PPCISelLowering.cpp revision 63f8fb1993bf2b4286c5a6763e2eee414a751699
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/VectorExtras.h"
20#include "llvm/Analysis/ScalarEvolutionExpressions.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/SSARegMap.h"
26#include "llvm/Constants.h"
27#include "llvm/Function.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Support/CommandLine.h"
32using namespace llvm;
33
34static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc");
35
36PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
37  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
38
39  setPow2DivIsCheap();
40
41  // Use _setjmp/_longjmp instead of setjmp/longjmp.
42  setUseUnderscoreSetJmp(true);
43  setUseUnderscoreLongJmp(true);
44
45  // Set up the register classes.
46  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
47  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
48  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
49
50  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
51  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
52  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
53
54  // PowerPC does not have truncstore for i1.
55  setStoreXAction(MVT::i1, Promote);
56
57  // PowerPC has pre-inc load and store's.
58  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
59  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
60  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
61  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
63  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
64  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
65  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
66  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
68
69  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
70  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
71
72  // PowerPC has no intrinsics for these particular operations
73  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
74  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
75  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
76
77  // PowerPC has no SREM/UREM instructions
78  setOperationAction(ISD::SREM, MVT::i32, Expand);
79  setOperationAction(ISD::UREM, MVT::i32, Expand);
80  setOperationAction(ISD::SREM, MVT::i64, Expand);
81  setOperationAction(ISD::UREM, MVT::i64, Expand);
82
83  // We don't support sin/cos/sqrt/fmod
84  setOperationAction(ISD::FSIN , MVT::f64, Expand);
85  setOperationAction(ISD::FCOS , MVT::f64, Expand);
86  setOperationAction(ISD::FREM , MVT::f64, Expand);
87  setOperationAction(ISD::FSIN , MVT::f32, Expand);
88  setOperationAction(ISD::FCOS , MVT::f32, Expand);
89  setOperationAction(ISD::FREM , MVT::f32, Expand);
90
91  // If we're enabling GP optimizations, use hardware square root
92  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
93    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
94    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
95  }
96
97  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
98  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
99
100  // PowerPC does not have BSWAP, CTPOP or CTTZ
101  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
102  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
103  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
104  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
105  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
106  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
107
108  // PowerPC does not have ROTR
109  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
110
111  // PowerPC does not have Select
112  setOperationAction(ISD::SELECT, MVT::i32, Expand);
113  setOperationAction(ISD::SELECT, MVT::i64, Expand);
114  setOperationAction(ISD::SELECT, MVT::f32, Expand);
115  setOperationAction(ISD::SELECT, MVT::f64, Expand);
116
117  // PowerPC wants to turn select_cc of FP into fsel when possible.
118  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
119  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
120
121  // PowerPC wants to optimize integer setcc a bit
122  setOperationAction(ISD::SETCC, MVT::i32, Custom);
123
124  // PowerPC does not have BRCOND which requires SetCC
125  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
126
127  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
128
129  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
130  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
131
132  // PowerPC does not have [U|S]INT_TO_FP
133  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
134  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
135
136  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
137  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
138  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
139  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
140
141  // We cannot sextinreg(i1).  Expand to shifts.
142  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
143
144  // Support label based line numbers.
145  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
146  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
147  if (!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
148    setOperationAction(ISD::LABEL, MVT::Other, Expand);
149  } else {
150    setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
151    setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
152    setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
153    setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
154  }
155
156  // We want to legalize GlobalAddress and ConstantPool nodes into the
157  // appropriate instructions to materialize the address.
158  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
159  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
160  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
161  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
162  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
163  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
164
165  // RET must be custom lowered, to meet ABI requirements
166  setOperationAction(ISD::RET               , MVT::Other, Custom);
167
168  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
169  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
170
171  // Use the default implementation.
172  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
173  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
174  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
175  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
176  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
177  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
178  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
179
180  // We want to custom lower some of our intrinsics.
181  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
182
183  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
184    // They also have instructions for converting between i64 and fp.
185    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
186    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
187    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
188    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
189    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
190
191    // FIXME: disable this lowered code.  This generates 64-bit register values,
192    // and we don't model the fact that the top part is clobbered by calls.  We
193    // need to flag these together so that the value isn't live across a call.
194    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
195
196    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
197    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
198  } else {
199    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
200    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
201  }
202
203  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
204    // 64 bit PowerPC implementations can support i64 types directly
205    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
206    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
207    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
208  } else {
209    // 32 bit PowerPC wants to expand i64 shifts itself.
210    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
211    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
212    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
213  }
214
215  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
216    // First set operation action for all vector types to expand. Then we
217    // will selectively turn on ones that can be effectively codegen'd.
218    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
219         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
220      // add/sub are legal for all supported vector VT's.
221      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
222      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
223
224      // We promote all shuffles to v16i8.
225      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
226      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
227
228      // We promote all non-typed operations to v4i32.
229      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
230      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
231      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
232      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
233      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
234      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
235      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
236      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
237      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
238      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
239      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
240      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
241
242      // No other operations are legal.
243      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
244      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
245      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
246      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
247      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
248      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
249      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
250      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
251      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
252
253      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
254    }
255
256    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
257    // with merges, splats, etc.
258    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
259
260    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
261    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
262    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
263    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
264    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
265    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
266
267    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
268    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
269    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
270    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
271
272    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
273    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
274    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
275    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
276
277    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
278    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
279
280    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
281    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
282    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
283    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
284  }
285
286  setSetCCResultType(MVT::i32);
287  setShiftAmountType(MVT::i32);
288  setSetCCResultContents(ZeroOrOneSetCCResult);
289
290  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
291    setStackPointerRegisterToSaveRestore(PPC::X1);
292    setExceptionPointerRegister(PPC::X3);
293    setExceptionSelectorRegister(PPC::X4);
294  } else {
295    setStackPointerRegisterToSaveRestore(PPC::R1);
296    setExceptionPointerRegister(PPC::R3);
297    setExceptionSelectorRegister(PPC::R4);
298  }
299
300  // We have target-specific dag combine patterns for the following nodes:
301  setTargetDAGCombine(ISD::SINT_TO_FP);
302  setTargetDAGCombine(ISD::STORE);
303  setTargetDAGCombine(ISD::BR_CC);
304  setTargetDAGCombine(ISD::BSWAP);
305
306  computeRegisterProperties();
307}
308
309const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
310  switch (Opcode) {
311  default: return 0;
312  case PPCISD::FSEL:          return "PPCISD::FSEL";
313  case PPCISD::FCFID:         return "PPCISD::FCFID";
314  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
315  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
316  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
317  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
318  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
319  case PPCISD::VPERM:         return "PPCISD::VPERM";
320  case PPCISD::Hi:            return "PPCISD::Hi";
321  case PPCISD::Lo:            return "PPCISD::Lo";
322  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
323  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
324  case PPCISD::SRL:           return "PPCISD::SRL";
325  case PPCISD::SRA:           return "PPCISD::SRA";
326  case PPCISD::SHL:           return "PPCISD::SHL";
327  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
328  case PPCISD::STD_32:        return "PPCISD::STD_32";
329  case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF";
330  case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho";
331  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
332  case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho";
333  case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF";
334  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
335  case PPCISD::MFCR:          return "PPCISD::MFCR";
336  case PPCISD::VCMP:          return "PPCISD::VCMP";
337  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
338  case PPCISD::LBRX:          return "PPCISD::LBRX";
339  case PPCISD::STBRX:         return "PPCISD::STBRX";
340  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
341  }
342}
343
344//===----------------------------------------------------------------------===//
345// Node matching predicates, for use by the tblgen matching code.
346//===----------------------------------------------------------------------===//
347
348/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
349static bool isFloatingPointZero(SDOperand Op) {
350  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
351    return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
352  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
353    // Maybe this has already been legalized into the constant pool?
354    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
355      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
356        return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
357  }
358  return false;
359}
360
361/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
362/// true if Op is undef or if it matches the specified value.
363static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
364  return Op.getOpcode() == ISD::UNDEF ||
365         cast<ConstantSDNode>(Op)->getValue() == Val;
366}
367
368/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
369/// VPKUHUM instruction.
370bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
371  if (!isUnary) {
372    for (unsigned i = 0; i != 16; ++i)
373      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
374        return false;
375  } else {
376    for (unsigned i = 0; i != 8; ++i)
377      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
378          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
379        return false;
380  }
381  return true;
382}
383
384/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
385/// VPKUWUM instruction.
386bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
387  if (!isUnary) {
388    for (unsigned i = 0; i != 16; i += 2)
389      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
390          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
391        return false;
392  } else {
393    for (unsigned i = 0; i != 8; i += 2)
394      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
395          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
396          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
397          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
398        return false;
399  }
400  return true;
401}
402
403/// isVMerge - Common function, used to match vmrg* shuffles.
404///
405static bool isVMerge(SDNode *N, unsigned UnitSize,
406                     unsigned LHSStart, unsigned RHSStart) {
407  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
408         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
409  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
410         "Unsupported merge size!");
411
412  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
413    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
414      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
415                             LHSStart+j+i*UnitSize) ||
416          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
417                             RHSStart+j+i*UnitSize))
418        return false;
419    }
420      return true;
421}
422
423/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
424/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
425bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
426  if (!isUnary)
427    return isVMerge(N, UnitSize, 8, 24);
428  return isVMerge(N, UnitSize, 8, 8);
429}
430
431/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
432/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
433bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
434  if (!isUnary)
435    return isVMerge(N, UnitSize, 0, 16);
436  return isVMerge(N, UnitSize, 0, 0);
437}
438
439
440/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
441/// amount, otherwise return -1.
442int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
443  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
444         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
445  // Find the first non-undef value in the shuffle mask.
446  unsigned i;
447  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
448    /*search*/;
449
450  if (i == 16) return -1;  // all undef.
451
452  // Otherwise, check to see if the rest of the elements are consequtively
453  // numbered from this value.
454  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
455  if (ShiftAmt < i) return -1;
456  ShiftAmt -= i;
457
458  if (!isUnary) {
459    // Check the rest of the elements to see if they are consequtive.
460    for (++i; i != 16; ++i)
461      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
462        return -1;
463  } else {
464    // Check the rest of the elements to see if they are consequtive.
465    for (++i; i != 16; ++i)
466      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
467        return -1;
468  }
469
470  return ShiftAmt;
471}
472
473/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
474/// specifies a splat of a single element that is suitable for input to
475/// VSPLTB/VSPLTH/VSPLTW.
476bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
477  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
478         N->getNumOperands() == 16 &&
479         (EltSize == 1 || EltSize == 2 || EltSize == 4));
480
481  // This is a splat operation if each element of the permute is the same, and
482  // if the value doesn't reference the second vector.
483  unsigned ElementBase = 0;
484  SDOperand Elt = N->getOperand(0);
485  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
486    ElementBase = EltV->getValue();
487  else
488    return false;   // FIXME: Handle UNDEF elements too!
489
490  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
491    return false;
492
493  // Check that they are consequtive.
494  for (unsigned i = 1; i != EltSize; ++i) {
495    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
496        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
497      return false;
498  }
499
500  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
501  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
502    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
503    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
504           "Invalid VECTOR_SHUFFLE mask!");
505    for (unsigned j = 0; j != EltSize; ++j)
506      if (N->getOperand(i+j) != N->getOperand(j))
507        return false;
508  }
509
510  return true;
511}
512
513/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
514/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
515unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
516  assert(isSplatShuffleMask(N, EltSize));
517  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
518}
519
520/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
521/// by using a vspltis[bhw] instruction of the specified element size, return
522/// the constant being splatted.  The ByteSize field indicates the number of
523/// bytes of each element [124] -> [bhw].
524SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
525  SDOperand OpVal(0, 0);
526
527  // If ByteSize of the splat is bigger than the element size of the
528  // build_vector, then we have a case where we are checking for a splat where
529  // multiple elements of the buildvector are folded together into a single
530  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
531  unsigned EltSize = 16/N->getNumOperands();
532  if (EltSize < ByteSize) {
533    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
534    SDOperand UniquedVals[4];
535    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
536
537    // See if all of the elements in the buildvector agree across.
538    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
539      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
540      // If the element isn't a constant, bail fully out.
541      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
542
543
544      if (UniquedVals[i&(Multiple-1)].Val == 0)
545        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
546      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
547        return SDOperand();  // no match.
548    }
549
550    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
551    // either constant or undef values that are identical for each chunk.  See
552    // if these chunks can form into a larger vspltis*.
553
554    // Check to see if all of the leading entries are either 0 or -1.  If
555    // neither, then this won't fit into the immediate field.
556    bool LeadingZero = true;
557    bool LeadingOnes = true;
558    for (unsigned i = 0; i != Multiple-1; ++i) {
559      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
560
561      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
562      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
563    }
564    // Finally, check the least significant entry.
565    if (LeadingZero) {
566      if (UniquedVals[Multiple-1].Val == 0)
567        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
568      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
569      if (Val < 16)
570        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
571    }
572    if (LeadingOnes) {
573      if (UniquedVals[Multiple-1].Val == 0)
574        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
575      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
576      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
577        return DAG.getTargetConstant(Val, MVT::i32);
578    }
579
580    return SDOperand();
581  }
582
583  // Check to see if this buildvec has a single non-undef value in its elements.
584  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
585    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
586    if (OpVal.Val == 0)
587      OpVal = N->getOperand(i);
588    else if (OpVal != N->getOperand(i))
589      return SDOperand();
590  }
591
592  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
593
594  unsigned ValSizeInBytes = 0;
595  uint64_t Value = 0;
596  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
597    Value = CN->getValue();
598    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
599  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
600    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
601    Value = FloatToBits(CN->getValue());
602    ValSizeInBytes = 4;
603  }
604
605  // If the splat value is larger than the element value, then we can never do
606  // this splat.  The only case that we could fit the replicated bits into our
607  // immediate field for would be zero, and we prefer to use vxor for it.
608  if (ValSizeInBytes < ByteSize) return SDOperand();
609
610  // If the element value is larger than the splat value, cut it in half and
611  // check to see if the two halves are equal.  Continue doing this until we
612  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
613  while (ValSizeInBytes > ByteSize) {
614    ValSizeInBytes >>= 1;
615
616    // If the top half equals the bottom half, we're still ok.
617    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
618         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
619      return SDOperand();
620  }
621
622  // Properly sign extend the value.
623  int ShAmt = (4-ByteSize)*8;
624  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
625
626  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
627  if (MaskVal == 0) return SDOperand();
628
629  // Finally, if this value fits in a 5 bit sext field, return it
630  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
631    return DAG.getTargetConstant(MaskVal, MVT::i32);
632  return SDOperand();
633}
634
635//===----------------------------------------------------------------------===//
636//  Addressing Mode Selection
637//===----------------------------------------------------------------------===//
638
639/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
640/// or 64-bit immediate, and if the value can be accurately represented as a
641/// sign extension from a 16-bit value.  If so, this returns true and the
642/// immediate.
643static bool isIntS16Immediate(SDNode *N, short &Imm) {
644  if (N->getOpcode() != ISD::Constant)
645    return false;
646
647  Imm = (short)cast<ConstantSDNode>(N)->getValue();
648  if (N->getValueType(0) == MVT::i32)
649    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
650  else
651    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
652}
653static bool isIntS16Immediate(SDOperand Op, short &Imm) {
654  return isIntS16Immediate(Op.Val, Imm);
655}
656
657
658/// SelectAddressRegReg - Given the specified addressed, check to see if it
659/// can be represented as an indexed [r+r] operation.  Returns false if it
660/// can be more efficiently represented with [r+imm].
661bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
662                                            SDOperand &Index,
663                                            SelectionDAG &DAG) {
664  short imm = 0;
665  if (N.getOpcode() == ISD::ADD) {
666    if (isIntS16Immediate(N.getOperand(1), imm))
667      return false;    // r+i
668    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
669      return false;    // r+i
670
671    Base = N.getOperand(0);
672    Index = N.getOperand(1);
673    return true;
674  } else if (N.getOpcode() == ISD::OR) {
675    if (isIntS16Immediate(N.getOperand(1), imm))
676      return false;    // r+i can fold it if we can.
677
678    // If this is an or of disjoint bitfields, we can codegen this as an add
679    // (for better address arithmetic) if the LHS and RHS of the OR are provably
680    // disjoint.
681    uint64_t LHSKnownZero, LHSKnownOne;
682    uint64_t RHSKnownZero, RHSKnownOne;
683    ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
684
685    if (LHSKnownZero) {
686      ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
687      // If all of the bits are known zero on the LHS or RHS, the add won't
688      // carry.
689      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
690        Base = N.getOperand(0);
691        Index = N.getOperand(1);
692        return true;
693      }
694    }
695  }
696
697  return false;
698}
699
700/// Returns true if the address N can be represented by a base register plus
701/// a signed 16-bit displacement [r+imm], and if it is not better
702/// represented as reg+reg.
703bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
704                                            SDOperand &Base, SelectionDAG &DAG){
705  // If this can be more profitably realized as r+r, fail.
706  if (SelectAddressRegReg(N, Disp, Base, DAG))
707    return false;
708
709  if (N.getOpcode() == ISD::ADD) {
710    short imm = 0;
711    if (isIntS16Immediate(N.getOperand(1), imm)) {
712      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
713      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
714        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
715      } else {
716        Base = N.getOperand(0);
717      }
718      return true; // [r+i]
719    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
720      // Match LOAD (ADD (X, Lo(G))).
721      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
722             && "Cannot handle constant offsets yet!");
723      Disp = N.getOperand(1).getOperand(0);  // The global address.
724      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
725             Disp.getOpcode() == ISD::TargetConstantPool ||
726             Disp.getOpcode() == ISD::TargetJumpTable);
727      Base = N.getOperand(0);
728      return true;  // [&g+r]
729    }
730  } else if (N.getOpcode() == ISD::OR) {
731    short imm = 0;
732    if (isIntS16Immediate(N.getOperand(1), imm)) {
733      // If this is an or of disjoint bitfields, we can codegen this as an add
734      // (for better address arithmetic) if the LHS and RHS of the OR are
735      // provably disjoint.
736      uint64_t LHSKnownZero, LHSKnownOne;
737      ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
738      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
739        // If all of the bits are known zero on the LHS or RHS, the add won't
740        // carry.
741        Base = N.getOperand(0);
742        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
743        return true;
744      }
745    }
746  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
747    // Loading from a constant address.
748
749    // If this address fits entirely in a 16-bit sext immediate field, codegen
750    // this as "d, 0"
751    short Imm;
752    if (isIntS16Immediate(CN, Imm)) {
753      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
754      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
755      return true;
756    }
757
758    // Handle 32-bit sext immediates with LIS + addr mode.
759    if (CN->getValueType(0) == MVT::i32 ||
760        (int64_t)CN->getValue() == (int)CN->getValue()) {
761      int Addr = (int)CN->getValue();
762
763      // Otherwise, break this down into an LIS + disp.
764      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
765
766      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
767      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
768      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
769      return true;
770    }
771  }
772
773  Disp = DAG.getTargetConstant(0, getPointerTy());
774  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
775    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
776  else
777    Base = N;
778  return true;      // [r+0]
779}
780
781/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
782/// represented as an indexed [r+r] operation.
783bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
784                                                SDOperand &Index,
785                                                SelectionDAG &DAG) {
786  // Check to see if we can easily represent this as an [r+r] address.  This
787  // will fail if it thinks that the address is more profitably represented as
788  // reg+imm, e.g. where imm = 0.
789  if (SelectAddressRegReg(N, Base, Index, DAG))
790    return true;
791
792  // If the operand is an addition, always emit this as [r+r], since this is
793  // better (for code size, and execution, as the memop does the add for free)
794  // than emitting an explicit add.
795  if (N.getOpcode() == ISD::ADD) {
796    Base = N.getOperand(0);
797    Index = N.getOperand(1);
798    return true;
799  }
800
801  // Otherwise, do it the hard way, using R0 as the base register.
802  Base = DAG.getRegister(PPC::R0, N.getValueType());
803  Index = N;
804  return true;
805}
806
807/// SelectAddressRegImmShift - Returns true if the address N can be
808/// represented by a base register plus a signed 14-bit displacement
809/// [r+imm*4].  Suitable for use by STD and friends.
810bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
811                                                 SDOperand &Base,
812                                                 SelectionDAG &DAG) {
813  // If this can be more profitably realized as r+r, fail.
814  if (SelectAddressRegReg(N, Disp, Base, DAG))
815    return false;
816
817  if (N.getOpcode() == ISD::ADD) {
818    short imm = 0;
819    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
820      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
821      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
822        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
823      } else {
824        Base = N.getOperand(0);
825      }
826      return true; // [r+i]
827    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
828      // Match LOAD (ADD (X, Lo(G))).
829      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
830             && "Cannot handle constant offsets yet!");
831      Disp = N.getOperand(1).getOperand(0);  // The global address.
832      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
833             Disp.getOpcode() == ISD::TargetConstantPool ||
834             Disp.getOpcode() == ISD::TargetJumpTable);
835      Base = N.getOperand(0);
836      return true;  // [&g+r]
837    }
838  } else if (N.getOpcode() == ISD::OR) {
839    short imm = 0;
840    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
841      // If this is an or of disjoint bitfields, we can codegen this as an add
842      // (for better address arithmetic) if the LHS and RHS of the OR are
843      // provably disjoint.
844      uint64_t LHSKnownZero, LHSKnownOne;
845      ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
846      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
847        // If all of the bits are known zero on the LHS or RHS, the add won't
848        // carry.
849        Base = N.getOperand(0);
850        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
851        return true;
852      }
853    }
854  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
855    // Loading from a constant address.  Verify low two bits are clear.
856    if ((CN->getValue() & 3) == 0) {
857      // If this address fits entirely in a 14-bit sext immediate field, codegen
858      // this as "d, 0"
859      short Imm;
860      if (isIntS16Immediate(CN, Imm)) {
861        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
862        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
863        return true;
864      }
865
866      // Fold the low-part of 32-bit absolute addresses into addr mode.
867      if (CN->getValueType(0) == MVT::i32 ||
868          (int64_t)CN->getValue() == (int)CN->getValue()) {
869        int Addr = (int)CN->getValue();
870
871        // Otherwise, break this down into an LIS + disp.
872        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
873
874        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
875        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
876        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
877        return true;
878      }
879    }
880  }
881
882  Disp = DAG.getTargetConstant(0, getPointerTy());
883  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
884    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
885  else
886    Base = N;
887  return true;      // [r+0]
888}
889
890
891/// getPreIndexedAddressParts - returns true by value, base pointer and
892/// offset pointer and addressing mode by reference if the node's address
893/// can be legally represented as pre-indexed load / store address.
894bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
895                                                  SDOperand &Offset,
896                                                  ISD::MemIndexedMode &AM,
897                                                  SelectionDAG &DAG) {
898  // Disabled by default for now.
899  if (!EnablePPCPreinc) return false;
900
901  SDOperand Ptr;
902  MVT::ValueType VT;
903  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
904    Ptr = LD->getBasePtr();
905    VT = LD->getLoadedVT();
906
907  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
908    ST = ST;
909    Ptr = ST->getBasePtr();
910    VT  = ST->getStoredVT();
911  } else
912    return false;
913
914  // PowerPC doesn't have preinc load/store instructions for vectors.
915  if (MVT::isVector(VT))
916    return false;
917
918  // TODO: Check reg+reg first.
919
920  // LDU/STU use reg+imm*4, others use reg+imm.
921  if (VT != MVT::i64) {
922    // reg + imm
923    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
924      return false;
925  } else {
926    // reg + imm * 4.
927    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
928      return false;
929  }
930
931  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
932    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
933    // sext i32 to i64 when addr mode is r+i.
934    if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
935        LD->getExtensionType() == ISD::SEXTLOAD &&
936        isa<ConstantSDNode>(Offset))
937      return false;
938  }
939
940  AM = ISD::PRE_INC;
941  return true;
942}
943
944//===----------------------------------------------------------------------===//
945//  LowerOperation implementation
946//===----------------------------------------------------------------------===//
947
948static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
949  MVT::ValueType PtrVT = Op.getValueType();
950  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
951  Constant *C = CP->getConstVal();
952  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
953  SDOperand Zero = DAG.getConstant(0, PtrVT);
954
955  const TargetMachine &TM = DAG.getTarget();
956
957  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
958  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
959
960  // If this is a non-darwin platform, we don't support non-static relo models
961  // yet.
962  if (TM.getRelocationModel() == Reloc::Static ||
963      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
964    // Generate non-pic code that has direct accesses to the constant pool.
965    // The address of the global is just (hi(&g)+lo(&g)).
966    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
967  }
968
969  if (TM.getRelocationModel() == Reloc::PIC_) {
970    // With PIC, the first instruction is actually "GR+hi(&G)".
971    Hi = DAG.getNode(ISD::ADD, PtrVT,
972                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
973  }
974
975  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
976  return Lo;
977}
978
979static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
980  MVT::ValueType PtrVT = Op.getValueType();
981  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
982  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
983  SDOperand Zero = DAG.getConstant(0, PtrVT);
984
985  const TargetMachine &TM = DAG.getTarget();
986
987  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
988  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
989
990  // If this is a non-darwin platform, we don't support non-static relo models
991  // yet.
992  if (TM.getRelocationModel() == Reloc::Static ||
993      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
994    // Generate non-pic code that has direct accesses to the constant pool.
995    // The address of the global is just (hi(&g)+lo(&g)).
996    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
997  }
998
999  if (TM.getRelocationModel() == Reloc::PIC_) {
1000    // With PIC, the first instruction is actually "GR+hi(&G)".
1001    Hi = DAG.getNode(ISD::ADD, PtrVT,
1002                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1003  }
1004
1005  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1006  return Lo;
1007}
1008
1009static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
1010  MVT::ValueType PtrVT = Op.getValueType();
1011  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1012  GlobalValue *GV = GSDN->getGlobal();
1013  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1014  SDOperand Zero = DAG.getConstant(0, PtrVT);
1015
1016  const TargetMachine &TM = DAG.getTarget();
1017
1018  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1019  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1020
1021  // If this is a non-darwin platform, we don't support non-static relo models
1022  // yet.
1023  if (TM.getRelocationModel() == Reloc::Static ||
1024      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1025    // Generate non-pic code that has direct accesses to globals.
1026    // The address of the global is just (hi(&g)+lo(&g)).
1027    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1028  }
1029
1030  if (TM.getRelocationModel() == Reloc::PIC_) {
1031    // With PIC, the first instruction is actually "GR+hi(&G)".
1032    Hi = DAG.getNode(ISD::ADD, PtrVT,
1033                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1034  }
1035
1036  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1037
1038  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1039    return Lo;
1040
1041  // If the global is weak or external, we have to go through the lazy
1042  // resolution stub.
1043  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1044}
1045
1046static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1047  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1048
1049  // If we're comparing for equality to zero, expose the fact that this is
1050  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1051  // fold the new nodes.
1052  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1053    if (C->isNullValue() && CC == ISD::SETEQ) {
1054      MVT::ValueType VT = Op.getOperand(0).getValueType();
1055      SDOperand Zext = Op.getOperand(0);
1056      if (VT < MVT::i32) {
1057        VT = MVT::i32;
1058        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1059      }
1060      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1061      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1062      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1063                                  DAG.getConstant(Log2b, MVT::i32));
1064      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1065    }
1066    // Leave comparisons against 0 and -1 alone for now, since they're usually
1067    // optimized.  FIXME: revisit this when we can custom lower all setcc
1068    // optimizations.
1069    if (C->isAllOnesValue() || C->isNullValue())
1070      return SDOperand();
1071  }
1072
1073  // If we have an integer seteq/setne, turn it into a compare against zero
1074  // by xor'ing the rhs with the lhs, which is faster than setting a
1075  // condition register, reading it back out, and masking the correct bit.  The
1076  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1077  // the result to other bit-twiddling opportunities.
1078  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1079  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1080    MVT::ValueType VT = Op.getValueType();
1081    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1082                                Op.getOperand(1));
1083    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1084  }
1085  return SDOperand();
1086}
1087
1088static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1089                              unsigned VarArgsFrameIndex) {
1090  // vastart just stores the address of the VarArgsFrameIndex slot into the
1091  // memory location argument.
1092  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1093  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1094  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1095  return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1096                      SV->getOffset());
1097}
1098
1099/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1100/// depending on which subtarget is selected.
1101static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1102  if (Subtarget.isMachoABI()) {
1103    static const unsigned FPR[] = {
1104      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1105      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1106    };
1107    return FPR;
1108  }
1109
1110
1111  static const unsigned FPR[] = {
1112    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1113    PPC::F8, PPC::F9, PPC::F10
1114  };
1115  return FPR;
1116}
1117
1118static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1119                                       int &VarArgsFrameIndex,
1120                                       const PPCSubtarget &Subtarget) {
1121  // TODO: add description of PPC stack frame format, or at least some docs.
1122  //
1123  MachineFunction &MF = DAG.getMachineFunction();
1124  MachineFrameInfo *MFI = MF.getFrameInfo();
1125  SSARegMap *RegMap = MF.getSSARegMap();
1126  SmallVector<SDOperand, 8> ArgValues;
1127  SDOperand Root = Op.getOperand(0);
1128
1129  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1130  bool isPPC64 = PtrVT == MVT::i64;
1131  bool isMachoABI = Subtarget.isMachoABI();
1132  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1133
1134  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1135
1136  static const unsigned GPR_32[] = {           // 32-bit registers.
1137    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1138    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1139  };
1140  static const unsigned GPR_64[] = {           // 64-bit registers.
1141    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1142    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1143  };
1144
1145  static const unsigned *FPR = GetFPR(Subtarget);
1146
1147  static const unsigned VR[] = {
1148    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1149    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1150  };
1151
1152  const unsigned Num_GPR_Regs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1153  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 10;
1154  const unsigned Num_VR_Regs  = sizeof( VR)/sizeof( VR[0]);
1155
1156  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1157
1158  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1159
1160  // Add DAG nodes to load the arguments or copy them out of registers.  On
1161  // entry to a function on PPC, the arguments start after the linkage area,
1162  // although the first ones are often in registers.
1163  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1164    SDOperand ArgVal;
1165    bool needsLoad = false;
1166    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1167    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1168    unsigned ArgSize = ObjSize;
1169
1170    unsigned CurArgOffset = ArgOffset;
1171    switch (ObjectVT) {
1172    default: assert(0 && "Unhandled argument type!");
1173    case MVT::i32:
1174      if (GPR_idx != Num_GPR_Regs) {
1175        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1176        MF.addLiveIn(GPR[GPR_idx], VReg);
1177        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1178        ++GPR_idx;
1179      } else {
1180        needsLoad = true;
1181        ArgSize = PtrByteSize;
1182      }
1183      // All int arguments reserve stack space in Macho ABI.
1184      if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1185      break;
1186
1187    case MVT::i64:  // PPC64
1188      if (GPR_idx != Num_GPR_Regs) {
1189        unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1190        MF.addLiveIn(GPR[GPR_idx], VReg);
1191        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1192        ++GPR_idx;
1193      } else {
1194        needsLoad = true;
1195      }
1196      // All int arguments reserve stack space in Macho ABI.
1197      if (isMachoABI || needsLoad) ArgOffset += 8;
1198      break;
1199
1200    case MVT::f32:
1201    case MVT::f64:
1202      // Every 4 bytes of argument space consumes one of the GPRs available for
1203      // argument passing.
1204      if (GPR_idx != Num_GPR_Regs) {
1205        ++GPR_idx;
1206        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1207          ++GPR_idx;
1208      }
1209      if (FPR_idx != Num_FPR_Regs) {
1210        unsigned VReg;
1211        if (ObjectVT == MVT::f32)
1212          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
1213        else
1214          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1215        MF.addLiveIn(FPR[FPR_idx], VReg);
1216        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1217        ++FPR_idx;
1218      } else {
1219        needsLoad = true;
1220      }
1221
1222      // All FP arguments reserve stack space in Macho ABI.
1223      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1224      break;
1225    case MVT::v4f32:
1226    case MVT::v4i32:
1227    case MVT::v8i16:
1228    case MVT::v16i8:
1229      // Note that vector arguments in registers don't reserve stack space.
1230      if (VR_idx != Num_VR_Regs) {
1231        unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
1232        MF.addLiveIn(VR[VR_idx], VReg);
1233        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1234        ++VR_idx;
1235      } else {
1236        // This should be simple, but requires getting 16-byte aligned stack
1237        // values.
1238        assert(0 && "Loading VR argument not implemented yet!");
1239        needsLoad = true;
1240      }
1241      break;
1242    }
1243
1244    // We need to load the argument to a virtual register if we determined above
1245    // that we ran out of physical registers of the appropriate type
1246    if (needsLoad) {
1247      // If the argument is actually used, emit a load from the right stack
1248      // slot.
1249      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1250        int FI = MFI->CreateFixedObject(ObjSize,
1251                                        CurArgOffset + (ArgSize - ObjSize));
1252        SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1253        ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1254      } else {
1255        // Don't emit a dead load.
1256        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1257      }
1258    }
1259
1260    ArgValues.push_back(ArgVal);
1261  }
1262
1263  // If the function takes variable number of arguments, make a frame index for
1264  // the start of the first vararg value... for expansion of llvm.va_start.
1265  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1266  if (isVarArg) {
1267    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1268                                               ArgOffset);
1269    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1270    // If this function is vararg, store any remaining integer argument regs
1271    // to their spots on the stack so that they may be loaded by deferencing the
1272    // result of va_next.
1273    SmallVector<SDOperand, 8> MemOps;
1274    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1275      unsigned VReg;
1276      if (isPPC64)
1277        VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1278      else
1279        VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1280
1281      MF.addLiveIn(GPR[GPR_idx], VReg);
1282      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1283      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1284      MemOps.push_back(Store);
1285      // Increment the address by four for the next argument to store
1286      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1287      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1288    }
1289    if (!MemOps.empty())
1290      Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1291  }
1292
1293  ArgValues.push_back(Root);
1294
1295  // Return the new list of results.
1296  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1297                                    Op.Val->value_end());
1298  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1299}
1300
1301/// isCallCompatibleAddress - Return the immediate to use if the specified
1302/// 32-bit value is representable in the immediate field of a BxA instruction.
1303static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1304  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1305  if (!C) return 0;
1306
1307  int Addr = C->getValue();
1308  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1309      (Addr << 6 >> 6) != Addr)
1310    return 0;  // Top 6 bits have to be sext of immediate.
1311
1312  return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
1313}
1314
1315
1316static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
1317                           const PPCSubtarget &Subtarget) {
1318  SDOperand Chain  = Op.getOperand(0);
1319  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1320  SDOperand Callee = Op.getOperand(4);
1321  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
1322
1323  bool isMachoABI = Subtarget.isMachoABI();
1324
1325  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1326  bool isPPC64 = PtrVT == MVT::i64;
1327  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1328
1329  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1330  // SelectExpr to use to put the arguments in the appropriate registers.
1331  std::vector<SDOperand> args_to_use;
1332
1333  // Count how many bytes are to be pushed on the stack, including the linkage
1334  // area, and parameter passing area.  We start with 24/48 bytes, which is
1335  // prereserved space for [SP][CR][LR][3 x unused].
1336  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1337
1338  // Add up all the space actually used.
1339  for (unsigned i = 0; i != NumOps; ++i) {
1340    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1341    ArgSize = std::max(ArgSize, PtrByteSize);
1342    NumBytes += ArgSize;
1343  }
1344
1345  // The prolog code of the callee may store up to 8 GPR argument registers to
1346  // the stack, allowing va_start to index over them in memory if its varargs.
1347  // Because we cannot tell if this is needed on the caller side, we have to
1348  // conservatively assume that it is needed.  As such, make sure we have at
1349  // least enough stack space for the caller to store the 8 GPRs.
1350  NumBytes = std::max(NumBytes,
1351                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1352
1353  // Adjust the stack pointer for the new arguments...
1354  // These operations are automatically eliminated by the prolog/epilog pass
1355  Chain = DAG.getCALLSEQ_START(Chain,
1356                               DAG.getConstant(NumBytes, PtrVT));
1357
1358  // Set up a copy of the stack pointer for use loading and storing any
1359  // arguments that may not fit in the registers available for argument
1360  // passing.
1361  SDOperand StackPtr;
1362  if (isPPC64)
1363    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1364  else
1365    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1366
1367  // Figure out which arguments are going to go in registers, and which in
1368  // memory.  Also, if this is a vararg function, floating point operations
1369  // must be stored to our stack, and loaded into integer regs as well, if
1370  // any integer regs are available for argument passing.
1371  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1372  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1373
1374  static const unsigned GPR_32[] = {           // 32-bit registers.
1375    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1376    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1377  };
1378  static const unsigned GPR_64[] = {           // 64-bit registers.
1379    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1380    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1381  };
1382  static const unsigned *FPR = GetFPR(Subtarget);
1383
1384  static const unsigned VR[] = {
1385    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1386    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1387  };
1388  const unsigned NumGPRs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1389  const unsigned NumFPRs = isMachoABI ? 13 : 10;
1390  const unsigned NumVRs  = sizeof( VR)/sizeof( VR[0]);
1391
1392  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1393
1394  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1395  SmallVector<SDOperand, 8> MemOpChains;
1396  for (unsigned i = 0; i != NumOps; ++i) {
1397    bool inMem = false;
1398    SDOperand Arg = Op.getOperand(5+2*i);
1399
1400    // PtrOff will be used to store the current argument to the stack if a
1401    // register cannot be found for it.
1402    SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1403    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1404
1405    // On PPC64, promote integers to 64-bit values.
1406    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1407      unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1408      unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1409
1410      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1411    }
1412
1413    switch (Arg.getValueType()) {
1414    default: assert(0 && "Unexpected ValueType for argument!");
1415    case MVT::i32:
1416    case MVT::i64:
1417      if (GPR_idx != NumGPRs) {
1418        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1419      } else {
1420        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1421        inMem = true;
1422      }
1423      if (inMem || isMachoABI) ArgOffset += PtrByteSize;
1424      break;
1425    case MVT::f32:
1426    case MVT::f64:
1427      if (isVarArg) {
1428        // Float varargs need to be promoted to double.
1429        if (Arg.getValueType() == MVT::f32)
1430          Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1431      }
1432
1433      if (FPR_idx != NumFPRs) {
1434        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1435
1436        if (isVarArg) {
1437          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1438          MemOpChains.push_back(Store);
1439
1440          // Float varargs are always shadowed in available integer registers
1441          if (GPR_idx != NumGPRs) {
1442            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1443            MemOpChains.push_back(Load.getValue(1));
1444            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1445                                                                Load));
1446          }
1447          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1448            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1449            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1450            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1451            MemOpChains.push_back(Load.getValue(1));
1452            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1453                                                                Load));
1454          }
1455        } else {
1456          // If we have any FPRs remaining, we may also have GPRs remaining.
1457          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1458          // GPRs.
1459          if (isMachoABI) {
1460            if (GPR_idx != NumGPRs)
1461              ++GPR_idx;
1462            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1463                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
1464              ++GPR_idx;
1465          }
1466        }
1467      } else {
1468        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1469        inMem = true;
1470      }
1471      if (inMem || isMachoABI) {
1472        if (isPPC64)
1473          ArgOffset += 8;
1474        else
1475          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1476      }
1477      break;
1478    case MVT::v4f32:
1479    case MVT::v4i32:
1480    case MVT::v8i16:
1481    case MVT::v16i8:
1482      assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1483      assert(VR_idx != NumVRs &&
1484             "Don't support passing more than 12 vector args yet!");
1485      RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1486      break;
1487    }
1488  }
1489  if (!MemOpChains.empty())
1490    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1491                        &MemOpChains[0], MemOpChains.size());
1492
1493  // Build a sequence of copy-to-reg nodes chained together with token chain
1494  // and flag operands which copy the outgoing args into the appropriate regs.
1495  SDOperand InFlag;
1496  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1497    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1498                             InFlag);
1499    InFlag = Chain.getValue(1);
1500  }
1501
1502  // With the ELF ABI, set CR6 to true if this is a vararg call.
1503  if (isVarArg && !isMachoABI) {
1504    SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1505    Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1506    InFlag = Chain.getValue(1);
1507  }
1508
1509  std::vector<MVT::ValueType> NodeTys;
1510  NodeTys.push_back(MVT::Other);   // Returns a chain
1511  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1512
1513  SmallVector<SDOperand, 8> Ops;
1514  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1515
1516  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1517  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1518  // node so that legalize doesn't hack it.
1519  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1520    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1521  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1522    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1523  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1524    // If this is an absolute destination address, use the munged value.
1525    Callee = SDOperand(Dest, 0);
1526  else {
1527    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
1528    // to do the call, we can't use PPCISD::CALL.
1529    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1530    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1531    InFlag = Chain.getValue(1);
1532
1533    // Copy the callee address into R12 on darwin.
1534    if (isMachoABI) {
1535      Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1536      InFlag = Chain.getValue(1);
1537    }
1538
1539    NodeTys.clear();
1540    NodeTys.push_back(MVT::Other);
1541    NodeTys.push_back(MVT::Flag);
1542    Ops.push_back(Chain);
1543    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1544    Callee.Val = 0;
1545  }
1546
1547  // If this is a direct call, pass the chain and the callee.
1548  if (Callee.Val) {
1549    Ops.push_back(Chain);
1550    Ops.push_back(Callee);
1551  }
1552
1553  // Add argument registers to the end of the list so that they are known live
1554  // into the call.
1555  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1556    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1557                                  RegsToPass[i].second.getValueType()));
1558
1559  if (InFlag.Val)
1560    Ops.push_back(InFlag);
1561  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1562  InFlag = Chain.getValue(1);
1563
1564  SDOperand ResultVals[3];
1565  unsigned NumResults = 0;
1566  NodeTys.clear();
1567
1568  // If the call has results, copy the values out of the ret val registers.
1569  switch (Op.Val->getValueType(0)) {
1570  default: assert(0 && "Unexpected ret value!");
1571  case MVT::Other: break;
1572  case MVT::i32:
1573    if (Op.Val->getValueType(1) == MVT::i32) {
1574      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32, InFlag).getValue(1);
1575      ResultVals[0] = Chain.getValue(0);
1576      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32,
1577                                 Chain.getValue(2)).getValue(1);
1578      ResultVals[1] = Chain.getValue(0);
1579      NumResults = 2;
1580      NodeTys.push_back(MVT::i32);
1581    } else {
1582      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1583      ResultVals[0] = Chain.getValue(0);
1584      NumResults = 1;
1585    }
1586    NodeTys.push_back(MVT::i32);
1587    break;
1588  case MVT::i64:
1589    Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1590    ResultVals[0] = Chain.getValue(0);
1591    NumResults = 1;
1592    NodeTys.push_back(MVT::i64);
1593    break;
1594  case MVT::f32:
1595  case MVT::f64:
1596    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1597                               InFlag).getValue(1);
1598    ResultVals[0] = Chain.getValue(0);
1599    NumResults = 1;
1600    NodeTys.push_back(Op.Val->getValueType(0));
1601    break;
1602  case MVT::v4f32:
1603  case MVT::v4i32:
1604  case MVT::v8i16:
1605  case MVT::v16i8:
1606    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1607                                   InFlag).getValue(1);
1608    ResultVals[0] = Chain.getValue(0);
1609    NumResults = 1;
1610    NodeTys.push_back(Op.Val->getValueType(0));
1611    break;
1612  }
1613
1614  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1615                      DAG.getConstant(NumBytes, PtrVT));
1616  NodeTys.push_back(MVT::Other);
1617
1618  // If the function returns void, just return the chain.
1619  if (NumResults == 0)
1620    return Chain;
1621
1622  // Otherwise, merge everything together with a MERGE_VALUES node.
1623  ResultVals[NumResults++] = Chain;
1624  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1625                              ResultVals, NumResults);
1626  return Res.getValue(Op.ResNo);
1627}
1628
1629static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
1630  SDOperand Chain = Op.getOperand(0);
1631  switch(Op.getNumOperands()) {
1632  default:
1633    assert(0 && "Do not know how to return this many arguments!");
1634    abort();
1635  case 1:
1636    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
1637  case 3: {
1638    MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
1639    unsigned ArgReg;
1640    if (ArgVT == MVT::i32) {
1641      ArgReg = PPC::R3;
1642    } else if (ArgVT == MVT::i64) {
1643      ArgReg = PPC::X3;
1644    } else if (MVT::isVector(ArgVT)) {
1645      ArgReg = PPC::V2;
1646    } else {
1647      assert(MVT::isFloatingPoint(ArgVT));
1648      ArgReg = PPC::F1;
1649    }
1650
1651    Chain = DAG.getCopyToReg(Chain, ArgReg, Op.getOperand(1), SDOperand());
1652
1653    // If we haven't noted the R3/F1 are live out, do so now.
1654    if (DAG.getMachineFunction().liveout_empty())
1655      DAG.getMachineFunction().addLiveOut(ArgReg);
1656    break;
1657  }
1658  case 5:
1659    Chain = DAG.getCopyToReg(Chain, PPC::R3, Op.getOperand(3), SDOperand());
1660    Chain = DAG.getCopyToReg(Chain, PPC::R4, Op.getOperand(1),
1661                             Chain.getValue(1));
1662    // If we haven't noted the R3+R4 are live out, do so now.
1663    if (DAG.getMachineFunction().liveout_empty()) {
1664      DAG.getMachineFunction().addLiveOut(PPC::R3);
1665      DAG.getMachineFunction().addLiveOut(PPC::R4);
1666    }
1667    break;
1668  }
1669  return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Chain.getValue(1));
1670}
1671
1672static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1673                                   const PPCSubtarget &Subtarget) {
1674  // When we pop the dynamic allocation we need to restore the SP link.
1675
1676  // Get the corect type for pointers.
1677  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1678
1679  // Construct the stack pointer operand.
1680  bool IsPPC64 = Subtarget.isPPC64();
1681  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1682  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1683
1684  // Get the operands for the STACKRESTORE.
1685  SDOperand Chain = Op.getOperand(0);
1686  SDOperand SaveSP = Op.getOperand(1);
1687
1688  // Load the old link SP.
1689  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1690
1691  // Restore the stack pointer.
1692  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1693
1694  // Store the old link SP.
1695  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1696}
1697
1698static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1699                                         const PPCSubtarget &Subtarget) {
1700  MachineFunction &MF = DAG.getMachineFunction();
1701  bool IsPPC64 = Subtarget.isPPC64();
1702  bool isMachoABI = Subtarget.isMachoABI();
1703
1704  // Get current frame pointer save index.  The users of this index will be
1705  // primarily DYNALLOC instructions.
1706  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1707  int FPSI = FI->getFramePointerSaveIndex();
1708
1709  // If the frame pointer save index hasn't been defined yet.
1710  if (!FPSI) {
1711    // Find out what the fix offset of the frame pointer save area.
1712    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
1713
1714    // Allocate the frame index for frame pointer save area.
1715    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
1716    // Save the result.
1717    FI->setFramePointerSaveIndex(FPSI);
1718  }
1719
1720  // Get the inputs.
1721  SDOperand Chain = Op.getOperand(0);
1722  SDOperand Size  = Op.getOperand(1);
1723
1724  // Get the corect type for pointers.
1725  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1726  // Negate the size.
1727  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1728                                  DAG.getConstant(0, PtrVT), Size);
1729  // Construct a node for the frame pointer save index.
1730  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1731  // Build a DYNALLOC node.
1732  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1733  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1734  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1735}
1736
1737
1738/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1739/// possible.
1740static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1741  // Not FP? Not a fsel.
1742  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1743      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1744    return SDOperand();
1745
1746  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1747
1748  // Cannot handle SETEQ/SETNE.
1749  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
1750
1751  MVT::ValueType ResVT = Op.getValueType();
1752  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
1753  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1754  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
1755
1756  // If the RHS of the comparison is a 0.0, we don't need to do the
1757  // subtraction at all.
1758  if (isFloatingPointZero(RHS))
1759    switch (CC) {
1760    default: break;       // SETUO etc aren't handled by fsel.
1761    case ISD::SETULT:
1762    case ISD::SETOLT:
1763    case ISD::SETLT:
1764      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1765    case ISD::SETUGE:
1766    case ISD::SETOGE:
1767    case ISD::SETGE:
1768      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1769        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1770      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
1771    case ISD::SETUGT:
1772    case ISD::SETOGT:
1773    case ISD::SETGT:
1774      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1775    case ISD::SETULE:
1776    case ISD::SETOLE:
1777    case ISD::SETLE:
1778      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1779        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1780      return DAG.getNode(PPCISD::FSEL, ResVT,
1781                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
1782    }
1783
1784      SDOperand Cmp;
1785  switch (CC) {
1786  default: break;       // SETUO etc aren't handled by fsel.
1787  case ISD::SETULT:
1788  case ISD::SETOLT:
1789  case ISD::SETLT:
1790    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1791    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1792      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1793      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1794  case ISD::SETUGE:
1795  case ISD::SETOGE:
1796  case ISD::SETGE:
1797    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1798    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1799      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1800      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1801  case ISD::SETUGT:
1802  case ISD::SETOGT:
1803  case ISD::SETGT:
1804    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1805    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1806      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1807      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1808  case ISD::SETULE:
1809  case ISD::SETOLE:
1810  case ISD::SETLE:
1811    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1812    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1813      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1814      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1815  }
1816  return SDOperand();
1817}
1818
1819static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
1820  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
1821  SDOperand Src = Op.getOperand(0);
1822  if (Src.getValueType() == MVT::f32)
1823    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
1824
1825  SDOperand Tmp;
1826  switch (Op.getValueType()) {
1827  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
1828  case MVT::i32:
1829    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
1830    break;
1831  case MVT::i64:
1832    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
1833    break;
1834  }
1835
1836  // Convert the FP value to an int value through memory.
1837  SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
1838  if (Op.getValueType() == MVT::i32)
1839    Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
1840  return Bits;
1841}
1842
1843static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
1844  if (Op.getOperand(0).getValueType() == MVT::i64) {
1845    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
1846    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
1847    if (Op.getValueType() == MVT::f32)
1848      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1849    return FP;
1850  }
1851
1852  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
1853         "Unhandled SINT_TO_FP type in custom expander!");
1854  // Since we only generate this in 64-bit mode, we can take advantage of
1855  // 64-bit registers.  In particular, sign extend the input value into the
1856  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
1857  // then lfd it and fcfid it.
1858  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1859  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
1860  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1861  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
1862
1863  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
1864                                Op.getOperand(0));
1865
1866  // STD the extended value into the stack slot.
1867  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
1868                                DAG.getEntryNode(), Ext64, FIdx,
1869                                DAG.getSrcValue(NULL));
1870  // Load the value as a double.
1871  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
1872
1873  // FCFID it and return it.
1874  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
1875  if (Op.getValueType() == MVT::f32)
1876    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1877  return FP;
1878}
1879
1880static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
1881  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1882         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1883
1884  // Expand into a bunch of logical ops.  Note that these ops
1885  // depend on the PPC behavior for oversized shift amounts.
1886  SDOperand Lo = Op.getOperand(0);
1887  SDOperand Hi = Op.getOperand(1);
1888  SDOperand Amt = Op.getOperand(2);
1889
1890  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1891                               DAG.getConstant(32, MVT::i32), Amt);
1892  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
1893  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
1894  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1895  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1896                               DAG.getConstant(-32U, MVT::i32));
1897  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
1898  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1899  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
1900  SDOperand OutOps[] = { OutLo, OutHi };
1901  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1902                     OutOps, 2);
1903}
1904
1905static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
1906  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1907         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
1908
1909  // Otherwise, expand into a bunch of logical ops.  Note that these ops
1910  // depend on the PPC behavior for oversized shift amounts.
1911  SDOperand Lo = Op.getOperand(0);
1912  SDOperand Hi = Op.getOperand(1);
1913  SDOperand Amt = Op.getOperand(2);
1914
1915  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1916                               DAG.getConstant(32, MVT::i32), Amt);
1917  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1918  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1919  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1920  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1921                               DAG.getConstant(-32U, MVT::i32));
1922  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
1923  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1924  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
1925  SDOperand OutOps[] = { OutLo, OutHi };
1926  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1927                     OutOps, 2);
1928}
1929
1930static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
1931  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1932         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
1933
1934  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
1935  SDOperand Lo = Op.getOperand(0);
1936  SDOperand Hi = Op.getOperand(1);
1937  SDOperand Amt = Op.getOperand(2);
1938
1939  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1940                               DAG.getConstant(32, MVT::i32), Amt);
1941  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1942  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1943  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1944  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1945                               DAG.getConstant(-32U, MVT::i32));
1946  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
1947  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
1948  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
1949                                    Tmp4, Tmp6, ISD::SETLE);
1950  SDOperand OutOps[] = { OutLo, OutHi };
1951  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1952                     OutOps, 2);
1953}
1954
1955//===----------------------------------------------------------------------===//
1956// Vector related lowering.
1957//
1958
1959// If this is a vector of constants or undefs, get the bits.  A bit in
1960// UndefBits is set if the corresponding element of the vector is an
1961// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
1962// zero.   Return true if this is not an array of constants, false if it is.
1963//
1964static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
1965                                       uint64_t UndefBits[2]) {
1966  // Start with zero'd results.
1967  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
1968
1969  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
1970  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
1971    SDOperand OpVal = BV->getOperand(i);
1972
1973    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
1974    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
1975
1976    uint64_t EltBits = 0;
1977    if (OpVal.getOpcode() == ISD::UNDEF) {
1978      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
1979      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
1980      continue;
1981    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1982      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
1983    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1984      assert(CN->getValueType(0) == MVT::f32 &&
1985             "Only one legal FP vector type!");
1986      EltBits = FloatToBits(CN->getValue());
1987    } else {
1988      // Nonconstant element.
1989      return true;
1990    }
1991
1992    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
1993  }
1994
1995  //printf("%llx %llx  %llx %llx\n",
1996  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
1997  return false;
1998}
1999
2000// If this is a splat (repetition) of a value across the whole vector, return
2001// the smallest size that splats it.  For example, "0x01010101010101..." is a
2002// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2003// SplatSize = 1 byte.
2004static bool isConstantSplat(const uint64_t Bits128[2],
2005                            const uint64_t Undef128[2],
2006                            unsigned &SplatBits, unsigned &SplatUndef,
2007                            unsigned &SplatSize) {
2008
2009  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
2010  // the same as the lower 64-bits, ignoring undefs.
2011  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2012    return false;  // Can't be a splat if two pieces don't match.
2013
2014  uint64_t Bits64  = Bits128[0] | Bits128[1];
2015  uint64_t Undef64 = Undef128[0] & Undef128[1];
2016
2017  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2018  // undefs.
2019  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2020    return false;  // Can't be a splat if two pieces don't match.
2021
2022  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2023  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2024
2025  // If the top 16-bits are different than the lower 16-bits, ignoring
2026  // undefs, we have an i32 splat.
2027  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2028    SplatBits = Bits32;
2029    SplatUndef = Undef32;
2030    SplatSize = 4;
2031    return true;
2032  }
2033
2034  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
2035  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2036
2037  // If the top 8-bits are different than the lower 8-bits, ignoring
2038  // undefs, we have an i16 splat.
2039  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2040    SplatBits = Bits16;
2041    SplatUndef = Undef16;
2042    SplatSize = 2;
2043    return true;
2044  }
2045
2046  // Otherwise, we have an 8-bit splat.
2047  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
2048  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2049  SplatSize = 1;
2050  return true;
2051}
2052
2053/// BuildSplatI - Build a canonical splati of Val with an element size of
2054/// SplatSize.  Cast the result to VT.
2055static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2056                             SelectionDAG &DAG) {
2057  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2058
2059  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2060    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2061  };
2062
2063  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2064
2065  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2066  if (Val == -1)
2067    SplatSize = 1;
2068
2069  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2070
2071  // Build a canonical splat for this value.
2072  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
2073  SmallVector<SDOperand, 8> Ops;
2074  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2075  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2076                              &Ops[0], Ops.size());
2077  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2078}
2079
2080/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2081/// specified intrinsic ID.
2082static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2083                                  SelectionDAG &DAG,
2084                                  MVT::ValueType DestVT = MVT::Other) {
2085  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2086  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2087                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2088}
2089
2090/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2091/// specified intrinsic ID.
2092static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2093                                  SDOperand Op2, SelectionDAG &DAG,
2094                                  MVT::ValueType DestVT = MVT::Other) {
2095  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2096  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2097                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2098}
2099
2100
2101/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2102/// amount.  The result has the specified value type.
2103static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2104                             MVT::ValueType VT, SelectionDAG &DAG) {
2105  // Force LHS/RHS to be the right type.
2106  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2107  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2108
2109  SDOperand Ops[16];
2110  for (unsigned i = 0; i != 16; ++i)
2111    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2112  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2113                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2114  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2115}
2116
2117// If this is a case we can't handle, return null and let the default
2118// expansion code take care of it.  If we CAN select this case, and if it
2119// selects to a single instruction, return Op.  Otherwise, if we can codegen
2120// this case more efficiently than a constant pool load, lower it to the
2121// sequence of ops that should be used.
2122static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2123  // If this is a vector of constants or undefs, get the bits.  A bit in
2124  // UndefBits is set if the corresponding element of the vector is an
2125  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2126  // zero.
2127  uint64_t VectorBits[2];
2128  uint64_t UndefBits[2];
2129  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2130    return SDOperand();   // Not a constant vector.
2131
2132  // If this is a splat (repetition) of a value across the whole vector, return
2133  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2134  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2135  // SplatSize = 1 byte.
2136  unsigned SplatBits, SplatUndef, SplatSize;
2137  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2138    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2139
2140    // First, handle single instruction cases.
2141
2142    // All zeros?
2143    if (SplatBits == 0) {
2144      // Canonicalize all zero vectors to be v4i32.
2145      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2146        SDOperand Z = DAG.getConstant(0, MVT::i32);
2147        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2148        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2149      }
2150      return Op;
2151    }
2152
2153    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2154    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2155    if (SextVal >= -16 && SextVal <= 15)
2156      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2157
2158
2159    // Two instruction sequences.
2160
2161    // If this value is in the range [-32,30] and is even, use:
2162    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2163    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2164      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2165      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2166    }
2167
2168    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2169    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2170    // for fneg/fabs.
2171    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2172      // Make -1 and vspltisw -1:
2173      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2174
2175      // Make the VSLW intrinsic, computing 0x8000_0000.
2176      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2177                                       OnesV, DAG);
2178
2179      // xor by OnesV to invert it.
2180      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2181      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2182    }
2183
2184    // Check to see if this is a wide variety of vsplti*, binop self cases.
2185    unsigned SplatBitSize = SplatSize*8;
2186    static const char SplatCsts[] = {
2187      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2188      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2189    };
2190
2191    for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
2192      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2193      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2194      int i = SplatCsts[idx];
2195
2196      // Figure out what shift amount will be used by altivec if shifted by i in
2197      // this splat size.
2198      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2199
2200      // vsplti + shl self.
2201      if (SextVal == (i << (int)TypeShiftAmt)) {
2202        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2203        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2204          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2205          Intrinsic::ppc_altivec_vslw
2206        };
2207        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2208        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2209      }
2210
2211      // vsplti + srl self.
2212      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2213        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2214        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2215          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2216          Intrinsic::ppc_altivec_vsrw
2217        };
2218        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2219        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2220      }
2221
2222      // vsplti + sra self.
2223      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2224        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2225        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2226          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2227          Intrinsic::ppc_altivec_vsraw
2228        };
2229        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2230        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2231      }
2232
2233      // vsplti + rol self.
2234      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2235                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2236        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2237        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2238          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2239          Intrinsic::ppc_altivec_vrlw
2240        };
2241        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2242        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2243      }
2244
2245      // t = vsplti c, result = vsldoi t, t, 1
2246      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2247        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2248        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2249      }
2250      // t = vsplti c, result = vsldoi t, t, 2
2251      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2252        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2253        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2254      }
2255      // t = vsplti c, result = vsldoi t, t, 3
2256      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2257        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2258        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2259      }
2260    }
2261
2262    // Three instruction sequences.
2263
2264    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2265    if (SextVal >= 0 && SextVal <= 31) {
2266      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2267      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2268      LHS = DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
2269      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2270    }
2271    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2272    if (SextVal >= -31 && SextVal <= 0) {
2273      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2274      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2275      LHS = DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
2276      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2277    }
2278  }
2279
2280  return SDOperand();
2281}
2282
2283/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2284/// the specified operations to build the shuffle.
2285static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2286                                        SDOperand RHS, SelectionDAG &DAG) {
2287  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2288  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
2289  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2290
2291  enum {
2292    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2293    OP_VMRGHW,
2294    OP_VMRGLW,
2295    OP_VSPLTISW0,
2296    OP_VSPLTISW1,
2297    OP_VSPLTISW2,
2298    OP_VSPLTISW3,
2299    OP_VSLDOI4,
2300    OP_VSLDOI8,
2301    OP_VSLDOI12
2302  };
2303
2304  if (OpNum == OP_COPY) {
2305    if (LHSID == (1*9+2)*9+3) return LHS;
2306    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2307    return RHS;
2308  }
2309
2310  SDOperand OpLHS, OpRHS;
2311  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2312  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2313
2314  unsigned ShufIdxs[16];
2315  switch (OpNum) {
2316  default: assert(0 && "Unknown i32 permute!");
2317  case OP_VMRGHW:
2318    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
2319    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2320    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
2321    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2322    break;
2323  case OP_VMRGLW:
2324    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2325    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2326    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2327    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2328    break;
2329  case OP_VSPLTISW0:
2330    for (unsigned i = 0; i != 16; ++i)
2331      ShufIdxs[i] = (i&3)+0;
2332    break;
2333  case OP_VSPLTISW1:
2334    for (unsigned i = 0; i != 16; ++i)
2335      ShufIdxs[i] = (i&3)+4;
2336    break;
2337  case OP_VSPLTISW2:
2338    for (unsigned i = 0; i != 16; ++i)
2339      ShufIdxs[i] = (i&3)+8;
2340    break;
2341  case OP_VSPLTISW3:
2342    for (unsigned i = 0; i != 16; ++i)
2343      ShufIdxs[i] = (i&3)+12;
2344    break;
2345  case OP_VSLDOI4:
2346    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2347  case OP_VSLDOI8:
2348    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2349  case OP_VSLDOI12:
2350    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2351  }
2352  SDOperand Ops[16];
2353  for (unsigned i = 0; i != 16; ++i)
2354    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2355
2356  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2357                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2358}
2359
2360/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
2361/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
2362/// return the code it can be lowered into.  Worst case, it can always be
2363/// lowered into a vperm.
2364static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2365  SDOperand V1 = Op.getOperand(0);
2366  SDOperand V2 = Op.getOperand(1);
2367  SDOperand PermMask = Op.getOperand(2);
2368
2369  // Cases that are handled by instructions that take permute immediates
2370  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2371  // selected by the instruction selector.
2372  if (V2.getOpcode() == ISD::UNDEF) {
2373    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2374        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2375        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2376        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2377        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2378        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2379        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2380        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2381        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2382        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2383        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2384        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2385      return Op;
2386    }
2387  }
2388
2389  // Altivec has a variety of "shuffle immediates" that take two vector inputs
2390  // and produce a fixed permutation.  If any of these match, do not lower to
2391  // VPERM.
2392  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2393      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2394      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2395      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2396      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2397      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2398      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2399      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2400      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2401    return Op;
2402
2403  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
2404  // perfect shuffle table to emit an optimal matching sequence.
2405  unsigned PFIndexes[4];
2406  bool isFourElementShuffle = true;
2407  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2408    unsigned EltNo = 8;   // Start out undef.
2409    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
2410      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2411        continue;   // Undef, ignore it.
2412
2413      unsigned ByteSource =
2414        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2415      if ((ByteSource & 3) != j) {
2416        isFourElementShuffle = false;
2417        break;
2418      }
2419
2420      if (EltNo == 8) {
2421        EltNo = ByteSource/4;
2422      } else if (EltNo != ByteSource/4) {
2423        isFourElementShuffle = false;
2424        break;
2425      }
2426    }
2427    PFIndexes[i] = EltNo;
2428  }
2429
2430  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2431  // perfect shuffle vector to determine if it is cost effective to do this as
2432  // discrete instructions, or whether we should use a vperm.
2433  if (isFourElementShuffle) {
2434    // Compute the index in the perfect shuffle table.
2435    unsigned PFTableIndex =
2436      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2437
2438    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2439    unsigned Cost  = (PFEntry >> 30);
2440
2441    // Determining when to avoid vperm is tricky.  Many things affect the cost
2442    // of vperm, particularly how many times the perm mask needs to be computed.
2443    // For example, if the perm mask can be hoisted out of a loop or is already
2444    // used (perhaps because there are multiple permutes with the same shuffle
2445    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
2446    // the loop requires an extra register.
2447    //
2448    // As a compromise, we only emit discrete instructions if the shuffle can be
2449    // generated in 3 or fewer operations.  When we have loop information
2450    // available, if this block is within a loop, we should avoid using vperm
2451    // for 3-operation perms and use a constant pool load instead.
2452    if (Cost < 3)
2453      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2454  }
2455
2456  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2457  // vector that will get spilled to the constant pool.
2458  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2459
2460  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2461  // that it is in input element units, not in bytes.  Convert now.
2462  MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
2463  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2464
2465  SmallVector<SDOperand, 16> ResultMask;
2466  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2467    unsigned SrcElt;
2468    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2469      SrcElt = 0;
2470    else
2471      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2472
2473    for (unsigned j = 0; j != BytesPerElement; ++j)
2474      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2475                                           MVT::i8));
2476  }
2477
2478  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2479                                    &ResultMask[0], ResultMask.size());
2480  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2481}
2482
2483/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2484/// altivec comparison.  If it is, return true and fill in Opc/isDot with
2485/// information about the intrinsic.
2486static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2487                                  bool &isDot) {
2488  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2489  CompareOpc = -1;
2490  isDot = false;
2491  switch (IntrinsicID) {
2492  default: return false;
2493    // Comparison predicates.
2494  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
2495  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2496  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
2497  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
2498  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2499  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2500  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2501  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2502  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2503  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2504  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2505  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2506  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2507
2508    // Normal Comparisons.
2509  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
2510  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
2511  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
2512  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
2513  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
2514  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
2515  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
2516  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
2517  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
2518  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
2519  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
2520  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
2521  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
2522  }
2523  return true;
2524}
2525
2526/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2527/// lower, do it, otherwise return null.
2528static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2529  // If this is a lowered altivec predicate compare, CompareOpc is set to the
2530  // opcode number of the comparison.
2531  int CompareOpc;
2532  bool isDot;
2533  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2534    return SDOperand();    // Don't custom lower most intrinsics.
2535
2536  // If this is a non-dot comparison, make the VCMP node and we are done.
2537  if (!isDot) {
2538    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2539                                Op.getOperand(1), Op.getOperand(2),
2540                                DAG.getConstant(CompareOpc, MVT::i32));
2541    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2542  }
2543
2544  // Create the PPCISD altivec 'dot' comparison node.
2545  SDOperand Ops[] = {
2546    Op.getOperand(2),  // LHS
2547    Op.getOperand(3),  // RHS
2548    DAG.getConstant(CompareOpc, MVT::i32)
2549  };
2550  std::vector<MVT::ValueType> VTs;
2551  VTs.push_back(Op.getOperand(2).getValueType());
2552  VTs.push_back(MVT::Flag);
2553  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2554
2555  // Now that we have the comparison, emit a copy from the CR to a GPR.
2556  // This is flagged to the above dot comparison.
2557  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2558                                DAG.getRegister(PPC::CR6, MVT::i32),
2559                                CompNode.getValue(1));
2560
2561  // Unpack the result based on how the target uses it.
2562  unsigned BitNo;   // Bit # of CR6.
2563  bool InvertBit;   // Invert result?
2564  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2565  default:  // Can't happen, don't crash on invalid number though.
2566  case 0:   // Return the value of the EQ bit of CR6.
2567    BitNo = 0; InvertBit = false;
2568    break;
2569  case 1:   // Return the inverted value of the EQ bit of CR6.
2570    BitNo = 0; InvertBit = true;
2571    break;
2572  case 2:   // Return the value of the LT bit of CR6.
2573    BitNo = 2; InvertBit = false;
2574    break;
2575  case 3:   // Return the inverted value of the LT bit of CR6.
2576    BitNo = 2; InvertBit = true;
2577    break;
2578  }
2579
2580  // Shift the bit into the low position.
2581  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2582                      DAG.getConstant(8-(3-BitNo), MVT::i32));
2583  // Isolate the bit.
2584  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2585                      DAG.getConstant(1, MVT::i32));
2586
2587  // If we are supposed to, toggle the bit.
2588  if (InvertBit)
2589    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2590                        DAG.getConstant(1, MVT::i32));
2591  return Flags;
2592}
2593
2594static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2595  // Create a stack slot that is 16-byte aligned.
2596  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2597  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2598  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2599  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2600
2601  // Store the input value into Value#0 of the stack slot.
2602  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2603                                 Op.getOperand(0), FIdx, NULL, 0);
2604  // Load it out.
2605  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2606}
2607
2608static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2609  if (Op.getValueType() == MVT::v4i32) {
2610    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2611
2612    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
2613    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2614
2615    SDOperand RHSSwap =   // = vrlw RHS, 16
2616      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2617
2618    // Shrinkify inputs to v8i16.
2619    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2620    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2621    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2622
2623    // Low parts multiplied together, generating 32-bit results (we ignore the
2624    // top parts).
2625    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2626                                        LHS, RHS, DAG, MVT::v4i32);
2627
2628    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2629                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2630    // Shift the high parts up 16 bits.
2631    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2632    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2633  } else if (Op.getValueType() == MVT::v8i16) {
2634    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2635
2636    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2637
2638    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2639                            LHS, RHS, Zero, DAG);
2640  } else if (Op.getValueType() == MVT::v16i8) {
2641    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2642
2643    // Multiply the even 8-bit parts, producing 16-bit sums.
2644    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2645                                           LHS, RHS, DAG, MVT::v8i16);
2646    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2647
2648    // Multiply the odd 8-bit parts, producing 16-bit sums.
2649    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2650                                          LHS, RHS, DAG, MVT::v8i16);
2651    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2652
2653    // Merge the results together.
2654    SDOperand Ops[16];
2655    for (unsigned i = 0; i != 8; ++i) {
2656      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
2657      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2658    }
2659    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2660                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2661  } else {
2662    assert(0 && "Unknown mul to lower!");
2663    abort();
2664  }
2665}
2666
2667/// LowerOperation - Provide custom lowering hooks for some operations.
2668///
2669SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2670  switch (Op.getOpcode()) {
2671  default: assert(0 && "Wasn't expecting to be able to lower this!");
2672  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
2673  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
2674  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
2675  case ISD::SETCC:              return LowerSETCC(Op, DAG);
2676  case ISD::VASTART:            return LowerVASTART(Op, DAG, VarArgsFrameIndex);
2677  case ISD::FORMAL_ARGUMENTS:
2678    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex, PPCSubTarget);
2679  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget);
2680  case ISD::RET:                return LowerRET(Op, DAG);
2681  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
2682  case ISD::DYNAMIC_STACKALLOC:
2683    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
2684
2685  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
2686  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
2687  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
2688
2689  // Lower 64-bit shifts.
2690  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
2691  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
2692  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
2693
2694  // Vector-related lowering.
2695  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
2696  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
2697  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2698  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
2699  case ISD::MUL:                return LowerMUL(Op, DAG);
2700
2701  // Frame & Return address.  Currently unimplemented
2702  case ISD::RETURNADDR:         break;
2703  case ISD::FRAMEADDR:          break;
2704  }
2705  return SDOperand();
2706}
2707
2708//===----------------------------------------------------------------------===//
2709//  Other Lowering Code
2710//===----------------------------------------------------------------------===//
2711
2712MachineBasicBlock *
2713PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2714                                           MachineBasicBlock *BB) {
2715  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2716  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
2717          MI->getOpcode() == PPC::SELECT_CC_I8 ||
2718          MI->getOpcode() == PPC::SELECT_CC_F4 ||
2719          MI->getOpcode() == PPC::SELECT_CC_F8 ||
2720          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2721         "Unexpected instr type to insert");
2722
2723  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2724  // control-flow pattern.  The incoming instruction knows the destination vreg
2725  // to set, the condition code register to branch on, the true/false values to
2726  // select between, and a branch opcode to use.
2727  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2728  ilist<MachineBasicBlock>::iterator It = BB;
2729  ++It;
2730
2731  //  thisMBB:
2732  //  ...
2733  //   TrueVal = ...
2734  //   cmpTY ccX, r1, r2
2735  //   bCC copy1MBB
2736  //   fallthrough --> copy0MBB
2737  MachineBasicBlock *thisMBB = BB;
2738  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2739  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2740  unsigned SelectPred = MI->getOperand(4).getImm();
2741  BuildMI(BB, TII->get(PPC::BCC))
2742    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2743  MachineFunction *F = BB->getParent();
2744  F->getBasicBlockList().insert(It, copy0MBB);
2745  F->getBasicBlockList().insert(It, sinkMBB);
2746  // Update machine-CFG edges by first adding all successors of the current
2747  // block to the new block which will contain the Phi node for the select.
2748  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2749      e = BB->succ_end(); i != e; ++i)
2750    sinkMBB->addSuccessor(*i);
2751  // Next, remove all successors of the current block, and add the true
2752  // and fallthrough blocks as its successors.
2753  while(!BB->succ_empty())
2754    BB->removeSuccessor(BB->succ_begin());
2755  BB->addSuccessor(copy0MBB);
2756  BB->addSuccessor(sinkMBB);
2757
2758  //  copy0MBB:
2759  //   %FalseValue = ...
2760  //   # fallthrough to sinkMBB
2761  BB = copy0MBB;
2762
2763  // Update machine-CFG edges
2764  BB->addSuccessor(sinkMBB);
2765
2766  //  sinkMBB:
2767  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2768  //  ...
2769  BB = sinkMBB;
2770  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
2771    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2772    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2773
2774  delete MI;   // The pseudo instruction is gone now.
2775  return BB;
2776}
2777
2778//===----------------------------------------------------------------------===//
2779// Target Optimization Hooks
2780//===----------------------------------------------------------------------===//
2781
2782SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2783                                               DAGCombinerInfo &DCI) const {
2784  TargetMachine &TM = getTargetMachine();
2785  SelectionDAG &DAG = DCI.DAG;
2786  switch (N->getOpcode()) {
2787  default: break;
2788  case PPCISD::SHL:
2789    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2790      if (C->getValue() == 0)   // 0 << V -> 0.
2791        return N->getOperand(0);
2792    }
2793    break;
2794  case PPCISD::SRL:
2795    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2796      if (C->getValue() == 0)   // 0 >>u V -> 0.
2797        return N->getOperand(0);
2798    }
2799    break;
2800  case PPCISD::SRA:
2801    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2802      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
2803          C->isAllOnesValue())    // -1 >>s V -> -1.
2804        return N->getOperand(0);
2805    }
2806    break;
2807
2808  case ISD::SINT_TO_FP:
2809    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
2810      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
2811        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
2812        // We allow the src/dst to be either f32/f64, but the intermediate
2813        // type must be i64.
2814        if (N->getOperand(0).getValueType() == MVT::i64) {
2815          SDOperand Val = N->getOperand(0).getOperand(0);
2816          if (Val.getValueType() == MVT::f32) {
2817            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2818            DCI.AddToWorklist(Val.Val);
2819          }
2820
2821          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
2822          DCI.AddToWorklist(Val.Val);
2823          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
2824          DCI.AddToWorklist(Val.Val);
2825          if (N->getValueType(0) == MVT::f32) {
2826            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
2827            DCI.AddToWorklist(Val.Val);
2828          }
2829          return Val;
2830        } else if (N->getOperand(0).getValueType() == MVT::i32) {
2831          // If the intermediate type is i32, we can avoid the load/store here
2832          // too.
2833        }
2834      }
2835    }
2836    break;
2837  case ISD::STORE:
2838    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
2839    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
2840        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
2841        N->getOperand(1).getValueType() == MVT::i32) {
2842      SDOperand Val = N->getOperand(1).getOperand(0);
2843      if (Val.getValueType() == MVT::f32) {
2844        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2845        DCI.AddToWorklist(Val.Val);
2846      }
2847      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
2848      DCI.AddToWorklist(Val.Val);
2849
2850      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
2851                        N->getOperand(2), N->getOperand(3));
2852      DCI.AddToWorklist(Val.Val);
2853      return Val;
2854    }
2855
2856    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
2857    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
2858        N->getOperand(1).Val->hasOneUse() &&
2859        (N->getOperand(1).getValueType() == MVT::i32 ||
2860         N->getOperand(1).getValueType() == MVT::i16)) {
2861      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
2862      // Do an any-extend to 32-bits if this is a half-word input.
2863      if (BSwapOp.getValueType() == MVT::i16)
2864        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
2865
2866      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
2867                         N->getOperand(2), N->getOperand(3),
2868                         DAG.getValueType(N->getOperand(1).getValueType()));
2869    }
2870    break;
2871  case ISD::BSWAP:
2872    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
2873    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
2874        N->getOperand(0).hasOneUse() &&
2875        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
2876      SDOperand Load = N->getOperand(0);
2877      LoadSDNode *LD = cast<LoadSDNode>(Load);
2878      // Create the byte-swapping load.
2879      std::vector<MVT::ValueType> VTs;
2880      VTs.push_back(MVT::i32);
2881      VTs.push_back(MVT::Other);
2882      SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
2883      SDOperand Ops[] = {
2884        LD->getChain(),    // Chain
2885        LD->getBasePtr(),  // Ptr
2886        SV,                // SrcValue
2887        DAG.getValueType(N->getValueType(0)) // VT
2888      };
2889      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
2890
2891      // If this is an i16 load, insert the truncate.
2892      SDOperand ResVal = BSLoad;
2893      if (N->getValueType(0) == MVT::i16)
2894        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
2895
2896      // First, combine the bswap away.  This makes the value produced by the
2897      // load dead.
2898      DCI.CombineTo(N, ResVal);
2899
2900      // Next, combine the load away, we give it a bogus result value but a real
2901      // chain result.  The result value is dead because the bswap is dead.
2902      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
2903
2904      // Return N so it doesn't get rechecked!
2905      return SDOperand(N, 0);
2906    }
2907
2908    break;
2909  case PPCISD::VCMP: {
2910    // If a VCMPo node already exists with exactly the same operands as this
2911    // node, use its result instead of this node (VCMPo computes both a CR6 and
2912    // a normal output).
2913    //
2914    if (!N->getOperand(0).hasOneUse() &&
2915        !N->getOperand(1).hasOneUse() &&
2916        !N->getOperand(2).hasOneUse()) {
2917
2918      // Scan all of the users of the LHS, looking for VCMPo's that match.
2919      SDNode *VCMPoNode = 0;
2920
2921      SDNode *LHSN = N->getOperand(0).Val;
2922      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2923           UI != E; ++UI)
2924        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2925            (*UI)->getOperand(1) == N->getOperand(1) &&
2926            (*UI)->getOperand(2) == N->getOperand(2) &&
2927            (*UI)->getOperand(0) == N->getOperand(0)) {
2928          VCMPoNode = *UI;
2929          break;
2930        }
2931
2932      // If there is no VCMPo node, or if the flag value has a single use, don't
2933      // transform this.
2934      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
2935        break;
2936
2937      // Look at the (necessarily single) use of the flag value.  If it has a
2938      // chain, this transformation is more complex.  Note that multiple things
2939      // could use the value result, which we should ignore.
2940      SDNode *FlagUser = 0;
2941      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
2942           FlagUser == 0; ++UI) {
2943        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
2944        SDNode *User = *UI;
2945        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2946          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
2947            FlagUser = User;
2948            break;
2949          }
2950        }
2951      }
2952
2953      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
2954      // give up for right now.
2955      if (FlagUser->getOpcode() == PPCISD::MFCR)
2956        return SDOperand(VCMPoNode, 0);
2957    }
2958    break;
2959  }
2960  case ISD::BR_CC: {
2961    // If this is a branch on an altivec predicate comparison, lower this so
2962    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
2963    // lowering is done pre-legalize, because the legalizer lowers the predicate
2964    // compare down to code that is difficult to reassemble.
2965    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2966    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
2967    int CompareOpc;
2968    bool isDot;
2969
2970    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2971        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
2972        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
2973      assert(isDot && "Can't compare against a vector result!");
2974
2975      // If this is a comparison against something other than 0/1, then we know
2976      // that the condition is never/always true.
2977      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
2978      if (Val != 0 && Val != 1) {
2979        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
2980          return N->getOperand(0);
2981        // Always !=, turn it into an unconditional branch.
2982        return DAG.getNode(ISD::BR, MVT::Other,
2983                           N->getOperand(0), N->getOperand(4));
2984      }
2985
2986      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
2987
2988      // Create the PPCISD altivec 'dot' comparison node.
2989      std::vector<MVT::ValueType> VTs;
2990      SDOperand Ops[] = {
2991        LHS.getOperand(2),  // LHS of compare
2992        LHS.getOperand(3),  // RHS of compare
2993        DAG.getConstant(CompareOpc, MVT::i32)
2994      };
2995      VTs.push_back(LHS.getOperand(2).getValueType());
2996      VTs.push_back(MVT::Flag);
2997      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2998
2999      // Unpack the result based on how the target uses it.
3000      PPC::Predicate CompOpc;
3001      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3002      default:  // Can't happen, don't crash on invalid number though.
3003      case 0:   // Branch on the value of the EQ bit of CR6.
3004        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3005        break;
3006      case 1:   // Branch on the inverted value of the EQ bit of CR6.
3007        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3008        break;
3009      case 2:   // Branch on the value of the LT bit of CR6.
3010        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3011        break;
3012      case 3:   // Branch on the inverted value of the LT bit of CR6.
3013        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3014        break;
3015      }
3016
3017      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3018                         DAG.getConstant(CompOpc, MVT::i32),
3019                         DAG.getRegister(PPC::CR6, MVT::i32),
3020                         N->getOperand(4), CompNode.getValue(1));
3021    }
3022    break;
3023  }
3024  }
3025
3026  return SDOperand();
3027}
3028
3029//===----------------------------------------------------------------------===//
3030// Inline Assembly Support
3031//===----------------------------------------------------------------------===//
3032
3033void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3034                                                       uint64_t Mask,
3035                                                       uint64_t &KnownZero,
3036                                                       uint64_t &KnownOne,
3037                                                       unsigned Depth) const {
3038  KnownZero = 0;
3039  KnownOne = 0;
3040  switch (Op.getOpcode()) {
3041  default: break;
3042  case PPCISD::LBRX: {
3043    // lhbrx is known to have the top bits cleared out.
3044    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3045      KnownZero = 0xFFFF0000;
3046    break;
3047  }
3048  case ISD::INTRINSIC_WO_CHAIN: {
3049    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3050    default: break;
3051    case Intrinsic::ppc_altivec_vcmpbfp_p:
3052    case Intrinsic::ppc_altivec_vcmpeqfp_p:
3053    case Intrinsic::ppc_altivec_vcmpequb_p:
3054    case Intrinsic::ppc_altivec_vcmpequh_p:
3055    case Intrinsic::ppc_altivec_vcmpequw_p:
3056    case Intrinsic::ppc_altivec_vcmpgefp_p:
3057    case Intrinsic::ppc_altivec_vcmpgtfp_p:
3058    case Intrinsic::ppc_altivec_vcmpgtsb_p:
3059    case Intrinsic::ppc_altivec_vcmpgtsh_p:
3060    case Intrinsic::ppc_altivec_vcmpgtsw_p:
3061    case Intrinsic::ppc_altivec_vcmpgtub_p:
3062    case Intrinsic::ppc_altivec_vcmpgtuh_p:
3063    case Intrinsic::ppc_altivec_vcmpgtuw_p:
3064      KnownZero = ~1U;  // All bits but the low one are known to be zero.
3065      break;
3066    }
3067  }
3068  }
3069}
3070
3071
3072/// getConstraintType - Given a constraint letter, return the type of
3073/// constraint it is for this target.
3074PPCTargetLowering::ConstraintType
3075PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
3076  switch (ConstraintLetter) {
3077  default: break;
3078  case 'b':
3079  case 'r':
3080  case 'f':
3081  case 'v':
3082  case 'y':
3083    return C_RegisterClass;
3084  }
3085  return TargetLowering::getConstraintType(ConstraintLetter);
3086}
3087
3088std::pair<unsigned, const TargetRegisterClass*>
3089PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3090                                                MVT::ValueType VT) const {
3091  if (Constraint.size() == 1) {
3092    // GCC RS6000 Constraint Letters
3093    switch (Constraint[0]) {
3094    case 'b':   // R1-R31
3095    case 'r':   // R0-R31
3096      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3097        return std::make_pair(0U, PPC::G8RCRegisterClass);
3098      return std::make_pair(0U, PPC::GPRCRegisterClass);
3099    case 'f':
3100      if (VT == MVT::f32)
3101        return std::make_pair(0U, PPC::F4RCRegisterClass);
3102      else if (VT == MVT::f64)
3103        return std::make_pair(0U, PPC::F8RCRegisterClass);
3104      break;
3105    case 'v':
3106      return std::make_pair(0U, PPC::VRRCRegisterClass);
3107    case 'y':   // crrc
3108      return std::make_pair(0U, PPC::CRRCRegisterClass);
3109    }
3110  }
3111
3112  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3113}
3114
3115
3116// isOperandValidForConstraint
3117SDOperand PPCTargetLowering::
3118isOperandValidForConstraint(SDOperand Op, char Letter, SelectionDAG &DAG) {
3119  switch (Letter) {
3120  default: break;
3121  case 'I':
3122  case 'J':
3123  case 'K':
3124  case 'L':
3125  case 'M':
3126  case 'N':
3127  case 'O':
3128  case 'P': {
3129    if (!isa<ConstantSDNode>(Op)) return SDOperand(0,0);// Must be an immediate.
3130    unsigned Value = cast<ConstantSDNode>(Op)->getValue();
3131    switch (Letter) {
3132    default: assert(0 && "Unknown constraint letter!");
3133    case 'I':  // "I" is a signed 16-bit constant.
3134      if ((short)Value == (int)Value) return Op;
3135      break;
3136    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3137    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3138      if ((short)Value == 0) return Op;
3139      break;
3140    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3141      if ((Value >> 16) == 0) return Op;
3142      break;
3143    case 'M':  // "M" is a constant that is greater than 31.
3144      if (Value > 31) return Op;
3145      break;
3146    case 'N':  // "N" is a positive constant that is an exact power of two.
3147      if ((int)Value > 0 && isPowerOf2_32(Value)) return Op;
3148      break;
3149    case 'O':  // "O" is the constant zero.
3150      if (Value == 0) return Op;
3151      break;
3152    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3153      if ((short)-Value == (int)-Value) return Op;
3154      break;
3155    }
3156    break;
3157  }
3158  }
3159
3160  // Handle standard constraint letters.
3161  return TargetLowering::isOperandValidForConstraint(Op, Letter, DAG);
3162}
3163
3164/// isLegalAddressImmediate - Return true if the integer value can be used
3165/// as the offset of the target addressing mode.
3166bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
3167  // PPC allows a sign-extended 16-bit immediate field.
3168  return (V > -(1 << 16) && V < (1 << 16)-1);
3169}
3170
3171bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3172  return TargetLowering::isLegalAddressImmediate(GV);
3173}
3174