PPCISelLowering.cpp revision 4ee451de366474b9c228b4e5fa573795a715216d
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Target/TargetOptions.h"
33#include "llvm/Support/CommandLine.h"
34using namespace llvm;
35
36static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
37cl::desc("enable preincrement load/store generation on PPC (experimental)"),
38                                     cl::Hidden);
39
40PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
41  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
42
43  setPow2DivIsCheap();
44
45  // Use _setjmp/_longjmp instead of setjmp/longjmp.
46  setUseUnderscoreSetJmp(true);
47  setUseUnderscoreLongJmp(true);
48
49  // Set up the register classes.
50  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
51  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
52  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
53
54  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
56  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
57
58  // PowerPC does not have truncstore for i1.
59  setStoreXAction(MVT::i1, Promote);
60
61  // PowerPC has pre-inc load and store's.
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
73  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
74  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
75
76  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
77  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
78  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
79  // This is used in the ppcf128->int sequence.  Note it has different semantics
80  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
81  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
82
83  // PowerPC has no intrinsics for these particular operations
84  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
85  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
86  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
87
88  // PowerPC has no SREM/UREM instructions
89  setOperationAction(ISD::SREM, MVT::i32, Expand);
90  setOperationAction(ISD::UREM, MVT::i32, Expand);
91  setOperationAction(ISD::SREM, MVT::i64, Expand);
92  setOperationAction(ISD::UREM, MVT::i64, Expand);
93
94  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
95  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
96  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
97  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
98  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
99  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
100  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
101  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
102  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
103
104  // We don't support sin/cos/sqrt/fmod/pow
105  setOperationAction(ISD::FSIN , MVT::f64, Expand);
106  setOperationAction(ISD::FCOS , MVT::f64, Expand);
107  setOperationAction(ISD::FREM , MVT::f64, Expand);
108  setOperationAction(ISD::FPOW , MVT::f64, Expand);
109  setOperationAction(ISD::FSIN , MVT::f32, Expand);
110  setOperationAction(ISD::FCOS , MVT::f32, Expand);
111  setOperationAction(ISD::FREM , MVT::f32, Expand);
112  setOperationAction(ISD::FPOW , MVT::f32, Expand);
113
114  // If we're enabling GP optimizations, use hardware square root
115  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
116    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
117    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
118  }
119
120  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
121  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
122
123  // PowerPC does not have BSWAP, CTPOP or CTTZ
124  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
125  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
126  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
127  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
128  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
129  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
130
131  // PowerPC does not have ROTR
132  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
133
134  // PowerPC does not have Select
135  setOperationAction(ISD::SELECT, MVT::i32, Expand);
136  setOperationAction(ISD::SELECT, MVT::i64, Expand);
137  setOperationAction(ISD::SELECT, MVT::f32, Expand);
138  setOperationAction(ISD::SELECT, MVT::f64, Expand);
139
140  // PowerPC wants to turn select_cc of FP into fsel when possible.
141  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
142  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
143
144  // PowerPC wants to optimize integer setcc a bit
145  setOperationAction(ISD::SETCC, MVT::i32, Custom);
146
147  // PowerPC does not have BRCOND which requires SetCC
148  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
149
150  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
151
152  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
153  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
154
155  // PowerPC does not have [U|S]INT_TO_FP
156  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
157  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
158
159  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
160  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
161  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
162  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
163
164  // We cannot sextinreg(i1).  Expand to shifts.
165  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
166
167  // Support label based line numbers.
168  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
169  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
170
171  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
172  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
173  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
174  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
175
176
177  // We want to legalize GlobalAddress and ConstantPool nodes into the
178  // appropriate instructions to materialize the address.
179  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
180  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
181  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
182  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
183  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
184  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
185  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
186  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
187
188  // RET must be custom lowered, to meet ABI requirements
189  setOperationAction(ISD::RET               , MVT::Other, Custom);
190
191  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
192  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
193
194  // VAARG is custom lowered with ELF 32 ABI
195  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
196    setOperationAction(ISD::VAARG, MVT::Other, Custom);
197  else
198    setOperationAction(ISD::VAARG, MVT::Other, Expand);
199
200  // Use the default implementation.
201  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
202  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
203  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
204  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
205  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
206  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
207
208  // We want to custom lower some of our intrinsics.
209  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
210
211  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
212    // They also have instructions for converting between i64 and fp.
213    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
214    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
215    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
216    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
217    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
218
219    // FIXME: disable this lowered code.  This generates 64-bit register values,
220    // and we don't model the fact that the top part is clobbered by calls.  We
221    // need to flag these together so that the value isn't live across a call.
222    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
223
224    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
225    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
226  } else {
227    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
228    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
229  }
230
231  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
232    // 64-bit PowerPC implementations can support i64 types directly
233    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
234    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
235    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
236  } else {
237    // 32-bit PowerPC wants to expand i64 shifts itself.
238    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
239    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
240    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
241  }
242
243  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
244    // First set operation action for all vector types to expand. Then we
245    // will selectively turn on ones that can be effectively codegen'd.
246    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
247         VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
248      // add/sub are legal for all supported vector VT's.
249      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
250      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
251
252      // We promote all shuffles to v16i8.
253      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
254      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
255
256      // We promote all non-typed operations to v4i32.
257      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
258      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
259      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
260      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
261      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
262      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
263      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
264      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
265      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
266      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
267      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
268      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
269
270      // No other operations are legal.
271      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
272      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
273      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
274      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
275      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
276      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
277      setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
278      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
279      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
280      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
281      setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
282      setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
283      setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
284      setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
285      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
286      setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
287      setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
288      setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
289      setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
290    }
291
292    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
293    // with merges, splats, etc.
294    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
295
296    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
297    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
298    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
299    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
300    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
301    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
302
303    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
304    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
305    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
306    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
307
308    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
309    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
310    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
311    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
312
313    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
314    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
315
316    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
317    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
318    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
319    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
320  }
321
322  setSetCCResultType(MVT::i32);
323  setShiftAmountType(MVT::i32);
324  setSetCCResultContents(ZeroOrOneSetCCResult);
325
326  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
327    setStackPointerRegisterToSaveRestore(PPC::X1);
328    setExceptionPointerRegister(PPC::X3);
329    setExceptionSelectorRegister(PPC::X4);
330  } else {
331    setStackPointerRegisterToSaveRestore(PPC::R1);
332    setExceptionPointerRegister(PPC::R3);
333    setExceptionSelectorRegister(PPC::R4);
334  }
335
336  // We have target-specific dag combine patterns for the following nodes:
337  setTargetDAGCombine(ISD::SINT_TO_FP);
338  setTargetDAGCombine(ISD::STORE);
339  setTargetDAGCombine(ISD::BR_CC);
340  setTargetDAGCombine(ISD::BSWAP);
341
342  // Darwin long double math library functions have $LDBL128 appended.
343  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
344    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
345    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
346    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
347  }
348
349  computeRegisterProperties();
350}
351
352const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
353  switch (Opcode) {
354  default: return 0;
355  case PPCISD::FSEL:          return "PPCISD::FSEL";
356  case PPCISD::FCFID:         return "PPCISD::FCFID";
357  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
358  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
359  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
360  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
361  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
362  case PPCISD::VPERM:         return "PPCISD::VPERM";
363  case PPCISD::Hi:            return "PPCISD::Hi";
364  case PPCISD::Lo:            return "PPCISD::Lo";
365  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
366  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
367  case PPCISD::SRL:           return "PPCISD::SRL";
368  case PPCISD::SRA:           return "PPCISD::SRA";
369  case PPCISD::SHL:           return "PPCISD::SHL";
370  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
371  case PPCISD::STD_32:        return "PPCISD::STD_32";
372  case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF";
373  case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho";
374  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
375  case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho";
376  case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF";
377  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
378  case PPCISD::MFCR:          return "PPCISD::MFCR";
379  case PPCISD::VCMP:          return "PPCISD::VCMP";
380  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
381  case PPCISD::LBRX:          return "PPCISD::LBRX";
382  case PPCISD::STBRX:         return "PPCISD::STBRX";
383  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
384  }
385}
386
387//===----------------------------------------------------------------------===//
388// Node matching predicates, for use by the tblgen matching code.
389//===----------------------------------------------------------------------===//
390
391/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
392static bool isFloatingPointZero(SDOperand Op) {
393  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
394    return CFP->getValueAPF().isZero();
395  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
396    // Maybe this has already been legalized into the constant pool?
397    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
398      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
399        return CFP->getValueAPF().isZero();
400  }
401  return false;
402}
403
404/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
405/// true if Op is undef or if it matches the specified value.
406static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
407  return Op.getOpcode() == ISD::UNDEF ||
408         cast<ConstantSDNode>(Op)->getValue() == Val;
409}
410
411/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
412/// VPKUHUM instruction.
413bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
414  if (!isUnary) {
415    for (unsigned i = 0; i != 16; ++i)
416      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
417        return false;
418  } else {
419    for (unsigned i = 0; i != 8; ++i)
420      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
421          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
422        return false;
423  }
424  return true;
425}
426
427/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
428/// VPKUWUM instruction.
429bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
430  if (!isUnary) {
431    for (unsigned i = 0; i != 16; i += 2)
432      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
433          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
434        return false;
435  } else {
436    for (unsigned i = 0; i != 8; i += 2)
437      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
438          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
439          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
440          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
441        return false;
442  }
443  return true;
444}
445
446/// isVMerge - Common function, used to match vmrg* shuffles.
447///
448static bool isVMerge(SDNode *N, unsigned UnitSize,
449                     unsigned LHSStart, unsigned RHSStart) {
450  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
451         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
452  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
453         "Unsupported merge size!");
454
455  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
456    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
457      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
458                             LHSStart+j+i*UnitSize) ||
459          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
460                             RHSStart+j+i*UnitSize))
461        return false;
462    }
463      return true;
464}
465
466/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
467/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
468bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
469  if (!isUnary)
470    return isVMerge(N, UnitSize, 8, 24);
471  return isVMerge(N, UnitSize, 8, 8);
472}
473
474/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
475/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
476bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
477  if (!isUnary)
478    return isVMerge(N, UnitSize, 0, 16);
479  return isVMerge(N, UnitSize, 0, 0);
480}
481
482
483/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
484/// amount, otherwise return -1.
485int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
486  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
487         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
488  // Find the first non-undef value in the shuffle mask.
489  unsigned i;
490  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
491    /*search*/;
492
493  if (i == 16) return -1;  // all undef.
494
495  // Otherwise, check to see if the rest of the elements are consequtively
496  // numbered from this value.
497  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
498  if (ShiftAmt < i) return -1;
499  ShiftAmt -= i;
500
501  if (!isUnary) {
502    // Check the rest of the elements to see if they are consequtive.
503    for (++i; i != 16; ++i)
504      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
505        return -1;
506  } else {
507    // Check the rest of the elements to see if they are consequtive.
508    for (++i; i != 16; ++i)
509      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
510        return -1;
511  }
512
513  return ShiftAmt;
514}
515
516/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
517/// specifies a splat of a single element that is suitable for input to
518/// VSPLTB/VSPLTH/VSPLTW.
519bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
520  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
521         N->getNumOperands() == 16 &&
522         (EltSize == 1 || EltSize == 2 || EltSize == 4));
523
524  // This is a splat operation if each element of the permute is the same, and
525  // if the value doesn't reference the second vector.
526  unsigned ElementBase = 0;
527  SDOperand Elt = N->getOperand(0);
528  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
529    ElementBase = EltV->getValue();
530  else
531    return false;   // FIXME: Handle UNDEF elements too!
532
533  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
534    return false;
535
536  // Check that they are consequtive.
537  for (unsigned i = 1; i != EltSize; ++i) {
538    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
539        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
540      return false;
541  }
542
543  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
544  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
545    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
546    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
547           "Invalid VECTOR_SHUFFLE mask!");
548    for (unsigned j = 0; j != EltSize; ++j)
549      if (N->getOperand(i+j) != N->getOperand(j))
550        return false;
551  }
552
553  return true;
554}
555
556/// isAllNegativeZeroVector - Returns true if all elements of build_vector
557/// are -0.0.
558bool PPC::isAllNegativeZeroVector(SDNode *N) {
559  assert(N->getOpcode() == ISD::BUILD_VECTOR);
560  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
561    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
562      return CFP->getValueAPF().isNegZero();
563  return false;
564}
565
566/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
567/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
568unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
569  assert(isSplatShuffleMask(N, EltSize));
570  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
571}
572
573/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
574/// by using a vspltis[bhw] instruction of the specified element size, return
575/// the constant being splatted.  The ByteSize field indicates the number of
576/// bytes of each element [124] -> [bhw].
577SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
578  SDOperand OpVal(0, 0);
579
580  // If ByteSize of the splat is bigger than the element size of the
581  // build_vector, then we have a case where we are checking for a splat where
582  // multiple elements of the buildvector are folded together into a single
583  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
584  unsigned EltSize = 16/N->getNumOperands();
585  if (EltSize < ByteSize) {
586    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
587    SDOperand UniquedVals[4];
588    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
589
590    // See if all of the elements in the buildvector agree across.
591    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
592      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
593      // If the element isn't a constant, bail fully out.
594      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
595
596
597      if (UniquedVals[i&(Multiple-1)].Val == 0)
598        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
599      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
600        return SDOperand();  // no match.
601    }
602
603    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
604    // either constant or undef values that are identical for each chunk.  See
605    // if these chunks can form into a larger vspltis*.
606
607    // Check to see if all of the leading entries are either 0 or -1.  If
608    // neither, then this won't fit into the immediate field.
609    bool LeadingZero = true;
610    bool LeadingOnes = true;
611    for (unsigned i = 0; i != Multiple-1; ++i) {
612      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
613
614      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
615      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
616    }
617    // Finally, check the least significant entry.
618    if (LeadingZero) {
619      if (UniquedVals[Multiple-1].Val == 0)
620        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
621      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
622      if (Val < 16)
623        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
624    }
625    if (LeadingOnes) {
626      if (UniquedVals[Multiple-1].Val == 0)
627        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
628      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
629      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
630        return DAG.getTargetConstant(Val, MVT::i32);
631    }
632
633    return SDOperand();
634  }
635
636  // Check to see if this buildvec has a single non-undef value in its elements.
637  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
638    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
639    if (OpVal.Val == 0)
640      OpVal = N->getOperand(i);
641    else if (OpVal != N->getOperand(i))
642      return SDOperand();
643  }
644
645  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
646
647  unsigned ValSizeInBytes = 0;
648  uint64_t Value = 0;
649  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
650    Value = CN->getValue();
651    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
652  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
653    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
654    Value = FloatToBits(CN->getValueAPF().convertToFloat());
655    ValSizeInBytes = 4;
656  }
657
658  // If the splat value is larger than the element value, then we can never do
659  // this splat.  The only case that we could fit the replicated bits into our
660  // immediate field for would be zero, and we prefer to use vxor for it.
661  if (ValSizeInBytes < ByteSize) return SDOperand();
662
663  // If the element value is larger than the splat value, cut it in half and
664  // check to see if the two halves are equal.  Continue doing this until we
665  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
666  while (ValSizeInBytes > ByteSize) {
667    ValSizeInBytes >>= 1;
668
669    // If the top half equals the bottom half, we're still ok.
670    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
671         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
672      return SDOperand();
673  }
674
675  // Properly sign extend the value.
676  int ShAmt = (4-ByteSize)*8;
677  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
678
679  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
680  if (MaskVal == 0) return SDOperand();
681
682  // Finally, if this value fits in a 5 bit sext field, return it
683  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
684    return DAG.getTargetConstant(MaskVal, MVT::i32);
685  return SDOperand();
686}
687
688//===----------------------------------------------------------------------===//
689//  Addressing Mode Selection
690//===----------------------------------------------------------------------===//
691
692/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
693/// or 64-bit immediate, and if the value can be accurately represented as a
694/// sign extension from a 16-bit value.  If so, this returns true and the
695/// immediate.
696static bool isIntS16Immediate(SDNode *N, short &Imm) {
697  if (N->getOpcode() != ISD::Constant)
698    return false;
699
700  Imm = (short)cast<ConstantSDNode>(N)->getValue();
701  if (N->getValueType(0) == MVT::i32)
702    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
703  else
704    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
705}
706static bool isIntS16Immediate(SDOperand Op, short &Imm) {
707  return isIntS16Immediate(Op.Val, Imm);
708}
709
710
711/// SelectAddressRegReg - Given the specified addressed, check to see if it
712/// can be represented as an indexed [r+r] operation.  Returns false if it
713/// can be more efficiently represented with [r+imm].
714bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
715                                            SDOperand &Index,
716                                            SelectionDAG &DAG) {
717  short imm = 0;
718  if (N.getOpcode() == ISD::ADD) {
719    if (isIntS16Immediate(N.getOperand(1), imm))
720      return false;    // r+i
721    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
722      return false;    // r+i
723
724    Base = N.getOperand(0);
725    Index = N.getOperand(1);
726    return true;
727  } else if (N.getOpcode() == ISD::OR) {
728    if (isIntS16Immediate(N.getOperand(1), imm))
729      return false;    // r+i can fold it if we can.
730
731    // If this is an or of disjoint bitfields, we can codegen this as an add
732    // (for better address arithmetic) if the LHS and RHS of the OR are provably
733    // disjoint.
734    uint64_t LHSKnownZero, LHSKnownOne;
735    uint64_t RHSKnownZero, RHSKnownOne;
736    DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
737
738    if (LHSKnownZero) {
739      DAG.ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
740      // If all of the bits are known zero on the LHS or RHS, the add won't
741      // carry.
742      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
743        Base = N.getOperand(0);
744        Index = N.getOperand(1);
745        return true;
746      }
747    }
748  }
749
750  return false;
751}
752
753/// Returns true if the address N can be represented by a base register plus
754/// a signed 16-bit displacement [r+imm], and if it is not better
755/// represented as reg+reg.
756bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
757                                            SDOperand &Base, SelectionDAG &DAG){
758  // If this can be more profitably realized as r+r, fail.
759  if (SelectAddressRegReg(N, Disp, Base, DAG))
760    return false;
761
762  if (N.getOpcode() == ISD::ADD) {
763    short imm = 0;
764    if (isIntS16Immediate(N.getOperand(1), imm)) {
765      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
766      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
767        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
768      } else {
769        Base = N.getOperand(0);
770      }
771      return true; // [r+i]
772    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
773      // Match LOAD (ADD (X, Lo(G))).
774      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
775             && "Cannot handle constant offsets yet!");
776      Disp = N.getOperand(1).getOperand(0);  // The global address.
777      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
778             Disp.getOpcode() == ISD::TargetConstantPool ||
779             Disp.getOpcode() == ISD::TargetJumpTable);
780      Base = N.getOperand(0);
781      return true;  // [&g+r]
782    }
783  } else if (N.getOpcode() == ISD::OR) {
784    short imm = 0;
785    if (isIntS16Immediate(N.getOperand(1), imm)) {
786      // If this is an or of disjoint bitfields, we can codegen this as an add
787      // (for better address arithmetic) if the LHS and RHS of the OR are
788      // provably disjoint.
789      uint64_t LHSKnownZero, LHSKnownOne;
790      DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
791      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
792        // If all of the bits are known zero on the LHS or RHS, the add won't
793        // carry.
794        Base = N.getOperand(0);
795        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
796        return true;
797      }
798    }
799  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
800    // Loading from a constant address.
801
802    // If this address fits entirely in a 16-bit sext immediate field, codegen
803    // this as "d, 0"
804    short Imm;
805    if (isIntS16Immediate(CN, Imm)) {
806      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
807      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
808      return true;
809    }
810
811    // Handle 32-bit sext immediates with LIS + addr mode.
812    if (CN->getValueType(0) == MVT::i32 ||
813        (int64_t)CN->getValue() == (int)CN->getValue()) {
814      int Addr = (int)CN->getValue();
815
816      // Otherwise, break this down into an LIS + disp.
817      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
818
819      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
820      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
821      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
822      return true;
823    }
824  }
825
826  Disp = DAG.getTargetConstant(0, getPointerTy());
827  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
828    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
829  else
830    Base = N;
831  return true;      // [r+0]
832}
833
834/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
835/// represented as an indexed [r+r] operation.
836bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
837                                                SDOperand &Index,
838                                                SelectionDAG &DAG) {
839  // Check to see if we can easily represent this as an [r+r] address.  This
840  // will fail if it thinks that the address is more profitably represented as
841  // reg+imm, e.g. where imm = 0.
842  if (SelectAddressRegReg(N, Base, Index, DAG))
843    return true;
844
845  // If the operand is an addition, always emit this as [r+r], since this is
846  // better (for code size, and execution, as the memop does the add for free)
847  // than emitting an explicit add.
848  if (N.getOpcode() == ISD::ADD) {
849    Base = N.getOperand(0);
850    Index = N.getOperand(1);
851    return true;
852  }
853
854  // Otherwise, do it the hard way, using R0 as the base register.
855  Base = DAG.getRegister(PPC::R0, N.getValueType());
856  Index = N;
857  return true;
858}
859
860/// SelectAddressRegImmShift - Returns true if the address N can be
861/// represented by a base register plus a signed 14-bit displacement
862/// [r+imm*4].  Suitable for use by STD and friends.
863bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
864                                                 SDOperand &Base,
865                                                 SelectionDAG &DAG) {
866  // If this can be more profitably realized as r+r, fail.
867  if (SelectAddressRegReg(N, Disp, Base, DAG))
868    return false;
869
870  if (N.getOpcode() == ISD::ADD) {
871    short imm = 0;
872    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
873      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
874      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
875        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
876      } else {
877        Base = N.getOperand(0);
878      }
879      return true; // [r+i]
880    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
881      // Match LOAD (ADD (X, Lo(G))).
882      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
883             && "Cannot handle constant offsets yet!");
884      Disp = N.getOperand(1).getOperand(0);  // The global address.
885      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
886             Disp.getOpcode() == ISD::TargetConstantPool ||
887             Disp.getOpcode() == ISD::TargetJumpTable);
888      Base = N.getOperand(0);
889      return true;  // [&g+r]
890    }
891  } else if (N.getOpcode() == ISD::OR) {
892    short imm = 0;
893    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
894      // If this is an or of disjoint bitfields, we can codegen this as an add
895      // (for better address arithmetic) if the LHS and RHS of the OR are
896      // provably disjoint.
897      uint64_t LHSKnownZero, LHSKnownOne;
898      DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
899      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
900        // If all of the bits are known zero on the LHS or RHS, the add won't
901        // carry.
902        Base = N.getOperand(0);
903        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
904        return true;
905      }
906    }
907  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
908    // Loading from a constant address.  Verify low two bits are clear.
909    if ((CN->getValue() & 3) == 0) {
910      // If this address fits entirely in a 14-bit sext immediate field, codegen
911      // this as "d, 0"
912      short Imm;
913      if (isIntS16Immediate(CN, Imm)) {
914        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
915        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
916        return true;
917      }
918
919      // Fold the low-part of 32-bit absolute addresses into addr mode.
920      if (CN->getValueType(0) == MVT::i32 ||
921          (int64_t)CN->getValue() == (int)CN->getValue()) {
922        int Addr = (int)CN->getValue();
923
924        // Otherwise, break this down into an LIS + disp.
925        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
926
927        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
928        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
929        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
930        return true;
931      }
932    }
933  }
934
935  Disp = DAG.getTargetConstant(0, getPointerTy());
936  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
937    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
938  else
939    Base = N;
940  return true;      // [r+0]
941}
942
943
944/// getPreIndexedAddressParts - returns true by value, base pointer and
945/// offset pointer and addressing mode by reference if the node's address
946/// can be legally represented as pre-indexed load / store address.
947bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
948                                                  SDOperand &Offset,
949                                                  ISD::MemIndexedMode &AM,
950                                                  SelectionDAG &DAG) {
951  // Disabled by default for now.
952  if (!EnablePPCPreinc) return false;
953
954  SDOperand Ptr;
955  MVT::ValueType VT;
956  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
957    Ptr = LD->getBasePtr();
958    VT = LD->getLoadedVT();
959
960  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
961    ST = ST;
962    Ptr = ST->getBasePtr();
963    VT  = ST->getStoredVT();
964  } else
965    return false;
966
967  // PowerPC doesn't have preinc load/store instructions for vectors.
968  if (MVT::isVector(VT))
969    return false;
970
971  // TODO: Check reg+reg first.
972
973  // LDU/STU use reg+imm*4, others use reg+imm.
974  if (VT != MVT::i64) {
975    // reg + imm
976    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
977      return false;
978  } else {
979    // reg + imm * 4.
980    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
981      return false;
982  }
983
984  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
985    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
986    // sext i32 to i64 when addr mode is r+i.
987    if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
988        LD->getExtensionType() == ISD::SEXTLOAD &&
989        isa<ConstantSDNode>(Offset))
990      return false;
991  }
992
993  AM = ISD::PRE_INC;
994  return true;
995}
996
997//===----------------------------------------------------------------------===//
998//  LowerOperation implementation
999//===----------------------------------------------------------------------===//
1000
1001static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
1002  MVT::ValueType PtrVT = Op.getValueType();
1003  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1004  Constant *C = CP->getConstVal();
1005  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1006  SDOperand Zero = DAG.getConstant(0, PtrVT);
1007
1008  const TargetMachine &TM = DAG.getTarget();
1009
1010  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1011  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1012
1013  // If this is a non-darwin platform, we don't support non-static relo models
1014  // yet.
1015  if (TM.getRelocationModel() == Reloc::Static ||
1016      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1017    // Generate non-pic code that has direct accesses to the constant pool.
1018    // The address of the global is just (hi(&g)+lo(&g)).
1019    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1020  }
1021
1022  if (TM.getRelocationModel() == Reloc::PIC_) {
1023    // With PIC, the first instruction is actually "GR+hi(&G)".
1024    Hi = DAG.getNode(ISD::ADD, PtrVT,
1025                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1026  }
1027
1028  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1029  return Lo;
1030}
1031
1032static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1033  MVT::ValueType PtrVT = Op.getValueType();
1034  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1035  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1036  SDOperand Zero = DAG.getConstant(0, PtrVT);
1037
1038  const TargetMachine &TM = DAG.getTarget();
1039
1040  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1041  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1042
1043  // If this is a non-darwin platform, we don't support non-static relo models
1044  // yet.
1045  if (TM.getRelocationModel() == Reloc::Static ||
1046      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1047    // Generate non-pic code that has direct accesses to the constant pool.
1048    // The address of the global is just (hi(&g)+lo(&g)).
1049    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1050  }
1051
1052  if (TM.getRelocationModel() == Reloc::PIC_) {
1053    // With PIC, the first instruction is actually "GR+hi(&G)".
1054    Hi = DAG.getNode(ISD::ADD, PtrVT,
1055                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1056  }
1057
1058  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1059  return Lo;
1060}
1061
1062static SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
1063  assert(0 && "TLS not implemented for PPC.");
1064}
1065
1066static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
1067  MVT::ValueType PtrVT = Op.getValueType();
1068  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1069  GlobalValue *GV = GSDN->getGlobal();
1070  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1071  SDOperand Zero = DAG.getConstant(0, PtrVT);
1072
1073  const TargetMachine &TM = DAG.getTarget();
1074
1075  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1076  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1077
1078  // If this is a non-darwin platform, we don't support non-static relo models
1079  // yet.
1080  if (TM.getRelocationModel() == Reloc::Static ||
1081      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1082    // Generate non-pic code that has direct accesses to globals.
1083    // The address of the global is just (hi(&g)+lo(&g)).
1084    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1085  }
1086
1087  if (TM.getRelocationModel() == Reloc::PIC_) {
1088    // With PIC, the first instruction is actually "GR+hi(&G)".
1089    Hi = DAG.getNode(ISD::ADD, PtrVT,
1090                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1091  }
1092
1093  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1094
1095  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1096    return Lo;
1097
1098  // If the global is weak or external, we have to go through the lazy
1099  // resolution stub.
1100  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1101}
1102
1103static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1104  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1105
1106  // If we're comparing for equality to zero, expose the fact that this is
1107  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1108  // fold the new nodes.
1109  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1110    if (C->isNullValue() && CC == ISD::SETEQ) {
1111      MVT::ValueType VT = Op.getOperand(0).getValueType();
1112      SDOperand Zext = Op.getOperand(0);
1113      if (VT < MVT::i32) {
1114        VT = MVT::i32;
1115        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1116      }
1117      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1118      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1119      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1120                                  DAG.getConstant(Log2b, MVT::i32));
1121      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1122    }
1123    // Leave comparisons against 0 and -1 alone for now, since they're usually
1124    // optimized.  FIXME: revisit this when we can custom lower all setcc
1125    // optimizations.
1126    if (C->isAllOnesValue() || C->isNullValue())
1127      return SDOperand();
1128  }
1129
1130  // If we have an integer seteq/setne, turn it into a compare against zero
1131  // by xor'ing the rhs with the lhs, which is faster than setting a
1132  // condition register, reading it back out, and masking the correct bit.  The
1133  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1134  // the result to other bit-twiddling opportunities.
1135  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1136  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1137    MVT::ValueType VT = Op.getValueType();
1138    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1139                                Op.getOperand(1));
1140    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1141  }
1142  return SDOperand();
1143}
1144
1145static SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1146                              int VarArgsFrameIndex,
1147                              int VarArgsStackOffset,
1148                              unsigned VarArgsNumGPR,
1149                              unsigned VarArgsNumFPR,
1150                              const PPCSubtarget &Subtarget) {
1151
1152  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1153}
1154
1155static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1156                              int VarArgsFrameIndex,
1157                              int VarArgsStackOffset,
1158                              unsigned VarArgsNumGPR,
1159                              unsigned VarArgsNumFPR,
1160                              const PPCSubtarget &Subtarget) {
1161
1162  if (Subtarget.isMachoABI()) {
1163    // vastart just stores the address of the VarArgsFrameIndex slot into the
1164    // memory location argument.
1165    MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1166    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1167    SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1168    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1169                        SV->getOffset());
1170  }
1171
1172  // For ELF 32 ABI we follow the layout of the va_list struct.
1173  // We suppose the given va_list is already allocated.
1174  //
1175  // typedef struct {
1176  //  char gpr;     /* index into the array of 8 GPRs
1177  //                 * stored in the register save area
1178  //                 * gpr=0 corresponds to r3,
1179  //                 * gpr=1 to r4, etc.
1180  //                 */
1181  //  char fpr;     /* index into the array of 8 FPRs
1182  //                 * stored in the register save area
1183  //                 * fpr=0 corresponds to f1,
1184  //                 * fpr=1 to f2, etc.
1185  //                 */
1186  //  char *overflow_arg_area;
1187  //                /* location on stack that holds
1188  //                 * the next overflow argument
1189  //                 */
1190  //  char *reg_save_area;
1191  //               /* where r3:r10 and f1:f8 (if saved)
1192  //                * are stored
1193  //                */
1194  // } va_list[1];
1195
1196
1197  SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1198  SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1199
1200
1201  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1202
1203  SDOperand StackOffset = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1204  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1205
1206  SDOperand ConstFrameOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8,
1207                                               PtrVT);
1208  SDOperand ConstStackOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8 - 1,
1209                                               PtrVT);
1210  SDOperand ConstFPROffset   = DAG.getConstant(1, PtrVT);
1211
1212  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1213
1214  // Store first byte : number of int regs
1215  SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1216                                      Op.getOperand(1), SV->getValue(),
1217                                      SV->getOffset());
1218  SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1219                                  ConstFPROffset);
1220
1221  // Store second byte : number of float regs
1222  SDOperand secondStore = DAG.getStore(firstStore, ArgFPR, nextPtr,
1223                                       SV->getValue(), SV->getOffset());
1224  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1225
1226  // Store second word : arguments given on stack
1227  SDOperand thirdStore = DAG.getStore(secondStore, StackOffset, nextPtr,
1228                                      SV->getValue(), SV->getOffset());
1229  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1230
1231  // Store third word : arguments given in registers
1232  return DAG.getStore(thirdStore, FR, nextPtr, SV->getValue(),
1233                      SV->getOffset());
1234
1235}
1236
1237#include "PPCGenCallingConv.inc"
1238
1239/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1240/// depending on which subtarget is selected.
1241static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1242  if (Subtarget.isMachoABI()) {
1243    static const unsigned FPR[] = {
1244      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1245      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1246    };
1247    return FPR;
1248  }
1249
1250
1251  static const unsigned FPR[] = {
1252    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1253    PPC::F8
1254  };
1255  return FPR;
1256}
1257
1258static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1259                                       int &VarArgsFrameIndex,
1260                                       int &VarArgsStackOffset,
1261                                       unsigned &VarArgsNumGPR,
1262                                       unsigned &VarArgsNumFPR,
1263                                       const PPCSubtarget &Subtarget) {
1264  // TODO: add description of PPC stack frame format, or at least some docs.
1265  //
1266  MachineFunction &MF = DAG.getMachineFunction();
1267  MachineFrameInfo *MFI = MF.getFrameInfo();
1268  SSARegMap *RegMap = MF.getSSARegMap();
1269  SmallVector<SDOperand, 8> ArgValues;
1270  SDOperand Root = Op.getOperand(0);
1271
1272  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1273  bool isPPC64 = PtrVT == MVT::i64;
1274  bool isMachoABI = Subtarget.isMachoABI();
1275  bool isELF32_ABI = Subtarget.isELF32_ABI();
1276  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1277
1278  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1279
1280  static const unsigned GPR_32[] = {           // 32-bit registers.
1281    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1282    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1283  };
1284  static const unsigned GPR_64[] = {           // 64-bit registers.
1285    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1286    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1287  };
1288
1289  static const unsigned *FPR = GetFPR(Subtarget);
1290
1291  static const unsigned VR[] = {
1292    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1293    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1294  };
1295
1296  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1297  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1298  const unsigned Num_VR_Regs  = array_lengthof( VR);
1299
1300  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1301
1302  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1303
1304  // Add DAG nodes to load the arguments or copy them out of registers.  On
1305  // entry to a function on PPC, the arguments start after the linkage area,
1306  // although the first ones are often in registers.
1307  //
1308  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1309  // represented with two words (long long or double) must be copied to an
1310  // even GPR_idx value or to an even ArgOffset value.
1311
1312  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1313    SDOperand ArgVal;
1314    bool needsLoad = false;
1315    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1316    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1317    unsigned ArgSize = ObjSize;
1318    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1319    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1320    // See if next argument requires stack alignment in ELF
1321    bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1322      (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1323      (!(Flags & AlignFlag)));
1324
1325    unsigned CurArgOffset = ArgOffset;
1326    switch (ObjectVT) {
1327    default: assert(0 && "Unhandled argument type!");
1328    case MVT::i32:
1329      // Double word align in ELF
1330      if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1331      if (GPR_idx != Num_GPR_Regs) {
1332        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1333        MF.addLiveIn(GPR[GPR_idx], VReg);
1334        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1335        ++GPR_idx;
1336      } else {
1337        needsLoad = true;
1338        ArgSize = PtrByteSize;
1339      }
1340      // Stack align in ELF
1341      if (needsLoad && Expand && isELF32_ABI)
1342        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1343      // All int arguments reserve stack space in Macho ABI.
1344      if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1345      break;
1346
1347    case MVT::i64:  // PPC64
1348      if (GPR_idx != Num_GPR_Regs) {
1349        unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1350        MF.addLiveIn(GPR[GPR_idx], VReg);
1351        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1352        ++GPR_idx;
1353      } else {
1354        needsLoad = true;
1355      }
1356      // All int arguments reserve stack space in Macho ABI.
1357      if (isMachoABI || needsLoad) ArgOffset += 8;
1358      break;
1359
1360    case MVT::f32:
1361    case MVT::f64:
1362      // Every 4 bytes of argument space consumes one of the GPRs available for
1363      // argument passing.
1364      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1365        ++GPR_idx;
1366        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1367          ++GPR_idx;
1368      }
1369      if (FPR_idx != Num_FPR_Regs) {
1370        unsigned VReg;
1371        if (ObjectVT == MVT::f32)
1372          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
1373        else
1374          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1375        MF.addLiveIn(FPR[FPR_idx], VReg);
1376        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1377        ++FPR_idx;
1378      } else {
1379        needsLoad = true;
1380      }
1381
1382      // Stack align in ELF
1383      if (needsLoad && Expand && isELF32_ABI)
1384        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1385      // All FP arguments reserve stack space in Macho ABI.
1386      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1387      break;
1388    case MVT::v4f32:
1389    case MVT::v4i32:
1390    case MVT::v8i16:
1391    case MVT::v16i8:
1392      // Note that vector arguments in registers don't reserve stack space.
1393      if (VR_idx != Num_VR_Regs) {
1394        unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
1395        MF.addLiveIn(VR[VR_idx], VReg);
1396        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1397        ++VR_idx;
1398      } else {
1399        // This should be simple, but requires getting 16-byte aligned stack
1400        // values.
1401        assert(0 && "Loading VR argument not implemented yet!");
1402        needsLoad = true;
1403      }
1404      break;
1405    }
1406
1407    // We need to load the argument to a virtual register if we determined above
1408    // that we ran out of physical registers of the appropriate type
1409    if (needsLoad) {
1410      // If the argument is actually used, emit a load from the right stack
1411      // slot.
1412      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1413        int FI = MFI->CreateFixedObject(ObjSize,
1414                                        CurArgOffset + (ArgSize - ObjSize));
1415        SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1416        ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1417      } else {
1418        // Don't emit a dead load.
1419        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1420      }
1421    }
1422
1423    ArgValues.push_back(ArgVal);
1424  }
1425
1426  // If the function takes variable number of arguments, make a frame index for
1427  // the start of the first vararg value... for expansion of llvm.va_start.
1428  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1429  if (isVarArg) {
1430
1431    int depth;
1432    if (isELF32_ABI) {
1433      VarArgsNumGPR = GPR_idx;
1434      VarArgsNumFPR = FPR_idx;
1435
1436      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1437      // pointer.
1438      depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1439                Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1440                MVT::getSizeInBits(PtrVT)/8);
1441
1442      VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1443                                                  ArgOffset);
1444
1445    }
1446    else
1447      depth = ArgOffset;
1448
1449    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1450                                               depth);
1451    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1452
1453    SmallVector<SDOperand, 8> MemOps;
1454
1455    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1456    // stored to the VarArgsFrameIndex on the stack.
1457    if (isELF32_ABI) {
1458      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1459        SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1460        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1461        MemOps.push_back(Store);
1462        // Increment the address by four for the next argument to store
1463        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1464        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1465      }
1466    }
1467
1468    // If this function is vararg, store any remaining integer argument regs
1469    // to their spots on the stack so that they may be loaded by deferencing the
1470    // result of va_next.
1471    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1472      unsigned VReg;
1473      if (isPPC64)
1474        VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1475      else
1476        VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1477
1478      MF.addLiveIn(GPR[GPR_idx], VReg);
1479      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1480      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1481      MemOps.push_back(Store);
1482      // Increment the address by four for the next argument to store
1483      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1484      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1485    }
1486
1487    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1488    // on the stack.
1489    if (isELF32_ABI) {
1490      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1491        SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1492        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1493        MemOps.push_back(Store);
1494        // Increment the address by eight for the next argument to store
1495        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1496                                           PtrVT);
1497        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1498      }
1499
1500      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1501        unsigned VReg;
1502        VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1503
1504        MF.addLiveIn(FPR[FPR_idx], VReg);
1505        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1506        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1507        MemOps.push_back(Store);
1508        // Increment the address by eight for the next argument to store
1509        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1510                                           PtrVT);
1511        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1512      }
1513    }
1514
1515    if (!MemOps.empty())
1516      Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1517  }
1518
1519  ArgValues.push_back(Root);
1520
1521  // Return the new list of results.
1522  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1523                                    Op.Val->value_end());
1524  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1525}
1526
1527/// isCallCompatibleAddress - Return the immediate to use if the specified
1528/// 32-bit value is representable in the immediate field of a BxA instruction.
1529static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1530  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1531  if (!C) return 0;
1532
1533  int Addr = C->getValue();
1534  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1535      (Addr << 6 >> 6) != Addr)
1536    return 0;  // Top 6 bits have to be sext of immediate.
1537
1538  return DAG.getConstant((int)C->getValue() >> 2,
1539                         DAG.getTargetLoweringInfo().getPointerTy()).Val;
1540}
1541
1542
1543static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
1544                           const PPCSubtarget &Subtarget) {
1545  SDOperand Chain  = Op.getOperand(0);
1546  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1547  SDOperand Callee = Op.getOperand(4);
1548  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
1549
1550  bool isMachoABI = Subtarget.isMachoABI();
1551  bool isELF32_ABI  = Subtarget.isELF32_ABI();
1552
1553  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1554  bool isPPC64 = PtrVT == MVT::i64;
1555  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1556
1557  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1558  // SelectExpr to use to put the arguments in the appropriate registers.
1559  std::vector<SDOperand> args_to_use;
1560
1561  // Count how many bytes are to be pushed on the stack, including the linkage
1562  // area, and parameter passing area.  We start with 24/48 bytes, which is
1563  // prereserved space for [SP][CR][LR][3 x unused].
1564  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1565
1566  // Add up all the space actually used.
1567  for (unsigned i = 0; i != NumOps; ++i) {
1568    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1569    ArgSize = std::max(ArgSize, PtrByteSize);
1570    NumBytes += ArgSize;
1571  }
1572
1573  // The prolog code of the callee may store up to 8 GPR argument registers to
1574  // the stack, allowing va_start to index over them in memory if its varargs.
1575  // Because we cannot tell if this is needed on the caller side, we have to
1576  // conservatively assume that it is needed.  As such, make sure we have at
1577  // least enough stack space for the caller to store the 8 GPRs.
1578  NumBytes = std::max(NumBytes,
1579                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1580
1581  // Adjust the stack pointer for the new arguments...
1582  // These operations are automatically eliminated by the prolog/epilog pass
1583  Chain = DAG.getCALLSEQ_START(Chain,
1584                               DAG.getConstant(NumBytes, PtrVT));
1585
1586  // Set up a copy of the stack pointer for use loading and storing any
1587  // arguments that may not fit in the registers available for argument
1588  // passing.
1589  SDOperand StackPtr;
1590  if (isPPC64)
1591    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1592  else
1593    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1594
1595  // Figure out which arguments are going to go in registers, and which in
1596  // memory.  Also, if this is a vararg function, floating point operations
1597  // must be stored to our stack, and loaded into integer regs as well, if
1598  // any integer regs are available for argument passing.
1599  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1600  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1601
1602  static const unsigned GPR_32[] = {           // 32-bit registers.
1603    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1604    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1605  };
1606  static const unsigned GPR_64[] = {           // 64-bit registers.
1607    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1608    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1609  };
1610  static const unsigned *FPR = GetFPR(Subtarget);
1611
1612  static const unsigned VR[] = {
1613    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1614    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1615  };
1616  const unsigned NumGPRs = array_lengthof(GPR_32);
1617  const unsigned NumFPRs = isMachoABI ? 13 : 8;
1618  const unsigned NumVRs  = array_lengthof( VR);
1619
1620  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1621
1622  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1623  SmallVector<SDOperand, 8> MemOpChains;
1624  for (unsigned i = 0; i != NumOps; ++i) {
1625    bool inMem = false;
1626    SDOperand Arg = Op.getOperand(5+2*i);
1627    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1628    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1629    // See if next argument requires stack alignment in ELF
1630    unsigned next = 5+2*(i+1)+1;
1631    bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1632      (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1633      (!(Flags & AlignFlag)));
1634
1635    // PtrOff will be used to store the current argument to the stack if a
1636    // register cannot be found for it.
1637    SDOperand PtrOff;
1638
1639    // Stack align in ELF 32
1640    if (isELF32_ABI && Expand)
1641      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1642                               StackPtr.getValueType());
1643    else
1644      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1645
1646    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1647
1648    // On PPC64, promote integers to 64-bit values.
1649    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1650      unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1651
1652      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1653    }
1654
1655    switch (Arg.getValueType()) {
1656    default: assert(0 && "Unexpected ValueType for argument!");
1657    case MVT::i32:
1658    case MVT::i64:
1659      // Double word align in ELF
1660      if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1661      if (GPR_idx != NumGPRs) {
1662        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1663      } else {
1664        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1665        inMem = true;
1666      }
1667      if (inMem || isMachoABI) {
1668        // Stack align in ELF
1669        if (isELF32_ABI && Expand)
1670          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1671
1672        ArgOffset += PtrByteSize;
1673      }
1674      break;
1675    case MVT::f32:
1676    case MVT::f64:
1677      if (isVarArg) {
1678        // Float varargs need to be promoted to double.
1679        if (Arg.getValueType() == MVT::f32)
1680          Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1681      }
1682
1683      if (FPR_idx != NumFPRs) {
1684        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1685
1686        if (isVarArg) {
1687          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1688          MemOpChains.push_back(Store);
1689
1690          // Float varargs are always shadowed in available integer registers
1691          if (GPR_idx != NumGPRs) {
1692            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1693            MemOpChains.push_back(Load.getValue(1));
1694            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1695                                                                Load));
1696          }
1697          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1698            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1699            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1700            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1701            MemOpChains.push_back(Load.getValue(1));
1702            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1703                                                                Load));
1704          }
1705        } else {
1706          // If we have any FPRs remaining, we may also have GPRs remaining.
1707          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1708          // GPRs.
1709          if (isMachoABI) {
1710            if (GPR_idx != NumGPRs)
1711              ++GPR_idx;
1712            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1713                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
1714              ++GPR_idx;
1715          }
1716        }
1717      } else {
1718        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1719        inMem = true;
1720      }
1721      if (inMem || isMachoABI) {
1722        // Stack align in ELF
1723        if (isELF32_ABI && Expand)
1724          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1725        if (isPPC64)
1726          ArgOffset += 8;
1727        else
1728          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1729      }
1730      break;
1731    case MVT::v4f32:
1732    case MVT::v4i32:
1733    case MVT::v8i16:
1734    case MVT::v16i8:
1735      assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1736      assert(VR_idx != NumVRs &&
1737             "Don't support passing more than 12 vector args yet!");
1738      RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1739      break;
1740    }
1741  }
1742  if (!MemOpChains.empty())
1743    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1744                        &MemOpChains[0], MemOpChains.size());
1745
1746  // Build a sequence of copy-to-reg nodes chained together with token chain
1747  // and flag operands which copy the outgoing args into the appropriate regs.
1748  SDOperand InFlag;
1749  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1750    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1751                             InFlag);
1752    InFlag = Chain.getValue(1);
1753  }
1754
1755  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1756  if (isVarArg && isELF32_ABI) {
1757    SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1758    Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1759    InFlag = Chain.getValue(1);
1760  }
1761
1762  std::vector<MVT::ValueType> NodeTys;
1763  NodeTys.push_back(MVT::Other);   // Returns a chain
1764  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1765
1766  SmallVector<SDOperand, 8> Ops;
1767  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1768
1769  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1770  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1771  // node so that legalize doesn't hack it.
1772  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1773    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1774  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1775    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1776  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1777    // If this is an absolute destination address, use the munged value.
1778    Callee = SDOperand(Dest, 0);
1779  else {
1780    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
1781    // to do the call, we can't use PPCISD::CALL.
1782    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1783    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1784    InFlag = Chain.getValue(1);
1785
1786    // Copy the callee address into R12 on darwin.
1787    if (isMachoABI) {
1788      Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1789      InFlag = Chain.getValue(1);
1790    }
1791
1792    NodeTys.clear();
1793    NodeTys.push_back(MVT::Other);
1794    NodeTys.push_back(MVT::Flag);
1795    Ops.push_back(Chain);
1796    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1797    Callee.Val = 0;
1798  }
1799
1800  // If this is a direct call, pass the chain and the callee.
1801  if (Callee.Val) {
1802    Ops.push_back(Chain);
1803    Ops.push_back(Callee);
1804  }
1805
1806  // Add argument registers to the end of the list so that they are known live
1807  // into the call.
1808  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1809    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1810                                  RegsToPass[i].second.getValueType()));
1811
1812  if (InFlag.Val)
1813    Ops.push_back(InFlag);
1814  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1815  InFlag = Chain.getValue(1);
1816
1817  Chain = DAG.getCALLSEQ_END(Chain,
1818                             DAG.getConstant(NumBytes, PtrVT),
1819                             DAG.getConstant(0, PtrVT),
1820                             InFlag);
1821  if (Op.Val->getValueType(0) != MVT::Other)
1822    InFlag = Chain.getValue(1);
1823
1824  SDOperand ResultVals[3];
1825  unsigned NumResults = 0;
1826  NodeTys.clear();
1827
1828  // If the call has results, copy the values out of the ret val registers.
1829  switch (Op.Val->getValueType(0)) {
1830  default: assert(0 && "Unexpected ret value!");
1831  case MVT::Other: break;
1832  case MVT::i32:
1833    if (Op.Val->getValueType(1) == MVT::i32) {
1834      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1835      ResultVals[0] = Chain.getValue(0);
1836      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
1837                                 Chain.getValue(2)).getValue(1);
1838      ResultVals[1] = Chain.getValue(0);
1839      NumResults = 2;
1840      NodeTys.push_back(MVT::i32);
1841    } else {
1842      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1843      ResultVals[0] = Chain.getValue(0);
1844      NumResults = 1;
1845    }
1846    NodeTys.push_back(MVT::i32);
1847    break;
1848  case MVT::i64:
1849    Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1850    ResultVals[0] = Chain.getValue(0);
1851    NumResults = 1;
1852    NodeTys.push_back(MVT::i64);
1853    break;
1854  case MVT::f64:
1855    if (Op.Val->getValueType(1) == MVT::f64) {
1856      Chain = DAG.getCopyFromReg(Chain, PPC::F1, MVT::f64, InFlag).getValue(1);
1857      ResultVals[0] = Chain.getValue(0);
1858      Chain = DAG.getCopyFromReg(Chain, PPC::F2, MVT::f64,
1859                                 Chain.getValue(2)).getValue(1);
1860      ResultVals[1] = Chain.getValue(0);
1861      NumResults = 2;
1862      NodeTys.push_back(MVT::f64);
1863      NodeTys.push_back(MVT::f64);
1864      break;
1865    }
1866    // else fall through
1867  case MVT::f32:
1868    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1869                               InFlag).getValue(1);
1870    ResultVals[0] = Chain.getValue(0);
1871    NumResults = 1;
1872    NodeTys.push_back(Op.Val->getValueType(0));
1873    break;
1874  case MVT::v4f32:
1875  case MVT::v4i32:
1876  case MVT::v8i16:
1877  case MVT::v16i8:
1878    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1879                                   InFlag).getValue(1);
1880    ResultVals[0] = Chain.getValue(0);
1881    NumResults = 1;
1882    NodeTys.push_back(Op.Val->getValueType(0));
1883    break;
1884  }
1885
1886  NodeTys.push_back(MVT::Other);
1887
1888  // If the function returns void, just return the chain.
1889  if (NumResults == 0)
1890    return Chain;
1891
1892  // Otherwise, merge everything together with a MERGE_VALUES node.
1893  ResultVals[NumResults++] = Chain;
1894  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1895                              ResultVals, NumResults);
1896  return Res.getValue(Op.ResNo);
1897}
1898
1899static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) {
1900  SmallVector<CCValAssign, 16> RVLocs;
1901  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1902  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1903  CCState CCInfo(CC, isVarArg, TM, RVLocs);
1904  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
1905
1906  // If this is the first return lowered for this function, add the regs to the
1907  // liveout set for the function.
1908  if (DAG.getMachineFunction().liveout_empty()) {
1909    for (unsigned i = 0; i != RVLocs.size(); ++i)
1910      DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
1911  }
1912
1913  SDOperand Chain = Op.getOperand(0);
1914  SDOperand Flag;
1915
1916  // Copy the result values into the output registers.
1917  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1918    CCValAssign &VA = RVLocs[i];
1919    assert(VA.isRegLoc() && "Can only return in registers!");
1920    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
1921    Flag = Chain.getValue(1);
1922  }
1923
1924  if (Flag.Val)
1925    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
1926  else
1927    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
1928}
1929
1930static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1931                                   const PPCSubtarget &Subtarget) {
1932  // When we pop the dynamic allocation we need to restore the SP link.
1933
1934  // Get the corect type for pointers.
1935  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1936
1937  // Construct the stack pointer operand.
1938  bool IsPPC64 = Subtarget.isPPC64();
1939  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1940  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1941
1942  // Get the operands for the STACKRESTORE.
1943  SDOperand Chain = Op.getOperand(0);
1944  SDOperand SaveSP = Op.getOperand(1);
1945
1946  // Load the old link SP.
1947  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1948
1949  // Restore the stack pointer.
1950  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1951
1952  // Store the old link SP.
1953  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1954}
1955
1956static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1957                                         const PPCSubtarget &Subtarget) {
1958  MachineFunction &MF = DAG.getMachineFunction();
1959  bool IsPPC64 = Subtarget.isPPC64();
1960  bool isMachoABI = Subtarget.isMachoABI();
1961
1962  // Get current frame pointer save index.  The users of this index will be
1963  // primarily DYNALLOC instructions.
1964  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1965  int FPSI = FI->getFramePointerSaveIndex();
1966
1967  // If the frame pointer save index hasn't been defined yet.
1968  if (!FPSI) {
1969    // Find out what the fix offset of the frame pointer save area.
1970    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
1971
1972    // Allocate the frame index for frame pointer save area.
1973    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
1974    // Save the result.
1975    FI->setFramePointerSaveIndex(FPSI);
1976  }
1977
1978  // Get the inputs.
1979  SDOperand Chain = Op.getOperand(0);
1980  SDOperand Size  = Op.getOperand(1);
1981
1982  // Get the corect type for pointers.
1983  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1984  // Negate the size.
1985  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1986                                  DAG.getConstant(0, PtrVT), Size);
1987  // Construct a node for the frame pointer save index.
1988  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1989  // Build a DYNALLOC node.
1990  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1991  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1992  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1993}
1994
1995
1996/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1997/// possible.
1998static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1999  // Not FP? Not a fsel.
2000  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2001      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2002    return SDOperand();
2003
2004  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2005
2006  // Cannot handle SETEQ/SETNE.
2007  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2008
2009  MVT::ValueType ResVT = Op.getValueType();
2010  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2011  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2012  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2013
2014  // If the RHS of the comparison is a 0.0, we don't need to do the
2015  // subtraction at all.
2016  if (isFloatingPointZero(RHS))
2017    switch (CC) {
2018    default: break;       // SETUO etc aren't handled by fsel.
2019    case ISD::SETULT:
2020    case ISD::SETOLT:
2021    case ISD::SETLT:
2022      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2023    case ISD::SETUGE:
2024    case ISD::SETOGE:
2025    case ISD::SETGE:
2026      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2027        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2028      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2029    case ISD::SETUGT:
2030    case ISD::SETOGT:
2031    case ISD::SETGT:
2032      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2033    case ISD::SETULE:
2034    case ISD::SETOLE:
2035    case ISD::SETLE:
2036      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2037        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2038      return DAG.getNode(PPCISD::FSEL, ResVT,
2039                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2040    }
2041
2042  SDOperand Cmp;
2043  switch (CC) {
2044  default: break;       // SETUO etc aren't handled by fsel.
2045  case ISD::SETULT:
2046  case ISD::SETOLT:
2047  case ISD::SETLT:
2048    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2049    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2050      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2051      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2052  case ISD::SETUGE:
2053  case ISD::SETOGE:
2054  case ISD::SETGE:
2055    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2056    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2057      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2058      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2059  case ISD::SETUGT:
2060  case ISD::SETOGT:
2061  case ISD::SETGT:
2062    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2063    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2064      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2065      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2066  case ISD::SETULE:
2067  case ISD::SETOLE:
2068  case ISD::SETLE:
2069    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2070    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2071      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2072      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2073  }
2074  return SDOperand();
2075}
2076
2077// FIXME: Split this code up when LegalizeDAGTypes lands.
2078static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2079  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2080  SDOperand Src = Op.getOperand(0);
2081  if (Src.getValueType() == MVT::f32)
2082    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2083
2084  SDOperand Tmp;
2085  switch (Op.getValueType()) {
2086  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2087  case MVT::i32:
2088    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2089    break;
2090  case MVT::i64:
2091    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2092    break;
2093  }
2094
2095  // Convert the FP value to an int value through memory.
2096  SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2097
2098  // Emit a store to the stack slot.
2099  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2100
2101  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2102  // add in a bias.
2103  if (Op.getValueType() == MVT::i32)
2104    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2105                        DAG.getConstant(4, FIPtr.getValueType()));
2106  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2107}
2108
2109static SDOperand LowerFP_ROUND_INREG(SDOperand Op, SelectionDAG &DAG) {
2110  assert(Op.getValueType() == MVT::ppcf128);
2111  SDNode *Node = Op.Val;
2112  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2113  assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
2114  SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2115  SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2116
2117  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2118  // of the long double, and puts FPSCR back the way it was.  We do not
2119  // actually model FPSCR.
2120  std::vector<MVT::ValueType> NodeTys;
2121  SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2122
2123  NodeTys.push_back(MVT::f64);   // Return register
2124  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2125  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2126  MFFSreg = Result.getValue(0);
2127  InFlag = Result.getValue(1);
2128
2129  NodeTys.clear();
2130  NodeTys.push_back(MVT::Flag);   // Returns a flag
2131  Ops[0] = DAG.getConstant(31, MVT::i32);
2132  Ops[1] = InFlag;
2133  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2134  InFlag = Result.getValue(0);
2135
2136  NodeTys.clear();
2137  NodeTys.push_back(MVT::Flag);   // Returns a flag
2138  Ops[0] = DAG.getConstant(30, MVT::i32);
2139  Ops[1] = InFlag;
2140  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2141  InFlag = Result.getValue(0);
2142
2143  NodeTys.clear();
2144  NodeTys.push_back(MVT::f64);    // result of add
2145  NodeTys.push_back(MVT::Flag);   // Returns a flag
2146  Ops[0] = Lo;
2147  Ops[1] = Hi;
2148  Ops[2] = InFlag;
2149  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2150  FPreg = Result.getValue(0);
2151  InFlag = Result.getValue(1);
2152
2153  NodeTys.clear();
2154  NodeTys.push_back(MVT::f64);
2155  Ops[0] = DAG.getConstant(1, MVT::i32);
2156  Ops[1] = MFFSreg;
2157  Ops[2] = FPreg;
2158  Ops[3] = InFlag;
2159  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2160  FPreg = Result.getValue(0);
2161
2162  // We know the low half is about to be thrown away, so just use something
2163  // convenient.
2164  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2165}
2166
2167static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2168  if (Op.getOperand(0).getValueType() == MVT::i64) {
2169    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2170    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2171    if (Op.getValueType() == MVT::f32)
2172      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2173    return FP;
2174  }
2175
2176  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2177         "Unhandled SINT_TO_FP type in custom expander!");
2178  // Since we only generate this in 64-bit mode, we can take advantage of
2179  // 64-bit registers.  In particular, sign extend the input value into the
2180  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2181  // then lfd it and fcfid it.
2182  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2183  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2184  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2185  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2186
2187  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2188                                Op.getOperand(0));
2189
2190  // STD the extended value into the stack slot.
2191  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2192                                DAG.getEntryNode(), Ext64, FIdx,
2193                                DAG.getSrcValue(NULL));
2194  // Load the value as a double.
2195  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2196
2197  // FCFID it and return it.
2198  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2199  if (Op.getValueType() == MVT::f32)
2200    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2201  return FP;
2202}
2203
2204static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2205  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2206         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
2207
2208  // Expand into a bunch of logical ops.  Note that these ops
2209  // depend on the PPC behavior for oversized shift amounts.
2210  SDOperand Lo = Op.getOperand(0);
2211  SDOperand Hi = Op.getOperand(1);
2212  SDOperand Amt = Op.getOperand(2);
2213
2214  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2215                               DAG.getConstant(32, MVT::i32), Amt);
2216  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
2217  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
2218  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2219  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2220                               DAG.getConstant(-32U, MVT::i32));
2221  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
2222  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2223  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
2224  SDOperand OutOps[] = { OutLo, OutHi };
2225  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2226                     OutOps, 2);
2227}
2228
2229static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2230  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2231         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
2232
2233  // Otherwise, expand into a bunch of logical ops.  Note that these ops
2234  // depend on the PPC behavior for oversized shift amounts.
2235  SDOperand Lo = Op.getOperand(0);
2236  SDOperand Hi = Op.getOperand(1);
2237  SDOperand Amt = Op.getOperand(2);
2238
2239  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2240                               DAG.getConstant(32, MVT::i32), Amt);
2241  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2242  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2243  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2244  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2245                               DAG.getConstant(-32U, MVT::i32));
2246  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
2247  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2248  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
2249  SDOperand OutOps[] = { OutLo, OutHi };
2250  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2251                     OutOps, 2);
2252}
2253
2254static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2255  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2256         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
2257
2258  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
2259  SDOperand Lo = Op.getOperand(0);
2260  SDOperand Hi = Op.getOperand(1);
2261  SDOperand Amt = Op.getOperand(2);
2262
2263  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2264                               DAG.getConstant(32, MVT::i32), Amt);
2265  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2266  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2267  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2268  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2269                               DAG.getConstant(-32U, MVT::i32));
2270  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
2271  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
2272  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
2273                                    Tmp4, Tmp6, ISD::SETLE);
2274  SDOperand OutOps[] = { OutLo, OutHi };
2275  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2276                     OutOps, 2);
2277}
2278
2279//===----------------------------------------------------------------------===//
2280// Vector related lowering.
2281//
2282
2283// If this is a vector of constants or undefs, get the bits.  A bit in
2284// UndefBits is set if the corresponding element of the vector is an
2285// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2286// zero.   Return true if this is not an array of constants, false if it is.
2287//
2288static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2289                                       uint64_t UndefBits[2]) {
2290  // Start with zero'd results.
2291  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2292
2293  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2294  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2295    SDOperand OpVal = BV->getOperand(i);
2296
2297    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
2298    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
2299
2300    uint64_t EltBits = 0;
2301    if (OpVal.getOpcode() == ISD::UNDEF) {
2302      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2303      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2304      continue;
2305    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2306      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2307    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2308      assert(CN->getValueType(0) == MVT::f32 &&
2309             "Only one legal FP vector type!");
2310      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
2311    } else {
2312      // Nonconstant element.
2313      return true;
2314    }
2315
2316    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2317  }
2318
2319  //printf("%llx %llx  %llx %llx\n",
2320  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2321  return false;
2322}
2323
2324// If this is a splat (repetition) of a value across the whole vector, return
2325// the smallest size that splats it.  For example, "0x01010101010101..." is a
2326// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2327// SplatSize = 1 byte.
2328static bool isConstantSplat(const uint64_t Bits128[2],
2329                            const uint64_t Undef128[2],
2330                            unsigned &SplatBits, unsigned &SplatUndef,
2331                            unsigned &SplatSize) {
2332
2333  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
2334  // the same as the lower 64-bits, ignoring undefs.
2335  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2336    return false;  // Can't be a splat if two pieces don't match.
2337
2338  uint64_t Bits64  = Bits128[0] | Bits128[1];
2339  uint64_t Undef64 = Undef128[0] & Undef128[1];
2340
2341  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2342  // undefs.
2343  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2344    return false;  // Can't be a splat if two pieces don't match.
2345
2346  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2347  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2348
2349  // If the top 16-bits are different than the lower 16-bits, ignoring
2350  // undefs, we have an i32 splat.
2351  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2352    SplatBits = Bits32;
2353    SplatUndef = Undef32;
2354    SplatSize = 4;
2355    return true;
2356  }
2357
2358  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
2359  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2360
2361  // If the top 8-bits are different than the lower 8-bits, ignoring
2362  // undefs, we have an i16 splat.
2363  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2364    SplatBits = Bits16;
2365    SplatUndef = Undef16;
2366    SplatSize = 2;
2367    return true;
2368  }
2369
2370  // Otherwise, we have an 8-bit splat.
2371  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
2372  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2373  SplatSize = 1;
2374  return true;
2375}
2376
2377/// BuildSplatI - Build a canonical splati of Val with an element size of
2378/// SplatSize.  Cast the result to VT.
2379static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2380                             SelectionDAG &DAG) {
2381  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2382
2383  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2384    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2385  };
2386
2387  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2388
2389  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2390  if (Val == -1)
2391    SplatSize = 1;
2392
2393  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2394
2395  // Build a canonical splat for this value.
2396  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2397  SmallVector<SDOperand, 8> Ops;
2398  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2399  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2400                              &Ops[0], Ops.size());
2401  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2402}
2403
2404/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2405/// specified intrinsic ID.
2406static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2407                                  SelectionDAG &DAG,
2408                                  MVT::ValueType DestVT = MVT::Other) {
2409  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2410  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2411                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2412}
2413
2414/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2415/// specified intrinsic ID.
2416static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2417                                  SDOperand Op2, SelectionDAG &DAG,
2418                                  MVT::ValueType DestVT = MVT::Other) {
2419  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2420  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2421                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2422}
2423
2424
2425/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2426/// amount.  The result has the specified value type.
2427static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2428                             MVT::ValueType VT, SelectionDAG &DAG) {
2429  // Force LHS/RHS to be the right type.
2430  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2431  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2432
2433  SDOperand Ops[16];
2434  for (unsigned i = 0; i != 16; ++i)
2435    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2436  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2437                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2438  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2439}
2440
2441// If this is a case we can't handle, return null and let the default
2442// expansion code take care of it.  If we CAN select this case, and if it
2443// selects to a single instruction, return Op.  Otherwise, if we can codegen
2444// this case more efficiently than a constant pool load, lower it to the
2445// sequence of ops that should be used.
2446static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2447  // If this is a vector of constants or undefs, get the bits.  A bit in
2448  // UndefBits is set if the corresponding element of the vector is an
2449  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2450  // zero.
2451  uint64_t VectorBits[2];
2452  uint64_t UndefBits[2];
2453  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2454    return SDOperand();   // Not a constant vector.
2455
2456  // If this is a splat (repetition) of a value across the whole vector, return
2457  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2458  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2459  // SplatSize = 1 byte.
2460  unsigned SplatBits, SplatUndef, SplatSize;
2461  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2462    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2463
2464    // First, handle single instruction cases.
2465
2466    // All zeros?
2467    if (SplatBits == 0) {
2468      // Canonicalize all zero vectors to be v4i32.
2469      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2470        SDOperand Z = DAG.getConstant(0, MVT::i32);
2471        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2472        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2473      }
2474      return Op;
2475    }
2476
2477    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2478    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2479    if (SextVal >= -16 && SextVal <= 15)
2480      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2481
2482
2483    // Two instruction sequences.
2484
2485    // If this value is in the range [-32,30] and is even, use:
2486    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2487    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2488      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2489      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2490    }
2491
2492    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2493    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2494    // for fneg/fabs.
2495    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2496      // Make -1 and vspltisw -1:
2497      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2498
2499      // Make the VSLW intrinsic, computing 0x8000_0000.
2500      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2501                                       OnesV, DAG);
2502
2503      // xor by OnesV to invert it.
2504      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2505      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2506    }
2507
2508    // Check to see if this is a wide variety of vsplti*, binop self cases.
2509    unsigned SplatBitSize = SplatSize*8;
2510    static const signed char SplatCsts[] = {
2511      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2512      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2513    };
2514
2515    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
2516      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2517      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2518      int i = SplatCsts[idx];
2519
2520      // Figure out what shift amount will be used by altivec if shifted by i in
2521      // this splat size.
2522      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2523
2524      // vsplti + shl self.
2525      if (SextVal == (i << (int)TypeShiftAmt)) {
2526        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2527        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2528          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2529          Intrinsic::ppc_altivec_vslw
2530        };
2531        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2532        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2533      }
2534
2535      // vsplti + srl self.
2536      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2537        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2538        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2539          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2540          Intrinsic::ppc_altivec_vsrw
2541        };
2542        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2543        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2544      }
2545
2546      // vsplti + sra self.
2547      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2548        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2549        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2550          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2551          Intrinsic::ppc_altivec_vsraw
2552        };
2553        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2554        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2555      }
2556
2557      // vsplti + rol self.
2558      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2559                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2560        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2561        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2562          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2563          Intrinsic::ppc_altivec_vrlw
2564        };
2565        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2566        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2567      }
2568
2569      // t = vsplti c, result = vsldoi t, t, 1
2570      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2571        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2572        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2573      }
2574      // t = vsplti c, result = vsldoi t, t, 2
2575      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2576        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2577        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2578      }
2579      // t = vsplti c, result = vsldoi t, t, 3
2580      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2581        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2582        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2583      }
2584    }
2585
2586    // Three instruction sequences.
2587
2588    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2589    if (SextVal >= 0 && SextVal <= 31) {
2590      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2591      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2592      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
2593      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2594    }
2595    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2596    if (SextVal >= -31 && SextVal <= 0) {
2597      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2598      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2599      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
2600      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2601    }
2602  }
2603
2604  return SDOperand();
2605}
2606
2607/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2608/// the specified operations to build the shuffle.
2609static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2610                                        SDOperand RHS, SelectionDAG &DAG) {
2611  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2612  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
2613  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2614
2615  enum {
2616    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2617    OP_VMRGHW,
2618    OP_VMRGLW,
2619    OP_VSPLTISW0,
2620    OP_VSPLTISW1,
2621    OP_VSPLTISW2,
2622    OP_VSPLTISW3,
2623    OP_VSLDOI4,
2624    OP_VSLDOI8,
2625    OP_VSLDOI12
2626  };
2627
2628  if (OpNum == OP_COPY) {
2629    if (LHSID == (1*9+2)*9+3) return LHS;
2630    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2631    return RHS;
2632  }
2633
2634  SDOperand OpLHS, OpRHS;
2635  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2636  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2637
2638  unsigned ShufIdxs[16];
2639  switch (OpNum) {
2640  default: assert(0 && "Unknown i32 permute!");
2641  case OP_VMRGHW:
2642    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
2643    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2644    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
2645    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2646    break;
2647  case OP_VMRGLW:
2648    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2649    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2650    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2651    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2652    break;
2653  case OP_VSPLTISW0:
2654    for (unsigned i = 0; i != 16; ++i)
2655      ShufIdxs[i] = (i&3)+0;
2656    break;
2657  case OP_VSPLTISW1:
2658    for (unsigned i = 0; i != 16; ++i)
2659      ShufIdxs[i] = (i&3)+4;
2660    break;
2661  case OP_VSPLTISW2:
2662    for (unsigned i = 0; i != 16; ++i)
2663      ShufIdxs[i] = (i&3)+8;
2664    break;
2665  case OP_VSPLTISW3:
2666    for (unsigned i = 0; i != 16; ++i)
2667      ShufIdxs[i] = (i&3)+12;
2668    break;
2669  case OP_VSLDOI4:
2670    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2671  case OP_VSLDOI8:
2672    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2673  case OP_VSLDOI12:
2674    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2675  }
2676  SDOperand Ops[16];
2677  for (unsigned i = 0; i != 16; ++i)
2678    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2679
2680  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2681                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2682}
2683
2684/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
2685/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
2686/// return the code it can be lowered into.  Worst case, it can always be
2687/// lowered into a vperm.
2688static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2689  SDOperand V1 = Op.getOperand(0);
2690  SDOperand V2 = Op.getOperand(1);
2691  SDOperand PermMask = Op.getOperand(2);
2692
2693  // Cases that are handled by instructions that take permute immediates
2694  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2695  // selected by the instruction selector.
2696  if (V2.getOpcode() == ISD::UNDEF) {
2697    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2698        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2699        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2700        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2701        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2702        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2703        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2704        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2705        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2706        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2707        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2708        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2709      return Op;
2710    }
2711  }
2712
2713  // Altivec has a variety of "shuffle immediates" that take two vector inputs
2714  // and produce a fixed permutation.  If any of these match, do not lower to
2715  // VPERM.
2716  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2717      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2718      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2719      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2720      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2721      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2722      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2723      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2724      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2725    return Op;
2726
2727  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
2728  // perfect shuffle table to emit an optimal matching sequence.
2729  unsigned PFIndexes[4];
2730  bool isFourElementShuffle = true;
2731  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2732    unsigned EltNo = 8;   // Start out undef.
2733    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
2734      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2735        continue;   // Undef, ignore it.
2736
2737      unsigned ByteSource =
2738        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2739      if ((ByteSource & 3) != j) {
2740        isFourElementShuffle = false;
2741        break;
2742      }
2743
2744      if (EltNo == 8) {
2745        EltNo = ByteSource/4;
2746      } else if (EltNo != ByteSource/4) {
2747        isFourElementShuffle = false;
2748        break;
2749      }
2750    }
2751    PFIndexes[i] = EltNo;
2752  }
2753
2754  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2755  // perfect shuffle vector to determine if it is cost effective to do this as
2756  // discrete instructions, or whether we should use a vperm.
2757  if (isFourElementShuffle) {
2758    // Compute the index in the perfect shuffle table.
2759    unsigned PFTableIndex =
2760      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2761
2762    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2763    unsigned Cost  = (PFEntry >> 30);
2764
2765    // Determining when to avoid vperm is tricky.  Many things affect the cost
2766    // of vperm, particularly how many times the perm mask needs to be computed.
2767    // For example, if the perm mask can be hoisted out of a loop or is already
2768    // used (perhaps because there are multiple permutes with the same shuffle
2769    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
2770    // the loop requires an extra register.
2771    //
2772    // As a compromise, we only emit discrete instructions if the shuffle can be
2773    // generated in 3 or fewer operations.  When we have loop information
2774    // available, if this block is within a loop, we should avoid using vperm
2775    // for 3-operation perms and use a constant pool load instead.
2776    if (Cost < 3)
2777      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2778  }
2779
2780  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2781  // vector that will get spilled to the constant pool.
2782  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2783
2784  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2785  // that it is in input element units, not in bytes.  Convert now.
2786  MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
2787  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2788
2789  SmallVector<SDOperand, 16> ResultMask;
2790  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2791    unsigned SrcElt;
2792    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2793      SrcElt = 0;
2794    else
2795      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2796
2797    for (unsigned j = 0; j != BytesPerElement; ++j)
2798      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2799                                           MVT::i8));
2800  }
2801
2802  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2803                                    &ResultMask[0], ResultMask.size());
2804  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2805}
2806
2807/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2808/// altivec comparison.  If it is, return true and fill in Opc/isDot with
2809/// information about the intrinsic.
2810static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2811                                  bool &isDot) {
2812  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2813  CompareOpc = -1;
2814  isDot = false;
2815  switch (IntrinsicID) {
2816  default: return false;
2817    // Comparison predicates.
2818  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
2819  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2820  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
2821  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
2822  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2823  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2824  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2825  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2826  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2827  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2828  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2829  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2830  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2831
2832    // Normal Comparisons.
2833  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
2834  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
2835  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
2836  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
2837  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
2838  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
2839  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
2840  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
2841  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
2842  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
2843  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
2844  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
2845  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
2846  }
2847  return true;
2848}
2849
2850/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2851/// lower, do it, otherwise return null.
2852static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2853  // If this is a lowered altivec predicate compare, CompareOpc is set to the
2854  // opcode number of the comparison.
2855  int CompareOpc;
2856  bool isDot;
2857  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2858    return SDOperand();    // Don't custom lower most intrinsics.
2859
2860  // If this is a non-dot comparison, make the VCMP node and we are done.
2861  if (!isDot) {
2862    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2863                                Op.getOperand(1), Op.getOperand(2),
2864                                DAG.getConstant(CompareOpc, MVT::i32));
2865    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2866  }
2867
2868  // Create the PPCISD altivec 'dot' comparison node.
2869  SDOperand Ops[] = {
2870    Op.getOperand(2),  // LHS
2871    Op.getOperand(3),  // RHS
2872    DAG.getConstant(CompareOpc, MVT::i32)
2873  };
2874  std::vector<MVT::ValueType> VTs;
2875  VTs.push_back(Op.getOperand(2).getValueType());
2876  VTs.push_back(MVT::Flag);
2877  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2878
2879  // Now that we have the comparison, emit a copy from the CR to a GPR.
2880  // This is flagged to the above dot comparison.
2881  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2882                                DAG.getRegister(PPC::CR6, MVT::i32),
2883                                CompNode.getValue(1));
2884
2885  // Unpack the result based on how the target uses it.
2886  unsigned BitNo;   // Bit # of CR6.
2887  bool InvertBit;   // Invert result?
2888  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2889  default:  // Can't happen, don't crash on invalid number though.
2890  case 0:   // Return the value of the EQ bit of CR6.
2891    BitNo = 0; InvertBit = false;
2892    break;
2893  case 1:   // Return the inverted value of the EQ bit of CR6.
2894    BitNo = 0; InvertBit = true;
2895    break;
2896  case 2:   // Return the value of the LT bit of CR6.
2897    BitNo = 2; InvertBit = false;
2898    break;
2899  case 3:   // Return the inverted value of the LT bit of CR6.
2900    BitNo = 2; InvertBit = true;
2901    break;
2902  }
2903
2904  // Shift the bit into the low position.
2905  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2906                      DAG.getConstant(8-(3-BitNo), MVT::i32));
2907  // Isolate the bit.
2908  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2909                      DAG.getConstant(1, MVT::i32));
2910
2911  // If we are supposed to, toggle the bit.
2912  if (InvertBit)
2913    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2914                        DAG.getConstant(1, MVT::i32));
2915  return Flags;
2916}
2917
2918static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2919  // Create a stack slot that is 16-byte aligned.
2920  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2921  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2922  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2923  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2924
2925  // Store the input value into Value#0 of the stack slot.
2926  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2927                                 Op.getOperand(0), FIdx, NULL, 0);
2928  // Load it out.
2929  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2930}
2931
2932static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2933  if (Op.getValueType() == MVT::v4i32) {
2934    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2935
2936    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
2937    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2938
2939    SDOperand RHSSwap =   // = vrlw RHS, 16
2940      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2941
2942    // Shrinkify inputs to v8i16.
2943    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2944    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2945    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2946
2947    // Low parts multiplied together, generating 32-bit results (we ignore the
2948    // top parts).
2949    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2950                                        LHS, RHS, DAG, MVT::v4i32);
2951
2952    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2953                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2954    // Shift the high parts up 16 bits.
2955    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2956    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2957  } else if (Op.getValueType() == MVT::v8i16) {
2958    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2959
2960    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2961
2962    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2963                            LHS, RHS, Zero, DAG);
2964  } else if (Op.getValueType() == MVT::v16i8) {
2965    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2966
2967    // Multiply the even 8-bit parts, producing 16-bit sums.
2968    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2969                                           LHS, RHS, DAG, MVT::v8i16);
2970    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2971
2972    // Multiply the odd 8-bit parts, producing 16-bit sums.
2973    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2974                                          LHS, RHS, DAG, MVT::v8i16);
2975    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2976
2977    // Merge the results together.
2978    SDOperand Ops[16];
2979    for (unsigned i = 0; i != 8; ++i) {
2980      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
2981      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2982    }
2983    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2984                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2985  } else {
2986    assert(0 && "Unknown mul to lower!");
2987    abort();
2988  }
2989}
2990
2991/// LowerOperation - Provide custom lowering hooks for some operations.
2992///
2993SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2994  switch (Op.getOpcode()) {
2995  default: assert(0 && "Wasn't expecting to be able to lower this!");
2996  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
2997  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
2998  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
2999  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3000  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3001  case ISD::VASTART:
3002    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3003                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3004
3005  case ISD::VAARG:
3006    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3007                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3008
3009  case ISD::FORMAL_ARGUMENTS:
3010    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3011                                 VarArgsStackOffset, VarArgsNumGPR,
3012                                 VarArgsNumFPR, PPCSubTarget);
3013
3014  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget);
3015  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3016  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3017  case ISD::DYNAMIC_STACKALLOC:
3018    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3019
3020  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3021  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3022  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3023  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3024
3025  // Lower 64-bit shifts.
3026  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3027  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3028  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3029
3030  // Vector-related lowering.
3031  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3032  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3033  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3034  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3035  case ISD::MUL:                return LowerMUL(Op, DAG);
3036
3037  // Frame & Return address.
3038  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3039  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3040  }
3041  return SDOperand();
3042}
3043
3044SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3045  switch (N->getOpcode()) {
3046  default: assert(0 && "Wasn't expecting to be able to lower this!");
3047  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3048  }
3049}
3050
3051
3052//===----------------------------------------------------------------------===//
3053//  Other Lowering Code
3054//===----------------------------------------------------------------------===//
3055
3056MachineBasicBlock *
3057PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3058                                           MachineBasicBlock *BB) {
3059  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3060  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3061          MI->getOpcode() == PPC::SELECT_CC_I8 ||
3062          MI->getOpcode() == PPC::SELECT_CC_F4 ||
3063          MI->getOpcode() == PPC::SELECT_CC_F8 ||
3064          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3065         "Unexpected instr type to insert");
3066
3067  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3068  // control-flow pattern.  The incoming instruction knows the destination vreg
3069  // to set, the condition code register to branch on, the true/false values to
3070  // select between, and a branch opcode to use.
3071  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3072  ilist<MachineBasicBlock>::iterator It = BB;
3073  ++It;
3074
3075  //  thisMBB:
3076  //  ...
3077  //   TrueVal = ...
3078  //   cmpTY ccX, r1, r2
3079  //   bCC copy1MBB
3080  //   fallthrough --> copy0MBB
3081  MachineBasicBlock *thisMBB = BB;
3082  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3083  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3084  unsigned SelectPred = MI->getOperand(4).getImm();
3085  BuildMI(BB, TII->get(PPC::BCC))
3086    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3087  MachineFunction *F = BB->getParent();
3088  F->getBasicBlockList().insert(It, copy0MBB);
3089  F->getBasicBlockList().insert(It, sinkMBB);
3090  // Update machine-CFG edges by first adding all successors of the current
3091  // block to the new block which will contain the Phi node for the select.
3092  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3093      e = BB->succ_end(); i != e; ++i)
3094    sinkMBB->addSuccessor(*i);
3095  // Next, remove all successors of the current block, and add the true
3096  // and fallthrough blocks as its successors.
3097  while(!BB->succ_empty())
3098    BB->removeSuccessor(BB->succ_begin());
3099  BB->addSuccessor(copy0MBB);
3100  BB->addSuccessor(sinkMBB);
3101
3102  //  copy0MBB:
3103  //   %FalseValue = ...
3104  //   # fallthrough to sinkMBB
3105  BB = copy0MBB;
3106
3107  // Update machine-CFG edges
3108  BB->addSuccessor(sinkMBB);
3109
3110  //  sinkMBB:
3111  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3112  //  ...
3113  BB = sinkMBB;
3114  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3115    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3116    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3117
3118  delete MI;   // The pseudo instruction is gone now.
3119  return BB;
3120}
3121
3122//===----------------------------------------------------------------------===//
3123// Target Optimization Hooks
3124//===----------------------------------------------------------------------===//
3125
3126SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3127                                               DAGCombinerInfo &DCI) const {
3128  TargetMachine &TM = getTargetMachine();
3129  SelectionDAG &DAG = DCI.DAG;
3130  switch (N->getOpcode()) {
3131  default: break;
3132  case PPCISD::SHL:
3133    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3134      if (C->getValue() == 0)   // 0 << V -> 0.
3135        return N->getOperand(0);
3136    }
3137    break;
3138  case PPCISD::SRL:
3139    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3140      if (C->getValue() == 0)   // 0 >>u V -> 0.
3141        return N->getOperand(0);
3142    }
3143    break;
3144  case PPCISD::SRA:
3145    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3146      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
3147          C->isAllOnesValue())    // -1 >>s V -> -1.
3148        return N->getOperand(0);
3149    }
3150    break;
3151
3152  case ISD::SINT_TO_FP:
3153    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3154      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3155        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3156        // We allow the src/dst to be either f32/f64, but the intermediate
3157        // type must be i64.
3158        if (N->getOperand(0).getValueType() == MVT::i64 &&
3159            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
3160          SDOperand Val = N->getOperand(0).getOperand(0);
3161          if (Val.getValueType() == MVT::f32) {
3162            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3163            DCI.AddToWorklist(Val.Val);
3164          }
3165
3166          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3167          DCI.AddToWorklist(Val.Val);
3168          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3169          DCI.AddToWorklist(Val.Val);
3170          if (N->getValueType(0) == MVT::f32) {
3171            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
3172            DCI.AddToWorklist(Val.Val);
3173          }
3174          return Val;
3175        } else if (N->getOperand(0).getValueType() == MVT::i32) {
3176          // If the intermediate type is i32, we can avoid the load/store here
3177          // too.
3178        }
3179      }
3180    }
3181    break;
3182  case ISD::STORE:
3183    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3184    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3185        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3186        N->getOperand(1).getValueType() == MVT::i32 &&
3187        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
3188      SDOperand Val = N->getOperand(1).getOperand(0);
3189      if (Val.getValueType() == MVT::f32) {
3190        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3191        DCI.AddToWorklist(Val.Val);
3192      }
3193      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3194      DCI.AddToWorklist(Val.Val);
3195
3196      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3197                        N->getOperand(2), N->getOperand(3));
3198      DCI.AddToWorklist(Val.Val);
3199      return Val;
3200    }
3201
3202    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3203    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3204        N->getOperand(1).Val->hasOneUse() &&
3205        (N->getOperand(1).getValueType() == MVT::i32 ||
3206         N->getOperand(1).getValueType() == MVT::i16)) {
3207      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3208      // Do an any-extend to 32-bits if this is a half-word input.
3209      if (BSwapOp.getValueType() == MVT::i16)
3210        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3211
3212      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3213                         N->getOperand(2), N->getOperand(3),
3214                         DAG.getValueType(N->getOperand(1).getValueType()));
3215    }
3216    break;
3217  case ISD::BSWAP:
3218    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3219    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3220        N->getOperand(0).hasOneUse() &&
3221        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3222      SDOperand Load = N->getOperand(0);
3223      LoadSDNode *LD = cast<LoadSDNode>(Load);
3224      // Create the byte-swapping load.
3225      std::vector<MVT::ValueType> VTs;
3226      VTs.push_back(MVT::i32);
3227      VTs.push_back(MVT::Other);
3228      SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
3229      SDOperand Ops[] = {
3230        LD->getChain(),    // Chain
3231        LD->getBasePtr(),  // Ptr
3232        SV,                // SrcValue
3233        DAG.getValueType(N->getValueType(0)) // VT
3234      };
3235      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3236
3237      // If this is an i16 load, insert the truncate.
3238      SDOperand ResVal = BSLoad;
3239      if (N->getValueType(0) == MVT::i16)
3240        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3241
3242      // First, combine the bswap away.  This makes the value produced by the
3243      // load dead.
3244      DCI.CombineTo(N, ResVal);
3245
3246      // Next, combine the load away, we give it a bogus result value but a real
3247      // chain result.  The result value is dead because the bswap is dead.
3248      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3249
3250      // Return N so it doesn't get rechecked!
3251      return SDOperand(N, 0);
3252    }
3253
3254    break;
3255  case PPCISD::VCMP: {
3256    // If a VCMPo node already exists with exactly the same operands as this
3257    // node, use its result instead of this node (VCMPo computes both a CR6 and
3258    // a normal output).
3259    //
3260    if (!N->getOperand(0).hasOneUse() &&
3261        !N->getOperand(1).hasOneUse() &&
3262        !N->getOperand(2).hasOneUse()) {
3263
3264      // Scan all of the users of the LHS, looking for VCMPo's that match.
3265      SDNode *VCMPoNode = 0;
3266
3267      SDNode *LHSN = N->getOperand(0).Val;
3268      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3269           UI != E; ++UI)
3270        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3271            (*UI)->getOperand(1) == N->getOperand(1) &&
3272            (*UI)->getOperand(2) == N->getOperand(2) &&
3273            (*UI)->getOperand(0) == N->getOperand(0)) {
3274          VCMPoNode = *UI;
3275          break;
3276        }
3277
3278      // If there is no VCMPo node, or if the flag value has a single use, don't
3279      // transform this.
3280      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3281        break;
3282
3283      // Look at the (necessarily single) use of the flag value.  If it has a
3284      // chain, this transformation is more complex.  Note that multiple things
3285      // could use the value result, which we should ignore.
3286      SDNode *FlagUser = 0;
3287      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3288           FlagUser == 0; ++UI) {
3289        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3290        SDNode *User = *UI;
3291        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3292          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3293            FlagUser = User;
3294            break;
3295          }
3296        }
3297      }
3298
3299      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
3300      // give up for right now.
3301      if (FlagUser->getOpcode() == PPCISD::MFCR)
3302        return SDOperand(VCMPoNode, 0);
3303    }
3304    break;
3305  }
3306  case ISD::BR_CC: {
3307    // If this is a branch on an altivec predicate comparison, lower this so
3308    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
3309    // lowering is done pre-legalize, because the legalizer lowers the predicate
3310    // compare down to code that is difficult to reassemble.
3311    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3312    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3313    int CompareOpc;
3314    bool isDot;
3315
3316    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3317        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3318        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3319      assert(isDot && "Can't compare against a vector result!");
3320
3321      // If this is a comparison against something other than 0/1, then we know
3322      // that the condition is never/always true.
3323      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3324      if (Val != 0 && Val != 1) {
3325        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
3326          return N->getOperand(0);
3327        // Always !=, turn it into an unconditional branch.
3328        return DAG.getNode(ISD::BR, MVT::Other,
3329                           N->getOperand(0), N->getOperand(4));
3330      }
3331
3332      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3333
3334      // Create the PPCISD altivec 'dot' comparison node.
3335      std::vector<MVT::ValueType> VTs;
3336      SDOperand Ops[] = {
3337        LHS.getOperand(2),  // LHS of compare
3338        LHS.getOperand(3),  // RHS of compare
3339        DAG.getConstant(CompareOpc, MVT::i32)
3340      };
3341      VTs.push_back(LHS.getOperand(2).getValueType());
3342      VTs.push_back(MVT::Flag);
3343      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3344
3345      // Unpack the result based on how the target uses it.
3346      PPC::Predicate CompOpc;
3347      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3348      default:  // Can't happen, don't crash on invalid number though.
3349      case 0:   // Branch on the value of the EQ bit of CR6.
3350        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3351        break;
3352      case 1:   // Branch on the inverted value of the EQ bit of CR6.
3353        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3354        break;
3355      case 2:   // Branch on the value of the LT bit of CR6.
3356        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3357        break;
3358      case 3:   // Branch on the inverted value of the LT bit of CR6.
3359        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3360        break;
3361      }
3362
3363      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3364                         DAG.getConstant(CompOpc, MVT::i32),
3365                         DAG.getRegister(PPC::CR6, MVT::i32),
3366                         N->getOperand(4), CompNode.getValue(1));
3367    }
3368    break;
3369  }
3370  }
3371
3372  return SDOperand();
3373}
3374
3375//===----------------------------------------------------------------------===//
3376// Inline Assembly Support
3377//===----------------------------------------------------------------------===//
3378
3379void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3380                                                       uint64_t Mask,
3381                                                       uint64_t &KnownZero,
3382                                                       uint64_t &KnownOne,
3383                                                       const SelectionDAG &DAG,
3384                                                       unsigned Depth) const {
3385  KnownZero = 0;
3386  KnownOne = 0;
3387  switch (Op.getOpcode()) {
3388  default: break;
3389  case PPCISD::LBRX: {
3390    // lhbrx is known to have the top bits cleared out.
3391    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3392      KnownZero = 0xFFFF0000;
3393    break;
3394  }
3395  case ISD::INTRINSIC_WO_CHAIN: {
3396    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3397    default: break;
3398    case Intrinsic::ppc_altivec_vcmpbfp_p:
3399    case Intrinsic::ppc_altivec_vcmpeqfp_p:
3400    case Intrinsic::ppc_altivec_vcmpequb_p:
3401    case Intrinsic::ppc_altivec_vcmpequh_p:
3402    case Intrinsic::ppc_altivec_vcmpequw_p:
3403    case Intrinsic::ppc_altivec_vcmpgefp_p:
3404    case Intrinsic::ppc_altivec_vcmpgtfp_p:
3405    case Intrinsic::ppc_altivec_vcmpgtsb_p:
3406    case Intrinsic::ppc_altivec_vcmpgtsh_p:
3407    case Intrinsic::ppc_altivec_vcmpgtsw_p:
3408    case Intrinsic::ppc_altivec_vcmpgtub_p:
3409    case Intrinsic::ppc_altivec_vcmpgtuh_p:
3410    case Intrinsic::ppc_altivec_vcmpgtuw_p:
3411      KnownZero = ~1U;  // All bits but the low one are known to be zero.
3412      break;
3413    }
3414  }
3415  }
3416}
3417
3418
3419/// getConstraintType - Given a constraint, return the type of
3420/// constraint it is for this target.
3421PPCTargetLowering::ConstraintType
3422PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3423  if (Constraint.size() == 1) {
3424    switch (Constraint[0]) {
3425    default: break;
3426    case 'b':
3427    case 'r':
3428    case 'f':
3429    case 'v':
3430    case 'y':
3431      return C_RegisterClass;
3432    }
3433  }
3434  return TargetLowering::getConstraintType(Constraint);
3435}
3436
3437std::pair<unsigned, const TargetRegisterClass*>
3438PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3439                                                MVT::ValueType VT) const {
3440  if (Constraint.size() == 1) {
3441    // GCC RS6000 Constraint Letters
3442    switch (Constraint[0]) {
3443    case 'b':   // R1-R31
3444    case 'r':   // R0-R31
3445      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3446        return std::make_pair(0U, PPC::G8RCRegisterClass);
3447      return std::make_pair(0U, PPC::GPRCRegisterClass);
3448    case 'f':
3449      if (VT == MVT::f32)
3450        return std::make_pair(0U, PPC::F4RCRegisterClass);
3451      else if (VT == MVT::f64)
3452        return std::make_pair(0U, PPC::F8RCRegisterClass);
3453      break;
3454    case 'v':
3455      return std::make_pair(0U, PPC::VRRCRegisterClass);
3456    case 'y':   // crrc
3457      return std::make_pair(0U, PPC::CRRCRegisterClass);
3458    }
3459  }
3460
3461  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3462}
3463
3464
3465/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3466/// vector.  If it is invalid, don't add anything to Ops.
3467void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3468                                                     std::vector<SDOperand>&Ops,
3469                                                     SelectionDAG &DAG) {
3470  SDOperand Result(0,0);
3471  switch (Letter) {
3472  default: break;
3473  case 'I':
3474  case 'J':
3475  case 'K':
3476  case 'L':
3477  case 'M':
3478  case 'N':
3479  case 'O':
3480  case 'P': {
3481    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
3482    if (!CST) return; // Must be an immediate to match.
3483    unsigned Value = CST->getValue();
3484    switch (Letter) {
3485    default: assert(0 && "Unknown constraint letter!");
3486    case 'I':  // "I" is a signed 16-bit constant.
3487      if ((short)Value == (int)Value)
3488        Result = DAG.getTargetConstant(Value, Op.getValueType());
3489      break;
3490    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3491    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3492      if ((short)Value == 0)
3493        Result = DAG.getTargetConstant(Value, Op.getValueType());
3494      break;
3495    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3496      if ((Value >> 16) == 0)
3497        Result = DAG.getTargetConstant(Value, Op.getValueType());
3498      break;
3499    case 'M':  // "M" is a constant that is greater than 31.
3500      if (Value > 31)
3501        Result = DAG.getTargetConstant(Value, Op.getValueType());
3502      break;
3503    case 'N':  // "N" is a positive constant that is an exact power of two.
3504      if ((int)Value > 0 && isPowerOf2_32(Value))
3505        Result = DAG.getTargetConstant(Value, Op.getValueType());
3506      break;
3507    case 'O':  // "O" is the constant zero.
3508      if (Value == 0)
3509        Result = DAG.getTargetConstant(Value, Op.getValueType());
3510      break;
3511    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3512      if ((short)-Value == (int)-Value)
3513        Result = DAG.getTargetConstant(Value, Op.getValueType());
3514      break;
3515    }
3516    break;
3517  }
3518  }
3519
3520  if (Result.Val) {
3521    Ops.push_back(Result);
3522    return;
3523  }
3524
3525  // Handle standard constraint letters.
3526  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
3527}
3528
3529// isLegalAddressingMode - Return true if the addressing mode represented
3530// by AM is legal for this target, for a load/store of the specified type.
3531bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3532                                              const Type *Ty) const {
3533  // FIXME: PPC does not allow r+i addressing modes for vectors!
3534
3535  // PPC allows a sign-extended 16-bit immediate field.
3536  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3537    return false;
3538
3539  // No global is ever allowed as a base.
3540  if (AM.BaseGV)
3541    return false;
3542
3543  // PPC only support r+r,
3544  switch (AM.Scale) {
3545  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3546    break;
3547  case 1:
3548    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3549      return false;
3550    // Otherwise we have r+r or r+i.
3551    break;
3552  case 2:
3553    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3554      return false;
3555    // Allow 2*r as r+r.
3556    break;
3557  default:
3558    // No other scales are supported.
3559    return false;
3560  }
3561
3562  return true;
3563}
3564
3565/// isLegalAddressImmediate - Return true if the integer value can be used
3566/// as the offset of the target addressing mode for load / store of the
3567/// given type.
3568bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3569  // PPC allows a sign-extended 16-bit immediate field.
3570  return (V > -(1 << 16) && V < (1 << 16)-1);
3571}
3572
3573bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3574  return false;
3575}
3576
3577SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3578  // Depths > 0 not supported yet!
3579  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3580    return SDOperand();
3581
3582  MachineFunction &MF = DAG.getMachineFunction();
3583  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3584  int RAIdx = FuncInfo->getReturnAddrSaveIndex();
3585  if (RAIdx == 0) {
3586    bool isPPC64 = PPCSubTarget.isPPC64();
3587    int Offset =
3588      PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
3589
3590    // Set up a frame object for the return address.
3591    RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
3592
3593    // Remember it for next time.
3594    FuncInfo->setReturnAddrSaveIndex(RAIdx);
3595
3596    // Make sure the function really does not optimize away the store of the RA
3597    // to the stack.
3598    FuncInfo->setLRStoreRequired();
3599  }
3600
3601  // Just load the return address off the stack.
3602  SDOperand RetAddrFI =  DAG.getFrameIndex(RAIdx, getPointerTy());
3603  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
3604}
3605
3606SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
3607  // Depths > 0 not supported yet!
3608  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3609    return SDOperand();
3610
3611  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3612  bool isPPC64 = PtrVT == MVT::i64;
3613
3614  MachineFunction &MF = DAG.getMachineFunction();
3615  MachineFrameInfo *MFI = MF.getFrameInfo();
3616  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3617                  && MFI->getStackSize();
3618
3619  if (isPPC64)
3620    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
3621      MVT::i64);
3622  else
3623    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3624      MVT::i32);
3625}
3626