PPCISelLowering.cpp revision 095cc29f321382e1f7d295e262a28197f92c5491
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/ParameterAttributes.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36using namespace llvm;
37
38static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
39cl::desc("enable preincrement load/store generation on PPC (experimental)"),
40                                     cl::Hidden);
41
42PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
43  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
44
45  setPow2DivIsCheap();
46
47  // Use _setjmp/_longjmp instead of setjmp/longjmp.
48  setUseUnderscoreSetJmp(true);
49  setUseUnderscoreLongJmp(true);
50
51  // Set up the register classes.
52  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
53  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
54  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
55
56  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
57  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
58  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
59
60  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
61
62  // PowerPC has pre-inc load and store's.
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
67  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
72  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
73
74  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
75  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
76  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
77  // This is used in the ppcf128->int sequence.  Note it has different semantics
78  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
79  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
80
81  // PowerPC has no SREM/UREM instructions
82  setOperationAction(ISD::SREM, MVT::i32, Expand);
83  setOperationAction(ISD::UREM, MVT::i32, Expand);
84  setOperationAction(ISD::SREM, MVT::i64, Expand);
85  setOperationAction(ISD::UREM, MVT::i64, Expand);
86
87  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
88  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
89  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
90  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
91  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
92  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
93  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
94  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
95  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
96
97  // We don't support sin/cos/sqrt/fmod/pow
98  setOperationAction(ISD::FSIN , MVT::f64, Expand);
99  setOperationAction(ISD::FCOS , MVT::f64, Expand);
100  setOperationAction(ISD::FREM , MVT::f64, Expand);
101  setOperationAction(ISD::FPOW , MVT::f64, Expand);
102  setOperationAction(ISD::FLOG , MVT::f64, Expand);
103  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
104  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
105  setOperationAction(ISD::FEXP  ,MVT::f64, Expand);
106  setOperationAction(ISD::FEXP2 ,MVT::f64, Expand);
107  setOperationAction(ISD::FSIN , MVT::f32, Expand);
108  setOperationAction(ISD::FCOS , MVT::f32, Expand);
109  setOperationAction(ISD::FREM , MVT::f32, Expand);
110  setOperationAction(ISD::FPOW , MVT::f32, Expand);
111  setOperationAction(ISD::FLOG , MVT::f32, Expand);
112  setOperationAction(ISD::FLOG2 ,MVT::f32, Expand);
113  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
114  setOperationAction(ISD::FEXP  ,MVT::f32, Expand);
115  setOperationAction(ISD::FEXP2 ,MVT::f32, Expand);
116
117  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
118
119  // If we're enabling GP optimizations, use hardware square root
120  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
121    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
122    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
123  }
124
125  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
126  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
127
128  // PowerPC does not have BSWAP, CTPOP or CTTZ
129  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
130  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
131  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
132  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
133  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
134  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
135
136  // PowerPC does not have ROTR
137  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
138  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
139
140  // PowerPC does not have Select
141  setOperationAction(ISD::SELECT, MVT::i32, Expand);
142  setOperationAction(ISD::SELECT, MVT::i64, Expand);
143  setOperationAction(ISD::SELECT, MVT::f32, Expand);
144  setOperationAction(ISD::SELECT, MVT::f64, Expand);
145
146  // PowerPC wants to turn select_cc of FP into fsel when possible.
147  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
148  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
149
150  // PowerPC wants to optimize integer setcc a bit
151  setOperationAction(ISD::SETCC, MVT::i32, Custom);
152
153  // PowerPC does not have BRCOND which requires SetCC
154  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
155
156  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
157
158  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
159  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
160
161  // PowerPC does not have [U|S]INT_TO_FP
162  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
163  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
164
165  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
166  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
167  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
168  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
169
170  // We cannot sextinreg(i1).  Expand to shifts.
171  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
172
173  // Support label based line numbers.
174  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
175  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
176
177  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
178  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
179  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
180  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
181
182
183  // We want to legalize GlobalAddress and ConstantPool nodes into the
184  // appropriate instructions to materialize the address.
185  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
186  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
187  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
188  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
189  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
190  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
191  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
192  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
193
194  // RET must be custom lowered, to meet ABI requirements.
195  setOperationAction(ISD::RET               , MVT::Other, Custom);
196
197  // TRAP is legal.
198  setOperationAction(ISD::TRAP, MVT::Other, Legal);
199
200  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
201  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
202
203  // VAARG is custom lowered with ELF 32 ABI
204  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
205    setOperationAction(ISD::VAARG, MVT::Other, Custom);
206  else
207    setOperationAction(ISD::VAARG, MVT::Other, Expand);
208
209  // Use the default implementation.
210  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
211  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
212  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
213  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
214  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
215  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
216
217  // We want to custom lower some of our intrinsics.
218  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
219
220  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
221    // They also have instructions for converting between i64 and fp.
222    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
223    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
224    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
225    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
226    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
227
228    // FIXME: disable this lowered code.  This generates 64-bit register values,
229    // and we don't model the fact that the top part is clobbered by calls.  We
230    // need to flag these together so that the value isn't live across a call.
231    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
232
233    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
234    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
235  } else {
236    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
237    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
238  }
239
240  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
241    // 64-bit PowerPC implementations can support i64 types directly
242    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
243    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
244    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
245    // 64-bit PowerPC wants to expand i128 shifts itself.
246    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
247    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
248    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
249  } else {
250    // 32-bit PowerPC wants to expand i64 shifts itself.
251    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
252    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
253    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
254  }
255
256  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
257    // First set operation action for all vector types to expand. Then we
258    // will selectively turn on ones that can be effectively codegen'd.
259    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
260         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
261      MVT VT = (MVT::SimpleValueType)i;
262
263      // add/sub are legal for all supported vector VT's.
264      setOperationAction(ISD::ADD , VT, Legal);
265      setOperationAction(ISD::SUB , VT, Legal);
266
267      // We promote all shuffles to v16i8.
268      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
269      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
270
271      // We promote all non-typed operations to v4i32.
272      setOperationAction(ISD::AND   , VT, Promote);
273      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
274      setOperationAction(ISD::OR    , VT, Promote);
275      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
276      setOperationAction(ISD::XOR   , VT, Promote);
277      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
278      setOperationAction(ISD::LOAD  , VT, Promote);
279      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
280      setOperationAction(ISD::SELECT, VT, Promote);
281      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
282      setOperationAction(ISD::STORE, VT, Promote);
283      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
284
285      // No other operations are legal.
286      setOperationAction(ISD::MUL , VT, Expand);
287      setOperationAction(ISD::SDIV, VT, Expand);
288      setOperationAction(ISD::SREM, VT, Expand);
289      setOperationAction(ISD::UDIV, VT, Expand);
290      setOperationAction(ISD::UREM, VT, Expand);
291      setOperationAction(ISD::FDIV, VT, Expand);
292      setOperationAction(ISD::FNEG, VT, Expand);
293      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
294      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
295      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
296      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
297      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
298      setOperationAction(ISD::UDIVREM, VT, Expand);
299      setOperationAction(ISD::SDIVREM, VT, Expand);
300      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
301      setOperationAction(ISD::FPOW, VT, Expand);
302      setOperationAction(ISD::CTPOP, VT, Expand);
303      setOperationAction(ISD::CTLZ, VT, Expand);
304      setOperationAction(ISD::CTTZ, VT, Expand);
305    }
306
307    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
308    // with merges, splats, etc.
309    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
310
311    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
312    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
313    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
314    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
315    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
316    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
317
318    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
319    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
320    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
321    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
322
323    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
324    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
325    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
326    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
327
328    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
329    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
330
331    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
332    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
333    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
334    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
335  }
336
337  setShiftAmountType(MVT::i32);
338  setSetCCResultContents(ZeroOrOneSetCCResult);
339
340  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
341    setStackPointerRegisterToSaveRestore(PPC::X1);
342    setExceptionPointerRegister(PPC::X3);
343    setExceptionSelectorRegister(PPC::X4);
344  } else {
345    setStackPointerRegisterToSaveRestore(PPC::R1);
346    setExceptionPointerRegister(PPC::R3);
347    setExceptionSelectorRegister(PPC::R4);
348  }
349
350  // We have target-specific dag combine patterns for the following nodes:
351  setTargetDAGCombine(ISD::SINT_TO_FP);
352  setTargetDAGCombine(ISD::STORE);
353  setTargetDAGCombine(ISD::BR_CC);
354  setTargetDAGCombine(ISD::BSWAP);
355
356  // Darwin long double math library functions have $LDBL128 appended.
357  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
358    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
359    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
360    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
361    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
362    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
363    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
364    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
365    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
366    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
367    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
368  }
369
370  computeRegisterProperties();
371}
372
373/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
374/// function arguments in the caller parameter area.
375unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
376  TargetMachine &TM = getTargetMachine();
377  // Darwin passes everything on 4 byte boundary.
378  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
379    return 4;
380  // FIXME Elf TBD
381  return 4;
382}
383
384const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
385  switch (Opcode) {
386  default: return 0;
387  case PPCISD::FSEL:            return "PPCISD::FSEL";
388  case PPCISD::FCFID:           return "PPCISD::FCFID";
389  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
390  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
391  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
392  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
393  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
394  case PPCISD::VPERM:           return "PPCISD::VPERM";
395  case PPCISD::Hi:              return "PPCISD::Hi";
396  case PPCISD::Lo:              return "PPCISD::Lo";
397  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
398  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
399  case PPCISD::SRL:             return "PPCISD::SRL";
400  case PPCISD::SRA:             return "PPCISD::SRA";
401  case PPCISD::SHL:             return "PPCISD::SHL";
402  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
403  case PPCISD::STD_32:          return "PPCISD::STD_32";
404  case PPCISD::CALL_ELF:        return "PPCISD::CALL_ELF";
405  case PPCISD::CALL_Macho:      return "PPCISD::CALL_Macho";
406  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
407  case PPCISD::BCTRL_Macho:     return "PPCISD::BCTRL_Macho";
408  case PPCISD::BCTRL_ELF:       return "PPCISD::BCTRL_ELF";
409  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
410  case PPCISD::MFCR:            return "PPCISD::MFCR";
411  case PPCISD::VCMP:            return "PPCISD::VCMP";
412  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
413  case PPCISD::LBRX:            return "PPCISD::LBRX";
414  case PPCISD::STBRX:           return "PPCISD::STBRX";
415  case PPCISD::LARX:            return "PPCISD::LARX";
416  case PPCISD::STCX:            return "PPCISD::STCX";
417  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
418  case PPCISD::MFFS:            return "PPCISD::MFFS";
419  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
420  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
421  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
422  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
423  case PPCISD::TAILCALL:        return "PPCISD::TAILCALL";
424  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
425  }
426}
427
428
429MVT PPCTargetLowering::getSetCCResultType(const SDValue &) const {
430  return MVT::i32;
431}
432
433
434//===----------------------------------------------------------------------===//
435// Node matching predicates, for use by the tblgen matching code.
436//===----------------------------------------------------------------------===//
437
438/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
439static bool isFloatingPointZero(SDValue Op) {
440  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
441    return CFP->getValueAPF().isZero();
442  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
443    // Maybe this has already been legalized into the constant pool?
444    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
445      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
446        return CFP->getValueAPF().isZero();
447  }
448  return false;
449}
450
451/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
452/// true if Op is undef or if it matches the specified value.
453static bool isConstantOrUndef(SDValue Op, unsigned Val) {
454  return Op.getOpcode() == ISD::UNDEF ||
455         cast<ConstantSDNode>(Op)->getZExtValue() == Val;
456}
457
458/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
459/// VPKUHUM instruction.
460bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
461  if (!isUnary) {
462    for (unsigned i = 0; i != 16; ++i)
463      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
464        return false;
465  } else {
466    for (unsigned i = 0; i != 8; ++i)
467      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
468          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
469        return false;
470  }
471  return true;
472}
473
474/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
475/// VPKUWUM instruction.
476bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
477  if (!isUnary) {
478    for (unsigned i = 0; i != 16; i += 2)
479      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
480          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
481        return false;
482  } else {
483    for (unsigned i = 0; i != 8; i += 2)
484      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
485          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
486          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
487          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
488        return false;
489  }
490  return true;
491}
492
493/// isVMerge - Common function, used to match vmrg* shuffles.
494///
495static bool isVMerge(SDNode *N, unsigned UnitSize,
496                     unsigned LHSStart, unsigned RHSStart) {
497  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
498         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
499  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
500         "Unsupported merge size!");
501
502  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
503    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
504      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
505                             LHSStart+j+i*UnitSize) ||
506          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
507                             RHSStart+j+i*UnitSize))
508        return false;
509    }
510      return true;
511}
512
513/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
514/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
515bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
516  if (!isUnary)
517    return isVMerge(N, UnitSize, 8, 24);
518  return isVMerge(N, UnitSize, 8, 8);
519}
520
521/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
522/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
523bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
524  if (!isUnary)
525    return isVMerge(N, UnitSize, 0, 16);
526  return isVMerge(N, UnitSize, 0, 0);
527}
528
529
530/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
531/// amount, otherwise return -1.
532int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
533  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
534         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
535  // Find the first non-undef value in the shuffle mask.
536  unsigned i;
537  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
538    /*search*/;
539
540  if (i == 16) return -1;  // all undef.
541
542  // Otherwise, check to see if the rest of the elements are consequtively
543  // numbered from this value.
544  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getZExtValue();
545  if (ShiftAmt < i) return -1;
546  ShiftAmt -= i;
547
548  if (!isUnary) {
549    // Check the rest of the elements to see if they are consequtive.
550    for (++i; i != 16; ++i)
551      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
552        return -1;
553  } else {
554    // Check the rest of the elements to see if they are consequtive.
555    for (++i; i != 16; ++i)
556      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
557        return -1;
558  }
559
560  return ShiftAmt;
561}
562
563/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
564/// specifies a splat of a single element that is suitable for input to
565/// VSPLTB/VSPLTH/VSPLTW.
566bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
567  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
568         N->getNumOperands() == 16 &&
569         (EltSize == 1 || EltSize == 2 || EltSize == 4));
570
571  // This is a splat operation if each element of the permute is the same, and
572  // if the value doesn't reference the second vector.
573  unsigned ElementBase = 0;
574  SDValue Elt = N->getOperand(0);
575  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
576    ElementBase = EltV->getZExtValue();
577  else
578    return false;   // FIXME: Handle UNDEF elements too!
579
580  if (cast<ConstantSDNode>(Elt)->getZExtValue() >= 16)
581    return false;
582
583  // Check that they are consequtive.
584  for (unsigned i = 1; i != EltSize; ++i) {
585    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
586        cast<ConstantSDNode>(N->getOperand(i))->getZExtValue() != i+ElementBase)
587      return false;
588  }
589
590  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
591  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
592    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
593    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
594           "Invalid VECTOR_SHUFFLE mask!");
595    for (unsigned j = 0; j != EltSize; ++j)
596      if (N->getOperand(i+j) != N->getOperand(j))
597        return false;
598  }
599
600  return true;
601}
602
603/// isAllNegativeZeroVector - Returns true if all elements of build_vector
604/// are -0.0.
605bool PPC::isAllNegativeZeroVector(SDNode *N) {
606  assert(N->getOpcode() == ISD::BUILD_VECTOR);
607  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
608    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
609      return CFP->getValueAPF().isNegZero();
610  return false;
611}
612
613/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
614/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
615unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
616  assert(isSplatShuffleMask(N, EltSize));
617  return cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() / EltSize;
618}
619
620/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
621/// by using a vspltis[bhw] instruction of the specified element size, return
622/// the constant being splatted.  The ByteSize field indicates the number of
623/// bytes of each element [124] -> [bhw].
624SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
625  SDValue OpVal(0, 0);
626
627  // If ByteSize of the splat is bigger than the element size of the
628  // build_vector, then we have a case where we are checking for a splat where
629  // multiple elements of the buildvector are folded together into a single
630  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
631  unsigned EltSize = 16/N->getNumOperands();
632  if (EltSize < ByteSize) {
633    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
634    SDValue UniquedVals[4];
635    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
636
637    // See if all of the elements in the buildvector agree across.
638    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
639      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
640      // If the element isn't a constant, bail fully out.
641      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
642
643
644      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
645        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
646      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
647        return SDValue();  // no match.
648    }
649
650    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
651    // either constant or undef values that are identical for each chunk.  See
652    // if these chunks can form into a larger vspltis*.
653
654    // Check to see if all of the leading entries are either 0 or -1.  If
655    // neither, then this won't fit into the immediate field.
656    bool LeadingZero = true;
657    bool LeadingOnes = true;
658    for (unsigned i = 0; i != Multiple-1; ++i) {
659      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
660
661      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
662      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
663    }
664    // Finally, check the least significant entry.
665    if (LeadingZero) {
666      if (UniquedVals[Multiple-1].getNode() == 0)
667        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
668      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
669      if (Val < 16)
670        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
671    }
672    if (LeadingOnes) {
673      if (UniquedVals[Multiple-1].getNode() == 0)
674        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
675      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
676      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
677        return DAG.getTargetConstant(Val, MVT::i32);
678    }
679
680    return SDValue();
681  }
682
683  // Check to see if this buildvec has a single non-undef value in its elements.
684  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
685    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
686    if (OpVal.getNode() == 0)
687      OpVal = N->getOperand(i);
688    else if (OpVal != N->getOperand(i))
689      return SDValue();
690  }
691
692  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
693
694  unsigned ValSizeInBytes = 0;
695  uint64_t Value = 0;
696  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
697    Value = CN->getZExtValue();
698    ValSizeInBytes = CN->getValueType(0).getSizeInBits()/8;
699  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
700    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
701    Value = FloatToBits(CN->getValueAPF().convertToFloat());
702    ValSizeInBytes = 4;
703  }
704
705  // If the splat value is larger than the element value, then we can never do
706  // this splat.  The only case that we could fit the replicated bits into our
707  // immediate field for would be zero, and we prefer to use vxor for it.
708  if (ValSizeInBytes < ByteSize) return SDValue();
709
710  // If the element value is larger than the splat value, cut it in half and
711  // check to see if the two halves are equal.  Continue doing this until we
712  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
713  while (ValSizeInBytes > ByteSize) {
714    ValSizeInBytes >>= 1;
715
716    // If the top half equals the bottom half, we're still ok.
717    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
718         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
719      return SDValue();
720  }
721
722  // Properly sign extend the value.
723  int ShAmt = (4-ByteSize)*8;
724  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
725
726  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
727  if (MaskVal == 0) return SDValue();
728
729  // Finally, if this value fits in a 5 bit sext field, return it
730  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
731    return DAG.getTargetConstant(MaskVal, MVT::i32);
732  return SDValue();
733}
734
735//===----------------------------------------------------------------------===//
736//  Addressing Mode Selection
737//===----------------------------------------------------------------------===//
738
739/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
740/// or 64-bit immediate, and if the value can be accurately represented as a
741/// sign extension from a 16-bit value.  If so, this returns true and the
742/// immediate.
743static bool isIntS16Immediate(SDNode *N, short &Imm) {
744  if (N->getOpcode() != ISD::Constant)
745    return false;
746
747  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
748  if (N->getValueType(0) == MVT::i32)
749    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
750  else
751    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
752}
753static bool isIntS16Immediate(SDValue Op, short &Imm) {
754  return isIntS16Immediate(Op.getNode(), Imm);
755}
756
757
758/// SelectAddressRegReg - Given the specified addressed, check to see if it
759/// can be represented as an indexed [r+r] operation.  Returns false if it
760/// can be more efficiently represented with [r+imm].
761bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
762                                            SDValue &Index,
763                                            SelectionDAG &DAG) {
764  short imm = 0;
765  if (N.getOpcode() == ISD::ADD) {
766    if (isIntS16Immediate(N.getOperand(1), imm))
767      return false;    // r+i
768    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
769      return false;    // r+i
770
771    Base = N.getOperand(0);
772    Index = N.getOperand(1);
773    return true;
774  } else if (N.getOpcode() == ISD::OR) {
775    if (isIntS16Immediate(N.getOperand(1), imm))
776      return false;    // r+i can fold it if we can.
777
778    // If this is an or of disjoint bitfields, we can codegen this as an add
779    // (for better address arithmetic) if the LHS and RHS of the OR are provably
780    // disjoint.
781    APInt LHSKnownZero, LHSKnownOne;
782    APInt RHSKnownZero, RHSKnownOne;
783    DAG.ComputeMaskedBits(N.getOperand(0),
784                          APInt::getAllOnesValue(N.getOperand(0)
785                            .getValueSizeInBits()),
786                          LHSKnownZero, LHSKnownOne);
787
788    if (LHSKnownZero.getBoolValue()) {
789      DAG.ComputeMaskedBits(N.getOperand(1),
790                            APInt::getAllOnesValue(N.getOperand(1)
791                              .getValueSizeInBits()),
792                            RHSKnownZero, RHSKnownOne);
793      // If all of the bits are known zero on the LHS or RHS, the add won't
794      // carry.
795      if (~(LHSKnownZero | RHSKnownZero) == 0) {
796        Base = N.getOperand(0);
797        Index = N.getOperand(1);
798        return true;
799      }
800    }
801  }
802
803  return false;
804}
805
806/// Returns true if the address N can be represented by a base register plus
807/// a signed 16-bit displacement [r+imm], and if it is not better
808/// represented as reg+reg.
809bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
810                                            SDValue &Base, SelectionDAG &DAG){
811  // If this can be more profitably realized as r+r, fail.
812  if (SelectAddressRegReg(N, Disp, Base, DAG))
813    return false;
814
815  if (N.getOpcode() == ISD::ADD) {
816    short imm = 0;
817    if (isIntS16Immediate(N.getOperand(1), imm)) {
818      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
819      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
820        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
821      } else {
822        Base = N.getOperand(0);
823      }
824      return true; // [r+i]
825    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
826      // Match LOAD (ADD (X, Lo(G))).
827     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
828             && "Cannot handle constant offsets yet!");
829      Disp = N.getOperand(1).getOperand(0);  // The global address.
830      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
831             Disp.getOpcode() == ISD::TargetConstantPool ||
832             Disp.getOpcode() == ISD::TargetJumpTable);
833      Base = N.getOperand(0);
834      return true;  // [&g+r]
835    }
836  } else if (N.getOpcode() == ISD::OR) {
837    short imm = 0;
838    if (isIntS16Immediate(N.getOperand(1), imm)) {
839      // If this is an or of disjoint bitfields, we can codegen this as an add
840      // (for better address arithmetic) if the LHS and RHS of the OR are
841      // provably disjoint.
842      APInt LHSKnownZero, LHSKnownOne;
843      DAG.ComputeMaskedBits(N.getOperand(0),
844                            APInt::getAllOnesValue(N.getOperand(0)
845                                                   .getValueSizeInBits()),
846                            LHSKnownZero, LHSKnownOne);
847
848      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
849        // If all of the bits are known zero on the LHS or RHS, the add won't
850        // carry.
851        Base = N.getOperand(0);
852        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
853        return true;
854      }
855    }
856  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
857    // Loading from a constant address.
858
859    // If this address fits entirely in a 16-bit sext immediate field, codegen
860    // this as "d, 0"
861    short Imm;
862    if (isIntS16Immediate(CN, Imm)) {
863      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
864      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
865      return true;
866    }
867
868    // Handle 32-bit sext immediates with LIS + addr mode.
869    if (CN->getValueType(0) == MVT::i32 ||
870        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
871      int Addr = (int)CN->getZExtValue();
872
873      // Otherwise, break this down into an LIS + disp.
874      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
875
876      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
877      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
878      Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
879      return true;
880    }
881  }
882
883  Disp = DAG.getTargetConstant(0, getPointerTy());
884  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
885    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
886  else
887    Base = N;
888  return true;      // [r+0]
889}
890
891/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
892/// represented as an indexed [r+r] operation.
893bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
894                                                SDValue &Index,
895                                                SelectionDAG &DAG) {
896  // Check to see if we can easily represent this as an [r+r] address.  This
897  // will fail if it thinks that the address is more profitably represented as
898  // reg+imm, e.g. where imm = 0.
899  if (SelectAddressRegReg(N, Base, Index, DAG))
900    return true;
901
902  // If the operand is an addition, always emit this as [r+r], since this is
903  // better (for code size, and execution, as the memop does the add for free)
904  // than emitting an explicit add.
905  if (N.getOpcode() == ISD::ADD) {
906    Base = N.getOperand(0);
907    Index = N.getOperand(1);
908    return true;
909  }
910
911  // Otherwise, do it the hard way, using R0 as the base register.
912  Base = DAG.getRegister(PPC::R0, N.getValueType());
913  Index = N;
914  return true;
915}
916
917/// SelectAddressRegImmShift - Returns true if the address N can be
918/// represented by a base register plus a signed 14-bit displacement
919/// [r+imm*4].  Suitable for use by STD and friends.
920bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
921                                                 SDValue &Base,
922                                                 SelectionDAG &DAG) {
923  // If this can be more profitably realized as r+r, fail.
924  if (SelectAddressRegReg(N, Disp, Base, DAG))
925    return false;
926
927  if (N.getOpcode() == ISD::ADD) {
928    short imm = 0;
929    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
930      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
931      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
932        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
933      } else {
934        Base = N.getOperand(0);
935      }
936      return true; // [r+i]
937    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
938      // Match LOAD (ADD (X, Lo(G))).
939     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
940             && "Cannot handle constant offsets yet!");
941      Disp = N.getOperand(1).getOperand(0);  // The global address.
942      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
943             Disp.getOpcode() == ISD::TargetConstantPool ||
944             Disp.getOpcode() == ISD::TargetJumpTable);
945      Base = N.getOperand(0);
946      return true;  // [&g+r]
947    }
948  } else if (N.getOpcode() == ISD::OR) {
949    short imm = 0;
950    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
951      // If this is an or of disjoint bitfields, we can codegen this as an add
952      // (for better address arithmetic) if the LHS and RHS of the OR are
953      // provably disjoint.
954      APInt LHSKnownZero, LHSKnownOne;
955      DAG.ComputeMaskedBits(N.getOperand(0),
956                            APInt::getAllOnesValue(N.getOperand(0)
957                                                   .getValueSizeInBits()),
958                            LHSKnownZero, LHSKnownOne);
959      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
960        // If all of the bits are known zero on the LHS or RHS, the add won't
961        // carry.
962        Base = N.getOperand(0);
963        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
964        return true;
965      }
966    }
967  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
968    // Loading from a constant address.  Verify low two bits are clear.
969    if ((CN->getZExtValue() & 3) == 0) {
970      // If this address fits entirely in a 14-bit sext immediate field, codegen
971      // this as "d, 0"
972      short Imm;
973      if (isIntS16Immediate(CN, Imm)) {
974        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
975        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
976        return true;
977      }
978
979      // Fold the low-part of 32-bit absolute addresses into addr mode.
980      if (CN->getValueType(0) == MVT::i32 ||
981          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
982        int Addr = (int)CN->getZExtValue();
983
984        // Otherwise, break this down into an LIS + disp.
985        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
986
987        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
988        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
989        Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
990        return true;
991      }
992    }
993  }
994
995  Disp = DAG.getTargetConstant(0, getPointerTy());
996  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
997    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
998  else
999    Base = N;
1000  return true;      // [r+0]
1001}
1002
1003
1004/// getPreIndexedAddressParts - returns true by value, base pointer and
1005/// offset pointer and addressing mode by reference if the node's address
1006/// can be legally represented as pre-indexed load / store address.
1007bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1008                                                  SDValue &Offset,
1009                                                  ISD::MemIndexedMode &AM,
1010                                                  SelectionDAG &DAG) {
1011  // Disabled by default for now.
1012  if (!EnablePPCPreinc) return false;
1013
1014  SDValue Ptr;
1015  MVT VT;
1016  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1017    Ptr = LD->getBasePtr();
1018    VT = LD->getMemoryVT();
1019
1020  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1021    ST = ST;
1022    Ptr = ST->getBasePtr();
1023    VT  = ST->getMemoryVT();
1024  } else
1025    return false;
1026
1027  // PowerPC doesn't have preinc load/store instructions for vectors.
1028  if (VT.isVector())
1029    return false;
1030
1031  // TODO: Check reg+reg first.
1032
1033  // LDU/STU use reg+imm*4, others use reg+imm.
1034  if (VT != MVT::i64) {
1035    // reg + imm
1036    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1037      return false;
1038  } else {
1039    // reg + imm * 4.
1040    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1041      return false;
1042  }
1043
1044  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1045    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1046    // sext i32 to i64 when addr mode is r+i.
1047    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1048        LD->getExtensionType() == ISD::SEXTLOAD &&
1049        isa<ConstantSDNode>(Offset))
1050      return false;
1051  }
1052
1053  AM = ISD::PRE_INC;
1054  return true;
1055}
1056
1057//===----------------------------------------------------------------------===//
1058//  LowerOperation implementation
1059//===----------------------------------------------------------------------===//
1060
1061SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1062                                             SelectionDAG &DAG) {
1063  MVT PtrVT = Op.getValueType();
1064  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1065  Constant *C = CP->getConstVal();
1066  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1067  SDValue Zero = DAG.getConstant(0, PtrVT);
1068
1069  const TargetMachine &TM = DAG.getTarget();
1070
1071  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1072  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1073
1074  // If this is a non-darwin platform, we don't support non-static relo models
1075  // yet.
1076  if (TM.getRelocationModel() == Reloc::Static ||
1077      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1078    // Generate non-pic code that has direct accesses to the constant pool.
1079    // The address of the global is just (hi(&g)+lo(&g)).
1080    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1081  }
1082
1083  if (TM.getRelocationModel() == Reloc::PIC_) {
1084    // With PIC, the first instruction is actually "GR+hi(&G)".
1085    Hi = DAG.getNode(ISD::ADD, PtrVT,
1086                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1087  }
1088
1089  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1090  return Lo;
1091}
1092
1093SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1094  MVT PtrVT = Op.getValueType();
1095  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1096  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1097  SDValue Zero = DAG.getConstant(0, PtrVT);
1098
1099  const TargetMachine &TM = DAG.getTarget();
1100
1101  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1102  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1103
1104  // If this is a non-darwin platform, we don't support non-static relo models
1105  // yet.
1106  if (TM.getRelocationModel() == Reloc::Static ||
1107      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1108    // Generate non-pic code that has direct accesses to the constant pool.
1109    // The address of the global is just (hi(&g)+lo(&g)).
1110    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1111  }
1112
1113  if (TM.getRelocationModel() == Reloc::PIC_) {
1114    // With PIC, the first instruction is actually "GR+hi(&G)".
1115    Hi = DAG.getNode(ISD::ADD, PtrVT,
1116                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1117  }
1118
1119  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1120  return Lo;
1121}
1122
1123SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1124                                                   SelectionDAG &DAG) {
1125  assert(0 && "TLS not implemented for PPC.");
1126  return SDValue(); // Not reached
1127}
1128
1129SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1130                                                SelectionDAG &DAG) {
1131  MVT PtrVT = Op.getValueType();
1132  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1133  GlobalValue *GV = GSDN->getGlobal();
1134  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1135  // If it's a debug information descriptor, don't mess with it.
1136  if (DAG.isVerifiedDebugInfoDesc(Op))
1137    return GA;
1138  SDValue Zero = DAG.getConstant(0, PtrVT);
1139
1140  const TargetMachine &TM = DAG.getTarget();
1141
1142  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1143  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1144
1145  // If this is a non-darwin platform, we don't support non-static relo models
1146  // yet.
1147  if (TM.getRelocationModel() == Reloc::Static ||
1148      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1149    // Generate non-pic code that has direct accesses to globals.
1150    // The address of the global is just (hi(&g)+lo(&g)).
1151    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1152  }
1153
1154  if (TM.getRelocationModel() == Reloc::PIC_) {
1155    // With PIC, the first instruction is actually "GR+hi(&G)".
1156    Hi = DAG.getNode(ISD::ADD, PtrVT,
1157                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1158  }
1159
1160  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1161
1162  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1163    return Lo;
1164
1165  // If the global is weak or external, we have to go through the lazy
1166  // resolution stub.
1167  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1168}
1169
1170SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1171  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1172
1173  // If we're comparing for equality to zero, expose the fact that this is
1174  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1175  // fold the new nodes.
1176  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1177    if (C->isNullValue() && CC == ISD::SETEQ) {
1178      MVT VT = Op.getOperand(0).getValueType();
1179      SDValue Zext = Op.getOperand(0);
1180      if (VT.bitsLT(MVT::i32)) {
1181        VT = MVT::i32;
1182        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1183      }
1184      unsigned Log2b = Log2_32(VT.getSizeInBits());
1185      SDValue Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1186      SDValue Scc = DAG.getNode(ISD::SRL, VT, Clz,
1187                                  DAG.getConstant(Log2b, MVT::i32));
1188      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1189    }
1190    // Leave comparisons against 0 and -1 alone for now, since they're usually
1191    // optimized.  FIXME: revisit this when we can custom lower all setcc
1192    // optimizations.
1193    if (C->isAllOnesValue() || C->isNullValue())
1194      return SDValue();
1195  }
1196
1197  // If we have an integer seteq/setne, turn it into a compare against zero
1198  // by xor'ing the rhs with the lhs, which is faster than setting a
1199  // condition register, reading it back out, and masking the correct bit.  The
1200  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1201  // the result to other bit-twiddling opportunities.
1202  MVT LHSVT = Op.getOperand(0).getValueType();
1203  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1204    MVT VT = Op.getValueType();
1205    SDValue Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1206                                Op.getOperand(1));
1207    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1208  }
1209  return SDValue();
1210}
1211
1212SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1213                              int VarArgsFrameIndex,
1214                              int VarArgsStackOffset,
1215                              unsigned VarArgsNumGPR,
1216                              unsigned VarArgsNumFPR,
1217                              const PPCSubtarget &Subtarget) {
1218
1219  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1220  return SDValue(); // Not reached
1221}
1222
1223SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1224                              int VarArgsFrameIndex,
1225                              int VarArgsStackOffset,
1226                              unsigned VarArgsNumGPR,
1227                              unsigned VarArgsNumFPR,
1228                              const PPCSubtarget &Subtarget) {
1229
1230  if (Subtarget.isMachoABI()) {
1231    // vastart just stores the address of the VarArgsFrameIndex slot into the
1232    // memory location argument.
1233    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1234    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1235    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1236    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
1237  }
1238
1239  // For ELF 32 ABI we follow the layout of the va_list struct.
1240  // We suppose the given va_list is already allocated.
1241  //
1242  // typedef struct {
1243  //  char gpr;     /* index into the array of 8 GPRs
1244  //                 * stored in the register save area
1245  //                 * gpr=0 corresponds to r3,
1246  //                 * gpr=1 to r4, etc.
1247  //                 */
1248  //  char fpr;     /* index into the array of 8 FPRs
1249  //                 * stored in the register save area
1250  //                 * fpr=0 corresponds to f1,
1251  //                 * fpr=1 to f2, etc.
1252  //                 */
1253  //  char *overflow_arg_area;
1254  //                /* location on stack that holds
1255  //                 * the next overflow argument
1256  //                 */
1257  //  char *reg_save_area;
1258  //               /* where r3:r10 and f1:f8 (if saved)
1259  //                * are stored
1260  //                */
1261  // } va_list[1];
1262
1263
1264  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1265  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1266
1267
1268  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1269
1270  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1271  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1272
1273  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1274  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1275
1276  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1277  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1278
1279  uint64_t FPROffset = 1;
1280  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1281
1282  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1283
1284  // Store first byte : number of int regs
1285  SDValue firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1286                                      Op.getOperand(1), SV, 0);
1287  uint64_t nextOffset = FPROffset;
1288  SDValue nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1289                                  ConstFPROffset);
1290
1291  // Store second byte : number of float regs
1292  SDValue secondStore =
1293    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1294  nextOffset += StackOffset;
1295  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1296
1297  // Store second word : arguments given on stack
1298  SDValue thirdStore =
1299    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1300  nextOffset += FrameOffset;
1301  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1302
1303  // Store third word : arguments given in registers
1304  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
1305
1306}
1307
1308#include "PPCGenCallingConv.inc"
1309
1310/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1311/// depending on which subtarget is selected.
1312static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1313  if (Subtarget.isMachoABI()) {
1314    static const unsigned FPR[] = {
1315      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1316      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1317    };
1318    return FPR;
1319  }
1320
1321
1322  static const unsigned FPR[] = {
1323    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1324    PPC::F8
1325  };
1326  return FPR;
1327}
1328
1329/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1330/// the stack.
1331static unsigned CalculateStackSlotSize(SDValue Arg, ISD::ArgFlagsTy Flags,
1332                                       bool isVarArg, unsigned PtrByteSize) {
1333  MVT ArgVT = Arg.getValueType();
1334  unsigned ArgSize =ArgVT.getSizeInBits()/8;
1335  if (Flags.isByVal())
1336    ArgSize = Flags.getByValSize();
1337  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1338
1339  return ArgSize;
1340}
1341
1342SDValue
1343PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
1344                                         SelectionDAG &DAG,
1345                                         int &VarArgsFrameIndex,
1346                                         int &VarArgsStackOffset,
1347                                         unsigned &VarArgsNumGPR,
1348                                         unsigned &VarArgsNumFPR,
1349                                         const PPCSubtarget &Subtarget) {
1350  // TODO: add description of PPC stack frame format, or at least some docs.
1351  //
1352  MachineFunction &MF = DAG.getMachineFunction();
1353  MachineFrameInfo *MFI = MF.getFrameInfo();
1354  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1355  SmallVector<SDValue, 8> ArgValues;
1356  SDValue Root = Op.getOperand(0);
1357  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1358
1359  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1360  bool isPPC64 = PtrVT == MVT::i64;
1361  bool isMachoABI = Subtarget.isMachoABI();
1362  bool isELF32_ABI = Subtarget.isELF32_ABI();
1363  // Potential tail calls could cause overwriting of argument stack slots.
1364  unsigned CC = MF.getFunction()->getCallingConv();
1365  bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
1366  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1367
1368  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1369  // Area that is at least reserved in caller of this function.
1370  unsigned MinReservedArea = ArgOffset;
1371
1372  static const unsigned GPR_32[] = {           // 32-bit registers.
1373    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1374    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1375  };
1376  static const unsigned GPR_64[] = {           // 64-bit registers.
1377    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1378    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1379  };
1380
1381  static const unsigned *FPR = GetFPR(Subtarget);
1382
1383  static const unsigned VR[] = {
1384    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1385    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1386  };
1387
1388  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1389  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1390  const unsigned Num_VR_Regs  = array_lengthof( VR);
1391
1392  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1393
1394  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1395
1396  // In 32-bit non-varargs functions, the stack space for vectors is after the
1397  // stack space for non-vectors.  We do not use this space unless we have
1398  // too many vectors to fit in registers, something that only occurs in
1399  // constructed examples:), but we have to walk the arglist to figure
1400  // that out...for the pathological case, compute VecArgOffset as the
1401  // start of the vector parameter area.  Computing VecArgOffset is the
1402  // entire point of the following loop.
1403  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1404  // to handle Elf here.
1405  unsigned VecArgOffset = ArgOffset;
1406  if (!isVarArg && !isPPC64) {
1407    for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues()-1; ArgNo != e;
1408         ++ArgNo) {
1409      MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1410      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1411      ISD::ArgFlagsTy Flags =
1412        cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1413
1414      if (Flags.isByVal()) {
1415        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1416        ObjSize = Flags.getByValSize();
1417        unsigned ArgSize =
1418                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1419        VecArgOffset += ArgSize;
1420        continue;
1421      }
1422
1423      switch(ObjectVT.getSimpleVT()) {
1424      default: assert(0 && "Unhandled argument type!");
1425      case MVT::i32:
1426      case MVT::f32:
1427        VecArgOffset += isPPC64 ? 8 : 4;
1428        break;
1429      case MVT::i64:  // PPC64
1430      case MVT::f64:
1431        VecArgOffset += 8;
1432        break;
1433      case MVT::v4f32:
1434      case MVT::v4i32:
1435      case MVT::v8i16:
1436      case MVT::v16i8:
1437        // Nothing to do, we're only looking at Nonvector args here.
1438        break;
1439      }
1440    }
1441  }
1442  // We've found where the vector parameter area in memory is.  Skip the
1443  // first 12 parameters; these don't use that memory.
1444  VecArgOffset = ((VecArgOffset+15)/16)*16;
1445  VecArgOffset += 12*16;
1446
1447  // Add DAG nodes to load the arguments or copy them out of registers.  On
1448  // entry to a function on PPC, the arguments start after the linkage area,
1449  // although the first ones are often in registers.
1450  //
1451  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1452  // represented with two words (long long or double) must be copied to an
1453  // even GPR_idx value or to an even ArgOffset value.
1454
1455  SmallVector<SDValue, 8> MemOps;
1456  unsigned nAltivecParamsAtEnd = 0;
1457  for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues() - 1;
1458       ArgNo != e; ++ArgNo) {
1459    SDValue ArgVal;
1460    bool needsLoad = false;
1461    MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1462    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1463    unsigned ArgSize = ObjSize;
1464    ISD::ArgFlagsTy Flags =
1465      cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1466    // See if next argument requires stack alignment in ELF
1467    bool Align = Flags.isSplit();
1468
1469    unsigned CurArgOffset = ArgOffset;
1470
1471    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1472    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1473        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1474      if (isVarArg || isPPC64) {
1475        MinReservedArea = ((MinReservedArea+15)/16)*16;
1476        MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1477                                                  Flags,
1478                                                  isVarArg,
1479                                                  PtrByteSize);
1480      } else  nAltivecParamsAtEnd++;
1481    } else
1482      // Calculate min reserved area.
1483      MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1484                                                Flags,
1485                                                isVarArg,
1486                                                PtrByteSize);
1487
1488    // FIXME alignment for ELF may not be right
1489    // FIXME the codegen can be much improved in some cases.
1490    // We do not have to keep everything in memory.
1491    if (Flags.isByVal()) {
1492      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1493      ObjSize = Flags.getByValSize();
1494      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1495      // Double word align in ELF
1496      if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1497      // Objects of size 1 and 2 are right justified, everything else is
1498      // left justified.  This means the memory address is adjusted forwards.
1499      if (ObjSize==1 || ObjSize==2) {
1500        CurArgOffset = CurArgOffset + (4 - ObjSize);
1501      }
1502      // The value of the object is its address.
1503      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1504      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1505      ArgValues.push_back(FIN);
1506      if (ObjSize==1 || ObjSize==2) {
1507        if (GPR_idx != Num_GPR_Regs) {
1508          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1509          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1510          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1511          SDValue Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1512                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1513          MemOps.push_back(Store);
1514          ++GPR_idx;
1515          if (isMachoABI) ArgOffset += PtrByteSize;
1516        } else {
1517          ArgOffset += PtrByteSize;
1518        }
1519        continue;
1520      }
1521      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1522        // Store whatever pieces of the object are in registers
1523        // to memory.  ArgVal will be address of the beginning of
1524        // the object.
1525        if (GPR_idx != Num_GPR_Regs) {
1526          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1527          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1528          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1529          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1530          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1531          SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1532          MemOps.push_back(Store);
1533          ++GPR_idx;
1534          if (isMachoABI) ArgOffset += PtrByteSize;
1535        } else {
1536          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1537          break;
1538        }
1539      }
1540      continue;
1541    }
1542
1543    switch (ObjectVT.getSimpleVT()) {
1544    default: assert(0 && "Unhandled argument type!");
1545    case MVT::i32:
1546      if (!isPPC64) {
1547        // Double word align in ELF
1548        if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1549
1550        if (GPR_idx != Num_GPR_Regs) {
1551          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1552          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1553          ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1554          ++GPR_idx;
1555        } else {
1556          needsLoad = true;
1557          ArgSize = PtrByteSize;
1558        }
1559        // Stack align in ELF
1560        if (needsLoad && Align && isELF32_ABI)
1561          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1562        // All int arguments reserve stack space in Macho ABI.
1563        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1564        break;
1565      }
1566      // FALLTHROUGH
1567    case MVT::i64:  // PPC64
1568      if (GPR_idx != Num_GPR_Regs) {
1569        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1570        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1571        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1572
1573        if (ObjectVT == MVT::i32) {
1574          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1575          // value to MVT::i64 and then truncate to the correct register size.
1576          if (Flags.isSExt())
1577            ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1578                                 DAG.getValueType(ObjectVT));
1579          else if (Flags.isZExt())
1580            ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1581                                 DAG.getValueType(ObjectVT));
1582
1583          ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1584        }
1585
1586        ++GPR_idx;
1587      } else {
1588        needsLoad = true;
1589        ArgSize = PtrByteSize;
1590      }
1591      // All int arguments reserve stack space in Macho ABI.
1592      if (isMachoABI || needsLoad) ArgOffset += 8;
1593      break;
1594
1595    case MVT::f32:
1596    case MVT::f64:
1597      // Every 4 bytes of argument space consumes one of the GPRs available for
1598      // argument passing.
1599      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1600        ++GPR_idx;
1601        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1602          ++GPR_idx;
1603      }
1604      if (FPR_idx != Num_FPR_Regs) {
1605        unsigned VReg;
1606        if (ObjectVT == MVT::f32)
1607          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1608        else
1609          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1610        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1611        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1612        ++FPR_idx;
1613      } else {
1614        needsLoad = true;
1615      }
1616
1617      // Stack align in ELF
1618      if (needsLoad && Align && isELF32_ABI)
1619        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1620      // All FP arguments reserve stack space in Macho ABI.
1621      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1622      break;
1623    case MVT::v4f32:
1624    case MVT::v4i32:
1625    case MVT::v8i16:
1626    case MVT::v16i8:
1627      // Note that vector arguments in registers don't reserve stack space,
1628      // except in varargs functions.
1629      if (VR_idx != Num_VR_Regs) {
1630        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1631        RegInfo.addLiveIn(VR[VR_idx], VReg);
1632        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1633        if (isVarArg) {
1634          while ((ArgOffset % 16) != 0) {
1635            ArgOffset += PtrByteSize;
1636            if (GPR_idx != Num_GPR_Regs)
1637              GPR_idx++;
1638          }
1639          ArgOffset += 16;
1640          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1641        }
1642        ++VR_idx;
1643      } else {
1644        if (!isVarArg && !isPPC64) {
1645          // Vectors go after all the nonvectors.
1646          CurArgOffset = VecArgOffset;
1647          VecArgOffset += 16;
1648        } else {
1649          // Vectors are aligned.
1650          ArgOffset = ((ArgOffset+15)/16)*16;
1651          CurArgOffset = ArgOffset;
1652          ArgOffset += 16;
1653        }
1654        needsLoad = true;
1655      }
1656      break;
1657    }
1658
1659    // We need to load the argument to a virtual register if we determined above
1660    // that we ran out of physical registers of the appropriate type.
1661    if (needsLoad) {
1662      int FI = MFI->CreateFixedObject(ObjSize,
1663                                      CurArgOffset + (ArgSize - ObjSize),
1664                                      isImmutable);
1665      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1666      ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1667    }
1668
1669    ArgValues.push_back(ArgVal);
1670  }
1671
1672  // Set the size that is at least reserved in caller of this function.  Tail
1673  // call optimized function's reserved stack space needs to be aligned so that
1674  // taking the difference between two stack areas will result in an aligned
1675  // stack.
1676  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1677  // Add the Altivec parameters at the end, if needed.
1678  if (nAltivecParamsAtEnd) {
1679    MinReservedArea = ((MinReservedArea+15)/16)*16;
1680    MinReservedArea += 16*nAltivecParamsAtEnd;
1681  }
1682  MinReservedArea =
1683    std::max(MinReservedArea,
1684             PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1685  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1686    getStackAlignment();
1687  unsigned AlignMask = TargetAlign-1;
1688  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1689  FI->setMinReservedArea(MinReservedArea);
1690
1691  // If the function takes variable number of arguments, make a frame index for
1692  // the start of the first vararg value... for expansion of llvm.va_start.
1693  if (isVarArg) {
1694
1695    int depth;
1696    if (isELF32_ABI) {
1697      VarArgsNumGPR = GPR_idx;
1698      VarArgsNumFPR = FPR_idx;
1699
1700      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1701      // pointer.
1702      depth = -(Num_GPR_Regs * PtrVT.getSizeInBits()/8 +
1703                Num_FPR_Regs * MVT(MVT::f64).getSizeInBits()/8 +
1704                PtrVT.getSizeInBits()/8);
1705
1706      VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1707                                                  ArgOffset);
1708
1709    }
1710    else
1711      depth = ArgOffset;
1712
1713    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1714                                               depth);
1715    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1716
1717    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1718    // stored to the VarArgsFrameIndex on the stack.
1719    if (isELF32_ABI) {
1720      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1721        SDValue Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1722        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1723        MemOps.push_back(Store);
1724        // Increment the address by four for the next argument to store
1725        SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1726        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1727      }
1728    }
1729
1730    // If this function is vararg, store any remaining integer argument regs
1731    // to their spots on the stack so that they may be loaded by deferencing the
1732    // result of va_next.
1733    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1734      unsigned VReg;
1735      if (isPPC64)
1736        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1737      else
1738        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1739
1740      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1741      SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1742      SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1743      MemOps.push_back(Store);
1744      // Increment the address by four for the next argument to store
1745      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1746      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1747    }
1748
1749    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1750    // on the stack.
1751    if (isELF32_ABI) {
1752      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1753        SDValue Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1754        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1755        MemOps.push_back(Store);
1756        // Increment the address by eight for the next argument to store
1757        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1758                                           PtrVT);
1759        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1760      }
1761
1762      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1763        unsigned VReg;
1764        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1765
1766        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1767        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1768        SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1769        MemOps.push_back(Store);
1770        // Increment the address by eight for the next argument to store
1771        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1772                                           PtrVT);
1773        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1774      }
1775    }
1776  }
1777
1778  if (!MemOps.empty())
1779    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1780
1781  ArgValues.push_back(Root);
1782
1783  // Return the new list of results.
1784  return DAG.getMergeValues(Op.getNode()->getVTList(), &ArgValues[0],
1785                            ArgValues.size());
1786}
1787
1788/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
1789/// linkage area.
1790static unsigned
1791CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
1792                                     bool isPPC64,
1793                                     bool isMachoABI,
1794                                     bool isVarArg,
1795                                     unsigned CC,
1796                                     CallSDNode *TheCall,
1797                                     unsigned &nAltivecParamsAtEnd) {
1798  // Count how many bytes are to be pushed on the stack, including the linkage
1799  // area, and parameter passing area.  We start with 24/48 bytes, which is
1800  // prereserved space for [SP][CR][LR][3 x unused].
1801  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1802  unsigned NumOps = TheCall->getNumArgs();
1803  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1804
1805  // Add up all the space actually used.
1806  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1807  // they all go in registers, but we must reserve stack space for them for
1808  // possible use by the caller.  In varargs or 64-bit calls, parameters are
1809  // assigned stack space in order, with padding so Altivec parameters are
1810  // 16-byte aligned.
1811  nAltivecParamsAtEnd = 0;
1812  for (unsigned i = 0; i != NumOps; ++i) {
1813    SDValue Arg = TheCall->getArg(i);
1814    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1815    MVT ArgVT = Arg.getValueType();
1816    // Varargs Altivec parameters are padded to a 16 byte boundary.
1817    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1818        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1819      if (!isVarArg && !isPPC64) {
1820        // Non-varargs Altivec parameters go after all the non-Altivec
1821        // parameters; handle those later so we know how much padding we need.
1822        nAltivecParamsAtEnd++;
1823        continue;
1824      }
1825      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1826      NumBytes = ((NumBytes+15)/16)*16;
1827    }
1828    NumBytes += CalculateStackSlotSize(Arg, Flags, isVarArg, PtrByteSize);
1829  }
1830
1831   // Allow for Altivec parameters at the end, if needed.
1832  if (nAltivecParamsAtEnd) {
1833    NumBytes = ((NumBytes+15)/16)*16;
1834    NumBytes += 16*nAltivecParamsAtEnd;
1835  }
1836
1837  // The prolog code of the callee may store up to 8 GPR argument registers to
1838  // the stack, allowing va_start to index over them in memory if its varargs.
1839  // Because we cannot tell if this is needed on the caller side, we have to
1840  // conservatively assume that it is needed.  As such, make sure we have at
1841  // least enough stack space for the caller to store the 8 GPRs.
1842  NumBytes = std::max(NumBytes,
1843                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1844
1845  // Tail call needs the stack to be aligned.
1846  if (CC==CallingConv::Fast && PerformTailCallOpt) {
1847    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1848      getStackAlignment();
1849    unsigned AlignMask = TargetAlign-1;
1850    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
1851  }
1852
1853  return NumBytes;
1854}
1855
1856/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
1857/// adjusted to accomodate the arguments for the tailcall.
1858static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
1859                                   unsigned ParamSize) {
1860
1861  if (!IsTailCall) return 0;
1862
1863  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
1864  unsigned CallerMinReservedArea = FI->getMinReservedArea();
1865  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
1866  // Remember only if the new adjustement is bigger.
1867  if (SPDiff < FI->getTailCallSPDelta())
1868    FI->setTailCallSPDelta(SPDiff);
1869
1870  return SPDiff;
1871}
1872
1873/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1874/// following the call is a return. A function is eligible if caller/callee
1875/// calling conventions match, currently only fastcc supports tail calls, and
1876/// the function CALL is immediatly followed by a RET.
1877bool
1878PPCTargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1879                                                     SDValue Ret,
1880                                                     SelectionDAG& DAG) const {
1881  // Variable argument functions are not supported.
1882  if (!PerformTailCallOpt || TheCall->isVarArg())
1883    return false;
1884
1885  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1886    MachineFunction &MF = DAG.getMachineFunction();
1887    unsigned CallerCC = MF.getFunction()->getCallingConv();
1888    unsigned CalleeCC = TheCall->getCallingConv();
1889    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1890      // Functions containing by val parameters are not supported.
1891      for (unsigned i = 0; i != TheCall->getNumArgs(); i++) {
1892         ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1893         if (Flags.isByVal()) return false;
1894      }
1895
1896      SDValue Callee = TheCall->getCallee();
1897      // Non PIC/GOT  tail calls are supported.
1898      if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1899        return true;
1900
1901      // At the moment we can only do local tail calls (in same module, hidden
1902      // or protected) if we are generating PIC.
1903      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1904        return G->getGlobal()->hasHiddenVisibility()
1905            || G->getGlobal()->hasProtectedVisibility();
1906    }
1907  }
1908
1909  return false;
1910}
1911
1912/// isCallCompatibleAddress - Return the immediate to use if the specified
1913/// 32-bit value is representable in the immediate field of a BxA instruction.
1914static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
1915  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1916  if (!C) return 0;
1917
1918  int Addr = C->getZExtValue();
1919  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1920      (Addr << 6 >> 6) != Addr)
1921    return 0;  // Top 6 bits have to be sext of immediate.
1922
1923  return DAG.getConstant((int)C->getZExtValue() >> 2,
1924                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
1925}
1926
1927namespace {
1928
1929struct TailCallArgumentInfo {
1930  SDValue Arg;
1931  SDValue FrameIdxOp;
1932  int       FrameIdx;
1933
1934  TailCallArgumentInfo() : FrameIdx(0) {}
1935};
1936
1937}
1938
1939/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
1940static void
1941StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
1942                                           SDValue Chain,
1943                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
1944                   SmallVector<SDValue, 8> &MemOpChains) {
1945  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
1946    SDValue Arg = TailCallArgs[i].Arg;
1947    SDValue FIN = TailCallArgs[i].FrameIdxOp;
1948    int FI = TailCallArgs[i].FrameIdx;
1949    // Store relative to framepointer.
1950    MemOpChains.push_back(DAG.getStore(Chain, Arg, FIN,
1951                                       PseudoSourceValue::getFixedStack(FI),
1952                                       0));
1953  }
1954}
1955
1956/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
1957/// the appropriate stack slot for the tail call optimized function call.
1958static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
1959                                               MachineFunction &MF,
1960                                               SDValue Chain,
1961                                               SDValue OldRetAddr,
1962                                               SDValue OldFP,
1963                                               int SPDiff,
1964                                               bool isPPC64,
1965                                               bool isMachoABI) {
1966  if (SPDiff) {
1967    // Calculate the new stack slot for the return address.
1968    int SlotSize = isPPC64 ? 8 : 4;
1969    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
1970                                                                   isMachoABI);
1971    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
1972                                                          NewRetAddrLoc);
1973    int NewFPLoc = SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
1974                                                                    isMachoABI);
1975    int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
1976
1977    MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
1978    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
1979    Chain = DAG.getStore(Chain, OldRetAddr, NewRetAddrFrIdx,
1980                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
1981    SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
1982    Chain = DAG.getStore(Chain, OldFP, NewFramePtrIdx,
1983                         PseudoSourceValue::getFixedStack(NewFPIdx), 0);
1984  }
1985  return Chain;
1986}
1987
1988/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
1989/// the position of the argument.
1990static void
1991CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
1992                         SDValue Arg, int SPDiff, unsigned ArgOffset,
1993                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
1994  int Offset = ArgOffset + SPDiff;
1995  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
1996  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1997  MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
1998  SDValue FIN = DAG.getFrameIndex(FI, VT);
1999  TailCallArgumentInfo Info;
2000  Info.Arg = Arg;
2001  Info.FrameIdxOp = FIN;
2002  Info.FrameIdx = FI;
2003  TailCallArguments.push_back(Info);
2004}
2005
2006/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2007/// stack slot. Returns the chain as result and the loaded frame pointers in
2008/// LROpOut/FPOpout. Used when tail calling.
2009SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2010                                                          int SPDiff,
2011                                                          SDValue Chain,
2012                                                          SDValue &LROpOut,
2013                                                          SDValue &FPOpOut) {
2014  if (SPDiff) {
2015    // Load the LR and FP stack slot for later adjusting.
2016    MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2017    LROpOut = getReturnAddrFrameIndex(DAG);
2018    LROpOut = DAG.getLoad(VT, Chain, LROpOut, NULL, 0);
2019    Chain = SDValue(LROpOut.getNode(), 1);
2020    FPOpOut = getFramePointerFrameIndex(DAG);
2021    FPOpOut = DAG.getLoad(VT, Chain, FPOpOut, NULL, 0);
2022    Chain = SDValue(FPOpOut.getNode(), 1);
2023  }
2024  return Chain;
2025}
2026
2027/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2028/// by "Src" to address "Dst" of size "Size".  Alignment information is
2029/// specified by the specific parameter attribute. The copy will be passed as
2030/// a byval function parameter.
2031/// Sometimes what we are copying is the end of a larger object, the part that
2032/// does not fit in registers.
2033static SDValue
2034CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2035                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2036                          unsigned Size) {
2037  SDValue SizeNode = DAG.getConstant(Size, MVT::i32);
2038  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(), false,
2039                       NULL, 0, NULL, 0);
2040}
2041
2042/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2043/// tail calls.
2044static void
2045LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2046                 SDValue Arg, SDValue PtrOff, int SPDiff,
2047                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2048                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2049                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2050  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2051  if (!isTailCall) {
2052    if (isVector) {
2053      SDValue StackPtr;
2054      if (isPPC64)
2055        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2056      else
2057        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2058      PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2059                           DAG.getConstant(ArgOffset, PtrVT));
2060    }
2061    MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
2062  // Calculate and remember argument location.
2063  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2064                                  TailCallArguments);
2065}
2066
2067SDValue PPCTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG,
2068                                       const PPCSubtarget &Subtarget,
2069                                       TargetMachine &TM) {
2070  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
2071  SDValue Chain  = TheCall->getChain();
2072  bool isVarArg   = TheCall->isVarArg();
2073  unsigned CC     = TheCall->getCallingConv();
2074  bool isTailCall = TheCall->isTailCall()
2075                 && CC == CallingConv::Fast && PerformTailCallOpt;
2076  SDValue Callee = TheCall->getCallee();
2077  unsigned NumOps  = TheCall->getNumArgs();
2078
2079  bool isMachoABI = Subtarget.isMachoABI();
2080  bool isELF32_ABI  = Subtarget.isELF32_ABI();
2081
2082  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2083  bool isPPC64 = PtrVT == MVT::i64;
2084  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2085
2086  MachineFunction &MF = DAG.getMachineFunction();
2087
2088  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
2089  // SelectExpr to use to put the arguments in the appropriate registers.
2090  std::vector<SDValue> args_to_use;
2091
2092  // Mark this function as potentially containing a function that contains a
2093  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2094  // and restoring the callers stack pointer in this functions epilog. This is
2095  // done because by tail calling the called function might overwrite the value
2096  // in this function's (MF) stack pointer stack slot 0(SP).
2097  if (PerformTailCallOpt && CC==CallingConv::Fast)
2098    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2099
2100  unsigned nAltivecParamsAtEnd = 0;
2101
2102  // Count how many bytes are to be pushed on the stack, including the linkage
2103  // area, and parameter passing area.  We start with 24/48 bytes, which is
2104  // prereserved space for [SP][CR][LR][3 x unused].
2105  unsigned NumBytes =
2106    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isMachoABI, isVarArg, CC,
2107                                         TheCall, nAltivecParamsAtEnd);
2108
2109  // Calculate by how many bytes the stack has to be adjusted in case of tail
2110  // call optimization.
2111  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2112
2113  // Adjust the stack pointer for the new arguments...
2114  // These operations are automatically eliminated by the prolog/epilog pass
2115  Chain = DAG.getCALLSEQ_START(Chain,
2116                               DAG.getConstant(NumBytes, PtrVT));
2117  SDValue CallSeqStart = Chain;
2118
2119  // Load the return address and frame pointer so it can be move somewhere else
2120  // later.
2121  SDValue LROp, FPOp;
2122  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp);
2123
2124  // Set up a copy of the stack pointer for use loading and storing any
2125  // arguments that may not fit in the registers available for argument
2126  // passing.
2127  SDValue StackPtr;
2128  if (isPPC64)
2129    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2130  else
2131    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2132
2133  // Figure out which arguments are going to go in registers, and which in
2134  // memory.  Also, if this is a vararg function, floating point operations
2135  // must be stored to our stack, and loaded into integer regs as well, if
2136  // any integer regs are available for argument passing.
2137  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
2138  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2139
2140  static const unsigned GPR_32[] = {           // 32-bit registers.
2141    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2142    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2143  };
2144  static const unsigned GPR_64[] = {           // 64-bit registers.
2145    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2146    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2147  };
2148  static const unsigned *FPR = GetFPR(Subtarget);
2149
2150  static const unsigned VR[] = {
2151    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2152    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2153  };
2154  const unsigned NumGPRs = array_lengthof(GPR_32);
2155  const unsigned NumFPRs = isMachoABI ? 13 : 8;
2156  const unsigned NumVRs  = array_lengthof( VR);
2157
2158  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2159
2160  std::vector<std::pair<unsigned, SDValue> > RegsToPass;
2161  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2162
2163  SmallVector<SDValue, 8> MemOpChains;
2164  for (unsigned i = 0; i != NumOps; ++i) {
2165    bool inMem = false;
2166    SDValue Arg = TheCall->getArg(i);
2167    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
2168    // See if next argument requires stack alignment in ELF
2169    bool Align = Flags.isSplit();
2170
2171    // PtrOff will be used to store the current argument to the stack if a
2172    // register cannot be found for it.
2173    SDValue PtrOff;
2174
2175    // Stack align in ELF 32
2176    if (isELF32_ABI && Align)
2177      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
2178                               StackPtr.getValueType());
2179    else
2180      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2181
2182    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
2183
2184    // On PPC64, promote integers to 64-bit values.
2185    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2186      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2187      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2188      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
2189    }
2190
2191    // FIXME Elf untested, what are alignment rules?
2192    // FIXME memcpy is used way more than necessary.  Correctness first.
2193    if (Flags.isByVal()) {
2194      unsigned Size = Flags.getByValSize();
2195      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2196      if (Size==1 || Size==2) {
2197        // Very small objects are passed right-justified.
2198        // Everything else is passed left-justified.
2199        MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2200        if (GPR_idx != NumGPRs) {
2201          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
2202                                          NULL, 0, VT);
2203          MemOpChains.push_back(Load.getValue(1));
2204          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2205          if (isMachoABI)
2206            ArgOffset += PtrByteSize;
2207        } else {
2208          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2209          SDValue AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
2210          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2211                                CallSeqStart.getNode()->getOperand(0),
2212                                Flags, DAG, Size);
2213          // This must go outside the CALLSEQ_START..END.
2214          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2215                               CallSeqStart.getNode()->getOperand(1));
2216          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2217                                 NewCallSeqStart.getNode());
2218          Chain = CallSeqStart = NewCallSeqStart;
2219          ArgOffset += PtrByteSize;
2220        }
2221        continue;
2222      }
2223      // Copy entire object into memory.  There are cases where gcc-generated
2224      // code assumes it is there, even if it could be put entirely into
2225      // registers.  (This is not what the doc says.)
2226      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2227                            CallSeqStart.getNode()->getOperand(0),
2228                            Flags, DAG, Size);
2229      // This must go outside the CALLSEQ_START..END.
2230      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2231                           CallSeqStart.getNode()->getOperand(1));
2232      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
2233      Chain = CallSeqStart = NewCallSeqStart;
2234      // And copy the pieces of it that fit into registers.
2235      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2236        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2237        SDValue AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
2238        if (GPR_idx != NumGPRs) {
2239          SDValue Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
2240          MemOpChains.push_back(Load.getValue(1));
2241          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2242          if (isMachoABI)
2243            ArgOffset += PtrByteSize;
2244        } else {
2245          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2246          break;
2247        }
2248      }
2249      continue;
2250    }
2251
2252    switch (Arg.getValueType().getSimpleVT()) {
2253    default: assert(0 && "Unexpected ValueType for argument!");
2254    case MVT::i32:
2255    case MVT::i64:
2256      // Double word align in ELF
2257      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2258      if (GPR_idx != NumGPRs) {
2259        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2260      } else {
2261        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2262                         isPPC64, isTailCall, false, MemOpChains,
2263                         TailCallArguments);
2264        inMem = true;
2265      }
2266      if (inMem || isMachoABI) {
2267        // Stack align in ELF
2268        if (isELF32_ABI && Align)
2269          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2270
2271        ArgOffset += PtrByteSize;
2272      }
2273      break;
2274    case MVT::f32:
2275    case MVT::f64:
2276      if (FPR_idx != NumFPRs) {
2277        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2278
2279        if (isVarArg) {
2280          SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2281          MemOpChains.push_back(Store);
2282
2283          // Float varargs are always shadowed in available integer registers
2284          if (GPR_idx != NumGPRs) {
2285            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2286            MemOpChains.push_back(Load.getValue(1));
2287            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2288                                                                Load));
2289          }
2290          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2291            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2292            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
2293            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2294            MemOpChains.push_back(Load.getValue(1));
2295            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2296                                                                Load));
2297          }
2298        } else {
2299          // If we have any FPRs remaining, we may also have GPRs remaining.
2300          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2301          // GPRs.
2302          if (isMachoABI) {
2303            if (GPR_idx != NumGPRs)
2304              ++GPR_idx;
2305            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2306                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2307              ++GPR_idx;
2308          }
2309        }
2310      } else {
2311        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2312                         isPPC64, isTailCall, false, MemOpChains,
2313                         TailCallArguments);
2314        inMem = true;
2315      }
2316      if (inMem || isMachoABI) {
2317        // Stack align in ELF
2318        if (isELF32_ABI && Align)
2319          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2320        if (isPPC64)
2321          ArgOffset += 8;
2322        else
2323          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2324      }
2325      break;
2326    case MVT::v4f32:
2327    case MVT::v4i32:
2328    case MVT::v8i16:
2329    case MVT::v16i8:
2330      if (isVarArg) {
2331        // These go aligned on the stack, or in the corresponding R registers
2332        // when within range.  The Darwin PPC ABI doc claims they also go in
2333        // V registers; in fact gcc does this only for arguments that are
2334        // prototyped, not for those that match the ...  We do it for all
2335        // arguments, seems to work.
2336        while (ArgOffset % 16 !=0) {
2337          ArgOffset += PtrByteSize;
2338          if (GPR_idx != NumGPRs)
2339            GPR_idx++;
2340        }
2341        // We could elide this store in the case where the object fits
2342        // entirely in R registers.  Maybe later.
2343        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2344                            DAG.getConstant(ArgOffset, PtrVT));
2345        SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2346        MemOpChains.push_back(Store);
2347        if (VR_idx != NumVRs) {
2348          SDValue Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
2349          MemOpChains.push_back(Load.getValue(1));
2350          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2351        }
2352        ArgOffset += 16;
2353        for (unsigned i=0; i<16; i+=PtrByteSize) {
2354          if (GPR_idx == NumGPRs)
2355            break;
2356          SDValue Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
2357                                  DAG.getConstant(i, PtrVT));
2358          SDValue Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
2359          MemOpChains.push_back(Load.getValue(1));
2360          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2361        }
2362        break;
2363      }
2364
2365      // Non-varargs Altivec params generally go in registers, but have
2366      // stack space allocated at the end.
2367      if (VR_idx != NumVRs) {
2368        // Doesn't have GPR space allocated.
2369        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2370      } else if (nAltivecParamsAtEnd==0) {
2371        // We are emitting Altivec params in order.
2372        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2373                         isPPC64, isTailCall, true, MemOpChains,
2374                         TailCallArguments);
2375        ArgOffset += 16;
2376      }
2377      break;
2378    }
2379  }
2380  // If all Altivec parameters fit in registers, as they usually do,
2381  // they get stack space following the non-Altivec parameters.  We
2382  // don't track this here because nobody below needs it.
2383  // If there are more Altivec parameters than fit in registers emit
2384  // the stores here.
2385  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2386    unsigned j = 0;
2387    // Offset is aligned; skip 1st 12 params which go in V registers.
2388    ArgOffset = ((ArgOffset+15)/16)*16;
2389    ArgOffset += 12*16;
2390    for (unsigned i = 0; i != NumOps; ++i) {
2391      SDValue Arg = TheCall->getArg(i);
2392      MVT ArgType = Arg.getValueType();
2393      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2394          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2395        if (++j > NumVRs) {
2396          SDValue PtrOff;
2397          // We are emitting Altivec params in order.
2398          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2399                           isPPC64, isTailCall, true, MemOpChains,
2400                           TailCallArguments);
2401          ArgOffset += 16;
2402        }
2403      }
2404    }
2405  }
2406
2407  if (!MemOpChains.empty())
2408    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2409                        &MemOpChains[0], MemOpChains.size());
2410
2411  // Build a sequence of copy-to-reg nodes chained together with token chain
2412  // and flag operands which copy the outgoing args into the appropriate regs.
2413  SDValue InFlag;
2414  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2415    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2416                             InFlag);
2417    InFlag = Chain.getValue(1);
2418  }
2419
2420  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2421  if (isVarArg && isELF32_ABI) {
2422    SDValue SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
2423    Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
2424    InFlag = Chain.getValue(1);
2425  }
2426
2427  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2428  // might overwrite each other in case of tail call optimization.
2429  if (isTailCall) {
2430    SmallVector<SDValue, 8> MemOpChains2;
2431    // Do not flag preceeding copytoreg stuff together with the following stuff.
2432    InFlag = SDValue();
2433    StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2434                                      MemOpChains2);
2435    if (!MemOpChains2.empty())
2436      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2437                          &MemOpChains2[0], MemOpChains2.size());
2438
2439    // Store the return address to the appropriate stack slot.
2440    Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2441                                          isPPC64, isMachoABI);
2442  }
2443
2444  // Emit callseq_end just before tailcall node.
2445  if (isTailCall) {
2446    SmallVector<SDValue, 8> CallSeqOps;
2447    SDVTList CallSeqNodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2448    CallSeqOps.push_back(Chain);
2449    CallSeqOps.push_back(DAG.getIntPtrConstant(NumBytes));
2450    CallSeqOps.push_back(DAG.getIntPtrConstant(0));
2451    if (InFlag.getNode())
2452      CallSeqOps.push_back(InFlag);
2453    Chain = DAG.getNode(ISD::CALLSEQ_END, CallSeqNodeTys, &CallSeqOps[0],
2454                        CallSeqOps.size());
2455    InFlag = Chain.getValue(1);
2456  }
2457
2458  std::vector<MVT> NodeTys;
2459  NodeTys.push_back(MVT::Other);   // Returns a chain
2460  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2461
2462  SmallVector<SDValue, 8> Ops;
2463  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2464
2465  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2466  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2467  // node so that legalize doesn't hack it.
2468  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2469    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2470  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2471    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2472  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2473    // If this is an absolute destination address, use the munged value.
2474    Callee = SDValue(Dest, 0);
2475  else {
2476    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2477    // to do the call, we can't use PPCISD::CALL.
2478    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2479    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps,
2480                        2 + (InFlag.getNode() != 0));
2481    InFlag = Chain.getValue(1);
2482
2483    // Copy the callee address into R12/X12 on darwin.
2484    if (isMachoABI) {
2485      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2486      Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
2487      InFlag = Chain.getValue(1);
2488    }
2489
2490    NodeTys.clear();
2491    NodeTys.push_back(MVT::Other);
2492    NodeTys.push_back(MVT::Flag);
2493    Ops.push_back(Chain);
2494    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2495    Callee.setNode(0);
2496    // Add CTR register as callee so a bctr can be emitted later.
2497    if (isTailCall)
2498      Ops.push_back(DAG.getRegister(PPC::CTR, getPointerTy()));
2499  }
2500
2501  // If this is a direct call, pass the chain and the callee.
2502  if (Callee.getNode()) {
2503    Ops.push_back(Chain);
2504    Ops.push_back(Callee);
2505  }
2506  // If this is a tail call add stack pointer delta.
2507  if (isTailCall)
2508    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2509
2510  // Add argument registers to the end of the list so that they are known live
2511  // into the call.
2512  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2513    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2514                                  RegsToPass[i].second.getValueType()));
2515
2516  // When performing tail call optimization the callee pops its arguments off
2517  // the stack. Account for this here so these bytes can be pushed back on in
2518  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2519  int BytesCalleePops =
2520    (CC==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2521
2522  if (InFlag.getNode())
2523    Ops.push_back(InFlag);
2524
2525  // Emit tail call.
2526  if (isTailCall) {
2527    assert(InFlag.getNode() &&
2528           "Flag must be set. Depend on flag being set in LowerRET");
2529    Chain = DAG.getNode(PPCISD::TAILCALL,
2530                        TheCall->getVTList(), &Ops[0], Ops.size());
2531    return SDValue(Chain.getNode(), Op.getResNo());
2532  }
2533
2534  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2535  InFlag = Chain.getValue(1);
2536
2537  Chain = DAG.getCALLSEQ_END(Chain,
2538                             DAG.getConstant(NumBytes, PtrVT),
2539                             DAG.getConstant(BytesCalleePops, PtrVT),
2540                             InFlag);
2541  if (TheCall->getValueType(0) != MVT::Other)
2542    InFlag = Chain.getValue(1);
2543
2544  SmallVector<SDValue, 16> ResultVals;
2545  SmallVector<CCValAssign, 16> RVLocs;
2546  unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
2547  CCState CCInfo(CallerCC, isVarArg, TM, RVLocs);
2548  CCInfo.AnalyzeCallResult(TheCall, RetCC_PPC);
2549
2550  // Copy all of the result registers out of their specified physreg.
2551  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2552    CCValAssign &VA = RVLocs[i];
2553    MVT VT = VA.getValVT();
2554    assert(VA.isRegLoc() && "Can only return in registers!");
2555    Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1);
2556    ResultVals.push_back(Chain.getValue(0));
2557    InFlag = Chain.getValue(2);
2558  }
2559
2560  // If the function returns void, just return the chain.
2561  if (RVLocs.empty())
2562    return Chain;
2563
2564  // Otherwise, merge everything together with a MERGE_VALUES node.
2565  ResultVals.push_back(Chain);
2566  SDValue Res = DAG.getMergeValues(TheCall->getVTList(), &ResultVals[0],
2567                                     ResultVals.size());
2568  return Res.getValue(Op.getResNo());
2569}
2570
2571SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
2572                                      TargetMachine &TM) {
2573  SmallVector<CCValAssign, 16> RVLocs;
2574  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2575  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2576  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2577  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_PPC);
2578
2579  // If this is the first return lowered for this function, add the regs to the
2580  // liveout set for the function.
2581  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2582    for (unsigned i = 0; i != RVLocs.size(); ++i)
2583      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2584  }
2585
2586  SDValue Chain = Op.getOperand(0);
2587
2588  Chain = GetPossiblePreceedingTailCall(Chain, PPCISD::TAILCALL);
2589  if (Chain.getOpcode() == PPCISD::TAILCALL) {
2590    SDValue TailCall = Chain;
2591    SDValue TargetAddress = TailCall.getOperand(1);
2592    SDValue StackAdjustment = TailCall.getOperand(2);
2593
2594    assert(((TargetAddress.getOpcode() == ISD::Register &&
2595             cast<RegisterSDNode>(TargetAddress)->getReg() == PPC::CTR) ||
2596            TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
2597            TargetAddress.getOpcode() == ISD::TargetGlobalAddress ||
2598            isa<ConstantSDNode>(TargetAddress)) &&
2599    "Expecting an global address, external symbol, absolute value or register");
2600
2601    assert(StackAdjustment.getOpcode() == ISD::Constant &&
2602           "Expecting a const value");
2603
2604    SmallVector<SDValue,8> Operands;
2605    Operands.push_back(Chain.getOperand(0));
2606    Operands.push_back(TargetAddress);
2607    Operands.push_back(StackAdjustment);
2608    // Copy registers used by the call. Last operand is a flag so it is not
2609    // copied.
2610    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
2611      Operands.push_back(Chain.getOperand(i));
2612    }
2613    return DAG.getNode(PPCISD::TC_RETURN, MVT::Other, &Operands[0],
2614                       Operands.size());
2615  }
2616
2617  SDValue Flag;
2618
2619  // Copy the result values into the output registers.
2620  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2621    CCValAssign &VA = RVLocs[i];
2622    assert(VA.isRegLoc() && "Can only return in registers!");
2623    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2624    Flag = Chain.getValue(1);
2625  }
2626
2627  if (Flag.getNode())
2628    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2629  else
2630    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2631}
2632
2633SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
2634                                   const PPCSubtarget &Subtarget) {
2635  // When we pop the dynamic allocation we need to restore the SP link.
2636
2637  // Get the corect type for pointers.
2638  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2639
2640  // Construct the stack pointer operand.
2641  bool IsPPC64 = Subtarget.isPPC64();
2642  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2643  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
2644
2645  // Get the operands for the STACKRESTORE.
2646  SDValue Chain = Op.getOperand(0);
2647  SDValue SaveSP = Op.getOperand(1);
2648
2649  // Load the old link SP.
2650  SDValue LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2651
2652  // Restore the stack pointer.
2653  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2654
2655  // Store the old link SP.
2656  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2657}
2658
2659
2660
2661SDValue
2662PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
2663  MachineFunction &MF = DAG.getMachineFunction();
2664  bool IsPPC64 = PPCSubTarget.isPPC64();
2665  bool isMachoABI = PPCSubTarget.isMachoABI();
2666  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2667
2668  // Get current frame pointer save index.  The users of this index will be
2669  // primarily DYNALLOC instructions.
2670  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2671  int RASI = FI->getReturnAddrSaveIndex();
2672
2673  // If the frame pointer save index hasn't been defined yet.
2674  if (!RASI) {
2675    // Find out what the fix offset of the frame pointer save area.
2676    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isMachoABI);
2677    // Allocate the frame index for frame pointer save area.
2678    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
2679    // Save the result.
2680    FI->setReturnAddrSaveIndex(RASI);
2681  }
2682  return DAG.getFrameIndex(RASI, PtrVT);
2683}
2684
2685SDValue
2686PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
2687  MachineFunction &MF = DAG.getMachineFunction();
2688  bool IsPPC64 = PPCSubTarget.isPPC64();
2689  bool isMachoABI = PPCSubTarget.isMachoABI();
2690  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2691
2692  // Get current frame pointer save index.  The users of this index will be
2693  // primarily DYNALLOC instructions.
2694  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2695  int FPSI = FI->getFramePointerSaveIndex();
2696
2697  // If the frame pointer save index hasn't been defined yet.
2698  if (!FPSI) {
2699    // Find out what the fix offset of the frame pointer save area.
2700    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2701
2702    // Allocate the frame index for frame pointer save area.
2703    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2704    // Save the result.
2705    FI->setFramePointerSaveIndex(FPSI);
2706  }
2707  return DAG.getFrameIndex(FPSI, PtrVT);
2708}
2709
2710SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
2711                                         SelectionDAG &DAG,
2712                                         const PPCSubtarget &Subtarget) {
2713  // Get the inputs.
2714  SDValue Chain = Op.getOperand(0);
2715  SDValue Size  = Op.getOperand(1);
2716
2717  // Get the corect type for pointers.
2718  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2719  // Negate the size.
2720  SDValue NegSize = DAG.getNode(ISD::SUB, PtrVT,
2721                                  DAG.getConstant(0, PtrVT), Size);
2722  // Construct a node for the frame pointer save index.
2723  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
2724  // Build a DYNALLOC node.
2725  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
2726  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2727  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2728}
2729
2730/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2731/// possible.
2732SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
2733  // Not FP? Not a fsel.
2734  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
2735      !Op.getOperand(2).getValueType().isFloatingPoint())
2736    return SDValue();
2737
2738  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2739
2740  // Cannot handle SETEQ/SETNE.
2741  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDValue();
2742
2743  MVT ResVT = Op.getValueType();
2744  MVT CmpVT = Op.getOperand(0).getValueType();
2745  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2746  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2747
2748  // If the RHS of the comparison is a 0.0, we don't need to do the
2749  // subtraction at all.
2750  if (isFloatingPointZero(RHS))
2751    switch (CC) {
2752    default: break;       // SETUO etc aren't handled by fsel.
2753    case ISD::SETULT:
2754    case ISD::SETLT:
2755      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2756    case ISD::SETOGE:
2757    case ISD::SETGE:
2758      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2759        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2760      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2761    case ISD::SETUGT:
2762    case ISD::SETGT:
2763      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2764    case ISD::SETOLE:
2765    case ISD::SETLE:
2766      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2767        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2768      return DAG.getNode(PPCISD::FSEL, ResVT,
2769                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2770    }
2771
2772  SDValue Cmp;
2773  switch (CC) {
2774  default: break;       // SETUO etc aren't handled by fsel.
2775  case ISD::SETULT:
2776  case ISD::SETLT:
2777    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2778    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2779      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2780      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2781  case ISD::SETOGE:
2782  case ISD::SETGE:
2783    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2784    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2785      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2786      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2787  case ISD::SETUGT:
2788  case ISD::SETGT:
2789    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2790    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2791      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2792      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2793  case ISD::SETOLE:
2794  case ISD::SETLE:
2795    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2796    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2797      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2798      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2799  }
2800  return SDValue();
2801}
2802
2803// FIXME: Split this code up when LegalizeDAGTypes lands.
2804SDValue PPCTargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
2805  assert(Op.getOperand(0).getValueType().isFloatingPoint());
2806  SDValue Src = Op.getOperand(0);
2807  if (Src.getValueType() == MVT::f32)
2808    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2809
2810  SDValue Tmp;
2811  switch (Op.getValueType().getSimpleVT()) {
2812  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2813  case MVT::i32:
2814    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2815    break;
2816  case MVT::i64:
2817    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2818    break;
2819  }
2820
2821  // Convert the FP value to an int value through memory.
2822  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
2823
2824  // Emit a store to the stack slot.
2825  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2826
2827  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2828  // add in a bias.
2829  if (Op.getValueType() == MVT::i32)
2830    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2831                        DAG.getConstant(4, FIPtr.getValueType()));
2832  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2833}
2834
2835SDValue PPCTargetLowering::LowerFP_ROUND_INREG(SDValue Op,
2836                                                 SelectionDAG &DAG) {
2837  assert(Op.getValueType() == MVT::ppcf128);
2838  SDNode *Node = Op.getNode();
2839  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2840  assert(Node->getOperand(0).getNode()->getOpcode() == ISD::BUILD_PAIR);
2841  SDValue Lo = Node->getOperand(0).getNode()->getOperand(0);
2842  SDValue Hi = Node->getOperand(0).getNode()->getOperand(1);
2843
2844  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2845  // of the long double, and puts FPSCR back the way it was.  We do not
2846  // actually model FPSCR.
2847  std::vector<MVT> NodeTys;
2848  SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
2849
2850  NodeTys.push_back(MVT::f64);   // Return register
2851  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2852  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2853  MFFSreg = Result.getValue(0);
2854  InFlag = Result.getValue(1);
2855
2856  NodeTys.clear();
2857  NodeTys.push_back(MVT::Flag);   // Returns a flag
2858  Ops[0] = DAG.getConstant(31, MVT::i32);
2859  Ops[1] = InFlag;
2860  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2861  InFlag = Result.getValue(0);
2862
2863  NodeTys.clear();
2864  NodeTys.push_back(MVT::Flag);   // Returns a flag
2865  Ops[0] = DAG.getConstant(30, MVT::i32);
2866  Ops[1] = InFlag;
2867  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2868  InFlag = Result.getValue(0);
2869
2870  NodeTys.clear();
2871  NodeTys.push_back(MVT::f64);    // result of add
2872  NodeTys.push_back(MVT::Flag);   // Returns a flag
2873  Ops[0] = Lo;
2874  Ops[1] = Hi;
2875  Ops[2] = InFlag;
2876  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2877  FPreg = Result.getValue(0);
2878  InFlag = Result.getValue(1);
2879
2880  NodeTys.clear();
2881  NodeTys.push_back(MVT::f64);
2882  Ops[0] = DAG.getConstant(1, MVT::i32);
2883  Ops[1] = MFFSreg;
2884  Ops[2] = FPreg;
2885  Ops[3] = InFlag;
2886  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2887  FPreg = Result.getValue(0);
2888
2889  // We know the low half is about to be thrown away, so just use something
2890  // convenient.
2891  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2892}
2893
2894SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2895  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2896  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2897    return SDValue();
2898
2899  if (Op.getOperand(0).getValueType() == MVT::i64) {
2900    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2901    SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2902    if (Op.getValueType() == MVT::f32)
2903      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2904    return FP;
2905  }
2906
2907  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2908         "Unhandled SINT_TO_FP type in custom expander!");
2909  // Since we only generate this in 64-bit mode, we can take advantage of
2910  // 64-bit registers.  In particular, sign extend the input value into the
2911  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2912  // then lfd it and fcfid it.
2913  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2914  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2915  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2916  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2917
2918  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2919                                Op.getOperand(0));
2920
2921  // STD the extended value into the stack slot.
2922  MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
2923                       MachineMemOperand::MOStore, 0, 8, 8);
2924  SDValue Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2925                                DAG.getEntryNode(), Ext64, FIdx,
2926                                DAG.getMemOperand(MO));
2927  // Load the value as a double.
2928  SDValue Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2929
2930  // FCFID it and return it.
2931  SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2932  if (Op.getValueType() == MVT::f32)
2933    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2934  return FP;
2935}
2936
2937SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
2938  /*
2939   The rounding mode is in bits 30:31 of FPSR, and has the following
2940   settings:
2941     00 Round to nearest
2942     01 Round to 0
2943     10 Round to +inf
2944     11 Round to -inf
2945
2946  FLT_ROUNDS, on the other hand, expects the following:
2947    -1 Undefined
2948     0 Round to 0
2949     1 Round to nearest
2950     2 Round to +inf
2951     3 Round to -inf
2952
2953  To perform the conversion, we do:
2954    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2955  */
2956
2957  MachineFunction &MF = DAG.getMachineFunction();
2958  MVT VT = Op.getValueType();
2959  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2960  std::vector<MVT> NodeTys;
2961  SDValue MFFSreg, InFlag;
2962
2963  // Save FP Control Word to register
2964  NodeTys.push_back(MVT::f64);    // return register
2965  NodeTys.push_back(MVT::Flag);   // unused in this context
2966  SDValue Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2967
2968  // Save FP register to stack slot
2969  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2970  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2971  SDValue Store = DAG.getStore(DAG.getEntryNode(), Chain,
2972                                 StackSlot, NULL, 0);
2973
2974  // Load FP Control Word from low 32 bits of stack slot.
2975  SDValue Four = DAG.getConstant(4, PtrVT);
2976  SDValue Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2977  SDValue CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2978
2979  // Transform as necessary
2980  SDValue CWD1 =
2981    DAG.getNode(ISD::AND, MVT::i32,
2982                CWD, DAG.getConstant(3, MVT::i32));
2983  SDValue CWD2 =
2984    DAG.getNode(ISD::SRL, MVT::i32,
2985                DAG.getNode(ISD::AND, MVT::i32,
2986                            DAG.getNode(ISD::XOR, MVT::i32,
2987                                        CWD, DAG.getConstant(3, MVT::i32)),
2988                            DAG.getConstant(3, MVT::i32)),
2989                DAG.getConstant(1, MVT::i8));
2990
2991  SDValue RetVal =
2992    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2993
2994  return DAG.getNode((VT.getSizeInBits() < 16 ?
2995                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2996}
2997
2998SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
2999  MVT VT = Op.getValueType();
3000  unsigned BitWidth = VT.getSizeInBits();
3001  assert(Op.getNumOperands() == 3 &&
3002         VT == Op.getOperand(1).getValueType() &&
3003         "Unexpected SHL!");
3004
3005  // Expand into a bunch of logical ops.  Note that these ops
3006  // depend on the PPC behavior for oversized shift amounts.
3007  SDValue Lo = Op.getOperand(0);
3008  SDValue Hi = Op.getOperand(1);
3009  SDValue Amt = Op.getOperand(2);
3010  MVT AmtVT = Amt.getValueType();
3011
3012  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3013                               DAG.getConstant(BitWidth, AmtVT), Amt);
3014  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
3015  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
3016  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3017  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3018                               DAG.getConstant(-BitWidth, AmtVT));
3019  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
3020  SDValue OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3021  SDValue OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
3022  SDValue OutOps[] = { OutLo, OutHi };
3023  return DAG.getMergeValues(OutOps, 2);
3024}
3025
3026SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3027  MVT VT = Op.getValueType();
3028  unsigned BitWidth = VT.getSizeInBits();
3029  assert(Op.getNumOperands() == 3 &&
3030         VT == Op.getOperand(1).getValueType() &&
3031         "Unexpected SRL!");
3032
3033  // Expand into a bunch of logical ops.  Note that these ops
3034  // depend on the PPC behavior for oversized shift amounts.
3035  SDValue Lo = Op.getOperand(0);
3036  SDValue Hi = Op.getOperand(1);
3037  SDValue Amt = Op.getOperand(2);
3038  MVT AmtVT = Amt.getValueType();
3039
3040  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3041                               DAG.getConstant(BitWidth, AmtVT), Amt);
3042  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3043  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3044  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3045  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3046                               DAG.getConstant(-BitWidth, AmtVT));
3047  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
3048  SDValue OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3049  SDValue OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
3050  SDValue OutOps[] = { OutLo, OutHi };
3051  return DAG.getMergeValues(OutOps, 2);
3052}
3053
3054SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3055  MVT VT = Op.getValueType();
3056  unsigned BitWidth = VT.getSizeInBits();
3057  assert(Op.getNumOperands() == 3 &&
3058         VT == Op.getOperand(1).getValueType() &&
3059         "Unexpected SRA!");
3060
3061  // Expand into a bunch of logical ops, followed by a select_cc.
3062  SDValue Lo = Op.getOperand(0);
3063  SDValue Hi = Op.getOperand(1);
3064  SDValue Amt = Op.getOperand(2);
3065  MVT AmtVT = Amt.getValueType();
3066
3067  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3068                               DAG.getConstant(BitWidth, AmtVT), Amt);
3069  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3070  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3071  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3072  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3073                               DAG.getConstant(-BitWidth, AmtVT));
3074  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
3075  SDValue OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
3076  SDValue OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
3077                                    Tmp4, Tmp6, ISD::SETLE);
3078  SDValue OutOps[] = { OutLo, OutHi };
3079  return DAG.getMergeValues(OutOps, 2);
3080}
3081
3082//===----------------------------------------------------------------------===//
3083// Vector related lowering.
3084//
3085
3086// If this is a vector of constants or undefs, get the bits.  A bit in
3087// UndefBits is set if the corresponding element of the vector is an
3088// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3089// zero.   Return true if this is not an array of constants, false if it is.
3090//
3091static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
3092                                       uint64_t UndefBits[2]) {
3093  // Start with zero'd results.
3094  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
3095
3096  unsigned EltBitSize = BV->getOperand(0).getValueType().getSizeInBits();
3097  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3098    SDValue OpVal = BV->getOperand(i);
3099
3100    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
3101    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
3102
3103    uint64_t EltBits = 0;
3104    if (OpVal.getOpcode() == ISD::UNDEF) {
3105      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
3106      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
3107      continue;
3108    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
3109      EltBits = CN->getZExtValue() & (~0U >> (32-EltBitSize));
3110    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
3111      assert(CN->getValueType(0) == MVT::f32 &&
3112             "Only one legal FP vector type!");
3113      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
3114    } else {
3115      // Nonconstant element.
3116      return true;
3117    }
3118
3119    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
3120  }
3121
3122  //printf("%llx %llx  %llx %llx\n",
3123  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
3124  return false;
3125}
3126
3127// If this is a splat (repetition) of a value across the whole vector, return
3128// the smallest size that splats it.  For example, "0x01010101010101..." is a
3129// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3130// SplatSize = 1 byte.
3131static bool isConstantSplat(const uint64_t Bits128[2],
3132                            const uint64_t Undef128[2],
3133                            unsigned &SplatBits, unsigned &SplatUndef,
3134                            unsigned &SplatSize) {
3135
3136  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
3137  // the same as the lower 64-bits, ignoring undefs.
3138  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
3139    return false;  // Can't be a splat if two pieces don't match.
3140
3141  uint64_t Bits64  = Bits128[0] | Bits128[1];
3142  uint64_t Undef64 = Undef128[0] & Undef128[1];
3143
3144  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
3145  // undefs.
3146  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
3147    return false;  // Can't be a splat if two pieces don't match.
3148
3149  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
3150  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
3151
3152  // If the top 16-bits are different than the lower 16-bits, ignoring
3153  // undefs, we have an i32 splat.
3154  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
3155    SplatBits = Bits32;
3156    SplatUndef = Undef32;
3157    SplatSize = 4;
3158    return true;
3159  }
3160
3161  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
3162  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
3163
3164  // If the top 8-bits are different than the lower 8-bits, ignoring
3165  // undefs, we have an i16 splat.
3166  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
3167    SplatBits = Bits16;
3168    SplatUndef = Undef16;
3169    SplatSize = 2;
3170    return true;
3171  }
3172
3173  // Otherwise, we have an 8-bit splat.
3174  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
3175  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
3176  SplatSize = 1;
3177  return true;
3178}
3179
3180/// BuildSplatI - Build a canonical splati of Val with an element size of
3181/// SplatSize.  Cast the result to VT.
3182static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT,
3183                             SelectionDAG &DAG) {
3184  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3185
3186  static const MVT VTys[] = { // canonical VT to use for each size.
3187    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3188  };
3189
3190  MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3191
3192  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3193  if (Val == -1)
3194    SplatSize = 1;
3195
3196  MVT CanonicalVT = VTys[SplatSize-1];
3197
3198  // Build a canonical splat for this value.
3199  SDValue Elt = DAG.getConstant(Val, CanonicalVT.getVectorElementType());
3200  SmallVector<SDValue, 8> Ops;
3201  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3202  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
3203                              &Ops[0], Ops.size());
3204  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
3205}
3206
3207/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3208/// specified intrinsic ID.
3209static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3210                                  SelectionDAG &DAG,
3211                                  MVT DestVT = MVT::Other) {
3212  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3213  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3214                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3215}
3216
3217/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3218/// specified intrinsic ID.
3219static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3220                                  SDValue Op2, SelectionDAG &DAG,
3221                                  MVT DestVT = MVT::Other) {
3222  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3223  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3224                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3225}
3226
3227
3228/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3229/// amount.  The result has the specified value type.
3230static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3231                             MVT VT, SelectionDAG &DAG) {
3232  // Force LHS/RHS to be the right type.
3233  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
3234  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
3235
3236  SDValue Ops[16];
3237  for (unsigned i = 0; i != 16; ++i)
3238    Ops[i] = DAG.getConstant(i+Amt, MVT::i8);
3239  SDValue T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
3240                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
3241  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
3242}
3243
3244// If this is a case we can't handle, return null and let the default
3245// expansion code take care of it.  If we CAN select this case, and if it
3246// selects to a single instruction, return Op.  Otherwise, if we can codegen
3247// this case more efficiently than a constant pool load, lower it to the
3248// sequence of ops that should be used.
3249SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3250                                               SelectionDAG &DAG) {
3251  // If this is a vector of constants or undefs, get the bits.  A bit in
3252  // UndefBits is set if the corresponding element of the vector is an
3253  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3254  // zero.
3255  uint64_t VectorBits[2];
3256  uint64_t UndefBits[2];
3257  if (GetConstantBuildVectorBits(Op.getNode(), VectorBits, UndefBits))
3258    return SDValue();   // Not a constant vector.
3259
3260  // If this is a splat (repetition) of a value across the whole vector, return
3261  // the smallest size that splats it.  For example, "0x01010101010101..." is a
3262  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3263  // SplatSize = 1 byte.
3264  unsigned SplatBits, SplatUndef, SplatSize;
3265  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
3266    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
3267
3268    // First, handle single instruction cases.
3269
3270    // All zeros?
3271    if (SplatBits == 0) {
3272      // Canonicalize all zero vectors to be v4i32.
3273      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3274        SDValue Z = DAG.getConstant(0, MVT::i32);
3275        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
3276        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
3277      }
3278      return Op;
3279    }
3280
3281    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3282    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
3283    if (SextVal >= -16 && SextVal <= 15)
3284      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
3285
3286
3287    // Two instruction sequences.
3288
3289    // If this value is in the range [-32,30] and is even, use:
3290    //    tmp = VSPLTI[bhw], result = add tmp, tmp
3291    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3292      SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG);
3293      Res = DAG.getNode(ISD::ADD, Res.getValueType(), Res, Res);
3294      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3295    }
3296
3297    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3298    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3299    // for fneg/fabs.
3300    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3301      // Make -1 and vspltisw -1:
3302      SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
3303
3304      // Make the VSLW intrinsic, computing 0x8000_0000.
3305      SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3306                                       OnesV, DAG);
3307
3308      // xor by OnesV to invert it.
3309      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
3310      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3311    }
3312
3313    // Check to see if this is a wide variety of vsplti*, binop self cases.
3314    unsigned SplatBitSize = SplatSize*8;
3315    static const signed char SplatCsts[] = {
3316      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3317      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3318    };
3319
3320    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3321      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3322      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3323      int i = SplatCsts[idx];
3324
3325      // Figure out what shift amount will be used by altivec if shifted by i in
3326      // this splat size.
3327      unsigned TypeShiftAmt = i & (SplatBitSize-1);
3328
3329      // vsplti + shl self.
3330      if (SextVal == (i << (int)TypeShiftAmt)) {
3331        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3332        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3333          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3334          Intrinsic::ppc_altivec_vslw
3335        };
3336        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3337        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3338      }
3339
3340      // vsplti + srl self.
3341      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3342        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3343        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3344          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3345          Intrinsic::ppc_altivec_vsrw
3346        };
3347        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3348        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3349      }
3350
3351      // vsplti + sra self.
3352      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3353        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3354        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3355          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3356          Intrinsic::ppc_altivec_vsraw
3357        };
3358        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3359        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3360      }
3361
3362      // vsplti + rol self.
3363      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3364                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3365        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3366        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3367          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3368          Intrinsic::ppc_altivec_vrlw
3369        };
3370        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3371        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3372      }
3373
3374      // t = vsplti c, result = vsldoi t, t, 1
3375      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3376        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3377        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
3378      }
3379      // t = vsplti c, result = vsldoi t, t, 2
3380      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3381        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3382        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
3383      }
3384      // t = vsplti c, result = vsldoi t, t, 3
3385      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3386        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3387        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
3388      }
3389    }
3390
3391    // Three instruction sequences.
3392
3393    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3394    if (SextVal >= 0 && SextVal <= 31) {
3395      SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
3396      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3397      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
3398      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3399    }
3400    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3401    if (SextVal >= -31 && SextVal <= 0) {
3402      SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
3403      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3404      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
3405      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3406    }
3407  }
3408
3409  return SDValue();
3410}
3411
3412/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3413/// the specified operations to build the shuffle.
3414static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3415                                        SDValue RHS, SelectionDAG &DAG) {
3416  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3417  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
3418  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3419
3420  enum {
3421    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3422    OP_VMRGHW,
3423    OP_VMRGLW,
3424    OP_VSPLTISW0,
3425    OP_VSPLTISW1,
3426    OP_VSPLTISW2,
3427    OP_VSPLTISW3,
3428    OP_VSLDOI4,
3429    OP_VSLDOI8,
3430    OP_VSLDOI12
3431  };
3432
3433  if (OpNum == OP_COPY) {
3434    if (LHSID == (1*9+2)*9+3) return LHS;
3435    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3436    return RHS;
3437  }
3438
3439  SDValue OpLHS, OpRHS;
3440  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
3441  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
3442
3443  unsigned ShufIdxs[16];
3444  switch (OpNum) {
3445  default: assert(0 && "Unknown i32 permute!");
3446  case OP_VMRGHW:
3447    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3448    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3449    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3450    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3451    break;
3452  case OP_VMRGLW:
3453    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3454    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3455    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3456    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3457    break;
3458  case OP_VSPLTISW0:
3459    for (unsigned i = 0; i != 16; ++i)
3460      ShufIdxs[i] = (i&3)+0;
3461    break;
3462  case OP_VSPLTISW1:
3463    for (unsigned i = 0; i != 16; ++i)
3464      ShufIdxs[i] = (i&3)+4;
3465    break;
3466  case OP_VSPLTISW2:
3467    for (unsigned i = 0; i != 16; ++i)
3468      ShufIdxs[i] = (i&3)+8;
3469    break;
3470  case OP_VSPLTISW3:
3471    for (unsigned i = 0; i != 16; ++i)
3472      ShufIdxs[i] = (i&3)+12;
3473    break;
3474  case OP_VSLDOI4:
3475    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
3476  case OP_VSLDOI8:
3477    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
3478  case OP_VSLDOI12:
3479    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
3480  }
3481  SDValue Ops[16];
3482  for (unsigned i = 0; i != 16; ++i)
3483    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i8);
3484
3485  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
3486                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3487}
3488
3489/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3490/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3491/// return the code it can be lowered into.  Worst case, it can always be
3492/// lowered into a vperm.
3493SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3494                                                 SelectionDAG &DAG) {
3495  SDValue V1 = Op.getOperand(0);
3496  SDValue V2 = Op.getOperand(1);
3497  SDValue PermMask = Op.getOperand(2);
3498
3499  // Cases that are handled by instructions that take permute immediates
3500  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3501  // selected by the instruction selector.
3502  if (V2.getOpcode() == ISD::UNDEF) {
3503    if (PPC::isSplatShuffleMask(PermMask.getNode(), 1) ||
3504        PPC::isSplatShuffleMask(PermMask.getNode(), 2) ||
3505        PPC::isSplatShuffleMask(PermMask.getNode(), 4) ||
3506        PPC::isVPKUWUMShuffleMask(PermMask.getNode(), true) ||
3507        PPC::isVPKUHUMShuffleMask(PermMask.getNode(), true) ||
3508        PPC::isVSLDOIShuffleMask(PermMask.getNode(), true) != -1 ||
3509        PPC::isVMRGLShuffleMask(PermMask.getNode(), 1, true) ||
3510        PPC::isVMRGLShuffleMask(PermMask.getNode(), 2, true) ||
3511        PPC::isVMRGLShuffleMask(PermMask.getNode(), 4, true) ||
3512        PPC::isVMRGHShuffleMask(PermMask.getNode(), 1, true) ||
3513        PPC::isVMRGHShuffleMask(PermMask.getNode(), 2, true) ||
3514        PPC::isVMRGHShuffleMask(PermMask.getNode(), 4, true)) {
3515      return Op;
3516    }
3517  }
3518
3519  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3520  // and produce a fixed permutation.  If any of these match, do not lower to
3521  // VPERM.
3522  if (PPC::isVPKUWUMShuffleMask(PermMask.getNode(), false) ||
3523      PPC::isVPKUHUMShuffleMask(PermMask.getNode(), false) ||
3524      PPC::isVSLDOIShuffleMask(PermMask.getNode(), false) != -1 ||
3525      PPC::isVMRGLShuffleMask(PermMask.getNode(), 1, false) ||
3526      PPC::isVMRGLShuffleMask(PermMask.getNode(), 2, false) ||
3527      PPC::isVMRGLShuffleMask(PermMask.getNode(), 4, false) ||
3528      PPC::isVMRGHShuffleMask(PermMask.getNode(), 1, false) ||
3529      PPC::isVMRGHShuffleMask(PermMask.getNode(), 2, false) ||
3530      PPC::isVMRGHShuffleMask(PermMask.getNode(), 4, false))
3531    return Op;
3532
3533  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3534  // perfect shuffle table to emit an optimal matching sequence.
3535  unsigned PFIndexes[4];
3536  bool isFourElementShuffle = true;
3537  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3538    unsigned EltNo = 8;   // Start out undef.
3539    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3540      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3541        continue;   // Undef, ignore it.
3542
3543      unsigned ByteSource =
3544        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getZExtValue();
3545      if ((ByteSource & 3) != j) {
3546        isFourElementShuffle = false;
3547        break;
3548      }
3549
3550      if (EltNo == 8) {
3551        EltNo = ByteSource/4;
3552      } else if (EltNo != ByteSource/4) {
3553        isFourElementShuffle = false;
3554        break;
3555      }
3556    }
3557    PFIndexes[i] = EltNo;
3558  }
3559
3560  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3561  // perfect shuffle vector to determine if it is cost effective to do this as
3562  // discrete instructions, or whether we should use a vperm.
3563  if (isFourElementShuffle) {
3564    // Compute the index in the perfect shuffle table.
3565    unsigned PFTableIndex =
3566      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3567
3568    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3569    unsigned Cost  = (PFEntry >> 30);
3570
3571    // Determining when to avoid vperm is tricky.  Many things affect the cost
3572    // of vperm, particularly how many times the perm mask needs to be computed.
3573    // For example, if the perm mask can be hoisted out of a loop or is already
3574    // used (perhaps because there are multiple permutes with the same shuffle
3575    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3576    // the loop requires an extra register.
3577    //
3578    // As a compromise, we only emit discrete instructions if the shuffle can be
3579    // generated in 3 or fewer operations.  When we have loop information
3580    // available, if this block is within a loop, we should avoid using vperm
3581    // for 3-operation perms and use a constant pool load instead.
3582    if (Cost < 3)
3583      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3584  }
3585
3586  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3587  // vector that will get spilled to the constant pool.
3588  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3589
3590  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3591  // that it is in input element units, not in bytes.  Convert now.
3592  MVT EltVT = V1.getValueType().getVectorElementType();
3593  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3594
3595  SmallVector<SDValue, 16> ResultMask;
3596  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3597    unsigned SrcElt;
3598    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3599      SrcElt = 0;
3600    else
3601      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getZExtValue();
3602
3603    for (unsigned j = 0; j != BytesPerElement; ++j)
3604      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3605                                           MVT::i8));
3606  }
3607
3608  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3609                                    &ResultMask[0], ResultMask.size());
3610  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3611}
3612
3613/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3614/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3615/// information about the intrinsic.
3616static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
3617                                  bool &isDot) {
3618  unsigned IntrinsicID =
3619    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
3620  CompareOpc = -1;
3621  isDot = false;
3622  switch (IntrinsicID) {
3623  default: return false;
3624    // Comparison predicates.
3625  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3626  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3627  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3628  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3629  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3630  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3631  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3632  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3633  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3634  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3635  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3636  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3637  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3638
3639    // Normal Comparisons.
3640  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3641  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3642  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3643  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3644  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3645  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3646  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3647  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3648  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3649  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3650  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3651  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3652  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3653  }
3654  return true;
3655}
3656
3657/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3658/// lower, do it, otherwise return null.
3659SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3660                                                     SelectionDAG &DAG) {
3661  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3662  // opcode number of the comparison.
3663  int CompareOpc;
3664  bool isDot;
3665  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3666    return SDValue();    // Don't custom lower most intrinsics.
3667
3668  // If this is a non-dot comparison, make the VCMP node and we are done.
3669  if (!isDot) {
3670    SDValue Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3671                                Op.getOperand(1), Op.getOperand(2),
3672                                DAG.getConstant(CompareOpc, MVT::i32));
3673    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3674  }
3675
3676  // Create the PPCISD altivec 'dot' comparison node.
3677  SDValue Ops[] = {
3678    Op.getOperand(2),  // LHS
3679    Op.getOperand(3),  // RHS
3680    DAG.getConstant(CompareOpc, MVT::i32)
3681  };
3682  std::vector<MVT> VTs;
3683  VTs.push_back(Op.getOperand(2).getValueType());
3684  VTs.push_back(MVT::Flag);
3685  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3686
3687  // Now that we have the comparison, emit a copy from the CR to a GPR.
3688  // This is flagged to the above dot comparison.
3689  SDValue Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3690                                DAG.getRegister(PPC::CR6, MVT::i32),
3691                                CompNode.getValue(1));
3692
3693  // Unpack the result based on how the target uses it.
3694  unsigned BitNo;   // Bit # of CR6.
3695  bool InvertBit;   // Invert result?
3696  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
3697  default:  // Can't happen, don't crash on invalid number though.
3698  case 0:   // Return the value of the EQ bit of CR6.
3699    BitNo = 0; InvertBit = false;
3700    break;
3701  case 1:   // Return the inverted value of the EQ bit of CR6.
3702    BitNo = 0; InvertBit = true;
3703    break;
3704  case 2:   // Return the value of the LT bit of CR6.
3705    BitNo = 2; InvertBit = false;
3706    break;
3707  case 3:   // Return the inverted value of the LT bit of CR6.
3708    BitNo = 2; InvertBit = true;
3709    break;
3710  }
3711
3712  // Shift the bit into the low position.
3713  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3714                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3715  // Isolate the bit.
3716  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3717                      DAG.getConstant(1, MVT::i32));
3718
3719  // If we are supposed to, toggle the bit.
3720  if (InvertBit)
3721    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3722                        DAG.getConstant(1, MVT::i32));
3723  return Flags;
3724}
3725
3726SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
3727                                                   SelectionDAG &DAG) {
3728  // Create a stack slot that is 16-byte aligned.
3729  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3730  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3731  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3732  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3733
3734  // Store the input value into Value#0 of the stack slot.
3735  SDValue Store = DAG.getStore(DAG.getEntryNode(),
3736                                 Op.getOperand(0), FIdx, NULL, 0);
3737  // Load it out.
3738  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3739}
3740
3741SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
3742  if (Op.getValueType() == MVT::v4i32) {
3743    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3744
3745    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
3746    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3747
3748    SDValue RHSSwap =   // = vrlw RHS, 16
3749      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3750
3751    // Shrinkify inputs to v8i16.
3752    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3753    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3754    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3755
3756    // Low parts multiplied together, generating 32-bit results (we ignore the
3757    // top parts).
3758    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3759                                        LHS, RHS, DAG, MVT::v4i32);
3760
3761    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3762                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3763    // Shift the high parts up 16 bits.
3764    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3765    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3766  } else if (Op.getValueType() == MVT::v8i16) {
3767    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3768
3769    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3770
3771    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3772                            LHS, RHS, Zero, DAG);
3773  } else if (Op.getValueType() == MVT::v16i8) {
3774    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3775
3776    // Multiply the even 8-bit parts, producing 16-bit sums.
3777    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3778                                           LHS, RHS, DAG, MVT::v8i16);
3779    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3780
3781    // Multiply the odd 8-bit parts, producing 16-bit sums.
3782    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3783                                          LHS, RHS, DAG, MVT::v8i16);
3784    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3785
3786    // Merge the results together.
3787    SDValue Ops[16];
3788    for (unsigned i = 0; i != 8; ++i) {
3789      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3790      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3791    }
3792    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3793                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3794  } else {
3795    assert(0 && "Unknown mul to lower!");
3796    abort();
3797  }
3798}
3799
3800/// LowerOperation - Provide custom lowering hooks for some operations.
3801///
3802SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
3803  switch (Op.getOpcode()) {
3804  default: assert(0 && "Wasn't expecting to be able to lower this!");
3805  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3806  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3807  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3808  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3809  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3810  case ISD::VASTART:
3811    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3812                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3813
3814  case ISD::VAARG:
3815    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3816                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3817
3818  case ISD::FORMAL_ARGUMENTS:
3819    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3820                                 VarArgsStackOffset, VarArgsNumGPR,
3821                                 VarArgsNumFPR, PPCSubTarget);
3822
3823  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget,
3824                                                 getTargetMachine());
3825  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3826  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3827  case ISD::DYNAMIC_STACKALLOC:
3828    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3829
3830  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3831  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3832  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3833  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3834  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3835
3836  // Lower 64-bit shifts.
3837  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3838  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3839  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3840
3841  // Vector-related lowering.
3842  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3843  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3844  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3845  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3846  case ISD::MUL:                return LowerMUL(Op, DAG);
3847
3848  // Frame & Return address.
3849  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3850  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3851  }
3852  return SDValue();
3853}
3854
3855SDNode *PPCTargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
3856  switch (N->getOpcode()) {
3857  default: assert(0 && "Wasn't expecting to be able to lower this!");
3858  case ISD::FP_TO_SINT: {
3859    SDValue Res = LowerFP_TO_SINT(SDValue(N, 0), DAG);
3860    // Use MERGE_VALUES to drop the chain result value and get a node with one
3861    // result.  This requires turning off getMergeValues simplification, since
3862    // otherwise it will give us Res back.
3863    return DAG.getMergeValues(&Res, 1, false).getNode();
3864  }
3865  }
3866}
3867
3868
3869//===----------------------------------------------------------------------===//
3870//  Other Lowering Code
3871//===----------------------------------------------------------------------===//
3872
3873MachineBasicBlock *
3874PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3875                                    bool is64bit, unsigned BinOpcode) {
3876  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3877  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3878
3879  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3880  MachineFunction *F = BB->getParent();
3881  MachineFunction::iterator It = BB;
3882  ++It;
3883
3884  unsigned dest = MI->getOperand(0).getReg();
3885  unsigned ptrA = MI->getOperand(1).getReg();
3886  unsigned ptrB = MI->getOperand(2).getReg();
3887  unsigned incr = MI->getOperand(3).getReg();
3888
3889  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3890  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3891  F->insert(It, loopMBB);
3892  F->insert(It, exitMBB);
3893  exitMBB->transferSuccessors(BB);
3894
3895  MachineRegisterInfo &RegInfo = F->getRegInfo();
3896  unsigned TmpReg = (!BinOpcode) ? incr :
3897    RegInfo.createVirtualRegister(
3898       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
3899                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
3900
3901  //  thisMBB:
3902  //   ...
3903  //   fallthrough --> loopMBB
3904  BB->addSuccessor(loopMBB);
3905
3906  //  loopMBB:
3907  //   l[wd]arx dest, ptr
3908  //   add r0, dest, incr
3909  //   st[wd]cx. r0, ptr
3910  //   bne- loopMBB
3911  //   fallthrough --> exitMBB
3912  BB = loopMBB;
3913  BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
3914    .addReg(ptrA).addReg(ptrB);
3915  if (BinOpcode)
3916    BuildMI(BB, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
3917  BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
3918    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
3919  BuildMI(BB, TII->get(PPC::BCC))
3920    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
3921  BB->addSuccessor(loopMBB);
3922  BB->addSuccessor(exitMBB);
3923
3924  //  exitMBB:
3925  //   ...
3926  BB = exitMBB;
3927  return BB;
3928}
3929
3930MachineBasicBlock *
3931PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
3932                                            MachineBasicBlock *BB,
3933                                            bool is8bit,    // operation
3934                                            unsigned BinOpcode) {
3935  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3936  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3937  // In 64 bit mode we have to use 64 bits for addresses, even though the
3938  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
3939  // registers without caring whether they're 32 or 64, but here we're
3940  // doing actual arithmetic on the addresses.
3941  bool is64bit = PPCSubTarget.isPPC64();
3942
3943  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3944  MachineFunction *F = BB->getParent();
3945  MachineFunction::iterator It = BB;
3946  ++It;
3947
3948  unsigned dest = MI->getOperand(0).getReg();
3949  unsigned ptrA = MI->getOperand(1).getReg();
3950  unsigned ptrB = MI->getOperand(2).getReg();
3951  unsigned incr = MI->getOperand(3).getReg();
3952
3953  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3954  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3955  F->insert(It, loopMBB);
3956  F->insert(It, exitMBB);
3957  exitMBB->transferSuccessors(BB);
3958
3959  MachineRegisterInfo &RegInfo = F->getRegInfo();
3960  const TargetRegisterClass *RC =
3961    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
3962              (const TargetRegisterClass *) &PPC::GPRCRegClass;
3963  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
3964  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
3965  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
3966  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
3967  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
3968  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
3969  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
3970  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
3971  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
3972  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
3973  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
3974  unsigned Ptr1Reg;
3975  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
3976
3977  //  thisMBB:
3978  //   ...
3979  //   fallthrough --> loopMBB
3980  BB->addSuccessor(loopMBB);
3981
3982  // The 4-byte load must be aligned, while a char or short may be
3983  // anywhere in the word.  Hence all this nasty bookkeeping code.
3984  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
3985  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
3986  //   xori shift, shift1, 24 [16]
3987  //   rlwinm ptr, ptr1, 0, 0, 29
3988  //   slw incr2, incr, shift
3989  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
3990  //   slw mask, mask2, shift
3991  //  loopMBB:
3992  //   lwarx tmpDest, ptr
3993  //   add tmp, tmpDest, incr2
3994  //   andc tmp2, tmpDest, mask
3995  //   and tmp3, tmp, mask
3996  //   or tmp4, tmp3, tmp2
3997  //   stwcx. tmp4, ptr
3998  //   bne- loopMBB
3999  //   fallthrough --> exitMBB
4000  //   srw dest, tmpDest, shift
4001
4002  if (ptrA!=PPC::R0) {
4003    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4004    BuildMI(BB, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4005      .addReg(ptrA).addReg(ptrB);
4006  } else {
4007    Ptr1Reg = ptrB;
4008  }
4009  BuildMI(BB, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4010      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4011  BuildMI(BB, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4012      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4013  if (is64bit)
4014    BuildMI(BB, TII->get(PPC::RLDICR), PtrReg)
4015      .addReg(Ptr1Reg).addImm(0).addImm(61);
4016  else
4017    BuildMI(BB, TII->get(PPC::RLWINM), PtrReg)
4018      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4019  BuildMI(BB, TII->get(PPC::SLW), Incr2Reg)
4020      .addReg(incr).addReg(ShiftReg);
4021  if (is8bit)
4022    BuildMI(BB, TII->get(PPC::LI), Mask2Reg).addImm(255);
4023  else {
4024    BuildMI(BB, TII->get(PPC::LI), Mask3Reg).addImm(0);
4025    BuildMI(BB, TII->get(PPC::ORI), Mask2Reg).addReg(Mask3Reg).addImm(65535);
4026  }
4027  BuildMI(BB, TII->get(PPC::SLW), MaskReg)
4028      .addReg(Mask2Reg).addReg(ShiftReg);
4029
4030  BB = loopMBB;
4031  BuildMI(BB, TII->get(PPC::LWARX), TmpDestReg)
4032    .addReg(PPC::R0).addReg(PtrReg);
4033  if (BinOpcode)
4034    BuildMI(BB, TII->get(BinOpcode), TmpReg)
4035      .addReg(Incr2Reg).addReg(TmpDestReg);
4036  BuildMI(BB, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4037    .addReg(TmpDestReg).addReg(MaskReg);
4038  BuildMI(BB, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4039    .addReg(TmpReg).addReg(MaskReg);
4040  BuildMI(BB, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4041    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4042  BuildMI(BB, TII->get(PPC::STWCX))
4043    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4044  BuildMI(BB, TII->get(PPC::BCC))
4045    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4046  BB->addSuccessor(loopMBB);
4047  BB->addSuccessor(exitMBB);
4048
4049  //  exitMBB:
4050  //   ...
4051  BB = exitMBB;
4052  BuildMI(BB, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4053  return BB;
4054}
4055
4056MachineBasicBlock *
4057PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4058                                               MachineBasicBlock *BB) {
4059  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4060
4061  // To "insert" these instructions we actually have to insert their
4062  // control-flow patterns.
4063  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4064  MachineFunction::iterator It = BB;
4065  ++It;
4066
4067  MachineFunction *F = BB->getParent();
4068
4069  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4070      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4071      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4072      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4073      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4074
4075    // The incoming instruction knows the destination vreg to set, the
4076    // condition code register to branch on, the true/false values to
4077    // select between, and a branch opcode to use.
4078
4079    //  thisMBB:
4080    //  ...
4081    //   TrueVal = ...
4082    //   cmpTY ccX, r1, r2
4083    //   bCC copy1MBB
4084    //   fallthrough --> copy0MBB
4085    MachineBasicBlock *thisMBB = BB;
4086    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4087    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4088    unsigned SelectPred = MI->getOperand(4).getImm();
4089    BuildMI(BB, TII->get(PPC::BCC))
4090      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4091    F->insert(It, copy0MBB);
4092    F->insert(It, sinkMBB);
4093    // Update machine-CFG edges by transferring all successors of the current
4094    // block to the new block which will contain the Phi node for the select.
4095    sinkMBB->transferSuccessors(BB);
4096    // Next, add the true and fallthrough blocks as its successors.
4097    BB->addSuccessor(copy0MBB);
4098    BB->addSuccessor(sinkMBB);
4099
4100    //  copy0MBB:
4101    //   %FalseValue = ...
4102    //   # fallthrough to sinkMBB
4103    BB = copy0MBB;
4104
4105    // Update machine-CFG edges
4106    BB->addSuccessor(sinkMBB);
4107
4108    //  sinkMBB:
4109    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4110    //  ...
4111    BB = sinkMBB;
4112    BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4113      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4114      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4115  }
4116  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4117    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4118  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4119    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4120  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4121    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4122  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4123    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4124
4125  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4126    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4127  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4128    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4129  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4130    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4131  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4132    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4133
4134  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4135    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4136  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4137    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4138  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4139    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4140  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4141    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4142
4143  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4144    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4145  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4146    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4147  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4148    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4149  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4150    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4151
4152  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4153    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4154  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4155    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4156  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4157    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4158  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4159    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4160
4161  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4162    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4163  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4164    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4165  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4166    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4167  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4168    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4169
4170  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4171    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4172  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4173    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4174  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4175    BB = EmitAtomicBinary(MI, BB, false, 0);
4176  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4177    BB = EmitAtomicBinary(MI, BB, true, 0);
4178
4179  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4180           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4181    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4182
4183    unsigned dest   = MI->getOperand(0).getReg();
4184    unsigned ptrA   = MI->getOperand(1).getReg();
4185    unsigned ptrB   = MI->getOperand(2).getReg();
4186    unsigned oldval = MI->getOperand(3).getReg();
4187    unsigned newval = MI->getOperand(4).getReg();
4188
4189    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4190    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4191    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4192    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4193    F->insert(It, loop1MBB);
4194    F->insert(It, loop2MBB);
4195    F->insert(It, midMBB);
4196    F->insert(It, exitMBB);
4197    exitMBB->transferSuccessors(BB);
4198
4199    //  thisMBB:
4200    //   ...
4201    //   fallthrough --> loopMBB
4202    BB->addSuccessor(loop1MBB);
4203
4204    // loop1MBB:
4205    //   l[wd]arx dest, ptr
4206    //   cmp[wd] dest, oldval
4207    //   bne- midMBB
4208    // loop2MBB:
4209    //   st[wd]cx. newval, ptr
4210    //   bne- loopMBB
4211    //   b exitBB
4212    // midMBB:
4213    //   st[wd]cx. dest, ptr
4214    // exitBB:
4215    BB = loop1MBB;
4216    BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4217      .addReg(ptrA).addReg(ptrB);
4218    BuildMI(BB, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4219      .addReg(oldval).addReg(dest);
4220    BuildMI(BB, TII->get(PPC::BCC))
4221      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4222    BB->addSuccessor(loop2MBB);
4223    BB->addSuccessor(midMBB);
4224
4225    BB = loop2MBB;
4226    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4227      .addReg(newval).addReg(ptrA).addReg(ptrB);
4228    BuildMI(BB, TII->get(PPC::BCC))
4229      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4230    BuildMI(BB, TII->get(PPC::B)).addMBB(exitMBB);
4231    BB->addSuccessor(loop1MBB);
4232    BB->addSuccessor(exitMBB);
4233
4234    BB = midMBB;
4235    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4236      .addReg(dest).addReg(ptrA).addReg(ptrB);
4237    BB->addSuccessor(exitMBB);
4238
4239    //  exitMBB:
4240    //   ...
4241    BB = exitMBB;
4242  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4243             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4244    // We must use 64-bit registers for addresses when targeting 64-bit,
4245    // since we're actually doing arithmetic on them.  Other registers
4246    // can be 32-bit.
4247    bool is64bit = PPCSubTarget.isPPC64();
4248    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4249
4250    unsigned dest   = MI->getOperand(0).getReg();
4251    unsigned ptrA   = MI->getOperand(1).getReg();
4252    unsigned ptrB   = MI->getOperand(2).getReg();
4253    unsigned oldval = MI->getOperand(3).getReg();
4254    unsigned newval = MI->getOperand(4).getReg();
4255
4256    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4257    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4258    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4259    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4260    F->insert(It, loop1MBB);
4261    F->insert(It, loop2MBB);
4262    F->insert(It, midMBB);
4263    F->insert(It, exitMBB);
4264    exitMBB->transferSuccessors(BB);
4265
4266    MachineRegisterInfo &RegInfo = F->getRegInfo();
4267    const TargetRegisterClass *RC =
4268      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4269                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4270    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4271    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4272    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4273    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4274    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4275    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4276    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4277    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4278    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4279    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4280    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4281    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4282    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4283    unsigned Ptr1Reg;
4284    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4285    //  thisMBB:
4286    //   ...
4287    //   fallthrough --> loopMBB
4288    BB->addSuccessor(loop1MBB);
4289
4290    // The 4-byte load must be aligned, while a char or short may be
4291    // anywhere in the word.  Hence all this nasty bookkeeping code.
4292    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4293    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4294    //   xori shift, shift1, 24 [16]
4295    //   rlwinm ptr, ptr1, 0, 0, 29
4296    //   slw newval2, newval, shift
4297    //   slw oldval2, oldval,shift
4298    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4299    //   slw mask, mask2, shift
4300    //   and newval3, newval2, mask
4301    //   and oldval3, oldval2, mask
4302    // loop1MBB:
4303    //   lwarx tmpDest, ptr
4304    //   and tmp, tmpDest, mask
4305    //   cmpw tmp, oldval3
4306    //   bne- midMBB
4307    // loop2MBB:
4308    //   andc tmp2, tmpDest, mask
4309    //   or tmp4, tmp2, newval3
4310    //   stwcx. tmp4, ptr
4311    //   bne- loop1MBB
4312    //   b exitBB
4313    // midMBB:
4314    //   stwcx. tmpDest, ptr
4315    // exitBB:
4316    //   srw dest, tmpDest, shift
4317    if (ptrA!=PPC::R0) {
4318      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4319      BuildMI(BB, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4320        .addReg(ptrA).addReg(ptrB);
4321    } else {
4322      Ptr1Reg = ptrB;
4323    }
4324    BuildMI(BB, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4325        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4326    BuildMI(BB, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4327        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4328    if (is64bit)
4329      BuildMI(BB, TII->get(PPC::RLDICR), PtrReg)
4330        .addReg(Ptr1Reg).addImm(0).addImm(61);
4331    else
4332      BuildMI(BB, TII->get(PPC::RLWINM), PtrReg)
4333        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4334    BuildMI(BB, TII->get(PPC::SLW), NewVal2Reg)
4335        .addReg(newval).addReg(ShiftReg);
4336    BuildMI(BB, TII->get(PPC::SLW), OldVal2Reg)
4337        .addReg(oldval).addReg(ShiftReg);
4338    if (is8bit)
4339      BuildMI(BB, TII->get(PPC::LI), Mask2Reg).addImm(255);
4340    else {
4341      BuildMI(BB, TII->get(PPC::LI), Mask3Reg).addImm(0);
4342      BuildMI(BB, TII->get(PPC::ORI), Mask2Reg).addReg(Mask3Reg).addImm(65535);
4343    }
4344    BuildMI(BB, TII->get(PPC::SLW), MaskReg)
4345        .addReg(Mask2Reg).addReg(ShiftReg);
4346    BuildMI(BB, TII->get(PPC::AND), NewVal3Reg)
4347        .addReg(NewVal2Reg).addReg(MaskReg);
4348    BuildMI(BB, TII->get(PPC::AND), OldVal3Reg)
4349        .addReg(OldVal2Reg).addReg(MaskReg);
4350
4351    BB = loop1MBB;
4352    BuildMI(BB, TII->get(PPC::LWARX), TmpDestReg)
4353        .addReg(PPC::R0).addReg(PtrReg);
4354    BuildMI(BB, TII->get(PPC::AND),TmpReg).addReg(TmpDestReg).addReg(MaskReg);
4355    BuildMI(BB, TII->get(PPC::CMPW), PPC::CR0)
4356        .addReg(TmpReg).addReg(OldVal3Reg);
4357    BuildMI(BB, TII->get(PPC::BCC))
4358        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4359    BB->addSuccessor(loop2MBB);
4360    BB->addSuccessor(midMBB);
4361
4362    BB = loop2MBB;
4363    BuildMI(BB, TII->get(PPC::ANDC),Tmp2Reg).addReg(TmpDestReg).addReg(MaskReg);
4364    BuildMI(BB, TII->get(PPC::OR),Tmp4Reg).addReg(Tmp2Reg).addReg(NewVal3Reg);
4365    BuildMI(BB, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4366        .addReg(PPC::R0).addReg(PtrReg);
4367    BuildMI(BB, TII->get(PPC::BCC))
4368      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4369    BuildMI(BB, TII->get(PPC::B)).addMBB(exitMBB);
4370    BB->addSuccessor(loop1MBB);
4371    BB->addSuccessor(exitMBB);
4372
4373    BB = midMBB;
4374    BuildMI(BB, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4375      .addReg(PPC::R0).addReg(PtrReg);
4376    BB->addSuccessor(exitMBB);
4377
4378    //  exitMBB:
4379    //   ...
4380    BB = exitMBB;
4381    BuildMI(BB, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4382  } else {
4383    assert(0 && "Unexpected instr type to insert");
4384  }
4385
4386  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4387  return BB;
4388}
4389
4390//===----------------------------------------------------------------------===//
4391// Target Optimization Hooks
4392//===----------------------------------------------------------------------===//
4393
4394SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4395                                               DAGCombinerInfo &DCI) const {
4396  TargetMachine &TM = getTargetMachine();
4397  SelectionDAG &DAG = DCI.DAG;
4398  switch (N->getOpcode()) {
4399  default: break;
4400  case PPCISD::SHL:
4401    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4402      if (C->getZExtValue() == 0)   // 0 << V -> 0.
4403        return N->getOperand(0);
4404    }
4405    break;
4406  case PPCISD::SRL:
4407    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4408      if (C->getZExtValue() == 0)   // 0 >>u V -> 0.
4409        return N->getOperand(0);
4410    }
4411    break;
4412  case PPCISD::SRA:
4413    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4414      if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0.
4415          C->isAllOnesValue())    // -1 >>s V -> -1.
4416        return N->getOperand(0);
4417    }
4418    break;
4419
4420  case ISD::SINT_TO_FP:
4421    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4422      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4423        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4424        // We allow the src/dst to be either f32/f64, but the intermediate
4425        // type must be i64.
4426        if (N->getOperand(0).getValueType() == MVT::i64 &&
4427            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4428          SDValue Val = N->getOperand(0).getOperand(0);
4429          if (Val.getValueType() == MVT::f32) {
4430            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4431            DCI.AddToWorklist(Val.getNode());
4432          }
4433
4434          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
4435          DCI.AddToWorklist(Val.getNode());
4436          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
4437          DCI.AddToWorklist(Val.getNode());
4438          if (N->getValueType(0) == MVT::f32) {
4439            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
4440                              DAG.getIntPtrConstant(0));
4441            DCI.AddToWorklist(Val.getNode());
4442          }
4443          return Val;
4444        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4445          // If the intermediate type is i32, we can avoid the load/store here
4446          // too.
4447        }
4448      }
4449    }
4450    break;
4451  case ISD::STORE:
4452    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4453    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4454        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4455        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4456        N->getOperand(1).getValueType() == MVT::i32 &&
4457        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4458      SDValue Val = N->getOperand(1).getOperand(0);
4459      if (Val.getValueType() == MVT::f32) {
4460        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4461        DCI.AddToWorklist(Val.getNode());
4462      }
4463      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
4464      DCI.AddToWorklist(Val.getNode());
4465
4466      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
4467                        N->getOperand(2), N->getOperand(3));
4468      DCI.AddToWorklist(Val.getNode());
4469      return Val;
4470    }
4471
4472    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4473    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4474        N->getOperand(1).getNode()->hasOneUse() &&
4475        (N->getOperand(1).getValueType() == MVT::i32 ||
4476         N->getOperand(1).getValueType() == MVT::i16)) {
4477      SDValue BSwapOp = N->getOperand(1).getOperand(0);
4478      // Do an any-extend to 32-bits if this is a half-word input.
4479      if (BSwapOp.getValueType() == MVT::i16)
4480        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
4481
4482      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
4483                         N->getOperand(2), N->getOperand(3),
4484                         DAG.getValueType(N->getOperand(1).getValueType()));
4485    }
4486    break;
4487  case ISD::BSWAP:
4488    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4489    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
4490        N->getOperand(0).hasOneUse() &&
4491        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4492      SDValue Load = N->getOperand(0);
4493      LoadSDNode *LD = cast<LoadSDNode>(Load);
4494      // Create the byte-swapping load.
4495      std::vector<MVT> VTs;
4496      VTs.push_back(MVT::i32);
4497      VTs.push_back(MVT::Other);
4498      SDValue MO = DAG.getMemOperand(LD->getMemOperand());
4499      SDValue Ops[] = {
4500        LD->getChain(),    // Chain
4501        LD->getBasePtr(),  // Ptr
4502        MO,                // MemOperand
4503        DAG.getValueType(N->getValueType(0)) // VT
4504      };
4505      SDValue BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
4506
4507      // If this is an i16 load, insert the truncate.
4508      SDValue ResVal = BSLoad;
4509      if (N->getValueType(0) == MVT::i16)
4510        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
4511
4512      // First, combine the bswap away.  This makes the value produced by the
4513      // load dead.
4514      DCI.CombineTo(N, ResVal);
4515
4516      // Next, combine the load away, we give it a bogus result value but a real
4517      // chain result.  The result value is dead because the bswap is dead.
4518      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
4519
4520      // Return N so it doesn't get rechecked!
4521      return SDValue(N, 0);
4522    }
4523
4524    break;
4525  case PPCISD::VCMP: {
4526    // If a VCMPo node already exists with exactly the same operands as this
4527    // node, use its result instead of this node (VCMPo computes both a CR6 and
4528    // a normal output).
4529    //
4530    if (!N->getOperand(0).hasOneUse() &&
4531        !N->getOperand(1).hasOneUse() &&
4532        !N->getOperand(2).hasOneUse()) {
4533
4534      // Scan all of the users of the LHS, looking for VCMPo's that match.
4535      SDNode *VCMPoNode = 0;
4536
4537      SDNode *LHSN = N->getOperand(0).getNode();
4538      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4539           UI != E; ++UI)
4540        if (UI->getOpcode() == PPCISD::VCMPo &&
4541            UI->getOperand(1) == N->getOperand(1) &&
4542            UI->getOperand(2) == N->getOperand(2) &&
4543            UI->getOperand(0) == N->getOperand(0)) {
4544          VCMPoNode = *UI;
4545          break;
4546        }
4547
4548      // If there is no VCMPo node, or if the flag value has a single use, don't
4549      // transform this.
4550      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
4551        break;
4552
4553      // Look at the (necessarily single) use of the flag value.  If it has a
4554      // chain, this transformation is more complex.  Note that multiple things
4555      // could use the value result, which we should ignore.
4556      SDNode *FlagUser = 0;
4557      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
4558           FlagUser == 0; ++UI) {
4559        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
4560        SDNode *User = *UI;
4561        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
4562          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
4563            FlagUser = User;
4564            break;
4565          }
4566        }
4567      }
4568
4569      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
4570      // give up for right now.
4571      if (FlagUser->getOpcode() == PPCISD::MFCR)
4572        return SDValue(VCMPoNode, 0);
4573    }
4574    break;
4575  }
4576  case ISD::BR_CC: {
4577    // If this is a branch on an altivec predicate comparison, lower this so
4578    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
4579    // lowering is done pre-legalize, because the legalizer lowers the predicate
4580    // compare down to code that is difficult to reassemble.
4581    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4582    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4583    int CompareOpc;
4584    bool isDot;
4585
4586    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
4587        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
4588        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
4589      assert(isDot && "Can't compare against a vector result!");
4590
4591      // If this is a comparison against something other than 0/1, then we know
4592      // that the condition is never/always true.
4593      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
4594      if (Val != 0 && Val != 1) {
4595        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
4596          return N->getOperand(0);
4597        // Always !=, turn it into an unconditional branch.
4598        return DAG.getNode(ISD::BR, MVT::Other,
4599                           N->getOperand(0), N->getOperand(4));
4600      }
4601
4602      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
4603
4604      // Create the PPCISD altivec 'dot' comparison node.
4605      std::vector<MVT> VTs;
4606      SDValue Ops[] = {
4607        LHS.getOperand(2),  // LHS of compare
4608        LHS.getOperand(3),  // RHS of compare
4609        DAG.getConstant(CompareOpc, MVT::i32)
4610      };
4611      VTs.push_back(LHS.getOperand(2).getValueType());
4612      VTs.push_back(MVT::Flag);
4613      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
4614
4615      // Unpack the result based on how the target uses it.
4616      PPC::Predicate CompOpc;
4617      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
4618      default:  // Can't happen, don't crash on invalid number though.
4619      case 0:   // Branch on the value of the EQ bit of CR6.
4620        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
4621        break;
4622      case 1:   // Branch on the inverted value of the EQ bit of CR6.
4623        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
4624        break;
4625      case 2:   // Branch on the value of the LT bit of CR6.
4626        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
4627        break;
4628      case 3:   // Branch on the inverted value of the LT bit of CR6.
4629        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
4630        break;
4631      }
4632
4633      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
4634                         DAG.getConstant(CompOpc, MVT::i32),
4635                         DAG.getRegister(PPC::CR6, MVT::i32),
4636                         N->getOperand(4), CompNode.getValue(1));
4637    }
4638    break;
4639  }
4640  }
4641
4642  return SDValue();
4643}
4644
4645//===----------------------------------------------------------------------===//
4646// Inline Assembly Support
4647//===----------------------------------------------------------------------===//
4648
4649void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
4650                                                       const APInt &Mask,
4651                                                       APInt &KnownZero,
4652                                                       APInt &KnownOne,
4653                                                       const SelectionDAG &DAG,
4654                                                       unsigned Depth) const {
4655  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
4656  switch (Op.getOpcode()) {
4657  default: break;
4658  case PPCISD::LBRX: {
4659    // lhbrx is known to have the top bits cleared out.
4660    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
4661      KnownZero = 0xFFFF0000;
4662    break;
4663  }
4664  case ISD::INTRINSIC_WO_CHAIN: {
4665    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
4666    default: break;
4667    case Intrinsic::ppc_altivec_vcmpbfp_p:
4668    case Intrinsic::ppc_altivec_vcmpeqfp_p:
4669    case Intrinsic::ppc_altivec_vcmpequb_p:
4670    case Intrinsic::ppc_altivec_vcmpequh_p:
4671    case Intrinsic::ppc_altivec_vcmpequw_p:
4672    case Intrinsic::ppc_altivec_vcmpgefp_p:
4673    case Intrinsic::ppc_altivec_vcmpgtfp_p:
4674    case Intrinsic::ppc_altivec_vcmpgtsb_p:
4675    case Intrinsic::ppc_altivec_vcmpgtsh_p:
4676    case Intrinsic::ppc_altivec_vcmpgtsw_p:
4677    case Intrinsic::ppc_altivec_vcmpgtub_p:
4678    case Intrinsic::ppc_altivec_vcmpgtuh_p:
4679    case Intrinsic::ppc_altivec_vcmpgtuw_p:
4680      KnownZero = ~1U;  // All bits but the low one are known to be zero.
4681      break;
4682    }
4683  }
4684  }
4685}
4686
4687
4688/// getConstraintType - Given a constraint, return the type of
4689/// constraint it is for this target.
4690PPCTargetLowering::ConstraintType
4691PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
4692  if (Constraint.size() == 1) {
4693    switch (Constraint[0]) {
4694    default: break;
4695    case 'b':
4696    case 'r':
4697    case 'f':
4698    case 'v':
4699    case 'y':
4700      return C_RegisterClass;
4701    }
4702  }
4703  return TargetLowering::getConstraintType(Constraint);
4704}
4705
4706std::pair<unsigned, const TargetRegisterClass*>
4707PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4708                                                MVT VT) const {
4709  if (Constraint.size() == 1) {
4710    // GCC RS6000 Constraint Letters
4711    switch (Constraint[0]) {
4712    case 'b':   // R1-R31
4713    case 'r':   // R0-R31
4714      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
4715        return std::make_pair(0U, PPC::G8RCRegisterClass);
4716      return std::make_pair(0U, PPC::GPRCRegisterClass);
4717    case 'f':
4718      if (VT == MVT::f32)
4719        return std::make_pair(0U, PPC::F4RCRegisterClass);
4720      else if (VT == MVT::f64)
4721        return std::make_pair(0U, PPC::F8RCRegisterClass);
4722      break;
4723    case 'v':
4724      return std::make_pair(0U, PPC::VRRCRegisterClass);
4725    case 'y':   // crrc
4726      return std::make_pair(0U, PPC::CRRCRegisterClass);
4727    }
4728  }
4729
4730  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4731}
4732
4733
4734/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4735/// vector.  If it is invalid, don't add anything to Ops.
4736void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
4737                                                     std::vector<SDValue>&Ops,
4738                                                     SelectionDAG &DAG) const {
4739  SDValue Result(0,0);
4740  switch (Letter) {
4741  default: break;
4742  case 'I':
4743  case 'J':
4744  case 'K':
4745  case 'L':
4746  case 'M':
4747  case 'N':
4748  case 'O':
4749  case 'P': {
4750    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
4751    if (!CST) return; // Must be an immediate to match.
4752    unsigned Value = CST->getZExtValue();
4753    switch (Letter) {
4754    default: assert(0 && "Unknown constraint letter!");
4755    case 'I':  // "I" is a signed 16-bit constant.
4756      if ((short)Value == (int)Value)
4757        Result = DAG.getTargetConstant(Value, Op.getValueType());
4758      break;
4759    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
4760    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
4761      if ((short)Value == 0)
4762        Result = DAG.getTargetConstant(Value, Op.getValueType());
4763      break;
4764    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
4765      if ((Value >> 16) == 0)
4766        Result = DAG.getTargetConstant(Value, Op.getValueType());
4767      break;
4768    case 'M':  // "M" is a constant that is greater than 31.
4769      if (Value > 31)
4770        Result = DAG.getTargetConstant(Value, Op.getValueType());
4771      break;
4772    case 'N':  // "N" is a positive constant that is an exact power of two.
4773      if ((int)Value > 0 && isPowerOf2_32(Value))
4774        Result = DAG.getTargetConstant(Value, Op.getValueType());
4775      break;
4776    case 'O':  // "O" is the constant zero.
4777      if (Value == 0)
4778        Result = DAG.getTargetConstant(Value, Op.getValueType());
4779      break;
4780    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
4781      if ((short)-Value == (int)-Value)
4782        Result = DAG.getTargetConstant(Value, Op.getValueType());
4783      break;
4784    }
4785    break;
4786  }
4787  }
4788
4789  if (Result.getNode()) {
4790    Ops.push_back(Result);
4791    return;
4792  }
4793
4794  // Handle standard constraint letters.
4795  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
4796}
4797
4798// isLegalAddressingMode - Return true if the addressing mode represented
4799// by AM is legal for this target, for a load/store of the specified type.
4800bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4801                                              const Type *Ty) const {
4802  // FIXME: PPC does not allow r+i addressing modes for vectors!
4803
4804  // PPC allows a sign-extended 16-bit immediate field.
4805  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
4806    return false;
4807
4808  // No global is ever allowed as a base.
4809  if (AM.BaseGV)
4810    return false;
4811
4812  // PPC only support r+r,
4813  switch (AM.Scale) {
4814  case 0:  // "r+i" or just "i", depending on HasBaseReg.
4815    break;
4816  case 1:
4817    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
4818      return false;
4819    // Otherwise we have r+r or r+i.
4820    break;
4821  case 2:
4822    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
4823      return false;
4824    // Allow 2*r as r+r.
4825    break;
4826  default:
4827    // No other scales are supported.
4828    return false;
4829  }
4830
4831  return true;
4832}
4833
4834/// isLegalAddressImmediate - Return true if the integer value can be used
4835/// as the offset of the target addressing mode for load / store of the
4836/// given type.
4837bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
4838  // PPC allows a sign-extended 16-bit immediate field.
4839  return (V > -(1 << 16) && V < (1 << 16)-1);
4840}
4841
4842bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
4843  return false;
4844}
4845
4846SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
4847  // Depths > 0 not supported yet!
4848  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
4849    return SDValue();
4850
4851  MachineFunction &MF = DAG.getMachineFunction();
4852  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4853
4854  // Just load the return address off the stack.
4855  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
4856
4857  // Make sure the function really does not optimize away the store of the RA
4858  // to the stack.
4859  FuncInfo->setLRStoreRequired();
4860  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4861}
4862
4863SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
4864  // Depths > 0 not supported yet!
4865  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
4866    return SDValue();
4867
4868  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4869  bool isPPC64 = PtrVT == MVT::i64;
4870
4871  MachineFunction &MF = DAG.getMachineFunction();
4872  MachineFrameInfo *MFI = MF.getFrameInfo();
4873  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4874                  && MFI->getStackSize();
4875
4876  if (isPPC64)
4877    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
4878      MVT::i64);
4879  else
4880    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
4881      MVT::i32);
4882}
4883