PPCISelLowering.cpp revision 28873106309db515d58889a4c4fa3e0a92d1b60e
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/ParameterAttributes.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36using namespace llvm;
37
38static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
39cl::desc("enable preincrement load/store generation on PPC (experimental)"),
40                                     cl::Hidden);
41
42PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
43  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()),
44    PPCAtomicLabelIndex(0) {
45
46  setPow2DivIsCheap();
47
48  // Use _setjmp/_longjmp instead of setjmp/longjmp.
49  setUseUnderscoreSetJmp(true);
50  setUseUnderscoreLongJmp(true);
51
52  // Set up the register classes.
53  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
54  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
55  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
56
57  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
58  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
59  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
60
61  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
62
63  // PowerPC has pre-inc load and store's.
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
67  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
68  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
72  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
73  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
74
75  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
76  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
77  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
78  // This is used in the ppcf128->int sequence.  Note it has different semantics
79  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
80  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
81
82  // PowerPC has no intrinsics for these particular operations
83  setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
84
85  // PowerPC has no SREM/UREM instructions
86  setOperationAction(ISD::SREM, MVT::i32, Expand);
87  setOperationAction(ISD::UREM, MVT::i32, Expand);
88  setOperationAction(ISD::SREM, MVT::i64, Expand);
89  setOperationAction(ISD::UREM, MVT::i64, Expand);
90
91  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
92  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
93  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
94  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
95  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
96  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
97  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
98  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
99  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
100
101  // We don't support sin/cos/sqrt/fmod/pow
102  setOperationAction(ISD::FSIN , MVT::f64, Expand);
103  setOperationAction(ISD::FCOS , MVT::f64, Expand);
104  setOperationAction(ISD::FREM , MVT::f64, Expand);
105  setOperationAction(ISD::FPOW , MVT::f64, Expand);
106  setOperationAction(ISD::FSIN , MVT::f32, Expand);
107  setOperationAction(ISD::FCOS , MVT::f32, Expand);
108  setOperationAction(ISD::FREM , MVT::f32, Expand);
109  setOperationAction(ISD::FPOW , MVT::f32, Expand);
110
111  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
112
113  // If we're enabling GP optimizations, use hardware square root
114  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
115    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
116    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
117  }
118
119  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
120  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
121
122  // PowerPC does not have BSWAP, CTPOP or CTTZ
123  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
124  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
125  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
126  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
127  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
128  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
129
130  // PowerPC does not have ROTR
131  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
132
133  // PowerPC does not have Select
134  setOperationAction(ISD::SELECT, MVT::i32, Expand);
135  setOperationAction(ISD::SELECT, MVT::i64, Expand);
136  setOperationAction(ISD::SELECT, MVT::f32, Expand);
137  setOperationAction(ISD::SELECT, MVT::f64, Expand);
138
139  // PowerPC wants to turn select_cc of FP into fsel when possible.
140  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
141  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
142
143  // PowerPC wants to optimize integer setcc a bit
144  setOperationAction(ISD::SETCC, MVT::i32, Custom);
145
146  // PowerPC does not have BRCOND which requires SetCC
147  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
148
149  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
150
151  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
152  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
153
154  // PowerPC does not have [U|S]INT_TO_FP
155  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
156  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
157
158  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
159  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
160  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
161  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
162
163  // We cannot sextinreg(i1).  Expand to shifts.
164  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
165
166  // Support label based line numbers.
167  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
168  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
169
170  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
171  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
172  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
173  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
174
175
176  // We want to legalize GlobalAddress and ConstantPool nodes into the
177  // appropriate instructions to materialize the address.
178  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
179  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
180  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
181  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
182  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
183  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
184  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
185  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
186
187  // RET must be custom lowered, to meet ABI requirements
188  setOperationAction(ISD::RET               , MVT::Other, Custom);
189
190  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
191  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
192
193  // VAARG is custom lowered with ELF 32 ABI
194  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
195    setOperationAction(ISD::VAARG, MVT::Other, Custom);
196  else
197    setOperationAction(ISD::VAARG, MVT::Other, Expand);
198
199  // Use the default implementation.
200  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
201  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
202  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
203  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
204  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
205  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
206
207  setOperationAction(ISD::ATOMIC_LOAD_ADD   , MVT::i32  , Custom);
208  setOperationAction(ISD::ATOMIC_CMP_SWAP   , MVT::i32  , Custom);
209  setOperationAction(ISD::ATOMIC_SWAP       , MVT::i32  , Custom);
210  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
211    setOperationAction(ISD::ATOMIC_LOAD_ADD , MVT::i64  , Custom);
212    setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i64  , Custom);
213    setOperationAction(ISD::ATOMIC_SWAP     , MVT::i64  , Custom);
214  }
215
216  // We want to custom lower some of our intrinsics.
217  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
218
219  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
220    // They also have instructions for converting between i64 and fp.
221    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
222    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
223    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
224    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
225    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
226
227    // FIXME: disable this lowered code.  This generates 64-bit register values,
228    // and we don't model the fact that the top part is clobbered by calls.  We
229    // need to flag these together so that the value isn't live across a call.
230    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
231
232    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
233    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
234  } else {
235    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
236    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
237  }
238
239  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
240    // 64-bit PowerPC implementations can support i64 types directly
241    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
242    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
243    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
244    // 64-bit PowerPC wants to expand i128 shifts itself.
245    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
246    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
247    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
248  } else {
249    // 32-bit PowerPC wants to expand i64 shifts itself.
250    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
251    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
252    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
253  }
254
255  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
256    // First set operation action for all vector types to expand. Then we
257    // will selectively turn on ones that can be effectively codegen'd.
258    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
259         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
260      MVT VT = (MVT::SimpleValueType)i;
261
262      // add/sub are legal for all supported vector VT's.
263      setOperationAction(ISD::ADD , VT, Legal);
264      setOperationAction(ISD::SUB , VT, Legal);
265
266      // We promote all shuffles to v16i8.
267      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
268      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
269
270      // We promote all non-typed operations to v4i32.
271      setOperationAction(ISD::AND   , VT, Promote);
272      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
273      setOperationAction(ISD::OR    , VT, Promote);
274      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
275      setOperationAction(ISD::XOR   , VT, Promote);
276      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
277      setOperationAction(ISD::LOAD  , VT, Promote);
278      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
279      setOperationAction(ISD::SELECT, VT, Promote);
280      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
281      setOperationAction(ISD::STORE, VT, Promote);
282      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
283
284      // No other operations are legal.
285      setOperationAction(ISD::MUL , VT, Expand);
286      setOperationAction(ISD::SDIV, VT, Expand);
287      setOperationAction(ISD::SREM, VT, Expand);
288      setOperationAction(ISD::UDIV, VT, Expand);
289      setOperationAction(ISD::UREM, VT, Expand);
290      setOperationAction(ISD::FDIV, VT, Expand);
291      setOperationAction(ISD::FNEG, VT, Expand);
292      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
293      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
294      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
295      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
296      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
297      setOperationAction(ISD::UDIVREM, VT, Expand);
298      setOperationAction(ISD::SDIVREM, VT, Expand);
299      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
300      setOperationAction(ISD::FPOW, VT, Expand);
301      setOperationAction(ISD::CTPOP, VT, Expand);
302      setOperationAction(ISD::CTLZ, VT, Expand);
303      setOperationAction(ISD::CTTZ, VT, Expand);
304    }
305
306    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
307    // with merges, splats, etc.
308    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
309
310    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
311    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
312    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
313    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
314    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
315    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
316
317    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
318    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
319    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
320    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
321
322    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
323    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
324    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
325    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
326
327    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
328    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
329
330    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
331    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
332    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
333    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
334  }
335
336  setShiftAmountType(MVT::i32);
337  setSetCCResultContents(ZeroOrOneSetCCResult);
338
339  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
340    setStackPointerRegisterToSaveRestore(PPC::X1);
341    setExceptionPointerRegister(PPC::X3);
342    setExceptionSelectorRegister(PPC::X4);
343  } else {
344    setStackPointerRegisterToSaveRestore(PPC::R1);
345    setExceptionPointerRegister(PPC::R3);
346    setExceptionSelectorRegister(PPC::R4);
347  }
348
349  // We have target-specific dag combine patterns for the following nodes:
350  setTargetDAGCombine(ISD::SINT_TO_FP);
351  setTargetDAGCombine(ISD::STORE);
352  setTargetDAGCombine(ISD::BR_CC);
353  setTargetDAGCombine(ISD::BSWAP);
354
355  // Darwin long double math library functions have $LDBL128 appended.
356  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
357    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
358    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
359    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
360    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
361    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
362  }
363
364  computeRegisterProperties();
365}
366
367/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
368/// function arguments in the caller parameter area.
369unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
370  TargetMachine &TM = getTargetMachine();
371  // Darwin passes everything on 4 byte boundary.
372  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
373    return 4;
374  // FIXME Elf TBD
375  return 4;
376}
377
378const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
379  switch (Opcode) {
380  default: return 0;
381  case PPCISD::FSEL:          return "PPCISD::FSEL";
382  case PPCISD::FCFID:         return "PPCISD::FCFID";
383  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
384  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
385  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
386  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
387  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
388  case PPCISD::VPERM:         return "PPCISD::VPERM";
389  case PPCISD::Hi:            return "PPCISD::Hi";
390  case PPCISD::Lo:            return "PPCISD::Lo";
391  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
392  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
393  case PPCISD::SRL:           return "PPCISD::SRL";
394  case PPCISD::SRA:           return "PPCISD::SRA";
395  case PPCISD::SHL:           return "PPCISD::SHL";
396  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
397  case PPCISD::STD_32:        return "PPCISD::STD_32";
398  case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF";
399  case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho";
400  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
401  case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho";
402  case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF";
403  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
404  case PPCISD::MFCR:          return "PPCISD::MFCR";
405  case PPCISD::VCMP:          return "PPCISD::VCMP";
406  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
407  case PPCISD::LBRX:          return "PPCISD::LBRX";
408  case PPCISD::STBRX:         return "PPCISD::STBRX";
409  case PPCISD::LARX:          return "PPCISD::LARX";
410  case PPCISD::STCX:          return "PPCISD::STCX";
411  case PPCISD::CMP_UNRESERVE: return "PPCISD::CMP_UNRESERVE";
412  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
413  case PPCISD::MFFS:          return "PPCISD::MFFS";
414  case PPCISD::MTFSB0:        return "PPCISD::MTFSB0";
415  case PPCISD::MTFSB1:        return "PPCISD::MTFSB1";
416  case PPCISD::FADDRTZ:       return "PPCISD::FADDRTZ";
417  case PPCISD::MTFSF:         return "PPCISD::MTFSF";
418  case PPCISD::TAILCALL:      return "PPCISD::TAILCALL";
419  case PPCISD::TC_RETURN:     return "PPCISD::TC_RETURN";
420  }
421}
422
423
424MVT PPCTargetLowering::getSetCCResultType(const SDOperand &) const {
425  return MVT::i32;
426}
427
428
429//===----------------------------------------------------------------------===//
430// Node matching predicates, for use by the tblgen matching code.
431//===----------------------------------------------------------------------===//
432
433/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
434static bool isFloatingPointZero(SDOperand Op) {
435  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
436    return CFP->getValueAPF().isZero();
437  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
438    // Maybe this has already been legalized into the constant pool?
439    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
440      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
441        return CFP->getValueAPF().isZero();
442  }
443  return false;
444}
445
446/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
447/// true if Op is undef or if it matches the specified value.
448static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
449  return Op.getOpcode() == ISD::UNDEF ||
450         cast<ConstantSDNode>(Op)->getValue() == Val;
451}
452
453/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
454/// VPKUHUM instruction.
455bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
456  if (!isUnary) {
457    for (unsigned i = 0; i != 16; ++i)
458      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
459        return false;
460  } else {
461    for (unsigned i = 0; i != 8; ++i)
462      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
463          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
464        return false;
465  }
466  return true;
467}
468
469/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
470/// VPKUWUM instruction.
471bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
472  if (!isUnary) {
473    for (unsigned i = 0; i != 16; i += 2)
474      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
475          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
476        return false;
477  } else {
478    for (unsigned i = 0; i != 8; i += 2)
479      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
480          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
481          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
482          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
483        return false;
484  }
485  return true;
486}
487
488/// isVMerge - Common function, used to match vmrg* shuffles.
489///
490static bool isVMerge(SDNode *N, unsigned UnitSize,
491                     unsigned LHSStart, unsigned RHSStart) {
492  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
493         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
494  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
495         "Unsupported merge size!");
496
497  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
498    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
499      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
500                             LHSStart+j+i*UnitSize) ||
501          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
502                             RHSStart+j+i*UnitSize))
503        return false;
504    }
505      return true;
506}
507
508/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
509/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
510bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
511  if (!isUnary)
512    return isVMerge(N, UnitSize, 8, 24);
513  return isVMerge(N, UnitSize, 8, 8);
514}
515
516/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
517/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
518bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
519  if (!isUnary)
520    return isVMerge(N, UnitSize, 0, 16);
521  return isVMerge(N, UnitSize, 0, 0);
522}
523
524
525/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
526/// amount, otherwise return -1.
527int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
528  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
529         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
530  // Find the first non-undef value in the shuffle mask.
531  unsigned i;
532  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
533    /*search*/;
534
535  if (i == 16) return -1;  // all undef.
536
537  // Otherwise, check to see if the rest of the elements are consequtively
538  // numbered from this value.
539  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
540  if (ShiftAmt < i) return -1;
541  ShiftAmt -= i;
542
543  if (!isUnary) {
544    // Check the rest of the elements to see if they are consequtive.
545    for (++i; i != 16; ++i)
546      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
547        return -1;
548  } else {
549    // Check the rest of the elements to see if they are consequtive.
550    for (++i; i != 16; ++i)
551      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
552        return -1;
553  }
554
555  return ShiftAmt;
556}
557
558/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
559/// specifies a splat of a single element that is suitable for input to
560/// VSPLTB/VSPLTH/VSPLTW.
561bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
562  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
563         N->getNumOperands() == 16 &&
564         (EltSize == 1 || EltSize == 2 || EltSize == 4));
565
566  // This is a splat operation if each element of the permute is the same, and
567  // if the value doesn't reference the second vector.
568  unsigned ElementBase = 0;
569  SDOperand Elt = N->getOperand(0);
570  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
571    ElementBase = EltV->getValue();
572  else
573    return false;   // FIXME: Handle UNDEF elements too!
574
575  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
576    return false;
577
578  // Check that they are consequtive.
579  for (unsigned i = 1; i != EltSize; ++i) {
580    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
581        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
582      return false;
583  }
584
585  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
586  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
587    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
588    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
589           "Invalid VECTOR_SHUFFLE mask!");
590    for (unsigned j = 0; j != EltSize; ++j)
591      if (N->getOperand(i+j) != N->getOperand(j))
592        return false;
593  }
594
595  return true;
596}
597
598/// isAllNegativeZeroVector - Returns true if all elements of build_vector
599/// are -0.0.
600bool PPC::isAllNegativeZeroVector(SDNode *N) {
601  assert(N->getOpcode() == ISD::BUILD_VECTOR);
602  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
603    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
604      return CFP->getValueAPF().isNegZero();
605  return false;
606}
607
608/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
609/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
610unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
611  assert(isSplatShuffleMask(N, EltSize));
612  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
613}
614
615/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
616/// by using a vspltis[bhw] instruction of the specified element size, return
617/// the constant being splatted.  The ByteSize field indicates the number of
618/// bytes of each element [124] -> [bhw].
619SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
620  SDOperand OpVal(0, 0);
621
622  // If ByteSize of the splat is bigger than the element size of the
623  // build_vector, then we have a case where we are checking for a splat where
624  // multiple elements of the buildvector are folded together into a single
625  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
626  unsigned EltSize = 16/N->getNumOperands();
627  if (EltSize < ByteSize) {
628    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
629    SDOperand UniquedVals[4];
630    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
631
632    // See if all of the elements in the buildvector agree across.
633    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
634      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
635      // If the element isn't a constant, bail fully out.
636      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
637
638
639      if (UniquedVals[i&(Multiple-1)].Val == 0)
640        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
641      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
642        return SDOperand();  // no match.
643    }
644
645    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
646    // either constant or undef values that are identical for each chunk.  See
647    // if these chunks can form into a larger vspltis*.
648
649    // Check to see if all of the leading entries are either 0 or -1.  If
650    // neither, then this won't fit into the immediate field.
651    bool LeadingZero = true;
652    bool LeadingOnes = true;
653    for (unsigned i = 0; i != Multiple-1; ++i) {
654      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
655
656      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
657      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
658    }
659    // Finally, check the least significant entry.
660    if (LeadingZero) {
661      if (UniquedVals[Multiple-1].Val == 0)
662        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
663      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
664      if (Val < 16)
665        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
666    }
667    if (LeadingOnes) {
668      if (UniquedVals[Multiple-1].Val == 0)
669        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
670      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
671      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
672        return DAG.getTargetConstant(Val, MVT::i32);
673    }
674
675    return SDOperand();
676  }
677
678  // Check to see if this buildvec has a single non-undef value in its elements.
679  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
680    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
681    if (OpVal.Val == 0)
682      OpVal = N->getOperand(i);
683    else if (OpVal != N->getOperand(i))
684      return SDOperand();
685  }
686
687  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
688
689  unsigned ValSizeInBytes = 0;
690  uint64_t Value = 0;
691  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
692    Value = CN->getValue();
693    ValSizeInBytes = CN->getValueType(0).getSizeInBits()/8;
694  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
695    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
696    Value = FloatToBits(CN->getValueAPF().convertToFloat());
697    ValSizeInBytes = 4;
698  }
699
700  // If the splat value is larger than the element value, then we can never do
701  // this splat.  The only case that we could fit the replicated bits into our
702  // immediate field for would be zero, and we prefer to use vxor for it.
703  if (ValSizeInBytes < ByteSize) return SDOperand();
704
705  // If the element value is larger than the splat value, cut it in half and
706  // check to see if the two halves are equal.  Continue doing this until we
707  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
708  while (ValSizeInBytes > ByteSize) {
709    ValSizeInBytes >>= 1;
710
711    // If the top half equals the bottom half, we're still ok.
712    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
713         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
714      return SDOperand();
715  }
716
717  // Properly sign extend the value.
718  int ShAmt = (4-ByteSize)*8;
719  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
720
721  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
722  if (MaskVal == 0) return SDOperand();
723
724  // Finally, if this value fits in a 5 bit sext field, return it
725  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
726    return DAG.getTargetConstant(MaskVal, MVT::i32);
727  return SDOperand();
728}
729
730//===----------------------------------------------------------------------===//
731//  Addressing Mode Selection
732//===----------------------------------------------------------------------===//
733
734/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
735/// or 64-bit immediate, and if the value can be accurately represented as a
736/// sign extension from a 16-bit value.  If so, this returns true and the
737/// immediate.
738static bool isIntS16Immediate(SDNode *N, short &Imm) {
739  if (N->getOpcode() != ISD::Constant)
740    return false;
741
742  Imm = (short)cast<ConstantSDNode>(N)->getValue();
743  if (N->getValueType(0) == MVT::i32)
744    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
745  else
746    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
747}
748static bool isIntS16Immediate(SDOperand Op, short &Imm) {
749  return isIntS16Immediate(Op.Val, Imm);
750}
751
752
753/// SelectAddressRegReg - Given the specified addressed, check to see if it
754/// can be represented as an indexed [r+r] operation.  Returns false if it
755/// can be more efficiently represented with [r+imm].
756bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
757                                            SDOperand &Index,
758                                            SelectionDAG &DAG) {
759  short imm = 0;
760  if (N.getOpcode() == ISD::ADD) {
761    if (isIntS16Immediate(N.getOperand(1), imm))
762      return false;    // r+i
763    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
764      return false;    // r+i
765
766    Base = N.getOperand(0);
767    Index = N.getOperand(1);
768    return true;
769  } else if (N.getOpcode() == ISD::OR) {
770    if (isIntS16Immediate(N.getOperand(1), imm))
771      return false;    // r+i can fold it if we can.
772
773    // If this is an or of disjoint bitfields, we can codegen this as an add
774    // (for better address arithmetic) if the LHS and RHS of the OR are provably
775    // disjoint.
776    APInt LHSKnownZero, LHSKnownOne;
777    APInt RHSKnownZero, RHSKnownOne;
778    DAG.ComputeMaskedBits(N.getOperand(0),
779                          APInt::getAllOnesValue(N.getOperand(0)
780                            .getValueSizeInBits()),
781                          LHSKnownZero, LHSKnownOne);
782
783    if (LHSKnownZero.getBoolValue()) {
784      DAG.ComputeMaskedBits(N.getOperand(1),
785                            APInt::getAllOnesValue(N.getOperand(1)
786                              .getValueSizeInBits()),
787                            RHSKnownZero, RHSKnownOne);
788      // If all of the bits are known zero on the LHS or RHS, the add won't
789      // carry.
790      if (~(LHSKnownZero | RHSKnownZero) == 0) {
791        Base = N.getOperand(0);
792        Index = N.getOperand(1);
793        return true;
794      }
795    }
796  }
797
798  return false;
799}
800
801/// Returns true if the address N can be represented by a base register plus
802/// a signed 16-bit displacement [r+imm], and if it is not better
803/// represented as reg+reg.
804bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
805                                            SDOperand &Base, SelectionDAG &DAG){
806  // If this can be more profitably realized as r+r, fail.
807  if (SelectAddressRegReg(N, Disp, Base, DAG))
808    return false;
809
810  if (N.getOpcode() == ISD::ADD) {
811    short imm = 0;
812    if (isIntS16Immediate(N.getOperand(1), imm)) {
813      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
814      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
815        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
816      } else {
817        Base = N.getOperand(0);
818      }
819      return true; // [r+i]
820    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
821      // Match LOAD (ADD (X, Lo(G))).
822      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
823             && "Cannot handle constant offsets yet!");
824      Disp = N.getOperand(1).getOperand(0);  // The global address.
825      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
826             Disp.getOpcode() == ISD::TargetConstantPool ||
827             Disp.getOpcode() == ISD::TargetJumpTable);
828      Base = N.getOperand(0);
829      return true;  // [&g+r]
830    }
831  } else if (N.getOpcode() == ISD::OR) {
832    short imm = 0;
833    if (isIntS16Immediate(N.getOperand(1), imm)) {
834      // If this is an or of disjoint bitfields, we can codegen this as an add
835      // (for better address arithmetic) if the LHS and RHS of the OR are
836      // provably disjoint.
837      APInt LHSKnownZero, LHSKnownOne;
838      DAG.ComputeMaskedBits(N.getOperand(0),
839                            APInt::getAllOnesValue(N.getOperand(0)
840                                                   .getValueSizeInBits()),
841                            LHSKnownZero, LHSKnownOne);
842
843      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
844        // If all of the bits are known zero on the LHS or RHS, the add won't
845        // carry.
846        Base = N.getOperand(0);
847        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
848        return true;
849      }
850    }
851  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
852    // Loading from a constant address.
853
854    // If this address fits entirely in a 16-bit sext immediate field, codegen
855    // this as "d, 0"
856    short Imm;
857    if (isIntS16Immediate(CN, Imm)) {
858      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
859      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
860      return true;
861    }
862
863    // Handle 32-bit sext immediates with LIS + addr mode.
864    if (CN->getValueType(0) == MVT::i32 ||
865        (int64_t)CN->getValue() == (int)CN->getValue()) {
866      int Addr = (int)CN->getValue();
867
868      // Otherwise, break this down into an LIS + disp.
869      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
870
871      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
872      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
873      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
874      return true;
875    }
876  }
877
878  Disp = DAG.getTargetConstant(0, getPointerTy());
879  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
880    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
881  else
882    Base = N;
883  return true;      // [r+0]
884}
885
886/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
887/// represented as an indexed [r+r] operation.
888bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
889                                                SDOperand &Index,
890                                                SelectionDAG &DAG) {
891  // Check to see if we can easily represent this as an [r+r] address.  This
892  // will fail if it thinks that the address is more profitably represented as
893  // reg+imm, e.g. where imm = 0.
894  if (SelectAddressRegReg(N, Base, Index, DAG))
895    return true;
896
897  // If the operand is an addition, always emit this as [r+r], since this is
898  // better (for code size, and execution, as the memop does the add for free)
899  // than emitting an explicit add.
900  if (N.getOpcode() == ISD::ADD) {
901    Base = N.getOperand(0);
902    Index = N.getOperand(1);
903    return true;
904  }
905
906  // Otherwise, do it the hard way, using R0 as the base register.
907  Base = DAG.getRegister(PPC::R0, N.getValueType());
908  Index = N;
909  return true;
910}
911
912/// SelectAddressRegImmShift - Returns true if the address N can be
913/// represented by a base register plus a signed 14-bit displacement
914/// [r+imm*4].  Suitable for use by STD and friends.
915bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
916                                                 SDOperand &Base,
917                                                 SelectionDAG &DAG) {
918  // If this can be more profitably realized as r+r, fail.
919  if (SelectAddressRegReg(N, Disp, Base, DAG))
920    return false;
921
922  if (N.getOpcode() == ISD::ADD) {
923    short imm = 0;
924    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
925      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
926      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
927        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
928      } else {
929        Base = N.getOperand(0);
930      }
931      return true; // [r+i]
932    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
933      // Match LOAD (ADD (X, Lo(G))).
934      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
935             && "Cannot handle constant offsets yet!");
936      Disp = N.getOperand(1).getOperand(0);  // The global address.
937      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
938             Disp.getOpcode() == ISD::TargetConstantPool ||
939             Disp.getOpcode() == ISD::TargetJumpTable);
940      Base = N.getOperand(0);
941      return true;  // [&g+r]
942    }
943  } else if (N.getOpcode() == ISD::OR) {
944    short imm = 0;
945    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
946      // If this is an or of disjoint bitfields, we can codegen this as an add
947      // (for better address arithmetic) if the LHS and RHS of the OR are
948      // provably disjoint.
949      APInt LHSKnownZero, LHSKnownOne;
950      DAG.ComputeMaskedBits(N.getOperand(0),
951                            APInt::getAllOnesValue(N.getOperand(0)
952                                                   .getValueSizeInBits()),
953                            LHSKnownZero, LHSKnownOne);
954      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
955        // If all of the bits are known zero on the LHS or RHS, the add won't
956        // carry.
957        Base = N.getOperand(0);
958        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
959        return true;
960      }
961    }
962  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
963    // Loading from a constant address.  Verify low two bits are clear.
964    if ((CN->getValue() & 3) == 0) {
965      // If this address fits entirely in a 14-bit sext immediate field, codegen
966      // this as "d, 0"
967      short Imm;
968      if (isIntS16Immediate(CN, Imm)) {
969        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
970        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
971        return true;
972      }
973
974      // Fold the low-part of 32-bit absolute addresses into addr mode.
975      if (CN->getValueType(0) == MVT::i32 ||
976          (int64_t)CN->getValue() == (int)CN->getValue()) {
977        int Addr = (int)CN->getValue();
978
979        // Otherwise, break this down into an LIS + disp.
980        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
981
982        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
983        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
984        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
985        return true;
986      }
987    }
988  }
989
990  Disp = DAG.getTargetConstant(0, getPointerTy());
991  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
992    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
993  else
994    Base = N;
995  return true;      // [r+0]
996}
997
998
999/// getPreIndexedAddressParts - returns true by value, base pointer and
1000/// offset pointer and addressing mode by reference if the node's address
1001/// can be legally represented as pre-indexed load / store address.
1002bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
1003                                                  SDOperand &Offset,
1004                                                  ISD::MemIndexedMode &AM,
1005                                                  SelectionDAG &DAG) {
1006  // Disabled by default for now.
1007  if (!EnablePPCPreinc) return false;
1008
1009  SDOperand Ptr;
1010  MVT VT;
1011  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1012    Ptr = LD->getBasePtr();
1013    VT = LD->getMemoryVT();
1014
1015  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1016    ST = ST;
1017    Ptr = ST->getBasePtr();
1018    VT  = ST->getMemoryVT();
1019  } else
1020    return false;
1021
1022  // PowerPC doesn't have preinc load/store instructions for vectors.
1023  if (VT.isVector())
1024    return false;
1025
1026  // TODO: Check reg+reg first.
1027
1028  // LDU/STU use reg+imm*4, others use reg+imm.
1029  if (VT != MVT::i64) {
1030    // reg + imm
1031    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1032      return false;
1033  } else {
1034    // reg + imm * 4.
1035    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1036      return false;
1037  }
1038
1039  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1040    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1041    // sext i32 to i64 when addr mode is r+i.
1042    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1043        LD->getExtensionType() == ISD::SEXTLOAD &&
1044        isa<ConstantSDNode>(Offset))
1045      return false;
1046  }
1047
1048  AM = ISD::PRE_INC;
1049  return true;
1050}
1051
1052//===----------------------------------------------------------------------===//
1053//  LowerOperation implementation
1054//===----------------------------------------------------------------------===//
1055
1056SDOperand PPCTargetLowering::LowerConstantPool(SDOperand Op,
1057                                             SelectionDAG &DAG) {
1058  MVT PtrVT = Op.getValueType();
1059  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1060  Constant *C = CP->getConstVal();
1061  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1062  SDOperand Zero = DAG.getConstant(0, PtrVT);
1063
1064  const TargetMachine &TM = DAG.getTarget();
1065
1066  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1067  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1068
1069  // If this is a non-darwin platform, we don't support non-static relo models
1070  // yet.
1071  if (TM.getRelocationModel() == Reloc::Static ||
1072      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1073    // Generate non-pic code that has direct accesses to the constant pool.
1074    // The address of the global is just (hi(&g)+lo(&g)).
1075    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1076  }
1077
1078  if (TM.getRelocationModel() == Reloc::PIC_) {
1079    // With PIC, the first instruction is actually "GR+hi(&G)".
1080    Hi = DAG.getNode(ISD::ADD, PtrVT,
1081                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1082  }
1083
1084  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1085  return Lo;
1086}
1087
1088SDOperand PPCTargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1089  MVT PtrVT = Op.getValueType();
1090  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1091  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1092  SDOperand Zero = DAG.getConstant(0, PtrVT);
1093
1094  const TargetMachine &TM = DAG.getTarget();
1095
1096  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1097  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1098
1099  // If this is a non-darwin platform, we don't support non-static relo models
1100  // yet.
1101  if (TM.getRelocationModel() == Reloc::Static ||
1102      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1103    // Generate non-pic code that has direct accesses to the constant pool.
1104    // The address of the global is just (hi(&g)+lo(&g)).
1105    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1106  }
1107
1108  if (TM.getRelocationModel() == Reloc::PIC_) {
1109    // With PIC, the first instruction is actually "GR+hi(&G)".
1110    Hi = DAG.getNode(ISD::ADD, PtrVT,
1111                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1112  }
1113
1114  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1115  return Lo;
1116}
1117
1118SDOperand PPCTargetLowering::LowerGlobalTLSAddress(SDOperand Op,
1119                                                   SelectionDAG &DAG) {
1120  assert(0 && "TLS not implemented for PPC.");
1121  return SDOperand(); // Not reached
1122}
1123
1124SDOperand PPCTargetLowering::LowerGlobalAddress(SDOperand Op,
1125                                                SelectionDAG &DAG) {
1126  MVT PtrVT = Op.getValueType();
1127  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1128  GlobalValue *GV = GSDN->getGlobal();
1129  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1130  // If it's a debug information descriptor, don't mess with it.
1131  if (DAG.isVerifiedDebugInfoDesc(Op))
1132    return GA;
1133  SDOperand Zero = DAG.getConstant(0, PtrVT);
1134
1135  const TargetMachine &TM = DAG.getTarget();
1136
1137  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1138  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1139
1140  // If this is a non-darwin platform, we don't support non-static relo models
1141  // yet.
1142  if (TM.getRelocationModel() == Reloc::Static ||
1143      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1144    // Generate non-pic code that has direct accesses to globals.
1145    // The address of the global is just (hi(&g)+lo(&g)).
1146    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1147  }
1148
1149  if (TM.getRelocationModel() == Reloc::PIC_) {
1150    // With PIC, the first instruction is actually "GR+hi(&G)".
1151    Hi = DAG.getNode(ISD::ADD, PtrVT,
1152                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1153  }
1154
1155  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1156
1157  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1158    return Lo;
1159
1160  // If the global is weak or external, we have to go through the lazy
1161  // resolution stub.
1162  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1163}
1164
1165SDOperand PPCTargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1166  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1167
1168  // If we're comparing for equality to zero, expose the fact that this is
1169  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1170  // fold the new nodes.
1171  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1172    if (C->isNullValue() && CC == ISD::SETEQ) {
1173      MVT VT = Op.getOperand(0).getValueType();
1174      SDOperand Zext = Op.getOperand(0);
1175      if (VT.bitsLT(MVT::i32)) {
1176        VT = MVT::i32;
1177        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1178      }
1179      unsigned Log2b = Log2_32(VT.getSizeInBits());
1180      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1181      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1182                                  DAG.getConstant(Log2b, MVT::i32));
1183      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1184    }
1185    // Leave comparisons against 0 and -1 alone for now, since they're usually
1186    // optimized.  FIXME: revisit this when we can custom lower all setcc
1187    // optimizations.
1188    if (C->isAllOnesValue() || C->isNullValue())
1189      return SDOperand();
1190  }
1191
1192  // If we have an integer seteq/setne, turn it into a compare against zero
1193  // by xor'ing the rhs with the lhs, which is faster than setting a
1194  // condition register, reading it back out, and masking the correct bit.  The
1195  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1196  // the result to other bit-twiddling opportunities.
1197  MVT LHSVT = Op.getOperand(0).getValueType();
1198  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1199    MVT VT = Op.getValueType();
1200    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1201                                Op.getOperand(1));
1202    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1203  }
1204  return SDOperand();
1205}
1206
1207SDOperand PPCTargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1208                              int VarArgsFrameIndex,
1209                              int VarArgsStackOffset,
1210                              unsigned VarArgsNumGPR,
1211                              unsigned VarArgsNumFPR,
1212                              const PPCSubtarget &Subtarget) {
1213
1214  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1215  return SDOperand(); // Not reached
1216}
1217
1218SDOperand PPCTargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1219                              int VarArgsFrameIndex,
1220                              int VarArgsStackOffset,
1221                              unsigned VarArgsNumGPR,
1222                              unsigned VarArgsNumFPR,
1223                              const PPCSubtarget &Subtarget) {
1224
1225  if (Subtarget.isMachoABI()) {
1226    // vastart just stores the address of the VarArgsFrameIndex slot into the
1227    // memory location argument.
1228    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1229    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1230    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1231    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
1232  }
1233
1234  // For ELF 32 ABI we follow the layout of the va_list struct.
1235  // We suppose the given va_list is already allocated.
1236  //
1237  // typedef struct {
1238  //  char gpr;     /* index into the array of 8 GPRs
1239  //                 * stored in the register save area
1240  //                 * gpr=0 corresponds to r3,
1241  //                 * gpr=1 to r4, etc.
1242  //                 */
1243  //  char fpr;     /* index into the array of 8 FPRs
1244  //                 * stored in the register save area
1245  //                 * fpr=0 corresponds to f1,
1246  //                 * fpr=1 to f2, etc.
1247  //                 */
1248  //  char *overflow_arg_area;
1249  //                /* location on stack that holds
1250  //                 * the next overflow argument
1251  //                 */
1252  //  char *reg_save_area;
1253  //               /* where r3:r10 and f1:f8 (if saved)
1254  //                * are stored
1255  //                */
1256  // } va_list[1];
1257
1258
1259  SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1260  SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1261
1262
1263  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1264
1265  SDOperand StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1266  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1267
1268  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1269  SDOperand ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1270
1271  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1272  SDOperand ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1273
1274  uint64_t FPROffset = 1;
1275  SDOperand ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1276
1277  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1278
1279  // Store first byte : number of int regs
1280  SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1281                                      Op.getOperand(1), SV, 0);
1282  uint64_t nextOffset = FPROffset;
1283  SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1284                                  ConstFPROffset);
1285
1286  // Store second byte : number of float regs
1287  SDOperand secondStore =
1288    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1289  nextOffset += StackOffset;
1290  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1291
1292  // Store second word : arguments given on stack
1293  SDOperand thirdStore =
1294    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1295  nextOffset += FrameOffset;
1296  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1297
1298  // Store third word : arguments given in registers
1299  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
1300
1301}
1302
1303#include "PPCGenCallingConv.inc"
1304
1305/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1306/// depending on which subtarget is selected.
1307static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1308  if (Subtarget.isMachoABI()) {
1309    static const unsigned FPR[] = {
1310      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1311      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1312    };
1313    return FPR;
1314  }
1315
1316
1317  static const unsigned FPR[] = {
1318    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1319    PPC::F8
1320  };
1321  return FPR;
1322}
1323
1324/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1325/// the stack.
1326static unsigned CalculateStackSlotSize(SDOperand Arg, SDOperand Flag,
1327                                       bool isVarArg, unsigned PtrByteSize) {
1328  MVT ArgVT = Arg.getValueType();
1329  ISD::ArgFlagsTy Flags = cast<ARG_FLAGSSDNode>(Flag)->getArgFlags();
1330  unsigned ArgSize =ArgVT.getSizeInBits()/8;
1331  if (Flags.isByVal())
1332    ArgSize = Flags.getByValSize();
1333  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1334
1335  return ArgSize;
1336}
1337
1338SDOperand
1339PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op,
1340                                         SelectionDAG &DAG,
1341                                         int &VarArgsFrameIndex,
1342                                         int &VarArgsStackOffset,
1343                                         unsigned &VarArgsNumGPR,
1344                                         unsigned &VarArgsNumFPR,
1345                                         const PPCSubtarget &Subtarget) {
1346  // TODO: add description of PPC stack frame format, or at least some docs.
1347  //
1348  MachineFunction &MF = DAG.getMachineFunction();
1349  MachineFrameInfo *MFI = MF.getFrameInfo();
1350  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1351  SmallVector<SDOperand, 8> ArgValues;
1352  SDOperand Root = Op.getOperand(0);
1353  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1354
1355  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1356  bool isPPC64 = PtrVT == MVT::i64;
1357  bool isMachoABI = Subtarget.isMachoABI();
1358  bool isELF32_ABI = Subtarget.isELF32_ABI();
1359  // Potential tail calls could cause overwriting of argument stack slots.
1360  unsigned CC = MF.getFunction()->getCallingConv();
1361  bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
1362  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1363
1364  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1365  // Area that is at least reserved in caller of this function.
1366  unsigned MinReservedArea = ArgOffset;
1367
1368  static const unsigned GPR_32[] = {           // 32-bit registers.
1369    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1370    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1371  };
1372  static const unsigned GPR_64[] = {           // 64-bit registers.
1373    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1374    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1375  };
1376
1377  static const unsigned *FPR = GetFPR(Subtarget);
1378
1379  static const unsigned VR[] = {
1380    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1381    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1382  };
1383
1384  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1385  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1386  const unsigned Num_VR_Regs  = array_lengthof( VR);
1387
1388  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1389
1390  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1391
1392  // In 32-bit non-varargs functions, the stack space for vectors is after the
1393  // stack space for non-vectors.  We do not use this space unless we have
1394  // too many vectors to fit in registers, something that only occurs in
1395  // constructed examples:), but we have to walk the arglist to figure
1396  // that out...for the pathological case, compute VecArgOffset as the
1397  // start of the vector parameter area.  Computing VecArgOffset is the
1398  // entire point of the following loop.
1399  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1400  // to handle Elf here.
1401  unsigned VecArgOffset = ArgOffset;
1402  if (!isVarArg && !isPPC64) {
1403    for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e;
1404         ++ArgNo) {
1405      MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1406      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1407      ISD::ArgFlagsTy Flags =
1408        cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1409
1410      if (Flags.isByVal()) {
1411        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1412        ObjSize = Flags.getByValSize();
1413        unsigned ArgSize =
1414                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1415        VecArgOffset += ArgSize;
1416        continue;
1417      }
1418
1419      switch(ObjectVT.getSimpleVT()) {
1420      default: assert(0 && "Unhandled argument type!");
1421      case MVT::i32:
1422      case MVT::f32:
1423        VecArgOffset += isPPC64 ? 8 : 4;
1424        break;
1425      case MVT::i64:  // PPC64
1426      case MVT::f64:
1427        VecArgOffset += 8;
1428        break;
1429      case MVT::v4f32:
1430      case MVT::v4i32:
1431      case MVT::v8i16:
1432      case MVT::v16i8:
1433        // Nothing to do, we're only looking at Nonvector args here.
1434        break;
1435      }
1436    }
1437  }
1438  // We've found where the vector parameter area in memory is.  Skip the
1439  // first 12 parameters; these don't use that memory.
1440  VecArgOffset = ((VecArgOffset+15)/16)*16;
1441  VecArgOffset += 12*16;
1442
1443  // Add DAG nodes to load the arguments or copy them out of registers.  On
1444  // entry to a function on PPC, the arguments start after the linkage area,
1445  // although the first ones are often in registers.
1446  //
1447  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1448  // represented with two words (long long or double) must be copied to an
1449  // even GPR_idx value or to an even ArgOffset value.
1450
1451  SmallVector<SDOperand, 8> MemOps;
1452  unsigned nAltivecParamsAtEnd = 0;
1453  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1454    SDOperand ArgVal;
1455    bool needsLoad = false;
1456    MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1457    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1458    unsigned ArgSize = ObjSize;
1459    ISD::ArgFlagsTy Flags =
1460      cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1461    // See if next argument requires stack alignment in ELF
1462    bool Align = Flags.isSplit();
1463
1464    unsigned CurArgOffset = ArgOffset;
1465
1466    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1467    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1468        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1469      if (isVarArg || isPPC64) {
1470        MinReservedArea = ((MinReservedArea+15)/16)*16;
1471        MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1472                                                  Op.getOperand(ArgNo+3),
1473                                                  isVarArg,
1474                                                  PtrByteSize);
1475      } else  nAltivecParamsAtEnd++;
1476    } else
1477      // Calculate min reserved area.
1478      MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1479                                                Op.getOperand(ArgNo+3),
1480                                                isVarArg,
1481                                                PtrByteSize);
1482
1483    // FIXME alignment for ELF may not be right
1484    // FIXME the codegen can be much improved in some cases.
1485    // We do not have to keep everything in memory.
1486    if (Flags.isByVal()) {
1487      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1488      ObjSize = Flags.getByValSize();
1489      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1490      // Double word align in ELF
1491      if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1492      // Objects of size 1 and 2 are right justified, everything else is
1493      // left justified.  This means the memory address is adjusted forwards.
1494      if (ObjSize==1 || ObjSize==2) {
1495        CurArgOffset = CurArgOffset + (4 - ObjSize);
1496      }
1497      // The value of the object is its address.
1498      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1499      SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1500      ArgValues.push_back(FIN);
1501      if (ObjSize==1 || ObjSize==2) {
1502        if (GPR_idx != Num_GPR_Regs) {
1503          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1504          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1505          SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1506          SDOperand Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1507                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1508          MemOps.push_back(Store);
1509          ++GPR_idx;
1510          if (isMachoABI) ArgOffset += PtrByteSize;
1511        } else {
1512          ArgOffset += PtrByteSize;
1513        }
1514        continue;
1515      }
1516      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1517        // Store whatever pieces of the object are in registers
1518        // to memory.  ArgVal will be address of the beginning of
1519        // the object.
1520        if (GPR_idx != Num_GPR_Regs) {
1521          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1522          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1523          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1524          SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1525          SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1526          SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1527          MemOps.push_back(Store);
1528          ++GPR_idx;
1529          if (isMachoABI) ArgOffset += PtrByteSize;
1530        } else {
1531          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1532          break;
1533        }
1534      }
1535      continue;
1536    }
1537
1538    switch (ObjectVT.getSimpleVT()) {
1539    default: assert(0 && "Unhandled argument type!");
1540    case MVT::i32:
1541      if (!isPPC64) {
1542        // Double word align in ELF
1543        if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1544
1545        if (GPR_idx != Num_GPR_Regs) {
1546          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1547          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1548          ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1549          ++GPR_idx;
1550        } else {
1551          needsLoad = true;
1552          ArgSize = PtrByteSize;
1553        }
1554        // Stack align in ELF
1555        if (needsLoad && Align && isELF32_ABI)
1556          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1557        // All int arguments reserve stack space in Macho ABI.
1558        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1559        break;
1560      }
1561      // FALLTHROUGH
1562    case MVT::i64:  // PPC64
1563      if (GPR_idx != Num_GPR_Regs) {
1564        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1565        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1566        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1567
1568        if (ObjectVT == MVT::i32) {
1569          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1570          // value to MVT::i64 and then truncate to the correct register size.
1571          if (Flags.isSExt())
1572            ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1573                                 DAG.getValueType(ObjectVT));
1574          else if (Flags.isZExt())
1575            ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1576                                 DAG.getValueType(ObjectVT));
1577
1578          ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1579        }
1580
1581        ++GPR_idx;
1582      } else {
1583        needsLoad = true;
1584      }
1585      // All int arguments reserve stack space in Macho ABI.
1586      if (isMachoABI || needsLoad) ArgOffset += 8;
1587      break;
1588
1589    case MVT::f32:
1590    case MVT::f64:
1591      // Every 4 bytes of argument space consumes one of the GPRs available for
1592      // argument passing.
1593      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1594        ++GPR_idx;
1595        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1596          ++GPR_idx;
1597      }
1598      if (FPR_idx != Num_FPR_Regs) {
1599        unsigned VReg;
1600        if (ObjectVT == MVT::f32)
1601          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1602        else
1603          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1604        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1605        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1606        ++FPR_idx;
1607      } else {
1608        needsLoad = true;
1609      }
1610
1611      // Stack align in ELF
1612      if (needsLoad && Align && isELF32_ABI)
1613        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1614      // All FP arguments reserve stack space in Macho ABI.
1615      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1616      break;
1617    case MVT::v4f32:
1618    case MVT::v4i32:
1619    case MVT::v8i16:
1620    case MVT::v16i8:
1621      // Note that vector arguments in registers don't reserve stack space,
1622      // except in varargs functions.
1623      if (VR_idx != Num_VR_Regs) {
1624        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1625        RegInfo.addLiveIn(VR[VR_idx], VReg);
1626        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1627        if (isVarArg) {
1628          while ((ArgOffset % 16) != 0) {
1629            ArgOffset += PtrByteSize;
1630            if (GPR_idx != Num_GPR_Regs)
1631              GPR_idx++;
1632          }
1633          ArgOffset += 16;
1634          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1635        }
1636        ++VR_idx;
1637      } else {
1638        if (!isVarArg && !isPPC64) {
1639          // Vectors go after all the nonvectors.
1640          CurArgOffset = VecArgOffset;
1641          VecArgOffset += 16;
1642        } else {
1643          // Vectors are aligned.
1644          ArgOffset = ((ArgOffset+15)/16)*16;
1645          CurArgOffset = ArgOffset;
1646          ArgOffset += 16;
1647        }
1648        needsLoad = true;
1649      }
1650      break;
1651    }
1652
1653    // We need to load the argument to a virtual register if we determined above
1654    // that we ran out of physical registers of the appropriate type.
1655    if (needsLoad) {
1656      int FI = MFI->CreateFixedObject(ObjSize,
1657                                      CurArgOffset + (ArgSize - ObjSize),
1658                                      isImmutable);
1659      SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1660      ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1661    }
1662
1663    ArgValues.push_back(ArgVal);
1664  }
1665
1666  // Set the size that is at least reserved in caller of this function.  Tail
1667  // call optimized function's reserved stack space needs to be aligned so that
1668  // taking the difference between two stack areas will result in an aligned
1669  // stack.
1670  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1671  // Add the Altivec parameters at the end, if needed.
1672  if (nAltivecParamsAtEnd) {
1673    MinReservedArea = ((MinReservedArea+15)/16)*16;
1674    MinReservedArea += 16*nAltivecParamsAtEnd;
1675  }
1676  MinReservedArea =
1677    std::max(MinReservedArea,
1678             PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1679  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1680    getStackAlignment();
1681  unsigned AlignMask = TargetAlign-1;
1682  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1683  FI->setMinReservedArea(MinReservedArea);
1684
1685  // If the function takes variable number of arguments, make a frame index for
1686  // the start of the first vararg value... for expansion of llvm.va_start.
1687  if (isVarArg) {
1688
1689    int depth;
1690    if (isELF32_ABI) {
1691      VarArgsNumGPR = GPR_idx;
1692      VarArgsNumFPR = FPR_idx;
1693
1694      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1695      // pointer.
1696      depth = -(Num_GPR_Regs * PtrVT.getSizeInBits()/8 +
1697                Num_FPR_Regs * MVT(MVT::f64).getSizeInBits()/8 +
1698                PtrVT.getSizeInBits()/8);
1699
1700      VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1701                                                  ArgOffset);
1702
1703    }
1704    else
1705      depth = ArgOffset;
1706
1707    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1708                                               depth);
1709    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1710
1711    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1712    // stored to the VarArgsFrameIndex on the stack.
1713    if (isELF32_ABI) {
1714      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1715        SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1716        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1717        MemOps.push_back(Store);
1718        // Increment the address by four for the next argument to store
1719        SDOperand PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1720        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1721      }
1722    }
1723
1724    // If this function is vararg, store any remaining integer argument regs
1725    // to their spots on the stack so that they may be loaded by deferencing the
1726    // result of va_next.
1727    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1728      unsigned VReg;
1729      if (isPPC64)
1730        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1731      else
1732        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1733
1734      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1735      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1736      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1737      MemOps.push_back(Store);
1738      // Increment the address by four for the next argument to store
1739      SDOperand PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1740      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1741    }
1742
1743    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1744    // on the stack.
1745    if (isELF32_ABI) {
1746      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1747        SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1748        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1749        MemOps.push_back(Store);
1750        // Increment the address by eight for the next argument to store
1751        SDOperand PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1752                                           PtrVT);
1753        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1754      }
1755
1756      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1757        unsigned VReg;
1758        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1759
1760        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1761        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1762        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1763        MemOps.push_back(Store);
1764        // Increment the address by eight for the next argument to store
1765        SDOperand PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1766                                           PtrVT);
1767        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1768      }
1769    }
1770  }
1771
1772  if (!MemOps.empty())
1773    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1774
1775  ArgValues.push_back(Root);
1776
1777  // Return the new list of results.
1778  std::vector<MVT> RetVT(Op.Val->value_begin(),
1779                                    Op.Val->value_end());
1780  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1781}
1782
1783/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
1784/// linkage area.
1785static unsigned
1786CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
1787                                     bool isPPC64,
1788                                     bool isMachoABI,
1789                                     bool isVarArg,
1790                                     unsigned CC,
1791                                     SDOperand Call,
1792                                     unsigned &nAltivecParamsAtEnd) {
1793  // Count how many bytes are to be pushed on the stack, including the linkage
1794  // area, and parameter passing area.  We start with 24/48 bytes, which is
1795  // prereserved space for [SP][CR][LR][3 x unused].
1796  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1797  unsigned NumOps = (Call.getNumOperands() - 5) / 2;
1798  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1799
1800  // Add up all the space actually used.
1801  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1802  // they all go in registers, but we must reserve stack space for them for
1803  // possible use by the caller.  In varargs or 64-bit calls, parameters are
1804  // assigned stack space in order, with padding so Altivec parameters are
1805  // 16-byte aligned.
1806  nAltivecParamsAtEnd = 0;
1807  for (unsigned i = 0; i != NumOps; ++i) {
1808    SDOperand Arg = Call.getOperand(5+2*i);
1809    SDOperand Flag = Call.getOperand(5+2*i+1);
1810    MVT ArgVT = Arg.getValueType();
1811    // Varargs Altivec parameters are padded to a 16 byte boundary.
1812    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1813        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1814      if (!isVarArg && !isPPC64) {
1815        // Non-varargs Altivec parameters go after all the non-Altivec
1816        // parameters; handle those later so we know how much padding we need.
1817        nAltivecParamsAtEnd++;
1818        continue;
1819      }
1820      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1821      NumBytes = ((NumBytes+15)/16)*16;
1822    }
1823    NumBytes += CalculateStackSlotSize(Arg, Flag, isVarArg, PtrByteSize);
1824  }
1825
1826   // Allow for Altivec parameters at the end, if needed.
1827  if (nAltivecParamsAtEnd) {
1828    NumBytes = ((NumBytes+15)/16)*16;
1829    NumBytes += 16*nAltivecParamsAtEnd;
1830  }
1831
1832  // The prolog code of the callee may store up to 8 GPR argument registers to
1833  // the stack, allowing va_start to index over them in memory if its varargs.
1834  // Because we cannot tell if this is needed on the caller side, we have to
1835  // conservatively assume that it is needed.  As such, make sure we have at
1836  // least enough stack space for the caller to store the 8 GPRs.
1837  NumBytes = std::max(NumBytes,
1838                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1839
1840  // Tail call needs the stack to be aligned.
1841  if (CC==CallingConv::Fast && PerformTailCallOpt) {
1842    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1843      getStackAlignment();
1844    unsigned AlignMask = TargetAlign-1;
1845    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
1846  }
1847
1848  return NumBytes;
1849}
1850
1851/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
1852/// adjusted to accomodate the arguments for the tailcall.
1853static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
1854                                   unsigned ParamSize) {
1855
1856  if (!IsTailCall) return 0;
1857
1858  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
1859  unsigned CallerMinReservedArea = FI->getMinReservedArea();
1860  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
1861  // Remember only if the new adjustement is bigger.
1862  if (SPDiff < FI->getTailCallSPDelta())
1863    FI->setTailCallSPDelta(SPDiff);
1864
1865  return SPDiff;
1866}
1867
1868/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1869/// following the call is a return. A function is eligible if caller/callee
1870/// calling conventions match, currently only fastcc supports tail calls, and
1871/// the function CALL is immediatly followed by a RET.
1872bool
1873PPCTargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1874                                                     SDOperand Ret,
1875                                                     SelectionDAG& DAG) const {
1876  // Variable argument functions are not supported.
1877  if (!PerformTailCallOpt ||
1878      cast<ConstantSDNode>(Call.getOperand(2))->getValue() != 0) return false;
1879
1880  if (CheckTailCallReturnConstraints(Call, Ret)) {
1881    MachineFunction &MF = DAG.getMachineFunction();
1882    unsigned CallerCC = MF.getFunction()->getCallingConv();
1883    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1884    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1885      // Functions containing by val parameters are not supported.
1886      for (unsigned i = 0; i != ((Call.getNumOperands()-5)/2); i++) {
1887         ISD::ArgFlagsTy Flags = cast<ARG_FLAGSSDNode>(Call.getOperand(5+2*i+1))
1888           ->getArgFlags();
1889         if (Flags.isByVal()) return false;
1890      }
1891
1892      SDOperand Callee = Call.getOperand(4);
1893      // Non PIC/GOT  tail calls are supported.
1894      if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1895        return true;
1896
1897      // At the moment we can only do local tail calls (in same module, hidden
1898      // or protected) if we are generating PIC.
1899      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1900        return G->getGlobal()->hasHiddenVisibility()
1901            || G->getGlobal()->hasProtectedVisibility();
1902    }
1903  }
1904
1905  return false;
1906}
1907
1908/// isCallCompatibleAddress - Return the immediate to use if the specified
1909/// 32-bit value is representable in the immediate field of a BxA instruction.
1910static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1911  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1912  if (!C) return 0;
1913
1914  int Addr = C->getValue();
1915  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1916      (Addr << 6 >> 6) != Addr)
1917    return 0;  // Top 6 bits have to be sext of immediate.
1918
1919  return DAG.getConstant((int)C->getValue() >> 2,
1920                         DAG.getTargetLoweringInfo().getPointerTy()).Val;
1921}
1922
1923namespace {
1924
1925struct TailCallArgumentInfo {
1926  SDOperand Arg;
1927  SDOperand FrameIdxOp;
1928  int       FrameIdx;
1929
1930  TailCallArgumentInfo() : FrameIdx(0) {}
1931};
1932
1933}
1934
1935/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
1936static void
1937StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
1938                                           SDOperand Chain,
1939                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
1940                   SmallVector<SDOperand, 8> &MemOpChains) {
1941  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
1942    SDOperand Arg = TailCallArgs[i].Arg;
1943    SDOperand FIN = TailCallArgs[i].FrameIdxOp;
1944    int FI = TailCallArgs[i].FrameIdx;
1945    // Store relative to framepointer.
1946    MemOpChains.push_back(DAG.getStore(Chain, Arg, FIN,
1947                                       PseudoSourceValue::getFixedStack(),
1948                                       FI));
1949  }
1950}
1951
1952/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
1953/// the appropriate stack slot for the tail call optimized function call.
1954static SDOperand EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
1955                                               MachineFunction &MF,
1956                                               SDOperand Chain,
1957                                               SDOperand OldRetAddr,
1958                                               SDOperand OldFP,
1959                                               int SPDiff,
1960                                               bool isPPC64,
1961                                               bool isMachoABI) {
1962  if (SPDiff) {
1963    // Calculate the new stack slot for the return address.
1964    int SlotSize = isPPC64 ? 8 : 4;
1965    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
1966                                                                   isMachoABI);
1967    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
1968                                                          NewRetAddrLoc);
1969    int NewFPLoc = SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
1970                                                                    isMachoABI);
1971    int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
1972
1973    MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
1974    SDOperand NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
1975    Chain = DAG.getStore(Chain, OldRetAddr, NewRetAddrFrIdx,
1976                         PseudoSourceValue::getFixedStack(), NewRetAddr);
1977    SDOperand NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
1978    Chain = DAG.getStore(Chain, OldFP, NewFramePtrIdx,
1979                         PseudoSourceValue::getFixedStack(), NewFPIdx);
1980  }
1981  return Chain;
1982}
1983
1984/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
1985/// the position of the argument.
1986static void
1987CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
1988                         SDOperand Arg, int SPDiff, unsigned ArgOffset,
1989                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
1990  int Offset = ArgOffset + SPDiff;
1991  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
1992  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1993  MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
1994  SDOperand FIN = DAG.getFrameIndex(FI, VT);
1995  TailCallArgumentInfo Info;
1996  Info.Arg = Arg;
1997  Info.FrameIdxOp = FIN;
1998  Info.FrameIdx = FI;
1999  TailCallArguments.push_back(Info);
2000}
2001
2002/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2003/// stack slot. Returns the chain as result and the loaded frame pointers in
2004/// LROpOut/FPOpout. Used when tail calling.
2005SDOperand PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2006                                                          int SPDiff,
2007                                                          SDOperand Chain,
2008                                                          SDOperand &LROpOut,
2009                                                          SDOperand &FPOpOut) {
2010  if (SPDiff) {
2011    // Load the LR and FP stack slot for later adjusting.
2012    MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2013    LROpOut = getReturnAddrFrameIndex(DAG);
2014    LROpOut = DAG.getLoad(VT, Chain, LROpOut, NULL, 0);
2015    Chain = SDOperand(LROpOut.Val, 1);
2016    FPOpOut = getFramePointerFrameIndex(DAG);
2017    FPOpOut = DAG.getLoad(VT, Chain, FPOpOut, NULL, 0);
2018    Chain = SDOperand(FPOpOut.Val, 1);
2019  }
2020  return Chain;
2021}
2022
2023/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2024/// by "Src" to address "Dst" of size "Size".  Alignment information is
2025/// specified by the specific parameter attribute. The copy will be passed as
2026/// a byval function parameter.
2027/// Sometimes what we are copying is the end of a larger object, the part that
2028/// does not fit in registers.
2029static SDOperand
2030CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
2031                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2032                          unsigned Size) {
2033  SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
2034  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(), false,
2035                       NULL, 0, NULL, 0);
2036}
2037
2038/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2039/// tail calls.
2040static void
2041LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDOperand Chain,
2042                 SDOperand Arg, SDOperand PtrOff, int SPDiff,
2043                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2044                 bool isVector, SmallVector<SDOperand, 8> &MemOpChains,
2045                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2046  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2047  if (!isTailCall) {
2048    if (isVector) {
2049      SDOperand StackPtr;
2050      if (isPPC64)
2051        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2052      else
2053        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2054      PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2055                           DAG.getConstant(ArgOffset, PtrVT));
2056    }
2057    MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
2058  // Calculate and remember argument location.
2059  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2060                                  TailCallArguments);
2061}
2062
2063SDOperand PPCTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG,
2064                                       const PPCSubtarget &Subtarget,
2065                                       TargetMachine &TM) {
2066  SDOperand Chain  = Op.getOperand(0);
2067  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
2068  unsigned CC      = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2069  bool isTailCall  = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0 &&
2070                     CC == CallingConv::Fast && PerformTailCallOpt;
2071  SDOperand Callee = Op.getOperand(4);
2072  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
2073
2074  bool isMachoABI = Subtarget.isMachoABI();
2075  bool isELF32_ABI  = Subtarget.isELF32_ABI();
2076
2077  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2078  bool isPPC64 = PtrVT == MVT::i64;
2079  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2080
2081  MachineFunction &MF = DAG.getMachineFunction();
2082
2083  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
2084  // SelectExpr to use to put the arguments in the appropriate registers.
2085  std::vector<SDOperand> args_to_use;
2086
2087  // Mark this function as potentially containing a function that contains a
2088  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2089  // and restoring the callers stack pointer in this functions epilog. This is
2090  // done because by tail calling the called function might overwrite the value
2091  // in this function's (MF) stack pointer stack slot 0(SP).
2092  if (PerformTailCallOpt && CC==CallingConv::Fast)
2093    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2094
2095  unsigned nAltivecParamsAtEnd = 0;
2096
2097  // Count how many bytes are to be pushed on the stack, including the linkage
2098  // area, and parameter passing area.  We start with 24/48 bytes, which is
2099  // prereserved space for [SP][CR][LR][3 x unused].
2100  unsigned NumBytes =
2101    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isMachoABI, isVarArg, CC,
2102                                         Op, nAltivecParamsAtEnd);
2103
2104  // Calculate by how many bytes the stack has to be adjusted in case of tail
2105  // call optimization.
2106  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2107
2108  // Adjust the stack pointer for the new arguments...
2109  // These operations are automatically eliminated by the prolog/epilog pass
2110  Chain = DAG.getCALLSEQ_START(Chain,
2111                               DAG.getConstant(NumBytes, PtrVT));
2112  SDOperand CallSeqStart = Chain;
2113
2114  // Load the return address and frame pointer so it can be move somewhere else
2115  // later.
2116  SDOperand LROp, FPOp;
2117  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp);
2118
2119  // Set up a copy of the stack pointer for use loading and storing any
2120  // arguments that may not fit in the registers available for argument
2121  // passing.
2122  SDOperand StackPtr;
2123  if (isPPC64)
2124    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2125  else
2126    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2127
2128  // Figure out which arguments are going to go in registers, and which in
2129  // memory.  Also, if this is a vararg function, floating point operations
2130  // must be stored to our stack, and loaded into integer regs as well, if
2131  // any integer regs are available for argument passing.
2132  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
2133  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2134
2135  static const unsigned GPR_32[] = {           // 32-bit registers.
2136    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2137    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2138  };
2139  static const unsigned GPR_64[] = {           // 64-bit registers.
2140    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2141    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2142  };
2143  static const unsigned *FPR = GetFPR(Subtarget);
2144
2145  static const unsigned VR[] = {
2146    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2147    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2148  };
2149  const unsigned NumGPRs = array_lengthof(GPR_32);
2150  const unsigned NumFPRs = isMachoABI ? 13 : 8;
2151  const unsigned NumVRs  = array_lengthof( VR);
2152
2153  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2154
2155  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
2156  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2157
2158  SmallVector<SDOperand, 8> MemOpChains;
2159  for (unsigned i = 0; i != NumOps; ++i) {
2160    bool inMem = false;
2161    SDOperand Arg = Op.getOperand(5+2*i);
2162    ISD::ArgFlagsTy Flags =
2163      cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags();
2164    // See if next argument requires stack alignment in ELF
2165    bool Align = Flags.isSplit();
2166
2167    // PtrOff will be used to store the current argument to the stack if a
2168    // register cannot be found for it.
2169    SDOperand PtrOff;
2170
2171    // Stack align in ELF 32
2172    if (isELF32_ABI && Align)
2173      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
2174                               StackPtr.getValueType());
2175    else
2176      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2177
2178    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
2179
2180    // On PPC64, promote integers to 64-bit values.
2181    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2182      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2183      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2184      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
2185    }
2186
2187    // FIXME Elf untested, what are alignment rules?
2188    // FIXME memcpy is used way more than necessary.  Correctness first.
2189    if (Flags.isByVal()) {
2190      unsigned Size = Flags.getByValSize();
2191      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2192      if (Size==1 || Size==2) {
2193        // Very small objects are passed right-justified.
2194        // Everything else is passed left-justified.
2195        MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2196        if (GPR_idx != NumGPRs) {
2197          SDOperand Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
2198                                          NULL, 0, VT);
2199          MemOpChains.push_back(Load.getValue(1));
2200          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2201          if (isMachoABI)
2202            ArgOffset += PtrByteSize;
2203        } else {
2204          SDOperand Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2205          SDOperand AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
2206          SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2207                                CallSeqStart.Val->getOperand(0),
2208                                Flags, DAG, Size);
2209          // This must go outside the CALLSEQ_START..END.
2210          SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2211                               CallSeqStart.Val->getOperand(1));
2212          DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
2213          Chain = CallSeqStart = NewCallSeqStart;
2214          ArgOffset += PtrByteSize;
2215        }
2216        continue;
2217      }
2218      // Copy entire object into memory.  There are cases where gcc-generated
2219      // code assumes it is there, even if it could be put entirely into
2220      // registers.  (This is not what the doc says.)
2221      SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2222                            CallSeqStart.Val->getOperand(0),
2223                            Flags, DAG, Size);
2224      // This must go outside the CALLSEQ_START..END.
2225      SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2226                           CallSeqStart.Val->getOperand(1));
2227      DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
2228      Chain = CallSeqStart = NewCallSeqStart;
2229      // And copy the pieces of it that fit into registers.
2230      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2231        SDOperand Const = DAG.getConstant(j, PtrOff.getValueType());
2232        SDOperand AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
2233        if (GPR_idx != NumGPRs) {
2234          SDOperand Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
2235          MemOpChains.push_back(Load.getValue(1));
2236          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2237          if (isMachoABI)
2238            ArgOffset += PtrByteSize;
2239        } else {
2240          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2241          break;
2242        }
2243      }
2244      continue;
2245    }
2246
2247    switch (Arg.getValueType().getSimpleVT()) {
2248    default: assert(0 && "Unexpected ValueType for argument!");
2249    case MVT::i32:
2250    case MVT::i64:
2251      // Double word align in ELF
2252      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2253      if (GPR_idx != NumGPRs) {
2254        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2255      } else {
2256        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2257                         isPPC64, isTailCall, false, MemOpChains,
2258                         TailCallArguments);
2259        inMem = true;
2260      }
2261      if (inMem || isMachoABI) {
2262        // Stack align in ELF
2263        if (isELF32_ABI && Align)
2264          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2265
2266        ArgOffset += PtrByteSize;
2267      }
2268      break;
2269    case MVT::f32:
2270    case MVT::f64:
2271      if (FPR_idx != NumFPRs) {
2272        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2273
2274        if (isVarArg) {
2275          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2276          MemOpChains.push_back(Store);
2277
2278          // Float varargs are always shadowed in available integer registers
2279          if (GPR_idx != NumGPRs) {
2280            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2281            MemOpChains.push_back(Load.getValue(1));
2282            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2283                                                                Load));
2284          }
2285          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2286            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2287            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
2288            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2289            MemOpChains.push_back(Load.getValue(1));
2290            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2291                                                                Load));
2292          }
2293        } else {
2294          // If we have any FPRs remaining, we may also have GPRs remaining.
2295          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2296          // GPRs.
2297          if (isMachoABI) {
2298            if (GPR_idx != NumGPRs)
2299              ++GPR_idx;
2300            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2301                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2302              ++GPR_idx;
2303          }
2304        }
2305      } else {
2306        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2307                         isPPC64, isTailCall, false, MemOpChains,
2308                         TailCallArguments);
2309        inMem = true;
2310      }
2311      if (inMem || isMachoABI) {
2312        // Stack align in ELF
2313        if (isELF32_ABI && Align)
2314          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2315        if (isPPC64)
2316          ArgOffset += 8;
2317        else
2318          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2319      }
2320      break;
2321    case MVT::v4f32:
2322    case MVT::v4i32:
2323    case MVT::v8i16:
2324    case MVT::v16i8:
2325      if (isVarArg) {
2326        // These go aligned on the stack, or in the corresponding R registers
2327        // when within range.  The Darwin PPC ABI doc claims they also go in
2328        // V registers; in fact gcc does this only for arguments that are
2329        // prototyped, not for those that match the ...  We do it for all
2330        // arguments, seems to work.
2331        while (ArgOffset % 16 !=0) {
2332          ArgOffset += PtrByteSize;
2333          if (GPR_idx != NumGPRs)
2334            GPR_idx++;
2335        }
2336        // We could elide this store in the case where the object fits
2337        // entirely in R registers.  Maybe later.
2338        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2339                            DAG.getConstant(ArgOffset, PtrVT));
2340        SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2341        MemOpChains.push_back(Store);
2342        if (VR_idx != NumVRs) {
2343          SDOperand Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
2344          MemOpChains.push_back(Load.getValue(1));
2345          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2346        }
2347        ArgOffset += 16;
2348        for (unsigned i=0; i<16; i+=PtrByteSize) {
2349          if (GPR_idx == NumGPRs)
2350            break;
2351          SDOperand Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
2352                                  DAG.getConstant(i, PtrVT));
2353          SDOperand Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
2354          MemOpChains.push_back(Load.getValue(1));
2355          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2356        }
2357        break;
2358      }
2359
2360      // Non-varargs Altivec params generally go in registers, but have
2361      // stack space allocated at the end.
2362      if (VR_idx != NumVRs) {
2363        // Doesn't have GPR space allocated.
2364        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2365      } else if (nAltivecParamsAtEnd==0) {
2366        // We are emitting Altivec params in order.
2367        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2368                         isPPC64, isTailCall, true, MemOpChains,
2369                         TailCallArguments);
2370        ArgOffset += 16;
2371      }
2372      break;
2373    }
2374  }
2375  // If all Altivec parameters fit in registers, as they usually do,
2376  // they get stack space following the non-Altivec parameters.  We
2377  // don't track this here because nobody below needs it.
2378  // If there are more Altivec parameters than fit in registers emit
2379  // the stores here.
2380  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2381    unsigned j = 0;
2382    // Offset is aligned; skip 1st 12 params which go in V registers.
2383    ArgOffset = ((ArgOffset+15)/16)*16;
2384    ArgOffset += 12*16;
2385    for (unsigned i = 0; i != NumOps; ++i) {
2386      SDOperand Arg = Op.getOperand(5+2*i);
2387      MVT ArgType = Arg.getValueType();
2388      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2389          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2390        if (++j > NumVRs) {
2391          SDOperand PtrOff;
2392          // We are emitting Altivec params in order.
2393          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2394                           isPPC64, isTailCall, true, MemOpChains,
2395                           TailCallArguments);
2396          ArgOffset += 16;
2397        }
2398      }
2399    }
2400  }
2401
2402  if (!MemOpChains.empty())
2403    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2404                        &MemOpChains[0], MemOpChains.size());
2405
2406  // Build a sequence of copy-to-reg nodes chained together with token chain
2407  // and flag operands which copy the outgoing args into the appropriate regs.
2408  SDOperand InFlag;
2409  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2410    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2411                             InFlag);
2412    InFlag = Chain.getValue(1);
2413  }
2414
2415  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2416  if (isVarArg && isELF32_ABI) {
2417    SDOperand SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
2418    Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
2419    InFlag = Chain.getValue(1);
2420  }
2421
2422  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2423  // might overwrite each other in case of tail call optimization.
2424  if (isTailCall) {
2425    SmallVector<SDOperand, 8> MemOpChains2;
2426    // Do not flag preceeding copytoreg stuff together with the following stuff.
2427    InFlag = SDOperand();
2428    StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2429                                      MemOpChains2);
2430    if (!MemOpChains2.empty())
2431      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2432                          &MemOpChains2[0], MemOpChains2.size());
2433
2434    // Store the return address to the appropriate stack slot.
2435    Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2436                                          isPPC64, isMachoABI);
2437  }
2438
2439  // Emit callseq_end just before tailcall node.
2440  if (isTailCall) {
2441    SmallVector<SDOperand, 8> CallSeqOps;
2442    SDVTList CallSeqNodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2443    CallSeqOps.push_back(Chain);
2444    CallSeqOps.push_back(DAG.getIntPtrConstant(NumBytes));
2445    CallSeqOps.push_back(DAG.getIntPtrConstant(0));
2446    if (InFlag.Val)
2447      CallSeqOps.push_back(InFlag);
2448    Chain = DAG.getNode(ISD::CALLSEQ_END, CallSeqNodeTys, &CallSeqOps[0],
2449                        CallSeqOps.size());
2450    InFlag = Chain.getValue(1);
2451  }
2452
2453  std::vector<MVT> NodeTys;
2454  NodeTys.push_back(MVT::Other);   // Returns a chain
2455  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2456
2457  SmallVector<SDOperand, 8> Ops;
2458  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2459
2460  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2461  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2462  // node so that legalize doesn't hack it.
2463  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2464    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2465  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2466    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2467  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2468    // If this is an absolute destination address, use the munged value.
2469    Callee = SDOperand(Dest, 0);
2470  else {
2471    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2472    // to do the call, we can't use PPCISD::CALL.
2473    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
2474    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
2475    InFlag = Chain.getValue(1);
2476
2477    // Copy the callee address into R12/X12 on darwin.
2478    if (isMachoABI) {
2479      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2480      Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
2481      InFlag = Chain.getValue(1);
2482    }
2483
2484    NodeTys.clear();
2485    NodeTys.push_back(MVT::Other);
2486    NodeTys.push_back(MVT::Flag);
2487    Ops.push_back(Chain);
2488    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2489    Callee.Val = 0;
2490    // Add CTR register as callee so a bctr can be emitted later.
2491    if (isTailCall)
2492      Ops.push_back(DAG.getRegister(PPC::CTR, getPointerTy()));
2493  }
2494
2495  // If this is a direct call, pass the chain and the callee.
2496  if (Callee.Val) {
2497    Ops.push_back(Chain);
2498    Ops.push_back(Callee);
2499  }
2500  // If this is a tail call add stack pointer delta.
2501  if (isTailCall)
2502    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2503
2504  // Add argument registers to the end of the list so that they are known live
2505  // into the call.
2506  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2507    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2508                                  RegsToPass[i].second.getValueType()));
2509
2510  // When performing tail call optimization the callee pops its arguments off
2511  // the stack. Account for this here so these bytes can be pushed back on in
2512  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2513  int BytesCalleePops =
2514    (CC==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2515
2516  if (InFlag.Val)
2517    Ops.push_back(InFlag);
2518
2519  // Emit tail call.
2520  if (isTailCall) {
2521    assert(InFlag.Val &&
2522           "Flag must be set. Depend on flag being set in LowerRET");
2523    Chain = DAG.getNode(PPCISD::TAILCALL,
2524                        Op.Val->getVTList(), &Ops[0], Ops.size());
2525    return SDOperand(Chain.Val, Op.ResNo);
2526  }
2527
2528  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2529  InFlag = Chain.getValue(1);
2530
2531  Chain = DAG.getCALLSEQ_END(Chain,
2532                             DAG.getConstant(NumBytes, PtrVT),
2533                             DAG.getConstant(BytesCalleePops, PtrVT),
2534                             InFlag);
2535  if (Op.Val->getValueType(0) != MVT::Other)
2536    InFlag = Chain.getValue(1);
2537
2538  SmallVector<SDOperand, 16> ResultVals;
2539  SmallVector<CCValAssign, 16> RVLocs;
2540  unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
2541  CCState CCInfo(CallerCC, isVarArg, TM, RVLocs);
2542  CCInfo.AnalyzeCallResult(Op.Val, RetCC_PPC);
2543
2544  // Copy all of the result registers out of their specified physreg.
2545  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2546    CCValAssign &VA = RVLocs[i];
2547    MVT VT = VA.getValVT();
2548    assert(VA.isRegLoc() && "Can only return in registers!");
2549    Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1);
2550    ResultVals.push_back(Chain.getValue(0));
2551    InFlag = Chain.getValue(2);
2552  }
2553
2554  // If the function returns void, just return the chain.
2555  if (RVLocs.empty())
2556    return Chain;
2557
2558  // Otherwise, merge everything together with a MERGE_VALUES node.
2559  ResultVals.push_back(Chain);
2560  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
2561                              &ResultVals[0], ResultVals.size());
2562  return Res.getValue(Op.ResNo);
2563}
2564
2565SDOperand PPCTargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG,
2566                                      TargetMachine &TM) {
2567  SmallVector<CCValAssign, 16> RVLocs;
2568  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2569  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2570  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2571  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
2572
2573  // If this is the first return lowered for this function, add the regs to the
2574  // liveout set for the function.
2575  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2576    for (unsigned i = 0; i != RVLocs.size(); ++i)
2577      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2578  }
2579
2580  SDOperand Chain = Op.getOperand(0);
2581
2582  Chain = GetPossiblePreceedingTailCall(Chain, PPCISD::TAILCALL);
2583  if (Chain.getOpcode() == PPCISD::TAILCALL) {
2584    SDOperand TailCall = Chain;
2585    SDOperand TargetAddress = TailCall.getOperand(1);
2586    SDOperand StackAdjustment = TailCall.getOperand(2);
2587
2588    assert(((TargetAddress.getOpcode() == ISD::Register &&
2589             cast<RegisterSDNode>(TargetAddress)->getReg() == PPC::CTR) ||
2590            TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
2591            TargetAddress.getOpcode() == ISD::TargetGlobalAddress ||
2592            isa<ConstantSDNode>(TargetAddress)) &&
2593    "Expecting an global address, external symbol, absolute value or register");
2594
2595    assert(StackAdjustment.getOpcode() == ISD::Constant &&
2596           "Expecting a const value");
2597
2598    SmallVector<SDOperand,8> Operands;
2599    Operands.push_back(Chain.getOperand(0));
2600    Operands.push_back(TargetAddress);
2601    Operands.push_back(StackAdjustment);
2602    // Copy registers used by the call. Last operand is a flag so it is not
2603    // copied.
2604    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
2605      Operands.push_back(Chain.getOperand(i));
2606    }
2607    return DAG.getNode(PPCISD::TC_RETURN, MVT::Other, &Operands[0],
2608                       Operands.size());
2609  }
2610
2611  SDOperand Flag;
2612
2613  // Copy the result values into the output registers.
2614  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2615    CCValAssign &VA = RVLocs[i];
2616    assert(VA.isRegLoc() && "Can only return in registers!");
2617    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2618    Flag = Chain.getValue(1);
2619  }
2620
2621  if (Flag.Val)
2622    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2623  else
2624    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2625}
2626
2627SDOperand PPCTargetLowering::LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
2628                                   const PPCSubtarget &Subtarget) {
2629  // When we pop the dynamic allocation we need to restore the SP link.
2630
2631  // Get the corect type for pointers.
2632  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2633
2634  // Construct the stack pointer operand.
2635  bool IsPPC64 = Subtarget.isPPC64();
2636  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2637  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
2638
2639  // Get the operands for the STACKRESTORE.
2640  SDOperand Chain = Op.getOperand(0);
2641  SDOperand SaveSP = Op.getOperand(1);
2642
2643  // Load the old link SP.
2644  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2645
2646  // Restore the stack pointer.
2647  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2648
2649  // Store the old link SP.
2650  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2651}
2652
2653
2654
2655SDOperand
2656PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
2657  MachineFunction &MF = DAG.getMachineFunction();
2658  bool IsPPC64 = PPCSubTarget.isPPC64();
2659  bool isMachoABI = PPCSubTarget.isMachoABI();
2660  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2661
2662  // Get current frame pointer save index.  The users of this index will be
2663  // primarily DYNALLOC instructions.
2664  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2665  int RASI = FI->getReturnAddrSaveIndex();
2666
2667  // If the frame pointer save index hasn't been defined yet.
2668  if (!RASI) {
2669    // Find out what the fix offset of the frame pointer save area.
2670    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isMachoABI);
2671    // Allocate the frame index for frame pointer save area.
2672    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
2673    // Save the result.
2674    FI->setReturnAddrSaveIndex(RASI);
2675  }
2676  return DAG.getFrameIndex(RASI, PtrVT);
2677}
2678
2679SDOperand
2680PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
2681  MachineFunction &MF = DAG.getMachineFunction();
2682  bool IsPPC64 = PPCSubTarget.isPPC64();
2683  bool isMachoABI = PPCSubTarget.isMachoABI();
2684  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2685
2686  // Get current frame pointer save index.  The users of this index will be
2687  // primarily DYNALLOC instructions.
2688  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2689  int FPSI = FI->getFramePointerSaveIndex();
2690
2691  // If the frame pointer save index hasn't been defined yet.
2692  if (!FPSI) {
2693    // Find out what the fix offset of the frame pointer save area.
2694    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2695
2696    // Allocate the frame index for frame pointer save area.
2697    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2698    // Save the result.
2699    FI->setFramePointerSaveIndex(FPSI);
2700  }
2701  return DAG.getFrameIndex(FPSI, PtrVT);
2702}
2703
2704SDOperand PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
2705                                         SelectionDAG &DAG,
2706                                         const PPCSubtarget &Subtarget) {
2707  // Get the inputs.
2708  SDOperand Chain = Op.getOperand(0);
2709  SDOperand Size  = Op.getOperand(1);
2710
2711  // Get the corect type for pointers.
2712  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2713  // Negate the size.
2714  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
2715                                  DAG.getConstant(0, PtrVT), Size);
2716  // Construct a node for the frame pointer save index.
2717  SDOperand FPSIdx = getFramePointerFrameIndex(DAG);
2718  // Build a DYNALLOC node.
2719  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
2720  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2721  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2722}
2723
2724SDOperand PPCTargetLowering::LowerAtomicLOAD_ADD(SDOperand Op, SelectionDAG &DAG) {
2725  MVT VT = Op.Val->getValueType(0);
2726  SDOperand Chain   = Op.getOperand(0);
2727  SDOperand Ptr     = Op.getOperand(1);
2728  SDOperand Incr    = Op.getOperand(2);
2729
2730  // Issue a "load and reserve".
2731  std::vector<MVT> VTs;
2732  VTs.push_back(VT);
2733  VTs.push_back(MVT::Other);
2734
2735  SDOperand Label  = DAG.getConstant(PPCAtomicLabelIndex++, MVT::i32);
2736  SDOperand Ops[] = {
2737    Chain,               // Chain
2738    Ptr,                 // Ptr
2739    Label,               // Label
2740  };
2741  SDOperand Load = DAG.getNode(PPCISD::LARX, VTs, Ops, 3);
2742  Chain = Load.getValue(1);
2743
2744  // Compute new value.
2745  SDOperand NewVal  = DAG.getNode(ISD::ADD, VT, Load, Incr);
2746
2747  // Issue a "store and check".
2748  SDOperand Ops2[] = {
2749    Chain,               // Chain
2750    NewVal,              // Value
2751    Ptr,                 // Ptr
2752    Label,               // Label
2753  };
2754  SDOperand Store = DAG.getNode(PPCISD::STCX, MVT::Other, Ops2, 4);
2755  SDOperand OutOps[] = { Load, Store };
2756  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other),
2757                     OutOps, 2);
2758}
2759
2760SDOperand PPCTargetLowering::LowerAtomicCMP_SWAP(SDOperand Op, SelectionDAG &DAG) {
2761  MVT VT = Op.Val->getValueType(0);
2762  SDOperand Chain   = Op.getOperand(0);
2763  SDOperand Ptr     = Op.getOperand(1);
2764  SDOperand NewVal  = Op.getOperand(2);
2765  SDOperand OldVal  = Op.getOperand(3);
2766
2767  // Issue a "load and reserve".
2768  std::vector<MVT> VTs;
2769  VTs.push_back(VT);
2770  VTs.push_back(MVT::Other);
2771
2772  SDOperand Label  = DAG.getConstant(PPCAtomicLabelIndex++, MVT::i32);
2773  SDOperand Ops[] = {
2774    Chain,               // Chain
2775    Ptr,                 // Ptr
2776    Label,               // Label
2777  };
2778  SDOperand Load = DAG.getNode(PPCISD::LARX, VTs, Ops, 3);
2779  Chain = Load.getValue(1);
2780
2781  // Compare and unreserve if not equal.
2782  SDOperand Ops2[] = {
2783    Chain,               // Chain
2784    OldVal,              // Old value
2785    Load,                // Value in memory
2786    Label,               // Label
2787  };
2788  Chain = DAG.getNode(PPCISD::CMP_UNRESERVE, MVT::Other, Ops2, 4);
2789
2790  // Issue a "store and check".
2791  SDOperand Ops3[] = {
2792    Chain,               // Chain
2793    NewVal,              // Value
2794    Ptr,                 // Ptr
2795    Label,               // Label
2796  };
2797  SDOperand Store = DAG.getNode(PPCISD::STCX, MVT::Other, Ops3, 4);
2798  SDOperand OutOps[] = { Load, Store };
2799  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other),
2800                     OutOps, 2);
2801}
2802
2803SDOperand PPCTargetLowering::LowerAtomicSWAP(SDOperand Op, SelectionDAG &DAG) {
2804  MVT VT = Op.Val->getValueType(0);
2805  SDOperand Chain   = Op.getOperand(0);
2806  SDOperand Ptr     = Op.getOperand(1);
2807  SDOperand NewVal  = Op.getOperand(2);
2808
2809  // Issue a "load and reserve".
2810  std::vector<MVT> VTs;
2811  VTs.push_back(VT);
2812  VTs.push_back(MVT::Other);
2813
2814  SDOperand Label  = DAG.getConstant(PPCAtomicLabelIndex++, MVT::i32);
2815  SDOperand Ops[] = {
2816    Chain,               // Chain
2817    Ptr,                 // Ptr
2818    Label,               // Label
2819  };
2820  SDOperand Load = DAG.getNode(PPCISD::LARX, VTs, Ops, 3);
2821  Chain = Load.getValue(1);
2822
2823  // Issue a "store and check".
2824  SDOperand Ops2[] = {
2825    Chain,               // Chain
2826    NewVal,              // Value
2827    Ptr,                 // Ptr
2828    Label,               // Label
2829  };
2830  SDOperand Store = DAG.getNode(PPCISD::STCX, MVT::Other, Ops2, 4);
2831  SDOperand OutOps[] = { Load, Store };
2832  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other),
2833                     OutOps, 2);
2834}
2835
2836/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2837/// possible.
2838SDOperand PPCTargetLowering::LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
2839  // Not FP? Not a fsel.
2840  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
2841      !Op.getOperand(2).getValueType().isFloatingPoint())
2842    return SDOperand();
2843
2844  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2845
2846  // Cannot handle SETEQ/SETNE.
2847  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2848
2849  MVT ResVT = Op.getValueType();
2850  MVT CmpVT = Op.getOperand(0).getValueType();
2851  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2852  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2853
2854  // If the RHS of the comparison is a 0.0, we don't need to do the
2855  // subtraction at all.
2856  if (isFloatingPointZero(RHS))
2857    switch (CC) {
2858    default: break;       // SETUO etc aren't handled by fsel.
2859    case ISD::SETULT:
2860    case ISD::SETOLT:
2861    case ISD::SETLT:
2862      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2863    case ISD::SETUGE:
2864    case ISD::SETOGE:
2865    case ISD::SETGE:
2866      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2867        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2868      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2869    case ISD::SETUGT:
2870    case ISD::SETOGT:
2871    case ISD::SETGT:
2872      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2873    case ISD::SETULE:
2874    case ISD::SETOLE:
2875    case ISD::SETLE:
2876      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2877        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2878      return DAG.getNode(PPCISD::FSEL, ResVT,
2879                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2880    }
2881
2882  SDOperand Cmp;
2883  switch (CC) {
2884  default: break;       // SETUO etc aren't handled by fsel.
2885  case ISD::SETULT:
2886  case ISD::SETOLT:
2887  case ISD::SETLT:
2888    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2889    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2890      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2891      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2892  case ISD::SETUGE:
2893  case ISD::SETOGE:
2894  case ISD::SETGE:
2895    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2896    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2897      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2898      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2899  case ISD::SETUGT:
2900  case ISD::SETOGT:
2901  case ISD::SETGT:
2902    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2903    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2904      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2905      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2906  case ISD::SETULE:
2907  case ISD::SETOLE:
2908  case ISD::SETLE:
2909    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2910    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2911      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2912      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2913  }
2914  return SDOperand();
2915}
2916
2917// FIXME: Split this code up when LegalizeDAGTypes lands.
2918SDOperand PPCTargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2919  assert(Op.getOperand(0).getValueType().isFloatingPoint());
2920  SDOperand Src = Op.getOperand(0);
2921  if (Src.getValueType() == MVT::f32)
2922    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2923
2924  SDOperand Tmp;
2925  switch (Op.getValueType().getSimpleVT()) {
2926  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2927  case MVT::i32:
2928    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2929    break;
2930  case MVT::i64:
2931    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2932    break;
2933  }
2934
2935  // Convert the FP value to an int value through memory.
2936  SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2937
2938  // Emit a store to the stack slot.
2939  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2940
2941  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2942  // add in a bias.
2943  if (Op.getValueType() == MVT::i32)
2944    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2945                        DAG.getConstant(4, FIPtr.getValueType()));
2946  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2947}
2948
2949SDOperand PPCTargetLowering::LowerFP_ROUND_INREG(SDOperand Op,
2950                                                 SelectionDAG &DAG) {
2951  assert(Op.getValueType() == MVT::ppcf128);
2952  SDNode *Node = Op.Val;
2953  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2954  assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
2955  SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2956  SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2957
2958  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2959  // of the long double, and puts FPSCR back the way it was.  We do not
2960  // actually model FPSCR.
2961  std::vector<MVT> NodeTys;
2962  SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2963
2964  NodeTys.push_back(MVT::f64);   // Return register
2965  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2966  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2967  MFFSreg = Result.getValue(0);
2968  InFlag = Result.getValue(1);
2969
2970  NodeTys.clear();
2971  NodeTys.push_back(MVT::Flag);   // Returns a flag
2972  Ops[0] = DAG.getConstant(31, MVT::i32);
2973  Ops[1] = InFlag;
2974  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2975  InFlag = Result.getValue(0);
2976
2977  NodeTys.clear();
2978  NodeTys.push_back(MVT::Flag);   // Returns a flag
2979  Ops[0] = DAG.getConstant(30, MVT::i32);
2980  Ops[1] = InFlag;
2981  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2982  InFlag = Result.getValue(0);
2983
2984  NodeTys.clear();
2985  NodeTys.push_back(MVT::f64);    // result of add
2986  NodeTys.push_back(MVT::Flag);   // Returns a flag
2987  Ops[0] = Lo;
2988  Ops[1] = Hi;
2989  Ops[2] = InFlag;
2990  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2991  FPreg = Result.getValue(0);
2992  InFlag = Result.getValue(1);
2993
2994  NodeTys.clear();
2995  NodeTys.push_back(MVT::f64);
2996  Ops[0] = DAG.getConstant(1, MVT::i32);
2997  Ops[1] = MFFSreg;
2998  Ops[2] = FPreg;
2999  Ops[3] = InFlag;
3000  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
3001  FPreg = Result.getValue(0);
3002
3003  // We know the low half is about to be thrown away, so just use something
3004  // convenient.
3005  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
3006}
3007
3008SDOperand PPCTargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3009  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3010  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3011    return SDOperand();
3012
3013  if (Op.getOperand(0).getValueType() == MVT::i64) {
3014    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
3015    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
3016    if (Op.getValueType() == MVT::f32)
3017      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
3018    return FP;
3019  }
3020
3021  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3022         "Unhandled SINT_TO_FP type in custom expander!");
3023  // Since we only generate this in 64-bit mode, we can take advantage of
3024  // 64-bit registers.  In particular, sign extend the input value into the
3025  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3026  // then lfd it and fcfid it.
3027  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3028  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
3029  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3030  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3031
3032  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
3033                                Op.getOperand(0));
3034
3035  // STD the extended value into the stack slot.
3036  MachineMemOperand MO(PseudoSourceValue::getFixedStack(),
3037                       MachineMemOperand::MOStore, FrameIdx, 8, 8);
3038  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
3039                                DAG.getEntryNode(), Ext64, FIdx,
3040                                DAG.getMemOperand(MO));
3041  // Load the value as a double.
3042  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
3043
3044  // FCFID it and return it.
3045  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
3046  if (Op.getValueType() == MVT::f32)
3047    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
3048  return FP;
3049}
3050
3051SDOperand PPCTargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
3052  /*
3053   The rounding mode is in bits 30:31 of FPSR, and has the following
3054   settings:
3055     00 Round to nearest
3056     01 Round to 0
3057     10 Round to +inf
3058     11 Round to -inf
3059
3060  FLT_ROUNDS, on the other hand, expects the following:
3061    -1 Undefined
3062     0 Round to 0
3063     1 Round to nearest
3064     2 Round to +inf
3065     3 Round to -inf
3066
3067  To perform the conversion, we do:
3068    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3069  */
3070
3071  MachineFunction &MF = DAG.getMachineFunction();
3072  MVT VT = Op.getValueType();
3073  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3074  std::vector<MVT> NodeTys;
3075  SDOperand MFFSreg, InFlag;
3076
3077  // Save FP Control Word to register
3078  NodeTys.push_back(MVT::f64);    // return register
3079  NodeTys.push_back(MVT::Flag);   // unused in this context
3080  SDOperand Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
3081
3082  // Save FP register to stack slot
3083  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3084  SDOperand StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3085  SDOperand Store = DAG.getStore(DAG.getEntryNode(), Chain,
3086                                 StackSlot, NULL, 0);
3087
3088  // Load FP Control Word from low 32 bits of stack slot.
3089  SDOperand Four = DAG.getConstant(4, PtrVT);
3090  SDOperand Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
3091  SDOperand CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
3092
3093  // Transform as necessary
3094  SDOperand CWD1 =
3095    DAG.getNode(ISD::AND, MVT::i32,
3096                CWD, DAG.getConstant(3, MVT::i32));
3097  SDOperand CWD2 =
3098    DAG.getNode(ISD::SRL, MVT::i32,
3099                DAG.getNode(ISD::AND, MVT::i32,
3100                            DAG.getNode(ISD::XOR, MVT::i32,
3101                                        CWD, DAG.getConstant(3, MVT::i32)),
3102                            DAG.getConstant(3, MVT::i32)),
3103                DAG.getConstant(1, MVT::i8));
3104
3105  SDOperand RetVal =
3106    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
3107
3108  return DAG.getNode((VT.getSizeInBits() < 16 ?
3109                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
3110}
3111
3112SDOperand PPCTargetLowering::LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
3113  MVT VT = Op.getValueType();
3114  unsigned BitWidth = VT.getSizeInBits();
3115  assert(Op.getNumOperands() == 3 &&
3116         VT == Op.getOperand(1).getValueType() &&
3117         "Unexpected SHL!");
3118
3119  // Expand into a bunch of logical ops.  Note that these ops
3120  // depend on the PPC behavior for oversized shift amounts.
3121  SDOperand Lo = Op.getOperand(0);
3122  SDOperand Hi = Op.getOperand(1);
3123  SDOperand Amt = Op.getOperand(2);
3124  MVT AmtVT = Amt.getValueType();
3125
3126  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3127                               DAG.getConstant(BitWidth, AmtVT), Amt);
3128  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
3129  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
3130  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3131  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3132                               DAG.getConstant(-BitWidth, AmtVT));
3133  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
3134  SDOperand OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3135  SDOperand OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
3136  SDOperand OutOps[] = { OutLo, OutHi };
3137  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
3138                     OutOps, 2);
3139}
3140
3141SDOperand PPCTargetLowering::LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
3142  MVT VT = Op.getValueType();
3143  unsigned BitWidth = VT.getSizeInBits();
3144  assert(Op.getNumOperands() == 3 &&
3145         VT == Op.getOperand(1).getValueType() &&
3146         "Unexpected SRL!");
3147
3148  // Expand into a bunch of logical ops.  Note that these ops
3149  // depend on the PPC behavior for oversized shift amounts.
3150  SDOperand Lo = Op.getOperand(0);
3151  SDOperand Hi = Op.getOperand(1);
3152  SDOperand Amt = Op.getOperand(2);
3153  MVT AmtVT = Amt.getValueType();
3154
3155  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3156                               DAG.getConstant(BitWidth, AmtVT), Amt);
3157  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3158  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3159  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3160  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3161                               DAG.getConstant(-BitWidth, AmtVT));
3162  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
3163  SDOperand OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3164  SDOperand OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
3165  SDOperand OutOps[] = { OutLo, OutHi };
3166  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
3167                     OutOps, 2);
3168}
3169
3170SDOperand PPCTargetLowering::LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
3171  MVT VT = Op.getValueType();
3172  unsigned BitWidth = VT.getSizeInBits();
3173  assert(Op.getNumOperands() == 3 &&
3174         VT == Op.getOperand(1).getValueType() &&
3175         "Unexpected SRA!");
3176
3177  // Expand into a bunch of logical ops, followed by a select_cc.
3178  SDOperand Lo = Op.getOperand(0);
3179  SDOperand Hi = Op.getOperand(1);
3180  SDOperand Amt = Op.getOperand(2);
3181  MVT AmtVT = Amt.getValueType();
3182
3183  SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3184                               DAG.getConstant(BitWidth, AmtVT), Amt);
3185  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3186  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3187  SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3188  SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3189                               DAG.getConstant(-BitWidth, AmtVT));
3190  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
3191  SDOperand OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
3192  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
3193                                    Tmp4, Tmp6, ISD::SETLE);
3194  SDOperand OutOps[] = { OutLo, OutHi };
3195  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
3196                     OutOps, 2);
3197}
3198
3199//===----------------------------------------------------------------------===//
3200// Vector related lowering.
3201//
3202
3203// If this is a vector of constants or undefs, get the bits.  A bit in
3204// UndefBits is set if the corresponding element of the vector is an
3205// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3206// zero.   Return true if this is not an array of constants, false if it is.
3207//
3208static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
3209                                       uint64_t UndefBits[2]) {
3210  // Start with zero'd results.
3211  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
3212
3213  unsigned EltBitSize = BV->getOperand(0).getValueType().getSizeInBits();
3214  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3215    SDOperand OpVal = BV->getOperand(i);
3216
3217    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
3218    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
3219
3220    uint64_t EltBits = 0;
3221    if (OpVal.getOpcode() == ISD::UNDEF) {
3222      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
3223      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
3224      continue;
3225    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
3226      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
3227    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
3228      assert(CN->getValueType(0) == MVT::f32 &&
3229             "Only one legal FP vector type!");
3230      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
3231    } else {
3232      // Nonconstant element.
3233      return true;
3234    }
3235
3236    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
3237  }
3238
3239  //printf("%llx %llx  %llx %llx\n",
3240  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
3241  return false;
3242}
3243
3244// If this is a splat (repetition) of a value across the whole vector, return
3245// the smallest size that splats it.  For example, "0x01010101010101..." is a
3246// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3247// SplatSize = 1 byte.
3248static bool isConstantSplat(const uint64_t Bits128[2],
3249                            const uint64_t Undef128[2],
3250                            unsigned &SplatBits, unsigned &SplatUndef,
3251                            unsigned &SplatSize) {
3252
3253  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
3254  // the same as the lower 64-bits, ignoring undefs.
3255  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
3256    return false;  // Can't be a splat if two pieces don't match.
3257
3258  uint64_t Bits64  = Bits128[0] | Bits128[1];
3259  uint64_t Undef64 = Undef128[0] & Undef128[1];
3260
3261  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
3262  // undefs.
3263  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
3264    return false;  // Can't be a splat if two pieces don't match.
3265
3266  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
3267  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
3268
3269  // If the top 16-bits are different than the lower 16-bits, ignoring
3270  // undefs, we have an i32 splat.
3271  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
3272    SplatBits = Bits32;
3273    SplatUndef = Undef32;
3274    SplatSize = 4;
3275    return true;
3276  }
3277
3278  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
3279  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
3280
3281  // If the top 8-bits are different than the lower 8-bits, ignoring
3282  // undefs, we have an i16 splat.
3283  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
3284    SplatBits = Bits16;
3285    SplatUndef = Undef16;
3286    SplatSize = 2;
3287    return true;
3288  }
3289
3290  // Otherwise, we have an 8-bit splat.
3291  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
3292  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
3293  SplatSize = 1;
3294  return true;
3295}
3296
3297/// BuildSplatI - Build a canonical splati of Val with an element size of
3298/// SplatSize.  Cast the result to VT.
3299static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT VT,
3300                             SelectionDAG &DAG) {
3301  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3302
3303  static const MVT VTys[] = { // canonical VT to use for each size.
3304    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3305  };
3306
3307  MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3308
3309  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3310  if (Val == -1)
3311    SplatSize = 1;
3312
3313  MVT CanonicalVT = VTys[SplatSize-1];
3314
3315  // Build a canonical splat for this value.
3316  SDOperand Elt = DAG.getConstant(Val, CanonicalVT.getVectorElementType());
3317  SmallVector<SDOperand, 8> Ops;
3318  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3319  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
3320                              &Ops[0], Ops.size());
3321  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
3322}
3323
3324/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3325/// specified intrinsic ID.
3326static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
3327                                  SelectionDAG &DAG,
3328                                  MVT DestVT = MVT::Other) {
3329  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3330  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3331                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3332}
3333
3334/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3335/// specified intrinsic ID.
3336static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
3337                                  SDOperand Op2, SelectionDAG &DAG,
3338                                  MVT DestVT = MVT::Other) {
3339  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3340  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3341                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3342}
3343
3344
3345/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3346/// amount.  The result has the specified value type.
3347static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
3348                             MVT VT, SelectionDAG &DAG) {
3349  // Force LHS/RHS to be the right type.
3350  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
3351  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
3352
3353  SDOperand Ops[16];
3354  for (unsigned i = 0; i != 16; ++i)
3355    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
3356  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
3357                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
3358  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
3359}
3360
3361// If this is a case we can't handle, return null and let the default
3362// expansion code take care of it.  If we CAN select this case, and if it
3363// selects to a single instruction, return Op.  Otherwise, if we can codegen
3364// this case more efficiently than a constant pool load, lower it to the
3365// sequence of ops that should be used.
3366SDOperand PPCTargetLowering::LowerBUILD_VECTOR(SDOperand Op,
3367                                               SelectionDAG &DAG) {
3368  // If this is a vector of constants or undefs, get the bits.  A bit in
3369  // UndefBits is set if the corresponding element of the vector is an
3370  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3371  // zero.
3372  uint64_t VectorBits[2];
3373  uint64_t UndefBits[2];
3374  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
3375    return SDOperand();   // Not a constant vector.
3376
3377  // If this is a splat (repetition) of a value across the whole vector, return
3378  // the smallest size that splats it.  For example, "0x01010101010101..." is a
3379  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3380  // SplatSize = 1 byte.
3381  unsigned SplatBits, SplatUndef, SplatSize;
3382  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
3383    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
3384
3385    // First, handle single instruction cases.
3386
3387    // All zeros?
3388    if (SplatBits == 0) {
3389      // Canonicalize all zero vectors to be v4i32.
3390      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3391        SDOperand Z = DAG.getConstant(0, MVT::i32);
3392        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
3393        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
3394      }
3395      return Op;
3396    }
3397
3398    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3399    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
3400    if (SextVal >= -16 && SextVal <= 15)
3401      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
3402
3403
3404    // Two instruction sequences.
3405
3406    // If this value is in the range [-32,30] and is even, use:
3407    //    tmp = VSPLTI[bhw], result = add tmp, tmp
3408    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3409      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
3410      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
3411    }
3412
3413    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3414    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3415    // for fneg/fabs.
3416    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3417      // Make -1 and vspltisw -1:
3418      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
3419
3420      // Make the VSLW intrinsic, computing 0x8000_0000.
3421      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3422                                       OnesV, DAG);
3423
3424      // xor by OnesV to invert it.
3425      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
3426      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3427    }
3428
3429    // Check to see if this is a wide variety of vsplti*, binop self cases.
3430    unsigned SplatBitSize = SplatSize*8;
3431    static const signed char SplatCsts[] = {
3432      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3433      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3434    };
3435
3436    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3437      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3438      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3439      int i = SplatCsts[idx];
3440
3441      // Figure out what shift amount will be used by altivec if shifted by i in
3442      // this splat size.
3443      unsigned TypeShiftAmt = i & (SplatBitSize-1);
3444
3445      // vsplti + shl self.
3446      if (SextVal == (i << (int)TypeShiftAmt)) {
3447        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3448        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3449          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3450          Intrinsic::ppc_altivec_vslw
3451        };
3452        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3453        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3454      }
3455
3456      // vsplti + srl self.
3457      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3458        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3459        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3460          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3461          Intrinsic::ppc_altivec_vsrw
3462        };
3463        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3464        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3465      }
3466
3467      // vsplti + sra self.
3468      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3469        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3470        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3471          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3472          Intrinsic::ppc_altivec_vsraw
3473        };
3474        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3475        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3476      }
3477
3478      // vsplti + rol self.
3479      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3480                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3481        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3482        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3483          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3484          Intrinsic::ppc_altivec_vrlw
3485        };
3486        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3487        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3488      }
3489
3490      // t = vsplti c, result = vsldoi t, t, 1
3491      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3492        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3493        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
3494      }
3495      // t = vsplti c, result = vsldoi t, t, 2
3496      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3497        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3498        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
3499      }
3500      // t = vsplti c, result = vsldoi t, t, 3
3501      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3502        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3503        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
3504      }
3505    }
3506
3507    // Three instruction sequences.
3508
3509    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3510    if (SextVal >= 0 && SextVal <= 31) {
3511      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
3512      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3513      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
3514      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3515    }
3516    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3517    if (SextVal >= -31 && SextVal <= 0) {
3518      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
3519      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3520      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
3521      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3522    }
3523  }
3524
3525  return SDOperand();
3526}
3527
3528/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3529/// the specified operations to build the shuffle.
3530static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
3531                                        SDOperand RHS, SelectionDAG &DAG) {
3532  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3533  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
3534  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3535
3536  enum {
3537    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3538    OP_VMRGHW,
3539    OP_VMRGLW,
3540    OP_VSPLTISW0,
3541    OP_VSPLTISW1,
3542    OP_VSPLTISW2,
3543    OP_VSPLTISW3,
3544    OP_VSLDOI4,
3545    OP_VSLDOI8,
3546    OP_VSLDOI12
3547  };
3548
3549  if (OpNum == OP_COPY) {
3550    if (LHSID == (1*9+2)*9+3) return LHS;
3551    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3552    return RHS;
3553  }
3554
3555  SDOperand OpLHS, OpRHS;
3556  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
3557  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
3558
3559  unsigned ShufIdxs[16];
3560  switch (OpNum) {
3561  default: assert(0 && "Unknown i32 permute!");
3562  case OP_VMRGHW:
3563    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3564    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3565    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3566    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3567    break;
3568  case OP_VMRGLW:
3569    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3570    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3571    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3572    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3573    break;
3574  case OP_VSPLTISW0:
3575    for (unsigned i = 0; i != 16; ++i)
3576      ShufIdxs[i] = (i&3)+0;
3577    break;
3578  case OP_VSPLTISW1:
3579    for (unsigned i = 0; i != 16; ++i)
3580      ShufIdxs[i] = (i&3)+4;
3581    break;
3582  case OP_VSPLTISW2:
3583    for (unsigned i = 0; i != 16; ++i)
3584      ShufIdxs[i] = (i&3)+8;
3585    break;
3586  case OP_VSPLTISW3:
3587    for (unsigned i = 0; i != 16; ++i)
3588      ShufIdxs[i] = (i&3)+12;
3589    break;
3590  case OP_VSLDOI4:
3591    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
3592  case OP_VSLDOI8:
3593    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
3594  case OP_VSLDOI12:
3595    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
3596  }
3597  SDOperand Ops[16];
3598  for (unsigned i = 0; i != 16; ++i)
3599    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
3600
3601  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
3602                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3603}
3604
3605/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3606/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3607/// return the code it can be lowered into.  Worst case, it can always be
3608/// lowered into a vperm.
3609SDOperand PPCTargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op,
3610                                                 SelectionDAG &DAG) {
3611  SDOperand V1 = Op.getOperand(0);
3612  SDOperand V2 = Op.getOperand(1);
3613  SDOperand PermMask = Op.getOperand(2);
3614
3615  // Cases that are handled by instructions that take permute immediates
3616  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3617  // selected by the instruction selector.
3618  if (V2.getOpcode() == ISD::UNDEF) {
3619    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
3620        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
3621        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
3622        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
3623        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
3624        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
3625        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
3626        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
3627        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
3628        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
3629        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
3630        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
3631      return Op;
3632    }
3633  }
3634
3635  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3636  // and produce a fixed permutation.  If any of these match, do not lower to
3637  // VPERM.
3638  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
3639      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
3640      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
3641      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
3642      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
3643      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
3644      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
3645      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
3646      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
3647    return Op;
3648
3649  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3650  // perfect shuffle table to emit an optimal matching sequence.
3651  unsigned PFIndexes[4];
3652  bool isFourElementShuffle = true;
3653  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3654    unsigned EltNo = 8;   // Start out undef.
3655    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3656      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3657        continue;   // Undef, ignore it.
3658
3659      unsigned ByteSource =
3660        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
3661      if ((ByteSource & 3) != j) {
3662        isFourElementShuffle = false;
3663        break;
3664      }
3665
3666      if (EltNo == 8) {
3667        EltNo = ByteSource/4;
3668      } else if (EltNo != ByteSource/4) {
3669        isFourElementShuffle = false;
3670        break;
3671      }
3672    }
3673    PFIndexes[i] = EltNo;
3674  }
3675
3676  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3677  // perfect shuffle vector to determine if it is cost effective to do this as
3678  // discrete instructions, or whether we should use a vperm.
3679  if (isFourElementShuffle) {
3680    // Compute the index in the perfect shuffle table.
3681    unsigned PFTableIndex =
3682      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3683
3684    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3685    unsigned Cost  = (PFEntry >> 30);
3686
3687    // Determining when to avoid vperm is tricky.  Many things affect the cost
3688    // of vperm, particularly how many times the perm mask needs to be computed.
3689    // For example, if the perm mask can be hoisted out of a loop or is already
3690    // used (perhaps because there are multiple permutes with the same shuffle
3691    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3692    // the loop requires an extra register.
3693    //
3694    // As a compromise, we only emit discrete instructions if the shuffle can be
3695    // generated in 3 or fewer operations.  When we have loop information
3696    // available, if this block is within a loop, we should avoid using vperm
3697    // for 3-operation perms and use a constant pool load instead.
3698    if (Cost < 3)
3699      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3700  }
3701
3702  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3703  // vector that will get spilled to the constant pool.
3704  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3705
3706  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3707  // that it is in input element units, not in bytes.  Convert now.
3708  MVT EltVT = V1.getValueType().getVectorElementType();
3709  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3710
3711  SmallVector<SDOperand, 16> ResultMask;
3712  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3713    unsigned SrcElt;
3714    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3715      SrcElt = 0;
3716    else
3717      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
3718
3719    for (unsigned j = 0; j != BytesPerElement; ++j)
3720      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3721                                           MVT::i8));
3722  }
3723
3724  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3725                                    &ResultMask[0], ResultMask.size());
3726  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3727}
3728
3729/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3730/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3731/// information about the intrinsic.
3732static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
3733                                  bool &isDot) {
3734  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
3735  CompareOpc = -1;
3736  isDot = false;
3737  switch (IntrinsicID) {
3738  default: return false;
3739    // Comparison predicates.
3740  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3741  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3742  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3743  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3744  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3745  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3746  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3747  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3748  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3749  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3750  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3751  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3752  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3753
3754    // Normal Comparisons.
3755  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3756  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3757  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3758  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3759  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3760  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3761  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3762  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3763  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3764  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3765  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3766  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3767  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3768  }
3769  return true;
3770}
3771
3772/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3773/// lower, do it, otherwise return null.
3774SDOperand PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op,
3775                                                     SelectionDAG &DAG) {
3776  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3777  // opcode number of the comparison.
3778  int CompareOpc;
3779  bool isDot;
3780  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3781    return SDOperand();    // Don't custom lower most intrinsics.
3782
3783  // If this is a non-dot comparison, make the VCMP node and we are done.
3784  if (!isDot) {
3785    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3786                                Op.getOperand(1), Op.getOperand(2),
3787                                DAG.getConstant(CompareOpc, MVT::i32));
3788    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3789  }
3790
3791  // Create the PPCISD altivec 'dot' comparison node.
3792  SDOperand Ops[] = {
3793    Op.getOperand(2),  // LHS
3794    Op.getOperand(3),  // RHS
3795    DAG.getConstant(CompareOpc, MVT::i32)
3796  };
3797  std::vector<MVT> VTs;
3798  VTs.push_back(Op.getOperand(2).getValueType());
3799  VTs.push_back(MVT::Flag);
3800  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3801
3802  // Now that we have the comparison, emit a copy from the CR to a GPR.
3803  // This is flagged to the above dot comparison.
3804  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3805                                DAG.getRegister(PPC::CR6, MVT::i32),
3806                                CompNode.getValue(1));
3807
3808  // Unpack the result based on how the target uses it.
3809  unsigned BitNo;   // Bit # of CR6.
3810  bool InvertBit;   // Invert result?
3811  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
3812  default:  // Can't happen, don't crash on invalid number though.
3813  case 0:   // Return the value of the EQ bit of CR6.
3814    BitNo = 0; InvertBit = false;
3815    break;
3816  case 1:   // Return the inverted value of the EQ bit of CR6.
3817    BitNo = 0; InvertBit = true;
3818    break;
3819  case 2:   // Return the value of the LT bit of CR6.
3820    BitNo = 2; InvertBit = false;
3821    break;
3822  case 3:   // Return the inverted value of the LT bit of CR6.
3823    BitNo = 2; InvertBit = true;
3824    break;
3825  }
3826
3827  // Shift the bit into the low position.
3828  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3829                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3830  // Isolate the bit.
3831  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3832                      DAG.getConstant(1, MVT::i32));
3833
3834  // If we are supposed to, toggle the bit.
3835  if (InvertBit)
3836    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3837                        DAG.getConstant(1, MVT::i32));
3838  return Flags;
3839}
3840
3841SDOperand PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op,
3842                                                   SelectionDAG &DAG) {
3843  // Create a stack slot that is 16-byte aligned.
3844  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3845  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3846  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3847  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3848
3849  // Store the input value into Value#0 of the stack slot.
3850  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
3851                                 Op.getOperand(0), FIdx, NULL, 0);
3852  // Load it out.
3853  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3854}
3855
3856SDOperand PPCTargetLowering::LowerMUL(SDOperand Op, SelectionDAG &DAG) {
3857  if (Op.getValueType() == MVT::v4i32) {
3858    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3859
3860    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
3861    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3862
3863    SDOperand RHSSwap =   // = vrlw RHS, 16
3864      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3865
3866    // Shrinkify inputs to v8i16.
3867    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3868    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3869    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3870
3871    // Low parts multiplied together, generating 32-bit results (we ignore the
3872    // top parts).
3873    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3874                                        LHS, RHS, DAG, MVT::v4i32);
3875
3876    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3877                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3878    // Shift the high parts up 16 bits.
3879    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3880    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3881  } else if (Op.getValueType() == MVT::v8i16) {
3882    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3883
3884    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3885
3886    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3887                            LHS, RHS, Zero, DAG);
3888  } else if (Op.getValueType() == MVT::v16i8) {
3889    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3890
3891    // Multiply the even 8-bit parts, producing 16-bit sums.
3892    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3893                                           LHS, RHS, DAG, MVT::v8i16);
3894    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3895
3896    // Multiply the odd 8-bit parts, producing 16-bit sums.
3897    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3898                                          LHS, RHS, DAG, MVT::v8i16);
3899    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3900
3901    // Merge the results together.
3902    SDOperand Ops[16];
3903    for (unsigned i = 0; i != 8; ++i) {
3904      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3905      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3906    }
3907    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3908                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3909  } else {
3910    assert(0 && "Unknown mul to lower!");
3911    abort();
3912  }
3913}
3914
3915/// LowerOperation - Provide custom lowering hooks for some operations.
3916///
3917SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3918  switch (Op.getOpcode()) {
3919  default: assert(0 && "Wasn't expecting to be able to lower this!");
3920  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3921  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3922  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3923  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3924  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3925  case ISD::VASTART:
3926    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3927                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3928
3929  case ISD::VAARG:
3930    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3931                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3932
3933  case ISD::FORMAL_ARGUMENTS:
3934    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3935                                 VarArgsStackOffset, VarArgsNumGPR,
3936                                 VarArgsNumFPR, PPCSubTarget);
3937
3938  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget,
3939                                                 getTargetMachine());
3940  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3941  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3942  case ISD::DYNAMIC_STACKALLOC:
3943    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3944
3945  case ISD::ATOMIC_LOAD_ADD:    return LowerAtomicLOAD_ADD(Op, DAG);
3946  case ISD::ATOMIC_CMP_SWAP:    return LowerAtomicCMP_SWAP(Op, DAG);
3947  case ISD::ATOMIC_SWAP:        return LowerAtomicSWAP(Op, DAG);
3948
3949  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3950  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3951  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3952  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3953  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3954
3955  // Lower 64-bit shifts.
3956  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3957  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3958  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3959
3960  // Vector-related lowering.
3961  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3962  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3963  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3964  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3965  case ISD::MUL:                return LowerMUL(Op, DAG);
3966
3967  // Frame & Return address.
3968  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3969  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3970  }
3971  return SDOperand();
3972}
3973
3974SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3975  switch (N->getOpcode()) {
3976  default: assert(0 && "Wasn't expecting to be able to lower this!");
3977  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3978  }
3979}
3980
3981
3982//===----------------------------------------------------------------------===//
3983//  Other Lowering Code
3984//===----------------------------------------------------------------------===//
3985
3986MachineBasicBlock *
3987PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3988                                               MachineBasicBlock *BB) {
3989  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3990  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3991          MI->getOpcode() == PPC::SELECT_CC_I8 ||
3992          MI->getOpcode() == PPC::SELECT_CC_F4 ||
3993          MI->getOpcode() == PPC::SELECT_CC_F8 ||
3994          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3995         "Unexpected instr type to insert");
3996
3997  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3998  // control-flow pattern.  The incoming instruction knows the destination vreg
3999  // to set, the condition code register to branch on, the true/false values to
4000  // select between, and a branch opcode to use.
4001  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4002  ilist<MachineBasicBlock>::iterator It = BB;
4003  ++It;
4004
4005  //  thisMBB:
4006  //  ...
4007  //   TrueVal = ...
4008  //   cmpTY ccX, r1, r2
4009  //   bCC copy1MBB
4010  //   fallthrough --> copy0MBB
4011  MachineBasicBlock *thisMBB = BB;
4012  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4013  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4014  unsigned SelectPred = MI->getOperand(4).getImm();
4015  BuildMI(BB, TII->get(PPC::BCC))
4016    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4017  MachineFunction *F = BB->getParent();
4018  F->getBasicBlockList().insert(It, copy0MBB);
4019  F->getBasicBlockList().insert(It, sinkMBB);
4020  // Update machine-CFG edges by transferring all successors of the current
4021  // block to the new block which will contain the Phi node for the select.
4022  sinkMBB->transferSuccessors(BB);
4023  // Next, add the true and fallthrough blocks as its successors.
4024  BB->addSuccessor(copy0MBB);
4025  BB->addSuccessor(sinkMBB);
4026
4027  //  copy0MBB:
4028  //   %FalseValue = ...
4029  //   # fallthrough to sinkMBB
4030  BB = copy0MBB;
4031
4032  // Update machine-CFG edges
4033  BB->addSuccessor(sinkMBB);
4034
4035  //  sinkMBB:
4036  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4037  //  ...
4038  BB = sinkMBB;
4039  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4040    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4041    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4042
4043  delete MI;   // The pseudo instruction is gone now.
4044  return BB;
4045}
4046
4047//===----------------------------------------------------------------------===//
4048// Target Optimization Hooks
4049//===----------------------------------------------------------------------===//
4050
4051SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
4052                                               DAGCombinerInfo &DCI) const {
4053  TargetMachine &TM = getTargetMachine();
4054  SelectionDAG &DAG = DCI.DAG;
4055  switch (N->getOpcode()) {
4056  default: break;
4057  case PPCISD::SHL:
4058    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4059      if (C->getValue() == 0)   // 0 << V -> 0.
4060        return N->getOperand(0);
4061    }
4062    break;
4063  case PPCISD::SRL:
4064    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4065      if (C->getValue() == 0)   // 0 >>u V -> 0.
4066        return N->getOperand(0);
4067    }
4068    break;
4069  case PPCISD::SRA:
4070    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4071      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
4072          C->isAllOnesValue())    // -1 >>s V -> -1.
4073        return N->getOperand(0);
4074    }
4075    break;
4076
4077  case ISD::SINT_TO_FP:
4078    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4079      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4080        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4081        // We allow the src/dst to be either f32/f64, but the intermediate
4082        // type must be i64.
4083        if (N->getOperand(0).getValueType() == MVT::i64 &&
4084            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4085          SDOperand Val = N->getOperand(0).getOperand(0);
4086          if (Val.getValueType() == MVT::f32) {
4087            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4088            DCI.AddToWorklist(Val.Val);
4089          }
4090
4091          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
4092          DCI.AddToWorklist(Val.Val);
4093          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
4094          DCI.AddToWorklist(Val.Val);
4095          if (N->getValueType(0) == MVT::f32) {
4096            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
4097                              DAG.getIntPtrConstant(0));
4098            DCI.AddToWorklist(Val.Val);
4099          }
4100          return Val;
4101        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4102          // If the intermediate type is i32, we can avoid the load/store here
4103          // too.
4104        }
4105      }
4106    }
4107    break;
4108  case ISD::STORE:
4109    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4110    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4111        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4112        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4113        N->getOperand(1).getValueType() == MVT::i32 &&
4114        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4115      SDOperand Val = N->getOperand(1).getOperand(0);
4116      if (Val.getValueType() == MVT::f32) {
4117        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4118        DCI.AddToWorklist(Val.Val);
4119      }
4120      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
4121      DCI.AddToWorklist(Val.Val);
4122
4123      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
4124                        N->getOperand(2), N->getOperand(3));
4125      DCI.AddToWorklist(Val.Val);
4126      return Val;
4127    }
4128
4129    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4130    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4131        N->getOperand(1).Val->hasOneUse() &&
4132        (N->getOperand(1).getValueType() == MVT::i32 ||
4133         N->getOperand(1).getValueType() == MVT::i16)) {
4134      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
4135      // Do an any-extend to 32-bits if this is a half-word input.
4136      if (BSwapOp.getValueType() == MVT::i16)
4137        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
4138
4139      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
4140                         N->getOperand(2), N->getOperand(3),
4141                         DAG.getValueType(N->getOperand(1).getValueType()));
4142    }
4143    break;
4144  case ISD::BSWAP:
4145    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4146    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
4147        N->getOperand(0).hasOneUse() &&
4148        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4149      SDOperand Load = N->getOperand(0);
4150      LoadSDNode *LD = cast<LoadSDNode>(Load);
4151      // Create the byte-swapping load.
4152      std::vector<MVT> VTs;
4153      VTs.push_back(MVT::i32);
4154      VTs.push_back(MVT::Other);
4155      SDOperand MO = DAG.getMemOperand(LD->getMemOperand());
4156      SDOperand Ops[] = {
4157        LD->getChain(),    // Chain
4158        LD->getBasePtr(),  // Ptr
4159        MO,                // MemOperand
4160        DAG.getValueType(N->getValueType(0)) // VT
4161      };
4162      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
4163
4164      // If this is an i16 load, insert the truncate.
4165      SDOperand ResVal = BSLoad;
4166      if (N->getValueType(0) == MVT::i16)
4167        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
4168
4169      // First, combine the bswap away.  This makes the value produced by the
4170      // load dead.
4171      DCI.CombineTo(N, ResVal);
4172
4173      // Next, combine the load away, we give it a bogus result value but a real
4174      // chain result.  The result value is dead because the bswap is dead.
4175      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
4176
4177      // Return N so it doesn't get rechecked!
4178      return SDOperand(N, 0);
4179    }
4180
4181    break;
4182  case PPCISD::VCMP: {
4183    // If a VCMPo node already exists with exactly the same operands as this
4184    // node, use its result instead of this node (VCMPo computes both a CR6 and
4185    // a normal output).
4186    //
4187    if (!N->getOperand(0).hasOneUse() &&
4188        !N->getOperand(1).hasOneUse() &&
4189        !N->getOperand(2).hasOneUse()) {
4190
4191      // Scan all of the users of the LHS, looking for VCMPo's that match.
4192      SDNode *VCMPoNode = 0;
4193
4194      SDNode *LHSN = N->getOperand(0).Val;
4195      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4196           UI != E; ++UI)
4197        if ((*UI).getUser()->getOpcode() == PPCISD::VCMPo &&
4198            (*UI).getUser()->getOperand(1) == N->getOperand(1) &&
4199            (*UI).getUser()->getOperand(2) == N->getOperand(2) &&
4200            (*UI).getUser()->getOperand(0) == N->getOperand(0)) {
4201          VCMPoNode = UI->getUser();
4202          break;
4203        }
4204
4205      // If there is no VCMPo node, or if the flag value has a single use, don't
4206      // transform this.
4207      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
4208        break;
4209
4210      // Look at the (necessarily single) use of the flag value.  If it has a
4211      // chain, this transformation is more complex.  Note that multiple things
4212      // could use the value result, which we should ignore.
4213      SDNode *FlagUser = 0;
4214      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
4215           FlagUser == 0; ++UI) {
4216        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
4217        SDNode *User = UI->getUser();
4218        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
4219          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
4220            FlagUser = User;
4221            break;
4222          }
4223        }
4224      }
4225
4226      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
4227      // give up for right now.
4228      if (FlagUser->getOpcode() == PPCISD::MFCR)
4229        return SDOperand(VCMPoNode, 0);
4230    }
4231    break;
4232  }
4233  case ISD::BR_CC: {
4234    // If this is a branch on an altivec predicate comparison, lower this so
4235    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
4236    // lowering is done pre-legalize, because the legalizer lowers the predicate
4237    // compare down to code that is difficult to reassemble.
4238    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4239    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
4240    int CompareOpc;
4241    bool isDot;
4242
4243    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
4244        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
4245        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
4246      assert(isDot && "Can't compare against a vector result!");
4247
4248      // If this is a comparison against something other than 0/1, then we know
4249      // that the condition is never/always true.
4250      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
4251      if (Val != 0 && Val != 1) {
4252        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
4253          return N->getOperand(0);
4254        // Always !=, turn it into an unconditional branch.
4255        return DAG.getNode(ISD::BR, MVT::Other,
4256                           N->getOperand(0), N->getOperand(4));
4257      }
4258
4259      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
4260
4261      // Create the PPCISD altivec 'dot' comparison node.
4262      std::vector<MVT> VTs;
4263      SDOperand Ops[] = {
4264        LHS.getOperand(2),  // LHS of compare
4265        LHS.getOperand(3),  // RHS of compare
4266        DAG.getConstant(CompareOpc, MVT::i32)
4267      };
4268      VTs.push_back(LHS.getOperand(2).getValueType());
4269      VTs.push_back(MVT::Flag);
4270      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
4271
4272      // Unpack the result based on how the target uses it.
4273      PPC::Predicate CompOpc;
4274      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
4275      default:  // Can't happen, don't crash on invalid number though.
4276      case 0:   // Branch on the value of the EQ bit of CR6.
4277        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
4278        break;
4279      case 1:   // Branch on the inverted value of the EQ bit of CR6.
4280        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
4281        break;
4282      case 2:   // Branch on the value of the LT bit of CR6.
4283        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
4284        break;
4285      case 3:   // Branch on the inverted value of the LT bit of CR6.
4286        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
4287        break;
4288      }
4289
4290      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
4291                         DAG.getConstant(CompOpc, MVT::i32),
4292                         DAG.getRegister(PPC::CR6, MVT::i32),
4293                         N->getOperand(4), CompNode.getValue(1));
4294    }
4295    break;
4296  }
4297  }
4298
4299  return SDOperand();
4300}
4301
4302//===----------------------------------------------------------------------===//
4303// Inline Assembly Support
4304//===----------------------------------------------------------------------===//
4305
4306void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4307                                                       const APInt &Mask,
4308                                                       APInt &KnownZero,
4309                                                       APInt &KnownOne,
4310                                                       const SelectionDAG &DAG,
4311                                                       unsigned Depth) const {
4312  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
4313  switch (Op.getOpcode()) {
4314  default: break;
4315  case PPCISD::LBRX: {
4316    // lhbrx is known to have the top bits cleared out.
4317    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
4318      KnownZero = 0xFFFF0000;
4319    break;
4320  }
4321  case ISD::INTRINSIC_WO_CHAIN: {
4322    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
4323    default: break;
4324    case Intrinsic::ppc_altivec_vcmpbfp_p:
4325    case Intrinsic::ppc_altivec_vcmpeqfp_p:
4326    case Intrinsic::ppc_altivec_vcmpequb_p:
4327    case Intrinsic::ppc_altivec_vcmpequh_p:
4328    case Intrinsic::ppc_altivec_vcmpequw_p:
4329    case Intrinsic::ppc_altivec_vcmpgefp_p:
4330    case Intrinsic::ppc_altivec_vcmpgtfp_p:
4331    case Intrinsic::ppc_altivec_vcmpgtsb_p:
4332    case Intrinsic::ppc_altivec_vcmpgtsh_p:
4333    case Intrinsic::ppc_altivec_vcmpgtsw_p:
4334    case Intrinsic::ppc_altivec_vcmpgtub_p:
4335    case Intrinsic::ppc_altivec_vcmpgtuh_p:
4336    case Intrinsic::ppc_altivec_vcmpgtuw_p:
4337      KnownZero = ~1U;  // All bits but the low one are known to be zero.
4338      break;
4339    }
4340  }
4341  }
4342}
4343
4344
4345/// getConstraintType - Given a constraint, return the type of
4346/// constraint it is for this target.
4347PPCTargetLowering::ConstraintType
4348PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
4349  if (Constraint.size() == 1) {
4350    switch (Constraint[0]) {
4351    default: break;
4352    case 'b':
4353    case 'r':
4354    case 'f':
4355    case 'v':
4356    case 'y':
4357      return C_RegisterClass;
4358    }
4359  }
4360  return TargetLowering::getConstraintType(Constraint);
4361}
4362
4363std::pair<unsigned, const TargetRegisterClass*>
4364PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4365                                                MVT VT) const {
4366  if (Constraint.size() == 1) {
4367    // GCC RS6000 Constraint Letters
4368    switch (Constraint[0]) {
4369    case 'b':   // R1-R31
4370    case 'r':   // R0-R31
4371      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
4372        return std::make_pair(0U, PPC::G8RCRegisterClass);
4373      return std::make_pair(0U, PPC::GPRCRegisterClass);
4374    case 'f':
4375      if (VT == MVT::f32)
4376        return std::make_pair(0U, PPC::F4RCRegisterClass);
4377      else if (VT == MVT::f64)
4378        return std::make_pair(0U, PPC::F8RCRegisterClass);
4379      break;
4380    case 'v':
4381      return std::make_pair(0U, PPC::VRRCRegisterClass);
4382    case 'y':   // crrc
4383      return std::make_pair(0U, PPC::CRRCRegisterClass);
4384    }
4385  }
4386
4387  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4388}
4389
4390
4391/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4392/// vector.  If it is invalid, don't add anything to Ops.
4393void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
4394                                                     std::vector<SDOperand>&Ops,
4395                                                     SelectionDAG &DAG) const {
4396  SDOperand Result(0,0);
4397  switch (Letter) {
4398  default: break;
4399  case 'I':
4400  case 'J':
4401  case 'K':
4402  case 'L':
4403  case 'M':
4404  case 'N':
4405  case 'O':
4406  case 'P': {
4407    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
4408    if (!CST) return; // Must be an immediate to match.
4409    unsigned Value = CST->getValue();
4410    switch (Letter) {
4411    default: assert(0 && "Unknown constraint letter!");
4412    case 'I':  // "I" is a signed 16-bit constant.
4413      if ((short)Value == (int)Value)
4414        Result = DAG.getTargetConstant(Value, Op.getValueType());
4415      break;
4416    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
4417    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
4418      if ((short)Value == 0)
4419        Result = DAG.getTargetConstant(Value, Op.getValueType());
4420      break;
4421    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
4422      if ((Value >> 16) == 0)
4423        Result = DAG.getTargetConstant(Value, Op.getValueType());
4424      break;
4425    case 'M':  // "M" is a constant that is greater than 31.
4426      if (Value > 31)
4427        Result = DAG.getTargetConstant(Value, Op.getValueType());
4428      break;
4429    case 'N':  // "N" is a positive constant that is an exact power of two.
4430      if ((int)Value > 0 && isPowerOf2_32(Value))
4431        Result = DAG.getTargetConstant(Value, Op.getValueType());
4432      break;
4433    case 'O':  // "O" is the constant zero.
4434      if (Value == 0)
4435        Result = DAG.getTargetConstant(Value, Op.getValueType());
4436      break;
4437    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
4438      if ((short)-Value == (int)-Value)
4439        Result = DAG.getTargetConstant(Value, Op.getValueType());
4440      break;
4441    }
4442    break;
4443  }
4444  }
4445
4446  if (Result.Val) {
4447    Ops.push_back(Result);
4448    return;
4449  }
4450
4451  // Handle standard constraint letters.
4452  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
4453}
4454
4455// isLegalAddressingMode - Return true if the addressing mode represented
4456// by AM is legal for this target, for a load/store of the specified type.
4457bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4458                                              const Type *Ty) const {
4459  // FIXME: PPC does not allow r+i addressing modes for vectors!
4460
4461  // PPC allows a sign-extended 16-bit immediate field.
4462  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
4463    return false;
4464
4465  // No global is ever allowed as a base.
4466  if (AM.BaseGV)
4467    return false;
4468
4469  // PPC only support r+r,
4470  switch (AM.Scale) {
4471  case 0:  // "r+i" or just "i", depending on HasBaseReg.
4472    break;
4473  case 1:
4474    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
4475      return false;
4476    // Otherwise we have r+r or r+i.
4477    break;
4478  case 2:
4479    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
4480      return false;
4481    // Allow 2*r as r+r.
4482    break;
4483  default:
4484    // No other scales are supported.
4485    return false;
4486  }
4487
4488  return true;
4489}
4490
4491/// isLegalAddressImmediate - Return true if the integer value can be used
4492/// as the offset of the target addressing mode for load / store of the
4493/// given type.
4494bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
4495  // PPC allows a sign-extended 16-bit immediate field.
4496  return (V > -(1 << 16) && V < (1 << 16)-1);
4497}
4498
4499bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
4500  return false;
4501}
4502
4503SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4504  // Depths > 0 not supported yet!
4505  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4506    return SDOperand();
4507
4508  MachineFunction &MF = DAG.getMachineFunction();
4509  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4510
4511  // Just load the return address off the stack.
4512  SDOperand RetAddrFI = getReturnAddrFrameIndex(DAG);
4513
4514  // Make sure the function really does not optimize away the store of the RA
4515  // to the stack.
4516  FuncInfo->setLRStoreRequired();
4517  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4518}
4519
4520SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4521  // Depths > 0 not supported yet!
4522  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4523    return SDOperand();
4524
4525  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4526  bool isPPC64 = PtrVT == MVT::i64;
4527
4528  MachineFunction &MF = DAG.getMachineFunction();
4529  MachineFrameInfo *MFI = MF.getFrameInfo();
4530  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4531                  && MFI->getStackSize();
4532
4533  if (isPPC64)
4534    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
4535      MVT::i64);
4536  else
4537    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
4538      MVT::i32);
4539}
4540