PPCISelLowering.cpp revision 3069b8743769527ce7af6cfb6591a2f0fc2faee4
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/CodeGen/SelectionDAG.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
38cl::desc("enable preincrement load/store generation on PPC (experimental)"),
39                                     cl::Hidden);
40
41PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
42  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
43
44  setPow2DivIsCheap();
45
46  // Use _setjmp/_longjmp instead of setjmp/longjmp.
47  setUseUnderscoreSetJmp(true);
48  setUseUnderscoreLongJmp(true);
49
50  // Set up the register classes.
51  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
52  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
53  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
54
55  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
56  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
57  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
58
59  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
60
61  // PowerPC has pre-inc load and store's.
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
73  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
74  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
75
76  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
77  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
78  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
79  // This is used in the ppcf128->int sequence.  Note it has different semantics
80  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
81  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
82
83  // PowerPC has no intrinsics for these particular operations
84  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
85  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
86  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
87
88  // PowerPC has no SREM/UREM instructions
89  setOperationAction(ISD::SREM, MVT::i32, Expand);
90  setOperationAction(ISD::UREM, MVT::i32, Expand);
91  setOperationAction(ISD::SREM, MVT::i64, Expand);
92  setOperationAction(ISD::UREM, MVT::i64, Expand);
93
94  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
95  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
96  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
97  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
98  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
99  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
100  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
101  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
102  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
103
104  // We don't support sin/cos/sqrt/fmod/pow
105  setOperationAction(ISD::FSIN , MVT::f64, Expand);
106  setOperationAction(ISD::FCOS , MVT::f64, Expand);
107  setOperationAction(ISD::FREM , MVT::f64, Expand);
108  setOperationAction(ISD::FPOW , MVT::f64, Expand);
109  setOperationAction(ISD::FSIN , MVT::f32, Expand);
110  setOperationAction(ISD::FCOS , MVT::f32, Expand);
111  setOperationAction(ISD::FREM , MVT::f32, Expand);
112  setOperationAction(ISD::FPOW , MVT::f32, Expand);
113
114  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
115
116  // If we're enabling GP optimizations, use hardware square root
117  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
118    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
119    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
120  }
121
122  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
123  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
124
125  // PowerPC does not have BSWAP, CTPOP or CTTZ
126  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
127  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
128  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
129  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
130  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
131  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
132
133  // PowerPC does not have ROTR
134  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
135
136  // PowerPC does not have Select
137  setOperationAction(ISD::SELECT, MVT::i32, Expand);
138  setOperationAction(ISD::SELECT, MVT::i64, Expand);
139  setOperationAction(ISD::SELECT, MVT::f32, Expand);
140  setOperationAction(ISD::SELECT, MVT::f64, Expand);
141
142  // PowerPC wants to turn select_cc of FP into fsel when possible.
143  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
144  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
145
146  // PowerPC wants to optimize integer setcc a bit
147  setOperationAction(ISD::SETCC, MVT::i32, Custom);
148
149  // PowerPC does not have BRCOND which requires SetCC
150  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
151
152  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
153
154  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
155  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
156
157  // PowerPC does not have [U|S]INT_TO_FP
158  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
159  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
160
161  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
162  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
163  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
164  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
165
166  // We cannot sextinreg(i1).  Expand to shifts.
167  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
168
169  // Support label based line numbers.
170  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
171  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
172
173  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
174  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
175  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
176  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
177
178
179  // We want to legalize GlobalAddress and ConstantPool nodes into the
180  // appropriate instructions to materialize the address.
181  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
182  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
183  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
184  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
185  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
186  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
187  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
188  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
189
190  // RET must be custom lowered, to meet ABI requirements
191  setOperationAction(ISD::RET               , MVT::Other, Custom);
192
193  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
194  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
195
196  // VAARG is custom lowered with ELF 32 ABI
197  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
198    setOperationAction(ISD::VAARG, MVT::Other, Custom);
199  else
200    setOperationAction(ISD::VAARG, MVT::Other, Expand);
201
202  // Use the default implementation.
203  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
204  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
205  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
206  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
207  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
208  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
209
210  // We want to custom lower some of our intrinsics.
211  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
212
213  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
214    // They also have instructions for converting between i64 and fp.
215    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
216    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
217    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
218    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
219    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
220
221    // FIXME: disable this lowered code.  This generates 64-bit register values,
222    // and we don't model the fact that the top part is clobbered by calls.  We
223    // need to flag these together so that the value isn't live across a call.
224    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
225
226    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
227    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
228  } else {
229    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
230    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
231  }
232
233  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
234    // 64-bit PowerPC implementations can support i64 types directly
235    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
236    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
237    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
238  } else {
239    // 32-bit PowerPC wants to expand i64 shifts itself.
240    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
241    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
242    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
243  }
244
245  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
246    // First set operation action for all vector types to expand. Then we
247    // will selectively turn on ones that can be effectively codegen'd.
248    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
249         VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
250      // add/sub are legal for all supported vector VT's.
251      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
252      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
253
254      // We promote all shuffles to v16i8.
255      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
256      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
257
258      // We promote all non-typed operations to v4i32.
259      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
260      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
261      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
262      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
263      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
264      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
265      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
266      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
267      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
268      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
269      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
270      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
271
272      // No other operations are legal.
273      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
274      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
275      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
276      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
277      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
278      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
279      setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
280      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
281      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
282      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
283      setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
284      setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
285      setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
286      setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
287      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
288      setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
289      setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
290      setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
291      setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
292    }
293
294    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
295    // with merges, splats, etc.
296    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
297
298    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
299    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
300    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
301    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
302    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
303    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
304
305    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
306    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
307    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
308    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
309
310    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
311    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
312    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
313    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
314
315    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
316    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
317
318    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
319    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
320    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
321    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
322  }
323
324  setSetCCResultType(MVT::i32);
325  setShiftAmountType(MVT::i32);
326  setSetCCResultContents(ZeroOrOneSetCCResult);
327
328  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
329    setStackPointerRegisterToSaveRestore(PPC::X1);
330    setExceptionPointerRegister(PPC::X3);
331    setExceptionSelectorRegister(PPC::X4);
332  } else {
333    setStackPointerRegisterToSaveRestore(PPC::R1);
334    setExceptionPointerRegister(PPC::R3);
335    setExceptionSelectorRegister(PPC::R4);
336  }
337
338  // We have target-specific dag combine patterns for the following nodes:
339  setTargetDAGCombine(ISD::SINT_TO_FP);
340  setTargetDAGCombine(ISD::STORE);
341  setTargetDAGCombine(ISD::BR_CC);
342  setTargetDAGCombine(ISD::BSWAP);
343
344  // Darwin long double math library functions have $LDBL128 appended.
345  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
346    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
347    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
348    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
349    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
350    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
351  }
352
353  computeRegisterProperties();
354}
355
356const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
357  switch (Opcode) {
358  default: return 0;
359  case PPCISD::FSEL:          return "PPCISD::FSEL";
360  case PPCISD::FCFID:         return "PPCISD::FCFID";
361  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
362  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
363  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
364  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
365  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
366  case PPCISD::VPERM:         return "PPCISD::VPERM";
367  case PPCISD::Hi:            return "PPCISD::Hi";
368  case PPCISD::Lo:            return "PPCISD::Lo";
369  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
370  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
371  case PPCISD::SRL:           return "PPCISD::SRL";
372  case PPCISD::SRA:           return "PPCISD::SRA";
373  case PPCISD::SHL:           return "PPCISD::SHL";
374  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
375  case PPCISD::STD_32:        return "PPCISD::STD_32";
376  case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF";
377  case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho";
378  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
379  case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho";
380  case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF";
381  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
382  case PPCISD::MFCR:          return "PPCISD::MFCR";
383  case PPCISD::VCMP:          return "PPCISD::VCMP";
384  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
385  case PPCISD::LBRX:          return "PPCISD::LBRX";
386  case PPCISD::STBRX:         return "PPCISD::STBRX";
387  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
388  case PPCISD::MFFS:          return "PPCISD::MFFS";
389  case PPCISD::MTFSB0:        return "PPCISD::MTFSB0";
390  case PPCISD::MTFSB1:        return "PPCISD::MTFSB1";
391  case PPCISD::FADDRTZ:       return "PPCISD::FADDRTZ";
392  case PPCISD::MTFSF:         return "PPCISD::MTFSF";
393  }
394}
395
396//===----------------------------------------------------------------------===//
397// Node matching predicates, for use by the tblgen matching code.
398//===----------------------------------------------------------------------===//
399
400/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
401static bool isFloatingPointZero(SDOperand Op) {
402  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
403    return CFP->getValueAPF().isZero();
404  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
405    // Maybe this has already been legalized into the constant pool?
406    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
407      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
408        return CFP->getValueAPF().isZero();
409  }
410  return false;
411}
412
413/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
414/// true if Op is undef or if it matches the specified value.
415static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
416  return Op.getOpcode() == ISD::UNDEF ||
417         cast<ConstantSDNode>(Op)->getValue() == Val;
418}
419
420/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
421/// VPKUHUM instruction.
422bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
423  if (!isUnary) {
424    for (unsigned i = 0; i != 16; ++i)
425      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
426        return false;
427  } else {
428    for (unsigned i = 0; i != 8; ++i)
429      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
430          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
431        return false;
432  }
433  return true;
434}
435
436/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
437/// VPKUWUM instruction.
438bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
439  if (!isUnary) {
440    for (unsigned i = 0; i != 16; i += 2)
441      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
442          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
443        return false;
444  } else {
445    for (unsigned i = 0; i != 8; i += 2)
446      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
447          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
448          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
449          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
450        return false;
451  }
452  return true;
453}
454
455/// isVMerge - Common function, used to match vmrg* shuffles.
456///
457static bool isVMerge(SDNode *N, unsigned UnitSize,
458                     unsigned LHSStart, unsigned RHSStart) {
459  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
460         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
461  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
462         "Unsupported merge size!");
463
464  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
465    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
466      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
467                             LHSStart+j+i*UnitSize) ||
468          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
469                             RHSStart+j+i*UnitSize))
470        return false;
471    }
472      return true;
473}
474
475/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
476/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
477bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
478  if (!isUnary)
479    return isVMerge(N, UnitSize, 8, 24);
480  return isVMerge(N, UnitSize, 8, 8);
481}
482
483/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
484/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
485bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
486  if (!isUnary)
487    return isVMerge(N, UnitSize, 0, 16);
488  return isVMerge(N, UnitSize, 0, 0);
489}
490
491
492/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
493/// amount, otherwise return -1.
494int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
495  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
496         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
497  // Find the first non-undef value in the shuffle mask.
498  unsigned i;
499  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
500    /*search*/;
501
502  if (i == 16) return -1;  // all undef.
503
504  // Otherwise, check to see if the rest of the elements are consequtively
505  // numbered from this value.
506  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
507  if (ShiftAmt < i) return -1;
508  ShiftAmt -= i;
509
510  if (!isUnary) {
511    // Check the rest of the elements to see if they are consequtive.
512    for (++i; i != 16; ++i)
513      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
514        return -1;
515  } else {
516    // Check the rest of the elements to see if they are consequtive.
517    for (++i; i != 16; ++i)
518      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
519        return -1;
520  }
521
522  return ShiftAmt;
523}
524
525/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
526/// specifies a splat of a single element that is suitable for input to
527/// VSPLTB/VSPLTH/VSPLTW.
528bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
529  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
530         N->getNumOperands() == 16 &&
531         (EltSize == 1 || EltSize == 2 || EltSize == 4));
532
533  // This is a splat operation if each element of the permute is the same, and
534  // if the value doesn't reference the second vector.
535  unsigned ElementBase = 0;
536  SDOperand Elt = N->getOperand(0);
537  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
538    ElementBase = EltV->getValue();
539  else
540    return false;   // FIXME: Handle UNDEF elements too!
541
542  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
543    return false;
544
545  // Check that they are consequtive.
546  for (unsigned i = 1; i != EltSize; ++i) {
547    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
548        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
549      return false;
550  }
551
552  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
553  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
554    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
555    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
556           "Invalid VECTOR_SHUFFLE mask!");
557    for (unsigned j = 0; j != EltSize; ++j)
558      if (N->getOperand(i+j) != N->getOperand(j))
559        return false;
560  }
561
562  return true;
563}
564
565/// isAllNegativeZeroVector - Returns true if all elements of build_vector
566/// are -0.0.
567bool PPC::isAllNegativeZeroVector(SDNode *N) {
568  assert(N->getOpcode() == ISD::BUILD_VECTOR);
569  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
570    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
571      return CFP->getValueAPF().isNegZero();
572  return false;
573}
574
575/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
576/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
577unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
578  assert(isSplatShuffleMask(N, EltSize));
579  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
580}
581
582/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
583/// by using a vspltis[bhw] instruction of the specified element size, return
584/// the constant being splatted.  The ByteSize field indicates the number of
585/// bytes of each element [124] -> [bhw].
586SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
587  SDOperand OpVal(0, 0);
588
589  // If ByteSize of the splat is bigger than the element size of the
590  // build_vector, then we have a case where we are checking for a splat where
591  // multiple elements of the buildvector are folded together into a single
592  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
593  unsigned EltSize = 16/N->getNumOperands();
594  if (EltSize < ByteSize) {
595    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
596    SDOperand UniquedVals[4];
597    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
598
599    // See if all of the elements in the buildvector agree across.
600    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
601      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
602      // If the element isn't a constant, bail fully out.
603      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
604
605
606      if (UniquedVals[i&(Multiple-1)].Val == 0)
607        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
608      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
609        return SDOperand();  // no match.
610    }
611
612    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
613    // either constant or undef values that are identical for each chunk.  See
614    // if these chunks can form into a larger vspltis*.
615
616    // Check to see if all of the leading entries are either 0 or -1.  If
617    // neither, then this won't fit into the immediate field.
618    bool LeadingZero = true;
619    bool LeadingOnes = true;
620    for (unsigned i = 0; i != Multiple-1; ++i) {
621      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
622
623      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
624      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
625    }
626    // Finally, check the least significant entry.
627    if (LeadingZero) {
628      if (UniquedVals[Multiple-1].Val == 0)
629        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
630      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
631      if (Val < 16)
632        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
633    }
634    if (LeadingOnes) {
635      if (UniquedVals[Multiple-1].Val == 0)
636        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
637      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
638      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
639        return DAG.getTargetConstant(Val, MVT::i32);
640    }
641
642    return SDOperand();
643  }
644
645  // Check to see if this buildvec has a single non-undef value in its elements.
646  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
647    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
648    if (OpVal.Val == 0)
649      OpVal = N->getOperand(i);
650    else if (OpVal != N->getOperand(i))
651      return SDOperand();
652  }
653
654  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
655
656  unsigned ValSizeInBytes = 0;
657  uint64_t Value = 0;
658  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
659    Value = CN->getValue();
660    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
661  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
662    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
663    Value = FloatToBits(CN->getValueAPF().convertToFloat());
664    ValSizeInBytes = 4;
665  }
666
667  // If the splat value is larger than the element value, then we can never do
668  // this splat.  The only case that we could fit the replicated bits into our
669  // immediate field for would be zero, and we prefer to use vxor for it.
670  if (ValSizeInBytes < ByteSize) return SDOperand();
671
672  // If the element value is larger than the splat value, cut it in half and
673  // check to see if the two halves are equal.  Continue doing this until we
674  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
675  while (ValSizeInBytes > ByteSize) {
676    ValSizeInBytes >>= 1;
677
678    // If the top half equals the bottom half, we're still ok.
679    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
680         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
681      return SDOperand();
682  }
683
684  // Properly sign extend the value.
685  int ShAmt = (4-ByteSize)*8;
686  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
687
688  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
689  if (MaskVal == 0) return SDOperand();
690
691  // Finally, if this value fits in a 5 bit sext field, return it
692  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
693    return DAG.getTargetConstant(MaskVal, MVT::i32);
694  return SDOperand();
695}
696
697//===----------------------------------------------------------------------===//
698//  Addressing Mode Selection
699//===----------------------------------------------------------------------===//
700
701/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
702/// or 64-bit immediate, and if the value can be accurately represented as a
703/// sign extension from a 16-bit value.  If so, this returns true and the
704/// immediate.
705static bool isIntS16Immediate(SDNode *N, short &Imm) {
706  if (N->getOpcode() != ISD::Constant)
707    return false;
708
709  Imm = (short)cast<ConstantSDNode>(N)->getValue();
710  if (N->getValueType(0) == MVT::i32)
711    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
712  else
713    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
714}
715static bool isIntS16Immediate(SDOperand Op, short &Imm) {
716  return isIntS16Immediate(Op.Val, Imm);
717}
718
719
720/// SelectAddressRegReg - Given the specified addressed, check to see if it
721/// can be represented as an indexed [r+r] operation.  Returns false if it
722/// can be more efficiently represented with [r+imm].
723bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
724                                            SDOperand &Index,
725                                            SelectionDAG &DAG) {
726  short imm = 0;
727  if (N.getOpcode() == ISD::ADD) {
728    if (isIntS16Immediate(N.getOperand(1), imm))
729      return false;    // r+i
730    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
731      return false;    // r+i
732
733    Base = N.getOperand(0);
734    Index = N.getOperand(1);
735    return true;
736  } else if (N.getOpcode() == ISD::OR) {
737    if (isIntS16Immediate(N.getOperand(1), imm))
738      return false;    // r+i can fold it if we can.
739
740    // If this is an or of disjoint bitfields, we can codegen this as an add
741    // (for better address arithmetic) if the LHS and RHS of the OR are provably
742    // disjoint.
743    uint64_t LHSKnownZero, LHSKnownOne;
744    uint64_t RHSKnownZero, RHSKnownOne;
745    DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
746
747    if (LHSKnownZero) {
748      DAG.ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
749      // If all of the bits are known zero on the LHS or RHS, the add won't
750      // carry.
751      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
752        Base = N.getOperand(0);
753        Index = N.getOperand(1);
754        return true;
755      }
756    }
757  }
758
759  return false;
760}
761
762/// Returns true if the address N can be represented by a base register plus
763/// a signed 16-bit displacement [r+imm], and if it is not better
764/// represented as reg+reg.
765bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
766                                            SDOperand &Base, SelectionDAG &DAG){
767  // If this can be more profitably realized as r+r, fail.
768  if (SelectAddressRegReg(N, Disp, Base, DAG))
769    return false;
770
771  if (N.getOpcode() == ISD::ADD) {
772    short imm = 0;
773    if (isIntS16Immediate(N.getOperand(1), imm)) {
774      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
775      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
776        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
777      } else {
778        Base = N.getOperand(0);
779      }
780      return true; // [r+i]
781    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
782      // Match LOAD (ADD (X, Lo(G))).
783      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
784             && "Cannot handle constant offsets yet!");
785      Disp = N.getOperand(1).getOperand(0);  // The global address.
786      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
787             Disp.getOpcode() == ISD::TargetConstantPool ||
788             Disp.getOpcode() == ISD::TargetJumpTable);
789      Base = N.getOperand(0);
790      return true;  // [&g+r]
791    }
792  } else if (N.getOpcode() == ISD::OR) {
793    short imm = 0;
794    if (isIntS16Immediate(N.getOperand(1), imm)) {
795      // If this is an or of disjoint bitfields, we can codegen this as an add
796      // (for better address arithmetic) if the LHS and RHS of the OR are
797      // provably disjoint.
798      uint64_t LHSKnownZero, LHSKnownOne;
799      DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
800      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
801        // If all of the bits are known zero on the LHS or RHS, the add won't
802        // carry.
803        Base = N.getOperand(0);
804        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
805        return true;
806      }
807    }
808  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
809    // Loading from a constant address.
810
811    // If this address fits entirely in a 16-bit sext immediate field, codegen
812    // this as "d, 0"
813    short Imm;
814    if (isIntS16Immediate(CN, Imm)) {
815      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
816      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
817      return true;
818    }
819
820    // Handle 32-bit sext immediates with LIS + addr mode.
821    if (CN->getValueType(0) == MVT::i32 ||
822        (int64_t)CN->getValue() == (int)CN->getValue()) {
823      int Addr = (int)CN->getValue();
824
825      // Otherwise, break this down into an LIS + disp.
826      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
827
828      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
829      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
830      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
831      return true;
832    }
833  }
834
835  Disp = DAG.getTargetConstant(0, getPointerTy());
836  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
837    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
838  else
839    Base = N;
840  return true;      // [r+0]
841}
842
843/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
844/// represented as an indexed [r+r] operation.
845bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
846                                                SDOperand &Index,
847                                                SelectionDAG &DAG) {
848  // Check to see if we can easily represent this as an [r+r] address.  This
849  // will fail if it thinks that the address is more profitably represented as
850  // reg+imm, e.g. where imm = 0.
851  if (SelectAddressRegReg(N, Base, Index, DAG))
852    return true;
853
854  // If the operand is an addition, always emit this as [r+r], since this is
855  // better (for code size, and execution, as the memop does the add for free)
856  // than emitting an explicit add.
857  if (N.getOpcode() == ISD::ADD) {
858    Base = N.getOperand(0);
859    Index = N.getOperand(1);
860    return true;
861  }
862
863  // Otherwise, do it the hard way, using R0 as the base register.
864  Base = DAG.getRegister(PPC::R0, N.getValueType());
865  Index = N;
866  return true;
867}
868
869/// SelectAddressRegImmShift - Returns true if the address N can be
870/// represented by a base register plus a signed 14-bit displacement
871/// [r+imm*4].  Suitable for use by STD and friends.
872bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
873                                                 SDOperand &Base,
874                                                 SelectionDAG &DAG) {
875  // If this can be more profitably realized as r+r, fail.
876  if (SelectAddressRegReg(N, Disp, Base, DAG))
877    return false;
878
879  if (N.getOpcode() == ISD::ADD) {
880    short imm = 0;
881    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
882      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
883      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
884        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
885      } else {
886        Base = N.getOperand(0);
887      }
888      return true; // [r+i]
889    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
890      // Match LOAD (ADD (X, Lo(G))).
891      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
892             && "Cannot handle constant offsets yet!");
893      Disp = N.getOperand(1).getOperand(0);  // The global address.
894      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
895             Disp.getOpcode() == ISD::TargetConstantPool ||
896             Disp.getOpcode() == ISD::TargetJumpTable);
897      Base = N.getOperand(0);
898      return true;  // [&g+r]
899    }
900  } else if (N.getOpcode() == ISD::OR) {
901    short imm = 0;
902    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
903      // If this is an or of disjoint bitfields, we can codegen this as an add
904      // (for better address arithmetic) if the LHS and RHS of the OR are
905      // provably disjoint.
906      uint64_t LHSKnownZero, LHSKnownOne;
907      DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
908      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
909        // If all of the bits are known zero on the LHS or RHS, the add won't
910        // carry.
911        Base = N.getOperand(0);
912        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
913        return true;
914      }
915    }
916  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
917    // Loading from a constant address.  Verify low two bits are clear.
918    if ((CN->getValue() & 3) == 0) {
919      // If this address fits entirely in a 14-bit sext immediate field, codegen
920      // this as "d, 0"
921      short Imm;
922      if (isIntS16Immediate(CN, Imm)) {
923        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
924        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
925        return true;
926      }
927
928      // Fold the low-part of 32-bit absolute addresses into addr mode.
929      if (CN->getValueType(0) == MVT::i32 ||
930          (int64_t)CN->getValue() == (int)CN->getValue()) {
931        int Addr = (int)CN->getValue();
932
933        // Otherwise, break this down into an LIS + disp.
934        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
935
936        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
937        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
938        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
939        return true;
940      }
941    }
942  }
943
944  Disp = DAG.getTargetConstant(0, getPointerTy());
945  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
946    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
947  else
948    Base = N;
949  return true;      // [r+0]
950}
951
952
953/// getPreIndexedAddressParts - returns true by value, base pointer and
954/// offset pointer and addressing mode by reference if the node's address
955/// can be legally represented as pre-indexed load / store address.
956bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
957                                                  SDOperand &Offset,
958                                                  ISD::MemIndexedMode &AM,
959                                                  SelectionDAG &DAG) {
960  // Disabled by default for now.
961  if (!EnablePPCPreinc) return false;
962
963  SDOperand Ptr;
964  MVT::ValueType VT;
965  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
966    Ptr = LD->getBasePtr();
967    VT = LD->getMemoryVT();
968
969  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
970    ST = ST;
971    Ptr = ST->getBasePtr();
972    VT  = ST->getMemoryVT();
973  } else
974    return false;
975
976  // PowerPC doesn't have preinc load/store instructions for vectors.
977  if (MVT::isVector(VT))
978    return false;
979
980  // TODO: Check reg+reg first.
981
982  // LDU/STU use reg+imm*4, others use reg+imm.
983  if (VT != MVT::i64) {
984    // reg + imm
985    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
986      return false;
987  } else {
988    // reg + imm * 4.
989    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
990      return false;
991  }
992
993  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
994    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
995    // sext i32 to i64 when addr mode is r+i.
996    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
997        LD->getExtensionType() == ISD::SEXTLOAD &&
998        isa<ConstantSDNode>(Offset))
999      return false;
1000  }
1001
1002  AM = ISD::PRE_INC;
1003  return true;
1004}
1005
1006//===----------------------------------------------------------------------===//
1007//  LowerOperation implementation
1008//===----------------------------------------------------------------------===//
1009
1010static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
1011  MVT::ValueType PtrVT = Op.getValueType();
1012  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1013  Constant *C = CP->getConstVal();
1014  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1015  SDOperand Zero = DAG.getConstant(0, PtrVT);
1016
1017  const TargetMachine &TM = DAG.getTarget();
1018
1019  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1020  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1021
1022  // If this is a non-darwin platform, we don't support non-static relo models
1023  // yet.
1024  if (TM.getRelocationModel() == Reloc::Static ||
1025      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1026    // Generate non-pic code that has direct accesses to the constant pool.
1027    // The address of the global is just (hi(&g)+lo(&g)).
1028    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1029  }
1030
1031  if (TM.getRelocationModel() == Reloc::PIC_) {
1032    // With PIC, the first instruction is actually "GR+hi(&G)".
1033    Hi = DAG.getNode(ISD::ADD, PtrVT,
1034                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1035  }
1036
1037  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1038  return Lo;
1039}
1040
1041static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1042  MVT::ValueType PtrVT = Op.getValueType();
1043  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1044  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1045  SDOperand Zero = DAG.getConstant(0, PtrVT);
1046
1047  const TargetMachine &TM = DAG.getTarget();
1048
1049  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1050  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1051
1052  // If this is a non-darwin platform, we don't support non-static relo models
1053  // yet.
1054  if (TM.getRelocationModel() == Reloc::Static ||
1055      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1056    // Generate non-pic code that has direct accesses to the constant pool.
1057    // The address of the global is just (hi(&g)+lo(&g)).
1058    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1059  }
1060
1061  if (TM.getRelocationModel() == Reloc::PIC_) {
1062    // With PIC, the first instruction is actually "GR+hi(&G)".
1063    Hi = DAG.getNode(ISD::ADD, PtrVT,
1064                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1065  }
1066
1067  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1068  return Lo;
1069}
1070
1071static SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
1072  assert(0 && "TLS not implemented for PPC.");
1073}
1074
1075static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
1076  MVT::ValueType PtrVT = Op.getValueType();
1077  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1078  GlobalValue *GV = GSDN->getGlobal();
1079  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1080  // If it's a debug information descriptor, don't mess with it.
1081  if (DAG.isVerifiedDebugInfoDesc(Op))
1082    return GA;
1083  SDOperand Zero = DAG.getConstant(0, PtrVT);
1084
1085  const TargetMachine &TM = DAG.getTarget();
1086
1087  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1088  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1089
1090  // If this is a non-darwin platform, we don't support non-static relo models
1091  // yet.
1092  if (TM.getRelocationModel() == Reloc::Static ||
1093      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1094    // Generate non-pic code that has direct accesses to globals.
1095    // The address of the global is just (hi(&g)+lo(&g)).
1096    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1097  }
1098
1099  if (TM.getRelocationModel() == Reloc::PIC_) {
1100    // With PIC, the first instruction is actually "GR+hi(&G)".
1101    Hi = DAG.getNode(ISD::ADD, PtrVT,
1102                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1103  }
1104
1105  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1106
1107  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1108    return Lo;
1109
1110  // If the global is weak or external, we have to go through the lazy
1111  // resolution stub.
1112  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1113}
1114
1115static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1116  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1117
1118  // If we're comparing for equality to zero, expose the fact that this is
1119  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1120  // fold the new nodes.
1121  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1122    if (C->isNullValue() && CC == ISD::SETEQ) {
1123      MVT::ValueType VT = Op.getOperand(0).getValueType();
1124      SDOperand Zext = Op.getOperand(0);
1125      if (VT < MVT::i32) {
1126        VT = MVT::i32;
1127        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1128      }
1129      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1130      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1131      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1132                                  DAG.getConstant(Log2b, MVT::i32));
1133      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1134    }
1135    // Leave comparisons against 0 and -1 alone for now, since they're usually
1136    // optimized.  FIXME: revisit this when we can custom lower all setcc
1137    // optimizations.
1138    if (C->isAllOnesValue() || C->isNullValue())
1139      return SDOperand();
1140  }
1141
1142  // If we have an integer seteq/setne, turn it into a compare against zero
1143  // by xor'ing the rhs with the lhs, which is faster than setting a
1144  // condition register, reading it back out, and masking the correct bit.  The
1145  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1146  // the result to other bit-twiddling opportunities.
1147  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1148  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1149    MVT::ValueType VT = Op.getValueType();
1150    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1151                                Op.getOperand(1));
1152    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1153  }
1154  return SDOperand();
1155}
1156
1157static SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1158                              int VarArgsFrameIndex,
1159                              int VarArgsStackOffset,
1160                              unsigned VarArgsNumGPR,
1161                              unsigned VarArgsNumFPR,
1162                              const PPCSubtarget &Subtarget) {
1163
1164  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1165}
1166
1167static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1168                              int VarArgsFrameIndex,
1169                              int VarArgsStackOffset,
1170                              unsigned VarArgsNumGPR,
1171                              unsigned VarArgsNumFPR,
1172                              const PPCSubtarget &Subtarget) {
1173
1174  if (Subtarget.isMachoABI()) {
1175    // vastart just stores the address of the VarArgsFrameIndex slot into the
1176    // memory location argument.
1177    MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1178    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1179    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1180    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
1181  }
1182
1183  // For ELF 32 ABI we follow the layout of the va_list struct.
1184  // We suppose the given va_list is already allocated.
1185  //
1186  // typedef struct {
1187  //  char gpr;     /* index into the array of 8 GPRs
1188  //                 * stored in the register save area
1189  //                 * gpr=0 corresponds to r3,
1190  //                 * gpr=1 to r4, etc.
1191  //                 */
1192  //  char fpr;     /* index into the array of 8 FPRs
1193  //                 * stored in the register save area
1194  //                 * fpr=0 corresponds to f1,
1195  //                 * fpr=1 to f2, etc.
1196  //                 */
1197  //  char *overflow_arg_area;
1198  //                /* location on stack that holds
1199  //                 * the next overflow argument
1200  //                 */
1201  //  char *reg_save_area;
1202  //               /* where r3:r10 and f1:f8 (if saved)
1203  //                * are stored
1204  //                */
1205  // } va_list[1];
1206
1207
1208  SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1209  SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1210
1211
1212  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1213
1214  SDOperand StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1215  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1216
1217  uint64_t FrameOffset = MVT::getSizeInBits(PtrVT)/8;
1218  SDOperand ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1219
1220  uint64_t StackOffset = MVT::getSizeInBits(PtrVT)/8 - 1;
1221  SDOperand ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1222
1223  uint64_t FPROffset = 1;
1224  SDOperand ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1225
1226  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1227
1228  // Store first byte : number of int regs
1229  SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1230                                      Op.getOperand(1), SV, 0);
1231  uint64_t nextOffset = FPROffset;
1232  SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1233                                  ConstFPROffset);
1234
1235  // Store second byte : number of float regs
1236  SDOperand secondStore =
1237    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1238  nextOffset += StackOffset;
1239  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1240
1241  // Store second word : arguments given on stack
1242  SDOperand thirdStore =
1243    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1244  nextOffset += FrameOffset;
1245  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1246
1247  // Store third word : arguments given in registers
1248  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
1249
1250}
1251
1252#include "PPCGenCallingConv.inc"
1253
1254/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1255/// depending on which subtarget is selected.
1256static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1257  if (Subtarget.isMachoABI()) {
1258    static const unsigned FPR[] = {
1259      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1260      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1261    };
1262    return FPR;
1263  }
1264
1265
1266  static const unsigned FPR[] = {
1267    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1268    PPC::F8
1269  };
1270  return FPR;
1271}
1272
1273static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1274                                       int &VarArgsFrameIndex,
1275                                       int &VarArgsStackOffset,
1276                                       unsigned &VarArgsNumGPR,
1277                                       unsigned &VarArgsNumFPR,
1278                                       const PPCSubtarget &Subtarget) {
1279  // TODO: add description of PPC stack frame format, or at least some docs.
1280  //
1281  MachineFunction &MF = DAG.getMachineFunction();
1282  MachineFrameInfo *MFI = MF.getFrameInfo();
1283  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1284  SmallVector<SDOperand, 8> ArgValues;
1285  SDOperand Root = Op.getOperand(0);
1286
1287  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1288  bool isPPC64 = PtrVT == MVT::i64;
1289  bool isMachoABI = Subtarget.isMachoABI();
1290  bool isELF32_ABI = Subtarget.isELF32_ABI();
1291  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1292
1293  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1294
1295  static const unsigned GPR_32[] = {           // 32-bit registers.
1296    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1297    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1298  };
1299  static const unsigned GPR_64[] = {           // 64-bit registers.
1300    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1301    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1302  };
1303
1304  static const unsigned *FPR = GetFPR(Subtarget);
1305
1306  static const unsigned VR[] = {
1307    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1308    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1309  };
1310
1311  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1312  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1313  const unsigned Num_VR_Regs  = array_lengthof( VR);
1314
1315  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1316
1317  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1318
1319  // Add DAG nodes to load the arguments or copy them out of registers.  On
1320  // entry to a function on PPC, the arguments start after the linkage area,
1321  // although the first ones are often in registers.
1322  //
1323  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1324  // represented with two words (long long or double) must be copied to an
1325  // even GPR_idx value or to an even ArgOffset value.
1326
1327  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1328    SDOperand ArgVal;
1329    bool needsLoad = false;
1330    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1331    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1332    unsigned ArgSize = ObjSize;
1333    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1334    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1335    // See if next argument requires stack alignment in ELF
1336    bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1337      (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1338      (!(Flags & AlignFlag)));
1339
1340    unsigned CurArgOffset = ArgOffset;
1341    switch (ObjectVT) {
1342    default: assert(0 && "Unhandled argument type!");
1343    case MVT::i32:
1344      // Double word align in ELF
1345      if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1346      if (GPR_idx != Num_GPR_Regs) {
1347        unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1348        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1349        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1350        ++GPR_idx;
1351      } else {
1352        needsLoad = true;
1353        ArgSize = PtrByteSize;
1354      }
1355      // Stack align in ELF
1356      if (needsLoad && Expand && isELF32_ABI)
1357        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1358      // All int arguments reserve stack space in Macho ABI.
1359      if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1360      break;
1361
1362    case MVT::i64:  // PPC64
1363      if (GPR_idx != Num_GPR_Regs) {
1364        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1365        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1366        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1367        ++GPR_idx;
1368      } else {
1369        needsLoad = true;
1370      }
1371      // All int arguments reserve stack space in Macho ABI.
1372      if (isMachoABI || needsLoad) ArgOffset += 8;
1373      break;
1374
1375    case MVT::f32:
1376    case MVT::f64:
1377      // Every 4 bytes of argument space consumes one of the GPRs available for
1378      // argument passing.
1379      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1380        ++GPR_idx;
1381        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1382          ++GPR_idx;
1383      }
1384      if (FPR_idx != Num_FPR_Regs) {
1385        unsigned VReg;
1386        if (ObjectVT == MVT::f32)
1387          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1388        else
1389          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1390        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1391        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1392        ++FPR_idx;
1393      } else {
1394        needsLoad = true;
1395      }
1396
1397      // Stack align in ELF
1398      if (needsLoad && Expand && isELF32_ABI)
1399        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1400      // All FP arguments reserve stack space in Macho ABI.
1401      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1402      break;
1403    case MVT::v4f32:
1404    case MVT::v4i32:
1405    case MVT::v8i16:
1406    case MVT::v16i8:
1407      // Note that vector arguments in registers don't reserve stack space.
1408      if (VR_idx != Num_VR_Regs) {
1409        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1410        RegInfo.addLiveIn(VR[VR_idx], VReg);
1411        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1412        ++VR_idx;
1413      } else {
1414        // This should be simple, but requires getting 16-byte aligned stack
1415        // values.
1416        assert(0 && "Loading VR argument not implemented yet!");
1417        needsLoad = true;
1418      }
1419      break;
1420    }
1421
1422    // We need to load the argument to a virtual register if we determined above
1423    // that we ran out of physical registers of the appropriate type
1424    if (needsLoad) {
1425      // If the argument is actually used, emit a load from the right stack
1426      // slot.
1427      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1428        int FI = MFI->CreateFixedObject(ObjSize,
1429                                        CurArgOffset + (ArgSize - ObjSize));
1430        SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1431        ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1432      } else {
1433        // Don't emit a dead load.
1434        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1435      }
1436    }
1437
1438    ArgValues.push_back(ArgVal);
1439  }
1440
1441  // If the function takes variable number of arguments, make a frame index for
1442  // the start of the first vararg value... for expansion of llvm.va_start.
1443  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1444  if (isVarArg) {
1445
1446    int depth;
1447    if (isELF32_ABI) {
1448      VarArgsNumGPR = GPR_idx;
1449      VarArgsNumFPR = FPR_idx;
1450
1451      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1452      // pointer.
1453      depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1454                Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1455                MVT::getSizeInBits(PtrVT)/8);
1456
1457      VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1458                                                  ArgOffset);
1459
1460    }
1461    else
1462      depth = ArgOffset;
1463
1464    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1465                                               depth);
1466    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1467
1468    SmallVector<SDOperand, 8> MemOps;
1469
1470    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1471    // stored to the VarArgsFrameIndex on the stack.
1472    if (isELF32_ABI) {
1473      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1474        SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1475        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1476        MemOps.push_back(Store);
1477        // Increment the address by four for the next argument to store
1478        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1479        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1480      }
1481    }
1482
1483    // If this function is vararg, store any remaining integer argument regs
1484    // to their spots on the stack so that they may be loaded by deferencing the
1485    // result of va_next.
1486    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1487      unsigned VReg;
1488      if (isPPC64)
1489        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1490      else
1491        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1492
1493      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1494      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1495      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1496      MemOps.push_back(Store);
1497      // Increment the address by four for the next argument to store
1498      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1499      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1500    }
1501
1502    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1503    // on the stack.
1504    if (isELF32_ABI) {
1505      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1506        SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1507        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1508        MemOps.push_back(Store);
1509        // Increment the address by eight for the next argument to store
1510        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1511                                           PtrVT);
1512        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1513      }
1514
1515      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1516        unsigned VReg;
1517        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1518
1519        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1520        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1521        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1522        MemOps.push_back(Store);
1523        // Increment the address by eight for the next argument to store
1524        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1525                                           PtrVT);
1526        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1527      }
1528    }
1529
1530    if (!MemOps.empty())
1531      Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1532  }
1533
1534  ArgValues.push_back(Root);
1535
1536  // Return the new list of results.
1537  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1538                                    Op.Val->value_end());
1539  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1540}
1541
1542/// isCallCompatibleAddress - Return the immediate to use if the specified
1543/// 32-bit value is representable in the immediate field of a BxA instruction.
1544static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1545  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1546  if (!C) return 0;
1547
1548  int Addr = C->getValue();
1549  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1550      (Addr << 6 >> 6) != Addr)
1551    return 0;  // Top 6 bits have to be sext of immediate.
1552
1553  return DAG.getConstant((int)C->getValue() >> 2,
1554                         DAG.getTargetLoweringInfo().getPointerTy()).Val;
1555}
1556
1557
1558static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
1559                           const PPCSubtarget &Subtarget) {
1560  SDOperand Chain  = Op.getOperand(0);
1561  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1562  SDOperand Callee = Op.getOperand(4);
1563  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
1564
1565  bool isMachoABI = Subtarget.isMachoABI();
1566  bool isELF32_ABI  = Subtarget.isELF32_ABI();
1567
1568  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1569  bool isPPC64 = PtrVT == MVT::i64;
1570  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1571
1572  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1573  // SelectExpr to use to put the arguments in the appropriate registers.
1574  std::vector<SDOperand> args_to_use;
1575
1576  // Count how many bytes are to be pushed on the stack, including the linkage
1577  // area, and parameter passing area.  We start with 24/48 bytes, which is
1578  // prereserved space for [SP][CR][LR][3 x unused].
1579  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1580
1581  // Add up all the space actually used.
1582  for (unsigned i = 0; i != NumOps; ++i) {
1583    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1584    ArgSize = std::max(ArgSize, PtrByteSize);
1585    NumBytes += ArgSize;
1586  }
1587
1588  // The prolog code of the callee may store up to 8 GPR argument registers to
1589  // the stack, allowing va_start to index over them in memory if its varargs.
1590  // Because we cannot tell if this is needed on the caller side, we have to
1591  // conservatively assume that it is needed.  As such, make sure we have at
1592  // least enough stack space for the caller to store the 8 GPRs.
1593  NumBytes = std::max(NumBytes,
1594                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1595
1596  // Adjust the stack pointer for the new arguments...
1597  // These operations are automatically eliminated by the prolog/epilog pass
1598  Chain = DAG.getCALLSEQ_START(Chain,
1599                               DAG.getConstant(NumBytes, PtrVT));
1600
1601  // Set up a copy of the stack pointer for use loading and storing any
1602  // arguments that may not fit in the registers available for argument
1603  // passing.
1604  SDOperand StackPtr;
1605  if (isPPC64)
1606    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1607  else
1608    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1609
1610  // Figure out which arguments are going to go in registers, and which in
1611  // memory.  Also, if this is a vararg function, floating point operations
1612  // must be stored to our stack, and loaded into integer regs as well, if
1613  // any integer regs are available for argument passing.
1614  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1615  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1616
1617  static const unsigned GPR_32[] = {           // 32-bit registers.
1618    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1619    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1620  };
1621  static const unsigned GPR_64[] = {           // 64-bit registers.
1622    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1623    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1624  };
1625  static const unsigned *FPR = GetFPR(Subtarget);
1626
1627  static const unsigned VR[] = {
1628    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1629    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1630  };
1631  const unsigned NumGPRs = array_lengthof(GPR_32);
1632  const unsigned NumFPRs = isMachoABI ? 13 : 8;
1633  const unsigned NumVRs  = array_lengthof( VR);
1634
1635  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1636
1637  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1638  SmallVector<SDOperand, 8> MemOpChains;
1639  for (unsigned i = 0; i != NumOps; ++i) {
1640    bool inMem = false;
1641    SDOperand Arg = Op.getOperand(5+2*i);
1642    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1643    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1644    // See if next argument requires stack alignment in ELF
1645    unsigned next = 5+2*(i+1)+1;
1646    bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1647      (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1648      (!(Flags & AlignFlag)));
1649
1650    // PtrOff will be used to store the current argument to the stack if a
1651    // register cannot be found for it.
1652    SDOperand PtrOff;
1653
1654    // Stack align in ELF 32
1655    if (isELF32_ABI && Expand)
1656      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1657                               StackPtr.getValueType());
1658    else
1659      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1660
1661    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1662
1663    // On PPC64, promote integers to 64-bit values.
1664    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1665      unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1666
1667      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1668    }
1669
1670    switch (Arg.getValueType()) {
1671    default: assert(0 && "Unexpected ValueType for argument!");
1672    case MVT::i32:
1673    case MVT::i64:
1674      // Double word align in ELF
1675      if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1676      if (GPR_idx != NumGPRs) {
1677        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1678      } else {
1679        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1680        inMem = true;
1681      }
1682      if (inMem || isMachoABI) {
1683        // Stack align in ELF
1684        if (isELF32_ABI && Expand)
1685          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1686
1687        ArgOffset += PtrByteSize;
1688      }
1689      break;
1690    case MVT::f32:
1691    case MVT::f64:
1692      if (isVarArg) {
1693        // Float varargs need to be promoted to double.
1694        if (Arg.getValueType() == MVT::f32)
1695          Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1696      }
1697
1698      if (FPR_idx != NumFPRs) {
1699        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1700
1701        if (isVarArg) {
1702          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1703          MemOpChains.push_back(Store);
1704
1705          // Float varargs are always shadowed in available integer registers
1706          if (GPR_idx != NumGPRs) {
1707            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1708            MemOpChains.push_back(Load.getValue(1));
1709            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1710                                                                Load));
1711          }
1712          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1713            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1714            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1715            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1716            MemOpChains.push_back(Load.getValue(1));
1717            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1718                                                                Load));
1719          }
1720        } else {
1721          // If we have any FPRs remaining, we may also have GPRs remaining.
1722          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1723          // GPRs.
1724          if (isMachoABI) {
1725            if (GPR_idx != NumGPRs)
1726              ++GPR_idx;
1727            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1728                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
1729              ++GPR_idx;
1730          }
1731        }
1732      } else {
1733        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1734        inMem = true;
1735      }
1736      if (inMem || isMachoABI) {
1737        // Stack align in ELF
1738        if (isELF32_ABI && Expand)
1739          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1740        if (isPPC64)
1741          ArgOffset += 8;
1742        else
1743          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1744      }
1745      break;
1746    case MVT::v4f32:
1747    case MVT::v4i32:
1748    case MVT::v8i16:
1749    case MVT::v16i8:
1750      assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1751      assert(VR_idx != NumVRs &&
1752             "Don't support passing more than 12 vector args yet!");
1753      RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1754      break;
1755    }
1756  }
1757  if (!MemOpChains.empty())
1758    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1759                        &MemOpChains[0], MemOpChains.size());
1760
1761  // Build a sequence of copy-to-reg nodes chained together with token chain
1762  // and flag operands which copy the outgoing args into the appropriate regs.
1763  SDOperand InFlag;
1764  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1765    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1766                             InFlag);
1767    InFlag = Chain.getValue(1);
1768  }
1769
1770  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1771  if (isVarArg && isELF32_ABI) {
1772    SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1773    Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1774    InFlag = Chain.getValue(1);
1775  }
1776
1777  std::vector<MVT::ValueType> NodeTys;
1778  NodeTys.push_back(MVT::Other);   // Returns a chain
1779  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1780
1781  SmallVector<SDOperand, 8> Ops;
1782  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1783
1784  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1785  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1786  // node so that legalize doesn't hack it.
1787  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1788    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1789  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1790    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1791  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1792    // If this is an absolute destination address, use the munged value.
1793    Callee = SDOperand(Dest, 0);
1794  else {
1795    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
1796    // to do the call, we can't use PPCISD::CALL.
1797    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1798    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1799    InFlag = Chain.getValue(1);
1800
1801    // Copy the callee address into R12 on darwin.
1802    if (isMachoABI) {
1803      Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1804      InFlag = Chain.getValue(1);
1805    }
1806
1807    NodeTys.clear();
1808    NodeTys.push_back(MVT::Other);
1809    NodeTys.push_back(MVT::Flag);
1810    Ops.push_back(Chain);
1811    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1812    Callee.Val = 0;
1813  }
1814
1815  // If this is a direct call, pass the chain and the callee.
1816  if (Callee.Val) {
1817    Ops.push_back(Chain);
1818    Ops.push_back(Callee);
1819  }
1820
1821  // Add argument registers to the end of the list so that they are known live
1822  // into the call.
1823  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1824    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1825                                  RegsToPass[i].second.getValueType()));
1826
1827  if (InFlag.Val)
1828    Ops.push_back(InFlag);
1829  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1830  InFlag = Chain.getValue(1);
1831
1832  Chain = DAG.getCALLSEQ_END(Chain,
1833                             DAG.getConstant(NumBytes, PtrVT),
1834                             DAG.getConstant(0, PtrVT),
1835                             InFlag);
1836  if (Op.Val->getValueType(0) != MVT::Other)
1837    InFlag = Chain.getValue(1);
1838
1839  SDOperand ResultVals[3];
1840  unsigned NumResults = 0;
1841  NodeTys.clear();
1842
1843  // If the call has results, copy the values out of the ret val registers.
1844  switch (Op.Val->getValueType(0)) {
1845  default: assert(0 && "Unexpected ret value!");
1846  case MVT::Other: break;
1847  case MVT::i32:
1848    if (Op.Val->getValueType(1) == MVT::i32) {
1849      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1850      ResultVals[0] = Chain.getValue(0);
1851      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
1852                                 Chain.getValue(2)).getValue(1);
1853      ResultVals[1] = Chain.getValue(0);
1854      NumResults = 2;
1855      NodeTys.push_back(MVT::i32);
1856    } else {
1857      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1858      ResultVals[0] = Chain.getValue(0);
1859      NumResults = 1;
1860    }
1861    NodeTys.push_back(MVT::i32);
1862    break;
1863  case MVT::i64:
1864    Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1865    ResultVals[0] = Chain.getValue(0);
1866    NumResults = 1;
1867    NodeTys.push_back(MVT::i64);
1868    break;
1869  case MVT::f64:
1870    if (Op.Val->getValueType(1) == MVT::f64) {
1871      Chain = DAG.getCopyFromReg(Chain, PPC::F1, MVT::f64, InFlag).getValue(1);
1872      ResultVals[0] = Chain.getValue(0);
1873      Chain = DAG.getCopyFromReg(Chain, PPC::F2, MVT::f64,
1874                                 Chain.getValue(2)).getValue(1);
1875      ResultVals[1] = Chain.getValue(0);
1876      NumResults = 2;
1877      NodeTys.push_back(MVT::f64);
1878      NodeTys.push_back(MVT::f64);
1879      break;
1880    }
1881    // else fall through
1882  case MVT::f32:
1883    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1884                               InFlag).getValue(1);
1885    ResultVals[0] = Chain.getValue(0);
1886    NumResults = 1;
1887    NodeTys.push_back(Op.Val->getValueType(0));
1888    break;
1889  case MVT::v4f32:
1890  case MVT::v4i32:
1891  case MVT::v8i16:
1892  case MVT::v16i8:
1893    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1894                                   InFlag).getValue(1);
1895    ResultVals[0] = Chain.getValue(0);
1896    NumResults = 1;
1897    NodeTys.push_back(Op.Val->getValueType(0));
1898    break;
1899  }
1900
1901  NodeTys.push_back(MVT::Other);
1902
1903  // If the function returns void, just return the chain.
1904  if (NumResults == 0)
1905    return Chain;
1906
1907  // Otherwise, merge everything together with a MERGE_VALUES node.
1908  ResultVals[NumResults++] = Chain;
1909  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1910                              ResultVals, NumResults);
1911  return Res.getValue(Op.ResNo);
1912}
1913
1914static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) {
1915  SmallVector<CCValAssign, 16> RVLocs;
1916  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1917  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1918  CCState CCInfo(CC, isVarArg, TM, RVLocs);
1919  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
1920
1921  // If this is the first return lowered for this function, add the regs to the
1922  // liveout set for the function.
1923  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1924    for (unsigned i = 0; i != RVLocs.size(); ++i)
1925      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1926  }
1927
1928  SDOperand Chain = Op.getOperand(0);
1929  SDOperand Flag;
1930
1931  // Copy the result values into the output registers.
1932  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1933    CCValAssign &VA = RVLocs[i];
1934    assert(VA.isRegLoc() && "Can only return in registers!");
1935    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
1936    Flag = Chain.getValue(1);
1937  }
1938
1939  if (Flag.Val)
1940    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
1941  else
1942    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
1943}
1944
1945static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1946                                   const PPCSubtarget &Subtarget) {
1947  // When we pop the dynamic allocation we need to restore the SP link.
1948
1949  // Get the corect type for pointers.
1950  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1951
1952  // Construct the stack pointer operand.
1953  bool IsPPC64 = Subtarget.isPPC64();
1954  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1955  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1956
1957  // Get the operands for the STACKRESTORE.
1958  SDOperand Chain = Op.getOperand(0);
1959  SDOperand SaveSP = Op.getOperand(1);
1960
1961  // Load the old link SP.
1962  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1963
1964  // Restore the stack pointer.
1965  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1966
1967  // Store the old link SP.
1968  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1969}
1970
1971static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1972                                         const PPCSubtarget &Subtarget) {
1973  MachineFunction &MF = DAG.getMachineFunction();
1974  bool IsPPC64 = Subtarget.isPPC64();
1975  bool isMachoABI = Subtarget.isMachoABI();
1976
1977  // Get current frame pointer save index.  The users of this index will be
1978  // primarily DYNALLOC instructions.
1979  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1980  int FPSI = FI->getFramePointerSaveIndex();
1981
1982  // If the frame pointer save index hasn't been defined yet.
1983  if (!FPSI) {
1984    // Find out what the fix offset of the frame pointer save area.
1985    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
1986
1987    // Allocate the frame index for frame pointer save area.
1988    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
1989    // Save the result.
1990    FI->setFramePointerSaveIndex(FPSI);
1991  }
1992
1993  // Get the inputs.
1994  SDOperand Chain = Op.getOperand(0);
1995  SDOperand Size  = Op.getOperand(1);
1996
1997  // Get the corect type for pointers.
1998  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1999  // Negate the size.
2000  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
2001                                  DAG.getConstant(0, PtrVT), Size);
2002  // Construct a node for the frame pointer save index.
2003  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
2004  // Build a DYNALLOC node.
2005  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
2006  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2007  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2008}
2009
2010
2011/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2012/// possible.
2013static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
2014  // Not FP? Not a fsel.
2015  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2016      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2017    return SDOperand();
2018
2019  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2020
2021  // Cannot handle SETEQ/SETNE.
2022  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2023
2024  MVT::ValueType ResVT = Op.getValueType();
2025  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2026  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2027  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2028
2029  // If the RHS of the comparison is a 0.0, we don't need to do the
2030  // subtraction at all.
2031  if (isFloatingPointZero(RHS))
2032    switch (CC) {
2033    default: break;       // SETUO etc aren't handled by fsel.
2034    case ISD::SETULT:
2035    case ISD::SETOLT:
2036    case ISD::SETLT:
2037      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2038    case ISD::SETUGE:
2039    case ISD::SETOGE:
2040    case ISD::SETGE:
2041      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2042        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2043      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2044    case ISD::SETUGT:
2045    case ISD::SETOGT:
2046    case ISD::SETGT:
2047      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2048    case ISD::SETULE:
2049    case ISD::SETOLE:
2050    case ISD::SETLE:
2051      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2052        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2053      return DAG.getNode(PPCISD::FSEL, ResVT,
2054                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2055    }
2056
2057  SDOperand Cmp;
2058  switch (CC) {
2059  default: break;       // SETUO etc aren't handled by fsel.
2060  case ISD::SETULT:
2061  case ISD::SETOLT:
2062  case ISD::SETLT:
2063    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2064    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2065      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2066      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2067  case ISD::SETUGE:
2068  case ISD::SETOGE:
2069  case ISD::SETGE:
2070    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2071    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2072      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2073      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2074  case ISD::SETUGT:
2075  case ISD::SETOGT:
2076  case ISD::SETGT:
2077    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2078    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2079      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2080      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2081  case ISD::SETULE:
2082  case ISD::SETOLE:
2083  case ISD::SETLE:
2084    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2085    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2086      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2087      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2088  }
2089  return SDOperand();
2090}
2091
2092// FIXME: Split this code up when LegalizeDAGTypes lands.
2093static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2094  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2095  SDOperand Src = Op.getOperand(0);
2096  if (Src.getValueType() == MVT::f32)
2097    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2098
2099  SDOperand Tmp;
2100  switch (Op.getValueType()) {
2101  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2102  case MVT::i32:
2103    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2104    break;
2105  case MVT::i64:
2106    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2107    break;
2108  }
2109
2110  // Convert the FP value to an int value through memory.
2111  SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2112
2113  // Emit a store to the stack slot.
2114  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2115
2116  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2117  // add in a bias.
2118  if (Op.getValueType() == MVT::i32)
2119    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2120                        DAG.getConstant(4, FIPtr.getValueType()));
2121  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2122}
2123
2124static SDOperand LowerFP_ROUND_INREG(SDOperand Op, SelectionDAG &DAG) {
2125  assert(Op.getValueType() == MVT::ppcf128);
2126  SDNode *Node = Op.Val;
2127  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2128  assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
2129  SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2130  SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2131
2132  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2133  // of the long double, and puts FPSCR back the way it was.  We do not
2134  // actually model FPSCR.
2135  std::vector<MVT::ValueType> NodeTys;
2136  SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2137
2138  NodeTys.push_back(MVT::f64);   // Return register
2139  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2140  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2141  MFFSreg = Result.getValue(0);
2142  InFlag = Result.getValue(1);
2143
2144  NodeTys.clear();
2145  NodeTys.push_back(MVT::Flag);   // Returns a flag
2146  Ops[0] = DAG.getConstant(31, MVT::i32);
2147  Ops[1] = InFlag;
2148  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2149  InFlag = Result.getValue(0);
2150
2151  NodeTys.clear();
2152  NodeTys.push_back(MVT::Flag);   // Returns a flag
2153  Ops[0] = DAG.getConstant(30, MVT::i32);
2154  Ops[1] = InFlag;
2155  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2156  InFlag = Result.getValue(0);
2157
2158  NodeTys.clear();
2159  NodeTys.push_back(MVT::f64);    // result of add
2160  NodeTys.push_back(MVT::Flag);   // Returns a flag
2161  Ops[0] = Lo;
2162  Ops[1] = Hi;
2163  Ops[2] = InFlag;
2164  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2165  FPreg = Result.getValue(0);
2166  InFlag = Result.getValue(1);
2167
2168  NodeTys.clear();
2169  NodeTys.push_back(MVT::f64);
2170  Ops[0] = DAG.getConstant(1, MVT::i32);
2171  Ops[1] = MFFSreg;
2172  Ops[2] = FPreg;
2173  Ops[3] = InFlag;
2174  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2175  FPreg = Result.getValue(0);
2176
2177  // We know the low half is about to be thrown away, so just use something
2178  // convenient.
2179  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2180}
2181
2182static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2183  if (Op.getOperand(0).getValueType() == MVT::i64) {
2184    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2185    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2186    if (Op.getValueType() == MVT::f32)
2187      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2188    return FP;
2189  }
2190
2191  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2192         "Unhandled SINT_TO_FP type in custom expander!");
2193  // Since we only generate this in 64-bit mode, we can take advantage of
2194  // 64-bit registers.  In particular, sign extend the input value into the
2195  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2196  // then lfd it and fcfid it.
2197  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2198  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2199  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2200  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2201
2202  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2203                                Op.getOperand(0));
2204
2205  // STD the extended value into the stack slot.
2206  MemOperand MO(PseudoSourceValue::getFixedStack(),
2207                MemOperand::MOStore, FrameIdx, 8, 8);
2208  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2209                                DAG.getEntryNode(), Ext64, FIdx,
2210                                DAG.getMemOperand(MO));
2211  // Load the value as a double.
2212  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2213
2214  // FCFID it and return it.
2215  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2216  if (Op.getValueType() == MVT::f32)
2217    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2218  return FP;
2219}
2220
2221static SDOperand LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
2222  /*
2223   The rounding mode is in bits 30:31 of FPSR, and has the following
2224   settings:
2225     00 Round to nearest
2226     01 Round to 0
2227     10 Round to +inf
2228     11 Round to -inf
2229
2230  FLT_ROUNDS, on the other hand, expects the following:
2231    -1 Undefined
2232     0 Round to 0
2233     1 Round to nearest
2234     2 Round to +inf
2235     3 Round to -inf
2236
2237  To perform the conversion, we do:
2238    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2239  */
2240
2241  MachineFunction &MF = DAG.getMachineFunction();
2242  MVT::ValueType VT = Op.getValueType();
2243  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2244  std::vector<MVT::ValueType> NodeTys;
2245  SDOperand MFFSreg, InFlag;
2246
2247  // Save FP Control Word to register
2248  NodeTys.push_back(MVT::f64);    // return register
2249  NodeTys.push_back(MVT::Flag);   // unused in this context
2250  SDOperand Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2251
2252  // Save FP register to stack slot
2253  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2254  SDOperand StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2255  SDOperand Store = DAG.getStore(DAG.getEntryNode(), Chain,
2256                                 StackSlot, NULL, 0);
2257
2258  // Load FP Control Word from low 32 bits of stack slot.
2259  SDOperand Four = DAG.getConstant(4, PtrVT);
2260  SDOperand Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2261  SDOperand CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2262
2263  // Transform as necessary
2264  SDOperand CWD1 =
2265    DAG.getNode(ISD::AND, MVT::i32,
2266                CWD, DAG.getConstant(3, MVT::i32));
2267  SDOperand CWD2 =
2268    DAG.getNode(ISD::SRL, MVT::i32,
2269                DAG.getNode(ISD::AND, MVT::i32,
2270                            DAG.getNode(ISD::XOR, MVT::i32,
2271                                        CWD, DAG.getConstant(3, MVT::i32)),
2272                            DAG.getConstant(3, MVT::i32)),
2273                DAG.getConstant(1, MVT::i8));
2274
2275  SDOperand RetVal =
2276    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2277
2278  return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
2279                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2280}
2281
2282static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2283  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2284         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
2285
2286  // Expand into a bunch of logical ops.  Note that these ops
2287  // depend on the PPC behavior for oversized shift amounts.
2288  SDOperand Lo = Op.getOperand(0);
2289  SDOperand Hi = Op.getOperand(1);
2290  SDOperand Amt = Op.getOperand(2);
2291
2292  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2293                               DAG.getConstant(32, MVT::i32), Amt);
2294  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
2295  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
2296  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2297  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2298                               DAG.getConstant(-32U, MVT::i32));
2299  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
2300  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2301  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
2302  SDOperand OutOps[] = { OutLo, OutHi };
2303  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2304                     OutOps, 2);
2305}
2306
2307static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2308  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2309         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
2310
2311  // Otherwise, expand into a bunch of logical ops.  Note that these ops
2312  // depend on the PPC behavior for oversized shift amounts.
2313  SDOperand Lo = Op.getOperand(0);
2314  SDOperand Hi = Op.getOperand(1);
2315  SDOperand Amt = Op.getOperand(2);
2316
2317  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2318                               DAG.getConstant(32, MVT::i32), Amt);
2319  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2320  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2321  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2322  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2323                               DAG.getConstant(-32U, MVT::i32));
2324  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
2325  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2326  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
2327  SDOperand OutOps[] = { OutLo, OutHi };
2328  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2329                     OutOps, 2);
2330}
2331
2332static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2333  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2334         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
2335
2336  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
2337  SDOperand Lo = Op.getOperand(0);
2338  SDOperand Hi = Op.getOperand(1);
2339  SDOperand Amt = Op.getOperand(2);
2340
2341  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2342                               DAG.getConstant(32, MVT::i32), Amt);
2343  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2344  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2345  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2346  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2347                               DAG.getConstant(-32U, MVT::i32));
2348  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
2349  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
2350  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
2351                                    Tmp4, Tmp6, ISD::SETLE);
2352  SDOperand OutOps[] = { OutLo, OutHi };
2353  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2354                     OutOps, 2);
2355}
2356
2357//===----------------------------------------------------------------------===//
2358// Vector related lowering.
2359//
2360
2361// If this is a vector of constants or undefs, get the bits.  A bit in
2362// UndefBits is set if the corresponding element of the vector is an
2363// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2364// zero.   Return true if this is not an array of constants, false if it is.
2365//
2366static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2367                                       uint64_t UndefBits[2]) {
2368  // Start with zero'd results.
2369  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2370
2371  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2372  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2373    SDOperand OpVal = BV->getOperand(i);
2374
2375    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
2376    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
2377
2378    uint64_t EltBits = 0;
2379    if (OpVal.getOpcode() == ISD::UNDEF) {
2380      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2381      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2382      continue;
2383    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2384      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2385    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2386      assert(CN->getValueType(0) == MVT::f32 &&
2387             "Only one legal FP vector type!");
2388      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
2389    } else {
2390      // Nonconstant element.
2391      return true;
2392    }
2393
2394    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2395  }
2396
2397  //printf("%llx %llx  %llx %llx\n",
2398  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2399  return false;
2400}
2401
2402// If this is a splat (repetition) of a value across the whole vector, return
2403// the smallest size that splats it.  For example, "0x01010101010101..." is a
2404// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2405// SplatSize = 1 byte.
2406static bool isConstantSplat(const uint64_t Bits128[2],
2407                            const uint64_t Undef128[2],
2408                            unsigned &SplatBits, unsigned &SplatUndef,
2409                            unsigned &SplatSize) {
2410
2411  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
2412  // the same as the lower 64-bits, ignoring undefs.
2413  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2414    return false;  // Can't be a splat if two pieces don't match.
2415
2416  uint64_t Bits64  = Bits128[0] | Bits128[1];
2417  uint64_t Undef64 = Undef128[0] & Undef128[1];
2418
2419  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2420  // undefs.
2421  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2422    return false;  // Can't be a splat if two pieces don't match.
2423
2424  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2425  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2426
2427  // If the top 16-bits are different than the lower 16-bits, ignoring
2428  // undefs, we have an i32 splat.
2429  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2430    SplatBits = Bits32;
2431    SplatUndef = Undef32;
2432    SplatSize = 4;
2433    return true;
2434  }
2435
2436  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
2437  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2438
2439  // If the top 8-bits are different than the lower 8-bits, ignoring
2440  // undefs, we have an i16 splat.
2441  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2442    SplatBits = Bits16;
2443    SplatUndef = Undef16;
2444    SplatSize = 2;
2445    return true;
2446  }
2447
2448  // Otherwise, we have an 8-bit splat.
2449  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
2450  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2451  SplatSize = 1;
2452  return true;
2453}
2454
2455/// BuildSplatI - Build a canonical splati of Val with an element size of
2456/// SplatSize.  Cast the result to VT.
2457static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2458                             SelectionDAG &DAG) {
2459  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2460
2461  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2462    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2463  };
2464
2465  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2466
2467  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2468  if (Val == -1)
2469    SplatSize = 1;
2470
2471  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2472
2473  // Build a canonical splat for this value.
2474  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2475  SmallVector<SDOperand, 8> Ops;
2476  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2477  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2478                              &Ops[0], Ops.size());
2479  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2480}
2481
2482/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2483/// specified intrinsic ID.
2484static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2485                                  SelectionDAG &DAG,
2486                                  MVT::ValueType DestVT = MVT::Other) {
2487  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2488  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2489                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2490}
2491
2492/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2493/// specified intrinsic ID.
2494static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2495                                  SDOperand Op2, SelectionDAG &DAG,
2496                                  MVT::ValueType DestVT = MVT::Other) {
2497  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2498  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2499                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2500}
2501
2502
2503/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2504/// amount.  The result has the specified value type.
2505static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2506                             MVT::ValueType VT, SelectionDAG &DAG) {
2507  // Force LHS/RHS to be the right type.
2508  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2509  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2510
2511  SDOperand Ops[16];
2512  for (unsigned i = 0; i != 16; ++i)
2513    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2514  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2515                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2516  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2517}
2518
2519// If this is a case we can't handle, return null and let the default
2520// expansion code take care of it.  If we CAN select this case, and if it
2521// selects to a single instruction, return Op.  Otherwise, if we can codegen
2522// this case more efficiently than a constant pool load, lower it to the
2523// sequence of ops that should be used.
2524static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2525  // If this is a vector of constants or undefs, get the bits.  A bit in
2526  // UndefBits is set if the corresponding element of the vector is an
2527  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2528  // zero.
2529  uint64_t VectorBits[2];
2530  uint64_t UndefBits[2];
2531  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2532    return SDOperand();   // Not a constant vector.
2533
2534  // If this is a splat (repetition) of a value across the whole vector, return
2535  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2536  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2537  // SplatSize = 1 byte.
2538  unsigned SplatBits, SplatUndef, SplatSize;
2539  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2540    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2541
2542    // First, handle single instruction cases.
2543
2544    // All zeros?
2545    if (SplatBits == 0) {
2546      // Canonicalize all zero vectors to be v4i32.
2547      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2548        SDOperand Z = DAG.getConstant(0, MVT::i32);
2549        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2550        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2551      }
2552      return Op;
2553    }
2554
2555    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2556    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2557    if (SextVal >= -16 && SextVal <= 15)
2558      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2559
2560
2561    // Two instruction sequences.
2562
2563    // If this value is in the range [-32,30] and is even, use:
2564    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2565    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2566      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2567      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2568    }
2569
2570    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2571    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2572    // for fneg/fabs.
2573    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2574      // Make -1 and vspltisw -1:
2575      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2576
2577      // Make the VSLW intrinsic, computing 0x8000_0000.
2578      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2579                                       OnesV, DAG);
2580
2581      // xor by OnesV to invert it.
2582      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2583      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2584    }
2585
2586    // Check to see if this is a wide variety of vsplti*, binop self cases.
2587    unsigned SplatBitSize = SplatSize*8;
2588    static const signed char SplatCsts[] = {
2589      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2590      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2591    };
2592
2593    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
2594      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2595      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2596      int i = SplatCsts[idx];
2597
2598      // Figure out what shift amount will be used by altivec if shifted by i in
2599      // this splat size.
2600      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2601
2602      // vsplti + shl self.
2603      if (SextVal == (i << (int)TypeShiftAmt)) {
2604        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2605        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2606          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2607          Intrinsic::ppc_altivec_vslw
2608        };
2609        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2610        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2611      }
2612
2613      // vsplti + srl self.
2614      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2615        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2616        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2617          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2618          Intrinsic::ppc_altivec_vsrw
2619        };
2620        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2621        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2622      }
2623
2624      // vsplti + sra self.
2625      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2626        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2627        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2628          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2629          Intrinsic::ppc_altivec_vsraw
2630        };
2631        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2632        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2633      }
2634
2635      // vsplti + rol self.
2636      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2637                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2638        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2639        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2640          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2641          Intrinsic::ppc_altivec_vrlw
2642        };
2643        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2644        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2645      }
2646
2647      // t = vsplti c, result = vsldoi t, t, 1
2648      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2649        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2650        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2651      }
2652      // t = vsplti c, result = vsldoi t, t, 2
2653      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2654        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2655        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2656      }
2657      // t = vsplti c, result = vsldoi t, t, 3
2658      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2659        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2660        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2661      }
2662    }
2663
2664    // Three instruction sequences.
2665
2666    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2667    if (SextVal >= 0 && SextVal <= 31) {
2668      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2669      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2670      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
2671      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2672    }
2673    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2674    if (SextVal >= -31 && SextVal <= 0) {
2675      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2676      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2677      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
2678      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2679    }
2680  }
2681
2682  return SDOperand();
2683}
2684
2685/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2686/// the specified operations to build the shuffle.
2687static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2688                                        SDOperand RHS, SelectionDAG &DAG) {
2689  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2690  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
2691  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2692
2693  enum {
2694    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2695    OP_VMRGHW,
2696    OP_VMRGLW,
2697    OP_VSPLTISW0,
2698    OP_VSPLTISW1,
2699    OP_VSPLTISW2,
2700    OP_VSPLTISW3,
2701    OP_VSLDOI4,
2702    OP_VSLDOI8,
2703    OP_VSLDOI12
2704  };
2705
2706  if (OpNum == OP_COPY) {
2707    if (LHSID == (1*9+2)*9+3) return LHS;
2708    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2709    return RHS;
2710  }
2711
2712  SDOperand OpLHS, OpRHS;
2713  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2714  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2715
2716  unsigned ShufIdxs[16];
2717  switch (OpNum) {
2718  default: assert(0 && "Unknown i32 permute!");
2719  case OP_VMRGHW:
2720    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
2721    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2722    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
2723    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2724    break;
2725  case OP_VMRGLW:
2726    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2727    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2728    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2729    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2730    break;
2731  case OP_VSPLTISW0:
2732    for (unsigned i = 0; i != 16; ++i)
2733      ShufIdxs[i] = (i&3)+0;
2734    break;
2735  case OP_VSPLTISW1:
2736    for (unsigned i = 0; i != 16; ++i)
2737      ShufIdxs[i] = (i&3)+4;
2738    break;
2739  case OP_VSPLTISW2:
2740    for (unsigned i = 0; i != 16; ++i)
2741      ShufIdxs[i] = (i&3)+8;
2742    break;
2743  case OP_VSPLTISW3:
2744    for (unsigned i = 0; i != 16; ++i)
2745      ShufIdxs[i] = (i&3)+12;
2746    break;
2747  case OP_VSLDOI4:
2748    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2749  case OP_VSLDOI8:
2750    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2751  case OP_VSLDOI12:
2752    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2753  }
2754  SDOperand Ops[16];
2755  for (unsigned i = 0; i != 16; ++i)
2756    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2757
2758  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2759                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2760}
2761
2762/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
2763/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
2764/// return the code it can be lowered into.  Worst case, it can always be
2765/// lowered into a vperm.
2766static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2767  SDOperand V1 = Op.getOperand(0);
2768  SDOperand V2 = Op.getOperand(1);
2769  SDOperand PermMask = Op.getOperand(2);
2770
2771  // Cases that are handled by instructions that take permute immediates
2772  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2773  // selected by the instruction selector.
2774  if (V2.getOpcode() == ISD::UNDEF) {
2775    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2776        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2777        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2778        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2779        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2780        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2781        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2782        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2783        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2784        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2785        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2786        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2787      return Op;
2788    }
2789  }
2790
2791  // Altivec has a variety of "shuffle immediates" that take two vector inputs
2792  // and produce a fixed permutation.  If any of these match, do not lower to
2793  // VPERM.
2794  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2795      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2796      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2797      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2798      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2799      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2800      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2801      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2802      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2803    return Op;
2804
2805  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
2806  // perfect shuffle table to emit an optimal matching sequence.
2807  unsigned PFIndexes[4];
2808  bool isFourElementShuffle = true;
2809  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2810    unsigned EltNo = 8;   // Start out undef.
2811    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
2812      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2813        continue;   // Undef, ignore it.
2814
2815      unsigned ByteSource =
2816        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2817      if ((ByteSource & 3) != j) {
2818        isFourElementShuffle = false;
2819        break;
2820      }
2821
2822      if (EltNo == 8) {
2823        EltNo = ByteSource/4;
2824      } else if (EltNo != ByteSource/4) {
2825        isFourElementShuffle = false;
2826        break;
2827      }
2828    }
2829    PFIndexes[i] = EltNo;
2830  }
2831
2832  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2833  // perfect shuffle vector to determine if it is cost effective to do this as
2834  // discrete instructions, or whether we should use a vperm.
2835  if (isFourElementShuffle) {
2836    // Compute the index in the perfect shuffle table.
2837    unsigned PFTableIndex =
2838      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2839
2840    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2841    unsigned Cost  = (PFEntry >> 30);
2842
2843    // Determining when to avoid vperm is tricky.  Many things affect the cost
2844    // of vperm, particularly how many times the perm mask needs to be computed.
2845    // For example, if the perm mask can be hoisted out of a loop or is already
2846    // used (perhaps because there are multiple permutes with the same shuffle
2847    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
2848    // the loop requires an extra register.
2849    //
2850    // As a compromise, we only emit discrete instructions if the shuffle can be
2851    // generated in 3 or fewer operations.  When we have loop information
2852    // available, if this block is within a loop, we should avoid using vperm
2853    // for 3-operation perms and use a constant pool load instead.
2854    if (Cost < 3)
2855      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2856  }
2857
2858  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2859  // vector that will get spilled to the constant pool.
2860  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2861
2862  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2863  // that it is in input element units, not in bytes.  Convert now.
2864  MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
2865  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2866
2867  SmallVector<SDOperand, 16> ResultMask;
2868  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2869    unsigned SrcElt;
2870    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2871      SrcElt = 0;
2872    else
2873      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2874
2875    for (unsigned j = 0; j != BytesPerElement; ++j)
2876      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2877                                           MVT::i8));
2878  }
2879
2880  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2881                                    &ResultMask[0], ResultMask.size());
2882  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2883}
2884
2885/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2886/// altivec comparison.  If it is, return true and fill in Opc/isDot with
2887/// information about the intrinsic.
2888static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2889                                  bool &isDot) {
2890  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2891  CompareOpc = -1;
2892  isDot = false;
2893  switch (IntrinsicID) {
2894  default: return false;
2895    // Comparison predicates.
2896  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
2897  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2898  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
2899  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
2900  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2901  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2902  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2903  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2904  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2905  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2906  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2907  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2908  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2909
2910    // Normal Comparisons.
2911  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
2912  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
2913  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
2914  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
2915  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
2916  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
2917  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
2918  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
2919  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
2920  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
2921  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
2922  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
2923  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
2924  }
2925  return true;
2926}
2927
2928/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2929/// lower, do it, otherwise return null.
2930static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2931  // If this is a lowered altivec predicate compare, CompareOpc is set to the
2932  // opcode number of the comparison.
2933  int CompareOpc;
2934  bool isDot;
2935  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2936    return SDOperand();    // Don't custom lower most intrinsics.
2937
2938  // If this is a non-dot comparison, make the VCMP node and we are done.
2939  if (!isDot) {
2940    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2941                                Op.getOperand(1), Op.getOperand(2),
2942                                DAG.getConstant(CompareOpc, MVT::i32));
2943    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2944  }
2945
2946  // Create the PPCISD altivec 'dot' comparison node.
2947  SDOperand Ops[] = {
2948    Op.getOperand(2),  // LHS
2949    Op.getOperand(3),  // RHS
2950    DAG.getConstant(CompareOpc, MVT::i32)
2951  };
2952  std::vector<MVT::ValueType> VTs;
2953  VTs.push_back(Op.getOperand(2).getValueType());
2954  VTs.push_back(MVT::Flag);
2955  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2956
2957  // Now that we have the comparison, emit a copy from the CR to a GPR.
2958  // This is flagged to the above dot comparison.
2959  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2960                                DAG.getRegister(PPC::CR6, MVT::i32),
2961                                CompNode.getValue(1));
2962
2963  // Unpack the result based on how the target uses it.
2964  unsigned BitNo;   // Bit # of CR6.
2965  bool InvertBit;   // Invert result?
2966  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2967  default:  // Can't happen, don't crash on invalid number though.
2968  case 0:   // Return the value of the EQ bit of CR6.
2969    BitNo = 0; InvertBit = false;
2970    break;
2971  case 1:   // Return the inverted value of the EQ bit of CR6.
2972    BitNo = 0; InvertBit = true;
2973    break;
2974  case 2:   // Return the value of the LT bit of CR6.
2975    BitNo = 2; InvertBit = false;
2976    break;
2977  case 3:   // Return the inverted value of the LT bit of CR6.
2978    BitNo = 2; InvertBit = true;
2979    break;
2980  }
2981
2982  // Shift the bit into the low position.
2983  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2984                      DAG.getConstant(8-(3-BitNo), MVT::i32));
2985  // Isolate the bit.
2986  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2987                      DAG.getConstant(1, MVT::i32));
2988
2989  // If we are supposed to, toggle the bit.
2990  if (InvertBit)
2991    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2992                        DAG.getConstant(1, MVT::i32));
2993  return Flags;
2994}
2995
2996static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2997  // Create a stack slot that is 16-byte aligned.
2998  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2999  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3000  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3001  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3002
3003  // Store the input value into Value#0 of the stack slot.
3004  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
3005                                 Op.getOperand(0), FIdx, NULL, 0);
3006  // Load it out.
3007  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3008}
3009
3010static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
3011  if (Op.getValueType() == MVT::v4i32) {
3012    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3013
3014    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
3015    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3016
3017    SDOperand RHSSwap =   // = vrlw RHS, 16
3018      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3019
3020    // Shrinkify inputs to v8i16.
3021    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3022    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3023    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3024
3025    // Low parts multiplied together, generating 32-bit results (we ignore the
3026    // top parts).
3027    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3028                                        LHS, RHS, DAG, MVT::v4i32);
3029
3030    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3031                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3032    // Shift the high parts up 16 bits.
3033    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3034    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3035  } else if (Op.getValueType() == MVT::v8i16) {
3036    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3037
3038    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3039
3040    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3041                            LHS, RHS, Zero, DAG);
3042  } else if (Op.getValueType() == MVT::v16i8) {
3043    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3044
3045    // Multiply the even 8-bit parts, producing 16-bit sums.
3046    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3047                                           LHS, RHS, DAG, MVT::v8i16);
3048    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3049
3050    // Multiply the odd 8-bit parts, producing 16-bit sums.
3051    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3052                                          LHS, RHS, DAG, MVT::v8i16);
3053    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3054
3055    // Merge the results together.
3056    SDOperand Ops[16];
3057    for (unsigned i = 0; i != 8; ++i) {
3058      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3059      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3060    }
3061    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3062                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3063  } else {
3064    assert(0 && "Unknown mul to lower!");
3065    abort();
3066  }
3067}
3068
3069/// LowerOperation - Provide custom lowering hooks for some operations.
3070///
3071SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3072  switch (Op.getOpcode()) {
3073  default: assert(0 && "Wasn't expecting to be able to lower this!");
3074  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3075  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3076  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3077  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3078  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3079  case ISD::VASTART:
3080    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3081                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3082
3083  case ISD::VAARG:
3084    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3085                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3086
3087  case ISD::FORMAL_ARGUMENTS:
3088    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3089                                 VarArgsStackOffset, VarArgsNumGPR,
3090                                 VarArgsNumFPR, PPCSubTarget);
3091
3092  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget);
3093  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3094  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3095  case ISD::DYNAMIC_STACKALLOC:
3096    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3097
3098  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3099  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3100  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3101  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3102  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3103
3104  // Lower 64-bit shifts.
3105  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3106  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3107  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3108
3109  // Vector-related lowering.
3110  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3111  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3112  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3113  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3114  case ISD::MUL:                return LowerMUL(Op, DAG);
3115
3116  // Frame & Return address.
3117  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3118  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3119  }
3120  return SDOperand();
3121}
3122
3123SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3124  switch (N->getOpcode()) {
3125  default: assert(0 && "Wasn't expecting to be able to lower this!");
3126  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3127  }
3128}
3129
3130
3131//===----------------------------------------------------------------------===//
3132//  Other Lowering Code
3133//===----------------------------------------------------------------------===//
3134
3135MachineBasicBlock *
3136PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3137                                               MachineBasicBlock *BB) {
3138  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3139  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3140          MI->getOpcode() == PPC::SELECT_CC_I8 ||
3141          MI->getOpcode() == PPC::SELECT_CC_F4 ||
3142          MI->getOpcode() == PPC::SELECT_CC_F8 ||
3143          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3144         "Unexpected instr type to insert");
3145
3146  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3147  // control-flow pattern.  The incoming instruction knows the destination vreg
3148  // to set, the condition code register to branch on, the true/false values to
3149  // select between, and a branch opcode to use.
3150  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3151  ilist<MachineBasicBlock>::iterator It = BB;
3152  ++It;
3153
3154  //  thisMBB:
3155  //  ...
3156  //   TrueVal = ...
3157  //   cmpTY ccX, r1, r2
3158  //   bCC copy1MBB
3159  //   fallthrough --> copy0MBB
3160  MachineBasicBlock *thisMBB = BB;
3161  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3162  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3163  unsigned SelectPred = MI->getOperand(4).getImm();
3164  BuildMI(BB, TII->get(PPC::BCC))
3165    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3166  MachineFunction *F = BB->getParent();
3167  F->getBasicBlockList().insert(It, copy0MBB);
3168  F->getBasicBlockList().insert(It, sinkMBB);
3169  // Update machine-CFG edges by first adding all successors of the current
3170  // block to the new block which will contain the Phi node for the select.
3171  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3172      e = BB->succ_end(); i != e; ++i)
3173    sinkMBB->addSuccessor(*i);
3174  // Next, remove all successors of the current block, and add the true
3175  // and fallthrough blocks as its successors.
3176  while(!BB->succ_empty())
3177    BB->removeSuccessor(BB->succ_begin());
3178  BB->addSuccessor(copy0MBB);
3179  BB->addSuccessor(sinkMBB);
3180
3181  //  copy0MBB:
3182  //   %FalseValue = ...
3183  //   # fallthrough to sinkMBB
3184  BB = copy0MBB;
3185
3186  // Update machine-CFG edges
3187  BB->addSuccessor(sinkMBB);
3188
3189  //  sinkMBB:
3190  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3191  //  ...
3192  BB = sinkMBB;
3193  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3194    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3195    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3196
3197  delete MI;   // The pseudo instruction is gone now.
3198  return BB;
3199}
3200
3201//===----------------------------------------------------------------------===//
3202// Target Optimization Hooks
3203//===----------------------------------------------------------------------===//
3204
3205SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3206                                               DAGCombinerInfo &DCI) const {
3207  TargetMachine &TM = getTargetMachine();
3208  SelectionDAG &DAG = DCI.DAG;
3209  switch (N->getOpcode()) {
3210  default: break;
3211  case PPCISD::SHL:
3212    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3213      if (C->getValue() == 0)   // 0 << V -> 0.
3214        return N->getOperand(0);
3215    }
3216    break;
3217  case PPCISD::SRL:
3218    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3219      if (C->getValue() == 0)   // 0 >>u V -> 0.
3220        return N->getOperand(0);
3221    }
3222    break;
3223  case PPCISD::SRA:
3224    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3225      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
3226          C->isAllOnesValue())    // -1 >>s V -> -1.
3227        return N->getOperand(0);
3228    }
3229    break;
3230
3231  case ISD::SINT_TO_FP:
3232    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3233      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3234        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3235        // We allow the src/dst to be either f32/f64, but the intermediate
3236        // type must be i64.
3237        if (N->getOperand(0).getValueType() == MVT::i64 &&
3238            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
3239          SDOperand Val = N->getOperand(0).getOperand(0);
3240          if (Val.getValueType() == MVT::f32) {
3241            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3242            DCI.AddToWorklist(Val.Val);
3243          }
3244
3245          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3246          DCI.AddToWorklist(Val.Val);
3247          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3248          DCI.AddToWorklist(Val.Val);
3249          if (N->getValueType(0) == MVT::f32) {
3250            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
3251                              DAG.getIntPtrConstant(0));
3252            DCI.AddToWorklist(Val.Val);
3253          }
3254          return Val;
3255        } else if (N->getOperand(0).getValueType() == MVT::i32) {
3256          // If the intermediate type is i32, we can avoid the load/store here
3257          // too.
3258        }
3259      }
3260    }
3261    break;
3262  case ISD::STORE:
3263    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3264    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3265        !cast<StoreSDNode>(N)->isTruncatingStore() &&
3266        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3267        N->getOperand(1).getValueType() == MVT::i32 &&
3268        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
3269      SDOperand Val = N->getOperand(1).getOperand(0);
3270      if (Val.getValueType() == MVT::f32) {
3271        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3272        DCI.AddToWorklist(Val.Val);
3273      }
3274      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3275      DCI.AddToWorklist(Val.Val);
3276
3277      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3278                        N->getOperand(2), N->getOperand(3));
3279      DCI.AddToWorklist(Val.Val);
3280      return Val;
3281    }
3282
3283    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3284    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3285        N->getOperand(1).Val->hasOneUse() &&
3286        (N->getOperand(1).getValueType() == MVT::i32 ||
3287         N->getOperand(1).getValueType() == MVT::i16)) {
3288      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3289      // Do an any-extend to 32-bits if this is a half-word input.
3290      if (BSwapOp.getValueType() == MVT::i16)
3291        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3292
3293      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3294                         N->getOperand(2), N->getOperand(3),
3295                         DAG.getValueType(N->getOperand(1).getValueType()));
3296    }
3297    break;
3298  case ISD::BSWAP:
3299    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3300    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3301        N->getOperand(0).hasOneUse() &&
3302        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3303      SDOperand Load = N->getOperand(0);
3304      LoadSDNode *LD = cast<LoadSDNode>(Load);
3305      // Create the byte-swapping load.
3306      std::vector<MVT::ValueType> VTs;
3307      VTs.push_back(MVT::i32);
3308      VTs.push_back(MVT::Other);
3309      SDOperand MO = DAG.getMemOperand(LD->getMemOperand());
3310      SDOperand Ops[] = {
3311        LD->getChain(),    // Chain
3312        LD->getBasePtr(),  // Ptr
3313        MO,                // MemOperand
3314        DAG.getValueType(N->getValueType(0)) // VT
3315      };
3316      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3317
3318      // If this is an i16 load, insert the truncate.
3319      SDOperand ResVal = BSLoad;
3320      if (N->getValueType(0) == MVT::i16)
3321        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3322
3323      // First, combine the bswap away.  This makes the value produced by the
3324      // load dead.
3325      DCI.CombineTo(N, ResVal);
3326
3327      // Next, combine the load away, we give it a bogus result value but a real
3328      // chain result.  The result value is dead because the bswap is dead.
3329      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3330
3331      // Return N so it doesn't get rechecked!
3332      return SDOperand(N, 0);
3333    }
3334
3335    break;
3336  case PPCISD::VCMP: {
3337    // If a VCMPo node already exists with exactly the same operands as this
3338    // node, use its result instead of this node (VCMPo computes both a CR6 and
3339    // a normal output).
3340    //
3341    if (!N->getOperand(0).hasOneUse() &&
3342        !N->getOperand(1).hasOneUse() &&
3343        !N->getOperand(2).hasOneUse()) {
3344
3345      // Scan all of the users of the LHS, looking for VCMPo's that match.
3346      SDNode *VCMPoNode = 0;
3347
3348      SDNode *LHSN = N->getOperand(0).Val;
3349      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3350           UI != E; ++UI)
3351        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3352            (*UI)->getOperand(1) == N->getOperand(1) &&
3353            (*UI)->getOperand(2) == N->getOperand(2) &&
3354            (*UI)->getOperand(0) == N->getOperand(0)) {
3355          VCMPoNode = *UI;
3356          break;
3357        }
3358
3359      // If there is no VCMPo node, or if the flag value has a single use, don't
3360      // transform this.
3361      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3362        break;
3363
3364      // Look at the (necessarily single) use of the flag value.  If it has a
3365      // chain, this transformation is more complex.  Note that multiple things
3366      // could use the value result, which we should ignore.
3367      SDNode *FlagUser = 0;
3368      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3369           FlagUser == 0; ++UI) {
3370        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3371        SDNode *User = *UI;
3372        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3373          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3374            FlagUser = User;
3375            break;
3376          }
3377        }
3378      }
3379
3380      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
3381      // give up for right now.
3382      if (FlagUser->getOpcode() == PPCISD::MFCR)
3383        return SDOperand(VCMPoNode, 0);
3384    }
3385    break;
3386  }
3387  case ISD::BR_CC: {
3388    // If this is a branch on an altivec predicate comparison, lower this so
3389    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
3390    // lowering is done pre-legalize, because the legalizer lowers the predicate
3391    // compare down to code that is difficult to reassemble.
3392    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3393    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3394    int CompareOpc;
3395    bool isDot;
3396
3397    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3398        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3399        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3400      assert(isDot && "Can't compare against a vector result!");
3401
3402      // If this is a comparison against something other than 0/1, then we know
3403      // that the condition is never/always true.
3404      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3405      if (Val != 0 && Val != 1) {
3406        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
3407          return N->getOperand(0);
3408        // Always !=, turn it into an unconditional branch.
3409        return DAG.getNode(ISD::BR, MVT::Other,
3410                           N->getOperand(0), N->getOperand(4));
3411      }
3412
3413      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3414
3415      // Create the PPCISD altivec 'dot' comparison node.
3416      std::vector<MVT::ValueType> VTs;
3417      SDOperand Ops[] = {
3418        LHS.getOperand(2),  // LHS of compare
3419        LHS.getOperand(3),  // RHS of compare
3420        DAG.getConstant(CompareOpc, MVT::i32)
3421      };
3422      VTs.push_back(LHS.getOperand(2).getValueType());
3423      VTs.push_back(MVT::Flag);
3424      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3425
3426      // Unpack the result based on how the target uses it.
3427      PPC::Predicate CompOpc;
3428      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3429      default:  // Can't happen, don't crash on invalid number though.
3430      case 0:   // Branch on the value of the EQ bit of CR6.
3431        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3432        break;
3433      case 1:   // Branch on the inverted value of the EQ bit of CR6.
3434        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3435        break;
3436      case 2:   // Branch on the value of the LT bit of CR6.
3437        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3438        break;
3439      case 3:   // Branch on the inverted value of the LT bit of CR6.
3440        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3441        break;
3442      }
3443
3444      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3445                         DAG.getConstant(CompOpc, MVT::i32),
3446                         DAG.getRegister(PPC::CR6, MVT::i32),
3447                         N->getOperand(4), CompNode.getValue(1));
3448    }
3449    break;
3450  }
3451  }
3452
3453  return SDOperand();
3454}
3455
3456//===----------------------------------------------------------------------===//
3457// Inline Assembly Support
3458//===----------------------------------------------------------------------===//
3459
3460void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3461                                                       uint64_t Mask,
3462                                                       uint64_t &KnownZero,
3463                                                       uint64_t &KnownOne,
3464                                                       const SelectionDAG &DAG,
3465                                                       unsigned Depth) const {
3466  KnownZero = 0;
3467  KnownOne = 0;
3468  switch (Op.getOpcode()) {
3469  default: break;
3470  case PPCISD::LBRX: {
3471    // lhbrx is known to have the top bits cleared out.
3472    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3473      KnownZero = 0xFFFF0000;
3474    break;
3475  }
3476  case ISD::INTRINSIC_WO_CHAIN: {
3477    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3478    default: break;
3479    case Intrinsic::ppc_altivec_vcmpbfp_p:
3480    case Intrinsic::ppc_altivec_vcmpeqfp_p:
3481    case Intrinsic::ppc_altivec_vcmpequb_p:
3482    case Intrinsic::ppc_altivec_vcmpequh_p:
3483    case Intrinsic::ppc_altivec_vcmpequw_p:
3484    case Intrinsic::ppc_altivec_vcmpgefp_p:
3485    case Intrinsic::ppc_altivec_vcmpgtfp_p:
3486    case Intrinsic::ppc_altivec_vcmpgtsb_p:
3487    case Intrinsic::ppc_altivec_vcmpgtsh_p:
3488    case Intrinsic::ppc_altivec_vcmpgtsw_p:
3489    case Intrinsic::ppc_altivec_vcmpgtub_p:
3490    case Intrinsic::ppc_altivec_vcmpgtuh_p:
3491    case Intrinsic::ppc_altivec_vcmpgtuw_p:
3492      KnownZero = ~1U;  // All bits but the low one are known to be zero.
3493      break;
3494    }
3495  }
3496  }
3497}
3498
3499
3500/// getConstraintType - Given a constraint, return the type of
3501/// constraint it is for this target.
3502PPCTargetLowering::ConstraintType
3503PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3504  if (Constraint.size() == 1) {
3505    switch (Constraint[0]) {
3506    default: break;
3507    case 'b':
3508    case 'r':
3509    case 'f':
3510    case 'v':
3511    case 'y':
3512      return C_RegisterClass;
3513    }
3514  }
3515  return TargetLowering::getConstraintType(Constraint);
3516}
3517
3518std::pair<unsigned, const TargetRegisterClass*>
3519PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3520                                                MVT::ValueType VT) const {
3521  if (Constraint.size() == 1) {
3522    // GCC RS6000 Constraint Letters
3523    switch (Constraint[0]) {
3524    case 'b':   // R1-R31
3525    case 'r':   // R0-R31
3526      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3527        return std::make_pair(0U, PPC::G8RCRegisterClass);
3528      return std::make_pair(0U, PPC::GPRCRegisterClass);
3529    case 'f':
3530      if (VT == MVT::f32)
3531        return std::make_pair(0U, PPC::F4RCRegisterClass);
3532      else if (VT == MVT::f64)
3533        return std::make_pair(0U, PPC::F8RCRegisterClass);
3534      break;
3535    case 'v':
3536      return std::make_pair(0U, PPC::VRRCRegisterClass);
3537    case 'y':   // crrc
3538      return std::make_pair(0U, PPC::CRRCRegisterClass);
3539    }
3540  }
3541
3542  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3543}
3544
3545
3546/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3547/// vector.  If it is invalid, don't add anything to Ops.
3548void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3549                                                     std::vector<SDOperand>&Ops,
3550                                                     SelectionDAG &DAG) {
3551  SDOperand Result(0,0);
3552  switch (Letter) {
3553  default: break;
3554  case 'I':
3555  case 'J':
3556  case 'K':
3557  case 'L':
3558  case 'M':
3559  case 'N':
3560  case 'O':
3561  case 'P': {
3562    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
3563    if (!CST) return; // Must be an immediate to match.
3564    unsigned Value = CST->getValue();
3565    switch (Letter) {
3566    default: assert(0 && "Unknown constraint letter!");
3567    case 'I':  // "I" is a signed 16-bit constant.
3568      if ((short)Value == (int)Value)
3569        Result = DAG.getTargetConstant(Value, Op.getValueType());
3570      break;
3571    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3572    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3573      if ((short)Value == 0)
3574        Result = DAG.getTargetConstant(Value, Op.getValueType());
3575      break;
3576    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3577      if ((Value >> 16) == 0)
3578        Result = DAG.getTargetConstant(Value, Op.getValueType());
3579      break;
3580    case 'M':  // "M" is a constant that is greater than 31.
3581      if (Value > 31)
3582        Result = DAG.getTargetConstant(Value, Op.getValueType());
3583      break;
3584    case 'N':  // "N" is a positive constant that is an exact power of two.
3585      if ((int)Value > 0 && isPowerOf2_32(Value))
3586        Result = DAG.getTargetConstant(Value, Op.getValueType());
3587      break;
3588    case 'O':  // "O" is the constant zero.
3589      if (Value == 0)
3590        Result = DAG.getTargetConstant(Value, Op.getValueType());
3591      break;
3592    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3593      if ((short)-Value == (int)-Value)
3594        Result = DAG.getTargetConstant(Value, Op.getValueType());
3595      break;
3596    }
3597    break;
3598  }
3599  }
3600
3601  if (Result.Val) {
3602    Ops.push_back(Result);
3603    return;
3604  }
3605
3606  // Handle standard constraint letters.
3607  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
3608}
3609
3610// isLegalAddressingMode - Return true if the addressing mode represented
3611// by AM is legal for this target, for a load/store of the specified type.
3612bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3613                                              const Type *Ty) const {
3614  // FIXME: PPC does not allow r+i addressing modes for vectors!
3615
3616  // PPC allows a sign-extended 16-bit immediate field.
3617  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3618    return false;
3619
3620  // No global is ever allowed as a base.
3621  if (AM.BaseGV)
3622    return false;
3623
3624  // PPC only support r+r,
3625  switch (AM.Scale) {
3626  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3627    break;
3628  case 1:
3629    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3630      return false;
3631    // Otherwise we have r+r or r+i.
3632    break;
3633  case 2:
3634    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3635      return false;
3636    // Allow 2*r as r+r.
3637    break;
3638  default:
3639    // No other scales are supported.
3640    return false;
3641  }
3642
3643  return true;
3644}
3645
3646/// isLegalAddressImmediate - Return true if the integer value can be used
3647/// as the offset of the target addressing mode for load / store of the
3648/// given type.
3649bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3650  // PPC allows a sign-extended 16-bit immediate field.
3651  return (V > -(1 << 16) && V < (1 << 16)-1);
3652}
3653
3654bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3655  return false;
3656}
3657
3658SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3659  // Depths > 0 not supported yet!
3660  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3661    return SDOperand();
3662
3663  MachineFunction &MF = DAG.getMachineFunction();
3664  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3665  int RAIdx = FuncInfo->getReturnAddrSaveIndex();
3666  if (RAIdx == 0) {
3667    bool isPPC64 = PPCSubTarget.isPPC64();
3668    int Offset =
3669      PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
3670
3671    // Set up a frame object for the return address.
3672    RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
3673
3674    // Remember it for next time.
3675    FuncInfo->setReturnAddrSaveIndex(RAIdx);
3676
3677    // Make sure the function really does not optimize away the store of the RA
3678    // to the stack.
3679    FuncInfo->setLRStoreRequired();
3680  }
3681
3682  // Just load the return address off the stack.
3683  SDOperand RetAddrFI =  DAG.getFrameIndex(RAIdx, getPointerTy());
3684  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
3685}
3686
3687SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
3688  // Depths > 0 not supported yet!
3689  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3690    return SDOperand();
3691
3692  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3693  bool isPPC64 = PtrVT == MVT::i64;
3694
3695  MachineFunction &MF = DAG.getMachineFunction();
3696  MachineFrameInfo *MFI = MF.getFrameInfo();
3697  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3698                  && MFI->getStackSize();
3699
3700  if (isPPC64)
3701    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
3702      MVT::i64);
3703  else
3704    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3705      MVT::i32);
3706}
3707