PPCISelLowering.cpp revision 098e699f21a532d37b1ad44bb1bc24a87b3f9962
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCTargetMachine.h"
16#include "llvm/ADT/VectorExtras.h"
17#include "llvm/Analysis/ScalarEvolutionExpressions.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/SelectionDAG.h"
22#include "llvm/CodeGen/SSARegMap.h"
23#include "llvm/Constants.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Target/TargetOptions.h"
28using namespace llvm;
29
30PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
31  : TargetLowering(TM) {
32
33  // Fold away setcc operations if possible.
34  setSetCCIsExpensive();
35  setPow2DivIsCheap();
36
37  // Use _setjmp/_longjmp instead of setjmp/longjmp.
38  setUseUnderscoreSetJmpLongJmp(true);
39
40  // Set up the register classes.
41  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
42  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
43  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
44
45  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
46  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
47
48  // PowerPC has no intrinsics for these particular operations
49  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
50  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
51  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
52
53  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
54  setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
55  setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
56
57  // PowerPC has no SREM/UREM instructions
58  setOperationAction(ISD::SREM, MVT::i32, Expand);
59  setOperationAction(ISD::UREM, MVT::i32, Expand);
60
61  // We don't support sin/cos/sqrt/fmod
62  setOperationAction(ISD::FSIN , MVT::f64, Expand);
63  setOperationAction(ISD::FCOS , MVT::f64, Expand);
64  setOperationAction(ISD::FREM , MVT::f64, Expand);
65  setOperationAction(ISD::FSIN , MVT::f32, Expand);
66  setOperationAction(ISD::FCOS , MVT::f32, Expand);
67  setOperationAction(ISD::FREM , MVT::f32, Expand);
68
69  // If we're enabling GP optimizations, use hardware square root
70  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
71    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
72    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
73  }
74
75  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
76  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
77
78  // PowerPC does not have BSWAP, CTPOP or CTTZ
79  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
80  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
81  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
82
83  // PowerPC does not have ROTR
84  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
85
86  // PowerPC does not have Select
87  setOperationAction(ISD::SELECT, MVT::i32, Expand);
88  setOperationAction(ISD::SELECT, MVT::f32, Expand);
89  setOperationAction(ISD::SELECT, MVT::f64, Expand);
90
91  // PowerPC wants to turn select_cc of FP into fsel when possible.
92  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
93  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
94
95  // PowerPC wants to optimize integer setcc a bit
96  setOperationAction(ISD::SETCC, MVT::i32, Custom);
97
98  // PowerPC does not have BRCOND which requires SetCC
99  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
100
101  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
102  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
103
104  // PowerPC does not have [U|S]INT_TO_FP
105  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
106  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
107
108  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
109  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
110
111  // PowerPC does not have truncstore for i1.
112  setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);
113
114  // Support label based line numbers.
115  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
116  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
117  // FIXME - use subtarget debug flags
118  if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
119    setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
120
121  // We want to legalize GlobalAddress and ConstantPool nodes into the
122  // appropriate instructions to materialize the address.
123  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
124  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
125
126  // RET must be custom lowered, to meet ABI requirements
127  setOperationAction(ISD::RET               , MVT::Other, Custom);
128
129  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
130  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
131
132  // Use the default implementation.
133  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
134  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
135  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
136  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
137  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);
138  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
139
140  // We want to custom lower some of our intrinsics.
141  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
142
143  if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
144    // They also have instructions for converting between i64 and fp.
145    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
146    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
147
148    // FIXME: disable this lowered code.  This generates 64-bit register values,
149    // and we don't model the fact that the top part is clobbered by calls.  We
150    // need to flag these together so that the value isn't live across a call.
151    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
152
153    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
154    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
155  } else {
156    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
157    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
158  }
159
160  if (TM.getSubtarget<PPCSubtarget>().has64BitRegs()) {
161    // 64 bit PowerPC implementations can support i64 types directly
162    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
163    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
164    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
165  } else {
166    // 32 bit PowerPC wants to expand i64 shifts itself.
167    setOperationAction(ISD::SHL, MVT::i64, Custom);
168    setOperationAction(ISD::SRL, MVT::i64, Custom);
169    setOperationAction(ISD::SRA, MVT::i64, Custom);
170  }
171
172  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
173    // First set operation action for all vector types to expand. Then we
174    // will selectively turn on ones that can be effectively codegen'd.
175    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
176         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
177      // add/sub/and/or/xor are legal for all supported vector VT's.
178      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
179      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
180      setOperationAction(ISD::AND , (MVT::ValueType)VT, Legal);
181      setOperationAction(ISD::OR  , (MVT::ValueType)VT, Legal);
182      setOperationAction(ISD::XOR , (MVT::ValueType)VT, Legal);
183
184      // We promote all shuffles to v16i8.
185      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
186      AddPromotedToType(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
187
188      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
189      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
190      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
191      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
192      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
193      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
194      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
195      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
196
197      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
198    }
199
200    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
201    // with merges, splats, etc.
202    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
203
204    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
205    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
206    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
207    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
208
209    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
210
211    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
212    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
213
214    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
215    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
216    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
217    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
218  }
219
220  setSetCCResultContents(ZeroOrOneSetCCResult);
221  setStackPointerRegisterToSaveRestore(PPC::R1);
222
223  // We have target-specific dag combine patterns for the following nodes:
224  setTargetDAGCombine(ISD::SINT_TO_FP);
225  setTargetDAGCombine(ISD::STORE);
226
227  computeRegisterProperties();
228}
229
230const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
231  switch (Opcode) {
232  default: return 0;
233  case PPCISD::FSEL:          return "PPCISD::FSEL";
234  case PPCISD::FCFID:         return "PPCISD::FCFID";
235  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
236  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
237  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
238  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
239  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
240  case PPCISD::VPERM:         return "PPCISD::VPERM";
241  case PPCISD::Hi:            return "PPCISD::Hi";
242  case PPCISD::Lo:            return "PPCISD::Lo";
243  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
244  case PPCISD::SRL:           return "PPCISD::SRL";
245  case PPCISD::SRA:           return "PPCISD::SRA";
246  case PPCISD::SHL:           return "PPCISD::SHL";
247  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
248  case PPCISD::STD_32:        return "PPCISD::STD_32";
249  case PPCISD::CALL:          return "PPCISD::CALL";
250  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
251  case PPCISD::MFCR:          return "PPCISD::MFCR";
252  case PPCISD::VCMP:          return "PPCISD::VCMP";
253  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
254  }
255}
256
257/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
258static bool isFloatingPointZero(SDOperand Op) {
259  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
260    return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
261  else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
262    // Maybe this has already been legalized into the constant pool?
263    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
264      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
265        return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
266  }
267  return false;
268}
269
270
271/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
272/// specifies a splat of a single element that is suitable for input to
273/// VSPLTB/VSPLTH/VSPLTW.
274bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
275  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
276         N->getNumOperands() == 16 &&
277         (EltSize == 1 || EltSize == 2 || EltSize == 4));
278
279  // This is a splat operation if each element of the permute is the same, and
280  // if the value doesn't reference the second vector.
281  unsigned ElementBase = 0;
282  SDOperand Elt = N->getOperand(0);
283  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
284    ElementBase = EltV->getValue();
285  else
286    return false;   // FIXME: Handle UNDEF elements too!
287
288  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
289    return false;
290
291  // Check that they are consequtive.
292  for (unsigned i = 1; i != EltSize; ++i) {
293    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
294        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
295      return false;
296  }
297
298  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
299  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
300    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
301           "Invalid VECTOR_SHUFFLE mask!");
302    for (unsigned j = 0; j != EltSize; ++j)
303      if (N->getOperand(i+j) != N->getOperand(j))
304        return false;
305  }
306
307  return true;
308}
309
310/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
311/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
312unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
313  assert(isSplatShuffleMask(N, EltSize));
314  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
315}
316
317/// isVecSplatImm - Return true if this is a build_vector of constants which
318/// can be formed by using a vspltis[bhw] instruction.  The ByteSize field
319/// indicates the number of bytes of each element [124] -> [bhw].
320bool PPC::isVecSplatImm(SDNode *N, unsigned ByteSize, char *Val) {
321  SDOperand OpVal(0, 0);
322  // Check to see if this buildvec has a single non-undef value in its elements.
323  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
324    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
325    if (OpVal.Val == 0)
326      OpVal = N->getOperand(i);
327    else if (OpVal != N->getOperand(i))
328      return false;
329  }
330
331  if (OpVal.Val == 0) return false;  // All UNDEF: use implicit def.
332
333  unsigned ValSizeInBytes = 0;
334  uint64_t Value = 0;
335  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
336    Value = CN->getValue();
337    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
338  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
339    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
340    Value = FloatToBits(CN->getValue());
341    ValSizeInBytes = 4;
342  }
343
344  // If the splat value is larger than the element value, then we can never do
345  // this splat.  The only case that we could fit the replicated bits into our
346  // immediate field for would be zero, and we prefer to use vxor for it.
347  if (ValSizeInBytes < ByteSize) return false;
348
349  // If the element value is larger than the splat value, cut it in half and
350  // check to see if the two halves are equal.  Continue doing this until we
351  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
352  while (ValSizeInBytes > ByteSize) {
353    ValSizeInBytes >>= 1;
354
355    // If the top half equals the bottom half, we're still ok.
356    if (((Value >> (ValSizeInBytes*8)) & (1 << (8*ValSizeInBytes)-1)) !=
357         (Value                        & (1 << (8*ValSizeInBytes)-1)))
358      return false;
359  }
360
361  // Properly sign extend the value.
362  int ShAmt = (4-ByteSize)*8;
363  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
364
365  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
366  if (MaskVal == 0) return false;
367
368  if (Val) *Val = MaskVal;
369
370  // Finally, if this value fits in a 5 bit sext field, return true.
371  return ((MaskVal << (32-5)) >> (32-5)) == MaskVal;
372}
373
374
375/// LowerOperation - Provide custom lowering hooks for some operations.
376///
377SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
378  switch (Op.getOpcode()) {
379  default: assert(0 && "Wasn't expecting to be able to lower this!");
380  case ISD::FP_TO_SINT: {
381    assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
382    SDOperand Src = Op.getOperand(0);
383    if (Src.getValueType() == MVT::f32)
384      Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
385
386    SDOperand Tmp;
387    switch (Op.getValueType()) {
388    default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
389    case MVT::i32:
390      Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
391      break;
392    case MVT::i64:
393      Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
394      break;
395    }
396
397    // Convert the FP value to an int value through memory.
398    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
399    if (Op.getValueType() == MVT::i32)
400      Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
401    return Bits;
402  }
403  case ISD::SINT_TO_FP:
404    if (Op.getOperand(0).getValueType() == MVT::i64) {
405      SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
406      SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
407      if (Op.getValueType() == MVT::f32)
408        FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
409      return FP;
410    } else {
411      assert(Op.getOperand(0).getValueType() == MVT::i32 &&
412             "Unhandled SINT_TO_FP type in custom expander!");
413      // Since we only generate this in 64-bit mode, we can take advantage of
414      // 64-bit registers.  In particular, sign extend the input value into the
415      // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
416      // then lfd it and fcfid it.
417      MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
418      int FrameIdx = FrameInfo->CreateStackObject(8, 8);
419      SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
420
421      SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
422                                    Op.getOperand(0));
423
424      // STD the extended value into the stack slot.
425      SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
426                                    DAG.getEntryNode(), Ext64, FIdx,
427                                    DAG.getSrcValue(NULL));
428      // Load the value as a double.
429      SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL));
430
431      // FCFID it and return it.
432      SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
433      if (Op.getValueType() == MVT::f32)
434        FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
435      return FP;
436    }
437    break;
438
439  case ISD::SELECT_CC: {
440    // Turn FP only select_cc's into fsel instructions.
441    if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
442        !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
443      break;
444
445    ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
446
447    // Cannot handle SETEQ/SETNE.
448    if (CC == ISD::SETEQ || CC == ISD::SETNE) break;
449
450    MVT::ValueType ResVT = Op.getValueType();
451    MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
452    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
453    SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
454
455    // If the RHS of the comparison is a 0.0, we don't need to do the
456    // subtraction at all.
457    if (isFloatingPointZero(RHS))
458      switch (CC) {
459      default: break;       // SETUO etc aren't handled by fsel.
460      case ISD::SETULT:
461      case ISD::SETLT:
462        std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
463      case ISD::SETUGE:
464      case ISD::SETGE:
465        if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
466          LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
467        return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
468      case ISD::SETUGT:
469      case ISD::SETGT:
470        std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
471      case ISD::SETULE:
472      case ISD::SETLE:
473        if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
474          LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
475        return DAG.getNode(PPCISD::FSEL, ResVT,
476                           DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
477      }
478
479    SDOperand Cmp;
480    switch (CC) {
481    default: break;       // SETUO etc aren't handled by fsel.
482    case ISD::SETULT:
483    case ISD::SETLT:
484      Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
485      if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
486        Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
487      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
488    case ISD::SETUGE:
489    case ISD::SETGE:
490      Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
491      if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
492        Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
493      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
494    case ISD::SETUGT:
495    case ISD::SETGT:
496      Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
497      if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
498        Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
499      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
500    case ISD::SETULE:
501    case ISD::SETLE:
502      Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
503      if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
504        Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
505      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
506    }
507    break;
508  }
509  case ISD::SHL: {
510    assert(Op.getValueType() == MVT::i64 &&
511           Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
512    // The generic code does a fine job expanding shift by a constant.
513    if (isa<ConstantSDNode>(Op.getOperand(1))) break;
514
515    // Otherwise, expand into a bunch of logical ops.  Note that these ops
516    // depend on the PPC behavior for oversized shift amounts.
517    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
518                               DAG.getConstant(0, MVT::i32));
519    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
520                               DAG.getConstant(1, MVT::i32));
521    SDOperand Amt = Op.getOperand(1);
522
523    SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
524                                 DAG.getConstant(32, MVT::i32), Amt);
525    SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
526    SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
527    SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
528    SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
529                                 DAG.getConstant(-32U, MVT::i32));
530    SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
531    SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
532    SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
533    return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
534  }
535  case ISD::SRL: {
536    assert(Op.getValueType() == MVT::i64 &&
537           Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
538    // The generic code does a fine job expanding shift by a constant.
539    if (isa<ConstantSDNode>(Op.getOperand(1))) break;
540
541    // Otherwise, expand into a bunch of logical ops.  Note that these ops
542    // depend on the PPC behavior for oversized shift amounts.
543    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
544                               DAG.getConstant(0, MVT::i32));
545    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
546                               DAG.getConstant(1, MVT::i32));
547    SDOperand Amt = Op.getOperand(1);
548
549    SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
550                                 DAG.getConstant(32, MVT::i32), Amt);
551    SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
552    SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
553    SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
554    SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
555                                 DAG.getConstant(-32U, MVT::i32));
556    SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
557    SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
558    SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
559    return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
560  }
561  case ISD::SRA: {
562    assert(Op.getValueType() == MVT::i64 &&
563           Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
564    // The generic code does a fine job expanding shift by a constant.
565    if (isa<ConstantSDNode>(Op.getOperand(1))) break;
566
567    // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
568    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
569                               DAG.getConstant(0, MVT::i32));
570    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
571                               DAG.getConstant(1, MVT::i32));
572    SDOperand Amt = Op.getOperand(1);
573
574    SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
575                                 DAG.getConstant(32, MVT::i32), Amt);
576    SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
577    SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
578    SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
579    SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
580                                 DAG.getConstant(-32U, MVT::i32));
581    SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
582    SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
583    SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
584                                      Tmp4, Tmp6, ISD::SETLE);
585    return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
586  }
587  case ISD::ConstantPool: {
588    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
589    Constant *C = CP->get();
590    SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i32, CP->getAlignment());
591    SDOperand Zero = DAG.getConstant(0, MVT::i32);
592
593    if (getTargetMachine().getRelocationModel() == Reloc::Static) {
594      // Generate non-pic code that has direct accesses to the constant pool.
595      // The address of the global is just (hi(&g)+lo(&g)).
596      SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
597      SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
598      return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
599    }
600
601    // Only lower ConstantPool on Darwin.
602    if (!getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin()) break;
603    SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
604    if (getTargetMachine().getRelocationModel() == Reloc::PIC) {
605      // With PIC, the first instruction is actually "GR+hi(&G)".
606      Hi = DAG.getNode(ISD::ADD, MVT::i32,
607                       DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
608    }
609
610    SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
611    Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
612    return Lo;
613  }
614  case ISD::GlobalAddress: {
615    GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
616    GlobalValue *GV = GSDN->getGlobal();
617    SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32, GSDN->getOffset());
618    SDOperand Zero = DAG.getConstant(0, MVT::i32);
619
620    if (getTargetMachine().getRelocationModel() == Reloc::Static) {
621      // Generate non-pic code that has direct accesses to globals.
622      // The address of the global is just (hi(&g)+lo(&g)).
623      SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
624      SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
625      return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
626    }
627
628    // Only lower GlobalAddress on Darwin.
629    if (!getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin()) break;
630
631    SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
632    if (getTargetMachine().getRelocationModel() == Reloc::PIC) {
633      // With PIC, the first instruction is actually "GR+hi(&G)".
634      Hi = DAG.getNode(ISD::ADD, MVT::i32,
635                       DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
636    }
637
638    SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
639    Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
640
641    if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
642        (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
643      return Lo;
644
645    // If the global is weak or external, we have to go through the lazy
646    // resolution stub.
647    return DAG.getLoad(MVT::i32, DAG.getEntryNode(), Lo, DAG.getSrcValue(0));
648  }
649  case ISD::SETCC: {
650    ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
651
652    // If we're comparing for equality to zero, expose the fact that this is
653    // implented as a ctlz/srl pair on ppc, so that the dag combiner can
654    // fold the new nodes.
655    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
656      if (C->isNullValue() && CC == ISD::SETEQ) {
657        MVT::ValueType VT = Op.getOperand(0).getValueType();
658        SDOperand Zext = Op.getOperand(0);
659        if (VT < MVT::i32) {
660          VT = MVT::i32;
661          Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
662        }
663        unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
664        SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
665        SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
666                                    DAG.getConstant(Log2b, getShiftAmountTy()));
667        return DAG.getNode(ISD::TRUNCATE, getSetCCResultTy(), Scc);
668      }
669      // Leave comparisons against 0 and -1 alone for now, since they're usually
670      // optimized.  FIXME: revisit this when we can custom lower all setcc
671      // optimizations.
672      if (C->isAllOnesValue() || C->isNullValue())
673        break;
674    }
675
676    // If we have an integer seteq/setne, turn it into a compare against zero
677    // by subtracting the rhs from the lhs, which is faster than setting a
678    // condition register, reading it back out, and masking the correct bit.
679    MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
680    if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
681      MVT::ValueType VT = Op.getValueType();
682      SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0),
683                                  Op.getOperand(1));
684      return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
685    }
686    break;
687  }
688  case ISD::VASTART: {
689    // vastart just stores the address of the VarArgsFrameIndex slot into the
690    // memory location argument.
691    // FIXME: Replace MVT::i32 with PointerTy
692    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
693    return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
694                       Op.getOperand(1), Op.getOperand(2));
695  }
696  case ISD::RET: {
697    SDOperand Copy;
698
699    switch(Op.getNumOperands()) {
700    default:
701      assert(0 && "Do not know how to return this many arguments!");
702      abort();
703    case 1:
704      return SDOperand(); // ret void is legal
705    case 2: {
706      MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
707      unsigned ArgReg = MVT::isInteger(ArgVT) ? PPC::R3 : PPC::F1;
708      Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
709                              SDOperand());
710      break;
711    }
712    case 3:
713      Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(2),
714                              SDOperand());
715      Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
716      break;
717    }
718    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
719  }
720  case ISD::SCALAR_TO_VECTOR: {
721    // Create a stack slot that is 16-byte aligned.
722    MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
723    int FrameIdx = FrameInfo->CreateStackObject(16, 16);
724    SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
725
726    // Store the input value into Value#0 of the stack slot.
727    SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
728                                  Op.getOperand(0), FIdx,DAG.getSrcValue(NULL));
729    // Load it out.
730    return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL));
731  }
732  case ISD::BUILD_VECTOR:
733    // If this is a case we can't handle, return null and let the default
734    // expansion code take care of it.  If we CAN select this case, return Op.
735
736    // See if this is all zeros.
737    // FIXME: We should handle splat(-0.0), and other cases here.
738    if (ISD::isBuildVectorAllZeros(Op.Val))
739      return Op;
740
741    if (PPC::isVecSplatImm(Op.Val, 1) ||    // vspltisb
742        PPC::isVecSplatImm(Op.Val, 2) ||    // vspltish
743        PPC::isVecSplatImm(Op.Val, 4))      // vspltisw
744      return Op;
745
746    return SDOperand();
747
748  case ISD::VECTOR_SHUFFLE: {
749    SDOperand V1 = Op.getOperand(0);
750    SDOperand V2 = Op.getOperand(1);
751    SDOperand PermMask = Op.getOperand(2);
752
753    // Cases that are handled by instructions that take permute immediates
754    // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
755    // selected by the instruction selector.
756    if (V2.getOpcode() == ISD::UNDEF &&
757        (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
758         PPC::isSplatShuffleMask(PermMask.Val, 2) ||
759         PPC::isSplatShuffleMask(PermMask.Val, 4)))
760      break;
761
762    // TODO: Handle more cases, and also handle cases that are cheaper to do as
763    // multiple such instructions than as a constant pool load/vperm pair.
764
765    // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
766    // vector that will get spilled to the constant pool.
767    if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
768
769    // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
770    // that it is in input element units, not in bytes.  Convert now.
771    MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
772    unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
773
774    std::vector<SDOperand> ResultMask;
775    for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
776      unsigned SrcElt =cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
777
778      for (unsigned j = 0; j != BytesPerElement; ++j)
779        ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
780                                             MVT::i8));
781    }
782
783    SDOperand VPermMask =DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask);
784    return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
785  }
786  case ISD::INTRINSIC_WO_CHAIN: {
787    unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
788
789    // If this is a lowered altivec predicate compare, CompareOpc is set to the
790    // opcode number of the comparison.
791    int CompareOpc = -1;
792    bool isDot = false;
793    switch (IntNo) {
794    default: return SDOperand();    // Don't custom lower most intrinsics.
795    // Comparison predicates.
796    case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
797    case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
798    case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
799    case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
800    case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
801    case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
802    case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
803    case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
804    case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
805    case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
806    case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
807    case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
808    case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
809
810    // Normal Comparisons.
811    case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
812    case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
813    case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
814    case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
815    case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
816    case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
817    case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
818    case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
819    case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
820    case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
821    case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
822    case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
823    case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
824    }
825
826    assert(CompareOpc>0 && "We only lower altivec predicate compares so far!");
827
828    // If this is a non-dot comparison, make the VCMP node.
829    if (!isDot)
830      return DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
831                         Op.getOperand(1), Op.getOperand(2),
832                         DAG.getConstant(CompareOpc, MVT::i32));
833
834    // Create the PPCISD altivec 'dot' comparison node.
835    std::vector<SDOperand> Ops;
836    std::vector<MVT::ValueType> VTs;
837    Ops.push_back(Op.getOperand(2));  // LHS
838    Ops.push_back(Op.getOperand(3));  // RHS
839    Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
840    VTs.push_back(Op.getOperand(2).getValueType());
841    VTs.push_back(MVT::Flag);
842    SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
843
844    // Now that we have the comparison, emit a copy from the CR to a GPR.
845    // This is flagged to the above dot comparison.
846    SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
847                                  DAG.getRegister(PPC::CR6, MVT::i32),
848                                  CompNode.getValue(1));
849
850    // Unpack the result based on how the target uses it.
851    unsigned BitNo;   // Bit # of CR6.
852    bool InvertBit;   // Invert result?
853    switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
854    default:  // Can't happen, don't crash on invalid number though.
855    case 0:   // Return the value of the EQ bit of CR6.
856      BitNo = 0; InvertBit = false;
857      break;
858    case 1:   // Return the inverted value of the EQ bit of CR6.
859      BitNo = 0; InvertBit = true;
860      break;
861    case 2:   // Return the value of the LT bit of CR6.
862      BitNo = 2; InvertBit = false;
863      break;
864    case 3:   // Return the inverted value of the LT bit of CR6.
865      BitNo = 2; InvertBit = true;
866      break;
867    }
868
869    // Shift the bit into the low position.
870    Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
871                        DAG.getConstant(8-(3-BitNo), MVT::i32));
872    // Isolate the bit.
873    Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
874                        DAG.getConstant(1, MVT::i32));
875
876    // If we are supposed to, toggle the bit.
877    if (InvertBit)
878      Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
879                          DAG.getConstant(1, MVT::i32));
880    return Flags;
881  }
882  }
883  return SDOperand();
884}
885
886std::vector<SDOperand>
887PPCTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
888  //
889  // add beautiful description of PPC stack frame format, or at least some docs
890  //
891  MachineFunction &MF = DAG.getMachineFunction();
892  MachineFrameInfo *MFI = MF.getFrameInfo();
893  MachineBasicBlock& BB = MF.front();
894  SSARegMap *RegMap = MF.getSSARegMap();
895  std::vector<SDOperand> ArgValues;
896
897  unsigned ArgOffset = 24;
898  unsigned GPR_remaining = 8;
899  unsigned FPR_remaining = 13;
900  unsigned GPR_idx = 0, FPR_idx = 0;
901  static const unsigned GPR[] = {
902    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
903    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
904  };
905  static const unsigned FPR[] = {
906    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
907    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
908  };
909
910  // Add DAG nodes to load the arguments...  On entry to a function on PPC,
911  // the arguments start at offset 24, although they are likely to be passed
912  // in registers.
913  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
914    SDOperand newroot, argt;
915    unsigned ObjSize;
916    bool needsLoad = false;
917    bool ArgLive = !I->use_empty();
918    MVT::ValueType ObjectVT = getValueType(I->getType());
919
920    switch (ObjectVT) {
921    default: assert(0 && "Unhandled argument type!");
922    case MVT::i1:
923    case MVT::i8:
924    case MVT::i16:
925    case MVT::i32:
926      ObjSize = 4;
927      if (!ArgLive) break;
928      if (GPR_remaining > 0) {
929        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
930        MF.addLiveIn(GPR[GPR_idx], VReg);
931        argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
932        if (ObjectVT != MVT::i32) {
933          unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext
934                                                       : ISD::AssertZext;
935          argt = DAG.getNode(AssertOp, MVT::i32, argt,
936                             DAG.getValueType(ObjectVT));
937          argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, argt);
938        }
939      } else {
940        needsLoad = true;
941      }
942      break;
943    case MVT::i64:
944      ObjSize = 8;
945      if (!ArgLive) break;
946      if (GPR_remaining > 0) {
947        SDOperand argHi, argLo;
948        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
949        MF.addLiveIn(GPR[GPR_idx], VReg);
950        argHi = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
951        // If we have two or more remaining argument registers, then both halves
952        // of the i64 can be sourced from there.  Otherwise, the lower half will
953        // have to come off the stack.  This can happen when an i64 is preceded
954        // by 28 bytes of arguments.
955        if (GPR_remaining > 1) {
956          unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
957          MF.addLiveIn(GPR[GPR_idx+1], VReg);
958          argLo = DAG.getCopyFromReg(argHi, VReg, MVT::i32);
959        } else {
960          int FI = MFI->CreateFixedObject(4, ArgOffset+4);
961          SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
962          argLo = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN,
963                              DAG.getSrcValue(NULL));
964        }
965        // Build the outgoing arg thingy
966        argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi);
967        newroot = argLo;
968      } else {
969        needsLoad = true;
970      }
971      break;
972    case MVT::f32:
973    case MVT::f64:
974      ObjSize = (ObjectVT == MVT::f64) ? 8 : 4;
975      if (!ArgLive) {
976        if (FPR_remaining > 0) {
977          --FPR_remaining;
978          ++FPR_idx;
979        }
980        break;
981      }
982      if (FPR_remaining > 0) {
983        unsigned VReg;
984        if (ObjectVT == MVT::f32)
985          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
986        else
987          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
988        MF.addLiveIn(FPR[FPR_idx], VReg);
989        argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, ObjectVT);
990        --FPR_remaining;
991        ++FPR_idx;
992      } else {
993        needsLoad = true;
994      }
995      break;
996    }
997
998    // We need to load the argument to a virtual register if we determined above
999    // that we ran out of physical registers of the appropriate type
1000    if (needsLoad) {
1001      unsigned SubregOffset = 0;
1002      if (ObjectVT == MVT::i8 || ObjectVT == MVT::i1) SubregOffset = 3;
1003      if (ObjectVT == MVT::i16) SubregOffset = 2;
1004      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1005      SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
1006      FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN,
1007                        DAG.getConstant(SubregOffset, MVT::i32));
1008      argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
1009                                   DAG.getSrcValue(NULL));
1010    }
1011
1012    // Every 4 bytes of argument space consumes one of the GPRs available for
1013    // argument passing.
1014    if (GPR_remaining > 0) {
1015      unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1;
1016      GPR_remaining -= delta;
1017      GPR_idx += delta;
1018    }
1019    ArgOffset += ObjSize;
1020    if (newroot.Val)
1021      DAG.setRoot(newroot.getValue(1));
1022
1023    ArgValues.push_back(argt);
1024  }
1025
1026  // If the function takes variable number of arguments, make a frame index for
1027  // the start of the first vararg value... for expansion of llvm.va_start.
1028  if (F.isVarArg()) {
1029    VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
1030    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
1031    // If this function is vararg, store any remaining integer argument regs
1032    // to their spots on the stack so that they may be loaded by deferencing the
1033    // result of va_next.
1034    std::vector<SDOperand> MemOps;
1035    for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) {
1036      unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1037      MF.addLiveIn(GPR[GPR_idx], VReg);
1038      SDOperand Val = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
1039      SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
1040                                    Val, FIN, DAG.getSrcValue(NULL));
1041      MemOps.push_back(Store);
1042      // Increment the address by four for the next argument to store
1043      SDOperand PtrOff = DAG.getConstant(4, getPointerTy());
1044      FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
1045    }
1046    if (!MemOps.empty()) {
1047      MemOps.push_back(DAG.getRoot());
1048      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps));
1049    }
1050  }
1051
1052  // Finally, inform the code generator which regs we return values in.
1053  switch (getValueType(F.getReturnType())) {
1054    default: assert(0 && "Unknown type!");
1055    case MVT::isVoid: break;
1056    case MVT::i1:
1057    case MVT::i8:
1058    case MVT::i16:
1059    case MVT::i32:
1060      MF.addLiveOut(PPC::R3);
1061      break;
1062    case MVT::i64:
1063      MF.addLiveOut(PPC::R3);
1064      MF.addLiveOut(PPC::R4);
1065      break;
1066    case MVT::f32:
1067    case MVT::f64:
1068      MF.addLiveOut(PPC::F1);
1069      break;
1070  }
1071
1072  return ArgValues;
1073}
1074
1075std::pair<SDOperand, SDOperand>
1076PPCTargetLowering::LowerCallTo(SDOperand Chain,
1077                               const Type *RetTy, bool isVarArg,
1078                               unsigned CallingConv, bool isTailCall,
1079                               SDOperand Callee, ArgListTy &Args,
1080                               SelectionDAG &DAG) {
1081  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1082  // SelectExpr to use to put the arguments in the appropriate registers.
1083  std::vector<SDOperand> args_to_use;
1084
1085  // Count how many bytes are to be pushed on the stack, including the linkage
1086  // area, and parameter passing area.
1087  unsigned NumBytes = 24;
1088
1089  if (Args.empty()) {
1090    Chain = DAG.getCALLSEQ_START(Chain,
1091                                 DAG.getConstant(NumBytes, getPointerTy()));
1092  } else {
1093    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1094      switch (getValueType(Args[i].second)) {
1095      default: assert(0 && "Unknown value type!");
1096      case MVT::i1:
1097      case MVT::i8:
1098      case MVT::i16:
1099      case MVT::i32:
1100      case MVT::f32:
1101        NumBytes += 4;
1102        break;
1103      case MVT::i64:
1104      case MVT::f64:
1105        NumBytes += 8;
1106        break;
1107      }
1108    }
1109
1110    // Just to be safe, we'll always reserve the full 24 bytes of linkage area
1111    // plus 32 bytes of argument space in case any called code gets funky on us.
1112    // (Required by ABI to support var arg)
1113    if (NumBytes < 56) NumBytes = 56;
1114
1115    // Adjust the stack pointer for the new arguments...
1116    // These operations are automatically eliminated by the prolog/epilog pass
1117    Chain = DAG.getCALLSEQ_START(Chain,
1118                                 DAG.getConstant(NumBytes, getPointerTy()));
1119
1120    // Set up a copy of the stack pointer for use loading and storing any
1121    // arguments that may not fit in the registers available for argument
1122    // passing.
1123    SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1124
1125    // Figure out which arguments are going to go in registers, and which in
1126    // memory.  Also, if this is a vararg function, floating point operations
1127    // must be stored to our stack, and loaded into integer regs as well, if
1128    // any integer regs are available for argument passing.
1129    unsigned ArgOffset = 24;
1130    unsigned GPR_remaining = 8;
1131    unsigned FPR_remaining = 13;
1132
1133    std::vector<SDOperand> MemOps;
1134    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1135      // PtrOff will be used to store the current argument to the stack if a
1136      // register cannot be found for it.
1137      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1138      PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
1139      MVT::ValueType ArgVT = getValueType(Args[i].second);
1140
1141      switch (ArgVT) {
1142      default: assert(0 && "Unexpected ValueType for argument!");
1143      case MVT::i1:
1144      case MVT::i8:
1145      case MVT::i16:
1146        // Promote the integer to 32 bits.  If the input type is signed use a
1147        // sign extend, otherwise use a zero extend.
1148        if (Args[i].second->isSigned())
1149          Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
1150        else
1151          Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
1152        // FALL THROUGH
1153      case MVT::i32:
1154        if (GPR_remaining > 0) {
1155          args_to_use.push_back(Args[i].first);
1156          --GPR_remaining;
1157        } else {
1158          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1159                                       Args[i].first, PtrOff,
1160                                       DAG.getSrcValue(NULL)));
1161        }
1162        ArgOffset += 4;
1163        break;
1164      case MVT::i64:
1165        // If we have one free GPR left, we can place the upper half of the i64
1166        // in it, and store the other half to the stack.  If we have two or more
1167        // free GPRs, then we can pass both halves of the i64 in registers.
1168        if (GPR_remaining > 0) {
1169          SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
1170                                     Args[i].first, DAG.getConstant(1, MVT::i32));
1171          SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
1172                                     Args[i].first, DAG.getConstant(0, MVT::i32));
1173          args_to_use.push_back(Hi);
1174          --GPR_remaining;
1175          if (GPR_remaining > 0) {
1176            args_to_use.push_back(Lo);
1177            --GPR_remaining;
1178          } else {
1179            SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
1180            PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
1181            MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1182                                         Lo, PtrOff, DAG.getSrcValue(NULL)));
1183          }
1184        } else {
1185          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1186                                       Args[i].first, PtrOff,
1187                                       DAG.getSrcValue(NULL)));
1188        }
1189        ArgOffset += 8;
1190        break;
1191      case MVT::f32:
1192      case MVT::f64:
1193        if (FPR_remaining > 0) {
1194          args_to_use.push_back(Args[i].first);
1195          --FPR_remaining;
1196          if (isVarArg) {
1197            SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
1198                                          Args[i].first, PtrOff,
1199                                          DAG.getSrcValue(NULL));
1200            MemOps.push_back(Store);
1201            // Float varargs are always shadowed in available integer registers
1202            if (GPR_remaining > 0) {
1203              SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
1204                                           DAG.getSrcValue(NULL));
1205              MemOps.push_back(Load.getValue(1));
1206              args_to_use.push_back(Load);
1207              --GPR_remaining;
1208            }
1209            if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
1210              SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
1211              PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
1212              SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
1213                                           DAG.getSrcValue(NULL));
1214              MemOps.push_back(Load.getValue(1));
1215              args_to_use.push_back(Load);
1216              --GPR_remaining;
1217            }
1218          } else {
1219            // If we have any FPRs remaining, we may also have GPRs remaining.
1220            // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1221            // GPRs.
1222            if (GPR_remaining > 0) {
1223              args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
1224              --GPR_remaining;
1225            }
1226            if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
1227              args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
1228              --GPR_remaining;
1229            }
1230          }
1231        } else {
1232          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1233                                       Args[i].first, PtrOff,
1234                                       DAG.getSrcValue(NULL)));
1235        }
1236        ArgOffset += (ArgVT == MVT::f32) ? 4 : 8;
1237        break;
1238      }
1239    }
1240    if (!MemOps.empty())
1241      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
1242  }
1243
1244  std::vector<MVT::ValueType> RetVals;
1245  MVT::ValueType RetTyVT = getValueType(RetTy);
1246  MVT::ValueType ActualRetTyVT = RetTyVT;
1247  if (RetTyVT >= MVT::i1 && RetTyVT <= MVT::i16)
1248    ActualRetTyVT = MVT::i32;   // Promote result to i32.
1249
1250  if (RetTyVT == MVT::i64) {
1251    RetVals.push_back(MVT::i32);
1252    RetVals.push_back(MVT::i32);
1253  } else if (RetTyVT != MVT::isVoid) {
1254    RetVals.push_back(ActualRetTyVT);
1255  }
1256  RetVals.push_back(MVT::Other);
1257
1258  // If the callee is a GlobalAddress node (quite common, every direct call is)
1259  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1260  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1261    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
1262
1263  std::vector<SDOperand> Ops;
1264  Ops.push_back(Chain);
1265  Ops.push_back(Callee);
1266  Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end());
1267  SDOperand TheCall = DAG.getNode(PPCISD::CALL, RetVals, Ops);
1268  Chain = TheCall.getValue(TheCall.Val->getNumValues()-1);
1269  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1270                      DAG.getConstant(NumBytes, getPointerTy()));
1271  SDOperand RetVal = TheCall;
1272
1273  // If the result is a small value, add a note so that we keep track of the
1274  // information about whether it is sign or zero extended.
1275  if (RetTyVT != ActualRetTyVT) {
1276    RetVal = DAG.getNode(RetTy->isSigned() ? ISD::AssertSext : ISD::AssertZext,
1277                         MVT::i32, RetVal, DAG.getValueType(RetTyVT));
1278    RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal);
1279  } else if (RetTyVT == MVT::i64) {
1280    RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, RetVal, RetVal.getValue(1));
1281  }
1282
1283  return std::make_pair(RetVal, Chain);
1284}
1285
1286MachineBasicBlock *
1287PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
1288                                           MachineBasicBlock *BB) {
1289  assert((MI->getOpcode() == PPC::SELECT_CC_Int ||
1290          MI->getOpcode() == PPC::SELECT_CC_F4 ||
1291          MI->getOpcode() == PPC::SELECT_CC_F8) &&
1292         "Unexpected instr type to insert");
1293
1294  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1295  // control-flow pattern.  The incoming instruction knows the destination vreg
1296  // to set, the condition code register to branch on, the true/false values to
1297  // select between, and a branch opcode to use.
1298  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1299  ilist<MachineBasicBlock>::iterator It = BB;
1300  ++It;
1301
1302  //  thisMBB:
1303  //  ...
1304  //   TrueVal = ...
1305  //   cmpTY ccX, r1, r2
1306  //   bCC copy1MBB
1307  //   fallthrough --> copy0MBB
1308  MachineBasicBlock *thisMBB = BB;
1309  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
1310  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1311  BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
1312    .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
1313  MachineFunction *F = BB->getParent();
1314  F->getBasicBlockList().insert(It, copy0MBB);
1315  F->getBasicBlockList().insert(It, sinkMBB);
1316  // Update machine-CFG edges by first adding all successors of the current
1317  // block to the new block which will contain the Phi node for the select.
1318  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
1319      e = BB->succ_end(); i != e; ++i)
1320    sinkMBB->addSuccessor(*i);
1321  // Next, remove all successors of the current block, and add the true
1322  // and fallthrough blocks as its successors.
1323  while(!BB->succ_empty())
1324    BB->removeSuccessor(BB->succ_begin());
1325  BB->addSuccessor(copy0MBB);
1326  BB->addSuccessor(sinkMBB);
1327
1328  //  copy0MBB:
1329  //   %FalseValue = ...
1330  //   # fallthrough to sinkMBB
1331  BB = copy0MBB;
1332
1333  // Update machine-CFG edges
1334  BB->addSuccessor(sinkMBB);
1335
1336  //  sinkMBB:
1337  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1338  //  ...
1339  BB = sinkMBB;
1340  BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
1341    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
1342    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
1343
1344  delete MI;   // The pseudo instruction is gone now.
1345  return BB;
1346}
1347
1348SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
1349                                               DAGCombinerInfo &DCI) const {
1350  TargetMachine &TM = getTargetMachine();
1351  SelectionDAG &DAG = DCI.DAG;
1352  switch (N->getOpcode()) {
1353  default: break;
1354  case ISD::SINT_TO_FP:
1355    if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
1356      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
1357        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
1358        // We allow the src/dst to be either f32/f64, but the intermediate
1359        // type must be i64.
1360        if (N->getOperand(0).getValueType() == MVT::i64) {
1361          SDOperand Val = N->getOperand(0).getOperand(0);
1362          if (Val.getValueType() == MVT::f32) {
1363            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
1364            DCI.AddToWorklist(Val.Val);
1365          }
1366
1367          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
1368          DCI.AddToWorklist(Val.Val);
1369          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
1370          DCI.AddToWorklist(Val.Val);
1371          if (N->getValueType(0) == MVT::f32) {
1372            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
1373            DCI.AddToWorklist(Val.Val);
1374          }
1375          return Val;
1376        } else if (N->getOperand(0).getValueType() == MVT::i32) {
1377          // If the intermediate type is i32, we can avoid the load/store here
1378          // too.
1379        }
1380      }
1381    }
1382    break;
1383  case ISD::STORE:
1384    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
1385    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
1386        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
1387        N->getOperand(1).getValueType() == MVT::i32) {
1388      SDOperand Val = N->getOperand(1).getOperand(0);
1389      if (Val.getValueType() == MVT::f32) {
1390        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
1391        DCI.AddToWorklist(Val.Val);
1392      }
1393      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
1394      DCI.AddToWorklist(Val.Val);
1395
1396      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
1397                        N->getOperand(2), N->getOperand(3));
1398      DCI.AddToWorklist(Val.Val);
1399      return Val;
1400    }
1401    break;
1402  case PPCISD::VCMP: {
1403    // If a VCMPo node already exists with exactly the same operands as this
1404    // node, use its result instead of this node (VCMPo computes both a CR6 and
1405    // a normal output).
1406    //
1407    if (!N->getOperand(0).hasOneUse() &&
1408        !N->getOperand(1).hasOneUse() &&
1409        !N->getOperand(2).hasOneUse()) {
1410
1411      // Scan all of the users of the LHS, looking for VCMPo's that match.
1412      SDNode *VCMPoNode = 0;
1413
1414      SDNode *LHSN = N->getOperand(0).Val;
1415      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
1416           UI != E; ++UI)
1417        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
1418            (*UI)->getOperand(1) == N->getOperand(1) &&
1419            (*UI)->getOperand(2) == N->getOperand(2) &&
1420            (*UI)->getOperand(0) == N->getOperand(0)) {
1421          VCMPoNode = *UI;
1422          break;
1423        }
1424
1425      // If there are non-zero uses of the flag value, use the VCMPo node!
1426      if (VCMPoNode && !VCMPoNode->hasNUsesOfValue(0, 1))
1427        return SDOperand(VCMPoNode, 0);
1428    }
1429    break;
1430  }
1431  }
1432
1433  return SDOperand();
1434}
1435
1436void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1437                                                       uint64_t Mask,
1438                                                       uint64_t &KnownZero,
1439                                                       uint64_t &KnownOne,
1440                                                       unsigned Depth) const {
1441  KnownZero = 0;
1442  KnownOne = 0;
1443  switch (Op.getOpcode()) {
1444  default: break;
1445  case ISD::INTRINSIC_WO_CHAIN: {
1446    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
1447    default: break;
1448    case Intrinsic::ppc_altivec_vcmpbfp_p:
1449    case Intrinsic::ppc_altivec_vcmpeqfp_p:
1450    case Intrinsic::ppc_altivec_vcmpequb_p:
1451    case Intrinsic::ppc_altivec_vcmpequh_p:
1452    case Intrinsic::ppc_altivec_vcmpequw_p:
1453    case Intrinsic::ppc_altivec_vcmpgefp_p:
1454    case Intrinsic::ppc_altivec_vcmpgtfp_p:
1455    case Intrinsic::ppc_altivec_vcmpgtsb_p:
1456    case Intrinsic::ppc_altivec_vcmpgtsh_p:
1457    case Intrinsic::ppc_altivec_vcmpgtsw_p:
1458    case Intrinsic::ppc_altivec_vcmpgtub_p:
1459    case Intrinsic::ppc_altivec_vcmpgtuh_p:
1460    case Intrinsic::ppc_altivec_vcmpgtuw_p:
1461      KnownZero = ~1U;  // All bits but the low one are known to be zero.
1462      break;
1463    }
1464  }
1465  }
1466}
1467
1468
1469/// getConstraintType - Given a constraint letter, return the type of
1470/// constraint it is for this target.
1471PPCTargetLowering::ConstraintType
1472PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
1473  switch (ConstraintLetter) {
1474  default: break;
1475  case 'b':
1476  case 'r':
1477  case 'f':
1478  case 'v':
1479  case 'y':
1480    return C_RegisterClass;
1481  }
1482  return TargetLowering::getConstraintType(ConstraintLetter);
1483}
1484
1485
1486std::vector<unsigned> PPCTargetLowering::
1487getRegClassForInlineAsmConstraint(const std::string &Constraint,
1488                                  MVT::ValueType VT) const {
1489  if (Constraint.size() == 1) {
1490    switch (Constraint[0]) {      // GCC RS6000 Constraint Letters
1491    default: break;  // Unknown constriant letter
1492    case 'b':
1493      return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
1494                                   PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
1495                                   PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
1496                                   PPC::R12, PPC::R13, PPC::R14, PPC::R15,
1497                                   PPC::R16, PPC::R17, PPC::R18, PPC::R19,
1498                                   PPC::R20, PPC::R21, PPC::R22, PPC::R23,
1499                                   PPC::R24, PPC::R25, PPC::R26, PPC::R27,
1500                                   PPC::R28, PPC::R29, PPC::R30, PPC::R31,
1501                                   0);
1502    case 'r':
1503      return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
1504                                   PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
1505                                   PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
1506                                   PPC::R12, PPC::R13, PPC::R14, PPC::R15,
1507                                   PPC::R16, PPC::R17, PPC::R18, PPC::R19,
1508                                   PPC::R20, PPC::R21, PPC::R22, PPC::R23,
1509                                   PPC::R24, PPC::R25, PPC::R26, PPC::R27,
1510                                   PPC::R28, PPC::R29, PPC::R30, PPC::R31,
1511                                   0);
1512    case 'f':
1513      return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
1514                                   PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
1515                                   PPC::F8 , PPC::F9 , PPC::F10, PPC::F11,
1516                                   PPC::F12, PPC::F13, PPC::F14, PPC::F15,
1517                                   PPC::F16, PPC::F17, PPC::F18, PPC::F19,
1518                                   PPC::F20, PPC::F21, PPC::F22, PPC::F23,
1519                                   PPC::F24, PPC::F25, PPC::F26, PPC::F27,
1520                                   PPC::F28, PPC::F29, PPC::F30, PPC::F31,
1521                                   0);
1522    case 'v':
1523      return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
1524                                   PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
1525                                   PPC::V8 , PPC::V9 , PPC::V10, PPC::V11,
1526                                   PPC::V12, PPC::V13, PPC::V14, PPC::V15,
1527                                   PPC::V16, PPC::V17, PPC::V18, PPC::V19,
1528                                   PPC::V20, PPC::V21, PPC::V22, PPC::V23,
1529                                   PPC::V24, PPC::V25, PPC::V26, PPC::V27,
1530                                   PPC::V28, PPC::V29, PPC::V30, PPC::V31,
1531                                   0);
1532    case 'y':
1533      return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
1534                                   PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
1535                                   0);
1536    }
1537  }
1538
1539  return std::vector<unsigned>();
1540}
1541
1542// isOperandValidForConstraint
1543bool PPCTargetLowering::
1544isOperandValidForConstraint(SDOperand Op, char Letter) {
1545  switch (Letter) {
1546  default: break;
1547  case 'I':
1548  case 'J':
1549  case 'K':
1550  case 'L':
1551  case 'M':
1552  case 'N':
1553  case 'O':
1554  case 'P': {
1555    if (!isa<ConstantSDNode>(Op)) return false;  // Must be an immediate.
1556    unsigned Value = cast<ConstantSDNode>(Op)->getValue();
1557    switch (Letter) {
1558    default: assert(0 && "Unknown constraint letter!");
1559    case 'I':  // "I" is a signed 16-bit constant.
1560      return (short)Value == (int)Value;
1561    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
1562    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
1563      return (short)Value == 0;
1564    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
1565      return (Value >> 16) == 0;
1566    case 'M':  // "M" is a constant that is greater than 31.
1567      return Value > 31;
1568    case 'N':  // "N" is a positive constant that is an exact power of two.
1569      return (int)Value > 0 && isPowerOf2_32(Value);
1570    case 'O':  // "O" is the constant zero.
1571      return Value == 0;
1572    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
1573      return (short)-Value == (int)-Value;
1574    }
1575    break;
1576  }
1577  }
1578
1579  // Handle standard constraint letters.
1580  return TargetLowering::isOperandValidForConstraint(Op, Letter);
1581}
1582
1583/// isLegalAddressImmediate - Return true if the integer value can be used
1584/// as the offset of the target addressing mode.
1585bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
1586  // PPC allows a sign-extended 16-bit immediate field.
1587  return (V > -(1 << 16) && V < (1 << 16)-1);
1588}
1589