PPCISelLowering.cpp revision 3ce990dc051622755afc22b55f95954c5a19e779
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Target/TargetOptions.h"
33#include "llvm/Support/CommandLine.h"
34using namespace llvm;
35
36static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
37cl::desc("enable preincrement load/store generation on PPC (experimental)"),
38                                     cl::Hidden);
39
40PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
41  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
42
43  setPow2DivIsCheap();
44
45  // Use _setjmp/_longjmp instead of setjmp/longjmp.
46  setUseUnderscoreSetJmp(true);
47  setUseUnderscoreLongJmp(true);
48
49  // Set up the register classes.
50  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
51  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
52  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
53
54  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
56  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
57
58  // PowerPC does not have truncstore for i1.
59  setStoreXAction(MVT::i1, Promote);
60
61  // PowerPC has pre-inc load and store's.
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
73  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
74  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
75
76  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
77  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
78  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
79
80  // PowerPC has no intrinsics for these particular operations
81  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
82  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
83  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
84
85  // PowerPC has no SREM/UREM instructions
86  setOperationAction(ISD::SREM, MVT::i32, Expand);
87  setOperationAction(ISD::UREM, MVT::i32, Expand);
88  setOperationAction(ISD::SREM, MVT::i64, Expand);
89  setOperationAction(ISD::UREM, MVT::i64, Expand);
90
91  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
92  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
93  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
94  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
95  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
96  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
97  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
98  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
99  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
100
101  // We don't support sin/cos/sqrt/fmod
102  setOperationAction(ISD::FSIN , MVT::f64, Expand);
103  setOperationAction(ISD::FCOS , MVT::f64, Expand);
104  setOperationAction(ISD::FREM , MVT::f64, Expand);
105  setOperationAction(ISD::FSIN , MVT::f32, Expand);
106  setOperationAction(ISD::FCOS , MVT::f32, Expand);
107  setOperationAction(ISD::FREM , MVT::f32, Expand);
108
109  // If we're enabling GP optimizations, use hardware square root
110  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
111    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
112    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
113  }
114
115  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
116  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
117
118  // PowerPC does not have BSWAP, CTPOP or CTTZ
119  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
120  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
121  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
122  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
123  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
124  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
125
126  // PowerPC does not have ROTR
127  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
128
129  // PowerPC does not have Select
130  setOperationAction(ISD::SELECT, MVT::i32, Expand);
131  setOperationAction(ISD::SELECT, MVT::i64, Expand);
132  setOperationAction(ISD::SELECT, MVT::f32, Expand);
133  setOperationAction(ISD::SELECT, MVT::f64, Expand);
134
135  // PowerPC wants to turn select_cc of FP into fsel when possible.
136  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
137  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
138
139  // PowerPC wants to optimize integer setcc a bit
140  setOperationAction(ISD::SETCC, MVT::i32, Custom);
141
142  // PowerPC does not have BRCOND which requires SetCC
143  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
144
145  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
146
147  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
148  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
149
150  // PowerPC does not have [U|S]INT_TO_FP
151  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
152  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
153
154  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
155  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
156  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
157  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
158
159  // We cannot sextinreg(i1).  Expand to shifts.
160  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
161
162  // Support label based line numbers.
163  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
164  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
165  if (!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
166    setOperationAction(ISD::LABEL, MVT::Other, Expand);
167  } else {
168    setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
169    setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
170    setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
171    setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
172  }
173
174  // We want to legalize GlobalAddress and ConstantPool nodes into the
175  // appropriate instructions to materialize the address.
176  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
177  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
178  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
179  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
180  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
181  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
182  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
183  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
184
185  // RET must be custom lowered, to meet ABI requirements
186  setOperationAction(ISD::RET               , MVT::Other, Custom);
187
188  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
189  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
190
191  // VAARG is custom lowered with ELF 32 ABI
192  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
193    setOperationAction(ISD::VAARG, MVT::Other, Custom);
194  else
195    setOperationAction(ISD::VAARG, MVT::Other, Expand);
196
197  // Use the default implementation.
198  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
199  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
200  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
201  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
202  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
203  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
204
205  // We want to custom lower some of our intrinsics.
206  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
207
208  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
209    // They also have instructions for converting between i64 and fp.
210    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
211    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
212    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
213    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
214    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
215
216    // FIXME: disable this lowered code.  This generates 64-bit register values,
217    // and we don't model the fact that the top part is clobbered by calls.  We
218    // need to flag these together so that the value isn't live across a call.
219    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
220
221    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
222    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
223  } else {
224    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
225    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
226  }
227
228  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
229    // 64 bit PowerPC implementations can support i64 types directly
230    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
231    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
232    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
233  } else {
234    // 32 bit PowerPC wants to expand i64 shifts itself.
235    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
236    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
237    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
238  }
239
240  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
241    // First set operation action for all vector types to expand. Then we
242    // will selectively turn on ones that can be effectively codegen'd.
243    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
244         VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
245      // add/sub are legal for all supported vector VT's.
246      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
247      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
248
249      // We promote all shuffles to v16i8.
250      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
251      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
252
253      // We promote all non-typed operations to v4i32.
254      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
255      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
256      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
257      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
258      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
259      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
260      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
261      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
262      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
263      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
264      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
265      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
266
267      // No other operations are legal.
268      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
269      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
270      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
271      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
272      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
273      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
274      setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
275      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
276      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
277      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
278      setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
279      setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
280      setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
281      setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
282
283      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
284    }
285
286    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
287    // with merges, splats, etc.
288    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
289
290    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
291    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
292    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
293    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
294    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
295    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
296
297    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
298    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
299    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
300    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
301
302    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
303    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
304    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
305    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
306
307    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
308    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
309
310    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
311    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
312    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
313    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
314  }
315
316  setSetCCResultType(MVT::i32);
317  setShiftAmountType(MVT::i32);
318  setSetCCResultContents(ZeroOrOneSetCCResult);
319
320  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
321    setStackPointerRegisterToSaveRestore(PPC::X1);
322    setExceptionPointerRegister(PPC::X3);
323    setExceptionSelectorRegister(PPC::X4);
324  } else {
325    setStackPointerRegisterToSaveRestore(PPC::R1);
326    setExceptionPointerRegister(PPC::R3);
327    setExceptionSelectorRegister(PPC::R4);
328  }
329
330  // We have target-specific dag combine patterns for the following nodes:
331  setTargetDAGCombine(ISD::SINT_TO_FP);
332  setTargetDAGCombine(ISD::STORE);
333  setTargetDAGCombine(ISD::BR_CC);
334  setTargetDAGCombine(ISD::BSWAP);
335
336  computeRegisterProperties();
337}
338
339const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
340  switch (Opcode) {
341  default: return 0;
342  case PPCISD::FSEL:          return "PPCISD::FSEL";
343  case PPCISD::FCFID:         return "PPCISD::FCFID";
344  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
345  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
346  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
347  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
348  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
349  case PPCISD::VPERM:         return "PPCISD::VPERM";
350  case PPCISD::Hi:            return "PPCISD::Hi";
351  case PPCISD::Lo:            return "PPCISD::Lo";
352  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
353  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
354  case PPCISD::SRL:           return "PPCISD::SRL";
355  case PPCISD::SRA:           return "PPCISD::SRA";
356  case PPCISD::SHL:           return "PPCISD::SHL";
357  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
358  case PPCISD::STD_32:        return "PPCISD::STD_32";
359  case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF";
360  case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho";
361  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
362  case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho";
363  case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF";
364  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
365  case PPCISD::MFCR:          return "PPCISD::MFCR";
366  case PPCISD::VCMP:          return "PPCISD::VCMP";
367  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
368  case PPCISD::LBRX:          return "PPCISD::LBRX";
369  case PPCISD::STBRX:         return "PPCISD::STBRX";
370  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
371  }
372}
373
374//===----------------------------------------------------------------------===//
375// Node matching predicates, for use by the tblgen matching code.
376//===----------------------------------------------------------------------===//
377
378/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
379static bool isFloatingPointZero(SDOperand Op) {
380  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
381    return CFP->getValueAPF().isZero();
382  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
383    // Maybe this has already been legalized into the constant pool?
384    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
385      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
386        return CFP->getValueAPF().isZero();
387  }
388  return false;
389}
390
391/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
392/// true if Op is undef or if it matches the specified value.
393static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
394  return Op.getOpcode() == ISD::UNDEF ||
395         cast<ConstantSDNode>(Op)->getValue() == Val;
396}
397
398/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
399/// VPKUHUM instruction.
400bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
401  if (!isUnary) {
402    for (unsigned i = 0; i != 16; ++i)
403      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
404        return false;
405  } else {
406    for (unsigned i = 0; i != 8; ++i)
407      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
408          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
409        return false;
410  }
411  return true;
412}
413
414/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
415/// VPKUWUM instruction.
416bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
417  if (!isUnary) {
418    for (unsigned i = 0; i != 16; i += 2)
419      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
420          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
421        return false;
422  } else {
423    for (unsigned i = 0; i != 8; i += 2)
424      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
425          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
426          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
427          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
428        return false;
429  }
430  return true;
431}
432
433/// isVMerge - Common function, used to match vmrg* shuffles.
434///
435static bool isVMerge(SDNode *N, unsigned UnitSize,
436                     unsigned LHSStart, unsigned RHSStart) {
437  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
438         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
439  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
440         "Unsupported merge size!");
441
442  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
443    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
444      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
445                             LHSStart+j+i*UnitSize) ||
446          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
447                             RHSStart+j+i*UnitSize))
448        return false;
449    }
450      return true;
451}
452
453/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
454/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
455bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
456  if (!isUnary)
457    return isVMerge(N, UnitSize, 8, 24);
458  return isVMerge(N, UnitSize, 8, 8);
459}
460
461/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
462/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
463bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
464  if (!isUnary)
465    return isVMerge(N, UnitSize, 0, 16);
466  return isVMerge(N, UnitSize, 0, 0);
467}
468
469
470/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
471/// amount, otherwise return -1.
472int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
473  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
474         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
475  // Find the first non-undef value in the shuffle mask.
476  unsigned i;
477  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
478    /*search*/;
479
480  if (i == 16) return -1;  // all undef.
481
482  // Otherwise, check to see if the rest of the elements are consequtively
483  // numbered from this value.
484  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
485  if (ShiftAmt < i) return -1;
486  ShiftAmt -= i;
487
488  if (!isUnary) {
489    // Check the rest of the elements to see if they are consequtive.
490    for (++i; i != 16; ++i)
491      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
492        return -1;
493  } else {
494    // Check the rest of the elements to see if they are consequtive.
495    for (++i; i != 16; ++i)
496      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
497        return -1;
498  }
499
500  return ShiftAmt;
501}
502
503/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
504/// specifies a splat of a single element that is suitable for input to
505/// VSPLTB/VSPLTH/VSPLTW.
506bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
507  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
508         N->getNumOperands() == 16 &&
509         (EltSize == 1 || EltSize == 2 || EltSize == 4));
510
511  // This is a splat operation if each element of the permute is the same, and
512  // if the value doesn't reference the second vector.
513  unsigned ElementBase = 0;
514  SDOperand Elt = N->getOperand(0);
515  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
516    ElementBase = EltV->getValue();
517  else
518    return false;   // FIXME: Handle UNDEF elements too!
519
520  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
521    return false;
522
523  // Check that they are consequtive.
524  for (unsigned i = 1; i != EltSize; ++i) {
525    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
526        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
527      return false;
528  }
529
530  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
531  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
532    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
533    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
534           "Invalid VECTOR_SHUFFLE mask!");
535    for (unsigned j = 0; j != EltSize; ++j)
536      if (N->getOperand(i+j) != N->getOperand(j))
537        return false;
538  }
539
540  return true;
541}
542
543/// isAllNegativeZeroVector - Returns true if all elements of build_vector
544/// are -0.0.
545bool PPC::isAllNegativeZeroVector(SDNode *N) {
546  assert(N->getOpcode() == ISD::BUILD_VECTOR);
547  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
548    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
549      return CFP->getValueAPF().isNegZero();
550  return false;
551}
552
553/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
554/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
555unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
556  assert(isSplatShuffleMask(N, EltSize));
557  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
558}
559
560/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
561/// by using a vspltis[bhw] instruction of the specified element size, return
562/// the constant being splatted.  The ByteSize field indicates the number of
563/// bytes of each element [124] -> [bhw].
564SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
565  SDOperand OpVal(0, 0);
566
567  // If ByteSize of the splat is bigger than the element size of the
568  // build_vector, then we have a case where we are checking for a splat where
569  // multiple elements of the buildvector are folded together into a single
570  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
571  unsigned EltSize = 16/N->getNumOperands();
572  if (EltSize < ByteSize) {
573    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
574    SDOperand UniquedVals[4];
575    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
576
577    // See if all of the elements in the buildvector agree across.
578    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
579      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
580      // If the element isn't a constant, bail fully out.
581      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
582
583
584      if (UniquedVals[i&(Multiple-1)].Val == 0)
585        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
586      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
587        return SDOperand();  // no match.
588    }
589
590    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
591    // either constant or undef values that are identical for each chunk.  See
592    // if these chunks can form into a larger vspltis*.
593
594    // Check to see if all of the leading entries are either 0 or -1.  If
595    // neither, then this won't fit into the immediate field.
596    bool LeadingZero = true;
597    bool LeadingOnes = true;
598    for (unsigned i = 0; i != Multiple-1; ++i) {
599      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
600
601      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
602      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
603    }
604    // Finally, check the least significant entry.
605    if (LeadingZero) {
606      if (UniquedVals[Multiple-1].Val == 0)
607        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
608      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
609      if (Val < 16)
610        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
611    }
612    if (LeadingOnes) {
613      if (UniquedVals[Multiple-1].Val == 0)
614        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
615      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
616      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
617        return DAG.getTargetConstant(Val, MVT::i32);
618    }
619
620    return SDOperand();
621  }
622
623  // Check to see if this buildvec has a single non-undef value in its elements.
624  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
625    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
626    if (OpVal.Val == 0)
627      OpVal = N->getOperand(i);
628    else if (OpVal != N->getOperand(i))
629      return SDOperand();
630  }
631
632  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
633
634  unsigned ValSizeInBytes = 0;
635  uint64_t Value = 0;
636  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
637    Value = CN->getValue();
638    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
639  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
640    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
641    Value = FloatToBits(CN->getValueAPF().convertToFloat());
642    ValSizeInBytes = 4;
643  }
644
645  // If the splat value is larger than the element value, then we can never do
646  // this splat.  The only case that we could fit the replicated bits into our
647  // immediate field for would be zero, and we prefer to use vxor for it.
648  if (ValSizeInBytes < ByteSize) return SDOperand();
649
650  // If the element value is larger than the splat value, cut it in half and
651  // check to see if the two halves are equal.  Continue doing this until we
652  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
653  while (ValSizeInBytes > ByteSize) {
654    ValSizeInBytes >>= 1;
655
656    // If the top half equals the bottom half, we're still ok.
657    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
658         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
659      return SDOperand();
660  }
661
662  // Properly sign extend the value.
663  int ShAmt = (4-ByteSize)*8;
664  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
665
666  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
667  if (MaskVal == 0) return SDOperand();
668
669  // Finally, if this value fits in a 5 bit sext field, return it
670  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
671    return DAG.getTargetConstant(MaskVal, MVT::i32);
672  return SDOperand();
673}
674
675//===----------------------------------------------------------------------===//
676//  Addressing Mode Selection
677//===----------------------------------------------------------------------===//
678
679/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
680/// or 64-bit immediate, and if the value can be accurately represented as a
681/// sign extension from a 16-bit value.  If so, this returns true and the
682/// immediate.
683static bool isIntS16Immediate(SDNode *N, short &Imm) {
684  if (N->getOpcode() != ISD::Constant)
685    return false;
686
687  Imm = (short)cast<ConstantSDNode>(N)->getValue();
688  if (N->getValueType(0) == MVT::i32)
689    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
690  else
691    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
692}
693static bool isIntS16Immediate(SDOperand Op, short &Imm) {
694  return isIntS16Immediate(Op.Val, Imm);
695}
696
697
698/// SelectAddressRegReg - Given the specified addressed, check to see if it
699/// can be represented as an indexed [r+r] operation.  Returns false if it
700/// can be more efficiently represented with [r+imm].
701bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
702                                            SDOperand &Index,
703                                            SelectionDAG &DAG) {
704  short imm = 0;
705  if (N.getOpcode() == ISD::ADD) {
706    if (isIntS16Immediate(N.getOperand(1), imm))
707      return false;    // r+i
708    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
709      return false;    // r+i
710
711    Base = N.getOperand(0);
712    Index = N.getOperand(1);
713    return true;
714  } else if (N.getOpcode() == ISD::OR) {
715    if (isIntS16Immediate(N.getOperand(1), imm))
716      return false;    // r+i can fold it if we can.
717
718    // If this is an or of disjoint bitfields, we can codegen this as an add
719    // (for better address arithmetic) if the LHS and RHS of the OR are provably
720    // disjoint.
721    uint64_t LHSKnownZero, LHSKnownOne;
722    uint64_t RHSKnownZero, RHSKnownOne;
723    DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
724
725    if (LHSKnownZero) {
726      DAG.ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
727      // If all of the bits are known zero on the LHS or RHS, the add won't
728      // carry.
729      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
730        Base = N.getOperand(0);
731        Index = N.getOperand(1);
732        return true;
733      }
734    }
735  }
736
737  return false;
738}
739
740/// Returns true if the address N can be represented by a base register plus
741/// a signed 16-bit displacement [r+imm], and if it is not better
742/// represented as reg+reg.
743bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
744                                            SDOperand &Base, SelectionDAG &DAG){
745  // If this can be more profitably realized as r+r, fail.
746  if (SelectAddressRegReg(N, Disp, Base, DAG))
747    return false;
748
749  if (N.getOpcode() == ISD::ADD) {
750    short imm = 0;
751    if (isIntS16Immediate(N.getOperand(1), imm)) {
752      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
753      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
754        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
755      } else {
756        Base = N.getOperand(0);
757      }
758      return true; // [r+i]
759    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
760      // Match LOAD (ADD (X, Lo(G))).
761      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
762             && "Cannot handle constant offsets yet!");
763      Disp = N.getOperand(1).getOperand(0);  // The global address.
764      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
765             Disp.getOpcode() == ISD::TargetConstantPool ||
766             Disp.getOpcode() == ISD::TargetJumpTable);
767      Base = N.getOperand(0);
768      return true;  // [&g+r]
769    }
770  } else if (N.getOpcode() == ISD::OR) {
771    short imm = 0;
772    if (isIntS16Immediate(N.getOperand(1), imm)) {
773      // If this is an or of disjoint bitfields, we can codegen this as an add
774      // (for better address arithmetic) if the LHS and RHS of the OR are
775      // provably disjoint.
776      uint64_t LHSKnownZero, LHSKnownOne;
777      DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
778      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
779        // If all of the bits are known zero on the LHS or RHS, the add won't
780        // carry.
781        Base = N.getOperand(0);
782        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
783        return true;
784      }
785    }
786  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
787    // Loading from a constant address.
788
789    // If this address fits entirely in a 16-bit sext immediate field, codegen
790    // this as "d, 0"
791    short Imm;
792    if (isIntS16Immediate(CN, Imm)) {
793      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
794      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
795      return true;
796    }
797
798    // Handle 32-bit sext immediates with LIS + addr mode.
799    if (CN->getValueType(0) == MVT::i32 ||
800        (int64_t)CN->getValue() == (int)CN->getValue()) {
801      int Addr = (int)CN->getValue();
802
803      // Otherwise, break this down into an LIS + disp.
804      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
805
806      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
807      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
808      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
809      return true;
810    }
811  }
812
813  Disp = DAG.getTargetConstant(0, getPointerTy());
814  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
815    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
816  else
817    Base = N;
818  return true;      // [r+0]
819}
820
821/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
822/// represented as an indexed [r+r] operation.
823bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
824                                                SDOperand &Index,
825                                                SelectionDAG &DAG) {
826  // Check to see if we can easily represent this as an [r+r] address.  This
827  // will fail if it thinks that the address is more profitably represented as
828  // reg+imm, e.g. where imm = 0.
829  if (SelectAddressRegReg(N, Base, Index, DAG))
830    return true;
831
832  // If the operand is an addition, always emit this as [r+r], since this is
833  // better (for code size, and execution, as the memop does the add for free)
834  // than emitting an explicit add.
835  if (N.getOpcode() == ISD::ADD) {
836    Base = N.getOperand(0);
837    Index = N.getOperand(1);
838    return true;
839  }
840
841  // Otherwise, do it the hard way, using R0 as the base register.
842  Base = DAG.getRegister(PPC::R0, N.getValueType());
843  Index = N;
844  return true;
845}
846
847/// SelectAddressRegImmShift - Returns true if the address N can be
848/// represented by a base register plus a signed 14-bit displacement
849/// [r+imm*4].  Suitable for use by STD and friends.
850bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
851                                                 SDOperand &Base,
852                                                 SelectionDAG &DAG) {
853  // If this can be more profitably realized as r+r, fail.
854  if (SelectAddressRegReg(N, Disp, Base, DAG))
855    return false;
856
857  if (N.getOpcode() == ISD::ADD) {
858    short imm = 0;
859    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
860      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
861      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
862        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
863      } else {
864        Base = N.getOperand(0);
865      }
866      return true; // [r+i]
867    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
868      // Match LOAD (ADD (X, Lo(G))).
869      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
870             && "Cannot handle constant offsets yet!");
871      Disp = N.getOperand(1).getOperand(0);  // The global address.
872      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
873             Disp.getOpcode() == ISD::TargetConstantPool ||
874             Disp.getOpcode() == ISD::TargetJumpTable);
875      Base = N.getOperand(0);
876      return true;  // [&g+r]
877    }
878  } else if (N.getOpcode() == ISD::OR) {
879    short imm = 0;
880    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
881      // If this is an or of disjoint bitfields, we can codegen this as an add
882      // (for better address arithmetic) if the LHS and RHS of the OR are
883      // provably disjoint.
884      uint64_t LHSKnownZero, LHSKnownOne;
885      DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
886      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
887        // If all of the bits are known zero on the LHS or RHS, the add won't
888        // carry.
889        Base = N.getOperand(0);
890        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
891        return true;
892      }
893    }
894  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
895    // Loading from a constant address.  Verify low two bits are clear.
896    if ((CN->getValue() & 3) == 0) {
897      // If this address fits entirely in a 14-bit sext immediate field, codegen
898      // this as "d, 0"
899      short Imm;
900      if (isIntS16Immediate(CN, Imm)) {
901        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
902        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
903        return true;
904      }
905
906      // Fold the low-part of 32-bit absolute addresses into addr mode.
907      if (CN->getValueType(0) == MVT::i32 ||
908          (int64_t)CN->getValue() == (int)CN->getValue()) {
909        int Addr = (int)CN->getValue();
910
911        // Otherwise, break this down into an LIS + disp.
912        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
913
914        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
915        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
916        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
917        return true;
918      }
919    }
920  }
921
922  Disp = DAG.getTargetConstant(0, getPointerTy());
923  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
924    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
925  else
926    Base = N;
927  return true;      // [r+0]
928}
929
930
931/// getPreIndexedAddressParts - returns true by value, base pointer and
932/// offset pointer and addressing mode by reference if the node's address
933/// can be legally represented as pre-indexed load / store address.
934bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
935                                                  SDOperand &Offset,
936                                                  ISD::MemIndexedMode &AM,
937                                                  SelectionDAG &DAG) {
938  // Disabled by default for now.
939  if (!EnablePPCPreinc) return false;
940
941  SDOperand Ptr;
942  MVT::ValueType VT;
943  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
944    Ptr = LD->getBasePtr();
945    VT = LD->getLoadedVT();
946
947  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
948    ST = ST;
949    Ptr = ST->getBasePtr();
950    VT  = ST->getStoredVT();
951  } else
952    return false;
953
954  // PowerPC doesn't have preinc load/store instructions for vectors.
955  if (MVT::isVector(VT))
956    return false;
957
958  // TODO: Check reg+reg first.
959
960  // LDU/STU use reg+imm*4, others use reg+imm.
961  if (VT != MVT::i64) {
962    // reg + imm
963    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
964      return false;
965  } else {
966    // reg + imm * 4.
967    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
968      return false;
969  }
970
971  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
972    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
973    // sext i32 to i64 when addr mode is r+i.
974    if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
975        LD->getExtensionType() == ISD::SEXTLOAD &&
976        isa<ConstantSDNode>(Offset))
977      return false;
978  }
979
980  AM = ISD::PRE_INC;
981  return true;
982}
983
984//===----------------------------------------------------------------------===//
985//  LowerOperation implementation
986//===----------------------------------------------------------------------===//
987
988static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
989  MVT::ValueType PtrVT = Op.getValueType();
990  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
991  Constant *C = CP->getConstVal();
992  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
993  SDOperand Zero = DAG.getConstant(0, PtrVT);
994
995  const TargetMachine &TM = DAG.getTarget();
996
997  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
998  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
999
1000  // If this is a non-darwin platform, we don't support non-static relo models
1001  // yet.
1002  if (TM.getRelocationModel() == Reloc::Static ||
1003      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1004    // Generate non-pic code that has direct accesses to the constant pool.
1005    // The address of the global is just (hi(&g)+lo(&g)).
1006    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1007  }
1008
1009  if (TM.getRelocationModel() == Reloc::PIC_) {
1010    // With PIC, the first instruction is actually "GR+hi(&G)".
1011    Hi = DAG.getNode(ISD::ADD, PtrVT,
1012                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1013  }
1014
1015  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1016  return Lo;
1017}
1018
1019static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1020  MVT::ValueType PtrVT = Op.getValueType();
1021  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1022  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1023  SDOperand Zero = DAG.getConstant(0, PtrVT);
1024
1025  const TargetMachine &TM = DAG.getTarget();
1026
1027  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1028  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1029
1030  // If this is a non-darwin platform, we don't support non-static relo models
1031  // yet.
1032  if (TM.getRelocationModel() == Reloc::Static ||
1033      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1034    // Generate non-pic code that has direct accesses to the constant pool.
1035    // The address of the global is just (hi(&g)+lo(&g)).
1036    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1037  }
1038
1039  if (TM.getRelocationModel() == Reloc::PIC_) {
1040    // With PIC, the first instruction is actually "GR+hi(&G)".
1041    Hi = DAG.getNode(ISD::ADD, PtrVT,
1042                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1043  }
1044
1045  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1046  return Lo;
1047}
1048
1049static SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
1050  assert(0 && "TLS not implemented for PPC.");
1051}
1052
1053static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
1054  MVT::ValueType PtrVT = Op.getValueType();
1055  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1056  GlobalValue *GV = GSDN->getGlobal();
1057  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1058  SDOperand Zero = DAG.getConstant(0, PtrVT);
1059
1060  const TargetMachine &TM = DAG.getTarget();
1061
1062  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1063  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1064
1065  // If this is a non-darwin platform, we don't support non-static relo models
1066  // yet.
1067  if (TM.getRelocationModel() == Reloc::Static ||
1068      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1069    // Generate non-pic code that has direct accesses to globals.
1070    // The address of the global is just (hi(&g)+lo(&g)).
1071    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1072  }
1073
1074  if (TM.getRelocationModel() == Reloc::PIC_) {
1075    // With PIC, the first instruction is actually "GR+hi(&G)".
1076    Hi = DAG.getNode(ISD::ADD, PtrVT,
1077                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1078  }
1079
1080  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1081
1082  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1083    return Lo;
1084
1085  // If the global is weak or external, we have to go through the lazy
1086  // resolution stub.
1087  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1088}
1089
1090static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1091  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1092
1093  // If we're comparing for equality to zero, expose the fact that this is
1094  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1095  // fold the new nodes.
1096  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1097    if (C->isNullValue() && CC == ISD::SETEQ) {
1098      MVT::ValueType VT = Op.getOperand(0).getValueType();
1099      SDOperand Zext = Op.getOperand(0);
1100      if (VT < MVT::i32) {
1101        VT = MVT::i32;
1102        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1103      }
1104      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1105      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1106      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1107                                  DAG.getConstant(Log2b, MVT::i32));
1108      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1109    }
1110    // Leave comparisons against 0 and -1 alone for now, since they're usually
1111    // optimized.  FIXME: revisit this when we can custom lower all setcc
1112    // optimizations.
1113    if (C->isAllOnesValue() || C->isNullValue())
1114      return SDOperand();
1115  }
1116
1117  // If we have an integer seteq/setne, turn it into a compare against zero
1118  // by xor'ing the rhs with the lhs, which is faster than setting a
1119  // condition register, reading it back out, and masking the correct bit.  The
1120  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1121  // the result to other bit-twiddling opportunities.
1122  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1123  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1124    MVT::ValueType VT = Op.getValueType();
1125    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1126                                Op.getOperand(1));
1127    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1128  }
1129  return SDOperand();
1130}
1131
1132static SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1133                              int VarArgsFrameIndex,
1134                              int VarArgsStackOffset,
1135                              unsigned VarArgsNumGPR,
1136                              unsigned VarArgsNumFPR,
1137                              const PPCSubtarget &Subtarget) {
1138
1139  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1140}
1141
1142static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1143                              int VarArgsFrameIndex,
1144                              int VarArgsStackOffset,
1145                              unsigned VarArgsNumGPR,
1146                              unsigned VarArgsNumFPR,
1147                              const PPCSubtarget &Subtarget) {
1148
1149  if (Subtarget.isMachoABI()) {
1150    // vastart just stores the address of the VarArgsFrameIndex slot into the
1151    // memory location argument.
1152    MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1153    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1154    SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1155    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1156                        SV->getOffset());
1157  }
1158
1159  // For ELF 32 ABI we follow the layout of the va_list struct.
1160  // We suppose the given va_list is already allocated.
1161  //
1162  // typedef struct {
1163  //  char gpr;     /* index into the array of 8 GPRs
1164  //                 * stored in the register save area
1165  //                 * gpr=0 corresponds to r3,
1166  //                 * gpr=1 to r4, etc.
1167  //                 */
1168  //  char fpr;     /* index into the array of 8 FPRs
1169  //                 * stored in the register save area
1170  //                 * fpr=0 corresponds to f1,
1171  //                 * fpr=1 to f2, etc.
1172  //                 */
1173  //  char *overflow_arg_area;
1174  //                /* location on stack that holds
1175  //                 * the next overflow argument
1176  //                 */
1177  //  char *reg_save_area;
1178  //               /* where r3:r10 and f1:f8 (if saved)
1179  //                * are stored
1180  //                */
1181  // } va_list[1];
1182
1183
1184  SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1185  SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1186
1187
1188  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1189
1190  SDOperand StackOffset = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1191  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1192
1193  SDOperand ConstFrameOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8,
1194                                               PtrVT);
1195  SDOperand ConstStackOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8 - 1,
1196                                               PtrVT);
1197  SDOperand ConstFPROffset   = DAG.getConstant(1, PtrVT);
1198
1199  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1200
1201  // Store first byte : number of int regs
1202  SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1203                                      Op.getOperand(1), SV->getValue(),
1204                                      SV->getOffset());
1205  SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1206                                  ConstFPROffset);
1207
1208  // Store second byte : number of float regs
1209  SDOperand secondStore = DAG.getStore(firstStore, ArgFPR, nextPtr,
1210                                       SV->getValue(), SV->getOffset());
1211  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1212
1213  // Store second word : arguments given on stack
1214  SDOperand thirdStore = DAG.getStore(secondStore, StackOffset, nextPtr,
1215                                      SV->getValue(), SV->getOffset());
1216  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1217
1218  // Store third word : arguments given in registers
1219  return DAG.getStore(thirdStore, FR, nextPtr, SV->getValue(),
1220                      SV->getOffset());
1221
1222}
1223
1224#include "PPCGenCallingConv.inc"
1225
1226/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1227/// depending on which subtarget is selected.
1228static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1229  if (Subtarget.isMachoABI()) {
1230    static const unsigned FPR[] = {
1231      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1232      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1233    };
1234    return FPR;
1235  }
1236
1237
1238  static const unsigned FPR[] = {
1239    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1240    PPC::F8
1241  };
1242  return FPR;
1243}
1244
1245static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1246                                       int &VarArgsFrameIndex,
1247                                       int &VarArgsStackOffset,
1248                                       unsigned &VarArgsNumGPR,
1249                                       unsigned &VarArgsNumFPR,
1250                                       const PPCSubtarget &Subtarget) {
1251  // TODO: add description of PPC stack frame format, or at least some docs.
1252  //
1253  MachineFunction &MF = DAG.getMachineFunction();
1254  MachineFrameInfo *MFI = MF.getFrameInfo();
1255  SSARegMap *RegMap = MF.getSSARegMap();
1256  SmallVector<SDOperand, 8> ArgValues;
1257  SDOperand Root = Op.getOperand(0);
1258
1259  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1260  bool isPPC64 = PtrVT == MVT::i64;
1261  bool isMachoABI = Subtarget.isMachoABI();
1262  bool isELF32_ABI = Subtarget.isELF32_ABI();
1263  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1264
1265  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1266
1267  static const unsigned GPR_32[] = {           // 32-bit registers.
1268    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1269    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1270  };
1271  static const unsigned GPR_64[] = {           // 64-bit registers.
1272    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1273    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1274  };
1275
1276  static const unsigned *FPR = GetFPR(Subtarget);
1277
1278  static const unsigned VR[] = {
1279    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1280    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1281  };
1282
1283  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1284  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1285  const unsigned Num_VR_Regs  = array_lengthof( VR);
1286
1287  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1288
1289  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1290
1291  // Add DAG nodes to load the arguments or copy them out of registers.  On
1292  // entry to a function on PPC, the arguments start after the linkage area,
1293  // although the first ones are often in registers.
1294  //
1295  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1296  // represented with two words (long long or double) must be copied to an
1297  // even GPR_idx value or to an even ArgOffset value.
1298
1299  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1300    SDOperand ArgVal;
1301    bool needsLoad = false;
1302    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1303    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1304    unsigned ArgSize = ObjSize;
1305    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1306    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1307    // See if next argument requires stack alignment in ELF
1308    bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1309      (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1310      (!(Flags & AlignFlag)));
1311
1312    unsigned CurArgOffset = ArgOffset;
1313    switch (ObjectVT) {
1314    default: assert(0 && "Unhandled argument type!");
1315    case MVT::i32:
1316      // Double word align in ELF
1317      if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1318      if (GPR_idx != Num_GPR_Regs) {
1319        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1320        MF.addLiveIn(GPR[GPR_idx], VReg);
1321        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1322        ++GPR_idx;
1323      } else {
1324        needsLoad = true;
1325        ArgSize = PtrByteSize;
1326      }
1327      // Stack align in ELF
1328      if (needsLoad && Expand && isELF32_ABI)
1329        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1330      // All int arguments reserve stack space in Macho ABI.
1331      if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1332      break;
1333
1334    case MVT::i64:  // PPC64
1335      if (GPR_idx != Num_GPR_Regs) {
1336        unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1337        MF.addLiveIn(GPR[GPR_idx], VReg);
1338        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1339        ++GPR_idx;
1340      } else {
1341        needsLoad = true;
1342      }
1343      // All int arguments reserve stack space in Macho ABI.
1344      if (isMachoABI || needsLoad) ArgOffset += 8;
1345      break;
1346
1347    case MVT::f32:
1348    case MVT::f64:
1349      // Every 4 bytes of argument space consumes one of the GPRs available for
1350      // argument passing.
1351      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1352        ++GPR_idx;
1353        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1354          ++GPR_idx;
1355      }
1356      if (FPR_idx != Num_FPR_Regs) {
1357        unsigned VReg;
1358        if (ObjectVT == MVT::f32)
1359          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
1360        else
1361          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1362        MF.addLiveIn(FPR[FPR_idx], VReg);
1363        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1364        ++FPR_idx;
1365      } else {
1366        needsLoad = true;
1367      }
1368
1369      // Stack align in ELF
1370      if (needsLoad && Expand && isELF32_ABI)
1371        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1372      // All FP arguments reserve stack space in Macho ABI.
1373      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1374      break;
1375    case MVT::v4f32:
1376    case MVT::v4i32:
1377    case MVT::v8i16:
1378    case MVT::v16i8:
1379      // Note that vector arguments in registers don't reserve stack space.
1380      if (VR_idx != Num_VR_Regs) {
1381        unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
1382        MF.addLiveIn(VR[VR_idx], VReg);
1383        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1384        ++VR_idx;
1385      } else {
1386        // This should be simple, but requires getting 16-byte aligned stack
1387        // values.
1388        assert(0 && "Loading VR argument not implemented yet!");
1389        needsLoad = true;
1390      }
1391      break;
1392    }
1393
1394    // We need to load the argument to a virtual register if we determined above
1395    // that we ran out of physical registers of the appropriate type
1396    if (needsLoad) {
1397      // If the argument is actually used, emit a load from the right stack
1398      // slot.
1399      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1400        int FI = MFI->CreateFixedObject(ObjSize,
1401                                        CurArgOffset + (ArgSize - ObjSize));
1402        SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1403        ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1404      } else {
1405        // Don't emit a dead load.
1406        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1407      }
1408    }
1409
1410    ArgValues.push_back(ArgVal);
1411  }
1412
1413  // If the function takes variable number of arguments, make a frame index for
1414  // the start of the first vararg value... for expansion of llvm.va_start.
1415  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1416  if (isVarArg) {
1417
1418    int depth;
1419    if (isELF32_ABI) {
1420      VarArgsNumGPR = GPR_idx;
1421      VarArgsNumFPR = FPR_idx;
1422
1423      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1424      // pointer.
1425      depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1426                Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1427                MVT::getSizeInBits(PtrVT)/8);
1428
1429      VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1430                                                  ArgOffset);
1431
1432    }
1433    else
1434      depth = ArgOffset;
1435
1436    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1437                                               depth);
1438    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1439
1440    SmallVector<SDOperand, 8> MemOps;
1441
1442    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1443    // stored to the VarArgsFrameIndex on the stack.
1444    if (isELF32_ABI) {
1445      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1446        SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1447        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1448        MemOps.push_back(Store);
1449        // Increment the address by four for the next argument to store
1450        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1451        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1452      }
1453    }
1454
1455    // If this function is vararg, store any remaining integer argument regs
1456    // to their spots on the stack so that they may be loaded by deferencing the
1457    // result of va_next.
1458    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1459      unsigned VReg;
1460      if (isPPC64)
1461        VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1462      else
1463        VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1464
1465      MF.addLiveIn(GPR[GPR_idx], VReg);
1466      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1467      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1468      MemOps.push_back(Store);
1469      // Increment the address by four for the next argument to store
1470      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1471      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1472    }
1473
1474    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1475    // on the stack.
1476    if (isELF32_ABI) {
1477      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1478        SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1479        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1480        MemOps.push_back(Store);
1481        // Increment the address by eight for the next argument to store
1482        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1483                                           PtrVT);
1484        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1485      }
1486
1487      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1488        unsigned VReg;
1489        VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1490
1491        MF.addLiveIn(FPR[FPR_idx], VReg);
1492        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1493        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1494        MemOps.push_back(Store);
1495        // Increment the address by eight for the next argument to store
1496        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1497                                           PtrVT);
1498        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1499      }
1500    }
1501
1502    if (!MemOps.empty())
1503      Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1504  }
1505
1506  ArgValues.push_back(Root);
1507
1508  // Return the new list of results.
1509  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1510                                    Op.Val->value_end());
1511  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1512}
1513
1514/// isCallCompatibleAddress - Return the immediate to use if the specified
1515/// 32-bit value is representable in the immediate field of a BxA instruction.
1516static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1517  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1518  if (!C) return 0;
1519
1520  int Addr = C->getValue();
1521  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1522      (Addr << 6 >> 6) != Addr)
1523    return 0;  // Top 6 bits have to be sext of immediate.
1524
1525  return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
1526}
1527
1528
1529static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
1530                           const PPCSubtarget &Subtarget) {
1531  SDOperand Chain  = Op.getOperand(0);
1532  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1533  SDOperand Callee = Op.getOperand(4);
1534  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
1535
1536  bool isMachoABI = Subtarget.isMachoABI();
1537  bool isELF32_ABI  = Subtarget.isELF32_ABI();
1538
1539  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1540  bool isPPC64 = PtrVT == MVT::i64;
1541  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1542
1543  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1544  // SelectExpr to use to put the arguments in the appropriate registers.
1545  std::vector<SDOperand> args_to_use;
1546
1547  // Count how many bytes are to be pushed on the stack, including the linkage
1548  // area, and parameter passing area.  We start with 24/48 bytes, which is
1549  // prereserved space for [SP][CR][LR][3 x unused].
1550  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1551
1552  // Add up all the space actually used.
1553  for (unsigned i = 0; i != NumOps; ++i) {
1554    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1555    ArgSize = std::max(ArgSize, PtrByteSize);
1556    NumBytes += ArgSize;
1557  }
1558
1559  // The prolog code of the callee may store up to 8 GPR argument registers to
1560  // the stack, allowing va_start to index over them in memory if its varargs.
1561  // Because we cannot tell if this is needed on the caller side, we have to
1562  // conservatively assume that it is needed.  As such, make sure we have at
1563  // least enough stack space for the caller to store the 8 GPRs.
1564  NumBytes = std::max(NumBytes,
1565                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1566
1567  // Adjust the stack pointer for the new arguments...
1568  // These operations are automatically eliminated by the prolog/epilog pass
1569  Chain = DAG.getCALLSEQ_START(Chain,
1570                               DAG.getConstant(NumBytes, PtrVT));
1571
1572  // Set up a copy of the stack pointer for use loading and storing any
1573  // arguments that may not fit in the registers available for argument
1574  // passing.
1575  SDOperand StackPtr;
1576  if (isPPC64)
1577    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1578  else
1579    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1580
1581  // Figure out which arguments are going to go in registers, and which in
1582  // memory.  Also, if this is a vararg function, floating point operations
1583  // must be stored to our stack, and loaded into integer regs as well, if
1584  // any integer regs are available for argument passing.
1585  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1586  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1587
1588  static const unsigned GPR_32[] = {           // 32-bit registers.
1589    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1590    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1591  };
1592  static const unsigned GPR_64[] = {           // 64-bit registers.
1593    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1594    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1595  };
1596  static const unsigned *FPR = GetFPR(Subtarget);
1597
1598  static const unsigned VR[] = {
1599    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1600    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1601  };
1602  const unsigned NumGPRs = array_lengthof(GPR_32);
1603  const unsigned NumFPRs = isMachoABI ? 13 : 8;
1604  const unsigned NumVRs  = array_lengthof( VR);
1605
1606  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1607
1608  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1609  SmallVector<SDOperand, 8> MemOpChains;
1610  for (unsigned i = 0; i != NumOps; ++i) {
1611    bool inMem = false;
1612    SDOperand Arg = Op.getOperand(5+2*i);
1613    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1614    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1615    // See if next argument requires stack alignment in ELF
1616    unsigned next = 5+2*(i+1)+1;
1617    bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1618      (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1619      (!(Flags & AlignFlag)));
1620
1621    // PtrOff will be used to store the current argument to the stack if a
1622    // register cannot be found for it.
1623    SDOperand PtrOff;
1624
1625    // Stack align in ELF 32
1626    if (isELF32_ABI && Expand)
1627      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1628                               StackPtr.getValueType());
1629    else
1630      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1631
1632    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1633
1634    // On PPC64, promote integers to 64-bit values.
1635    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1636      unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1637
1638      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1639    }
1640
1641    switch (Arg.getValueType()) {
1642    default: assert(0 && "Unexpected ValueType for argument!");
1643    case MVT::i32:
1644    case MVT::i64:
1645      // Double word align in ELF
1646      if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1647      if (GPR_idx != NumGPRs) {
1648        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1649      } else {
1650        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1651        inMem = true;
1652      }
1653      if (inMem || isMachoABI) {
1654        // Stack align in ELF
1655        if (isELF32_ABI && Expand)
1656          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1657
1658        ArgOffset += PtrByteSize;
1659      }
1660      break;
1661    case MVT::f32:
1662    case MVT::f64:
1663      if (isVarArg) {
1664        // Float varargs need to be promoted to double.
1665        if (Arg.getValueType() == MVT::f32)
1666          Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1667      }
1668
1669      if (FPR_idx != NumFPRs) {
1670        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1671
1672        if (isVarArg) {
1673          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1674          MemOpChains.push_back(Store);
1675
1676          // Float varargs are always shadowed in available integer registers
1677          if (GPR_idx != NumGPRs) {
1678            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1679            MemOpChains.push_back(Load.getValue(1));
1680            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1681                                                                Load));
1682          }
1683          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1684            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1685            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1686            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1687            MemOpChains.push_back(Load.getValue(1));
1688            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1689                                                                Load));
1690          }
1691        } else {
1692          // If we have any FPRs remaining, we may also have GPRs remaining.
1693          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1694          // GPRs.
1695          if (isMachoABI) {
1696            if (GPR_idx != NumGPRs)
1697              ++GPR_idx;
1698            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1699                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
1700              ++GPR_idx;
1701          }
1702        }
1703      } else {
1704        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1705        inMem = true;
1706      }
1707      if (inMem || isMachoABI) {
1708        // Stack align in ELF
1709        if (isELF32_ABI && Expand)
1710          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1711        if (isPPC64)
1712          ArgOffset += 8;
1713        else
1714          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1715      }
1716      break;
1717    case MVT::v4f32:
1718    case MVT::v4i32:
1719    case MVT::v8i16:
1720    case MVT::v16i8:
1721      assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1722      assert(VR_idx != NumVRs &&
1723             "Don't support passing more than 12 vector args yet!");
1724      RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1725      break;
1726    }
1727  }
1728  if (!MemOpChains.empty())
1729    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1730                        &MemOpChains[0], MemOpChains.size());
1731
1732  // Build a sequence of copy-to-reg nodes chained together with token chain
1733  // and flag operands which copy the outgoing args into the appropriate regs.
1734  SDOperand InFlag;
1735  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1736    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1737                             InFlag);
1738    InFlag = Chain.getValue(1);
1739  }
1740
1741  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1742  if (isVarArg && isELF32_ABI) {
1743    SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1744    Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1745    InFlag = Chain.getValue(1);
1746  }
1747
1748  std::vector<MVT::ValueType> NodeTys;
1749  NodeTys.push_back(MVT::Other);   // Returns a chain
1750  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1751
1752  SmallVector<SDOperand, 8> Ops;
1753  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1754
1755  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1756  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1757  // node so that legalize doesn't hack it.
1758  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1759    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1760  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1761    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1762  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1763    // If this is an absolute destination address, use the munged value.
1764    Callee = SDOperand(Dest, 0);
1765  else {
1766    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
1767    // to do the call, we can't use PPCISD::CALL.
1768    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1769    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1770    InFlag = Chain.getValue(1);
1771
1772    // Copy the callee address into R12 on darwin.
1773    if (isMachoABI) {
1774      Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1775      InFlag = Chain.getValue(1);
1776    }
1777
1778    NodeTys.clear();
1779    NodeTys.push_back(MVT::Other);
1780    NodeTys.push_back(MVT::Flag);
1781    Ops.push_back(Chain);
1782    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1783    Callee.Val = 0;
1784  }
1785
1786  // If this is a direct call, pass the chain and the callee.
1787  if (Callee.Val) {
1788    Ops.push_back(Chain);
1789    Ops.push_back(Callee);
1790  }
1791
1792  // Add argument registers to the end of the list so that they are known live
1793  // into the call.
1794  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1795    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1796                                  RegsToPass[i].second.getValueType()));
1797
1798  if (InFlag.Val)
1799    Ops.push_back(InFlag);
1800  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1801  InFlag = Chain.getValue(1);
1802
1803  SDOperand ResultVals[3];
1804  unsigned NumResults = 0;
1805  NodeTys.clear();
1806
1807  // If the call has results, copy the values out of the ret val registers.
1808  switch (Op.Val->getValueType(0)) {
1809  default: assert(0 && "Unexpected ret value!");
1810  case MVT::Other: break;
1811  case MVT::i32:
1812    if (Op.Val->getValueType(1) == MVT::i32) {
1813      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1814      ResultVals[0] = Chain.getValue(0);
1815      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
1816                                 Chain.getValue(2)).getValue(1);
1817      ResultVals[1] = Chain.getValue(0);
1818      NumResults = 2;
1819      NodeTys.push_back(MVT::i32);
1820    } else {
1821      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1822      ResultVals[0] = Chain.getValue(0);
1823      NumResults = 1;
1824    }
1825    NodeTys.push_back(MVT::i32);
1826    break;
1827  case MVT::i64:
1828    Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1829    ResultVals[0] = Chain.getValue(0);
1830    NumResults = 1;
1831    NodeTys.push_back(MVT::i64);
1832    break;
1833  case MVT::f64:
1834    if (Op.Val->getValueType(1) == MVT::f64) {
1835      Chain = DAG.getCopyFromReg(Chain, PPC::F1, MVT::f64, InFlag).getValue(1);
1836      ResultVals[0] = Chain.getValue(0);
1837      Chain = DAG.getCopyFromReg(Chain, PPC::F2, MVT::f64,
1838                                 Chain.getValue(2)).getValue(1);
1839      ResultVals[1] = Chain.getValue(0);
1840      NumResults = 2;
1841      NodeTys.push_back(MVT::f64);
1842      NodeTys.push_back(MVT::f64);
1843      break;
1844    }
1845    // else fall through
1846  case MVT::f32:
1847    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1848                               InFlag).getValue(1);
1849    ResultVals[0] = Chain.getValue(0);
1850    NumResults = 1;
1851    NodeTys.push_back(Op.Val->getValueType(0));
1852    break;
1853  case MVT::v4f32:
1854  case MVT::v4i32:
1855  case MVT::v8i16:
1856  case MVT::v16i8:
1857    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1858                                   InFlag).getValue(1);
1859    ResultVals[0] = Chain.getValue(0);
1860    NumResults = 1;
1861    NodeTys.push_back(Op.Val->getValueType(0));
1862    break;
1863  }
1864
1865  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1866                      DAG.getConstant(NumBytes, PtrVT));
1867  NodeTys.push_back(MVT::Other);
1868
1869  // If the function returns void, just return the chain.
1870  if (NumResults == 0)
1871    return Chain;
1872
1873  // Otherwise, merge everything together with a MERGE_VALUES node.
1874  ResultVals[NumResults++] = Chain;
1875  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1876                              ResultVals, NumResults);
1877  return Res.getValue(Op.ResNo);
1878}
1879
1880static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) {
1881  SmallVector<CCValAssign, 16> RVLocs;
1882  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1883  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1884  CCState CCInfo(CC, isVarArg, TM, RVLocs);
1885  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
1886
1887  // If this is the first return lowered for this function, add the regs to the
1888  // liveout set for the function.
1889  if (DAG.getMachineFunction().liveout_empty()) {
1890    for (unsigned i = 0; i != RVLocs.size(); ++i)
1891      DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
1892  }
1893
1894  SDOperand Chain = Op.getOperand(0);
1895  SDOperand Flag;
1896
1897  // Copy the result values into the output registers.
1898  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1899    CCValAssign &VA = RVLocs[i];
1900    assert(VA.isRegLoc() && "Can only return in registers!");
1901    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
1902    Flag = Chain.getValue(1);
1903  }
1904
1905  if (Flag.Val)
1906    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
1907  else
1908    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
1909}
1910
1911static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1912                                   const PPCSubtarget &Subtarget) {
1913  // When we pop the dynamic allocation we need to restore the SP link.
1914
1915  // Get the corect type for pointers.
1916  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1917
1918  // Construct the stack pointer operand.
1919  bool IsPPC64 = Subtarget.isPPC64();
1920  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1921  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1922
1923  // Get the operands for the STACKRESTORE.
1924  SDOperand Chain = Op.getOperand(0);
1925  SDOperand SaveSP = Op.getOperand(1);
1926
1927  // Load the old link SP.
1928  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1929
1930  // Restore the stack pointer.
1931  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1932
1933  // Store the old link SP.
1934  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1935}
1936
1937static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1938                                         const PPCSubtarget &Subtarget) {
1939  MachineFunction &MF = DAG.getMachineFunction();
1940  bool IsPPC64 = Subtarget.isPPC64();
1941  bool isMachoABI = Subtarget.isMachoABI();
1942
1943  // Get current frame pointer save index.  The users of this index will be
1944  // primarily DYNALLOC instructions.
1945  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1946  int FPSI = FI->getFramePointerSaveIndex();
1947
1948  // If the frame pointer save index hasn't been defined yet.
1949  if (!FPSI) {
1950    // Find out what the fix offset of the frame pointer save area.
1951    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
1952
1953    // Allocate the frame index for frame pointer save area.
1954    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
1955    // Save the result.
1956    FI->setFramePointerSaveIndex(FPSI);
1957  }
1958
1959  // Get the inputs.
1960  SDOperand Chain = Op.getOperand(0);
1961  SDOperand Size  = Op.getOperand(1);
1962
1963  // Get the corect type for pointers.
1964  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1965  // Negate the size.
1966  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1967                                  DAG.getConstant(0, PtrVT), Size);
1968  // Construct a node for the frame pointer save index.
1969  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1970  // Build a DYNALLOC node.
1971  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1972  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1973  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1974}
1975
1976
1977/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1978/// possible.
1979static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1980  // Not FP? Not a fsel.
1981  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1982      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1983    return SDOperand();
1984
1985  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1986
1987  // Cannot handle SETEQ/SETNE.
1988  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
1989
1990  MVT::ValueType ResVT = Op.getValueType();
1991  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
1992  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1993  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
1994
1995  // If the RHS of the comparison is a 0.0, we don't need to do the
1996  // subtraction at all.
1997  if (isFloatingPointZero(RHS))
1998    switch (CC) {
1999    default: break;       // SETUO etc aren't handled by fsel.
2000    case ISD::SETULT:
2001    case ISD::SETOLT:
2002    case ISD::SETLT:
2003      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2004    case ISD::SETUGE:
2005    case ISD::SETOGE:
2006    case ISD::SETGE:
2007      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2008        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2009      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2010    case ISD::SETUGT:
2011    case ISD::SETOGT:
2012    case ISD::SETGT:
2013      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2014    case ISD::SETULE:
2015    case ISD::SETOLE:
2016    case ISD::SETLE:
2017      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2018        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2019      return DAG.getNode(PPCISD::FSEL, ResVT,
2020                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2021    }
2022
2023      SDOperand Cmp;
2024  switch (CC) {
2025  default: break;       // SETUO etc aren't handled by fsel.
2026  case ISD::SETULT:
2027  case ISD::SETOLT:
2028  case ISD::SETLT:
2029    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2030    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2031      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2032      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2033  case ISD::SETUGE:
2034  case ISD::SETOGE:
2035  case ISD::SETGE:
2036    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2037    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2038      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2039      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2040  case ISD::SETUGT:
2041  case ISD::SETOGT:
2042  case ISD::SETGT:
2043    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2044    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2045      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2046      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2047  case ISD::SETULE:
2048  case ISD::SETOLE:
2049  case ISD::SETLE:
2050    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2051    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2052      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2053      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2054  }
2055  return SDOperand();
2056}
2057
2058static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2059  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2060  SDOperand Src = Op.getOperand(0);
2061  if (Src.getValueType() == MVT::f32)
2062    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2063
2064  SDOperand Tmp;
2065  switch (Op.getValueType()) {
2066  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2067  case MVT::i32:
2068    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2069    break;
2070  case MVT::i64:
2071    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2072    break;
2073  }
2074
2075  // Convert the FP value to an int value through memory.
2076  SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
2077  if (Op.getValueType() == MVT::i32)
2078    Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
2079  return Bits;
2080}
2081
2082static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2083  if (Op.getOperand(0).getValueType() == MVT::i64) {
2084    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2085    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2086    if (Op.getValueType() == MVT::f32)
2087      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2088    return FP;
2089  }
2090
2091  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2092         "Unhandled SINT_TO_FP type in custom expander!");
2093  // Since we only generate this in 64-bit mode, we can take advantage of
2094  // 64-bit registers.  In particular, sign extend the input value into the
2095  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2096  // then lfd it and fcfid it.
2097  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2098  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2099  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2100  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2101
2102  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2103                                Op.getOperand(0));
2104
2105  // STD the extended value into the stack slot.
2106  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2107                                DAG.getEntryNode(), Ext64, FIdx,
2108                                DAG.getSrcValue(NULL));
2109  // Load the value as a double.
2110  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2111
2112  // FCFID it and return it.
2113  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2114  if (Op.getValueType() == MVT::f32)
2115    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2116  return FP;
2117}
2118
2119static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2120  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2121         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
2122
2123  // Expand into a bunch of logical ops.  Note that these ops
2124  // depend on the PPC behavior for oversized shift amounts.
2125  SDOperand Lo = Op.getOperand(0);
2126  SDOperand Hi = Op.getOperand(1);
2127  SDOperand Amt = Op.getOperand(2);
2128
2129  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2130                               DAG.getConstant(32, MVT::i32), Amt);
2131  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
2132  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
2133  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2134  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2135                               DAG.getConstant(-32U, MVT::i32));
2136  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
2137  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2138  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
2139  SDOperand OutOps[] = { OutLo, OutHi };
2140  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2141                     OutOps, 2);
2142}
2143
2144static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2145  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2146         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
2147
2148  // Otherwise, expand into a bunch of logical ops.  Note that these ops
2149  // depend on the PPC behavior for oversized shift amounts.
2150  SDOperand Lo = Op.getOperand(0);
2151  SDOperand Hi = Op.getOperand(1);
2152  SDOperand Amt = Op.getOperand(2);
2153
2154  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2155                               DAG.getConstant(32, MVT::i32), Amt);
2156  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2157  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2158  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2159  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2160                               DAG.getConstant(-32U, MVT::i32));
2161  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
2162  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2163  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
2164  SDOperand OutOps[] = { OutLo, OutHi };
2165  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2166                     OutOps, 2);
2167}
2168
2169static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2170  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2171         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
2172
2173  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
2174  SDOperand Lo = Op.getOperand(0);
2175  SDOperand Hi = Op.getOperand(1);
2176  SDOperand Amt = Op.getOperand(2);
2177
2178  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2179                               DAG.getConstant(32, MVT::i32), Amt);
2180  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2181  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2182  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2183  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2184                               DAG.getConstant(-32U, MVT::i32));
2185  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
2186  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
2187  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
2188                                    Tmp4, Tmp6, ISD::SETLE);
2189  SDOperand OutOps[] = { OutLo, OutHi };
2190  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2191                     OutOps, 2);
2192}
2193
2194//===----------------------------------------------------------------------===//
2195// Vector related lowering.
2196//
2197
2198// If this is a vector of constants or undefs, get the bits.  A bit in
2199// UndefBits is set if the corresponding element of the vector is an
2200// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2201// zero.   Return true if this is not an array of constants, false if it is.
2202//
2203static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2204                                       uint64_t UndefBits[2]) {
2205  // Start with zero'd results.
2206  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2207
2208  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2209  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2210    SDOperand OpVal = BV->getOperand(i);
2211
2212    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
2213    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
2214
2215    uint64_t EltBits = 0;
2216    if (OpVal.getOpcode() == ISD::UNDEF) {
2217      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2218      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2219      continue;
2220    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2221      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2222    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2223      assert(CN->getValueType(0) == MVT::f32 &&
2224             "Only one legal FP vector type!");
2225      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
2226    } else {
2227      // Nonconstant element.
2228      return true;
2229    }
2230
2231    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2232  }
2233
2234  //printf("%llx %llx  %llx %llx\n",
2235  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2236  return false;
2237}
2238
2239// If this is a splat (repetition) of a value across the whole vector, return
2240// the smallest size that splats it.  For example, "0x01010101010101..." is a
2241// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2242// SplatSize = 1 byte.
2243static bool isConstantSplat(const uint64_t Bits128[2],
2244                            const uint64_t Undef128[2],
2245                            unsigned &SplatBits, unsigned &SplatUndef,
2246                            unsigned &SplatSize) {
2247
2248  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
2249  // the same as the lower 64-bits, ignoring undefs.
2250  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2251    return false;  // Can't be a splat if two pieces don't match.
2252
2253  uint64_t Bits64  = Bits128[0] | Bits128[1];
2254  uint64_t Undef64 = Undef128[0] & Undef128[1];
2255
2256  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2257  // undefs.
2258  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2259    return false;  // Can't be a splat if two pieces don't match.
2260
2261  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2262  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2263
2264  // If the top 16-bits are different than the lower 16-bits, ignoring
2265  // undefs, we have an i32 splat.
2266  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2267    SplatBits = Bits32;
2268    SplatUndef = Undef32;
2269    SplatSize = 4;
2270    return true;
2271  }
2272
2273  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
2274  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2275
2276  // If the top 8-bits are different than the lower 8-bits, ignoring
2277  // undefs, we have an i16 splat.
2278  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2279    SplatBits = Bits16;
2280    SplatUndef = Undef16;
2281    SplatSize = 2;
2282    return true;
2283  }
2284
2285  // Otherwise, we have an 8-bit splat.
2286  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
2287  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2288  SplatSize = 1;
2289  return true;
2290}
2291
2292/// BuildSplatI - Build a canonical splati of Val with an element size of
2293/// SplatSize.  Cast the result to VT.
2294static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2295                             SelectionDAG &DAG) {
2296  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2297
2298  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2299    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2300  };
2301
2302  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2303
2304  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2305  if (Val == -1)
2306    SplatSize = 1;
2307
2308  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2309
2310  // Build a canonical splat for this value.
2311  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2312  SmallVector<SDOperand, 8> Ops;
2313  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2314  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2315                              &Ops[0], Ops.size());
2316  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2317}
2318
2319/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2320/// specified intrinsic ID.
2321static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2322                                  SelectionDAG &DAG,
2323                                  MVT::ValueType DestVT = MVT::Other) {
2324  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2325  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2326                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2327}
2328
2329/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2330/// specified intrinsic ID.
2331static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2332                                  SDOperand Op2, SelectionDAG &DAG,
2333                                  MVT::ValueType DestVT = MVT::Other) {
2334  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2335  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2336                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2337}
2338
2339
2340/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2341/// amount.  The result has the specified value type.
2342static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2343                             MVT::ValueType VT, SelectionDAG &DAG) {
2344  // Force LHS/RHS to be the right type.
2345  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2346  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2347
2348  SDOperand Ops[16];
2349  for (unsigned i = 0; i != 16; ++i)
2350    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2351  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2352                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2353  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2354}
2355
2356// If this is a case we can't handle, return null and let the default
2357// expansion code take care of it.  If we CAN select this case, and if it
2358// selects to a single instruction, return Op.  Otherwise, if we can codegen
2359// this case more efficiently than a constant pool load, lower it to the
2360// sequence of ops that should be used.
2361static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2362  // If this is a vector of constants or undefs, get the bits.  A bit in
2363  // UndefBits is set if the corresponding element of the vector is an
2364  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2365  // zero.
2366  uint64_t VectorBits[2];
2367  uint64_t UndefBits[2];
2368  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2369    return SDOperand();   // Not a constant vector.
2370
2371  // If this is a splat (repetition) of a value across the whole vector, return
2372  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2373  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2374  // SplatSize = 1 byte.
2375  unsigned SplatBits, SplatUndef, SplatSize;
2376  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2377    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2378
2379    // First, handle single instruction cases.
2380
2381    // All zeros?
2382    if (SplatBits == 0) {
2383      // Canonicalize all zero vectors to be v4i32.
2384      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2385        SDOperand Z = DAG.getConstant(0, MVT::i32);
2386        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2387        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2388      }
2389      return Op;
2390    }
2391
2392    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2393    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2394    if (SextVal >= -16 && SextVal <= 15)
2395      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2396
2397
2398    // Two instruction sequences.
2399
2400    // If this value is in the range [-32,30] and is even, use:
2401    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2402    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2403      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2404      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2405    }
2406
2407    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2408    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2409    // for fneg/fabs.
2410    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2411      // Make -1 and vspltisw -1:
2412      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2413
2414      // Make the VSLW intrinsic, computing 0x8000_0000.
2415      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2416                                       OnesV, DAG);
2417
2418      // xor by OnesV to invert it.
2419      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2420      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2421    }
2422
2423    // Check to see if this is a wide variety of vsplti*, binop self cases.
2424    unsigned SplatBitSize = SplatSize*8;
2425    static const signed char SplatCsts[] = {
2426      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2427      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2428    };
2429
2430    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
2431      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2432      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2433      int i = SplatCsts[idx];
2434
2435      // Figure out what shift amount will be used by altivec if shifted by i in
2436      // this splat size.
2437      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2438
2439      // vsplti + shl self.
2440      if (SextVal == (i << (int)TypeShiftAmt)) {
2441        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2442        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2443          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2444          Intrinsic::ppc_altivec_vslw
2445        };
2446        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2447        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2448      }
2449
2450      // vsplti + srl self.
2451      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2452        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2453        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2454          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2455          Intrinsic::ppc_altivec_vsrw
2456        };
2457        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2458        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2459      }
2460
2461      // vsplti + sra self.
2462      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2463        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2464        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2465          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2466          Intrinsic::ppc_altivec_vsraw
2467        };
2468        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2469        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2470      }
2471
2472      // vsplti + rol self.
2473      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2474                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2475        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2476        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2477          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2478          Intrinsic::ppc_altivec_vrlw
2479        };
2480        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2481        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2482      }
2483
2484      // t = vsplti c, result = vsldoi t, t, 1
2485      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2486        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2487        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2488      }
2489      // t = vsplti c, result = vsldoi t, t, 2
2490      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2491        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2492        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2493      }
2494      // t = vsplti c, result = vsldoi t, t, 3
2495      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2496        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2497        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2498      }
2499    }
2500
2501    // Three instruction sequences.
2502
2503    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2504    if (SextVal >= 0 && SextVal <= 31) {
2505      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2506      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2507      LHS = DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
2508      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2509    }
2510    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2511    if (SextVal >= -31 && SextVal <= 0) {
2512      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2513      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2514      LHS = DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
2515      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2516    }
2517  }
2518
2519  return SDOperand();
2520}
2521
2522/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2523/// the specified operations to build the shuffle.
2524static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2525                                        SDOperand RHS, SelectionDAG &DAG) {
2526  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2527  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
2528  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2529
2530  enum {
2531    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2532    OP_VMRGHW,
2533    OP_VMRGLW,
2534    OP_VSPLTISW0,
2535    OP_VSPLTISW1,
2536    OP_VSPLTISW2,
2537    OP_VSPLTISW3,
2538    OP_VSLDOI4,
2539    OP_VSLDOI8,
2540    OP_VSLDOI12
2541  };
2542
2543  if (OpNum == OP_COPY) {
2544    if (LHSID == (1*9+2)*9+3) return LHS;
2545    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2546    return RHS;
2547  }
2548
2549  SDOperand OpLHS, OpRHS;
2550  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2551  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2552
2553  unsigned ShufIdxs[16];
2554  switch (OpNum) {
2555  default: assert(0 && "Unknown i32 permute!");
2556  case OP_VMRGHW:
2557    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
2558    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2559    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
2560    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2561    break;
2562  case OP_VMRGLW:
2563    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2564    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2565    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2566    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2567    break;
2568  case OP_VSPLTISW0:
2569    for (unsigned i = 0; i != 16; ++i)
2570      ShufIdxs[i] = (i&3)+0;
2571    break;
2572  case OP_VSPLTISW1:
2573    for (unsigned i = 0; i != 16; ++i)
2574      ShufIdxs[i] = (i&3)+4;
2575    break;
2576  case OP_VSPLTISW2:
2577    for (unsigned i = 0; i != 16; ++i)
2578      ShufIdxs[i] = (i&3)+8;
2579    break;
2580  case OP_VSPLTISW3:
2581    for (unsigned i = 0; i != 16; ++i)
2582      ShufIdxs[i] = (i&3)+12;
2583    break;
2584  case OP_VSLDOI4:
2585    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2586  case OP_VSLDOI8:
2587    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2588  case OP_VSLDOI12:
2589    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2590  }
2591  SDOperand Ops[16];
2592  for (unsigned i = 0; i != 16; ++i)
2593    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2594
2595  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2596                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2597}
2598
2599/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
2600/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
2601/// return the code it can be lowered into.  Worst case, it can always be
2602/// lowered into a vperm.
2603static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2604  SDOperand V1 = Op.getOperand(0);
2605  SDOperand V2 = Op.getOperand(1);
2606  SDOperand PermMask = Op.getOperand(2);
2607
2608  // Cases that are handled by instructions that take permute immediates
2609  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2610  // selected by the instruction selector.
2611  if (V2.getOpcode() == ISD::UNDEF) {
2612    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2613        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2614        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2615        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2616        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2617        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2618        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2619        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2620        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2621        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2622        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2623        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2624      return Op;
2625    }
2626  }
2627
2628  // Altivec has a variety of "shuffle immediates" that take two vector inputs
2629  // and produce a fixed permutation.  If any of these match, do not lower to
2630  // VPERM.
2631  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2632      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2633      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2634      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2635      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2636      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2637      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2638      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2639      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2640    return Op;
2641
2642  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
2643  // perfect shuffle table to emit an optimal matching sequence.
2644  unsigned PFIndexes[4];
2645  bool isFourElementShuffle = true;
2646  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2647    unsigned EltNo = 8;   // Start out undef.
2648    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
2649      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2650        continue;   // Undef, ignore it.
2651
2652      unsigned ByteSource =
2653        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2654      if ((ByteSource & 3) != j) {
2655        isFourElementShuffle = false;
2656        break;
2657      }
2658
2659      if (EltNo == 8) {
2660        EltNo = ByteSource/4;
2661      } else if (EltNo != ByteSource/4) {
2662        isFourElementShuffle = false;
2663        break;
2664      }
2665    }
2666    PFIndexes[i] = EltNo;
2667  }
2668
2669  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2670  // perfect shuffle vector to determine if it is cost effective to do this as
2671  // discrete instructions, or whether we should use a vperm.
2672  if (isFourElementShuffle) {
2673    // Compute the index in the perfect shuffle table.
2674    unsigned PFTableIndex =
2675      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2676
2677    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2678    unsigned Cost  = (PFEntry >> 30);
2679
2680    // Determining when to avoid vperm is tricky.  Many things affect the cost
2681    // of vperm, particularly how many times the perm mask needs to be computed.
2682    // For example, if the perm mask can be hoisted out of a loop or is already
2683    // used (perhaps because there are multiple permutes with the same shuffle
2684    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
2685    // the loop requires an extra register.
2686    //
2687    // As a compromise, we only emit discrete instructions if the shuffle can be
2688    // generated in 3 or fewer operations.  When we have loop information
2689    // available, if this block is within a loop, we should avoid using vperm
2690    // for 3-operation perms and use a constant pool load instead.
2691    if (Cost < 3)
2692      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2693  }
2694
2695  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2696  // vector that will get spilled to the constant pool.
2697  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2698
2699  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2700  // that it is in input element units, not in bytes.  Convert now.
2701  MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
2702  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2703
2704  SmallVector<SDOperand, 16> ResultMask;
2705  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2706    unsigned SrcElt;
2707    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2708      SrcElt = 0;
2709    else
2710      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2711
2712    for (unsigned j = 0; j != BytesPerElement; ++j)
2713      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2714                                           MVT::i8));
2715  }
2716
2717  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2718                                    &ResultMask[0], ResultMask.size());
2719  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2720}
2721
2722/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2723/// altivec comparison.  If it is, return true and fill in Opc/isDot with
2724/// information about the intrinsic.
2725static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2726                                  bool &isDot) {
2727  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2728  CompareOpc = -1;
2729  isDot = false;
2730  switch (IntrinsicID) {
2731  default: return false;
2732    // Comparison predicates.
2733  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
2734  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2735  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
2736  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
2737  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2738  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2739  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2740  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2741  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2742  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2743  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2744  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2745  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2746
2747    // Normal Comparisons.
2748  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
2749  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
2750  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
2751  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
2752  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
2753  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
2754  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
2755  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
2756  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
2757  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
2758  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
2759  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
2760  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
2761  }
2762  return true;
2763}
2764
2765/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2766/// lower, do it, otherwise return null.
2767static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2768  // If this is a lowered altivec predicate compare, CompareOpc is set to the
2769  // opcode number of the comparison.
2770  int CompareOpc;
2771  bool isDot;
2772  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2773    return SDOperand();    // Don't custom lower most intrinsics.
2774
2775  // If this is a non-dot comparison, make the VCMP node and we are done.
2776  if (!isDot) {
2777    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2778                                Op.getOperand(1), Op.getOperand(2),
2779                                DAG.getConstant(CompareOpc, MVT::i32));
2780    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2781  }
2782
2783  // Create the PPCISD altivec 'dot' comparison node.
2784  SDOperand Ops[] = {
2785    Op.getOperand(2),  // LHS
2786    Op.getOperand(3),  // RHS
2787    DAG.getConstant(CompareOpc, MVT::i32)
2788  };
2789  std::vector<MVT::ValueType> VTs;
2790  VTs.push_back(Op.getOperand(2).getValueType());
2791  VTs.push_back(MVT::Flag);
2792  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2793
2794  // Now that we have the comparison, emit a copy from the CR to a GPR.
2795  // This is flagged to the above dot comparison.
2796  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2797                                DAG.getRegister(PPC::CR6, MVT::i32),
2798                                CompNode.getValue(1));
2799
2800  // Unpack the result based on how the target uses it.
2801  unsigned BitNo;   // Bit # of CR6.
2802  bool InvertBit;   // Invert result?
2803  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2804  default:  // Can't happen, don't crash on invalid number though.
2805  case 0:   // Return the value of the EQ bit of CR6.
2806    BitNo = 0; InvertBit = false;
2807    break;
2808  case 1:   // Return the inverted value of the EQ bit of CR6.
2809    BitNo = 0; InvertBit = true;
2810    break;
2811  case 2:   // Return the value of the LT bit of CR6.
2812    BitNo = 2; InvertBit = false;
2813    break;
2814  case 3:   // Return the inverted value of the LT bit of CR6.
2815    BitNo = 2; InvertBit = true;
2816    break;
2817  }
2818
2819  // Shift the bit into the low position.
2820  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2821                      DAG.getConstant(8-(3-BitNo), MVT::i32));
2822  // Isolate the bit.
2823  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2824                      DAG.getConstant(1, MVT::i32));
2825
2826  // If we are supposed to, toggle the bit.
2827  if (InvertBit)
2828    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2829                        DAG.getConstant(1, MVT::i32));
2830  return Flags;
2831}
2832
2833static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2834  // Create a stack slot that is 16-byte aligned.
2835  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2836  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2837  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2838  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2839
2840  // Store the input value into Value#0 of the stack slot.
2841  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2842                                 Op.getOperand(0), FIdx, NULL, 0);
2843  // Load it out.
2844  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2845}
2846
2847static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2848  if (Op.getValueType() == MVT::v4i32) {
2849    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2850
2851    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
2852    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2853
2854    SDOperand RHSSwap =   // = vrlw RHS, 16
2855      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2856
2857    // Shrinkify inputs to v8i16.
2858    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2859    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2860    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2861
2862    // Low parts multiplied together, generating 32-bit results (we ignore the
2863    // top parts).
2864    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2865                                        LHS, RHS, DAG, MVT::v4i32);
2866
2867    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2868                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2869    // Shift the high parts up 16 bits.
2870    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2871    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2872  } else if (Op.getValueType() == MVT::v8i16) {
2873    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2874
2875    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2876
2877    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2878                            LHS, RHS, Zero, DAG);
2879  } else if (Op.getValueType() == MVT::v16i8) {
2880    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2881
2882    // Multiply the even 8-bit parts, producing 16-bit sums.
2883    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2884                                           LHS, RHS, DAG, MVT::v8i16);
2885    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2886
2887    // Multiply the odd 8-bit parts, producing 16-bit sums.
2888    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2889                                          LHS, RHS, DAG, MVT::v8i16);
2890    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2891
2892    // Merge the results together.
2893    SDOperand Ops[16];
2894    for (unsigned i = 0; i != 8; ++i) {
2895      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
2896      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2897    }
2898    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2899                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2900  } else {
2901    assert(0 && "Unknown mul to lower!");
2902    abort();
2903  }
2904}
2905
2906/// LowerOperation - Provide custom lowering hooks for some operations.
2907///
2908SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2909  switch (Op.getOpcode()) {
2910  default: assert(0 && "Wasn't expecting to be able to lower this!");
2911  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
2912  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
2913  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
2914  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
2915  case ISD::SETCC:              return LowerSETCC(Op, DAG);
2916  case ISD::VASTART:
2917    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
2918                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
2919
2920  case ISD::VAARG:
2921    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
2922                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
2923
2924  case ISD::FORMAL_ARGUMENTS:
2925    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
2926                                 VarArgsStackOffset, VarArgsNumGPR,
2927                                 VarArgsNumFPR, PPCSubTarget);
2928
2929  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget);
2930  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
2931  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
2932  case ISD::DYNAMIC_STACKALLOC:
2933    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
2934
2935  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
2936  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
2937  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
2938
2939  // Lower 64-bit shifts.
2940  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
2941  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
2942  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
2943
2944  // Vector-related lowering.
2945  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
2946  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
2947  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2948  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
2949  case ISD::MUL:                return LowerMUL(Op, DAG);
2950
2951  // Frame & Return address.  Currently unimplemented
2952  case ISD::RETURNADDR:         break;
2953  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
2954  }
2955  return SDOperand();
2956}
2957
2958//===----------------------------------------------------------------------===//
2959//  Other Lowering Code
2960//===----------------------------------------------------------------------===//
2961
2962MachineBasicBlock *
2963PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2964                                           MachineBasicBlock *BB) {
2965  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2966  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
2967          MI->getOpcode() == PPC::SELECT_CC_I8 ||
2968          MI->getOpcode() == PPC::SELECT_CC_F4 ||
2969          MI->getOpcode() == PPC::SELECT_CC_F8 ||
2970          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2971         "Unexpected instr type to insert");
2972
2973  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2974  // control-flow pattern.  The incoming instruction knows the destination vreg
2975  // to set, the condition code register to branch on, the true/false values to
2976  // select between, and a branch opcode to use.
2977  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2978  ilist<MachineBasicBlock>::iterator It = BB;
2979  ++It;
2980
2981  //  thisMBB:
2982  //  ...
2983  //   TrueVal = ...
2984  //   cmpTY ccX, r1, r2
2985  //   bCC copy1MBB
2986  //   fallthrough --> copy0MBB
2987  MachineBasicBlock *thisMBB = BB;
2988  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2989  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2990  unsigned SelectPred = MI->getOperand(4).getImm();
2991  BuildMI(BB, TII->get(PPC::BCC))
2992    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2993  MachineFunction *F = BB->getParent();
2994  F->getBasicBlockList().insert(It, copy0MBB);
2995  F->getBasicBlockList().insert(It, sinkMBB);
2996  // Update machine-CFG edges by first adding all successors of the current
2997  // block to the new block which will contain the Phi node for the select.
2998  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2999      e = BB->succ_end(); i != e; ++i)
3000    sinkMBB->addSuccessor(*i);
3001  // Next, remove all successors of the current block, and add the true
3002  // and fallthrough blocks as its successors.
3003  while(!BB->succ_empty())
3004    BB->removeSuccessor(BB->succ_begin());
3005  BB->addSuccessor(copy0MBB);
3006  BB->addSuccessor(sinkMBB);
3007
3008  //  copy0MBB:
3009  //   %FalseValue = ...
3010  //   # fallthrough to sinkMBB
3011  BB = copy0MBB;
3012
3013  // Update machine-CFG edges
3014  BB->addSuccessor(sinkMBB);
3015
3016  //  sinkMBB:
3017  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3018  //  ...
3019  BB = sinkMBB;
3020  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3021    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3022    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3023
3024  delete MI;   // The pseudo instruction is gone now.
3025  return BB;
3026}
3027
3028//===----------------------------------------------------------------------===//
3029// Target Optimization Hooks
3030//===----------------------------------------------------------------------===//
3031
3032SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3033                                               DAGCombinerInfo &DCI) const {
3034  TargetMachine &TM = getTargetMachine();
3035  SelectionDAG &DAG = DCI.DAG;
3036  switch (N->getOpcode()) {
3037  default: break;
3038  case PPCISD::SHL:
3039    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3040      if (C->getValue() == 0)   // 0 << V -> 0.
3041        return N->getOperand(0);
3042    }
3043    break;
3044  case PPCISD::SRL:
3045    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3046      if (C->getValue() == 0)   // 0 >>u V -> 0.
3047        return N->getOperand(0);
3048    }
3049    break;
3050  case PPCISD::SRA:
3051    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3052      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
3053          C->isAllOnesValue())    // -1 >>s V -> -1.
3054        return N->getOperand(0);
3055    }
3056    break;
3057
3058  case ISD::SINT_TO_FP:
3059    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3060      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3061        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3062        // We allow the src/dst to be either f32/f64, but the intermediate
3063        // type must be i64.
3064        if (N->getOperand(0).getValueType() == MVT::i64) {
3065          SDOperand Val = N->getOperand(0).getOperand(0);
3066          if (Val.getValueType() == MVT::f32) {
3067            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3068            DCI.AddToWorklist(Val.Val);
3069          }
3070
3071          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3072          DCI.AddToWorklist(Val.Val);
3073          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3074          DCI.AddToWorklist(Val.Val);
3075          if (N->getValueType(0) == MVT::f32) {
3076            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
3077            DCI.AddToWorklist(Val.Val);
3078          }
3079          return Val;
3080        } else if (N->getOperand(0).getValueType() == MVT::i32) {
3081          // If the intermediate type is i32, we can avoid the load/store here
3082          // too.
3083        }
3084      }
3085    }
3086    break;
3087  case ISD::STORE:
3088    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3089    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3090        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3091        N->getOperand(1).getValueType() == MVT::i32) {
3092      SDOperand Val = N->getOperand(1).getOperand(0);
3093      if (Val.getValueType() == MVT::f32) {
3094        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3095        DCI.AddToWorklist(Val.Val);
3096      }
3097      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3098      DCI.AddToWorklist(Val.Val);
3099
3100      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3101                        N->getOperand(2), N->getOperand(3));
3102      DCI.AddToWorklist(Val.Val);
3103      return Val;
3104    }
3105
3106    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3107    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3108        N->getOperand(1).Val->hasOneUse() &&
3109        (N->getOperand(1).getValueType() == MVT::i32 ||
3110         N->getOperand(1).getValueType() == MVT::i16)) {
3111      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3112      // Do an any-extend to 32-bits if this is a half-word input.
3113      if (BSwapOp.getValueType() == MVT::i16)
3114        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3115
3116      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3117                         N->getOperand(2), N->getOperand(3),
3118                         DAG.getValueType(N->getOperand(1).getValueType()));
3119    }
3120    break;
3121  case ISD::BSWAP:
3122    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3123    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3124        N->getOperand(0).hasOneUse() &&
3125        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3126      SDOperand Load = N->getOperand(0);
3127      LoadSDNode *LD = cast<LoadSDNode>(Load);
3128      // Create the byte-swapping load.
3129      std::vector<MVT::ValueType> VTs;
3130      VTs.push_back(MVT::i32);
3131      VTs.push_back(MVT::Other);
3132      SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
3133      SDOperand Ops[] = {
3134        LD->getChain(),    // Chain
3135        LD->getBasePtr(),  // Ptr
3136        SV,                // SrcValue
3137        DAG.getValueType(N->getValueType(0)) // VT
3138      };
3139      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3140
3141      // If this is an i16 load, insert the truncate.
3142      SDOperand ResVal = BSLoad;
3143      if (N->getValueType(0) == MVT::i16)
3144        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3145
3146      // First, combine the bswap away.  This makes the value produced by the
3147      // load dead.
3148      DCI.CombineTo(N, ResVal);
3149
3150      // Next, combine the load away, we give it a bogus result value but a real
3151      // chain result.  The result value is dead because the bswap is dead.
3152      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3153
3154      // Return N so it doesn't get rechecked!
3155      return SDOperand(N, 0);
3156    }
3157
3158    break;
3159  case PPCISD::VCMP: {
3160    // If a VCMPo node already exists with exactly the same operands as this
3161    // node, use its result instead of this node (VCMPo computes both a CR6 and
3162    // a normal output).
3163    //
3164    if (!N->getOperand(0).hasOneUse() &&
3165        !N->getOperand(1).hasOneUse() &&
3166        !N->getOperand(2).hasOneUse()) {
3167
3168      // Scan all of the users of the LHS, looking for VCMPo's that match.
3169      SDNode *VCMPoNode = 0;
3170
3171      SDNode *LHSN = N->getOperand(0).Val;
3172      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3173           UI != E; ++UI)
3174        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3175            (*UI)->getOperand(1) == N->getOperand(1) &&
3176            (*UI)->getOperand(2) == N->getOperand(2) &&
3177            (*UI)->getOperand(0) == N->getOperand(0)) {
3178          VCMPoNode = *UI;
3179          break;
3180        }
3181
3182      // If there is no VCMPo node, or if the flag value has a single use, don't
3183      // transform this.
3184      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3185        break;
3186
3187      // Look at the (necessarily single) use of the flag value.  If it has a
3188      // chain, this transformation is more complex.  Note that multiple things
3189      // could use the value result, which we should ignore.
3190      SDNode *FlagUser = 0;
3191      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3192           FlagUser == 0; ++UI) {
3193        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3194        SDNode *User = *UI;
3195        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3196          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3197            FlagUser = User;
3198            break;
3199          }
3200        }
3201      }
3202
3203      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
3204      // give up for right now.
3205      if (FlagUser->getOpcode() == PPCISD::MFCR)
3206        return SDOperand(VCMPoNode, 0);
3207    }
3208    break;
3209  }
3210  case ISD::BR_CC: {
3211    // If this is a branch on an altivec predicate comparison, lower this so
3212    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
3213    // lowering is done pre-legalize, because the legalizer lowers the predicate
3214    // compare down to code that is difficult to reassemble.
3215    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3216    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3217    int CompareOpc;
3218    bool isDot;
3219
3220    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3221        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3222        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3223      assert(isDot && "Can't compare against a vector result!");
3224
3225      // If this is a comparison against something other than 0/1, then we know
3226      // that the condition is never/always true.
3227      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3228      if (Val != 0 && Val != 1) {
3229        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
3230          return N->getOperand(0);
3231        // Always !=, turn it into an unconditional branch.
3232        return DAG.getNode(ISD::BR, MVT::Other,
3233                           N->getOperand(0), N->getOperand(4));
3234      }
3235
3236      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3237
3238      // Create the PPCISD altivec 'dot' comparison node.
3239      std::vector<MVT::ValueType> VTs;
3240      SDOperand Ops[] = {
3241        LHS.getOperand(2),  // LHS of compare
3242        LHS.getOperand(3),  // RHS of compare
3243        DAG.getConstant(CompareOpc, MVT::i32)
3244      };
3245      VTs.push_back(LHS.getOperand(2).getValueType());
3246      VTs.push_back(MVT::Flag);
3247      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3248
3249      // Unpack the result based on how the target uses it.
3250      PPC::Predicate CompOpc;
3251      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3252      default:  // Can't happen, don't crash on invalid number though.
3253      case 0:   // Branch on the value of the EQ bit of CR6.
3254        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3255        break;
3256      case 1:   // Branch on the inverted value of the EQ bit of CR6.
3257        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3258        break;
3259      case 2:   // Branch on the value of the LT bit of CR6.
3260        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3261        break;
3262      case 3:   // Branch on the inverted value of the LT bit of CR6.
3263        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3264        break;
3265      }
3266
3267      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3268                         DAG.getConstant(CompOpc, MVT::i32),
3269                         DAG.getRegister(PPC::CR6, MVT::i32),
3270                         N->getOperand(4), CompNode.getValue(1));
3271    }
3272    break;
3273  }
3274  }
3275
3276  return SDOperand();
3277}
3278
3279//===----------------------------------------------------------------------===//
3280// Inline Assembly Support
3281//===----------------------------------------------------------------------===//
3282
3283void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3284                                                       uint64_t Mask,
3285                                                       uint64_t &KnownZero,
3286                                                       uint64_t &KnownOne,
3287                                                       const SelectionDAG &DAG,
3288                                                       unsigned Depth) const {
3289  KnownZero = 0;
3290  KnownOne = 0;
3291  switch (Op.getOpcode()) {
3292  default: break;
3293  case PPCISD::LBRX: {
3294    // lhbrx is known to have the top bits cleared out.
3295    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3296      KnownZero = 0xFFFF0000;
3297    break;
3298  }
3299  case ISD::INTRINSIC_WO_CHAIN: {
3300    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3301    default: break;
3302    case Intrinsic::ppc_altivec_vcmpbfp_p:
3303    case Intrinsic::ppc_altivec_vcmpeqfp_p:
3304    case Intrinsic::ppc_altivec_vcmpequb_p:
3305    case Intrinsic::ppc_altivec_vcmpequh_p:
3306    case Intrinsic::ppc_altivec_vcmpequw_p:
3307    case Intrinsic::ppc_altivec_vcmpgefp_p:
3308    case Intrinsic::ppc_altivec_vcmpgtfp_p:
3309    case Intrinsic::ppc_altivec_vcmpgtsb_p:
3310    case Intrinsic::ppc_altivec_vcmpgtsh_p:
3311    case Intrinsic::ppc_altivec_vcmpgtsw_p:
3312    case Intrinsic::ppc_altivec_vcmpgtub_p:
3313    case Intrinsic::ppc_altivec_vcmpgtuh_p:
3314    case Intrinsic::ppc_altivec_vcmpgtuw_p:
3315      KnownZero = ~1U;  // All bits but the low one are known to be zero.
3316      break;
3317    }
3318  }
3319  }
3320}
3321
3322
3323/// getConstraintType - Given a constraint, return the type of
3324/// constraint it is for this target.
3325PPCTargetLowering::ConstraintType
3326PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3327  if (Constraint.size() == 1) {
3328    switch (Constraint[0]) {
3329    default: break;
3330    case 'b':
3331    case 'r':
3332    case 'f':
3333    case 'v':
3334    case 'y':
3335      return C_RegisterClass;
3336    }
3337  }
3338  return TargetLowering::getConstraintType(Constraint);
3339}
3340
3341std::pair<unsigned, const TargetRegisterClass*>
3342PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3343                                                MVT::ValueType VT) const {
3344  if (Constraint.size() == 1) {
3345    // GCC RS6000 Constraint Letters
3346    switch (Constraint[0]) {
3347    case 'b':   // R1-R31
3348    case 'r':   // R0-R31
3349      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3350        return std::make_pair(0U, PPC::G8RCRegisterClass);
3351      return std::make_pair(0U, PPC::GPRCRegisterClass);
3352    case 'f':
3353      if (VT == MVT::f32)
3354        return std::make_pair(0U, PPC::F4RCRegisterClass);
3355      else if (VT == MVT::f64)
3356        return std::make_pair(0U, PPC::F8RCRegisterClass);
3357      break;
3358    case 'v':
3359      return std::make_pair(0U, PPC::VRRCRegisterClass);
3360    case 'y':   // crrc
3361      return std::make_pair(0U, PPC::CRRCRegisterClass);
3362    }
3363  }
3364
3365  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3366}
3367
3368
3369/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3370/// vector.  If it is invalid, don't add anything to Ops.
3371void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3372                                                     std::vector<SDOperand>&Ops,
3373                                                     SelectionDAG &DAG) {
3374  SDOperand Result(0,0);
3375  switch (Letter) {
3376  default: break;
3377  case 'I':
3378  case 'J':
3379  case 'K':
3380  case 'L':
3381  case 'M':
3382  case 'N':
3383  case 'O':
3384  case 'P': {
3385    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
3386    if (!CST) return; // Must be an immediate to match.
3387    unsigned Value = CST->getValue();
3388    switch (Letter) {
3389    default: assert(0 && "Unknown constraint letter!");
3390    case 'I':  // "I" is a signed 16-bit constant.
3391      if ((short)Value == (int)Value)
3392        Result = DAG.getTargetConstant(Value, Op.getValueType());
3393      break;
3394    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3395    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3396      if ((short)Value == 0)
3397        Result = DAG.getTargetConstant(Value, Op.getValueType());
3398      break;
3399    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3400      if ((Value >> 16) == 0)
3401        Result = DAG.getTargetConstant(Value, Op.getValueType());
3402      break;
3403    case 'M':  // "M" is a constant that is greater than 31.
3404      if (Value > 31)
3405        Result = DAG.getTargetConstant(Value, Op.getValueType());
3406      break;
3407    case 'N':  // "N" is a positive constant that is an exact power of two.
3408      if ((int)Value > 0 && isPowerOf2_32(Value))
3409        Result = DAG.getTargetConstant(Value, Op.getValueType());
3410      break;
3411    case 'O':  // "O" is the constant zero.
3412      if (Value == 0)
3413        Result = DAG.getTargetConstant(Value, Op.getValueType());
3414      break;
3415    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3416      if ((short)-Value == (int)-Value)
3417        Result = DAG.getTargetConstant(Value, Op.getValueType());
3418      break;
3419    }
3420    break;
3421  }
3422  }
3423
3424  if (Result.Val) {
3425    Ops.push_back(Result);
3426    return;
3427  }
3428
3429  // Handle standard constraint letters.
3430  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
3431}
3432
3433// isLegalAddressingMode - Return true if the addressing mode represented
3434// by AM is legal for this target, for a load/store of the specified type.
3435bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3436                                              const Type *Ty) const {
3437  // FIXME: PPC does not allow r+i addressing modes for vectors!
3438
3439  // PPC allows a sign-extended 16-bit immediate field.
3440  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3441    return false;
3442
3443  // No global is ever allowed as a base.
3444  if (AM.BaseGV)
3445    return false;
3446
3447  // PPC only support r+r,
3448  switch (AM.Scale) {
3449  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3450    break;
3451  case 1:
3452    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3453      return false;
3454    // Otherwise we have r+r or r+i.
3455    break;
3456  case 2:
3457    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3458      return false;
3459    // Allow 2*r as r+r.
3460    break;
3461  default:
3462    // No other scales are supported.
3463    return false;
3464  }
3465
3466  return true;
3467}
3468
3469/// isLegalAddressImmediate - Return true if the integer value can be used
3470/// as the offset of the target addressing mode for load / store of the
3471/// given type.
3472bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3473  // PPC allows a sign-extended 16-bit immediate field.
3474  return (V > -(1 << 16) && V < (1 << 16)-1);
3475}
3476
3477bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3478  return false;
3479}
3480
3481SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG)
3482{
3483  // Depths > 0 not supported yet!
3484  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3485    return SDOperand();
3486
3487  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3488  bool isPPC64 = PtrVT == MVT::i64;
3489
3490  MachineFunction &MF = DAG.getMachineFunction();
3491  MachineFrameInfo *MFI = MF.getFrameInfo();
3492  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3493                  && MFI->getStackSize();
3494
3495  if (isPPC64)
3496    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
3497      MVT::i64);
3498  else
3499    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3500      MVT::i32);
3501}
3502