PPCISelLowering.cpp revision 10da9575740d9515c70a171a7c40405302d62f4a
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCTargetMachine.h"
16#include "PPCPerfectShuffle.h"
17#include "llvm/ADT/VectorExtras.h"
18#include "llvm/Analysis/ScalarEvolutionExpressions.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Constants.h"
25#include "llvm/Function.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Target/TargetOptions.h"
29using namespace llvm;
30
31PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
32  : TargetLowering(TM) {
33
34  // Fold away setcc operations if possible.
35  setSetCCIsExpensive();
36  setPow2DivIsCheap();
37
38  // Use _setjmp/_longjmp instead of setjmp/longjmp.
39  setUseUnderscoreSetJmpLongJmp(true);
40
41  // Set up the register classes.
42  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
43  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
44  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
45
46  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
47  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
48  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
49
50  // PowerPC does not have truncstore for i1.
51  setStoreXAction(MVT::i1, Promote);
52
53  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
54  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
55
56  // PowerPC has no intrinsics for these particular operations
57  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
58  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
59  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
60
61  // PowerPC has no SREM/UREM instructions
62  setOperationAction(ISD::SREM, MVT::i32, Expand);
63  setOperationAction(ISD::UREM, MVT::i32, Expand);
64  setOperationAction(ISD::SREM, MVT::i64, Expand);
65  setOperationAction(ISD::UREM, MVT::i64, Expand);
66
67  // We don't support sin/cos/sqrt/fmod
68  setOperationAction(ISD::FSIN , MVT::f64, Expand);
69  setOperationAction(ISD::FCOS , MVT::f64, Expand);
70  setOperationAction(ISD::FREM , MVT::f64, Expand);
71  setOperationAction(ISD::FSIN , MVT::f32, Expand);
72  setOperationAction(ISD::FCOS , MVT::f32, Expand);
73  setOperationAction(ISD::FREM , MVT::f32, Expand);
74
75  // If we're enabling GP optimizations, use hardware square root
76  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
77    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
78    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
79  }
80
81  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
82  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
83
84  // PowerPC does not have BSWAP, CTPOP or CTTZ
85  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
86  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
87  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
88  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
89  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
90  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
91
92  // PowerPC does not have ROTR
93  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
94
95  // PowerPC does not have Select
96  setOperationAction(ISD::SELECT, MVT::i32, Expand);
97  setOperationAction(ISD::SELECT, MVT::i64, Expand);
98  setOperationAction(ISD::SELECT, MVT::f32, Expand);
99  setOperationAction(ISD::SELECT, MVT::f64, Expand);
100
101  // PowerPC wants to turn select_cc of FP into fsel when possible.
102  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
103  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
104
105  // PowerPC wants to optimize integer setcc a bit
106  setOperationAction(ISD::SETCC, MVT::i32, Custom);
107
108  // PowerPC does not have BRCOND which requires SetCC
109  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
110
111  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
112  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
113
114  // PowerPC does not have [U|S]INT_TO_FP
115  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
116  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
117
118  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
119  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
120  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
121  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
122
123  // We cannot sextinreg(i1).  Expand to shifts.
124  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
125
126
127  // Support label based line numbers.
128  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
129  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
130  // FIXME - use subtarget debug flags
131  if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
132    setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
133
134  // We want to legalize GlobalAddress and ConstantPool nodes into the
135  // appropriate instructions to materialize the address.
136  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
137  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
138  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
139  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
140  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
141  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
142
143  // RET must be custom lowered, to meet ABI requirements
144  setOperationAction(ISD::RET               , MVT::Other, Custom);
145
146  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
147  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
148
149  // Use the default implementation.
150  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
151  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
152  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
153  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
154  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);
155  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
156  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Expand);
157
158  // We want to custom lower some of our intrinsics.
159  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
160
161  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
162    // They also have instructions for converting between i64 and fp.
163    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
164    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
165
166    // FIXME: disable this lowered code.  This generates 64-bit register values,
167    // and we don't model the fact that the top part is clobbered by calls.  We
168    // need to flag these together so that the value isn't live across a call.
169    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
170
171    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
172    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
173  } else {
174    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
175    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
176  }
177
178  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
179    // 64 bit PowerPC implementations can support i64 types directly
180    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
181    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
182    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
183  } else {
184    // 32 bit PowerPC wants to expand i64 shifts itself.
185    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
186    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
187    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
188  }
189
190  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
191    // First set operation action for all vector types to expand. Then we
192    // will selectively turn on ones that can be effectively codegen'd.
193    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
194         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
195      // add/sub are legal for all supported vector VT's.
196      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
197      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
198
199      // We promote all shuffles to v16i8.
200      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
201      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
202
203      // We promote all non-typed operations to v4i32.
204      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
205      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
206      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
207      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
208      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
209      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
210      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
211      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
212      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
213      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
214      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
215      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
216
217      // No other operations are legal.
218      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
219      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
220      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
221      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
222      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
223      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
224      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
225      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
226      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
227
228      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
229    }
230
231    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
232    // with merges, splats, etc.
233    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
234
235    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
236    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
237    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
238    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
239    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
240    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
241
242    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
243    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
244    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
245    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
246
247    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
248    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
249    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
250    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
251
252    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
253    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
254
255    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
256    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
257    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
258    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
259  }
260
261  setSetCCResultType(MVT::i32);
262  setShiftAmountType(MVT::i32);
263  setSetCCResultContents(ZeroOrOneSetCCResult);
264
265  if (TM.getSubtarget<PPCSubtarget>().isPPC64())
266    setStackPointerRegisterToSaveRestore(PPC::X1);
267  else
268    setStackPointerRegisterToSaveRestore(PPC::R1);
269
270  // We have target-specific dag combine patterns for the following nodes:
271  setTargetDAGCombine(ISD::SINT_TO_FP);
272  setTargetDAGCombine(ISD::STORE);
273  setTargetDAGCombine(ISD::BR_CC);
274  setTargetDAGCombine(ISD::BSWAP);
275
276  computeRegisterProperties();
277}
278
279const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
280  switch (Opcode) {
281  default: return 0;
282  case PPCISD::FSEL:          return "PPCISD::FSEL";
283  case PPCISD::FCFID:         return "PPCISD::FCFID";
284  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
285  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
286  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
287  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
288  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
289  case PPCISD::VPERM:         return "PPCISD::VPERM";
290  case PPCISD::Hi:            return "PPCISD::Hi";
291  case PPCISD::Lo:            return "PPCISD::Lo";
292  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
293  case PPCISD::SRL:           return "PPCISD::SRL";
294  case PPCISD::SRA:           return "PPCISD::SRA";
295  case PPCISD::SHL:           return "PPCISD::SHL";
296  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
297  case PPCISD::STD_32:        return "PPCISD::STD_32";
298  case PPCISD::CALL:          return "PPCISD::CALL";
299  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
300  case PPCISD::BCTRL:         return "PPCISD::BCTRL";
301  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
302  case PPCISD::MFCR:          return "PPCISD::MFCR";
303  case PPCISD::VCMP:          return "PPCISD::VCMP";
304  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
305  case PPCISD::LBRX:          return "PPCISD::LBRX";
306  case PPCISD::STBRX:         return "PPCISD::STBRX";
307  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
308  }
309}
310
311//===----------------------------------------------------------------------===//
312// Node matching predicates, for use by the tblgen matching code.
313//===----------------------------------------------------------------------===//
314
315/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
316static bool isFloatingPointZero(SDOperand Op) {
317  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
318    return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
319  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
320    // Maybe this has already been legalized into the constant pool?
321    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
322      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
323        return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
324  }
325  return false;
326}
327
328/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
329/// true if Op is undef or if it matches the specified value.
330static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
331  return Op.getOpcode() == ISD::UNDEF ||
332         cast<ConstantSDNode>(Op)->getValue() == Val;
333}
334
335/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
336/// VPKUHUM instruction.
337bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
338  if (!isUnary) {
339    for (unsigned i = 0; i != 16; ++i)
340      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
341        return false;
342  } else {
343    for (unsigned i = 0; i != 8; ++i)
344      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
345          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
346        return false;
347  }
348  return true;
349}
350
351/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
352/// VPKUWUM instruction.
353bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
354  if (!isUnary) {
355    for (unsigned i = 0; i != 16; i += 2)
356      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
357          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
358        return false;
359  } else {
360    for (unsigned i = 0; i != 8; i += 2)
361      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
362          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
363          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
364          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
365        return false;
366  }
367  return true;
368}
369
370/// isVMerge - Common function, used to match vmrg* shuffles.
371///
372static bool isVMerge(SDNode *N, unsigned UnitSize,
373                     unsigned LHSStart, unsigned RHSStart) {
374  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
375         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
376  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
377         "Unsupported merge size!");
378
379  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
380    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
381      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
382                             LHSStart+j+i*UnitSize) ||
383          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
384                             RHSStart+j+i*UnitSize))
385        return false;
386    }
387      return true;
388}
389
390/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
391/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
392bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
393  if (!isUnary)
394    return isVMerge(N, UnitSize, 8, 24);
395  return isVMerge(N, UnitSize, 8, 8);
396}
397
398/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
399/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
400bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
401  if (!isUnary)
402    return isVMerge(N, UnitSize, 0, 16);
403  return isVMerge(N, UnitSize, 0, 0);
404}
405
406
407/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
408/// amount, otherwise return -1.
409int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
410  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
411         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
412  // Find the first non-undef value in the shuffle mask.
413  unsigned i;
414  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
415    /*search*/;
416
417  if (i == 16) return -1;  // all undef.
418
419  // Otherwise, check to see if the rest of the elements are consequtively
420  // numbered from this value.
421  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
422  if (ShiftAmt < i) return -1;
423  ShiftAmt -= i;
424
425  if (!isUnary) {
426    // Check the rest of the elements to see if they are consequtive.
427    for (++i; i != 16; ++i)
428      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
429        return -1;
430  } else {
431    // Check the rest of the elements to see if they are consequtive.
432    for (++i; i != 16; ++i)
433      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
434        return -1;
435  }
436
437  return ShiftAmt;
438}
439
440/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
441/// specifies a splat of a single element that is suitable for input to
442/// VSPLTB/VSPLTH/VSPLTW.
443bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
444  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
445         N->getNumOperands() == 16 &&
446         (EltSize == 1 || EltSize == 2 || EltSize == 4));
447
448  // This is a splat operation if each element of the permute is the same, and
449  // if the value doesn't reference the second vector.
450  unsigned ElementBase = 0;
451  SDOperand Elt = N->getOperand(0);
452  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
453    ElementBase = EltV->getValue();
454  else
455    return false;   // FIXME: Handle UNDEF elements too!
456
457  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
458    return false;
459
460  // Check that they are consequtive.
461  for (unsigned i = 1; i != EltSize; ++i) {
462    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
463        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
464      return false;
465  }
466
467  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
468  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
469    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
470    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
471           "Invalid VECTOR_SHUFFLE mask!");
472    for (unsigned j = 0; j != EltSize; ++j)
473      if (N->getOperand(i+j) != N->getOperand(j))
474        return false;
475  }
476
477  return true;
478}
479
480/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
481/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
482unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
483  assert(isSplatShuffleMask(N, EltSize));
484  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
485}
486
487/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
488/// by using a vspltis[bhw] instruction of the specified element size, return
489/// the constant being splatted.  The ByteSize field indicates the number of
490/// bytes of each element [124] -> [bhw].
491SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
492  SDOperand OpVal(0, 0);
493
494  // If ByteSize of the splat is bigger than the element size of the
495  // build_vector, then we have a case where we are checking for a splat where
496  // multiple elements of the buildvector are folded together into a single
497  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
498  unsigned EltSize = 16/N->getNumOperands();
499  if (EltSize < ByteSize) {
500    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
501    SDOperand UniquedVals[4];
502    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
503
504    // See if all of the elements in the buildvector agree across.
505    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
506      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
507      // If the element isn't a constant, bail fully out.
508      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
509
510
511      if (UniquedVals[i&(Multiple-1)].Val == 0)
512        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
513      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
514        return SDOperand();  // no match.
515    }
516
517    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
518    // either constant or undef values that are identical for each chunk.  See
519    // if these chunks can form into a larger vspltis*.
520
521    // Check to see if all of the leading entries are either 0 or -1.  If
522    // neither, then this won't fit into the immediate field.
523    bool LeadingZero = true;
524    bool LeadingOnes = true;
525    for (unsigned i = 0; i != Multiple-1; ++i) {
526      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
527
528      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
529      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
530    }
531    // Finally, check the least significant entry.
532    if (LeadingZero) {
533      if (UniquedVals[Multiple-1].Val == 0)
534        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
535      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
536      if (Val < 16)
537        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
538    }
539    if (LeadingOnes) {
540      if (UniquedVals[Multiple-1].Val == 0)
541        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
542      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
543      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
544        return DAG.getTargetConstant(Val, MVT::i32);
545    }
546
547    return SDOperand();
548  }
549
550  // Check to see if this buildvec has a single non-undef value in its elements.
551  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
552    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
553    if (OpVal.Val == 0)
554      OpVal = N->getOperand(i);
555    else if (OpVal != N->getOperand(i))
556      return SDOperand();
557  }
558
559  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
560
561  unsigned ValSizeInBytes = 0;
562  uint64_t Value = 0;
563  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
564    Value = CN->getValue();
565    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
566  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
567    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
568    Value = FloatToBits(CN->getValue());
569    ValSizeInBytes = 4;
570  }
571
572  // If the splat value is larger than the element value, then we can never do
573  // this splat.  The only case that we could fit the replicated bits into our
574  // immediate field for would be zero, and we prefer to use vxor for it.
575  if (ValSizeInBytes < ByteSize) return SDOperand();
576
577  // If the element value is larger than the splat value, cut it in half and
578  // check to see if the two halves are equal.  Continue doing this until we
579  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
580  while (ValSizeInBytes > ByteSize) {
581    ValSizeInBytes >>= 1;
582
583    // If the top half equals the bottom half, we're still ok.
584    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
585         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
586      return SDOperand();
587  }
588
589  // Properly sign extend the value.
590  int ShAmt = (4-ByteSize)*8;
591  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
592
593  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
594  if (MaskVal == 0) return SDOperand();
595
596  // Finally, if this value fits in a 5 bit sext field, return it
597  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
598    return DAG.getTargetConstant(MaskVal, MVT::i32);
599  return SDOperand();
600}
601
602//===----------------------------------------------------------------------===//
603//  LowerOperation implementation
604//===----------------------------------------------------------------------===//
605
606static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
607  MVT::ValueType PtrVT = Op.getValueType();
608  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
609  Constant *C = CP->getConstVal();
610  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
611  SDOperand Zero = DAG.getConstant(0, PtrVT);
612
613  const TargetMachine &TM = DAG.getTarget();
614
615  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
616  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
617
618  // If this is a non-darwin platform, we don't support non-static relo models
619  // yet.
620  if (TM.getRelocationModel() == Reloc::Static ||
621      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
622    // Generate non-pic code that has direct accesses to the constant pool.
623    // The address of the global is just (hi(&g)+lo(&g)).
624    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
625  }
626
627  if (TM.getRelocationModel() == Reloc::PIC_) {
628    // With PIC, the first instruction is actually "GR+hi(&G)".
629    Hi = DAG.getNode(ISD::ADD, PtrVT,
630                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
631  }
632
633  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
634  return Lo;
635}
636
637static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
638  MVT::ValueType PtrVT = Op.getValueType();
639  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
640  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
641  SDOperand Zero = DAG.getConstant(0, PtrVT);
642
643  const TargetMachine &TM = DAG.getTarget();
644
645  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
646  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
647
648  // If this is a non-darwin platform, we don't support non-static relo models
649  // yet.
650  if (TM.getRelocationModel() == Reloc::Static ||
651      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
652    // Generate non-pic code that has direct accesses to the constant pool.
653    // The address of the global is just (hi(&g)+lo(&g)).
654    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
655  }
656
657  if (TM.getRelocationModel() == Reloc::PIC_) {
658    // With PIC, the first instruction is actually "GR+hi(&G)".
659    Hi = DAG.getNode(ISD::ADD, PtrVT,
660                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
661  }
662
663  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
664  return Lo;
665}
666
667static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
668  MVT::ValueType PtrVT = Op.getValueType();
669  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
670  GlobalValue *GV = GSDN->getGlobal();
671  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
672  SDOperand Zero = DAG.getConstant(0, PtrVT);
673
674  const TargetMachine &TM = DAG.getTarget();
675
676  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
677  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
678
679  // If this is a non-darwin platform, we don't support non-static relo models
680  // yet.
681  if (TM.getRelocationModel() == Reloc::Static ||
682      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
683    // Generate non-pic code that has direct accesses to globals.
684    // The address of the global is just (hi(&g)+lo(&g)).
685    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
686  }
687
688  if (TM.getRelocationModel() == Reloc::PIC_) {
689    // With PIC, the first instruction is actually "GR+hi(&G)".
690    Hi = DAG.getNode(ISD::ADD, PtrVT,
691                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
692  }
693
694  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
695
696  if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
697      (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
698    return Lo;
699
700  // If the global is weak or external, we have to go through the lazy
701  // resolution stub.
702  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
703}
704
705static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
706  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
707
708  // If we're comparing for equality to zero, expose the fact that this is
709  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
710  // fold the new nodes.
711  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
712    if (C->isNullValue() && CC == ISD::SETEQ) {
713      MVT::ValueType VT = Op.getOperand(0).getValueType();
714      SDOperand Zext = Op.getOperand(0);
715      if (VT < MVT::i32) {
716        VT = MVT::i32;
717        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
718      }
719      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
720      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
721      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
722                                  DAG.getConstant(Log2b, MVT::i32));
723      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
724    }
725    // Leave comparisons against 0 and -1 alone for now, since they're usually
726    // optimized.  FIXME: revisit this when we can custom lower all setcc
727    // optimizations.
728    if (C->isAllOnesValue() || C->isNullValue())
729      return SDOperand();
730  }
731
732  // If we have an integer seteq/setne, turn it into a compare against zero
733  // by subtracting the rhs from the lhs, which is faster than setting a
734  // condition register, reading it back out, and masking the correct bit.
735  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
736  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
737    MVT::ValueType VT = Op.getValueType();
738    SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0),
739                                Op.getOperand(1));
740    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
741  }
742  return SDOperand();
743}
744
745static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
746                              unsigned VarArgsFrameIndex) {
747  // vastart just stores the address of the VarArgsFrameIndex slot into the
748  // memory location argument.
749  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
750  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
751  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
752  return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
753                      SV->getOffset());
754}
755
756static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
757                                       int &VarArgsFrameIndex) {
758  // TODO: add description of PPC stack frame format, or at least some docs.
759  //
760  MachineFunction &MF = DAG.getMachineFunction();
761  MachineFrameInfo *MFI = MF.getFrameInfo();
762  SSARegMap *RegMap = MF.getSSARegMap();
763  SmallVector<SDOperand, 8> ArgValues;
764  SDOperand Root = Op.getOperand(0);
765
766  unsigned ArgOffset = 24;
767  const unsigned Num_GPR_Regs = 8;
768  const unsigned Num_FPR_Regs = 13;
769  const unsigned Num_VR_Regs  = 12;
770  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
771
772  static const unsigned GPR_32[] = {           // 32-bit registers.
773    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
774    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
775  };
776  static const unsigned GPR_64[] = {           // 64-bit registers.
777    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
778    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
779  };
780  static const unsigned FPR[] = {
781    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
782    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
783  };
784  static const unsigned VR[] = {
785    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
786    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
787  };
788
789  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
790  bool isPPC64 = PtrVT == MVT::i64;
791  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
792
793  // Add DAG nodes to load the arguments or copy them out of registers.  On
794  // entry to a function on PPC, the arguments start at offset 24, although the
795  // first ones are often in registers.
796  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
797    SDOperand ArgVal;
798    bool needsLoad = false;
799    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
800    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
801
802    unsigned CurArgOffset = ArgOffset;
803    switch (ObjectVT) {
804    default: assert(0 && "Unhandled argument type!");
805    case MVT::i32:
806      // All int arguments reserve stack space.
807      ArgOffset += isPPC64 ? 8 : 4;
808
809      if (GPR_idx != Num_GPR_Regs) {
810        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
811        MF.addLiveIn(GPR[GPR_idx], VReg);
812        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
813        ++GPR_idx;
814      } else {
815        needsLoad = true;
816      }
817      break;
818    case MVT::i64:  // PPC64
819      // All int arguments reserve stack space.
820      ArgOffset += 8;
821
822      if (GPR_idx != Num_GPR_Regs) {
823        unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
824        MF.addLiveIn(GPR[GPR_idx], VReg);
825        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
826        ++GPR_idx;
827      } else {
828        needsLoad = true;
829      }
830      break;
831    case MVT::f32:
832    case MVT::f64:
833      // All FP arguments reserve stack space.
834      ArgOffset += ObjSize;
835
836      // Every 4 bytes of argument space consumes one of the GPRs available for
837      // argument passing.
838      if (GPR_idx != Num_GPR_Regs) {
839        ++GPR_idx;
840        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs)
841          ++GPR_idx;
842      }
843      if (FPR_idx != Num_FPR_Regs) {
844        unsigned VReg;
845        if (ObjectVT == MVT::f32)
846          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
847        else
848          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
849        MF.addLiveIn(FPR[FPR_idx], VReg);
850        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
851        ++FPR_idx;
852      } else {
853        needsLoad = true;
854      }
855      break;
856    case MVT::v4f32:
857    case MVT::v4i32:
858    case MVT::v8i16:
859    case MVT::v16i8:
860      // Note that vector arguments in registers don't reserve stack space.
861      if (VR_idx != Num_VR_Regs) {
862        unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
863        MF.addLiveIn(VR[VR_idx], VReg);
864        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
865        ++VR_idx;
866      } else {
867        // This should be simple, but requires getting 16-byte aligned stack
868        // values.
869        assert(0 && "Loading VR argument not implemented yet!");
870        needsLoad = true;
871      }
872      break;
873    }
874
875    // We need to load the argument to a virtual register if we determined above
876    // that we ran out of physical registers of the appropriate type
877    if (needsLoad) {
878      // If the argument is actually used, emit a load from the right stack
879      // slot.
880      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
881        int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
882        SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
883        ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
884      } else {
885        // Don't emit a dead load.
886        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
887      }
888    }
889
890    ArgValues.push_back(ArgVal);
891  }
892
893  // If the function takes variable number of arguments, make a frame index for
894  // the start of the first vararg value... for expansion of llvm.va_start.
895  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
896  if (isVarArg) {
897    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
898                                               ArgOffset);
899    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
900    // If this function is vararg, store any remaining integer argument regs
901    // to their spots on the stack so that they may be loaded by deferencing the
902    // result of va_next.
903    SmallVector<SDOperand, 8> MemOps;
904    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
905      unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
906      MF.addLiveIn(GPR[GPR_idx], VReg);
907      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
908      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
909      MemOps.push_back(Store);
910      // Increment the address by four for the next argument to store
911      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
912      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
913    }
914    if (!MemOps.empty())
915      Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
916  }
917
918  ArgValues.push_back(Root);
919
920  // Return the new list of results.
921  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
922                                    Op.Val->value_end());
923  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
924}
925
926/// isCallCompatibleAddress - Return the immediate to use if the specified
927/// 32-bit value is representable in the immediate field of a BxA instruction.
928static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
929  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
930  if (!C) return 0;
931
932  int Addr = C->getValue();
933  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
934      (Addr << 6 >> 6) != Addr)
935    return 0;  // Top 6 bits have to be sext of immediate.
936
937  return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
938}
939
940
941static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) {
942  SDOperand Chain = Op.getOperand(0);
943  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
944  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
945  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
946  SDOperand Callee    = Op.getOperand(4);
947  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
948
949  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
950  bool isPPC64 = PtrVT == MVT::i64;
951  unsigned PtrByteSize = isPPC64 ? 8 : 4;
952
953
954  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
955  // SelectExpr to use to put the arguments in the appropriate registers.
956  std::vector<SDOperand> args_to_use;
957
958  // Count how many bytes are to be pushed on the stack, including the linkage
959  // area, and parameter passing area.  We start with 24/48 bytes, which is
960  // prereserved space for [SP][CR][LR][3 x unused].
961  unsigned NumBytes = 6*PtrByteSize;
962
963  // Add up all the space actually used.
964  for (unsigned i = 0; i != NumOps; ++i)
965    NumBytes += MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
966
967  // The prolog code of the callee may store up to 8 GPR argument registers to
968  // the stack, allowing va_start to index over them in memory if its varargs.
969  // Because we cannot tell if this is needed on the caller side, we have to
970  // conservatively assume that it is needed.  As such, make sure we have at
971  // least enough stack space for the caller to store the 8 GPRs.
972  if (NumBytes < 6*PtrByteSize+8*PtrByteSize)
973    NumBytes = 6*PtrByteSize+8*PtrByteSize;
974
975  // Adjust the stack pointer for the new arguments...
976  // These operations are automatically eliminated by the prolog/epilog pass
977  Chain = DAG.getCALLSEQ_START(Chain,
978                               DAG.getConstant(NumBytes, PtrVT));
979
980  // Set up a copy of the stack pointer for use loading and storing any
981  // arguments that may not fit in the registers available for argument
982  // passing.
983  SDOperand StackPtr;
984  if (isPPC64)
985    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
986  else
987    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
988
989  // Figure out which arguments are going to go in registers, and which in
990  // memory.  Also, if this is a vararg function, floating point operations
991  // must be stored to our stack, and loaded into integer regs as well, if
992  // any integer regs are available for argument passing.
993  unsigned ArgOffset = 6*PtrByteSize;
994  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
995  static const unsigned GPR_32[] = {           // 32-bit registers.
996    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
997    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
998  };
999  static const unsigned GPR_64[] = {           // 64-bit registers.
1000    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1001    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1002  };
1003  static const unsigned FPR[] = {
1004    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1005    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1006  };
1007  static const unsigned VR[] = {
1008    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1009    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1010  };
1011  const unsigned NumGPRs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1012  const unsigned NumFPRs = sizeof(FPR)/sizeof(FPR[0]);
1013  const unsigned NumVRs  = sizeof( VR)/sizeof( VR[0]);
1014
1015  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1016
1017  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1018  SmallVector<SDOperand, 8> MemOpChains;
1019  for (unsigned i = 0; i != NumOps; ++i) {
1020    SDOperand Arg = Op.getOperand(5+2*i);
1021
1022    // PtrOff will be used to store the current argument to the stack if a
1023    // register cannot be found for it.
1024    SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1025    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1026
1027    // On PPC64, promote integers to 64-bit values.
1028    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1029      unsigned ExtOp = ISD::ZERO_EXTEND;
1030      if (cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue())
1031        ExtOp = ISD::SIGN_EXTEND;
1032      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1033    }
1034
1035    switch (Arg.getValueType()) {
1036    default: assert(0 && "Unexpected ValueType for argument!");
1037    case MVT::i32:
1038    case MVT::i64:
1039      if (GPR_idx != NumGPRs) {
1040        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1041      } else {
1042        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1043      }
1044      ArgOffset += PtrByteSize;
1045      break;
1046    case MVT::f32:
1047    case MVT::f64:
1048      if (FPR_idx != NumFPRs) {
1049        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1050
1051        if (isVarArg) {
1052          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1053          MemOpChains.push_back(Store);
1054
1055          // Float varargs are always shadowed in available integer registers
1056          if (GPR_idx != NumGPRs) {
1057            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1058            MemOpChains.push_back(Load.getValue(1));
1059            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1060          }
1061          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64) {
1062            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1063            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1064            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1065            MemOpChains.push_back(Load.getValue(1));
1066            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1067          }
1068        } else {
1069          // If we have any FPRs remaining, we may also have GPRs remaining.
1070          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1071          // GPRs.
1072          if (GPR_idx != NumGPRs)
1073            ++GPR_idx;
1074          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64)
1075            ++GPR_idx;
1076        }
1077      } else {
1078        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1079      }
1080      if (isPPC64)
1081        ArgOffset += 8;
1082      else
1083        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1084      break;
1085    case MVT::v4f32:
1086    case MVT::v4i32:
1087    case MVT::v8i16:
1088    case MVT::v16i8:
1089      assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1090      assert(VR_idx != NumVRs &&
1091             "Don't support passing more than 12 vector args yet!");
1092      RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1093      break;
1094    }
1095  }
1096  if (!MemOpChains.empty())
1097    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1098                        &MemOpChains[0], MemOpChains.size());
1099
1100  // Build a sequence of copy-to-reg nodes chained together with token chain
1101  // and flag operands which copy the outgoing args into the appropriate regs.
1102  SDOperand InFlag;
1103  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1104    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1105                             InFlag);
1106    InFlag = Chain.getValue(1);
1107  }
1108
1109  std::vector<MVT::ValueType> NodeTys;
1110  NodeTys.push_back(MVT::Other);   // Returns a chain
1111  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1112
1113  SmallVector<SDOperand, 8> Ops;
1114  unsigned CallOpc = PPCISD::CALL;
1115
1116  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1117  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1118  // node so that legalize doesn't hack it.
1119  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1120    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1121  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1122    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1123  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1124    // If this is an absolute destination address, use the munged value.
1125    Callee = SDOperand(Dest, 0);
1126  else {
1127    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
1128    // to do the call, we can't use PPCISD::CALL.
1129    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1130    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1131    InFlag = Chain.getValue(1);
1132
1133    // Copy the callee address into R12 on darwin.
1134    Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1135    InFlag = Chain.getValue(1);
1136
1137    NodeTys.clear();
1138    NodeTys.push_back(MVT::Other);
1139    NodeTys.push_back(MVT::Flag);
1140    Ops.push_back(Chain);
1141    CallOpc = PPCISD::BCTRL;
1142    Callee.Val = 0;
1143  }
1144
1145  // If this is a direct call, pass the chain and the callee.
1146  if (Callee.Val) {
1147    Ops.push_back(Chain);
1148    Ops.push_back(Callee);
1149  }
1150
1151  // Add argument registers to the end of the list so that they are known live
1152  // into the call.
1153  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1154    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1155                                  RegsToPass[i].second.getValueType()));
1156
1157  if (InFlag.Val)
1158    Ops.push_back(InFlag);
1159  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1160  InFlag = Chain.getValue(1);
1161
1162  SDOperand ResultVals[3];
1163  unsigned NumResults = 0;
1164  NodeTys.clear();
1165
1166  // If the call has results, copy the values out of the ret val registers.
1167  switch (Op.Val->getValueType(0)) {
1168  default: assert(0 && "Unexpected ret value!");
1169  case MVT::Other: break;
1170  case MVT::i32:
1171    if (Op.Val->getValueType(1) == MVT::i32) {
1172      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32, InFlag).getValue(1);
1173      ResultVals[0] = Chain.getValue(0);
1174      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32,
1175                                 Chain.getValue(2)).getValue(1);
1176      ResultVals[1] = Chain.getValue(0);
1177      NumResults = 2;
1178      NodeTys.push_back(MVT::i32);
1179    } else {
1180      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1181      ResultVals[0] = Chain.getValue(0);
1182      NumResults = 1;
1183    }
1184    NodeTys.push_back(MVT::i32);
1185    break;
1186  case MVT::i64:
1187    Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1188    ResultVals[0] = Chain.getValue(0);
1189    NumResults = 1;
1190    NodeTys.push_back(MVT::i64);
1191    break;
1192  case MVT::f32:
1193  case MVT::f64:
1194    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1195                               InFlag).getValue(1);
1196    ResultVals[0] = Chain.getValue(0);
1197    NumResults = 1;
1198    NodeTys.push_back(Op.Val->getValueType(0));
1199    break;
1200  case MVT::v4f32:
1201  case MVT::v4i32:
1202  case MVT::v8i16:
1203  case MVT::v16i8:
1204    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1205                                   InFlag).getValue(1);
1206    ResultVals[0] = Chain.getValue(0);
1207    NumResults = 1;
1208    NodeTys.push_back(Op.Val->getValueType(0));
1209    break;
1210  }
1211
1212  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1213                      DAG.getConstant(NumBytes, PtrVT));
1214  NodeTys.push_back(MVT::Other);
1215
1216  // If the function returns void, just return the chain.
1217  if (NumResults == 0)
1218    return Chain;
1219
1220  // Otherwise, merge everything together with a MERGE_VALUES node.
1221  ResultVals[NumResults++] = Chain;
1222  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1223                              ResultVals, NumResults);
1224  return Res.getValue(Op.ResNo);
1225}
1226
1227static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
1228  SDOperand Copy;
1229  switch(Op.getNumOperands()) {
1230  default:
1231    assert(0 && "Do not know how to return this many arguments!");
1232    abort();
1233  case 1:
1234    return SDOperand(); // ret void is legal
1235  case 3: {
1236    MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
1237    unsigned ArgReg;
1238    if (ArgVT == MVT::i32) {
1239      ArgReg = PPC::R3;
1240    } else if (ArgVT == MVT::i64) {
1241      ArgReg = PPC::X3;
1242    } else if (MVT::isVector(ArgVT)) {
1243      ArgReg = PPC::V2;
1244    } else {
1245      assert(MVT::isFloatingPoint(ArgVT));
1246      ArgReg = PPC::F1;
1247    }
1248
1249    Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
1250                            SDOperand());
1251
1252    // If we haven't noted the R3/F1 are live out, do so now.
1253    if (DAG.getMachineFunction().liveout_empty())
1254      DAG.getMachineFunction().addLiveOut(ArgReg);
1255    break;
1256  }
1257  case 5:
1258    Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(3),
1259                            SDOperand());
1260    Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
1261    // If we haven't noted the R3+R4 are live out, do so now.
1262    if (DAG.getMachineFunction().liveout_empty()) {
1263      DAG.getMachineFunction().addLiveOut(PPC::R3);
1264      DAG.getMachineFunction().addLiveOut(PPC::R4);
1265    }
1266    break;
1267  }
1268  return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
1269}
1270
1271/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1272/// possible.
1273static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1274  // Not FP? Not a fsel.
1275  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1276      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1277    return SDOperand();
1278
1279  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1280
1281  // Cannot handle SETEQ/SETNE.
1282  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
1283
1284  MVT::ValueType ResVT = Op.getValueType();
1285  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
1286  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1287  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
1288
1289  // If the RHS of the comparison is a 0.0, we don't need to do the
1290  // subtraction at all.
1291  if (isFloatingPointZero(RHS))
1292    switch (CC) {
1293    default: break;       // SETUO etc aren't handled by fsel.
1294    case ISD::SETULT:
1295    case ISD::SETOLT:
1296    case ISD::SETLT:
1297      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1298    case ISD::SETUGE:
1299    case ISD::SETOGE:
1300    case ISD::SETGE:
1301      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1302        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1303      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
1304    case ISD::SETUGT:
1305    case ISD::SETOGT:
1306    case ISD::SETGT:
1307      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1308    case ISD::SETULE:
1309    case ISD::SETOLE:
1310    case ISD::SETLE:
1311      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1312        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1313      return DAG.getNode(PPCISD::FSEL, ResVT,
1314                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
1315    }
1316
1317      SDOperand Cmp;
1318  switch (CC) {
1319  default: break;       // SETUO etc aren't handled by fsel.
1320  case ISD::SETULT:
1321  case ISD::SETOLT:
1322  case ISD::SETLT:
1323    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1324    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1325      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1326      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1327  case ISD::SETUGE:
1328  case ISD::SETOGE:
1329  case ISD::SETGE:
1330    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1331    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1332      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1333      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1334  case ISD::SETUGT:
1335  case ISD::SETOGT:
1336  case ISD::SETGT:
1337    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1338    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1339      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1340      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1341  case ISD::SETULE:
1342  case ISD::SETOLE:
1343  case ISD::SETLE:
1344    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1345    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1346      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1347      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1348  }
1349  return SDOperand();
1350}
1351
1352static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
1353  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
1354  SDOperand Src = Op.getOperand(0);
1355  if (Src.getValueType() == MVT::f32)
1356    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
1357
1358  SDOperand Tmp;
1359  switch (Op.getValueType()) {
1360  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
1361  case MVT::i32:
1362    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
1363    break;
1364  case MVT::i64:
1365    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
1366    break;
1367  }
1368
1369  // Convert the FP value to an int value through memory.
1370  SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
1371  if (Op.getValueType() == MVT::i32)
1372    Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
1373  return Bits;
1374}
1375
1376static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
1377  if (Op.getOperand(0).getValueType() == MVT::i64) {
1378    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
1379    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
1380    if (Op.getValueType() == MVT::f32)
1381      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1382    return FP;
1383  }
1384
1385  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
1386         "Unhandled SINT_TO_FP type in custom expander!");
1387  // Since we only generate this in 64-bit mode, we can take advantage of
1388  // 64-bit registers.  In particular, sign extend the input value into the
1389  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
1390  // then lfd it and fcfid it.
1391  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1392  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
1393  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1394  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
1395
1396  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
1397                                Op.getOperand(0));
1398
1399  // STD the extended value into the stack slot.
1400  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
1401                                DAG.getEntryNode(), Ext64, FIdx,
1402                                DAG.getSrcValue(NULL));
1403  // Load the value as a double.
1404  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
1405
1406  // FCFID it and return it.
1407  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
1408  if (Op.getValueType() == MVT::f32)
1409    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1410  return FP;
1411}
1412
1413static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
1414  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1415         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1416
1417  // Expand into a bunch of logical ops.  Note that these ops
1418  // depend on the PPC behavior for oversized shift amounts.
1419  SDOperand Lo = Op.getOperand(0);
1420  SDOperand Hi = Op.getOperand(1);
1421  SDOperand Amt = Op.getOperand(2);
1422
1423  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1424                               DAG.getConstant(32, MVT::i32), Amt);
1425  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
1426  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
1427  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1428  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1429                               DAG.getConstant(-32U, MVT::i32));
1430  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
1431  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1432  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
1433  SDOperand OutOps[] = { OutLo, OutHi };
1434  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1435                     OutOps, 2);
1436}
1437
1438static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
1439  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1440         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
1441
1442  // Otherwise, expand into a bunch of logical ops.  Note that these ops
1443  // depend on the PPC behavior for oversized shift amounts.
1444  SDOperand Lo = Op.getOperand(0);
1445  SDOperand Hi = Op.getOperand(1);
1446  SDOperand Amt = Op.getOperand(2);
1447
1448  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1449                               DAG.getConstant(32, MVT::i32), Amt);
1450  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1451  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1452  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1453  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1454                               DAG.getConstant(-32U, MVT::i32));
1455  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
1456  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1457  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
1458  SDOperand OutOps[] = { OutLo, OutHi };
1459  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1460                     OutOps, 2);
1461}
1462
1463static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
1464  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1465         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
1466
1467  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
1468  SDOperand Lo = Op.getOperand(0);
1469  SDOperand Hi = Op.getOperand(1);
1470  SDOperand Amt = Op.getOperand(2);
1471
1472  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1473                               DAG.getConstant(32, MVT::i32), Amt);
1474  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1475  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1476  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1477  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1478                               DAG.getConstant(-32U, MVT::i32));
1479  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
1480  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
1481  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
1482                                    Tmp4, Tmp6, ISD::SETLE);
1483  SDOperand OutOps[] = { OutLo, OutHi };
1484  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1485                     OutOps, 2);
1486}
1487
1488//===----------------------------------------------------------------------===//
1489// Vector related lowering.
1490//
1491
1492// If this is a vector of constants or undefs, get the bits.  A bit in
1493// UndefBits is set if the corresponding element of the vector is an
1494// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
1495// zero.   Return true if this is not an array of constants, false if it is.
1496//
1497static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
1498                                       uint64_t UndefBits[2]) {
1499  // Start with zero'd results.
1500  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
1501
1502  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
1503  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
1504    SDOperand OpVal = BV->getOperand(i);
1505
1506    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
1507    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
1508
1509    uint64_t EltBits = 0;
1510    if (OpVal.getOpcode() == ISD::UNDEF) {
1511      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
1512      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
1513      continue;
1514    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1515      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
1516    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1517      assert(CN->getValueType(0) == MVT::f32 &&
1518             "Only one legal FP vector type!");
1519      EltBits = FloatToBits(CN->getValue());
1520    } else {
1521      // Nonconstant element.
1522      return true;
1523    }
1524
1525    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
1526  }
1527
1528  //printf("%llx %llx  %llx %llx\n",
1529  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
1530  return false;
1531}
1532
1533// If this is a splat (repetition) of a value across the whole vector, return
1534// the smallest size that splats it.  For example, "0x01010101010101..." is a
1535// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
1536// SplatSize = 1 byte.
1537static bool isConstantSplat(const uint64_t Bits128[2],
1538                            const uint64_t Undef128[2],
1539                            unsigned &SplatBits, unsigned &SplatUndef,
1540                            unsigned &SplatSize) {
1541
1542  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
1543  // the same as the lower 64-bits, ignoring undefs.
1544  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
1545    return false;  // Can't be a splat if two pieces don't match.
1546
1547  uint64_t Bits64  = Bits128[0] | Bits128[1];
1548  uint64_t Undef64 = Undef128[0] & Undef128[1];
1549
1550  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
1551  // undefs.
1552  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
1553    return false;  // Can't be a splat if two pieces don't match.
1554
1555  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
1556  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
1557
1558  // If the top 16-bits are different than the lower 16-bits, ignoring
1559  // undefs, we have an i32 splat.
1560  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
1561    SplatBits = Bits32;
1562    SplatUndef = Undef32;
1563    SplatSize = 4;
1564    return true;
1565  }
1566
1567  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
1568  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
1569
1570  // If the top 8-bits are different than the lower 8-bits, ignoring
1571  // undefs, we have an i16 splat.
1572  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
1573    SplatBits = Bits16;
1574    SplatUndef = Undef16;
1575    SplatSize = 2;
1576    return true;
1577  }
1578
1579  // Otherwise, we have an 8-bit splat.
1580  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
1581  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
1582  SplatSize = 1;
1583  return true;
1584}
1585
1586/// BuildSplatI - Build a canonical splati of Val with an element size of
1587/// SplatSize.  Cast the result to VT.
1588static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
1589                             SelectionDAG &DAG) {
1590  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
1591
1592  // Force vspltis[hw] -1 to vspltisb -1.
1593  if (Val == -1) SplatSize = 1;
1594
1595  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
1596    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
1597  };
1598  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
1599
1600  // Build a canonical splat for this value.
1601  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
1602  SmallVector<SDOperand, 8> Ops;
1603  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
1604  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
1605                              &Ops[0], Ops.size());
1606  return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
1607}
1608
1609/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
1610/// specified intrinsic ID.
1611static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
1612                                  SelectionDAG &DAG,
1613                                  MVT::ValueType DestVT = MVT::Other) {
1614  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
1615  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1616                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
1617}
1618
1619/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
1620/// specified intrinsic ID.
1621static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
1622                                  SDOperand Op2, SelectionDAG &DAG,
1623                                  MVT::ValueType DestVT = MVT::Other) {
1624  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
1625  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1626                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
1627}
1628
1629
1630/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
1631/// amount.  The result has the specified value type.
1632static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
1633                             MVT::ValueType VT, SelectionDAG &DAG) {
1634  // Force LHS/RHS to be the right type.
1635  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
1636  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
1637
1638  SDOperand Ops[16];
1639  for (unsigned i = 0; i != 16; ++i)
1640    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
1641  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
1642                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
1643  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
1644}
1645
1646// If this is a case we can't handle, return null and let the default
1647// expansion code take care of it.  If we CAN select this case, and if it
1648// selects to a single instruction, return Op.  Otherwise, if we can codegen
1649// this case more efficiently than a constant pool load, lower it to the
1650// sequence of ops that should be used.
1651static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1652  // If this is a vector of constants or undefs, get the bits.  A bit in
1653  // UndefBits is set if the corresponding element of the vector is an
1654  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
1655  // zero.
1656  uint64_t VectorBits[2];
1657  uint64_t UndefBits[2];
1658  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
1659    return SDOperand();   // Not a constant vector.
1660
1661  // If this is a splat (repetition) of a value across the whole vector, return
1662  // the smallest size that splats it.  For example, "0x01010101010101..." is a
1663  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
1664  // SplatSize = 1 byte.
1665  unsigned SplatBits, SplatUndef, SplatSize;
1666  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
1667    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
1668
1669    // First, handle single instruction cases.
1670
1671    // All zeros?
1672    if (SplatBits == 0) {
1673      // Canonicalize all zero vectors to be v4i32.
1674      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
1675        SDOperand Z = DAG.getConstant(0, MVT::i32);
1676        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
1677        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
1678      }
1679      return Op;
1680    }
1681
1682    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
1683    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
1684    if (SextVal >= -16 && SextVal <= 15)
1685      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
1686
1687
1688    // Two instruction sequences.
1689
1690    // If this value is in the range [-32,30] and is even, use:
1691    //    tmp = VSPLTI[bhw], result = add tmp, tmp
1692    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
1693      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
1694      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
1695    }
1696
1697    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
1698    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
1699    // for fneg/fabs.
1700    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
1701      // Make -1 and vspltisw -1:
1702      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
1703
1704      // Make the VSLW intrinsic, computing 0x8000_0000.
1705      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
1706                                       OnesV, DAG);
1707
1708      // xor by OnesV to invert it.
1709      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
1710      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
1711    }
1712
1713    // Check to see if this is a wide variety of vsplti*, binop self cases.
1714    unsigned SplatBitSize = SplatSize*8;
1715    static const char SplatCsts[] = {
1716      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
1717      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
1718    };
1719    for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
1720      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
1721      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
1722      int i = SplatCsts[idx];
1723
1724      // Figure out what shift amount will be used by altivec if shifted by i in
1725      // this splat size.
1726      unsigned TypeShiftAmt = i & (SplatBitSize-1);
1727
1728      // vsplti + shl self.
1729      if (SextVal == (i << (int)TypeShiftAmt)) {
1730        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1731        static const unsigned IIDs[] = { // Intrinsic to use for each size.
1732          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
1733          Intrinsic::ppc_altivec_vslw
1734        };
1735        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1736      }
1737
1738      // vsplti + srl self.
1739      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1740        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1741        static const unsigned IIDs[] = { // Intrinsic to use for each size.
1742          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
1743          Intrinsic::ppc_altivec_vsrw
1744        };
1745        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1746      }
1747
1748      // vsplti + sra self.
1749      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1750        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1751        static const unsigned IIDs[] = { // Intrinsic to use for each size.
1752          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
1753          Intrinsic::ppc_altivec_vsraw
1754        };
1755        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1756      }
1757
1758      // vsplti + rol self.
1759      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
1760                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
1761        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1762        static const unsigned IIDs[] = { // Intrinsic to use for each size.
1763          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
1764          Intrinsic::ppc_altivec_vrlw
1765        };
1766        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1767      }
1768
1769      // t = vsplti c, result = vsldoi t, t, 1
1770      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
1771        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1772        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
1773      }
1774      // t = vsplti c, result = vsldoi t, t, 2
1775      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
1776        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1777        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
1778      }
1779      // t = vsplti c, result = vsldoi t, t, 3
1780      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
1781        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1782        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
1783      }
1784    }
1785
1786    // Three instruction sequences.
1787
1788    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
1789    if (SextVal >= 0 && SextVal <= 31) {
1790      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
1791      SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1792      return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
1793    }
1794    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
1795    if (SextVal >= -31 && SextVal <= 0) {
1796      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
1797      SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1798      return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
1799    }
1800  }
1801
1802  return SDOperand();
1803}
1804
1805/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
1806/// the specified operations to build the shuffle.
1807static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
1808                                        SDOperand RHS, SelectionDAG &DAG) {
1809  unsigned OpNum = (PFEntry >> 26) & 0x0F;
1810  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
1811  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
1812
1813  enum {
1814    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
1815    OP_VMRGHW,
1816    OP_VMRGLW,
1817    OP_VSPLTISW0,
1818    OP_VSPLTISW1,
1819    OP_VSPLTISW2,
1820    OP_VSPLTISW3,
1821    OP_VSLDOI4,
1822    OP_VSLDOI8,
1823    OP_VSLDOI12
1824  };
1825
1826  if (OpNum == OP_COPY) {
1827    if (LHSID == (1*9+2)*9+3) return LHS;
1828    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
1829    return RHS;
1830  }
1831
1832  SDOperand OpLHS, OpRHS;
1833  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
1834  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
1835
1836  unsigned ShufIdxs[16];
1837  switch (OpNum) {
1838  default: assert(0 && "Unknown i32 permute!");
1839  case OP_VMRGHW:
1840    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
1841    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
1842    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
1843    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
1844    break;
1845  case OP_VMRGLW:
1846    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
1847    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
1848    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
1849    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
1850    break;
1851  case OP_VSPLTISW0:
1852    for (unsigned i = 0; i != 16; ++i)
1853      ShufIdxs[i] = (i&3)+0;
1854    break;
1855  case OP_VSPLTISW1:
1856    for (unsigned i = 0; i != 16; ++i)
1857      ShufIdxs[i] = (i&3)+4;
1858    break;
1859  case OP_VSPLTISW2:
1860    for (unsigned i = 0; i != 16; ++i)
1861      ShufIdxs[i] = (i&3)+8;
1862    break;
1863  case OP_VSPLTISW3:
1864    for (unsigned i = 0; i != 16; ++i)
1865      ShufIdxs[i] = (i&3)+12;
1866    break;
1867  case OP_VSLDOI4:
1868    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
1869  case OP_VSLDOI8:
1870    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
1871  case OP_VSLDOI12:
1872    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
1873  }
1874  SDOperand Ops[16];
1875  for (unsigned i = 0; i != 16; ++i)
1876    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
1877
1878  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
1879                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
1880}
1881
1882/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
1883/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
1884/// return the code it can be lowered into.  Worst case, it can always be
1885/// lowered into a vperm.
1886static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
1887  SDOperand V1 = Op.getOperand(0);
1888  SDOperand V2 = Op.getOperand(1);
1889  SDOperand PermMask = Op.getOperand(2);
1890
1891  // Cases that are handled by instructions that take permute immediates
1892  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
1893  // selected by the instruction selector.
1894  if (V2.getOpcode() == ISD::UNDEF) {
1895    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
1896        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
1897        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
1898        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
1899        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
1900        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
1901        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
1902        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
1903        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
1904        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
1905        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
1906        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
1907      return Op;
1908    }
1909  }
1910
1911  // Altivec has a variety of "shuffle immediates" that take two vector inputs
1912  // and produce a fixed permutation.  If any of these match, do not lower to
1913  // VPERM.
1914  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
1915      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
1916      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
1917      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
1918      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
1919      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
1920      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
1921      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
1922      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
1923    return Op;
1924
1925  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
1926  // perfect shuffle table to emit an optimal matching sequence.
1927  unsigned PFIndexes[4];
1928  bool isFourElementShuffle = true;
1929  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
1930    unsigned EltNo = 8;   // Start out undef.
1931    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
1932      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
1933        continue;   // Undef, ignore it.
1934
1935      unsigned ByteSource =
1936        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
1937      if ((ByteSource & 3) != j) {
1938        isFourElementShuffle = false;
1939        break;
1940      }
1941
1942      if (EltNo == 8) {
1943        EltNo = ByteSource/4;
1944      } else if (EltNo != ByteSource/4) {
1945        isFourElementShuffle = false;
1946        break;
1947      }
1948    }
1949    PFIndexes[i] = EltNo;
1950  }
1951
1952  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
1953  // perfect shuffle vector to determine if it is cost effective to do this as
1954  // discrete instructions, or whether we should use a vperm.
1955  if (isFourElementShuffle) {
1956    // Compute the index in the perfect shuffle table.
1957    unsigned PFTableIndex =
1958      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
1959
1960    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
1961    unsigned Cost  = (PFEntry >> 30);
1962
1963    // Determining when to avoid vperm is tricky.  Many things affect the cost
1964    // of vperm, particularly how many times the perm mask needs to be computed.
1965    // For example, if the perm mask can be hoisted out of a loop or is already
1966    // used (perhaps because there are multiple permutes with the same shuffle
1967    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
1968    // the loop requires an extra register.
1969    //
1970    // As a compromise, we only emit discrete instructions if the shuffle can be
1971    // generated in 3 or fewer operations.  When we have loop information
1972    // available, if this block is within a loop, we should avoid using vperm
1973    // for 3-operation perms and use a constant pool load instead.
1974    if (Cost < 3)
1975      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
1976  }
1977
1978  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
1979  // vector that will get spilled to the constant pool.
1980  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
1981
1982  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
1983  // that it is in input element units, not in bytes.  Convert now.
1984  MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
1985  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
1986
1987  SmallVector<SDOperand, 16> ResultMask;
1988  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
1989    unsigned SrcElt;
1990    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
1991      SrcElt = 0;
1992    else
1993      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
1994
1995    for (unsigned j = 0; j != BytesPerElement; ++j)
1996      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
1997                                           MVT::i8));
1998  }
1999
2000  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2001                                    &ResultMask[0], ResultMask.size());
2002  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2003}
2004
2005/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2006/// altivec comparison.  If it is, return true and fill in Opc/isDot with
2007/// information about the intrinsic.
2008static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2009                                  bool &isDot) {
2010  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2011  CompareOpc = -1;
2012  isDot = false;
2013  switch (IntrinsicID) {
2014  default: return false;
2015    // Comparison predicates.
2016  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
2017  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2018  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
2019  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
2020  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2021  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2022  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2023  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2024  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2025  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2026  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2027  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2028  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2029
2030    // Normal Comparisons.
2031  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
2032  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
2033  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
2034  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
2035  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
2036  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
2037  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
2038  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
2039  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
2040  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
2041  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
2042  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
2043  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
2044  }
2045  return true;
2046}
2047
2048/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2049/// lower, do it, otherwise return null.
2050static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2051  // If this is a lowered altivec predicate compare, CompareOpc is set to the
2052  // opcode number of the comparison.
2053  int CompareOpc;
2054  bool isDot;
2055  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2056    return SDOperand();    // Don't custom lower most intrinsics.
2057
2058  // If this is a non-dot comparison, make the VCMP node and we are done.
2059  if (!isDot) {
2060    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2061                                Op.getOperand(1), Op.getOperand(2),
2062                                DAG.getConstant(CompareOpc, MVT::i32));
2063    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2064  }
2065
2066  // Create the PPCISD altivec 'dot' comparison node.
2067  SDOperand Ops[] = {
2068    Op.getOperand(2),  // LHS
2069    Op.getOperand(3),  // RHS
2070    DAG.getConstant(CompareOpc, MVT::i32)
2071  };
2072  std::vector<MVT::ValueType> VTs;
2073  VTs.push_back(Op.getOperand(2).getValueType());
2074  VTs.push_back(MVT::Flag);
2075  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2076
2077  // Now that we have the comparison, emit a copy from the CR to a GPR.
2078  // This is flagged to the above dot comparison.
2079  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2080                                DAG.getRegister(PPC::CR6, MVT::i32),
2081                                CompNode.getValue(1));
2082
2083  // Unpack the result based on how the target uses it.
2084  unsigned BitNo;   // Bit # of CR6.
2085  bool InvertBit;   // Invert result?
2086  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2087  default:  // Can't happen, don't crash on invalid number though.
2088  case 0:   // Return the value of the EQ bit of CR6.
2089    BitNo = 0; InvertBit = false;
2090    break;
2091  case 1:   // Return the inverted value of the EQ bit of CR6.
2092    BitNo = 0; InvertBit = true;
2093    break;
2094  case 2:   // Return the value of the LT bit of CR6.
2095    BitNo = 2; InvertBit = false;
2096    break;
2097  case 3:   // Return the inverted value of the LT bit of CR6.
2098    BitNo = 2; InvertBit = true;
2099    break;
2100  }
2101
2102  // Shift the bit into the low position.
2103  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2104                      DAG.getConstant(8-(3-BitNo), MVT::i32));
2105  // Isolate the bit.
2106  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2107                      DAG.getConstant(1, MVT::i32));
2108
2109  // If we are supposed to, toggle the bit.
2110  if (InvertBit)
2111    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2112                        DAG.getConstant(1, MVT::i32));
2113  return Flags;
2114}
2115
2116static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2117  // Create a stack slot that is 16-byte aligned.
2118  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2119  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2120  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2121  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2122
2123  // Store the input value into Value#0 of the stack slot.
2124  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2125                                 Op.getOperand(0), FIdx, NULL, 0);
2126  // Load it out.
2127  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2128}
2129
2130static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2131  if (Op.getValueType() == MVT::v4i32) {
2132    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2133
2134    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
2135    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2136
2137    SDOperand RHSSwap =   // = vrlw RHS, 16
2138      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2139
2140    // Shrinkify inputs to v8i16.
2141    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2142    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2143    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2144
2145    // Low parts multiplied together, generating 32-bit results (we ignore the
2146    // top parts).
2147    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2148                                        LHS, RHS, DAG, MVT::v4i32);
2149
2150    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2151                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2152    // Shift the high parts up 16 bits.
2153    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2154    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2155  } else if (Op.getValueType() == MVT::v8i16) {
2156    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2157
2158    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2159
2160    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2161                            LHS, RHS, Zero, DAG);
2162  } else if (Op.getValueType() == MVT::v16i8) {
2163    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2164
2165    // Multiply the even 8-bit parts, producing 16-bit sums.
2166    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2167                                           LHS, RHS, DAG, MVT::v8i16);
2168    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2169
2170    // Multiply the odd 8-bit parts, producing 16-bit sums.
2171    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2172                                          LHS, RHS, DAG, MVT::v8i16);
2173    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2174
2175    // Merge the results together.
2176    SDOperand Ops[16];
2177    for (unsigned i = 0; i != 8; ++i) {
2178      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
2179      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2180    }
2181    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2182                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2183  } else {
2184    assert(0 && "Unknown mul to lower!");
2185    abort();
2186  }
2187}
2188
2189/// LowerOperation - Provide custom lowering hooks for some operations.
2190///
2191SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2192  switch (Op.getOpcode()) {
2193  default: assert(0 && "Wasn't expecting to be able to lower this!");
2194  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
2195  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
2196  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
2197  case ISD::SETCC:              return LowerSETCC(Op, DAG);
2198  case ISD::VASTART:            return LowerVASTART(Op, DAG, VarArgsFrameIndex);
2199  case ISD::FORMAL_ARGUMENTS:
2200      return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex);
2201  case ISD::CALL:               return LowerCALL(Op, DAG);
2202  case ISD::RET:                return LowerRET(Op, DAG);
2203
2204  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
2205  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
2206  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
2207
2208  // Lower 64-bit shifts.
2209  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
2210  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
2211  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
2212
2213  // Vector-related lowering.
2214  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
2215  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
2216  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2217  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
2218  case ISD::MUL:                return LowerMUL(Op, DAG);
2219  }
2220  return SDOperand();
2221}
2222
2223//===----------------------------------------------------------------------===//
2224//  Other Lowering Code
2225//===----------------------------------------------------------------------===//
2226
2227MachineBasicBlock *
2228PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2229                                           MachineBasicBlock *BB) {
2230  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
2231          MI->getOpcode() == PPC::SELECT_CC_I8 ||
2232          MI->getOpcode() == PPC::SELECT_CC_F4 ||
2233          MI->getOpcode() == PPC::SELECT_CC_F8 ||
2234          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2235         "Unexpected instr type to insert");
2236
2237  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2238  // control-flow pattern.  The incoming instruction knows the destination vreg
2239  // to set, the condition code register to branch on, the true/false values to
2240  // select between, and a branch opcode to use.
2241  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2242  ilist<MachineBasicBlock>::iterator It = BB;
2243  ++It;
2244
2245  //  thisMBB:
2246  //  ...
2247  //   TrueVal = ...
2248  //   cmpTY ccX, r1, r2
2249  //   bCC copy1MBB
2250  //   fallthrough --> copy0MBB
2251  MachineBasicBlock *thisMBB = BB;
2252  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2253  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2254  BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
2255    .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2256  MachineFunction *F = BB->getParent();
2257  F->getBasicBlockList().insert(It, copy0MBB);
2258  F->getBasicBlockList().insert(It, sinkMBB);
2259  // Update machine-CFG edges by first adding all successors of the current
2260  // block to the new block which will contain the Phi node for the select.
2261  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2262      e = BB->succ_end(); i != e; ++i)
2263    sinkMBB->addSuccessor(*i);
2264  // Next, remove all successors of the current block, and add the true
2265  // and fallthrough blocks as its successors.
2266  while(!BB->succ_empty())
2267    BB->removeSuccessor(BB->succ_begin());
2268  BB->addSuccessor(copy0MBB);
2269  BB->addSuccessor(sinkMBB);
2270
2271  //  copy0MBB:
2272  //   %FalseValue = ...
2273  //   # fallthrough to sinkMBB
2274  BB = copy0MBB;
2275
2276  // Update machine-CFG edges
2277  BB->addSuccessor(sinkMBB);
2278
2279  //  sinkMBB:
2280  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2281  //  ...
2282  BB = sinkMBB;
2283  BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
2284    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2285    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2286
2287  delete MI;   // The pseudo instruction is gone now.
2288  return BB;
2289}
2290
2291//===----------------------------------------------------------------------===//
2292// Target Optimization Hooks
2293//===----------------------------------------------------------------------===//
2294
2295SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2296                                               DAGCombinerInfo &DCI) const {
2297  TargetMachine &TM = getTargetMachine();
2298  SelectionDAG &DAG = DCI.DAG;
2299  switch (N->getOpcode()) {
2300  default: break;
2301  case PPCISD::SHL:
2302    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2303      if (C->getValue() == 0)   // 0 << V -> 0.
2304        return N->getOperand(0);
2305    }
2306    break;
2307  case PPCISD::SRL:
2308    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2309      if (C->getValue() == 0)   // 0 >>u V -> 0.
2310        return N->getOperand(0);
2311    }
2312    break;
2313  case PPCISD::SRA:
2314    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2315      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
2316          C->isAllOnesValue())    // -1 >>s V -> -1.
2317        return N->getOperand(0);
2318    }
2319    break;
2320
2321  case ISD::SINT_TO_FP:
2322    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
2323      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
2324        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
2325        // We allow the src/dst to be either f32/f64, but the intermediate
2326        // type must be i64.
2327        if (N->getOperand(0).getValueType() == MVT::i64) {
2328          SDOperand Val = N->getOperand(0).getOperand(0);
2329          if (Val.getValueType() == MVT::f32) {
2330            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2331            DCI.AddToWorklist(Val.Val);
2332          }
2333
2334          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
2335          DCI.AddToWorklist(Val.Val);
2336          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
2337          DCI.AddToWorklist(Val.Val);
2338          if (N->getValueType(0) == MVT::f32) {
2339            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
2340            DCI.AddToWorklist(Val.Val);
2341          }
2342          return Val;
2343        } else if (N->getOperand(0).getValueType() == MVT::i32) {
2344          // If the intermediate type is i32, we can avoid the load/store here
2345          // too.
2346        }
2347      }
2348    }
2349    break;
2350  case ISD::STORE:
2351    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
2352    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
2353        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
2354        N->getOperand(1).getValueType() == MVT::i32) {
2355      SDOperand Val = N->getOperand(1).getOperand(0);
2356      if (Val.getValueType() == MVT::f32) {
2357        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2358        DCI.AddToWorklist(Val.Val);
2359      }
2360      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
2361      DCI.AddToWorklist(Val.Val);
2362
2363      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
2364                        N->getOperand(2), N->getOperand(3));
2365      DCI.AddToWorklist(Val.Val);
2366      return Val;
2367    }
2368
2369    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
2370    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
2371        N->getOperand(1).Val->hasOneUse() &&
2372        (N->getOperand(1).getValueType() == MVT::i32 ||
2373         N->getOperand(1).getValueType() == MVT::i16)) {
2374      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
2375      // Do an any-extend to 32-bits if this is a half-word input.
2376      if (BSwapOp.getValueType() == MVT::i16)
2377        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
2378
2379      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
2380                         N->getOperand(2), N->getOperand(3),
2381                         DAG.getValueType(N->getOperand(1).getValueType()));
2382    }
2383    break;
2384  case ISD::BSWAP:
2385    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
2386    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
2387        N->getOperand(0).hasOneUse() &&
2388        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
2389      SDOperand Load = N->getOperand(0);
2390      LoadSDNode *LD = cast<LoadSDNode>(Load);
2391      // Create the byte-swapping load.
2392      std::vector<MVT::ValueType> VTs;
2393      VTs.push_back(MVT::i32);
2394      VTs.push_back(MVT::Other);
2395      SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
2396      SDOperand Ops[] = {
2397        LD->getChain(),    // Chain
2398        LD->getBasePtr(),  // Ptr
2399        SV,                // SrcValue
2400        DAG.getValueType(N->getValueType(0)) // VT
2401      };
2402      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
2403
2404      // If this is an i16 load, insert the truncate.
2405      SDOperand ResVal = BSLoad;
2406      if (N->getValueType(0) == MVT::i16)
2407        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
2408
2409      // First, combine the bswap away.  This makes the value produced by the
2410      // load dead.
2411      DCI.CombineTo(N, ResVal);
2412
2413      // Next, combine the load away, we give it a bogus result value but a real
2414      // chain result.  The result value is dead because the bswap is dead.
2415      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
2416
2417      // Return N so it doesn't get rechecked!
2418      return SDOperand(N, 0);
2419    }
2420
2421    break;
2422  case PPCISD::VCMP: {
2423    // If a VCMPo node already exists with exactly the same operands as this
2424    // node, use its result instead of this node (VCMPo computes both a CR6 and
2425    // a normal output).
2426    //
2427    if (!N->getOperand(0).hasOneUse() &&
2428        !N->getOperand(1).hasOneUse() &&
2429        !N->getOperand(2).hasOneUse()) {
2430
2431      // Scan all of the users of the LHS, looking for VCMPo's that match.
2432      SDNode *VCMPoNode = 0;
2433
2434      SDNode *LHSN = N->getOperand(0).Val;
2435      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2436           UI != E; ++UI)
2437        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2438            (*UI)->getOperand(1) == N->getOperand(1) &&
2439            (*UI)->getOperand(2) == N->getOperand(2) &&
2440            (*UI)->getOperand(0) == N->getOperand(0)) {
2441          VCMPoNode = *UI;
2442          break;
2443        }
2444
2445      // If there is no VCMPo node, or if the flag value has a single use, don't
2446      // transform this.
2447      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
2448        break;
2449
2450      // Look at the (necessarily single) use of the flag value.  If it has a
2451      // chain, this transformation is more complex.  Note that multiple things
2452      // could use the value result, which we should ignore.
2453      SDNode *FlagUser = 0;
2454      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
2455           FlagUser == 0; ++UI) {
2456        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
2457        SDNode *User = *UI;
2458        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2459          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
2460            FlagUser = User;
2461            break;
2462          }
2463        }
2464      }
2465
2466      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
2467      // give up for right now.
2468      if (FlagUser->getOpcode() == PPCISD::MFCR)
2469        return SDOperand(VCMPoNode, 0);
2470    }
2471    break;
2472  }
2473  case ISD::BR_CC: {
2474    // If this is a branch on an altivec predicate comparison, lower this so
2475    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
2476    // lowering is done pre-legalize, because the legalizer lowers the predicate
2477    // compare down to code that is difficult to reassemble.
2478    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2479    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
2480    int CompareOpc;
2481    bool isDot;
2482
2483    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2484        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
2485        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
2486      assert(isDot && "Can't compare against a vector result!");
2487
2488      // If this is a comparison against something other than 0/1, then we know
2489      // that the condition is never/always true.
2490      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
2491      if (Val != 0 && Val != 1) {
2492        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
2493          return N->getOperand(0);
2494        // Always !=, turn it into an unconditional branch.
2495        return DAG.getNode(ISD::BR, MVT::Other,
2496                           N->getOperand(0), N->getOperand(4));
2497      }
2498
2499      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
2500
2501      // Create the PPCISD altivec 'dot' comparison node.
2502      std::vector<MVT::ValueType> VTs;
2503      SDOperand Ops[] = {
2504        LHS.getOperand(2),  // LHS of compare
2505        LHS.getOperand(3),  // RHS of compare
2506        DAG.getConstant(CompareOpc, MVT::i32)
2507      };
2508      VTs.push_back(LHS.getOperand(2).getValueType());
2509      VTs.push_back(MVT::Flag);
2510      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2511
2512      // Unpack the result based on how the target uses it.
2513      unsigned CompOpc;
2514      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
2515      default:  // Can't happen, don't crash on invalid number though.
2516      case 0:   // Branch on the value of the EQ bit of CR6.
2517        CompOpc = BranchOnWhenPredTrue ? PPC::BEQ : PPC::BNE;
2518        break;
2519      case 1:   // Branch on the inverted value of the EQ bit of CR6.
2520        CompOpc = BranchOnWhenPredTrue ? PPC::BNE : PPC::BEQ;
2521        break;
2522      case 2:   // Branch on the value of the LT bit of CR6.
2523        CompOpc = BranchOnWhenPredTrue ? PPC::BLT : PPC::BGE;
2524        break;
2525      case 3:   // Branch on the inverted value of the LT bit of CR6.
2526        CompOpc = BranchOnWhenPredTrue ? PPC::BGE : PPC::BLT;
2527        break;
2528      }
2529
2530      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
2531                         DAG.getRegister(PPC::CR6, MVT::i32),
2532                         DAG.getConstant(CompOpc, MVT::i32),
2533                         N->getOperand(4), CompNode.getValue(1));
2534    }
2535    break;
2536  }
2537  }
2538
2539  return SDOperand();
2540}
2541
2542//===----------------------------------------------------------------------===//
2543// Inline Assembly Support
2544//===----------------------------------------------------------------------===//
2545
2546void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2547                                                       uint64_t Mask,
2548                                                       uint64_t &KnownZero,
2549                                                       uint64_t &KnownOne,
2550                                                       unsigned Depth) const {
2551  KnownZero = 0;
2552  KnownOne = 0;
2553  switch (Op.getOpcode()) {
2554  default: break;
2555  case PPCISD::LBRX: {
2556    // lhbrx is known to have the top bits cleared out.
2557    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
2558      KnownZero = 0xFFFF0000;
2559    break;
2560  }
2561  case ISD::INTRINSIC_WO_CHAIN: {
2562    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
2563    default: break;
2564    case Intrinsic::ppc_altivec_vcmpbfp_p:
2565    case Intrinsic::ppc_altivec_vcmpeqfp_p:
2566    case Intrinsic::ppc_altivec_vcmpequb_p:
2567    case Intrinsic::ppc_altivec_vcmpequh_p:
2568    case Intrinsic::ppc_altivec_vcmpequw_p:
2569    case Intrinsic::ppc_altivec_vcmpgefp_p:
2570    case Intrinsic::ppc_altivec_vcmpgtfp_p:
2571    case Intrinsic::ppc_altivec_vcmpgtsb_p:
2572    case Intrinsic::ppc_altivec_vcmpgtsh_p:
2573    case Intrinsic::ppc_altivec_vcmpgtsw_p:
2574    case Intrinsic::ppc_altivec_vcmpgtub_p:
2575    case Intrinsic::ppc_altivec_vcmpgtuh_p:
2576    case Intrinsic::ppc_altivec_vcmpgtuw_p:
2577      KnownZero = ~1U;  // All bits but the low one are known to be zero.
2578      break;
2579    }
2580  }
2581  }
2582}
2583
2584
2585/// getConstraintType - Given a constraint letter, return the type of
2586/// constraint it is for this target.
2587PPCTargetLowering::ConstraintType
2588PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
2589  switch (ConstraintLetter) {
2590  default: break;
2591  case 'b':
2592  case 'r':
2593  case 'f':
2594  case 'v':
2595  case 'y':
2596    return C_RegisterClass;
2597  }
2598  return TargetLowering::getConstraintType(ConstraintLetter);
2599}
2600
2601
2602std::vector<unsigned> PPCTargetLowering::
2603getRegClassForInlineAsmConstraint(const std::string &Constraint,
2604                                  MVT::ValueType VT) const {
2605  if (Constraint.size() == 1) {
2606    switch (Constraint[0]) {      // GCC RS6000 Constraint Letters
2607    default: break;  // Unknown constriant letter
2608    case 'b':
2609      return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
2610                                   PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2611                                   PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2612                                   PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2613                                   PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2614                                   PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2615                                   PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2616                                   PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2617                                   0);
2618    case 'r':
2619      return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
2620                                   PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2621                                   PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2622                                   PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2623                                   PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2624                                   PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2625                                   PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2626                                   PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2627                                   0);
2628    case 'f':
2629      return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
2630                                   PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
2631                                   PPC::F8 , PPC::F9 , PPC::F10, PPC::F11,
2632                                   PPC::F12, PPC::F13, PPC::F14, PPC::F15,
2633                                   PPC::F16, PPC::F17, PPC::F18, PPC::F19,
2634                                   PPC::F20, PPC::F21, PPC::F22, PPC::F23,
2635                                   PPC::F24, PPC::F25, PPC::F26, PPC::F27,
2636                                   PPC::F28, PPC::F29, PPC::F30, PPC::F31,
2637                                   0);
2638    case 'v':
2639      return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
2640                                   PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
2641                                   PPC::V8 , PPC::V9 , PPC::V10, PPC::V11,
2642                                   PPC::V12, PPC::V13, PPC::V14, PPC::V15,
2643                                   PPC::V16, PPC::V17, PPC::V18, PPC::V19,
2644                                   PPC::V20, PPC::V21, PPC::V22, PPC::V23,
2645                                   PPC::V24, PPC::V25, PPC::V26, PPC::V27,
2646                                   PPC::V28, PPC::V29, PPC::V30, PPC::V31,
2647                                   0);
2648    case 'y':
2649      return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
2650                                   PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
2651                                   0);
2652    }
2653  }
2654
2655  return std::vector<unsigned>();
2656}
2657
2658// isOperandValidForConstraint
2659bool PPCTargetLowering::
2660isOperandValidForConstraint(SDOperand Op, char Letter) {
2661  switch (Letter) {
2662  default: break;
2663  case 'I':
2664  case 'J':
2665  case 'K':
2666  case 'L':
2667  case 'M':
2668  case 'N':
2669  case 'O':
2670  case 'P': {
2671    if (!isa<ConstantSDNode>(Op)) return false;  // Must be an immediate.
2672    unsigned Value = cast<ConstantSDNode>(Op)->getValue();
2673    switch (Letter) {
2674    default: assert(0 && "Unknown constraint letter!");
2675    case 'I':  // "I" is a signed 16-bit constant.
2676      return (short)Value == (int)Value;
2677    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
2678    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
2679      return (short)Value == 0;
2680    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
2681      return (Value >> 16) == 0;
2682    case 'M':  // "M" is a constant that is greater than 31.
2683      return Value > 31;
2684    case 'N':  // "N" is a positive constant that is an exact power of two.
2685      return (int)Value > 0 && isPowerOf2_32(Value);
2686    case 'O':  // "O" is the constant zero.
2687      return Value == 0;
2688    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
2689      return (short)-Value == (int)-Value;
2690    }
2691    break;
2692  }
2693  }
2694
2695  // Handle standard constraint letters.
2696  return TargetLowering::isOperandValidForConstraint(Op, Letter);
2697}
2698
2699/// isLegalAddressImmediate - Return true if the integer value can be used
2700/// as the offset of the target addressing mode.
2701bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
2702  // PPC allows a sign-extended 16-bit immediate field.
2703  return (V > -(1 << 16) && V < (1 << 16)-1);
2704}
2705
2706bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
2707  return TargetLowering::isLegalAddressImmediate(GV);
2708}
2709