl   = MI->getDebugLoc();
8828    BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
8829      .addReg(MI->getOperand(1).getReg()).addImm(1);
8830    BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
8831            MI->getOperand(0).getReg())
8832      .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
8833  } else if (MI->getOpcode() == PPC::TCHECK_RET) {
8834    DebugLoc Dl = MI->getDebugLoc();
8835    MachineRegisterInfo &RegInfo = F->getRegInfo();
8836    unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
8837    BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
8838    return BB;
8839  } else {
8840    llvm_unreachable("Unexpected instr type to insert");
8841  }
8842
8843  MI->eraseFromParent();   // The pseudo instruction is gone now.
8844  return BB;
8845}
8846
8847//===----------------------------------------------------------------------===//
8848// Target Optimization Hooks
8849//===----------------------------------------------------------------------===//
8850
8851SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand,
8852                                            DAGCombinerInfo &DCI,
8853                                            unsigned &RefinementSteps,
8854                                            bool &UseOneConstNR) const {
8855  EVT VT = Operand.getValueType();
8856  if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
8857      (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
8858      (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
8859      (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
8860      (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
8861      (VT == MVT::v4f64 && Subtarget.hasQPX())) {
8862    // Convergence is quadratic, so we essentially double the number of digits
8863    // correct after every iteration. For both FRE and FRSQRTE, the minimum
8864    // architected relative accuracy is 2^-5. When hasRecipPrec(), this is
8865    // 2^-14. IEEE float has 23 digits and double has 52 digits.
8866    RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
8867    if (VT.getScalarType() == MVT::f64)
8868      ++RefinementSteps;
8869    UseOneConstNR = true;
8870    return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
8871  }
8872  return SDValue();
8873}
8874
8875SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand,
8876                                            DAGCombinerInfo &DCI,
8877                                            unsigned &RefinementSteps) const {
8878  EVT VT = Operand.getValueType();
8879  if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
8880      (VT == MVT::f64 && Subtarget.hasFRE()) ||
8881      (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
8882      (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
8883      (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
8884      (VT == MVT::v4f64 && Subtarget.hasQPX())) {
8885    // Convergence is quadratic, so we essentially double the number of digits
8886    // correct after every iteration. For both FRE and FRSQRTE, the minimum
8887    // architected relative accuracy is 2^-5. When hasRecipPrec(), this is
8888    // 2^-14. IEEE float has 23 digits and double has 52 digits.
8889    RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
8890    if (VT.getScalarType() == MVT::f64)
8891      ++RefinementSteps;
8892    return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
8893  }
8894  return SDValue();
8895}
8896
8897bool PPCTargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
8898  // Note: This functionality is used only when unsafe-fp-math is enabled, and
8899  // on cores with reciprocal estimates (which are used when unsafe-fp-math is
8900  // enabled for division), this functionality is redundant with the default
8901  // combiner logic (once the division -> reciprocal/multiply transformation
8902  // has taken place). As a result, this matters more for older cores than for
8903  // newer ones.
8904
8905  // Combine multiple FDIVs with the same divisor into multiple FMULs by the
8906  // reciprocal if there are two or more FDIVs (for embedded cores with only
8907  // one FP pipeline) for three or more FDIVs (for generic OOO cores).
8908  switch (Subtarget.getDarwinDirective()) {
8909  default:
8910    return NumUsers > 2;
8911  case PPC::DIR_440:
8912  case PPC::DIR_A2:
8913  case PPC::DIR_E500mc:
8914  case PPC::DIR_E5500:
8915    return NumUsers > 1;
8916  }
8917}
8918
8919static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
8920                            unsigned Bytes, int Dist,
8921                            SelectionDAG &DAG) {
8922  if (VT.getSizeInBits() / 8 != Bytes)
8923    return false;
8924
8925  SDValue BaseLoc = Base->getBasePtr();
8926  if (Loc.getOpcode() == ISD::FrameIndex) {
8927    if (BaseLoc.getOpcode() != ISD::FrameIndex)
8928      return false;
8929    const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8930    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
8931    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
8932    int FS  = MFI->getObjectSize(FI);
8933    int BFS = MFI->getObjectSize(BFI);
8934    if (FS != BFS || FS != (int)Bytes) return false;
8935    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
8936  }
8937
8938  // Handle X+C
8939  if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
8940      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
8941    return true;
8942
8943  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8944  const GlobalValue *GV1 = nullptr;
8945  const GlobalValue *GV2 = nullptr;
8946  int64_t Offset1 = 0;
8947  int64_t Offset2 = 0;
8948  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
8949  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
8950  if (isGA1 && isGA2 && GV1 == GV2)
8951    return Offset1 == (Offset2 + Dist*Bytes);
8952  return false;
8953}
8954
8955// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
8956// not enforce equality of the chain operands.
8957static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
8958                            unsigned Bytes, int Dist,
8959                            SelectionDAG &DAG) {
8960  if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
8961    EVT VT = LS->getMemoryVT();
8962    SDValue Loc = LS->getBasePtr();
8963    return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
8964  }
8965
8966  if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
8967    EVT VT;
8968    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8969    default: return false;
8970    case Intrinsic::ppc_qpx_qvlfd:
8971    case Intrinsic::ppc_qpx_qvlfda:
8972      VT = MVT::v4f64;
8973      break;
8974    case Intrinsic::ppc_qpx_qvlfs:
8975    case Intrinsic::ppc_qpx_qvlfsa:
8976      VT = MVT::v4f32;
8977      break;
8978    case Intrinsic::ppc_qpx_qvlfcd:
8979    case Intrinsic::ppc_qpx_qvlfcda:
8980      VT = MVT::v2f64;
8981      break;
8982    case Intrinsic::ppc_qpx_qvlfcs:
8983    case Intrinsic::ppc_qpx_qvlfcsa:
8984      VT = MVT::v2f32;
8985      break;
8986    case Intrinsic::ppc_qpx_qvlfiwa:
8987    case Intrinsic::ppc_qpx_qvlfiwz:
8988    case Intrinsic::ppc_altivec_lvx:
8989    case Intrinsic::ppc_altivec_lvxl:
8990    case Intrinsic::ppc_vsx_lxvw4x:
8991      VT = MVT::v4i32;
8992      break;
8993    case Intrinsic::ppc_vsx_lxvd2x:
8994      VT = MVT::v2f64;
8995      break;
8996    case Intrinsic::ppc_altivec_lvebx:
8997      VT = MVT::i8;
8998      break;
8999    case Intrinsic::ppc_altivec_lvehx:
9000      VT = MVT::i16;
9001      break;
9002    case Intrinsic::ppc_altivec_lvewx:
9003      VT = MVT::i32;
9004      break;
9005    }
9006
9007    return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
9008  }
9009
9010  if (N->getOpcode() == ISD::INTRINSIC_VOID) {
9011    EVT VT;
9012    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9013    default: return false;
9014    case Intrinsic::ppc_qpx_qvstfd:
9015    case Intrinsic::ppc_qpx_qvstfda:
9016      VT = MVT::v4f64;
9017      break;
9018    case Intrinsic::ppc_qpx_qvstfs:
9019    case Intrinsic::ppc_qpx_qvstfsa:
9020      VT = MVT::v4f32;
9021      break;
9022    case Intrinsic::ppc_qpx_qvstfcd:
9023    case Intrinsic::ppc_qpx_qvstfcda:
9024      VT = MVT::v2f64;
9025      break;
9026    case Intrinsic::ppc_qpx_qvstfcs:
9027    case Intrinsic::ppc_qpx_qvstfcsa:
9028      VT = MVT::v2f32;
9029      break;
9030    case Intrinsic::ppc_qpx_qvstfiw:
9031    case Intrinsic::ppc_qpx_qvstfiwa:
9032    case Intrinsic::ppc_altivec_stvx:
9033    case Intrinsic::ppc_altivec_stvxl:
9034    case Intrinsic::ppc_vsx_stxvw4x:
9035      VT = MVT::v4i32;
9036      break;
9037    case Intrinsic::ppc_vsx_stxvd2x:
9038      VT = MVT::v2f64;
9039      break;
9040    case Intrinsic::ppc_altivec_stvebx:
9041      VT = MVT::i8;
9042      break;
9043    case Intrinsic::ppc_altivec_stvehx:
9044      VT = MVT::i16;
9045      break;
9046    case Intrinsic::ppc_altivec_stvewx:
9047      VT = MVT::i32;
9048      break;
9049    }
9050
9051    return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
9052  }
9053
9054  return false;
9055}
9056
9057// Return true is there is a nearyby consecutive load to the one provided
9058// (regardless of alignment). We search up and down the chain, looking though
9059// token factors and other loads (but nothing else). As a result, a true result
9060// indicates that it is safe to create a new consecutive load adjacent to the
9061// load provided.
9062static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
9063  SDValue Chain = LD->getChain();
9064  EVT VT = LD->getMemoryVT();
9065
9066  SmallSet<SDNode *, 16> LoadRoots;
9067  SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
9068  SmallSet<SDNode *, 16> Visited;
9069
9070  // First, search up the chain, branching to follow all token-factor operands.
9071  // If we find a consecutive load, then we're done, otherwise, record all
9072  // nodes just above the top-level loads and token factors.
9073  while (!Queue.empty()) {
9074    SDNode *ChainNext = Queue.pop_back_val();
9075    if (!Visited.insert(ChainNext).second)
9076      continue;
9077
9078    if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
9079      if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9080        return true;
9081
9082      if (!Visited.count(ChainLD->getChain().getNode()))
9083        Queue.push_back(ChainLD->getChain().getNode());
9084    } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
9085      for (const SDUse &O : ChainNext->ops())
9086        if (!Visited.count(O.getNode()))
9087          Queue.push_back(O.getNode());
9088    } else
9089      LoadRoots.insert(ChainNext);
9090  }
9091
9092  // Second, search down the chain, starting from the top-level nodes recorded
9093  // in the first phase. These top-level nodes are the nodes just above all
9094  // loads and token factors. Starting with their uses, recursively look though
9095  // all loads (just the chain uses) and token factors to find a consecutive
9096  // load.
9097  Visited.clear();
9098  Queue.clear();
9099
9100  for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
9101       IE = LoadRoots.end(); I != IE; ++I) {
9102    Queue.push_back(*I);
9103
9104    while (!Queue.empty()) {
9105      SDNode *LoadRoot = Queue.pop_back_val();
9106      if (!Visited.insert(LoadRoot).second)
9107        continue;
9108
9109      if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
9110        if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9111          return true;
9112
9113      for (SDNode::use_iterator UI = LoadRoot->use_begin(),
9114           UE = LoadRoot->use_end(); UI != UE; ++UI)
9115        if (((isa<MemSDNode>(*UI) &&
9116            cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
9117            UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
9118          Queue.push_back(*UI);
9119    }
9120  }
9121
9122  return false;
9123}
9124
9125SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
9126                                                  DAGCombinerInfo &DCI) const {
9127  SelectionDAG &DAG = DCI.DAG;
9128  SDLoc dl(N);
9129
9130  assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
9131  // If we're tracking CR bits, we need to be careful that we don't have:
9132  //   trunc(binary-ops(zext(x), zext(y)))
9133  // or
9134  //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
9135  // such that we're unnecessarily moving things into GPRs when it would be
9136  // better to keep them in CR bits.
9137
9138  // Note that trunc here can be an actual i1 trunc, or can be the effective
9139  // truncation that comes from a setcc or select_cc.
9140  if (N->getOpcode() == ISD::TRUNCATE &&
9141      N->getValueType(0) != MVT::i1)
9142    return SDValue();
9143
9144  if (N->getOperand(0).getValueType() != MVT::i32 &&
9145      N->getOperand(0).getValueType() != MVT::i64)
9146    return SDValue();
9147
9148  if (N->getOpcode() == ISD::SETCC ||
9149      N->getOpcode() == ISD::SELECT_CC) {
9150    // If we're looking at a comparison, then we need to make sure that the
9151    // high bits (all except for the first) don't matter the result.
9152    ISD::CondCode CC =
9153      cast<CondCodeSDNode>(N->getOperand(
9154        N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
9155    unsigned OpBits = N->getOperand(0).getValueSizeInBits();
9156
9157    if (ISD::isSignedIntSetCC(CC)) {
9158      if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
9159          DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
9160        return SDValue();
9161    } else if (ISD::isUnsignedIntSetCC(CC)) {
9162      if (!DAG.MaskedValueIsZero(N->getOperand(0),
9163                                 APInt::getHighBitsSet(OpBits, OpBits-1)) ||
9164          !DAG.MaskedValueIsZero(N->getOperand(1),
9165                                 APInt::getHighBitsSet(OpBits, OpBits-1)))
9166        return SDValue();
9167    } else {
9168      // This is neither a signed nor an unsigned comparison, just make sure
9169      // that the high bits are equal.
9170      APInt Op1Zero, Op1One;
9171      APInt Op2Zero, Op2One;
9172      DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
9173      DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
9174
9175      // We don't really care about what is known about the first bit (if
9176      // anything), so clear it in all masks prior to comparing them.
9177      Op1Zero.clearBit(0); Op1One.clearBit(0);
9178      Op2Zero.clearBit(0); Op2One.clearBit(0);
9179
9180      if (Op1Zero != Op2Zero || Op1One != Op2One)
9181        return SDValue();
9182    }
9183  }
9184
9185  // We now know that the higher-order bits are irrelevant, we just need to
9186  // make sure that all of the intermediate operations are bit operations, and
9187  // all inputs are extensions.
9188  if (N->getOperand(0).getOpcode() != ISD::AND &&
9189      N->getOperand(0).getOpcode() != ISD::OR  &&
9190      N->getOperand(0).getOpcode() != ISD::XOR &&
9191      N->getOperand(0).getOpcode() != ISD::SELECT &&
9192      N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
9193      N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
9194      N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
9195      N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
9196      N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
9197    return SDValue();
9198
9199  if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
9200      N->getOperand(1).getOpcode() != ISD::AND &&
9201      N->getOperand(1).getOpcode() != ISD::OR  &&
9202      N->getOperand(1).getOpcode() != ISD::XOR &&
9203      N->getOperand(1).getOpcode() != ISD::SELECT &&
9204      N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
9205      N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
9206      N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
9207      N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
9208      N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
9209    return SDValue();
9210
9211  SmallVector<SDValue, 4> Inputs;
9212  SmallVector<SDValue, 8> BinOps, PromOps;
9213  SmallPtrSet<SDNode *, 16> Visited;
9214
9215  for (unsigned i = 0; i < 2; ++i) {
9216    if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9217          N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9218          N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9219          N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9220        isa<ConstantSDNode>(N->getOperand(i)))
9221      Inputs.push_back(N->getOperand(i));
9222    else
9223      BinOps.push_back(N->getOperand(i));
9224
9225    if (N->getOpcode() == ISD::TRUNCATE)
9226      break;
9227  }
9228
9229  // Visit all inputs, collect all binary operations (and, or, xor and
9230  // select) that are all fed by extensions.
9231  while (!BinOps.empty()) {
9232    SDValue BinOp = BinOps.back();
9233    BinOps.pop_back();
9234
9235    if (!Visited.insert(BinOp.getNode()).second)
9236      continue;
9237
9238    PromOps.push_back(BinOp);
9239
9240    for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
9241      // The condition of the select is not promoted.
9242      if (BinOp.getOpcode() == ISD::SELECT && i == 0)
9243        continue;
9244      if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
9245        continue;
9246
9247      if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9248            BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9249            BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9250           BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9251          isa<ConstantSDNode>(BinOp.getOperand(i))) {
9252        Inputs.push_back(BinOp.getOperand(i));
9253      } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
9254                 BinOp.getOperand(i).getOpcode() == ISD::OR  ||
9255                 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
9256                 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
9257                 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
9258                 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
9259                 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9260                 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9261                 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
9262        BinOps.push_back(BinOp.getOperand(i));
9263      } else {
9264        // We have an input that is not an extension or another binary
9265        // operation; we'll abort this transformation.
9266        return SDValue();
9267      }
9268    }
9269  }
9270
9271  // Make sure that this is a self-contained cluster of operations (which
9272  // is not quite the same thing as saying that everything has only one
9273  // use).
9274  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9275    if (isa<ConstantSDNode>(Inputs[i]))
9276      continue;
9277
9278    for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
9279                              UE = Inputs[i].getNode()->use_end();
9280         UI != UE; ++UI) {
9281      SDNode *User = *UI;
9282      if (User != N && !Visited.count(User))
9283        return SDValue();
9284
9285      // Make sure that we're not going to promote the non-output-value
9286      // operand(s) or SELECT or SELECT_CC.
9287      // FIXME: Although we could sometimes handle this, and it does occur in
9288      // practice that one of the condition inputs to the select is also one of
9289      // the outputs, we currently can't deal with this.
9290      if (User->getOpcode() == ISD::SELECT) {
9291        if (User->getOperand(0) == Inputs[i])
9292          return SDValue();
9293      } else if (User->getOpcode() == ISD::SELECT_CC) {
9294        if (User->getOperand(0) == Inputs[i] ||
9295            User->getOperand(1) == Inputs[i])
9296          return SDValue();
9297      }
9298    }
9299  }
9300
9301  for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
9302    for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
9303                              UE = PromOps[i].getNode()->use_end();
9304         UI != UE; ++UI) {
9305      SDNode *User = *UI;
9306      if (User != N && !Visited.count(User))
9307        return SDValue();
9308
9309      // Make sure that we're not going to promote the non-output-value
9310      // operand(s) or SELECT or SELECT_CC.
9311      // FIXME: Although we could sometimes handle this, and it does occur in
9312      // practice that one of the condition inputs to the select is also one of
9313      // the outputs, we currently can't deal with this.
9314      if (User->getOpcode() == ISD::SELECT) {
9315        if (User->getOperand(0) == PromOps[i])
9316          return SDValue();
9317      } else if (User->getOpcode() == ISD::SELECT_CC) {
9318        if (User->getOperand(0) == PromOps[i] ||
9319            User->getOperand(1) == PromOps[i])
9320          return SDValue();
9321      }
9322    }
9323  }
9324
9325  // Replace all inputs with the extension operand.
9326  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9327    // Constants may have users outside the cluster of to-be-promoted nodes,
9328    // and so we need to replace those as we do the promotions.
9329    if (isa<ConstantSDNode>(Inputs[i]))
9330      continue;
9331    else
9332      DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
9333  }
9334
9335  // Replace all operations (these are all the same, but have a different
9336  // (i1) return type). DAG.getNode will validate that the types of
9337  // a binary operator match, so go through the list in reverse so that
9338  // we've likely promoted both operands first. Any intermediate truncations or
9339  // extensions disappear.
9340  while (!PromOps.empty()) {
9341    SDValue PromOp = PromOps.back();
9342    PromOps.pop_back();
9343
9344    if (PromOp.getOpcode() == ISD::TRUNCATE ||
9345        PromOp.getOpcode() == ISD::SIGN_EXTEND ||
9346        PromOp.getOpcode() == ISD::ZERO_EXTEND ||
9347        PromOp.getOpcode() == ISD::ANY_EXTEND) {
9348      if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
9349          PromOp.getOperand(0).getValueType() != MVT::i1) {
9350        // The operand is not yet ready (see comment below).
9351        PromOps.insert(PromOps.begin(), PromOp);
9352        continue;
9353      }
9354
9355      SDValue RepValue = PromOp.getOperand(0);
9356      if (isa<ConstantSDNode>(RepValue))
9357        RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
9358
9359      DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
9360      continue;
9361    }
9362
9363    unsigned C;
9364    switch (PromOp.getOpcode()) {
9365    default:             C = 0; break;
9366    case ISD::SELECT:    C = 1; break;
9367    case ISD::SELECT_CC: C = 2; break;
9368    }
9369
9370    if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
9371         PromOp.getOperand(C).getValueType() != MVT::i1) ||
9372        (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
9373         PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
9374      // The to-be-promoted operands of this node have not yet been
9375      // promoted (this should be rare because we're going through the
9376      // list backward, but if one of the operands has several users in
9377      // this cluster of to-be-promoted nodes, it is possible).
9378      PromOps.insert(PromOps.begin(), PromOp);
9379      continue;
9380    }
9381
9382    SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
9383                                PromOp.getNode()->op_end());
9384
9385    // If there are any constant inputs, make sure they're replaced now.
9386    for (unsigned i = 0; i < 2; ++i)
9387      if (isa<ConstantSDNode>(Ops[C+i]))
9388        Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
9389
9390    DAG.ReplaceAllUsesOfValueWith(PromOp,
9391      DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
9392  }
9393
9394  // Now we're left with the initial truncation itself.
9395  if (N->getOpcode() == ISD::TRUNCATE)
9396    return N->getOperand(0);
9397
9398  // Otherwise, this is a comparison. The operands to be compared have just
9399  // changed type (to i1), but everything else is the same.
9400  return SDValue(N, 0);
9401}
9402
9403SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
9404                                                  DAGCombinerInfo &DCI) const {
9405  SelectionDAG &DAG = DCI.DAG;
9406  SDLoc dl(N);
9407
9408  // If we're tracking CR bits, we need to be careful that we don't have:
9409  //   zext(binary-ops(trunc(x), trunc(y)))
9410  // or
9411  //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
9412  // such that we're unnecessarily moving things into CR bits that can more
9413  // efficiently stay in GPRs. Note that if we're not certain that the high
9414  // bits are set as required by the final extension, we still may need to do
9415  // some masking to get the proper behavior.
9416
9417  // This same functionality is important on PPC64 when dealing with
9418  // 32-to-64-bit extensions; these occur often when 32-bit values are used as
9419  // the return values of functions. Because it is so similar, it is handled
9420  // here as well.
9421
9422  if (N->getValueType(0) != MVT::i32 &&
9423      N->getValueType(0) != MVT::i64)
9424    return SDValue();
9425
9426  if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
9427        (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
9428    return SDValue();
9429
9430  if (N->getOperand(0).getOpcode() != ISD::AND &&
9431      N->getOperand(0).getOpcode() != ISD::OR  &&
9432      N->getOperand(0).getOpcode() != ISD::XOR &&
9433      N->getOperand(0).getOpcode() != ISD::SELECT &&
9434      N->getOperand(0).getOpcode() != ISD::SELECT_CC)
9435    return SDValue();
9436
9437  SmallVector<SDValue, 4> Inputs;
9438  SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
9439  SmallPtrSet<SDNode *, 16> Visited;
9440
9441  // Visit all inputs, collect all binary operations (and, or, xor and
9442  // select) that are all fed by truncations.
9443  while (!BinOps.empty()) {
9444    SDValue BinOp = BinOps.back();
9445    BinOps.pop_back();
9446
9447    if (!Visited.insert(BinOp.getNode()).second)
9448      continue;
9449
9450    PromOps.push_back(BinOp);
9451
9452    for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
9453      // The condition of the select is not promoted.
9454      if (BinOp.getOpcode() == ISD::SELECT && i == 0)
9455        continue;
9456      if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
9457        continue;
9458
9459      if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
9460          isa<ConstantSDNode>(BinOp.getOperand(i))) {
9461        Inputs.push_back(BinOp.getOperand(i));
9462      } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
9463                 BinOp.getOperand(i).getOpcode() == ISD::OR  ||
9464                 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
9465                 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
9466                 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
9467        BinOps.push_back(BinOp.getOperand(i));
9468      } else {
9469        // We have an input that is not a truncation or another binary
9470        // operation; we'll abort this transformation.
9471        return SDValue();
9472      }
9473    }
9474  }
9475
9476  // The operands of a select that must be truncated when the select is
9477  // promoted because the operand is actually part of the to-be-promoted set.
9478  DenseMap<SDNode *, EVT> SelectTruncOp[2];
9479
9480  // Make sure that this is a self-contained cluster of operations (which
9481  // is not quite the same thing as saying that everything has only one
9482  // use).
9483  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9484    if (isa<ConstantSDNode>(Inputs[i]))
9485      continue;
9486
9487    for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
9488                              UE = Inputs[i].getNode()->use_end();
9489         UI != UE; ++UI) {
9490      SDNode *User = *UI;
9491      if (User != N && !Visited.count(User))
9492        return SDValue();
9493
9494      // If we're going to promote the non-output-value operand(s) or SELECT or
9495      // SELECT_CC, record them for truncation.
9496      if (User->getOpcode() == ISD::SELECT) {
9497        if (User->getOperand(0) == Inputs[i])
9498          SelectTruncOp[0].insert(std::make_pair(User,
9499                                    User->getOperand(0).getValueType()));
9500      } else if (User->getOpcode() == ISD::SELECT_CC) {
9501        if (User->getOperand(0) == Inputs[i])
9502          SelectTruncOp[0].insert(std::make_pair(User,
9503                                    User->getOperand(0).getValueType()));
9504        if (User->getOperand(1) == Inputs[i])
9505          SelectTruncOp[1].insert(std::make_pair(User,
9506                                    User->getOperand(1).getValueType()));
9507      }
9508    }
9509  }
9510
9511  for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
9512    for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
9513                              UE = PromOps[i].getNode()->use_end();
9514         UI != UE; ++UI) {
9515      SDNode *User = *UI;
9516      if (User != N && !Visited.count(User))
9517        return SDValue();
9518
9519      // If we're going to promote the non-output-value operand(s) or SELECT or
9520      // SELECT_CC, record them for truncation.
9521      if (User->getOpcode() == ISD::SELECT) {
9522        if (User->getOperand(0) == PromOps[i])
9523          SelectTruncOp[0].insert(std::make_pair(User,
9524                                    User->getOperand(0).getValueType()));
9525      } else if (User->getOpcode() == ISD::SELECT_CC) {
9526        if (User->getOperand(0) == PromOps[i])
9527          SelectTruncOp[0].insert(std::make_pair(User,
9528                                    User->getOperand(0).getValueType()));
9529        if (User->getOperand(1) == PromOps[i])
9530          SelectTruncOp[1].insert(std::make_pair(User,
9531                                    User->getOperand(1).getValueType()));
9532      }
9533    }
9534  }
9535
9536  unsigned PromBits = N->getOperand(0).getValueSizeInBits();
9537  bool ReallyNeedsExt = false;
9538  if (N->getOpcode() != ISD::ANY_EXTEND) {
9539    // If all of the inputs are not already sign/zero extended, then
9540    // we'll still need to do that at the end.
9541    for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9542      if (isa<ConstantSDNode>(Inputs[i]))
9543        continue;
9544
9545      unsigned OpBits =
9546        Inputs[i].getOperand(0).getValueSizeInBits();
9547      assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
9548
9549      if ((N->getOpcode() == ISD::ZERO_EXTEND &&
9550           !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
9551                                  APInt::getHighBitsSet(OpBits,
9552                                                        OpBits-PromBits))) ||
9553          (N->getOpcode() == ISD::SIGN_EXTEND &&
9554           DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
9555             (OpBits-(PromBits-1)))) {
9556        ReallyNeedsExt = true;
9557        break;
9558      }
9559    }
9560  }
9561
9562  // Replace all inputs, either with the truncation operand, or a
9563  // truncation or extension to the final output type.
9564  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9565    // Constant inputs need to be replaced with the to-be-promoted nodes that
9566    // use them because they might have users outside of the cluster of
9567    // promoted nodes.
9568    if (isa<ConstantSDNode>(Inputs[i]))
9569      continue;
9570
9571    SDValue InSrc = Inputs[i].getOperand(0);
9572    if (Inputs[i].getValueType() == N->getValueType(0))
9573      DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
9574    else if (N->getOpcode() == ISD::SIGN_EXTEND)
9575      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
9576        DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
9577    else if (N->getOpcode() == ISD::ZERO_EXTEND)
9578      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
9579        DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
9580    else
9581      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
9582        DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
9583  }
9584
9585  // Replace all operations (these are all the same, but have a different
9586  // (promoted) return type). DAG.getNode will validate that the types of
9587  // a binary operator match, so go through the list in reverse so that
9588  // we've likely promoted both operands first.
9589  while (!PromOps.empty()) {
9590    SDValue PromOp = PromOps.back();
9591    PromOps.pop_back();
9592
9593    unsigned C;
9594    switch (PromOp.getOpcode()) {
9595    default:             C = 0; break;
9596    case ISD::SELECT:    C = 1; break;
9597    case ISD::SELECT_CC: C = 2; break;
9598    }
9599
9600    if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
9601         PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
9602        (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
9603         PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
9604      // The to-be-promoted operands of this node have not yet been
9605      // promoted (this should be rare because we're going through the
9606      // list backward, but if one of the operands has several users in
9607      // this cluster of to-be-promoted nodes, it is possible).
9608      PromOps.insert(PromOps.begin(), PromOp);
9609      continue;
9610    }
9611
9612    // For SELECT and SELECT_CC nodes, we do a similar check for any
9613    // to-be-promoted comparison inputs.
9614    if (PromOp.getOpcode() == ISD::SELECT ||
9615        PromOp.getOpcode() == ISD::SELECT_CC) {
9616      if ((SelectTruncOp[0].count(PromOp.getNode()) &&
9617           PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
9618          (SelectTruncOp[1].count(PromOp.getNode()) &&
9619           PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
9620        PromOps.insert(PromOps.begin(), PromOp);
9621        continue;
9622      }
9623    }
9624
9625    SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
9626                                PromOp.getNode()->op_end());
9627
9628    // If this node has constant inputs, then they'll need to be promoted here.
9629    for (unsigned i = 0; i < 2; ++i) {
9630      if (!isa<ConstantSDNode>(Ops[C+i]))
9631        continue;
9632      if (Ops[C+i].getValueType() == N->getValueType(0))
9633        continue;
9634
9635      if (N->getOpcode() == ISD::SIGN_EXTEND)
9636        Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
9637      else if (N->getOpcode() == ISD::ZERO_EXTEND)
9638        Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
9639      else
9640        Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
9641    }
9642
9643    // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
9644    // truncate them again to the original value type.
9645    if (PromOp.getOpcode() == ISD::SELECT ||
9646        PromOp.getOpcode() == ISD::SELECT_CC) {
9647      auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
9648      if (SI0 != SelectTruncOp[0].end())
9649        Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
9650      auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
9651      if (SI1 != SelectTruncOp[1].end())
9652        Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
9653    }
9654
9655    DAG.ReplaceAllUsesOfValueWith(PromOp,
9656      DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
9657  }
9658
9659  // Now we're left with the initial extension itself.
9660  if (!ReallyNeedsExt)
9661    return N->getOperand(0);
9662
9663  // To zero extend, just mask off everything except for the first bit (in the
9664  // i1 case).
9665  if (N->getOpcode() == ISD::ZERO_EXTEND)
9666    return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
9667                       DAG.getConstant(APInt::getLowBitsSet(
9668                                         N->getValueSizeInBits(0), PromBits),
9669                                       N->getValueType(0)));
9670
9671  assert(N->getOpcode() == ISD::SIGN_EXTEND &&
9672         "Invalid extension type");
9673  EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0));
9674  SDValue ShiftCst =
9675    DAG.getConstant(N->getValueSizeInBits(0)-PromBits, ShiftAmountTy);
9676  return DAG.getNode(ISD::SRA, dl, N->getValueType(0),
9677                     DAG.getNode(ISD::SHL, dl, N->getValueType(0),
9678                                 N->getOperand(0), ShiftCst), ShiftCst);
9679}
9680
9681SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
9682                                              DAGCombinerInfo &DCI) const {
9683  assert((N->getOpcode() == ISD::SINT_TO_FP ||
9684          N->getOpcode() == ISD::UINT_TO_FP) &&
9685         "Need an int -> FP conversion node here");
9686
9687  if (!Subtarget.has64BitSupport())
9688    return SDValue();
9689
9690  SelectionDAG &DAG = DCI.DAG;
9691  SDLoc dl(N);
9692  SDValue Op(N, 0);
9693
9694  // Don't handle ppc_fp128 here or i1 conversions.
9695  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
9696    return SDValue();
9697  if (Op.getOperand(0).getValueType() == MVT::i1)
9698    return SDValue();
9699
9700  // For i32 intermediate values, unfortunately, the conversion functions
9701  // leave the upper 32 bits of the value are undefined. Within the set of
9702  // scalar instructions, we have no method for zero- or sign-extending the
9703  // value. Thus, we cannot handle i32 intermediate values here.
9704  if (Op.getOperand(0).getValueType() == MVT::i32)
9705    return SDValue();
9706
9707  assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
9708         "UINT_TO_FP is supported only with FPCVT");
9709
9710  // If we have FCFIDS, then use it when converting to single-precision.
9711  // Otherwise, convert to double-precision and then round.
9712  unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
9713                       ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
9714                                                            : PPCISD::FCFIDS)
9715                       : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
9716                                                            : PPCISD::FCFID);
9717  MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
9718                  ? MVT::f32
9719                  : MVT::f64;
9720
9721  // If we're converting from a float, to an int, and back to a float again,
9722  // then we don't need the store/load pair at all.
9723  if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
9724       Subtarget.hasFPCVT()) ||
9725      (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
9726    SDValue Src = Op.getOperand(0).getOperand(0);
9727    if (Src.getValueType() == MVT::f32) {
9728      Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
9729      DCI.AddToWorklist(Src.getNode());
9730    }
9731
9732    unsigned FCTOp =
9733      Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
9734                                                        PPCISD::FCTIDUZ;
9735
9736    SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
9737    SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
9738
9739    if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
9740      FP = DAG.getNode(ISD::FP_ROUND, dl,
9741                       MVT::f32, FP, DAG.getIntPtrConstant(0));
9742      DCI.AddToWorklist(FP.getNode());
9743    }
9744
9745    return FP;
9746  }
9747
9748  return SDValue();
9749}
9750
9751// expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
9752// builtins) into loads with swaps.
9753SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
9754                                              DAGCombinerInfo &DCI) const {
9755  SelectionDAG &DAG = DCI.DAG;
9756  SDLoc dl(N);
9757  SDValue Chain;
9758  SDValue Base;
9759  MachineMemOperand *MMO;
9760
9761  switch (N->getOpcode()) {
9762  default:
9763    llvm_unreachable("Unexpected opcode for little endian VSX load");
9764  case ISD::LOAD: {
9765    LoadSDNode *LD = cast<LoadSDNode>(N);
9766    Chain = LD->getChain();
9767    Base = LD->getBasePtr();
9768    MMO = LD->getMemOperand();
9769    // If the MMO suggests this isn't a load of a full vector, leave
9770    // things alone.  For a built-in, we have to make the change for
9771    // correctness, so if there is a size problem that will be a bug.
9772    if (MMO->getSize() < 16)
9773      return SDValue();
9774    break;
9775  }
9776  case ISD::INTRINSIC_W_CHAIN: {
9777    MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
9778    Chain = Intrin->getChain();
9779    Base = Intrin->getBasePtr();
9780    MMO = Intrin->getMemOperand();
9781    break;
9782  }
9783  }
9784
9785  MVT VecTy = N->getValueType(0).getSimpleVT();
9786  SDValue LoadOps[] = { Chain, Base };
9787  SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
9788                                         DAG.getVTList(VecTy, MVT::Other),
9789                                         LoadOps, VecTy, MMO);
9790  DCI.AddToWorklist(Load.getNode());
9791  Chain = Load.getValue(1);
9792  SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
9793                             DAG.getVTList(VecTy, MVT::Other), Chain, Load);
9794  DCI.AddToWorklist(Swap.getNode());
9795  return Swap;
9796}
9797
9798// expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
9799// builtins) into stores with swaps.
9800SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
9801                                               DAGCombinerInfo &DCI) const {
9802  SelectionDAG &DAG = DCI.DAG;
9803  SDLoc dl(N);
9804  SDValue Chain;
9805  SDValue Base;
9806  unsigned SrcOpnd;
9807  MachineMemOperand *MMO;
9808
9809  switch (N->getOpcode()) {
9810  default:
9811    llvm_unreachable("Unexpected opcode for little endian VSX store");
9812  case ISD::STORE: {
9813    StoreSDNode *ST = cast<StoreSDNode>(N);
9814    Chain = ST->getChain();
9815    Base = ST->getBasePtr();
9816    MMO = ST->getMemOperand();
9817    SrcOpnd = 1;
9818    // If the MMO suggests this isn't a store of a full vector, leave
9819    // things alone.  For a built-in, we have to make the change for
9820    // correctness, so if there is a size problem that will be a bug.
9821    if (MMO->getSize() < 16)
9822      return SDValue();
9823    break;
9824  }
9825  case ISD::INTRINSIC_VOID: {
9826    MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
9827    Chain = Intrin->getChain();
9828    // Intrin->getBasePtr() oddly does not get what we want.
9829    Base = Intrin->getOperand(3);
9830    MMO = Intrin->getMemOperand();
9831    SrcOpnd = 2;
9832    break;
9833  }
9834  }
9835
9836  SDValue Src = N->getOperand(SrcOpnd);
9837  MVT VecTy = Src.getValueType().getSimpleVT();
9838  SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
9839                             DAG.getVTList(VecTy, MVT::Other), Chain, Src);
9840  DCI.AddToWorklist(Swap.getNode());
9841  Chain = Swap.getValue(1);
9842  SDValue StoreOps[] = { Chain, Swap, Base };
9843  SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
9844                                          DAG.getVTList(MVT::Other),
9845                                          StoreOps, VecTy, MMO);
9846  DCI.AddToWorklist(Store.getNode());
9847  return Store;
9848}
9849
9850SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
9851                                             DAGCombinerInfo &DCI) const {
9852  SelectionDAG &DAG = DCI.DAG;
9853  SDLoc dl(N);
9854  switch (N->getOpcode()) {
9855  default: break;
9856  case PPCISD::SHL:
9857    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9858      if (C->isNullValue())   // 0 << V -> 0.
9859        return N->getOperand(0);
9860    }
9861    break;
9862  case PPCISD::SRL:
9863    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9864      if (C->isNullValue())   // 0 >>u V -> 0.
9865        return N->getOperand(0);
9866    }
9867    break;
9868  case PPCISD::SRA:
9869    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9870      if (C->isNullValue() ||   //  0 >>s V -> 0.
9871          C->isAllOnesValue())    // -1 >>s V -> -1.
9872        return N->getOperand(0);
9873    }
9874    break;
9875  case ISD::SIGN_EXTEND:
9876  case ISD::ZERO_EXTEND:
9877  case ISD::ANY_EXTEND:
9878    return DAGCombineExtBoolTrunc(N, DCI);
9879  case ISD::TRUNCATE:
9880  case ISD::SETCC:
9881  case ISD::SELECT_CC:
9882    return DAGCombineTruncBoolExt(N, DCI);
9883  case ISD::SINT_TO_FP:
9884  case ISD::UINT_TO_FP:
9885    return combineFPToIntToFP(N, DCI);
9886  case ISD::STORE: {
9887    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
9888    if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
9889        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
9890        N->getOperand(1).getValueType() == MVT::i32 &&
9891        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
9892      SDValue Val = N->getOperand(1).getOperand(0);
9893      if (Val.getValueType() == MVT::f32) {
9894        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
9895        DCI.AddToWorklist(Val.getNode());
9896      }
9897      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
9898      DCI.AddToWorklist(Val.getNode());
9899
9900      SDValue Ops[] = {
9901        N->getOperand(0), Val, N->getOperand(2),
9902        DAG.getValueType(N->getOperand(1).getValueType())
9903      };
9904
9905      Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
9906              DAG.getVTList(MVT::Other), Ops,
9907              cast<StoreSDNode>(N)->getMemoryVT(),
9908              cast<StoreSDNode>(N)->getMemOperand());
9909      DCI.AddToWorklist(Val.getNode());
9910      return Val;
9911    }
9912
9913    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
9914    if (cast<StoreSDNode>(N)->isUnindexed() &&
9915        N->getOperand(1).getOpcode() == ISD::BSWAP &&
9916        N->getOperand(1).getNode()->hasOneUse() &&
9917        (N->getOperand(1).getValueType() == MVT::i32 ||
9918         N->getOperand(1).getValueType() == MVT::i16 ||
9919         (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
9920          N->getOperand(1).getValueType() == MVT::i64))) {
9921      SDValue BSwapOp = N->getOperand(1).getOperand(0);
9922      // Do an any-extend to 32-bits if this is a half-word input.
9923      if (BSwapOp.getValueType() == MVT::i16)
9924        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
9925
9926      SDValue Ops[] = {
9927        N->getOperand(0), BSwapOp, N->getOperand(2),
9928        DAG.getValueType(N->getOperand(1).getValueType())
9929      };
9930      return
9931        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
9932                                Ops, cast<StoreSDNode>(N)->getMemoryVT(),
9933                                cast<StoreSDNode>(N)->getMemOperand());
9934    }
9935
9936    // For little endian, VSX stores require generating xxswapd/lxvd2x.
9937    EVT VT = N->getOperand(1).getValueType();
9938    if (VT.isSimple()) {
9939      MVT StoreVT = VT.getSimpleVT();
9940      if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
9941          (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
9942           StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
9943        return expandVSXStoreForLE(N, DCI);
9944    }
9945    break;
9946  }
9947  case ISD::LOAD: {
9948    LoadSDNode *LD = cast<LoadSDNode>(N);
9949    EVT VT = LD->getValueType(0);
9950
9951    // For little endian, VSX loads require generating lxvd2x/xxswapd.
9952    if (VT.isSimple()) {
9953      MVT LoadVT = VT.getSimpleVT();
9954      if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
9955          (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
9956           LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
9957        return expandVSXLoadForLE(N, DCI);
9958    }
9959
9960    EVT MemVT = LD->getMemoryVT();
9961    Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
9962    unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
9963    Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
9964    unsigned ScalarABIAlignment = getDataLayout()->getABITypeAlignment(STy);
9965    if (LD->isUnindexed() && VT.isVector() &&
9966        ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
9967          // P8 and later hardware should just use LOAD.
9968          !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
9969                                       VT == MVT::v4i32 || VT == MVT::v4f32)) ||
9970         (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
9971          LD->getAlignment() >= ScalarABIAlignment)) &&
9972        LD->getAlignment() < ABIAlignment) {
9973      // This is a type-legal unaligned Altivec or QPX load.
9974      SDValue Chain = LD->getChain();
9975      SDValue Ptr = LD->getBasePtr();
9976      bool isLittleEndian = Subtarget.isLittleEndian();
9977
9978      // This implements the loading of unaligned vectors as described in
9979      // the venerable Apple Velocity Engine overview. Specifically:
9980      // https://developer.apple.com/hardwaredrivers/ve/alignment.html
9981      // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
9982      //
9983      // The general idea is to expand a sequence of one or more unaligned
9984      // loads into an alignment-based permutation-control instruction (lvsl
9985      // or lvsr), a series of regular vector loads (which always truncate
9986      // their input address to an aligned address), and a series of
9987      // permutations.  The results of these permutations are the requested
9988      // loaded values.  The trick is that the last "extra" load is not taken
9989      // from the address you might suspect (sizeof(vector) bytes after the
9990      // last requested load), but rather sizeof(vector) - 1 bytes after the
9991      // last requested vector. The point of this is to avoid a page fault if
9992      // the base address happened to be aligned. This works because if the
9993      // base address is aligned, then adding less than a full vector length
9994      // will cause the last vector in the sequence to be (re)loaded.
9995      // Otherwise, the next vector will be fetched as you might suspect was
9996      // necessary.
9997
9998      // We might be able to reuse the permutation generation from
9999      // a different base address offset from this one by an aligned amount.
10000      // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
10001      // optimization later.
10002      Intrinsic::ID Intr, IntrLD, IntrPerm;
10003      MVT PermCntlTy, PermTy, LDTy;
10004      if (Subtarget.hasAltivec()) {
10005        Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
10006                                 Intrinsic::ppc_altivec_lvsl;
10007        IntrLD = Intrinsic::ppc_altivec_lvx;
10008        IntrPerm = Intrinsic::ppc_altivec_vperm;
10009        PermCntlTy = MVT::v16i8;
10010        PermTy = MVT::v4i32;
10011        LDTy = MVT::v4i32;
10012      } else {
10013        Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
10014                                       Intrinsic::ppc_qpx_qvlpcls;
10015        IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
10016                                       Intrinsic::ppc_qpx_qvlfs;
10017        IntrPerm = Intrinsic::ppc_qpx_qvfperm;
10018        PermCntlTy = MVT::v4f64;
10019        PermTy = MVT::v4f64;
10020        LDTy = MemVT.getSimpleVT();
10021      }
10022
10023      SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
10024
10025      // Create the new MMO for the new base load. It is like the original MMO,
10026      // but represents an area in memory almost twice the vector size centered
10027      // on the original address. If the address is unaligned, we might start
10028      // reading up to (sizeof(vector)-1) bytes below the address of the
10029      // original unaligned load.
10030      MachineFunction &MF = DAG.getMachineFunction();
10031      MachineMemOperand *BaseMMO =
10032        MF.getMachineMemOperand(LD->getMemOperand(), -MemVT.getStoreSize()+1,
10033                                2*MemVT.getStoreSize()-1);
10034
10035      // Create the new base load.
10036      SDValue LDXIntID = DAG.getTargetConstant(IntrLD, getPointerTy());
10037      SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
10038      SDValue BaseLoad =
10039        DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10040                                DAG.getVTList(PermTy, MVT::Other),
10041                                BaseLoadOps, LDTy, BaseMMO);
10042
10043      // Note that the value of IncOffset (which is provided to the next
10044      // load's pointer info offset value, and thus used to calculate the
10045      // alignment), and the value of IncValue (which is actually used to
10046      // increment the pointer value) are different! This is because we
10047      // require the next load to appear to be aligned, even though it
10048      // is actually offset from the base pointer by a lesser amount.
10049      int IncOffset = VT.getSizeInBits() / 8;
10050      int IncValue = IncOffset;
10051
10052      // Walk (both up and down) the chain looking for another load at the real
10053      // (aligned) offset (the alignment of the other load does not matter in
10054      // this case). If found, then do not use the offset reduction trick, as
10055      // that will prevent the loads from being later combined (as they would
10056      // otherwise be duplicates).
10057      if (!findConsecutiveLoad(LD, DAG))
10058        --IncValue;
10059
10060      SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
10061      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
10062
10063      MachineMemOperand *ExtraMMO =
10064        MF.getMachineMemOperand(LD->getMemOperand(),
10065                                1, 2*MemVT.getStoreSize()-1);
10066      SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
10067      SDValue ExtraLoad =
10068        DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10069                                DAG.getVTList(PermTy, MVT::Other),
10070                                ExtraLoadOps, LDTy, ExtraMMO);
10071
10072      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
10073        BaseLoad.getValue(1), ExtraLoad.getValue(1));
10074
10075      // Because vperm has a big-endian bias, we must reverse the order
10076      // of the input vectors and complement the permute control vector
10077      // when generating little endian code.  We have already handled the
10078      // latter by using lvsr instead of lvsl, so just reverse BaseLoad
10079      // and ExtraLoad here.
10080      SDValue Perm;
10081      if (isLittleEndian)
10082        Perm = BuildIntrinsicOp(IntrPerm,
10083                                ExtraLoad, BaseLoad, PermCntl, DAG, dl);
10084      else
10085        Perm = BuildIntrinsicOp(IntrPerm,
10086                                BaseLoad, ExtraLoad, PermCntl, DAG, dl);
10087
10088      if (VT != PermTy)
10089        Perm = Subtarget.hasAltivec() ?
10090                 DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
10091                 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
10092                               DAG.getTargetConstant(1, MVT::i64));
10093                               // second argument is 1 because this rounding
10094                               // is always exact.
10095
10096      // The output of the permutation is our loaded result, the TokenFactor is
10097      // our new chain.
10098      DCI.CombineTo(N, Perm, TF);
10099      return SDValue(N, 0);
10100    }
10101    }
10102    break;
10103    case ISD::INTRINSIC_WO_CHAIN: {
10104      bool isLittleEndian = Subtarget.isLittleEndian();
10105      unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
10106      Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
10107                                           : Intrinsic::ppc_altivec_lvsl);
10108      if ((IID == Intr ||
10109           IID == Intrinsic::ppc_qpx_qvlpcld  ||
10110           IID == Intrinsic::ppc_qpx_qvlpcls) &&
10111        N->getOperand(1)->getOpcode() == ISD::ADD) {
10112        SDValue Add = N->getOperand(1);
10113
10114        int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
10115                   5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
10116
10117        if (DAG.MaskedValueIsZero(
10118                Add->getOperand(1),
10119                APInt::getAllOnesValue(Bits /* alignment */)
10120                    .zext(
10121                        Add.getValueType().getScalarType().getSizeInBits()))) {
10122          SDNode *BasePtr = Add->getOperand(0).getNode();
10123          for (SDNode::use_iterator UI = BasePtr->use_begin(),
10124                                    UE = BasePtr->use_end();
10125               UI != UE; ++UI) {
10126            if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10127                cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
10128              // We've found another LVSL/LVSR, and this address is an aligned
10129              // multiple of that one. The results will be the same, so use the
10130              // one we've just found instead.
10131
10132              return SDValue(*UI, 0);
10133            }
10134          }
10135        }
10136
10137        if (isa<ConstantSDNode>(Add->getOperand(1))) {
10138          SDNode *BasePtr = Add->getOperand(0).getNode();
10139          for (SDNode::use_iterator UI = BasePtr->use_begin(),
10140               UE = BasePtr->use_end(); UI != UE; ++UI) {
10141            if (UI->getOpcode() == ISD::ADD &&
10142                isa<ConstantSDNode>(UI->getOperand(1)) &&
10143                (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
10144                 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
10145                (1ULL << Bits) == 0) {
10146              SDNode *OtherAdd = *UI;
10147              for (SDNode::use_iterator VI = OtherAdd->use_begin(),
10148                   VE = OtherAdd->use_end(); VI != VE; ++VI) {
10149                if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10150                    cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
10151                  return SDValue(*VI, 0);
10152                }
10153              }
10154            }
10155          }
10156        }
10157      }
10158    }
10159
10160    break;
10161  case ISD::INTRINSIC_W_CHAIN: {
10162    // For little endian, VSX loads require generating lxvd2x/xxswapd.
10163    if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10164      switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10165      default:
10166        break;
10167      case Intrinsic::ppc_vsx_lxvw4x:
10168      case Intrinsic::ppc_vsx_lxvd2x:
10169        return expandVSXLoadForLE(N, DCI);
10170      }
10171    }
10172    break;
10173  }
10174  case ISD::INTRINSIC_VOID: {
10175    // For little endian, VSX stores require generating xxswapd/stxvd2x.
10176    if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10177      switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10178      default:
10179        break;
10180      case Intrinsic::ppc_vsx_stxvw4x:
10181      case Intrinsic::ppc_vsx_stxvd2x:
10182        return expandVSXStoreForLE(N, DCI);
10183      }
10184    }
10185    break;
10186  }
10187  case ISD::BSWAP:
10188    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
10189    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
10190        N->getOperand(0).hasOneUse() &&
10191        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
10192         (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
10193          N->getValueType(0) == MVT::i64))) {
10194      SDValue Load = N->getOperand(0);
10195      LoadSDNode *LD = cast<LoadSDNode>(Load);
10196      // Create the byte-swapping load.
10197      SDValue Ops[] = {
10198        LD->getChain(),    // Chain
10199        LD->getBasePtr(),  // Ptr
10200        DAG.getValueType(N->getValueType(0)) // VT
10201      };
10202      SDValue BSLoad =
10203        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
10204                                DAG.getVTList(N->getValueType(0) == MVT::i64 ?
10205                                              MVT::i64 : MVT::i32, MVT::Other),
10206                                Ops, LD->getMemoryVT(), LD->getMemOperand());
10207
10208      // If this is an i16 load, insert the truncate.
10209      SDValue ResVal = BSLoad;
10210      if (N->getValueType(0) == MVT::i16)
10211        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
10212
10213      // First, combine the bswap away.  This makes the value produced by the
10214      // load dead.
10215      DCI.CombineTo(N, ResVal);
10216
10217      // Next, combine the load away, we give it a bogus result value but a real
10218      // chain result.  The result value is dead because the bswap is dead.
10219      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
10220
10221      // Return N so it doesn't get rechecked!
10222      return SDValue(N, 0);
10223    }
10224
10225    break;
10226  case PPCISD::VCMP: {
10227    // If a VCMPo node already exists with exactly the same operands as this
10228    // node, use its result instead of this node (VCMPo computes both a CR6 and
10229    // a normal output).
10230    //
10231    if (!N->getOperand(0).hasOneUse() &&
10232        !N->getOperand(1).hasOneUse() &&
10233        !N->getOperand(2).hasOneUse()) {
10234
10235      // Scan all of the users of the LHS, looking for VCMPo's that match.
10236      SDNode *VCMPoNode = nullptr;
10237
10238      SDNode *LHSN = N->getOperand(0).getNode();
10239      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
10240           UI != E; ++UI)
10241        if (UI->getOpcode() == PPCISD::VCMPo &&
10242            UI->getOperand(1) == N->getOperand(1) &&
10243            UI->getOperand(2) == N->getOperand(2) &&
10244            UI->getOperand(0) == N->getOperand(0)) {
10245          VCMPoNode = *UI;
10246          break;
10247        }
10248
10249      // If there is no VCMPo node, or if the flag value has a single use, don't
10250      // transform this.
10251      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
10252        break;
10253
10254      // Look at the (necessarily single) use of the flag value.  If it has a
10255      // chain, this transformation is more complex.  Note that multiple things
10256      // could use the value result, which we should ignore.
10257      SDNode *FlagUser = nullptr;
10258      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
10259           FlagUser == nullptr; ++UI) {
10260        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
10261        SDNode *User = *UI;
10262        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
10263          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
10264            FlagUser = User;
10265            break;
10266          }
10267        }
10268      }
10269
10270      // If the user is a MFOCRF instruction, we know this is safe.
10271      // Otherwise we give up for right now.
10272      if (FlagUser->getOpcode() == PPCISD::MFOCRF)
10273        return SDValue(VCMPoNode, 0);
10274    }
10275    break;
10276  }
10277  case ISD::BRCOND: {
10278    SDValue Cond = N->getOperand(1);
10279    SDValue Target = N->getOperand(2);
10280
10281    if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10282        cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
10283          Intrinsic::ppc_is_decremented_ctr_nonzero) {
10284
10285      // We now need to make the intrinsic dead (it cannot be instruction
10286      // selected).
10287      DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
10288      assert(Cond.getNode()->hasOneUse() &&
10289             "Counter decrement has more than one use");
10290
10291      return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
10292                         N->getOperand(0), Target);
10293    }
10294  }
10295  break;
10296  case ISD::BR_CC: {
10297    // If this is a branch on an altivec predicate comparison, lower this so
10298    // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
10299    // lowering is done pre-legalize, because the legalizer lowers the predicate
10300    // compare down to code that is difficult to reassemble.
10301    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
10302    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
10303
10304    // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
10305    // value. If so, pass-through the AND to get to the intrinsic.
10306    if (LHS.getOpcode() == ISD::AND &&
10307        LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10308        cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
10309          Intrinsic::ppc_is_decremented_ctr_nonzero &&
10310        isa<ConstantSDNode>(LHS.getOperand(1)) &&
10311        !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
10312          isZero())
10313      LHS = LHS.getOperand(0);
10314
10315    if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10316        cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
10317          Intrinsic::ppc_is_decremented_ctr_nonzero &&
10318        isa<ConstantSDNode>(RHS)) {
10319      assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10320             "Counter decrement comparison is not EQ or NE");
10321
10322      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
10323      bool isBDNZ = (CC == ISD::SETEQ && Val) ||
10324                    (CC == ISD::SETNE && !Val);
10325
10326      // We now need to make the intrinsic dead (it cannot be instruction
10327      // selected).
10328      DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
10329      assert(LHS.getNode()->hasOneUse() &&
10330             "Counter decrement has more than one use");
10331
10332      return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
10333                         N->getOperand(0), N->getOperand(4));
10334    }
10335
10336    int CompareOpc;
10337    bool isDot;
10338
10339    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10340        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
10341        getAltivecCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
10342      assert(isDot && "Can't compare against a vector result!");
10343
10344      // If this is a comparison against something other than 0/1, then we know
10345      // that the condition is never/always true.
10346      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
10347      if (Val != 0 && Val != 1) {
10348        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
10349          return N->getOperand(0);
10350        // Always !=, turn it into an unconditional branch.
10351        return DAG.getNode(ISD::BR, dl, MVT::Other,
10352                           N->getOperand(0), N->getOperand(4));
10353      }
10354
10355      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
10356
10357      // Create the PPCISD altivec 'dot' comparison node.
10358      SDValue Ops[] = {
10359        LHS.getOperand(2),  // LHS of compare
10360        LHS.getOperand(3),  // RHS of compare
10361        DAG.getConstant(CompareOpc, MVT::i32)
10362      };
10363      EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
10364      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10365
10366      // Unpack the result based on how the target uses it.
10367      PPC::Predicate CompOpc;
10368      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
10369      default:  // Can't happen, don't crash on invalid number though.
10370      case 0:   // Branch on the value of the EQ bit of CR6.
10371        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
10372        break;
10373      case 1:   // Branch on the inverted value of the EQ bit of CR6.
10374        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
10375        break;
10376      case 2:   // Branch on the value of the LT bit of CR6.
10377        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
10378        break;
10379      case 3:   // Branch on the inverted value of the LT bit of CR6.
10380        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
10381        break;
10382      }
10383
10384      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
10385                         DAG.getConstant(CompOpc, MVT::i32),
10386                         DAG.getRegister(PPC::CR6, MVT::i32),
10387                         N->getOperand(4), CompNode.getValue(1));
10388    }
10389    break;
10390  }
10391  }
10392
10393  return SDValue();
10394}
10395
10396SDValue
10397PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
10398                                  SelectionDAG &DAG,
10399                                  std::vector<SDNode *> *Created) const {
10400  // fold (sdiv X, pow2)
10401  EVT VT = N->getValueType(0);
10402  if (VT == MVT::i64 && !Subtarget.isPPC64())
10403    return SDValue();
10404  if ((VT != MVT::i32 && VT != MVT::i64) ||
10405      !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
10406    return SDValue();
10407
10408  SDLoc DL(N);
10409  SDValue N0 = N->getOperand(0);
10410
10411  bool IsNegPow2 = (-Divisor).isPowerOf2();
10412  unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
10413  SDValue ShiftAmt = DAG.getConstant(Lg2, VT);
10414
10415  SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
10416  if (Created)
10417    Created->push_back(Op.getNode());
10418
10419  if (IsNegPow2) {
10420    Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), Op);
10421    if (Created)
10422      Created->push_back(Op.getNode());
10423  }
10424
10425  return Op;
10426}
10427
10428//===----------------------------------------------------------------------===//
10429// Inline Assembly Support
10430//===----------------------------------------------------------------------===//
10431
10432void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
10433                                                      APInt &KnownZero,
10434                                                      APInt &KnownOne,
10435                                                      const SelectionDAG &DAG,
10436                                                      unsigned Depth) const {
10437  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
10438  switch (Op.getOpcode()) {
10439  default: break;
10440  case PPCISD::LBRX: {
10441    // lhbrx is known to have the top bits cleared out.
10442    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
10443      KnownZero = 0xFFFF0000;
10444    break;
10445  }
10446  case ISD::INTRINSIC_WO_CHAIN: {
10447    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
10448    default: break;
10449    case Intrinsic::ppc_altivec_vcmpbfp_p:
10450    case Intrinsic::ppc_altivec_vcmpeqfp_p:
10451    case Intrinsic::ppc_altivec_vcmpequb_p:
10452    case Intrinsic::ppc_altivec_vcmpequh_p:
10453    case Intrinsic::ppc_altivec_vcmpequw_p:
10454    case Intrinsic::ppc_altivec_vcmpequd_p:
10455    case Intrinsic::ppc_altivec_vcmpgefp_p:
10456    case Intrinsic::ppc_altivec_vcmpgtfp_p:
10457    case Intrinsic::ppc_altivec_vcmpgtsb_p:
10458    case Intrinsic::ppc_altivec_vcmpgtsh_p:
10459    case Intrinsic::ppc_altivec_vcmpgtsw_p:
10460    case Intrinsic::ppc_altivec_vcmpgtsd_p:
10461    case Intrinsic::ppc_altivec_vcmpgtub_p:
10462    case Intrinsic::ppc_altivec_vcmpgtuh_p:
10463    case Intrinsic::ppc_altivec_vcmpgtuw_p:
10464    case Intrinsic::ppc_altivec_vcmpgtud_p:
10465      KnownZero = ~1U;  // All bits but the low one are known to be zero.
10466      break;
10467    }
10468  }
10469  }
10470}
10471
10472unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
10473  switch (Subtarget.getDarwinDirective()) {
10474  default: break;
10475  case PPC::DIR_970:
10476  case PPC::DIR_PWR4:
10477  case PPC::DIR_PWR5:
10478  case PPC::DIR_PWR5X:
10479  case PPC::DIR_PWR6:
10480  case PPC::DIR_PWR6X:
10481  case PPC::DIR_PWR7:
10482  case PPC::DIR_PWR8: {
10483    if (!ML)
10484      break;
10485
10486    const PPCInstrInfo *TII = Subtarget.getInstrInfo();
10487
10488    // For small loops (between 5 and 8 instructions), align to a 32-byte
10489    // boundary so that the entire loop fits in one instruction-cache line.
10490    uint64_t LoopSize = 0;
10491    for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
10492      for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J)
10493        LoopSize += TII->GetInstSizeInBytes(J);
10494
10495    if (LoopSize > 16 && LoopSize <= 32)
10496      return 5;
10497
10498    break;
10499  }
10500  }
10501
10502  return TargetLowering::getPrefLoopAlignment(ML);
10503}
10504
10505/// getConstraintType - Given a constraint, return the type of
10506/// constraint it is for this target.
10507PPCTargetLowering::ConstraintType
10508PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
10509  if (Constraint.size() == 1) {
10510    switch (Constraint[0]) {
10511    default: break;
10512    case 'b':
10513    case 'r':
10514    case 'f':
10515    case 'v':
10516    case 'y':
10517      return C_RegisterClass;
10518    case 'Z':
10519      // FIXME: While Z does indicate a memory constraint, it specifically
10520      // indicates an r+r address (used in conjunction with the 'y' modifier
10521      // in the replacement string). Currently, we're forcing the base
10522      // register to be r0 in the asm printer (which is interpreted as zero)
10523      // and forming the complete address in the second register. This is
10524      // suboptimal.
10525      return C_Memory;
10526    }
10527  } else if (Constraint == "wc") { // individual CR bits.
10528    return C_RegisterClass;
10529  } else if (Constraint == "wa" || Constraint == "wd" ||
10530             Constraint == "wf" || Constraint == "ws") {
10531    return C_RegisterClass; // VSX registers.
10532  }
10533  return TargetLowering::getConstraintType(Constraint);
10534}
10535
10536/// Examine constraint type and operand type and determine a weight value.
10537/// This object must already have been set up with the operand type
10538/// and the current alternative constraint selected.
10539TargetLowering::ConstraintWeight
10540PPCTargetLowering::getSingleConstraintMatchWeight(
10541    AsmOperandInfo &info, const char *constraint) const {
10542  ConstraintWeight weight = CW_Invalid;
10543  Value *CallOperandVal = info.CallOperandVal;
10544    // If we don't have a value, we can't do a match,
10545    // but allow it at the lowest weight.
10546  if (!CallOperandVal)
10547    return CW_Default;
10548  Type *type = CallOperandVal->getType();
10549
10550  // Look at the constraint type.
10551  if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
10552    return CW_Register; // an individual CR bit.
10553  else if ((StringRef(constraint) == "wa" ||
10554            StringRef(constraint) == "wd" ||
10555            StringRef(constraint) == "wf") &&
10556           type->isVectorTy())
10557    return CW_Register;
10558  else if (StringRef(constraint) == "ws" && type->isDoubleTy())
10559    return CW_Register;
10560
10561  switch (*constraint) {
10562  default:
10563    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
10564    break;
10565  case 'b':
10566    if (type->isIntegerTy())
10567      weight = CW_Register;
10568    break;
10569  case 'f':
10570    if (type->isFloatTy())
10571      weight = CW_Register;
10572    break;
10573  case 'd':
10574    if (type->isDoubleTy())
10575      weight = CW_Register;
10576    break;
10577  case 'v':
10578    if (type->isVectorTy())
10579      weight = CW_Register;
10580    break;
10581  case 'y':
10582    weight = CW_Register;
10583    break;
10584  case 'Z':
10585    weight = CW_Memory;
10586    break;
10587  }
10588  return weight;
10589}
10590
10591std::pair<unsigned, const TargetRegisterClass *>
10592PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10593                                                const std::string &Constraint,
10594                                                MVT VT) const {
10595  if (Constraint.size() == 1) {
10596    // GCC RS6000 Constraint Letters
10597    switch (Constraint[0]) {
10598    case 'b':   // R1-R31
10599      if (VT == MVT::i64 && Subtarget.isPPC64())
10600        return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
10601      return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
10602    case 'r':   // R0-R31
10603      if (VT == MVT::i64 && Subtarget.isPPC64())
10604        return std::make_pair(0U, &PPC::G8RCRegClass);
10605      return std::make_pair(0U, &PPC::GPRCRegClass);
10606    case 'f':
10607      if (VT == MVT::f32 || VT == MVT::i32)
10608        return std::make_pair(0U, &PPC::F4RCRegClass);
10609      if (VT == MVT::f64 || VT == MVT::i64)
10610        return std::make_pair(0U, &PPC::F8RCRegClass);
10611      if (VT == MVT::v4f64 && Subtarget.hasQPX())
10612        return std::make_pair(0U, &PPC::QFRCRegClass);
10613      if (VT == MVT::v4f32 && Subtarget.hasQPX())
10614        return std::make_pair(0U, &PPC::QSRCRegClass);
10615      break;
10616    case 'v':
10617      if (VT == MVT::v4f64 && Subtarget.hasQPX())
10618        return std::make_pair(0U, &PPC::QFRCRegClass);
10619      if (VT == MVT::v4f32 && Subtarget.hasQPX())
10620        return std::make_pair(0U, &PPC::QSRCRegClass);
10621      return std::make_pair(0U, &PPC::VRRCRegClass);
10622    case 'y':   // crrc
10623      return std::make_pair(0U, &PPC::CRRCRegClass);
10624    }
10625  } else if (Constraint == "wc") { // an individual CR bit.
10626    return std::make_pair(0U, &PPC::CRBITRCRegClass);
10627  } else if (Constraint == "wa" || Constraint == "wd" ||
10628             Constraint == "wf") {
10629    return std::make_pair(0U, &PPC::VSRCRegClass);
10630  } else if (Constraint == "ws") {
10631    return std::make_pair(0U, &PPC::VSFRCRegClass);
10632  }
10633
10634  std::pair<unsigned, const TargetRegisterClass *> R =
10635      TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10636
10637  // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
10638  // (which we call X[0-9]+). If a 64-bit value has been requested, and a
10639  // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
10640  // register.
10641  // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
10642  // the AsmName field from *RegisterInfo.td, then this would not be necessary.
10643  if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
10644      PPC::GPRCRegClass.contains(R.first))
10645    return std::make_pair(TRI->getMatchingSuperReg(R.first,
10646                            PPC::sub_32, &PPC::G8RCRegClass),
10647                          &PPC::G8RCRegClass);
10648
10649  // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
10650  if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
10651    R.first = PPC::CR0;
10652    R.second = &PPC::CRRCRegClass;
10653  }
10654
10655  return R;
10656}
10657
10658
10659/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10660/// vector.  If it is invalid, don't add anything to Ops.
10661void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10662                                                     std::string &Constraint,
10663                                                     std::vector<SDValue>&Ops,
10664                                                     SelectionDAG &DAG) const {
10665  SDValue Result;
10666
10667  // Only support length 1 constraints.
10668  if (Constraint.length() > 1) return;
10669
10670  char Letter = Constraint[0];
10671  switch (Letter) {
10672  default: break;
10673  case 'I':
10674  case 'J':
10675  case 'K':
10676  case 'L':
10677  case 'M':
10678  case 'N':
10679  case 'O':
10680  case 'P': {
10681    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
10682    if (!CST) return; // Must be an immediate to match.
10683    int64_t Value = CST->getSExtValue();
10684    EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
10685                         // numbers are printed as such.
10686    switch (Letter) {
10687    default: llvm_unreachable("Unknown constraint letter!");
10688    case 'I':  // "I" is a signed 16-bit constant.
10689      if (isInt<16>(Value))
10690        Result = DAG.getTargetConstant(Value, TCVT);
10691      break;
10692    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
10693      if (isShiftedUInt<16, 16>(Value))
10694        Result = DAG.getTargetConstant(Value, TCVT);
10695      break;
10696    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
10697      if (isShiftedInt<16, 16>(Value))
10698        Result = DAG.getTargetConstant(Value, TCVT);
10699      break;
10700    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
10701      if (isUInt<16>(Value))
10702        Result = DAG.getTargetConstant(Value, TCVT);
10703      break;
10704    case 'M':  // "M" is a constant that is greater than 31.
10705      if (Value > 31)
10706        Result = DAG.getTargetConstant(Value, TCVT);
10707      break;
10708    case 'N':  // "N" is a positive constant that is an exact power of two.
10709      if (Value > 0 && isPowerOf2_64(Value))
10710        Result = DAG.getTargetConstant(Value, TCVT);
10711      break;
10712    case 'O':  // "O" is the constant zero.
10713      if (Value == 0)
10714        Result = DAG.getTargetConstant(Value, TCVT);
10715      break;
10716    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
10717      if (isInt<16>(-Value))
10718        Result = DAG.getTargetConstant(Value, TCVT);
10719      break;
10720    }
10721    break;
10722  }
10723  }
10724
10725  if (Result.getNode()) {
10726    Ops.push_back(Result);
10727    return;
10728  }
10729
10730  // Handle standard constraint letters.
10731  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10732}
10733
10734// isLegalAddressingMode - Return true if the addressing mode represented
10735// by AM is legal for this target, for a load/store of the specified type.
10736bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
10737                                              Type *Ty) const {
10738  // PPC does not allow r+i addressing modes for vectors!
10739  if (Ty->isVectorTy() && AM.BaseOffs != 0)
10740    return false;
10741
10742  // PPC allows a sign-extended 16-bit immediate field.
10743  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
10744    return false;
10745
10746  // No global is ever allowed as a base.
10747  if (AM.BaseGV)
10748    return false;
10749
10750  // PPC only support r+r,
10751  switch (AM.Scale) {
10752  case 0:  // "r+i" or just "i", depending on HasBaseReg.
10753    break;
10754  case 1:
10755    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
10756      return false;
10757    // Otherwise we have r+r or r+i.
10758    break;
10759  case 2:
10760    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
10761      return false;
10762    // Allow 2*r as r+r.
10763    break;
10764  default:
10765    // No other scales are supported.
10766    return false;
10767  }
10768
10769  return true;
10770}
10771
10772SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
10773                                           SelectionDAG &DAG) const {
10774  MachineFunction &MF = DAG.getMachineFunction();
10775  MachineFrameInfo *MFI = MF.getFrameInfo();
10776  MFI->setReturnAddressIsTaken(true);
10777
10778  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
10779    return SDValue();
10780
10781  SDLoc dl(Op);
10782  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10783
10784  // Make sure the function does not optimize away the store of the RA to
10785  // the stack.
10786  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
10787  FuncInfo->setLRStoreRequired();
10788  bool isPPC64 = Subtarget.isPPC64();
10789
10790  if (Depth > 0) {
10791    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
10792    SDValue Offset =
10793        DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(),
10794                        isPPC64 ? MVT::i64 : MVT::i32);
10795    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
10796                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
10797                                   FrameAddr, Offset),
10798                       MachinePointerInfo(), false, false, false, 0);
10799  }
10800
10801  // Just load the return address off the stack.
10802  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
10803  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
10804                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
10805}
10806
10807SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
10808                                          SelectionDAG &DAG) const {
10809  SDLoc dl(Op);
10810  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10811
10812  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
10813  bool isPPC64 = PtrVT == MVT::i64;
10814
10815  MachineFunction &MF = DAG.getMachineFunction();
10816  MachineFrameInfo *MFI = MF.getFrameInfo();
10817  MFI->setFrameAddressIsTaken(true);
10818
10819  // Naked functions never have a frame pointer, and so we use r1. For all
10820  // other functions, this decision must be delayed until during PEI.
10821  unsigned FrameReg;
10822  if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
10823    FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
10824  else
10825    FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
10826
10827  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
10828                                         PtrVT);
10829  while (Depth--)
10830    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
10831                            FrameAddr, MachinePointerInfo(), false, false,
10832                            false, 0);
10833  return FrameAddr;
10834}
10835
10836// FIXME? Maybe this could be a TableGen attribute on some registers and
10837// this table could be generated automatically from RegInfo.
10838unsigned PPCTargetLowering::getRegisterByName(const char* RegName,
10839                                              EVT VT) const {
10840  bool isPPC64 = Subtarget.isPPC64();
10841  bool isDarwinABI = Subtarget.isDarwinABI();
10842
10843  if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
10844      (!isPPC64 && VT != MVT::i32))
10845    report_fatal_error("Invalid register global variable type");
10846
10847  bool is64Bit = isPPC64 && VT == MVT::i64;
10848  unsigned Reg = StringSwitch<unsigned>(RegName)
10849                   .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
10850                   .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
10851                   .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
10852                                  (is64Bit ? PPC::X13 : PPC::R13))
10853                   .Default(0);
10854
10855  if (Reg)
10856    return Reg;
10857  report_fatal_error("Invalid register name global variable");
10858}
10859
10860bool
10861PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
10862  // The PowerPC target isn't yet aware of offsets.
10863  return false;
10864}
10865
10866bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
10867                                           const CallInst &I,
10868                                           unsigned Intrinsic) const {
10869
10870  switch (Intrinsic) {
10871  case Intrinsic::ppc_qpx_qvlfd:
10872  case Intrinsic::ppc_qpx_qvlfs:
10873  case Intrinsic::ppc_qpx_qvlfcd:
10874  case Intrinsic::ppc_qpx_qvlfcs:
10875  case Intrinsic::ppc_qpx_qvlfiwa:
10876  case Intrinsic::ppc_qpx_qvlfiwz:
10877  case Intrinsic::ppc_altivec_lvx:
10878  case Intrinsic::ppc_altivec_lvxl:
10879  case Intrinsic::ppc_altivec_lvebx:
10880  case Intrinsic::ppc_altivec_lvehx:
10881  case Intrinsic::ppc_altivec_lvewx:
10882  case Intrinsic::ppc_vsx_lxvd2x:
10883  case Intrinsic::ppc_vsx_lxvw4x: {
10884    EVT VT;
10885    switch (Intrinsic) {
10886    case Intrinsic::ppc_altivec_lvebx:
10887      VT = MVT::i8;
10888      break;
10889    case Intrinsic::ppc_altivec_lvehx:
10890      VT = MVT::i16;
10891      break;
10892    case Intrinsic::ppc_altivec_lvewx:
10893      VT = MVT::i32;
10894      break;
10895    case Intrinsic::ppc_vsx_lxvd2x:
10896      VT = MVT::v2f64;
10897      break;
10898    case Intrinsic::ppc_qpx_qvlfd:
10899      VT = MVT::v4f64;
10900      break;
10901    case Intrinsic::ppc_qpx_qvlfs:
10902      VT = MVT::v4f32;
10903      break;
10904    case Intrinsic::ppc_qpx_qvlfcd:
10905      VT = MVT::v2f64;
10906      break;
10907    case Intrinsic::ppc_qpx_qvlfcs:
10908      VT = MVT::v2f32;
10909      break;
10910    default:
10911      VT = MVT::v4i32;
10912      break;
10913    }
10914
10915    Info.opc = ISD::INTRINSIC_W_CHAIN;
10916    Info.memVT = VT;
10917    Info.ptrVal = I.getArgOperand(0);
10918    Info.offset = -VT.getStoreSize()+1;
10919    Info.size = 2*VT.getStoreSize()-1;
10920    Info.align = 1;
10921    Info.vol = false;
10922    Info.readMem = true;
10923    Info.writeMem = false;
10924    return true;
10925  }
10926  case Intrinsic::ppc_qpx_qvlfda:
10927  case Intrinsic::ppc_qpx_qvlfsa:
10928  case Intrinsic::ppc_qpx_qvlfcda:
10929  case Intrinsic::ppc_qpx_qvlfcsa:
10930  case Intrinsic::ppc_qpx_qvlfiwaa:
10931  case Intrinsic::ppc_qpx_qvlfiwza: {
10932    EVT VT;
10933    switch (Intrinsic) {
10934    case Intrinsic::ppc_qpx_qvlfda:
10935      VT = MVT::v4f64;
10936      break;
10937    case Intrinsic::ppc_qpx_qvlfsa:
10938      VT = MVT::v4f32;
10939      break;
10940    case Intrinsic::ppc_qpx_qvlfcda:
10941      VT = MVT::v2f64;
10942      break;
10943    case Intrinsic::ppc_qpx_qvlfcsa:
10944      VT = MVT::v2f32;
10945      break;
10946    default:
10947      VT = MVT::v4i32;
10948      break;
10949    }
10950
10951    Info.opc = ISD::INTRINSIC_W_CHAIN;
10952    Info.memVT = VT;
10953    Info.ptrVal = I.getArgOperand(0);
10954    Info.offset = 0;
10955    Info.size = VT.getStoreSize();
10956    Info.align = 1;
10957    Info.vol = false;
10958    Info.readMem = true;
10959    Info.writeMem = false;
10960    return true;
10961  }
10962  case Intrinsic::ppc_qpx_qvstfd:
10963  case Intrinsic::ppc_qpx_qvstfs:
10964  case Intrinsic::ppc_qpx_qvstfcd:
10965  case Intrinsic::ppc_qpx_qvstfcs:
10966  case Intrinsic::ppc_qpx_qvstfiw:
10967  case Intrinsic::ppc_altivec_stvx:
10968  case Intrinsic::ppc_altivec_stvxl:
10969  case Intrinsic::ppc_altivec_stvebx:
10970  case Intrinsic::ppc_altivec_stvehx:
10971  case Intrinsic::ppc_altivec_stvewx:
10972  case Intrinsic::ppc_vsx_stxvd2x:
10973  case Intrinsic::ppc_vsx_stxvw4x: {
10974    EVT VT;
10975    switch (Intrinsic) {
10976    case Intrinsic::ppc_altivec_stvebx:
10977      VT = MVT::i8;
10978      break;
10979    case Intrinsic::ppc_altivec_stvehx:
10980      VT = MVT::i16;
10981      break;
10982    case Intrinsic::ppc_altivec_stvewx:
10983      VT = MVT::i32;
10984      break;
10985    case Intrinsic::ppc_vsx_stxvd2x:
10986      VT = MVT::v2f64;
10987      break;
10988    case Intrinsic::ppc_qpx_qvstfd:
10989      VT = MVT::v4f64;
10990      break;
10991    case Intrinsic::ppc_qpx_qvstfs:
10992      VT = MVT::v4f32;
10993      break;
10994    case Intrinsic::ppc_qpx_qvstfcd:
10995      VT = MVT::v2f64;
10996      break;
10997    case Intrinsic::ppc_qpx_qvstfcs:
10998      VT = MVT::v2f32;
10999      break;
11000    default:
11001      VT = MVT::v4i32;
11002      break;
11003    }
11004
11005    Info.opc = ISD::INTRINSIC_VOID;
11006    Info.memVT = VT;
11007    Info.ptrVal = I.getArgOperand(1);
11008    Info.offset = -VT.getStoreSize()+1;
11009    Info.size = 2*VT.getStoreSize()-1;
11010    Info.align = 1;
11011    Info.vol = false;
11012    Info.readMem = false;
11013    Info.writeMem = true;
11014    return true;
11015  }
11016  case Intrinsic::ppc_qpx_qvstfda:
11017  case Intrinsic::ppc_qpx_qvstfsa:
11018  case Intrinsic::ppc_qpx_qvstfcda:
11019  case Intrinsic::ppc_qpx_qvstfcsa:
11020  case Intrinsic::ppc_qpx_qvstfiwa: {
11021    EVT VT;
11022    switch (Intrinsic) {
11023    case Intrinsic::ppc_qpx_qvstfda:
11024      VT = MVT::v4f64;
11025      break;
11026    case Intrinsic::ppc_qpx_qvstfsa:
11027      VT = MVT::v4f32;
11028      break;
11029    case Intrinsic::ppc_qpx_qvstfcda:
11030      VT = MVT::v2f64;
11031      break;
11032    case Intrinsic::ppc_qpx_qvstfcsa:
11033      VT = MVT::v2f32;
11034      break;
11035    default:
11036      VT = MVT::v4i32;
11037      break;
11038    }
11039
11040    Info.opc = ISD::INTRINSIC_VOID;
11041    Info.memVT = VT;
11042    Info.ptrVal = I.getArgOperand(1);
11043    Info.offset = 0;
11044    Info.size = VT.getStoreSize();
11045    Info.align = 1;
11046    Info.vol = false;
11047    Info.readMem = false;
11048    Info.writeMem = true;
11049    return true;
11050  }
11051  default:
11052    break;
11053  }
11054
11055  return false;
11056}
11057
11058/// getOptimalMemOpType - Returns the target specific optimal type for load
11059/// and store operations as a result of memset, memcpy, and memmove
11060/// lowering. If DstAlign is zero that means it's safe to destination
11061/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
11062/// means there isn't a need to check it against alignment requirement,
11063/// probably because the source does not need to be loaded. If 'IsMemset' is
11064/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
11065/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
11066/// source is constant so it does not need to be loaded.
11067/// It returns EVT::Other if the type should be determined using generic
11068/// target-independent logic.
11069EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
11070                                           unsigned DstAlign, unsigned SrcAlign,
11071                                           bool IsMemset, bool ZeroMemset,
11072                                           bool MemcpyStrSrc,
11073                                           MachineFunction &MF) const {
11074  if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
11075    const Function *F = MF.getFunction();
11076    // When expanding a memset, require at least two QPX instructions to cover
11077    // the cost of loading the value to be stored from the constant pool.
11078    if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
11079       (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
11080        !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
11081      return MVT::v4f64;
11082    }
11083
11084    // We should use Altivec/VSX loads and stores when available. For unaligned
11085    // addresses, unaligned VSX loads are only fast starting with the P8.
11086    if (Subtarget.hasAltivec() && Size >= 16 &&
11087        (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
11088         ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
11089      return MVT::v4i32;
11090  }
11091
11092  if (Subtarget.isPPC64()) {
11093    return MVT::i64;
11094  }
11095
11096  return MVT::i32;
11097}
11098
11099/// \brief Returns true if it is beneficial to convert a load of a constant
11100/// to just the constant itself.
11101bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
11102                                                          Type *Ty) const {
11103  assert(Ty->isIntegerTy());
11104
11105  unsigned BitSize = Ty->getPrimitiveSizeInBits();
11106  if (BitSize == 0 || BitSize > 64)
11107    return false;
11108  return true;
11109}
11110
11111bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11112  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11113    return false;
11114  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11115  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11116  return NumBits1 == 64 && NumBits2 == 32;
11117}
11118
11119bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11120  if (!VT1.isInteger() || !VT2.isInteger())
11121    return false;
11122  unsigned NumBits1 = VT1.getSizeInBits();
11123  unsigned NumBits2 = VT2.getSizeInBits();
11124  return NumBits1 == 64 && NumBits2 == 32;
11125}
11126
11127bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
11128  // Generally speaking, zexts are not free, but they are free when they can be
11129  // folded with other operations.
11130  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
11131    EVT MemVT = LD->getMemoryVT();
11132    if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
11133         (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
11134        (LD->getExtensionType() == ISD::NON_EXTLOAD ||
11135         LD->getExtensionType() == ISD::ZEXTLOAD))
11136      return true;
11137  }
11138
11139  // FIXME: Add other cases...
11140  //  - 32-bit shifts with a zext to i64
11141  //  - zext after ctlz, bswap, etc.
11142  //  - zext after and by a constant mask
11143
11144  return TargetLowering::isZExtFree(Val, VT2);
11145}
11146
11147bool PPCTargetLowering::isFPExtFree(EVT VT) const {
11148  assert(VT.isFloatingPoint());
11149  return true;
11150}
11151
11152bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11153  return isInt<16>(Imm) || isUInt<16>(Imm);
11154}
11155
11156bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
11157  return isInt<16>(Imm) || isUInt<16>(Imm);
11158}
11159
11160bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
11161                                                       unsigned,
11162                                                       unsigned,
11163                                                       bool *Fast) const {
11164  if (DisablePPCUnaligned)
11165    return false;
11166
11167  // PowerPC supports unaligned memory access for simple non-vector types.
11168  // Although accessing unaligned addresses is not as efficient as accessing
11169  // aligned addresses, it is generally more efficient than manual expansion,
11170  // and generally only traps for software emulation when crossing page
11171  // boundaries.
11172
11173  if (!VT.isSimple())
11174    return false;
11175
11176  if (VT.getSimpleVT().isVector()) {
11177    if (Subtarget.hasVSX()) {
11178      if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
11179          VT != MVT::v4f32 && VT != MVT::v4i32)
11180        return false;
11181    } else {
11182      return false;
11183    }
11184  }
11185
11186  if (VT == MVT::ppcf128)
11187    return false;
11188
11189  if (Fast)
11190    *Fast = true;
11191
11192  return true;
11193}
11194
11195bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
11196  VT = VT.getScalarType();
11197
11198  if (!VT.isSimple())
11199    return false;
11200
11201  switch (VT.getSimpleVT().SimpleTy) {
11202  case MVT::f32:
11203  case MVT::f64:
11204    return true;
11205  default:
11206    break;
11207  }
11208
11209  return false;
11210}
11211
11212const MCPhysReg *
11213PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
11214  // LR is a callee-save register, but we must treat it as clobbered by any call
11215  // site. Hence we include LR in the scratch registers, which are in turn added
11216  // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
11217  // to CTR, which is used by any indirect call.
11218  static const MCPhysReg ScratchRegs[] = {
11219    PPC::X12, PPC::LR8, PPC::CTR8, 0
11220  };
11221
11222  return ScratchRegs;
11223}
11224
11225bool
11226PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
11227                     EVT VT , unsigned DefinedValues) const {
11228  if (VT == MVT::v2i64)
11229    return false;
11230
11231  if (Subtarget.hasQPX()) {
11232    if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1)
11233      return true;
11234  }
11235
11236  return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
11237}
11238
11239Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
11240  if (DisableILPPref || Subtarget.enableMachineScheduler())
11241    return TargetLowering::getSchedulingPreference(N);
11242
11243  return Sched::ILP;
11244}
11245
11246// Create a fast isel object.
11247FastISel *
11248PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
11249                                  const TargetLibraryInfo *LibInfo) const {
11250  return PPC::createFastISel(FuncInfo, LibInfo);
11251}
11252