PPCISelLowering.cpp revision 6eaeff29b8a6990107735f7e5f5e49da38f56223
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Target/TargetOptions.h"
33#include "llvm/Support/CommandLine.h"
34using namespace llvm;
35
36static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
37cl::desc("enable preincrement load/store generation on PPC (experimental)"),
38                                     cl::Hidden);
39
40PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
41  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
42
43  setPow2DivIsCheap();
44
45  // Use _setjmp/_longjmp instead of setjmp/longjmp.
46  setUseUnderscoreSetJmp(true);
47  setUseUnderscoreLongJmp(true);
48
49  // Set up the register classes.
50  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
51  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
52  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
53
54  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
56  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
57
58  // PowerPC does not have truncstore for i1.
59  setStoreXAction(MVT::i1, Promote);
60
61  // PowerPC has pre-inc load and store's.
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
73  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
74  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
75
76  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
77  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
78  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
79  // This is used in the ppcf128->int sequence.  Note it has different semantics
80  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
81  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
82
83  // PowerPC has no intrinsics for these particular operations
84  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
85  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
86  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
87
88  // PowerPC has no SREM/UREM instructions
89  setOperationAction(ISD::SREM, MVT::i32, Expand);
90  setOperationAction(ISD::UREM, MVT::i32, Expand);
91  setOperationAction(ISD::SREM, MVT::i64, Expand);
92  setOperationAction(ISD::UREM, MVT::i64, Expand);
93
94  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
95  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
96  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
97  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
98  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
99  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
100  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
101  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
102  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
103
104  // We don't support sin/cos/sqrt/fmod
105  setOperationAction(ISD::FSIN , MVT::f64, Expand);
106  setOperationAction(ISD::FCOS , MVT::f64, Expand);
107  setOperationAction(ISD::FREM , MVT::f64, Expand);
108  setOperationAction(ISD::FSIN , MVT::f32, Expand);
109  setOperationAction(ISD::FCOS , MVT::f32, Expand);
110  setOperationAction(ISD::FREM , MVT::f32, Expand);
111
112  // If we're enabling GP optimizations, use hardware square root
113  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
114    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
115    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
116  }
117
118  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
119  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
120
121  // PowerPC does not have BSWAP, CTPOP or CTTZ
122  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
123  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
124  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
125  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
126  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
127  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
128
129  // PowerPC does not have ROTR
130  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
131
132  // PowerPC does not have Select
133  setOperationAction(ISD::SELECT, MVT::i32, Expand);
134  setOperationAction(ISD::SELECT, MVT::i64, Expand);
135  setOperationAction(ISD::SELECT, MVT::f32, Expand);
136  setOperationAction(ISD::SELECT, MVT::f64, Expand);
137
138  // PowerPC wants to turn select_cc of FP into fsel when possible.
139  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
140  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
141
142  // PowerPC wants to optimize integer setcc a bit
143  setOperationAction(ISD::SETCC, MVT::i32, Custom);
144
145  // PowerPC does not have BRCOND which requires SetCC
146  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
147
148  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
149
150  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
151  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
152
153  // PowerPC does not have [U|S]INT_TO_FP
154  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
155  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
156
157  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
158  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
159  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
160  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
161
162  // We cannot sextinreg(i1).  Expand to shifts.
163  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
164
165  // Support label based line numbers.
166  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
167  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
168  if (!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
169    setOperationAction(ISD::LABEL, MVT::Other, Expand);
170  } else {
171    setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
172    setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
173    setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
174    setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
175  }
176
177  // We want to legalize GlobalAddress and ConstantPool nodes into the
178  // appropriate instructions to materialize the address.
179  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
180  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
181  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
182  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
183  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
184  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
185  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
186  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
187
188  // RET must be custom lowered, to meet ABI requirements
189  setOperationAction(ISD::RET               , MVT::Other, Custom);
190
191  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
192  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
193
194  // VAARG is custom lowered with ELF 32 ABI
195  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
196    setOperationAction(ISD::VAARG, MVT::Other, Custom);
197  else
198    setOperationAction(ISD::VAARG, MVT::Other, Expand);
199
200  // Use the default implementation.
201  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
202  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
203  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
204  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
205  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
206  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
207
208  // We want to custom lower some of our intrinsics.
209  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
210
211  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
212    // They also have instructions for converting between i64 and fp.
213    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
214    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
215    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
216    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
217    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
218
219    // FIXME: disable this lowered code.  This generates 64-bit register values,
220    // and we don't model the fact that the top part is clobbered by calls.  We
221    // need to flag these together so that the value isn't live across a call.
222    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
223
224    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
225    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
226  } else {
227    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
228    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
229  }
230
231  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
232    // 64 bit PowerPC implementations can support i64 types directly
233    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
234    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
235    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
236  } else {
237    // 32 bit PowerPC wants to expand i64 shifts itself.
238    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
239    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
240    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
241  }
242
243  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
244    // First set operation action for all vector types to expand. Then we
245    // will selectively turn on ones that can be effectively codegen'd.
246    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
247         VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
248      // add/sub are legal for all supported vector VT's.
249      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
250      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
251
252      // We promote all shuffles to v16i8.
253      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
254      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
255
256      // We promote all non-typed operations to v4i32.
257      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
258      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
259      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
260      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
261      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
262      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
263      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
264      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
265      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
266      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
267      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
268      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
269
270      // No other operations are legal.
271      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
272      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
273      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
274      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
275      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
276      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
277      setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
278      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
279      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
280      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
281      setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
282      setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
283      setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
284      setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
285
286      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
287    }
288
289    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
290    // with merges, splats, etc.
291    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
292
293    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
294    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
295    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
296    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
297    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
298    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
299
300    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
301    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
302    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
303    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
304
305    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
306    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
307    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
308    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
309
310    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
311    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
312
313    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
314    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
315    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
316    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
317  }
318
319  setSetCCResultType(MVT::i32);
320  setShiftAmountType(MVT::i32);
321  setSetCCResultContents(ZeroOrOneSetCCResult);
322
323  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
324    setStackPointerRegisterToSaveRestore(PPC::X1);
325    setExceptionPointerRegister(PPC::X3);
326    setExceptionSelectorRegister(PPC::X4);
327  } else {
328    setStackPointerRegisterToSaveRestore(PPC::R1);
329    setExceptionPointerRegister(PPC::R3);
330    setExceptionSelectorRegister(PPC::R4);
331  }
332
333  // We have target-specific dag combine patterns for the following nodes:
334  setTargetDAGCombine(ISD::SINT_TO_FP);
335  setTargetDAGCombine(ISD::STORE);
336  setTargetDAGCombine(ISD::BR_CC);
337  setTargetDAGCombine(ISD::BSWAP);
338
339  computeRegisterProperties();
340}
341
342const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
343  switch (Opcode) {
344  default: return 0;
345  case PPCISD::FSEL:          return "PPCISD::FSEL";
346  case PPCISD::FCFID:         return "PPCISD::FCFID";
347  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
348  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
349  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
350  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
351  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
352  case PPCISD::VPERM:         return "PPCISD::VPERM";
353  case PPCISD::Hi:            return "PPCISD::Hi";
354  case PPCISD::Lo:            return "PPCISD::Lo";
355  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
356  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
357  case PPCISD::SRL:           return "PPCISD::SRL";
358  case PPCISD::SRA:           return "PPCISD::SRA";
359  case PPCISD::SHL:           return "PPCISD::SHL";
360  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
361  case PPCISD::STD_32:        return "PPCISD::STD_32";
362  case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF";
363  case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho";
364  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
365  case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho";
366  case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF";
367  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
368  case PPCISD::MFCR:          return "PPCISD::MFCR";
369  case PPCISD::VCMP:          return "PPCISD::VCMP";
370  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
371  case PPCISD::LBRX:          return "PPCISD::LBRX";
372  case PPCISD::STBRX:         return "PPCISD::STBRX";
373  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
374  }
375}
376
377//===----------------------------------------------------------------------===//
378// Node matching predicates, for use by the tblgen matching code.
379//===----------------------------------------------------------------------===//
380
381/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
382static bool isFloatingPointZero(SDOperand Op) {
383  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
384    return CFP->getValueAPF().isZero();
385  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
386    // Maybe this has already been legalized into the constant pool?
387    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
388      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
389        return CFP->getValueAPF().isZero();
390  }
391  return false;
392}
393
394/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
395/// true if Op is undef or if it matches the specified value.
396static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
397  return Op.getOpcode() == ISD::UNDEF ||
398         cast<ConstantSDNode>(Op)->getValue() == Val;
399}
400
401/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
402/// VPKUHUM instruction.
403bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
404  if (!isUnary) {
405    for (unsigned i = 0; i != 16; ++i)
406      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
407        return false;
408  } else {
409    for (unsigned i = 0; i != 8; ++i)
410      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
411          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
412        return false;
413  }
414  return true;
415}
416
417/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
418/// VPKUWUM instruction.
419bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
420  if (!isUnary) {
421    for (unsigned i = 0; i != 16; i += 2)
422      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
423          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
424        return false;
425  } else {
426    for (unsigned i = 0; i != 8; i += 2)
427      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
428          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
429          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
430          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
431        return false;
432  }
433  return true;
434}
435
436/// isVMerge - Common function, used to match vmrg* shuffles.
437///
438static bool isVMerge(SDNode *N, unsigned UnitSize,
439                     unsigned LHSStart, unsigned RHSStart) {
440  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
441         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
442  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
443         "Unsupported merge size!");
444
445  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
446    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
447      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
448                             LHSStart+j+i*UnitSize) ||
449          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
450                             RHSStart+j+i*UnitSize))
451        return false;
452    }
453      return true;
454}
455
456/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
457/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
458bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
459  if (!isUnary)
460    return isVMerge(N, UnitSize, 8, 24);
461  return isVMerge(N, UnitSize, 8, 8);
462}
463
464/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
465/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
466bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
467  if (!isUnary)
468    return isVMerge(N, UnitSize, 0, 16);
469  return isVMerge(N, UnitSize, 0, 0);
470}
471
472
473/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
474/// amount, otherwise return -1.
475int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
476  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
477         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
478  // Find the first non-undef value in the shuffle mask.
479  unsigned i;
480  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
481    /*search*/;
482
483  if (i == 16) return -1;  // all undef.
484
485  // Otherwise, check to see if the rest of the elements are consequtively
486  // numbered from this value.
487  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
488  if (ShiftAmt < i) return -1;
489  ShiftAmt -= i;
490
491  if (!isUnary) {
492    // Check the rest of the elements to see if they are consequtive.
493    for (++i; i != 16; ++i)
494      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
495        return -1;
496  } else {
497    // Check the rest of the elements to see if they are consequtive.
498    for (++i; i != 16; ++i)
499      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
500        return -1;
501  }
502
503  return ShiftAmt;
504}
505
506/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
507/// specifies a splat of a single element that is suitable for input to
508/// VSPLTB/VSPLTH/VSPLTW.
509bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
510  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
511         N->getNumOperands() == 16 &&
512         (EltSize == 1 || EltSize == 2 || EltSize == 4));
513
514  // This is a splat operation if each element of the permute is the same, and
515  // if the value doesn't reference the second vector.
516  unsigned ElementBase = 0;
517  SDOperand Elt = N->getOperand(0);
518  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
519    ElementBase = EltV->getValue();
520  else
521    return false;   // FIXME: Handle UNDEF elements too!
522
523  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
524    return false;
525
526  // Check that they are consequtive.
527  for (unsigned i = 1; i != EltSize; ++i) {
528    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
529        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
530      return false;
531  }
532
533  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
534  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
535    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
536    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
537           "Invalid VECTOR_SHUFFLE mask!");
538    for (unsigned j = 0; j != EltSize; ++j)
539      if (N->getOperand(i+j) != N->getOperand(j))
540        return false;
541  }
542
543  return true;
544}
545
546/// isAllNegativeZeroVector - Returns true if all elements of build_vector
547/// are -0.0.
548bool PPC::isAllNegativeZeroVector(SDNode *N) {
549  assert(N->getOpcode() == ISD::BUILD_VECTOR);
550  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
551    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
552      return CFP->getValueAPF().isNegZero();
553  return false;
554}
555
556/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
557/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
558unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
559  assert(isSplatShuffleMask(N, EltSize));
560  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
561}
562
563/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
564/// by using a vspltis[bhw] instruction of the specified element size, return
565/// the constant being splatted.  The ByteSize field indicates the number of
566/// bytes of each element [124] -> [bhw].
567SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
568  SDOperand OpVal(0, 0);
569
570  // If ByteSize of the splat is bigger than the element size of the
571  // build_vector, then we have a case where we are checking for a splat where
572  // multiple elements of the buildvector are folded together into a single
573  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
574  unsigned EltSize = 16/N->getNumOperands();
575  if (EltSize < ByteSize) {
576    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
577    SDOperand UniquedVals[4];
578    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
579
580    // See if all of the elements in the buildvector agree across.
581    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
582      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
583      // If the element isn't a constant, bail fully out.
584      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
585
586
587      if (UniquedVals[i&(Multiple-1)].Val == 0)
588        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
589      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
590        return SDOperand();  // no match.
591    }
592
593    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
594    // either constant or undef values that are identical for each chunk.  See
595    // if these chunks can form into a larger vspltis*.
596
597    // Check to see if all of the leading entries are either 0 or -1.  If
598    // neither, then this won't fit into the immediate field.
599    bool LeadingZero = true;
600    bool LeadingOnes = true;
601    for (unsigned i = 0; i != Multiple-1; ++i) {
602      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
603
604      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
605      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
606    }
607    // Finally, check the least significant entry.
608    if (LeadingZero) {
609      if (UniquedVals[Multiple-1].Val == 0)
610        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
611      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
612      if (Val < 16)
613        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
614    }
615    if (LeadingOnes) {
616      if (UniquedVals[Multiple-1].Val == 0)
617        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
618      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
619      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
620        return DAG.getTargetConstant(Val, MVT::i32);
621    }
622
623    return SDOperand();
624  }
625
626  // Check to see if this buildvec has a single non-undef value in its elements.
627  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
628    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
629    if (OpVal.Val == 0)
630      OpVal = N->getOperand(i);
631    else if (OpVal != N->getOperand(i))
632      return SDOperand();
633  }
634
635  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
636
637  unsigned ValSizeInBytes = 0;
638  uint64_t Value = 0;
639  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
640    Value = CN->getValue();
641    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
642  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
643    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
644    Value = FloatToBits(CN->getValueAPF().convertToFloat());
645    ValSizeInBytes = 4;
646  }
647
648  // If the splat value is larger than the element value, then we can never do
649  // this splat.  The only case that we could fit the replicated bits into our
650  // immediate field for would be zero, and we prefer to use vxor for it.
651  if (ValSizeInBytes < ByteSize) return SDOperand();
652
653  // If the element value is larger than the splat value, cut it in half and
654  // check to see if the two halves are equal.  Continue doing this until we
655  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
656  while (ValSizeInBytes > ByteSize) {
657    ValSizeInBytes >>= 1;
658
659    // If the top half equals the bottom half, we're still ok.
660    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
661         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
662      return SDOperand();
663  }
664
665  // Properly sign extend the value.
666  int ShAmt = (4-ByteSize)*8;
667  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
668
669  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
670  if (MaskVal == 0) return SDOperand();
671
672  // Finally, if this value fits in a 5 bit sext field, return it
673  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
674    return DAG.getTargetConstant(MaskVal, MVT::i32);
675  return SDOperand();
676}
677
678//===----------------------------------------------------------------------===//
679//  Addressing Mode Selection
680//===----------------------------------------------------------------------===//
681
682/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
683/// or 64-bit immediate, and if the value can be accurately represented as a
684/// sign extension from a 16-bit value.  If so, this returns true and the
685/// immediate.
686static bool isIntS16Immediate(SDNode *N, short &Imm) {
687  if (N->getOpcode() != ISD::Constant)
688    return false;
689
690  Imm = (short)cast<ConstantSDNode>(N)->getValue();
691  if (N->getValueType(0) == MVT::i32)
692    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
693  else
694    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
695}
696static bool isIntS16Immediate(SDOperand Op, short &Imm) {
697  return isIntS16Immediate(Op.Val, Imm);
698}
699
700
701/// SelectAddressRegReg - Given the specified addressed, check to see if it
702/// can be represented as an indexed [r+r] operation.  Returns false if it
703/// can be more efficiently represented with [r+imm].
704bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
705                                            SDOperand &Index,
706                                            SelectionDAG &DAG) {
707  short imm = 0;
708  if (N.getOpcode() == ISD::ADD) {
709    if (isIntS16Immediate(N.getOperand(1), imm))
710      return false;    // r+i
711    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
712      return false;    // r+i
713
714    Base = N.getOperand(0);
715    Index = N.getOperand(1);
716    return true;
717  } else if (N.getOpcode() == ISD::OR) {
718    if (isIntS16Immediate(N.getOperand(1), imm))
719      return false;    // r+i can fold it if we can.
720
721    // If this is an or of disjoint bitfields, we can codegen this as an add
722    // (for better address arithmetic) if the LHS and RHS of the OR are provably
723    // disjoint.
724    uint64_t LHSKnownZero, LHSKnownOne;
725    uint64_t RHSKnownZero, RHSKnownOne;
726    DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
727
728    if (LHSKnownZero) {
729      DAG.ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
730      // If all of the bits are known zero on the LHS or RHS, the add won't
731      // carry.
732      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
733        Base = N.getOperand(0);
734        Index = N.getOperand(1);
735        return true;
736      }
737    }
738  }
739
740  return false;
741}
742
743/// Returns true if the address N can be represented by a base register plus
744/// a signed 16-bit displacement [r+imm], and if it is not better
745/// represented as reg+reg.
746bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
747                                            SDOperand &Base, SelectionDAG &DAG){
748  // If this can be more profitably realized as r+r, fail.
749  if (SelectAddressRegReg(N, Disp, Base, DAG))
750    return false;
751
752  if (N.getOpcode() == ISD::ADD) {
753    short imm = 0;
754    if (isIntS16Immediate(N.getOperand(1), imm)) {
755      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
756      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
757        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
758      } else {
759        Base = N.getOperand(0);
760      }
761      return true; // [r+i]
762    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
763      // Match LOAD (ADD (X, Lo(G))).
764      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
765             && "Cannot handle constant offsets yet!");
766      Disp = N.getOperand(1).getOperand(0);  // The global address.
767      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
768             Disp.getOpcode() == ISD::TargetConstantPool ||
769             Disp.getOpcode() == ISD::TargetJumpTable);
770      Base = N.getOperand(0);
771      return true;  // [&g+r]
772    }
773  } else if (N.getOpcode() == ISD::OR) {
774    short imm = 0;
775    if (isIntS16Immediate(N.getOperand(1), imm)) {
776      // If this is an or of disjoint bitfields, we can codegen this as an add
777      // (for better address arithmetic) if the LHS and RHS of the OR are
778      // provably disjoint.
779      uint64_t LHSKnownZero, LHSKnownOne;
780      DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
781      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
782        // If all of the bits are known zero on the LHS or RHS, the add won't
783        // carry.
784        Base = N.getOperand(0);
785        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
786        return true;
787      }
788    }
789  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
790    // Loading from a constant address.
791
792    // If this address fits entirely in a 16-bit sext immediate field, codegen
793    // this as "d, 0"
794    short Imm;
795    if (isIntS16Immediate(CN, Imm)) {
796      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
797      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
798      return true;
799    }
800
801    // Handle 32-bit sext immediates with LIS + addr mode.
802    if (CN->getValueType(0) == MVT::i32 ||
803        (int64_t)CN->getValue() == (int)CN->getValue()) {
804      int Addr = (int)CN->getValue();
805
806      // Otherwise, break this down into an LIS + disp.
807      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
808
809      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
810      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
811      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
812      return true;
813    }
814  }
815
816  Disp = DAG.getTargetConstant(0, getPointerTy());
817  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
818    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
819  else
820    Base = N;
821  return true;      // [r+0]
822}
823
824/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
825/// represented as an indexed [r+r] operation.
826bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
827                                                SDOperand &Index,
828                                                SelectionDAG &DAG) {
829  // Check to see if we can easily represent this as an [r+r] address.  This
830  // will fail if it thinks that the address is more profitably represented as
831  // reg+imm, e.g. where imm = 0.
832  if (SelectAddressRegReg(N, Base, Index, DAG))
833    return true;
834
835  // If the operand is an addition, always emit this as [r+r], since this is
836  // better (for code size, and execution, as the memop does the add for free)
837  // than emitting an explicit add.
838  if (N.getOpcode() == ISD::ADD) {
839    Base = N.getOperand(0);
840    Index = N.getOperand(1);
841    return true;
842  }
843
844  // Otherwise, do it the hard way, using R0 as the base register.
845  Base = DAG.getRegister(PPC::R0, N.getValueType());
846  Index = N;
847  return true;
848}
849
850/// SelectAddressRegImmShift - Returns true if the address N can be
851/// represented by a base register plus a signed 14-bit displacement
852/// [r+imm*4].  Suitable for use by STD and friends.
853bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
854                                                 SDOperand &Base,
855                                                 SelectionDAG &DAG) {
856  // If this can be more profitably realized as r+r, fail.
857  if (SelectAddressRegReg(N, Disp, Base, DAG))
858    return false;
859
860  if (N.getOpcode() == ISD::ADD) {
861    short imm = 0;
862    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
863      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
864      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
865        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
866      } else {
867        Base = N.getOperand(0);
868      }
869      return true; // [r+i]
870    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
871      // Match LOAD (ADD (X, Lo(G))).
872      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
873             && "Cannot handle constant offsets yet!");
874      Disp = N.getOperand(1).getOperand(0);  // The global address.
875      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
876             Disp.getOpcode() == ISD::TargetConstantPool ||
877             Disp.getOpcode() == ISD::TargetJumpTable);
878      Base = N.getOperand(0);
879      return true;  // [&g+r]
880    }
881  } else if (N.getOpcode() == ISD::OR) {
882    short imm = 0;
883    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
884      // If this is an or of disjoint bitfields, we can codegen this as an add
885      // (for better address arithmetic) if the LHS and RHS of the OR are
886      // provably disjoint.
887      uint64_t LHSKnownZero, LHSKnownOne;
888      DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
889      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
890        // If all of the bits are known zero on the LHS or RHS, the add won't
891        // carry.
892        Base = N.getOperand(0);
893        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
894        return true;
895      }
896    }
897  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
898    // Loading from a constant address.  Verify low two bits are clear.
899    if ((CN->getValue() & 3) == 0) {
900      // If this address fits entirely in a 14-bit sext immediate field, codegen
901      // this as "d, 0"
902      short Imm;
903      if (isIntS16Immediate(CN, Imm)) {
904        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
905        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
906        return true;
907      }
908
909      // Fold the low-part of 32-bit absolute addresses into addr mode.
910      if (CN->getValueType(0) == MVT::i32 ||
911          (int64_t)CN->getValue() == (int)CN->getValue()) {
912        int Addr = (int)CN->getValue();
913
914        // Otherwise, break this down into an LIS + disp.
915        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
916
917        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
918        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
919        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
920        return true;
921      }
922    }
923  }
924
925  Disp = DAG.getTargetConstant(0, getPointerTy());
926  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
927    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
928  else
929    Base = N;
930  return true;      // [r+0]
931}
932
933
934/// getPreIndexedAddressParts - returns true by value, base pointer and
935/// offset pointer and addressing mode by reference if the node's address
936/// can be legally represented as pre-indexed load / store address.
937bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
938                                                  SDOperand &Offset,
939                                                  ISD::MemIndexedMode &AM,
940                                                  SelectionDAG &DAG) {
941  // Disabled by default for now.
942  if (!EnablePPCPreinc) return false;
943
944  SDOperand Ptr;
945  MVT::ValueType VT;
946  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
947    Ptr = LD->getBasePtr();
948    VT = LD->getLoadedVT();
949
950  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
951    ST = ST;
952    Ptr = ST->getBasePtr();
953    VT  = ST->getStoredVT();
954  } else
955    return false;
956
957  // PowerPC doesn't have preinc load/store instructions for vectors.
958  if (MVT::isVector(VT))
959    return false;
960
961  // TODO: Check reg+reg first.
962
963  // LDU/STU use reg+imm*4, others use reg+imm.
964  if (VT != MVT::i64) {
965    // reg + imm
966    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
967      return false;
968  } else {
969    // reg + imm * 4.
970    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
971      return false;
972  }
973
974  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
975    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
976    // sext i32 to i64 when addr mode is r+i.
977    if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
978        LD->getExtensionType() == ISD::SEXTLOAD &&
979        isa<ConstantSDNode>(Offset))
980      return false;
981  }
982
983  AM = ISD::PRE_INC;
984  return true;
985}
986
987//===----------------------------------------------------------------------===//
988//  LowerOperation implementation
989//===----------------------------------------------------------------------===//
990
991static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
992  MVT::ValueType PtrVT = Op.getValueType();
993  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
994  Constant *C = CP->getConstVal();
995  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
996  SDOperand Zero = DAG.getConstant(0, PtrVT);
997
998  const TargetMachine &TM = DAG.getTarget();
999
1000  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1001  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1002
1003  // If this is a non-darwin platform, we don't support non-static relo models
1004  // yet.
1005  if (TM.getRelocationModel() == Reloc::Static ||
1006      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1007    // Generate non-pic code that has direct accesses to the constant pool.
1008    // The address of the global is just (hi(&g)+lo(&g)).
1009    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1010  }
1011
1012  if (TM.getRelocationModel() == Reloc::PIC_) {
1013    // With PIC, the first instruction is actually "GR+hi(&G)".
1014    Hi = DAG.getNode(ISD::ADD, PtrVT,
1015                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1016  }
1017
1018  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1019  return Lo;
1020}
1021
1022static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1023  MVT::ValueType PtrVT = Op.getValueType();
1024  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1025  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1026  SDOperand Zero = DAG.getConstant(0, PtrVT);
1027
1028  const TargetMachine &TM = DAG.getTarget();
1029
1030  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1031  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1032
1033  // If this is a non-darwin platform, we don't support non-static relo models
1034  // yet.
1035  if (TM.getRelocationModel() == Reloc::Static ||
1036      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1037    // Generate non-pic code that has direct accesses to the constant pool.
1038    // The address of the global is just (hi(&g)+lo(&g)).
1039    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1040  }
1041
1042  if (TM.getRelocationModel() == Reloc::PIC_) {
1043    // With PIC, the first instruction is actually "GR+hi(&G)".
1044    Hi = DAG.getNode(ISD::ADD, PtrVT,
1045                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1046  }
1047
1048  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1049  return Lo;
1050}
1051
1052static SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
1053  assert(0 && "TLS not implemented for PPC.");
1054}
1055
1056static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
1057  MVT::ValueType PtrVT = Op.getValueType();
1058  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1059  GlobalValue *GV = GSDN->getGlobal();
1060  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1061  SDOperand Zero = DAG.getConstant(0, PtrVT);
1062
1063  const TargetMachine &TM = DAG.getTarget();
1064
1065  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1066  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1067
1068  // If this is a non-darwin platform, we don't support non-static relo models
1069  // yet.
1070  if (TM.getRelocationModel() == Reloc::Static ||
1071      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1072    // Generate non-pic code that has direct accesses to globals.
1073    // The address of the global is just (hi(&g)+lo(&g)).
1074    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1075  }
1076
1077  if (TM.getRelocationModel() == Reloc::PIC_) {
1078    // With PIC, the first instruction is actually "GR+hi(&G)".
1079    Hi = DAG.getNode(ISD::ADD, PtrVT,
1080                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1081  }
1082
1083  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1084
1085  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1086    return Lo;
1087
1088  // If the global is weak or external, we have to go through the lazy
1089  // resolution stub.
1090  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1091}
1092
1093static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1094  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1095
1096  // If we're comparing for equality to zero, expose the fact that this is
1097  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1098  // fold the new nodes.
1099  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1100    if (C->isNullValue() && CC == ISD::SETEQ) {
1101      MVT::ValueType VT = Op.getOperand(0).getValueType();
1102      SDOperand Zext = Op.getOperand(0);
1103      if (VT < MVT::i32) {
1104        VT = MVT::i32;
1105        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1106      }
1107      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1108      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1109      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1110                                  DAG.getConstant(Log2b, MVT::i32));
1111      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1112    }
1113    // Leave comparisons against 0 and -1 alone for now, since they're usually
1114    // optimized.  FIXME: revisit this when we can custom lower all setcc
1115    // optimizations.
1116    if (C->isAllOnesValue() || C->isNullValue())
1117      return SDOperand();
1118  }
1119
1120  // If we have an integer seteq/setne, turn it into a compare against zero
1121  // by xor'ing the rhs with the lhs, which is faster than setting a
1122  // condition register, reading it back out, and masking the correct bit.  The
1123  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1124  // the result to other bit-twiddling opportunities.
1125  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1126  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1127    MVT::ValueType VT = Op.getValueType();
1128    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1129                                Op.getOperand(1));
1130    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1131  }
1132  return SDOperand();
1133}
1134
1135static SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1136                              int VarArgsFrameIndex,
1137                              int VarArgsStackOffset,
1138                              unsigned VarArgsNumGPR,
1139                              unsigned VarArgsNumFPR,
1140                              const PPCSubtarget &Subtarget) {
1141
1142  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1143}
1144
1145static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1146                              int VarArgsFrameIndex,
1147                              int VarArgsStackOffset,
1148                              unsigned VarArgsNumGPR,
1149                              unsigned VarArgsNumFPR,
1150                              const PPCSubtarget &Subtarget) {
1151
1152  if (Subtarget.isMachoABI()) {
1153    // vastart just stores the address of the VarArgsFrameIndex slot into the
1154    // memory location argument.
1155    MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1156    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1157    SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1158    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1159                        SV->getOffset());
1160  }
1161
1162  // For ELF 32 ABI we follow the layout of the va_list struct.
1163  // We suppose the given va_list is already allocated.
1164  //
1165  // typedef struct {
1166  //  char gpr;     /* index into the array of 8 GPRs
1167  //                 * stored in the register save area
1168  //                 * gpr=0 corresponds to r3,
1169  //                 * gpr=1 to r4, etc.
1170  //                 */
1171  //  char fpr;     /* index into the array of 8 FPRs
1172  //                 * stored in the register save area
1173  //                 * fpr=0 corresponds to f1,
1174  //                 * fpr=1 to f2, etc.
1175  //                 */
1176  //  char *overflow_arg_area;
1177  //                /* location on stack that holds
1178  //                 * the next overflow argument
1179  //                 */
1180  //  char *reg_save_area;
1181  //               /* where r3:r10 and f1:f8 (if saved)
1182  //                * are stored
1183  //                */
1184  // } va_list[1];
1185
1186
1187  SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1188  SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1189
1190
1191  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1192
1193  SDOperand StackOffset = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1194  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1195
1196  SDOperand ConstFrameOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8,
1197                                               PtrVT);
1198  SDOperand ConstStackOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8 - 1,
1199                                               PtrVT);
1200  SDOperand ConstFPROffset   = DAG.getConstant(1, PtrVT);
1201
1202  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1203
1204  // Store first byte : number of int regs
1205  SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1206                                      Op.getOperand(1), SV->getValue(),
1207                                      SV->getOffset());
1208  SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1209                                  ConstFPROffset);
1210
1211  // Store second byte : number of float regs
1212  SDOperand secondStore = DAG.getStore(firstStore, ArgFPR, nextPtr,
1213                                       SV->getValue(), SV->getOffset());
1214  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1215
1216  // Store second word : arguments given on stack
1217  SDOperand thirdStore = DAG.getStore(secondStore, StackOffset, nextPtr,
1218                                      SV->getValue(), SV->getOffset());
1219  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1220
1221  // Store third word : arguments given in registers
1222  return DAG.getStore(thirdStore, FR, nextPtr, SV->getValue(),
1223                      SV->getOffset());
1224
1225}
1226
1227#include "PPCGenCallingConv.inc"
1228
1229/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1230/// depending on which subtarget is selected.
1231static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1232  if (Subtarget.isMachoABI()) {
1233    static const unsigned FPR[] = {
1234      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1235      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1236    };
1237    return FPR;
1238  }
1239
1240
1241  static const unsigned FPR[] = {
1242    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1243    PPC::F8
1244  };
1245  return FPR;
1246}
1247
1248static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1249                                       int &VarArgsFrameIndex,
1250                                       int &VarArgsStackOffset,
1251                                       unsigned &VarArgsNumGPR,
1252                                       unsigned &VarArgsNumFPR,
1253                                       const PPCSubtarget &Subtarget) {
1254  // TODO: add description of PPC stack frame format, or at least some docs.
1255  //
1256  MachineFunction &MF = DAG.getMachineFunction();
1257  MachineFrameInfo *MFI = MF.getFrameInfo();
1258  SSARegMap *RegMap = MF.getSSARegMap();
1259  SmallVector<SDOperand, 8> ArgValues;
1260  SDOperand Root = Op.getOperand(0);
1261
1262  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1263  bool isPPC64 = PtrVT == MVT::i64;
1264  bool isMachoABI = Subtarget.isMachoABI();
1265  bool isELF32_ABI = Subtarget.isELF32_ABI();
1266  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1267
1268  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1269
1270  static const unsigned GPR_32[] = {           // 32-bit registers.
1271    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1272    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1273  };
1274  static const unsigned GPR_64[] = {           // 64-bit registers.
1275    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1276    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1277  };
1278
1279  static const unsigned *FPR = GetFPR(Subtarget);
1280
1281  static const unsigned VR[] = {
1282    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1283    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1284  };
1285
1286  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1287  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1288  const unsigned Num_VR_Regs  = array_lengthof( VR);
1289
1290  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1291
1292  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1293
1294  // Add DAG nodes to load the arguments or copy them out of registers.  On
1295  // entry to a function on PPC, the arguments start after the linkage area,
1296  // although the first ones are often in registers.
1297  //
1298  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1299  // represented with two words (long long or double) must be copied to an
1300  // even GPR_idx value or to an even ArgOffset value.
1301
1302  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1303    SDOperand ArgVal;
1304    bool needsLoad = false;
1305    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1306    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1307    unsigned ArgSize = ObjSize;
1308    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1309    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1310    // See if next argument requires stack alignment in ELF
1311    bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1312      (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1313      (!(Flags & AlignFlag)));
1314
1315    unsigned CurArgOffset = ArgOffset;
1316    switch (ObjectVT) {
1317    default: assert(0 && "Unhandled argument type!");
1318    case MVT::i32:
1319      // Double word align in ELF
1320      if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1321      if (GPR_idx != Num_GPR_Regs) {
1322        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1323        MF.addLiveIn(GPR[GPR_idx], VReg);
1324        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1325        ++GPR_idx;
1326      } else {
1327        needsLoad = true;
1328        ArgSize = PtrByteSize;
1329      }
1330      // Stack align in ELF
1331      if (needsLoad && Expand && isELF32_ABI)
1332        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1333      // All int arguments reserve stack space in Macho ABI.
1334      if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1335      break;
1336
1337    case MVT::i64:  // PPC64
1338      if (GPR_idx != Num_GPR_Regs) {
1339        unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1340        MF.addLiveIn(GPR[GPR_idx], VReg);
1341        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1342        ++GPR_idx;
1343      } else {
1344        needsLoad = true;
1345      }
1346      // All int arguments reserve stack space in Macho ABI.
1347      if (isMachoABI || needsLoad) ArgOffset += 8;
1348      break;
1349
1350    case MVT::f32:
1351    case MVT::f64:
1352      // Every 4 bytes of argument space consumes one of the GPRs available for
1353      // argument passing.
1354      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1355        ++GPR_idx;
1356        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1357          ++GPR_idx;
1358      }
1359      if (FPR_idx != Num_FPR_Regs) {
1360        unsigned VReg;
1361        if (ObjectVT == MVT::f32)
1362          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
1363        else
1364          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1365        MF.addLiveIn(FPR[FPR_idx], VReg);
1366        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1367        ++FPR_idx;
1368      } else {
1369        needsLoad = true;
1370      }
1371
1372      // Stack align in ELF
1373      if (needsLoad && Expand && isELF32_ABI)
1374        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1375      // All FP arguments reserve stack space in Macho ABI.
1376      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1377      break;
1378    case MVT::v4f32:
1379    case MVT::v4i32:
1380    case MVT::v8i16:
1381    case MVT::v16i8:
1382      // Note that vector arguments in registers don't reserve stack space.
1383      if (VR_idx != Num_VR_Regs) {
1384        unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
1385        MF.addLiveIn(VR[VR_idx], VReg);
1386        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1387        ++VR_idx;
1388      } else {
1389        // This should be simple, but requires getting 16-byte aligned stack
1390        // values.
1391        assert(0 && "Loading VR argument not implemented yet!");
1392        needsLoad = true;
1393      }
1394      break;
1395    }
1396
1397    // We need to load the argument to a virtual register if we determined above
1398    // that we ran out of physical registers of the appropriate type
1399    if (needsLoad) {
1400      // If the argument is actually used, emit a load from the right stack
1401      // slot.
1402      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1403        int FI = MFI->CreateFixedObject(ObjSize,
1404                                        CurArgOffset + (ArgSize - ObjSize));
1405        SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1406        ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1407      } else {
1408        // Don't emit a dead load.
1409        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1410      }
1411    }
1412
1413    ArgValues.push_back(ArgVal);
1414  }
1415
1416  // If the function takes variable number of arguments, make a frame index for
1417  // the start of the first vararg value... for expansion of llvm.va_start.
1418  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1419  if (isVarArg) {
1420
1421    int depth;
1422    if (isELF32_ABI) {
1423      VarArgsNumGPR = GPR_idx;
1424      VarArgsNumFPR = FPR_idx;
1425
1426      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1427      // pointer.
1428      depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1429                Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1430                MVT::getSizeInBits(PtrVT)/8);
1431
1432      VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1433                                                  ArgOffset);
1434
1435    }
1436    else
1437      depth = ArgOffset;
1438
1439    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1440                                               depth);
1441    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1442
1443    SmallVector<SDOperand, 8> MemOps;
1444
1445    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1446    // stored to the VarArgsFrameIndex on the stack.
1447    if (isELF32_ABI) {
1448      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1449        SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1450        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1451        MemOps.push_back(Store);
1452        // Increment the address by four for the next argument to store
1453        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1454        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1455      }
1456    }
1457
1458    // If this function is vararg, store any remaining integer argument regs
1459    // to their spots on the stack so that they may be loaded by deferencing the
1460    // result of va_next.
1461    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1462      unsigned VReg;
1463      if (isPPC64)
1464        VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1465      else
1466        VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1467
1468      MF.addLiveIn(GPR[GPR_idx], VReg);
1469      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1470      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1471      MemOps.push_back(Store);
1472      // Increment the address by four for the next argument to store
1473      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1474      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1475    }
1476
1477    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1478    // on the stack.
1479    if (isELF32_ABI) {
1480      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1481        SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1482        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1483        MemOps.push_back(Store);
1484        // Increment the address by eight for the next argument to store
1485        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1486                                           PtrVT);
1487        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1488      }
1489
1490      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1491        unsigned VReg;
1492        VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1493
1494        MF.addLiveIn(FPR[FPR_idx], VReg);
1495        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1496        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1497        MemOps.push_back(Store);
1498        // Increment the address by eight for the next argument to store
1499        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1500                                           PtrVT);
1501        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1502      }
1503    }
1504
1505    if (!MemOps.empty())
1506      Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1507  }
1508
1509  ArgValues.push_back(Root);
1510
1511  // Return the new list of results.
1512  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1513                                    Op.Val->value_end());
1514  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1515}
1516
1517/// isCallCompatibleAddress - Return the immediate to use if the specified
1518/// 32-bit value is representable in the immediate field of a BxA instruction.
1519static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1520  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1521  if (!C) return 0;
1522
1523  int Addr = C->getValue();
1524  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1525      (Addr << 6 >> 6) != Addr)
1526    return 0;  // Top 6 bits have to be sext of immediate.
1527
1528  return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
1529}
1530
1531
1532static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
1533                           const PPCSubtarget &Subtarget) {
1534  SDOperand Chain  = Op.getOperand(0);
1535  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1536  SDOperand Callee = Op.getOperand(4);
1537  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
1538
1539  bool isMachoABI = Subtarget.isMachoABI();
1540  bool isELF32_ABI  = Subtarget.isELF32_ABI();
1541
1542  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1543  bool isPPC64 = PtrVT == MVT::i64;
1544  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1545
1546  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1547  // SelectExpr to use to put the arguments in the appropriate registers.
1548  std::vector<SDOperand> args_to_use;
1549
1550  // Count how many bytes are to be pushed on the stack, including the linkage
1551  // area, and parameter passing area.  We start with 24/48 bytes, which is
1552  // prereserved space for [SP][CR][LR][3 x unused].
1553  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1554
1555  // Add up all the space actually used.
1556  for (unsigned i = 0; i != NumOps; ++i) {
1557    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1558    ArgSize = std::max(ArgSize, PtrByteSize);
1559    NumBytes += ArgSize;
1560  }
1561
1562  // The prolog code of the callee may store up to 8 GPR argument registers to
1563  // the stack, allowing va_start to index over them in memory if its varargs.
1564  // Because we cannot tell if this is needed on the caller side, we have to
1565  // conservatively assume that it is needed.  As such, make sure we have at
1566  // least enough stack space for the caller to store the 8 GPRs.
1567  NumBytes = std::max(NumBytes,
1568                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1569
1570  // Adjust the stack pointer for the new arguments...
1571  // These operations are automatically eliminated by the prolog/epilog pass
1572  Chain = DAG.getCALLSEQ_START(Chain,
1573                               DAG.getConstant(NumBytes, PtrVT));
1574
1575  // Set up a copy of the stack pointer for use loading and storing any
1576  // arguments that may not fit in the registers available for argument
1577  // passing.
1578  SDOperand StackPtr;
1579  if (isPPC64)
1580    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1581  else
1582    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1583
1584  // Figure out which arguments are going to go in registers, and which in
1585  // memory.  Also, if this is a vararg function, floating point operations
1586  // must be stored to our stack, and loaded into integer regs as well, if
1587  // any integer regs are available for argument passing.
1588  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1589  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1590
1591  static const unsigned GPR_32[] = {           // 32-bit registers.
1592    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1593    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1594  };
1595  static const unsigned GPR_64[] = {           // 64-bit registers.
1596    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1597    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1598  };
1599  static const unsigned *FPR = GetFPR(Subtarget);
1600
1601  static const unsigned VR[] = {
1602    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1603    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1604  };
1605  const unsigned NumGPRs = array_lengthof(GPR_32);
1606  const unsigned NumFPRs = isMachoABI ? 13 : 8;
1607  const unsigned NumVRs  = array_lengthof( VR);
1608
1609  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1610
1611  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1612  SmallVector<SDOperand, 8> MemOpChains;
1613  for (unsigned i = 0; i != NumOps; ++i) {
1614    bool inMem = false;
1615    SDOperand Arg = Op.getOperand(5+2*i);
1616    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1617    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1618    // See if next argument requires stack alignment in ELF
1619    unsigned next = 5+2*(i+1)+1;
1620    bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1621      (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1622      (!(Flags & AlignFlag)));
1623
1624    // PtrOff will be used to store the current argument to the stack if a
1625    // register cannot be found for it.
1626    SDOperand PtrOff;
1627
1628    // Stack align in ELF 32
1629    if (isELF32_ABI && Expand)
1630      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1631                               StackPtr.getValueType());
1632    else
1633      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1634
1635    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1636
1637    // On PPC64, promote integers to 64-bit values.
1638    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1639      unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1640
1641      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1642    }
1643
1644    switch (Arg.getValueType()) {
1645    default: assert(0 && "Unexpected ValueType for argument!");
1646    case MVT::i32:
1647    case MVT::i64:
1648      // Double word align in ELF
1649      if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1650      if (GPR_idx != NumGPRs) {
1651        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1652      } else {
1653        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1654        inMem = true;
1655      }
1656      if (inMem || isMachoABI) {
1657        // Stack align in ELF
1658        if (isELF32_ABI && Expand)
1659          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1660
1661        ArgOffset += PtrByteSize;
1662      }
1663      break;
1664    case MVT::f32:
1665    case MVT::f64:
1666      if (isVarArg) {
1667        // Float varargs need to be promoted to double.
1668        if (Arg.getValueType() == MVT::f32)
1669          Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1670      }
1671
1672      if (FPR_idx != NumFPRs) {
1673        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1674
1675        if (isVarArg) {
1676          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1677          MemOpChains.push_back(Store);
1678
1679          // Float varargs are always shadowed in available integer registers
1680          if (GPR_idx != NumGPRs) {
1681            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1682            MemOpChains.push_back(Load.getValue(1));
1683            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1684                                                                Load));
1685          }
1686          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1687            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1688            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1689            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1690            MemOpChains.push_back(Load.getValue(1));
1691            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1692                                                                Load));
1693          }
1694        } else {
1695          // If we have any FPRs remaining, we may also have GPRs remaining.
1696          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1697          // GPRs.
1698          if (isMachoABI) {
1699            if (GPR_idx != NumGPRs)
1700              ++GPR_idx;
1701            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1702                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
1703              ++GPR_idx;
1704          }
1705        }
1706      } else {
1707        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1708        inMem = true;
1709      }
1710      if (inMem || isMachoABI) {
1711        // Stack align in ELF
1712        if (isELF32_ABI && Expand)
1713          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1714        if (isPPC64)
1715          ArgOffset += 8;
1716        else
1717          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1718      }
1719      break;
1720    case MVT::v4f32:
1721    case MVT::v4i32:
1722    case MVT::v8i16:
1723    case MVT::v16i8:
1724      assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1725      assert(VR_idx != NumVRs &&
1726             "Don't support passing more than 12 vector args yet!");
1727      RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1728      break;
1729    }
1730  }
1731  if (!MemOpChains.empty())
1732    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1733                        &MemOpChains[0], MemOpChains.size());
1734
1735  // Build a sequence of copy-to-reg nodes chained together with token chain
1736  // and flag operands which copy the outgoing args into the appropriate regs.
1737  SDOperand InFlag;
1738  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1739    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1740                             InFlag);
1741    InFlag = Chain.getValue(1);
1742  }
1743
1744  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1745  if (isVarArg && isELF32_ABI) {
1746    SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1747    Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1748    InFlag = Chain.getValue(1);
1749  }
1750
1751  std::vector<MVT::ValueType> NodeTys;
1752  NodeTys.push_back(MVT::Other);   // Returns a chain
1753  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1754
1755  SmallVector<SDOperand, 8> Ops;
1756  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1757
1758  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1759  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1760  // node so that legalize doesn't hack it.
1761  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1762    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1763  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1764    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1765  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1766    // If this is an absolute destination address, use the munged value.
1767    Callee = SDOperand(Dest, 0);
1768  else {
1769    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
1770    // to do the call, we can't use PPCISD::CALL.
1771    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1772    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1773    InFlag = Chain.getValue(1);
1774
1775    // Copy the callee address into R12 on darwin.
1776    if (isMachoABI) {
1777      Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1778      InFlag = Chain.getValue(1);
1779    }
1780
1781    NodeTys.clear();
1782    NodeTys.push_back(MVT::Other);
1783    NodeTys.push_back(MVT::Flag);
1784    Ops.push_back(Chain);
1785    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1786    Callee.Val = 0;
1787  }
1788
1789  // If this is a direct call, pass the chain and the callee.
1790  if (Callee.Val) {
1791    Ops.push_back(Chain);
1792    Ops.push_back(Callee);
1793  }
1794
1795  // Add argument registers to the end of the list so that they are known live
1796  // into the call.
1797  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1798    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1799                                  RegsToPass[i].second.getValueType()));
1800
1801  if (InFlag.Val)
1802    Ops.push_back(InFlag);
1803  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1804  InFlag = Chain.getValue(1);
1805
1806  SDOperand ResultVals[3];
1807  unsigned NumResults = 0;
1808  NodeTys.clear();
1809
1810  // If the call has results, copy the values out of the ret val registers.
1811  switch (Op.Val->getValueType(0)) {
1812  default: assert(0 && "Unexpected ret value!");
1813  case MVT::Other: break;
1814  case MVT::i32:
1815    if (Op.Val->getValueType(1) == MVT::i32) {
1816      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1817      ResultVals[0] = Chain.getValue(0);
1818      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
1819                                 Chain.getValue(2)).getValue(1);
1820      ResultVals[1] = Chain.getValue(0);
1821      NumResults = 2;
1822      NodeTys.push_back(MVT::i32);
1823    } else {
1824      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1825      ResultVals[0] = Chain.getValue(0);
1826      NumResults = 1;
1827    }
1828    NodeTys.push_back(MVT::i32);
1829    break;
1830  case MVT::i64:
1831    Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1832    ResultVals[0] = Chain.getValue(0);
1833    NumResults = 1;
1834    NodeTys.push_back(MVT::i64);
1835    break;
1836  case MVT::f64:
1837    if (Op.Val->getValueType(1) == MVT::f64) {
1838      Chain = DAG.getCopyFromReg(Chain, PPC::F1, MVT::f64, InFlag).getValue(1);
1839      ResultVals[0] = Chain.getValue(0);
1840      Chain = DAG.getCopyFromReg(Chain, PPC::F2, MVT::f64,
1841                                 Chain.getValue(2)).getValue(1);
1842      ResultVals[1] = Chain.getValue(0);
1843      NumResults = 2;
1844      NodeTys.push_back(MVT::f64);
1845      NodeTys.push_back(MVT::f64);
1846      break;
1847    }
1848    // else fall through
1849  case MVT::f32:
1850    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1851                               InFlag).getValue(1);
1852    ResultVals[0] = Chain.getValue(0);
1853    NumResults = 1;
1854    NodeTys.push_back(Op.Val->getValueType(0));
1855    break;
1856  case MVT::v4f32:
1857  case MVT::v4i32:
1858  case MVT::v8i16:
1859  case MVT::v16i8:
1860    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1861                                   InFlag).getValue(1);
1862    ResultVals[0] = Chain.getValue(0);
1863    NumResults = 1;
1864    NodeTys.push_back(Op.Val->getValueType(0));
1865    break;
1866  }
1867
1868  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1869                      DAG.getConstant(NumBytes, PtrVT));
1870  NodeTys.push_back(MVT::Other);
1871
1872  // If the function returns void, just return the chain.
1873  if (NumResults == 0)
1874    return Chain;
1875
1876  // Otherwise, merge everything together with a MERGE_VALUES node.
1877  ResultVals[NumResults++] = Chain;
1878  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1879                              ResultVals, NumResults);
1880  return Res.getValue(Op.ResNo);
1881}
1882
1883static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) {
1884  SmallVector<CCValAssign, 16> RVLocs;
1885  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1886  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1887  CCState CCInfo(CC, isVarArg, TM, RVLocs);
1888  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
1889
1890  // If this is the first return lowered for this function, add the regs to the
1891  // liveout set for the function.
1892  if (DAG.getMachineFunction().liveout_empty()) {
1893    for (unsigned i = 0; i != RVLocs.size(); ++i)
1894      DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
1895  }
1896
1897  SDOperand Chain = Op.getOperand(0);
1898  SDOperand Flag;
1899
1900  // Copy the result values into the output registers.
1901  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1902    CCValAssign &VA = RVLocs[i];
1903    assert(VA.isRegLoc() && "Can only return in registers!");
1904    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
1905    Flag = Chain.getValue(1);
1906  }
1907
1908  if (Flag.Val)
1909    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
1910  else
1911    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
1912}
1913
1914static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1915                                   const PPCSubtarget &Subtarget) {
1916  // When we pop the dynamic allocation we need to restore the SP link.
1917
1918  // Get the corect type for pointers.
1919  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1920
1921  // Construct the stack pointer operand.
1922  bool IsPPC64 = Subtarget.isPPC64();
1923  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1924  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1925
1926  // Get the operands for the STACKRESTORE.
1927  SDOperand Chain = Op.getOperand(0);
1928  SDOperand SaveSP = Op.getOperand(1);
1929
1930  // Load the old link SP.
1931  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1932
1933  // Restore the stack pointer.
1934  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1935
1936  // Store the old link SP.
1937  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1938}
1939
1940static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1941                                         const PPCSubtarget &Subtarget) {
1942  MachineFunction &MF = DAG.getMachineFunction();
1943  bool IsPPC64 = Subtarget.isPPC64();
1944  bool isMachoABI = Subtarget.isMachoABI();
1945
1946  // Get current frame pointer save index.  The users of this index will be
1947  // primarily DYNALLOC instructions.
1948  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1949  int FPSI = FI->getFramePointerSaveIndex();
1950
1951  // If the frame pointer save index hasn't been defined yet.
1952  if (!FPSI) {
1953    // Find out what the fix offset of the frame pointer save area.
1954    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
1955
1956    // Allocate the frame index for frame pointer save area.
1957    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
1958    // Save the result.
1959    FI->setFramePointerSaveIndex(FPSI);
1960  }
1961
1962  // Get the inputs.
1963  SDOperand Chain = Op.getOperand(0);
1964  SDOperand Size  = Op.getOperand(1);
1965
1966  // Get the corect type for pointers.
1967  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1968  // Negate the size.
1969  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1970                                  DAG.getConstant(0, PtrVT), Size);
1971  // Construct a node for the frame pointer save index.
1972  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1973  // Build a DYNALLOC node.
1974  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1975  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1976  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1977}
1978
1979
1980/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1981/// possible.
1982static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1983  // Not FP? Not a fsel.
1984  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1985      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1986    return SDOperand();
1987
1988  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1989
1990  // Cannot handle SETEQ/SETNE.
1991  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
1992
1993  MVT::ValueType ResVT = Op.getValueType();
1994  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
1995  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1996  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
1997
1998  // If the RHS of the comparison is a 0.0, we don't need to do the
1999  // subtraction at all.
2000  if (isFloatingPointZero(RHS))
2001    switch (CC) {
2002    default: break;       // SETUO etc aren't handled by fsel.
2003    case ISD::SETULT:
2004    case ISD::SETOLT:
2005    case ISD::SETLT:
2006      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2007    case ISD::SETUGE:
2008    case ISD::SETOGE:
2009    case ISD::SETGE:
2010      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2011        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2012      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2013    case ISD::SETUGT:
2014    case ISD::SETOGT:
2015    case ISD::SETGT:
2016      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2017    case ISD::SETULE:
2018    case ISD::SETOLE:
2019    case ISD::SETLE:
2020      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2021        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2022      return DAG.getNode(PPCISD::FSEL, ResVT,
2023                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2024    }
2025
2026      SDOperand Cmp;
2027  switch (CC) {
2028  default: break;       // SETUO etc aren't handled by fsel.
2029  case ISD::SETULT:
2030  case ISD::SETOLT:
2031  case ISD::SETLT:
2032    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2033    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2034      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2035      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2036  case ISD::SETUGE:
2037  case ISD::SETOGE:
2038  case ISD::SETGE:
2039    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2040    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2041      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2042      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2043  case ISD::SETUGT:
2044  case ISD::SETOGT:
2045  case ISD::SETGT:
2046    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2047    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2048      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2049      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2050  case ISD::SETULE:
2051  case ISD::SETOLE:
2052  case ISD::SETLE:
2053    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2054    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2055      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2056      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2057  }
2058  return SDOperand();
2059}
2060
2061static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2062  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2063  SDOperand Src = Op.getOperand(0);
2064  if (Src.getValueType() == MVT::f32)
2065    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2066
2067  SDOperand Tmp;
2068  switch (Op.getValueType()) {
2069  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2070  case MVT::i32:
2071    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2072    break;
2073  case MVT::i64:
2074    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2075    break;
2076  }
2077
2078  // Convert the FP value to an int value through memory.
2079  SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
2080  if (Op.getValueType() == MVT::i32)
2081    Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
2082  return Bits;
2083}
2084
2085static SDOperand LowerFP_ROUND_INREG(SDOperand Op, SelectionDAG &DAG) {
2086  assert(Op.getValueType() == MVT::ppcf128);
2087  SDNode *Node = Op.Val;
2088  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2089  assert(Node->getOperand(0).Val->getOpcode()==ISD::BUILD_PAIR);
2090  SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2091  SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2092
2093  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2094  // of the long double, and puts FPSCR back the way it was.  We do not
2095  // actually model FPSCR.
2096  std::vector<MVT::ValueType> NodeTys;
2097  SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2098
2099  NodeTys.push_back(MVT::f64);   // Return register
2100  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2101  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2102  MFFSreg = Result.getValue(0);
2103  InFlag = Result.getValue(1);
2104
2105  NodeTys.clear();
2106  NodeTys.push_back(MVT::Flag);   // Returns a flag
2107  Ops[0] = DAG.getConstant(31, MVT::i32);
2108  Ops[1] = InFlag;
2109  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2110  InFlag = Result.getValue(0);
2111
2112  NodeTys.clear();
2113  NodeTys.push_back(MVT::Flag);   // Returns a flag
2114  Ops[0] = DAG.getConstant(30, MVT::i32);
2115  Ops[1] = InFlag;
2116  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2117  InFlag = Result.getValue(0);
2118
2119  NodeTys.clear();
2120  NodeTys.push_back(MVT::f64);    // result of add
2121  NodeTys.push_back(MVT::Flag);   // Returns a flag
2122  Ops[0] = Lo;
2123  Ops[1] = Hi;
2124  Ops[2] = InFlag;
2125  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2126  FPreg = Result.getValue(0);
2127  InFlag = Result.getValue(1);
2128
2129  NodeTys.clear();
2130  NodeTys.push_back(MVT::f64);
2131  Ops[0] = DAG.getConstant(1, MVT::i32);
2132  Ops[1] = MFFSreg;
2133  Ops[2] = FPreg;
2134  Ops[3] = InFlag;
2135  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2136  FPreg = Result.getValue(0);
2137
2138  // We know the low half is about to be thrown away, so just use something
2139  // convenient.
2140  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2141}
2142
2143static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2144  if (Op.getOperand(0).getValueType() == MVT::i64) {
2145    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2146    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2147    if (Op.getValueType() == MVT::f32)
2148      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2149    return FP;
2150  }
2151
2152  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2153         "Unhandled SINT_TO_FP type in custom expander!");
2154  // Since we only generate this in 64-bit mode, we can take advantage of
2155  // 64-bit registers.  In particular, sign extend the input value into the
2156  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2157  // then lfd it and fcfid it.
2158  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2159  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2160  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2161  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2162
2163  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2164                                Op.getOperand(0));
2165
2166  // STD the extended value into the stack slot.
2167  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2168                                DAG.getEntryNode(), Ext64, FIdx,
2169                                DAG.getSrcValue(NULL));
2170  // Load the value as a double.
2171  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2172
2173  // FCFID it and return it.
2174  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2175  if (Op.getValueType() == MVT::f32)
2176    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2177  return FP;
2178}
2179
2180static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2181  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2182         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
2183
2184  // Expand into a bunch of logical ops.  Note that these ops
2185  // depend on the PPC behavior for oversized shift amounts.
2186  SDOperand Lo = Op.getOperand(0);
2187  SDOperand Hi = Op.getOperand(1);
2188  SDOperand Amt = Op.getOperand(2);
2189
2190  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2191                               DAG.getConstant(32, MVT::i32), Amt);
2192  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
2193  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
2194  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2195  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2196                               DAG.getConstant(-32U, MVT::i32));
2197  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
2198  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2199  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
2200  SDOperand OutOps[] = { OutLo, OutHi };
2201  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2202                     OutOps, 2);
2203}
2204
2205static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2206  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2207         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
2208
2209  // Otherwise, expand into a bunch of logical ops.  Note that these ops
2210  // depend on the PPC behavior for oversized shift amounts.
2211  SDOperand Lo = Op.getOperand(0);
2212  SDOperand Hi = Op.getOperand(1);
2213  SDOperand Amt = Op.getOperand(2);
2214
2215  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2216                               DAG.getConstant(32, MVT::i32), Amt);
2217  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2218  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2219  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2220  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2221                               DAG.getConstant(-32U, MVT::i32));
2222  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
2223  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2224  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
2225  SDOperand OutOps[] = { OutLo, OutHi };
2226  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2227                     OutOps, 2);
2228}
2229
2230static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2231  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2232         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
2233
2234  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
2235  SDOperand Lo = Op.getOperand(0);
2236  SDOperand Hi = Op.getOperand(1);
2237  SDOperand Amt = Op.getOperand(2);
2238
2239  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2240                               DAG.getConstant(32, MVT::i32), Amt);
2241  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2242  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2243  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2244  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2245                               DAG.getConstant(-32U, MVT::i32));
2246  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
2247  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
2248  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
2249                                    Tmp4, Tmp6, ISD::SETLE);
2250  SDOperand OutOps[] = { OutLo, OutHi };
2251  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2252                     OutOps, 2);
2253}
2254
2255//===----------------------------------------------------------------------===//
2256// Vector related lowering.
2257//
2258
2259// If this is a vector of constants or undefs, get the bits.  A bit in
2260// UndefBits is set if the corresponding element of the vector is an
2261// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2262// zero.   Return true if this is not an array of constants, false if it is.
2263//
2264static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2265                                       uint64_t UndefBits[2]) {
2266  // Start with zero'd results.
2267  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2268
2269  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2270  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2271    SDOperand OpVal = BV->getOperand(i);
2272
2273    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
2274    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
2275
2276    uint64_t EltBits = 0;
2277    if (OpVal.getOpcode() == ISD::UNDEF) {
2278      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2279      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2280      continue;
2281    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2282      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2283    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2284      assert(CN->getValueType(0) == MVT::f32 &&
2285             "Only one legal FP vector type!");
2286      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
2287    } else {
2288      // Nonconstant element.
2289      return true;
2290    }
2291
2292    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2293  }
2294
2295  //printf("%llx %llx  %llx %llx\n",
2296  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2297  return false;
2298}
2299
2300// If this is a splat (repetition) of a value across the whole vector, return
2301// the smallest size that splats it.  For example, "0x01010101010101..." is a
2302// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2303// SplatSize = 1 byte.
2304static bool isConstantSplat(const uint64_t Bits128[2],
2305                            const uint64_t Undef128[2],
2306                            unsigned &SplatBits, unsigned &SplatUndef,
2307                            unsigned &SplatSize) {
2308
2309  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
2310  // the same as the lower 64-bits, ignoring undefs.
2311  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2312    return false;  // Can't be a splat if two pieces don't match.
2313
2314  uint64_t Bits64  = Bits128[0] | Bits128[1];
2315  uint64_t Undef64 = Undef128[0] & Undef128[1];
2316
2317  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2318  // undefs.
2319  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2320    return false;  // Can't be a splat if two pieces don't match.
2321
2322  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2323  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2324
2325  // If the top 16-bits are different than the lower 16-bits, ignoring
2326  // undefs, we have an i32 splat.
2327  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2328    SplatBits = Bits32;
2329    SplatUndef = Undef32;
2330    SplatSize = 4;
2331    return true;
2332  }
2333
2334  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
2335  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2336
2337  // If the top 8-bits are different than the lower 8-bits, ignoring
2338  // undefs, we have an i16 splat.
2339  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2340    SplatBits = Bits16;
2341    SplatUndef = Undef16;
2342    SplatSize = 2;
2343    return true;
2344  }
2345
2346  // Otherwise, we have an 8-bit splat.
2347  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
2348  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2349  SplatSize = 1;
2350  return true;
2351}
2352
2353/// BuildSplatI - Build a canonical splati of Val with an element size of
2354/// SplatSize.  Cast the result to VT.
2355static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2356                             SelectionDAG &DAG) {
2357  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2358
2359  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2360    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2361  };
2362
2363  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2364
2365  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2366  if (Val == -1)
2367    SplatSize = 1;
2368
2369  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2370
2371  // Build a canonical splat for this value.
2372  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2373  SmallVector<SDOperand, 8> Ops;
2374  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2375  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2376                              &Ops[0], Ops.size());
2377  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2378}
2379
2380/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2381/// specified intrinsic ID.
2382static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2383                                  SelectionDAG &DAG,
2384                                  MVT::ValueType DestVT = MVT::Other) {
2385  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2386  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2387                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2388}
2389
2390/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2391/// specified intrinsic ID.
2392static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2393                                  SDOperand Op2, SelectionDAG &DAG,
2394                                  MVT::ValueType DestVT = MVT::Other) {
2395  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2396  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2397                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2398}
2399
2400
2401/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2402/// amount.  The result has the specified value type.
2403static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2404                             MVT::ValueType VT, SelectionDAG &DAG) {
2405  // Force LHS/RHS to be the right type.
2406  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2407  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2408
2409  SDOperand Ops[16];
2410  for (unsigned i = 0; i != 16; ++i)
2411    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2412  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2413                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2414  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2415}
2416
2417// If this is a case we can't handle, return null and let the default
2418// expansion code take care of it.  If we CAN select this case, and if it
2419// selects to a single instruction, return Op.  Otherwise, if we can codegen
2420// this case more efficiently than a constant pool load, lower it to the
2421// sequence of ops that should be used.
2422static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2423  // If this is a vector of constants or undefs, get the bits.  A bit in
2424  // UndefBits is set if the corresponding element of the vector is an
2425  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2426  // zero.
2427  uint64_t VectorBits[2];
2428  uint64_t UndefBits[2];
2429  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2430    return SDOperand();   // Not a constant vector.
2431
2432  // If this is a splat (repetition) of a value across the whole vector, return
2433  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2434  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2435  // SplatSize = 1 byte.
2436  unsigned SplatBits, SplatUndef, SplatSize;
2437  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2438    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2439
2440    // First, handle single instruction cases.
2441
2442    // All zeros?
2443    if (SplatBits == 0) {
2444      // Canonicalize all zero vectors to be v4i32.
2445      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2446        SDOperand Z = DAG.getConstant(0, MVT::i32);
2447        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2448        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2449      }
2450      return Op;
2451    }
2452
2453    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2454    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2455    if (SextVal >= -16 && SextVal <= 15)
2456      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2457
2458
2459    // Two instruction sequences.
2460
2461    // If this value is in the range [-32,30] and is even, use:
2462    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2463    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2464      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2465      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2466    }
2467
2468    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2469    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2470    // for fneg/fabs.
2471    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2472      // Make -1 and vspltisw -1:
2473      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2474
2475      // Make the VSLW intrinsic, computing 0x8000_0000.
2476      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2477                                       OnesV, DAG);
2478
2479      // xor by OnesV to invert it.
2480      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2481      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2482    }
2483
2484    // Check to see if this is a wide variety of vsplti*, binop self cases.
2485    unsigned SplatBitSize = SplatSize*8;
2486    static const signed char SplatCsts[] = {
2487      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2488      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2489    };
2490
2491    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
2492      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2493      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2494      int i = SplatCsts[idx];
2495
2496      // Figure out what shift amount will be used by altivec if shifted by i in
2497      // this splat size.
2498      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2499
2500      // vsplti + shl self.
2501      if (SextVal == (i << (int)TypeShiftAmt)) {
2502        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2503        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2504          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2505          Intrinsic::ppc_altivec_vslw
2506        };
2507        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2508        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2509      }
2510
2511      // vsplti + srl self.
2512      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2513        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2514        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2515          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2516          Intrinsic::ppc_altivec_vsrw
2517        };
2518        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2519        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2520      }
2521
2522      // vsplti + sra self.
2523      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2524        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2525        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2526          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2527          Intrinsic::ppc_altivec_vsraw
2528        };
2529        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2530        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2531      }
2532
2533      // vsplti + rol self.
2534      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2535                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2536        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2537        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2538          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2539          Intrinsic::ppc_altivec_vrlw
2540        };
2541        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2542        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2543      }
2544
2545      // t = vsplti c, result = vsldoi t, t, 1
2546      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2547        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2548        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2549      }
2550      // t = vsplti c, result = vsldoi t, t, 2
2551      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2552        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2553        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2554      }
2555      // t = vsplti c, result = vsldoi t, t, 3
2556      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2557        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2558        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2559      }
2560    }
2561
2562    // Three instruction sequences.
2563
2564    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2565    if (SextVal >= 0 && SextVal <= 31) {
2566      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2567      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2568      LHS = DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
2569      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2570    }
2571    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2572    if (SextVal >= -31 && SextVal <= 0) {
2573      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2574      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2575      LHS = DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
2576      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2577    }
2578  }
2579
2580  return SDOperand();
2581}
2582
2583/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2584/// the specified operations to build the shuffle.
2585static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2586                                        SDOperand RHS, SelectionDAG &DAG) {
2587  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2588  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
2589  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2590
2591  enum {
2592    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2593    OP_VMRGHW,
2594    OP_VMRGLW,
2595    OP_VSPLTISW0,
2596    OP_VSPLTISW1,
2597    OP_VSPLTISW2,
2598    OP_VSPLTISW3,
2599    OP_VSLDOI4,
2600    OP_VSLDOI8,
2601    OP_VSLDOI12
2602  };
2603
2604  if (OpNum == OP_COPY) {
2605    if (LHSID == (1*9+2)*9+3) return LHS;
2606    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2607    return RHS;
2608  }
2609
2610  SDOperand OpLHS, OpRHS;
2611  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2612  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2613
2614  unsigned ShufIdxs[16];
2615  switch (OpNum) {
2616  default: assert(0 && "Unknown i32 permute!");
2617  case OP_VMRGHW:
2618    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
2619    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2620    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
2621    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2622    break;
2623  case OP_VMRGLW:
2624    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2625    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2626    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2627    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2628    break;
2629  case OP_VSPLTISW0:
2630    for (unsigned i = 0; i != 16; ++i)
2631      ShufIdxs[i] = (i&3)+0;
2632    break;
2633  case OP_VSPLTISW1:
2634    for (unsigned i = 0; i != 16; ++i)
2635      ShufIdxs[i] = (i&3)+4;
2636    break;
2637  case OP_VSPLTISW2:
2638    for (unsigned i = 0; i != 16; ++i)
2639      ShufIdxs[i] = (i&3)+8;
2640    break;
2641  case OP_VSPLTISW3:
2642    for (unsigned i = 0; i != 16; ++i)
2643      ShufIdxs[i] = (i&3)+12;
2644    break;
2645  case OP_VSLDOI4:
2646    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2647  case OP_VSLDOI8:
2648    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2649  case OP_VSLDOI12:
2650    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2651  }
2652  SDOperand Ops[16];
2653  for (unsigned i = 0; i != 16; ++i)
2654    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2655
2656  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2657                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2658}
2659
2660/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
2661/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
2662/// return the code it can be lowered into.  Worst case, it can always be
2663/// lowered into a vperm.
2664static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2665  SDOperand V1 = Op.getOperand(0);
2666  SDOperand V2 = Op.getOperand(1);
2667  SDOperand PermMask = Op.getOperand(2);
2668
2669  // Cases that are handled by instructions that take permute immediates
2670  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2671  // selected by the instruction selector.
2672  if (V2.getOpcode() == ISD::UNDEF) {
2673    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2674        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2675        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2676        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2677        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2678        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2679        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2680        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2681        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2682        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2683        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2684        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2685      return Op;
2686    }
2687  }
2688
2689  // Altivec has a variety of "shuffle immediates" that take two vector inputs
2690  // and produce a fixed permutation.  If any of these match, do not lower to
2691  // VPERM.
2692  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2693      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2694      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2695      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2696      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2697      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2698      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2699      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2700      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2701    return Op;
2702
2703  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
2704  // perfect shuffle table to emit an optimal matching sequence.
2705  unsigned PFIndexes[4];
2706  bool isFourElementShuffle = true;
2707  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2708    unsigned EltNo = 8;   // Start out undef.
2709    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
2710      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2711        continue;   // Undef, ignore it.
2712
2713      unsigned ByteSource =
2714        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2715      if ((ByteSource & 3) != j) {
2716        isFourElementShuffle = false;
2717        break;
2718      }
2719
2720      if (EltNo == 8) {
2721        EltNo = ByteSource/4;
2722      } else if (EltNo != ByteSource/4) {
2723        isFourElementShuffle = false;
2724        break;
2725      }
2726    }
2727    PFIndexes[i] = EltNo;
2728  }
2729
2730  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2731  // perfect shuffle vector to determine if it is cost effective to do this as
2732  // discrete instructions, or whether we should use a vperm.
2733  if (isFourElementShuffle) {
2734    // Compute the index in the perfect shuffle table.
2735    unsigned PFTableIndex =
2736      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2737
2738    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2739    unsigned Cost  = (PFEntry >> 30);
2740
2741    // Determining when to avoid vperm is tricky.  Many things affect the cost
2742    // of vperm, particularly how many times the perm mask needs to be computed.
2743    // For example, if the perm mask can be hoisted out of a loop or is already
2744    // used (perhaps because there are multiple permutes with the same shuffle
2745    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
2746    // the loop requires an extra register.
2747    //
2748    // As a compromise, we only emit discrete instructions if the shuffle can be
2749    // generated in 3 or fewer operations.  When we have loop information
2750    // available, if this block is within a loop, we should avoid using vperm
2751    // for 3-operation perms and use a constant pool load instead.
2752    if (Cost < 3)
2753      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2754  }
2755
2756  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2757  // vector that will get spilled to the constant pool.
2758  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2759
2760  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2761  // that it is in input element units, not in bytes.  Convert now.
2762  MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
2763  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2764
2765  SmallVector<SDOperand, 16> ResultMask;
2766  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2767    unsigned SrcElt;
2768    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2769      SrcElt = 0;
2770    else
2771      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2772
2773    for (unsigned j = 0; j != BytesPerElement; ++j)
2774      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2775                                           MVT::i8));
2776  }
2777
2778  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2779                                    &ResultMask[0], ResultMask.size());
2780  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2781}
2782
2783/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2784/// altivec comparison.  If it is, return true and fill in Opc/isDot with
2785/// information about the intrinsic.
2786static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2787                                  bool &isDot) {
2788  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2789  CompareOpc = -1;
2790  isDot = false;
2791  switch (IntrinsicID) {
2792  default: return false;
2793    // Comparison predicates.
2794  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
2795  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2796  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
2797  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
2798  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2799  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2800  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2801  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2802  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2803  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2804  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2805  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2806  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2807
2808    // Normal Comparisons.
2809  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
2810  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
2811  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
2812  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
2813  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
2814  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
2815  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
2816  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
2817  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
2818  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
2819  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
2820  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
2821  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
2822  }
2823  return true;
2824}
2825
2826/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2827/// lower, do it, otherwise return null.
2828static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2829  // If this is a lowered altivec predicate compare, CompareOpc is set to the
2830  // opcode number of the comparison.
2831  int CompareOpc;
2832  bool isDot;
2833  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2834    return SDOperand();    // Don't custom lower most intrinsics.
2835
2836  // If this is a non-dot comparison, make the VCMP node and we are done.
2837  if (!isDot) {
2838    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2839                                Op.getOperand(1), Op.getOperand(2),
2840                                DAG.getConstant(CompareOpc, MVT::i32));
2841    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2842  }
2843
2844  // Create the PPCISD altivec 'dot' comparison node.
2845  SDOperand Ops[] = {
2846    Op.getOperand(2),  // LHS
2847    Op.getOperand(3),  // RHS
2848    DAG.getConstant(CompareOpc, MVT::i32)
2849  };
2850  std::vector<MVT::ValueType> VTs;
2851  VTs.push_back(Op.getOperand(2).getValueType());
2852  VTs.push_back(MVT::Flag);
2853  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2854
2855  // Now that we have the comparison, emit a copy from the CR to a GPR.
2856  // This is flagged to the above dot comparison.
2857  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2858                                DAG.getRegister(PPC::CR6, MVT::i32),
2859                                CompNode.getValue(1));
2860
2861  // Unpack the result based on how the target uses it.
2862  unsigned BitNo;   // Bit # of CR6.
2863  bool InvertBit;   // Invert result?
2864  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2865  default:  // Can't happen, don't crash on invalid number though.
2866  case 0:   // Return the value of the EQ bit of CR6.
2867    BitNo = 0; InvertBit = false;
2868    break;
2869  case 1:   // Return the inverted value of the EQ bit of CR6.
2870    BitNo = 0; InvertBit = true;
2871    break;
2872  case 2:   // Return the value of the LT bit of CR6.
2873    BitNo = 2; InvertBit = false;
2874    break;
2875  case 3:   // Return the inverted value of the LT bit of CR6.
2876    BitNo = 2; InvertBit = true;
2877    break;
2878  }
2879
2880  // Shift the bit into the low position.
2881  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2882                      DAG.getConstant(8-(3-BitNo), MVT::i32));
2883  // Isolate the bit.
2884  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2885                      DAG.getConstant(1, MVT::i32));
2886
2887  // If we are supposed to, toggle the bit.
2888  if (InvertBit)
2889    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2890                        DAG.getConstant(1, MVT::i32));
2891  return Flags;
2892}
2893
2894static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2895  // Create a stack slot that is 16-byte aligned.
2896  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2897  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2898  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2899  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2900
2901  // Store the input value into Value#0 of the stack slot.
2902  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2903                                 Op.getOperand(0), FIdx, NULL, 0);
2904  // Load it out.
2905  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2906}
2907
2908static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2909  if (Op.getValueType() == MVT::v4i32) {
2910    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2911
2912    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
2913    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2914
2915    SDOperand RHSSwap =   // = vrlw RHS, 16
2916      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2917
2918    // Shrinkify inputs to v8i16.
2919    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2920    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2921    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2922
2923    // Low parts multiplied together, generating 32-bit results (we ignore the
2924    // top parts).
2925    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2926                                        LHS, RHS, DAG, MVT::v4i32);
2927
2928    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2929                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2930    // Shift the high parts up 16 bits.
2931    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2932    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2933  } else if (Op.getValueType() == MVT::v8i16) {
2934    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2935
2936    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2937
2938    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2939                            LHS, RHS, Zero, DAG);
2940  } else if (Op.getValueType() == MVT::v16i8) {
2941    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2942
2943    // Multiply the even 8-bit parts, producing 16-bit sums.
2944    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2945                                           LHS, RHS, DAG, MVT::v8i16);
2946    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2947
2948    // Multiply the odd 8-bit parts, producing 16-bit sums.
2949    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2950                                          LHS, RHS, DAG, MVT::v8i16);
2951    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2952
2953    // Merge the results together.
2954    SDOperand Ops[16];
2955    for (unsigned i = 0; i != 8; ++i) {
2956      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
2957      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2958    }
2959    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2960                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2961  } else {
2962    assert(0 && "Unknown mul to lower!");
2963    abort();
2964  }
2965}
2966
2967/// LowerOperation - Provide custom lowering hooks for some operations.
2968///
2969SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2970  switch (Op.getOpcode()) {
2971  default: assert(0 && "Wasn't expecting to be able to lower this!");
2972  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
2973  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
2974  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
2975  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
2976  case ISD::SETCC:              return LowerSETCC(Op, DAG);
2977  case ISD::VASTART:
2978    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
2979                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
2980
2981  case ISD::VAARG:
2982    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
2983                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
2984
2985  case ISD::FORMAL_ARGUMENTS:
2986    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
2987                                 VarArgsStackOffset, VarArgsNumGPR,
2988                                 VarArgsNumFPR, PPCSubTarget);
2989
2990  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget);
2991  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
2992  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
2993  case ISD::DYNAMIC_STACKALLOC:
2994    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
2995
2996  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
2997  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
2998  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
2999  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3000
3001  // Lower 64-bit shifts.
3002  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3003  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3004  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3005
3006  // Vector-related lowering.
3007  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3008  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3009  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3010  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3011  case ISD::MUL:                return LowerMUL(Op, DAG);
3012
3013  // Frame & Return address.  Currently unimplemented
3014  case ISD::RETURNADDR:         break;
3015  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3016  }
3017  return SDOperand();
3018}
3019
3020//===----------------------------------------------------------------------===//
3021//  Other Lowering Code
3022//===----------------------------------------------------------------------===//
3023
3024MachineBasicBlock *
3025PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3026                                           MachineBasicBlock *BB) {
3027  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3028  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3029          MI->getOpcode() == PPC::SELECT_CC_I8 ||
3030          MI->getOpcode() == PPC::SELECT_CC_F4 ||
3031          MI->getOpcode() == PPC::SELECT_CC_F8 ||
3032          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3033         "Unexpected instr type to insert");
3034
3035  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3036  // control-flow pattern.  The incoming instruction knows the destination vreg
3037  // to set, the condition code register to branch on, the true/false values to
3038  // select between, and a branch opcode to use.
3039  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3040  ilist<MachineBasicBlock>::iterator It = BB;
3041  ++It;
3042
3043  //  thisMBB:
3044  //  ...
3045  //   TrueVal = ...
3046  //   cmpTY ccX, r1, r2
3047  //   bCC copy1MBB
3048  //   fallthrough --> copy0MBB
3049  MachineBasicBlock *thisMBB = BB;
3050  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3051  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3052  unsigned SelectPred = MI->getOperand(4).getImm();
3053  BuildMI(BB, TII->get(PPC::BCC))
3054    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3055  MachineFunction *F = BB->getParent();
3056  F->getBasicBlockList().insert(It, copy0MBB);
3057  F->getBasicBlockList().insert(It, sinkMBB);
3058  // Update machine-CFG edges by first adding all successors of the current
3059  // block to the new block which will contain the Phi node for the select.
3060  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3061      e = BB->succ_end(); i != e; ++i)
3062    sinkMBB->addSuccessor(*i);
3063  // Next, remove all successors of the current block, and add the true
3064  // and fallthrough blocks as its successors.
3065  while(!BB->succ_empty())
3066    BB->removeSuccessor(BB->succ_begin());
3067  BB->addSuccessor(copy0MBB);
3068  BB->addSuccessor(sinkMBB);
3069
3070  //  copy0MBB:
3071  //   %FalseValue = ...
3072  //   # fallthrough to sinkMBB
3073  BB = copy0MBB;
3074
3075  // Update machine-CFG edges
3076  BB->addSuccessor(sinkMBB);
3077
3078  //  sinkMBB:
3079  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3080  //  ...
3081  BB = sinkMBB;
3082  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3083    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3084    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3085
3086  delete MI;   // The pseudo instruction is gone now.
3087  return BB;
3088}
3089
3090//===----------------------------------------------------------------------===//
3091// Target Optimization Hooks
3092//===----------------------------------------------------------------------===//
3093
3094SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3095                                               DAGCombinerInfo &DCI) const {
3096  TargetMachine &TM = getTargetMachine();
3097  SelectionDAG &DAG = DCI.DAG;
3098  switch (N->getOpcode()) {
3099  default: break;
3100  case PPCISD::SHL:
3101    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3102      if (C->getValue() == 0)   // 0 << V -> 0.
3103        return N->getOperand(0);
3104    }
3105    break;
3106  case PPCISD::SRL:
3107    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3108      if (C->getValue() == 0)   // 0 >>u V -> 0.
3109        return N->getOperand(0);
3110    }
3111    break;
3112  case PPCISD::SRA:
3113    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3114      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
3115          C->isAllOnesValue())    // -1 >>s V -> -1.
3116        return N->getOperand(0);
3117    }
3118    break;
3119
3120  case ISD::SINT_TO_FP:
3121    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3122      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3123        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3124        // We allow the src/dst to be either f32/f64, but the intermediate
3125        // type must be i64.
3126        if (N->getOperand(0).getValueType() == MVT::i64) {
3127          SDOperand Val = N->getOperand(0).getOperand(0);
3128          if (Val.getValueType() == MVT::f32) {
3129            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3130            DCI.AddToWorklist(Val.Val);
3131          }
3132
3133          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3134          DCI.AddToWorklist(Val.Val);
3135          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3136          DCI.AddToWorklist(Val.Val);
3137          if (N->getValueType(0) == MVT::f32) {
3138            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
3139            DCI.AddToWorklist(Val.Val);
3140          }
3141          return Val;
3142        } else if (N->getOperand(0).getValueType() == MVT::i32) {
3143          // If the intermediate type is i32, we can avoid the load/store here
3144          // too.
3145        }
3146      }
3147    }
3148    break;
3149  case ISD::STORE:
3150    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3151    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3152        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3153        N->getOperand(1).getValueType() == MVT::i32) {
3154      SDOperand Val = N->getOperand(1).getOperand(0);
3155      if (Val.getValueType() == MVT::f32) {
3156        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3157        DCI.AddToWorklist(Val.Val);
3158      }
3159      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3160      DCI.AddToWorklist(Val.Val);
3161
3162      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3163                        N->getOperand(2), N->getOperand(3));
3164      DCI.AddToWorklist(Val.Val);
3165      return Val;
3166    }
3167
3168    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3169    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3170        N->getOperand(1).Val->hasOneUse() &&
3171        (N->getOperand(1).getValueType() == MVT::i32 ||
3172         N->getOperand(1).getValueType() == MVT::i16)) {
3173      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3174      // Do an any-extend to 32-bits if this is a half-word input.
3175      if (BSwapOp.getValueType() == MVT::i16)
3176        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3177
3178      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3179                         N->getOperand(2), N->getOperand(3),
3180                         DAG.getValueType(N->getOperand(1).getValueType()));
3181    }
3182    break;
3183  case ISD::BSWAP:
3184    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3185    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3186        N->getOperand(0).hasOneUse() &&
3187        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3188      SDOperand Load = N->getOperand(0);
3189      LoadSDNode *LD = cast<LoadSDNode>(Load);
3190      // Create the byte-swapping load.
3191      std::vector<MVT::ValueType> VTs;
3192      VTs.push_back(MVT::i32);
3193      VTs.push_back(MVT::Other);
3194      SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
3195      SDOperand Ops[] = {
3196        LD->getChain(),    // Chain
3197        LD->getBasePtr(),  // Ptr
3198        SV,                // SrcValue
3199        DAG.getValueType(N->getValueType(0)) // VT
3200      };
3201      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3202
3203      // If this is an i16 load, insert the truncate.
3204      SDOperand ResVal = BSLoad;
3205      if (N->getValueType(0) == MVT::i16)
3206        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3207
3208      // First, combine the bswap away.  This makes the value produced by the
3209      // load dead.
3210      DCI.CombineTo(N, ResVal);
3211
3212      // Next, combine the load away, we give it a bogus result value but a real
3213      // chain result.  The result value is dead because the bswap is dead.
3214      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3215
3216      // Return N so it doesn't get rechecked!
3217      return SDOperand(N, 0);
3218    }
3219
3220    break;
3221  case PPCISD::VCMP: {
3222    // If a VCMPo node already exists with exactly the same operands as this
3223    // node, use its result instead of this node (VCMPo computes both a CR6 and
3224    // a normal output).
3225    //
3226    if (!N->getOperand(0).hasOneUse() &&
3227        !N->getOperand(1).hasOneUse() &&
3228        !N->getOperand(2).hasOneUse()) {
3229
3230      // Scan all of the users of the LHS, looking for VCMPo's that match.
3231      SDNode *VCMPoNode = 0;
3232
3233      SDNode *LHSN = N->getOperand(0).Val;
3234      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3235           UI != E; ++UI)
3236        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3237            (*UI)->getOperand(1) == N->getOperand(1) &&
3238            (*UI)->getOperand(2) == N->getOperand(2) &&
3239            (*UI)->getOperand(0) == N->getOperand(0)) {
3240          VCMPoNode = *UI;
3241          break;
3242        }
3243
3244      // If there is no VCMPo node, or if the flag value has a single use, don't
3245      // transform this.
3246      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3247        break;
3248
3249      // Look at the (necessarily single) use of the flag value.  If it has a
3250      // chain, this transformation is more complex.  Note that multiple things
3251      // could use the value result, which we should ignore.
3252      SDNode *FlagUser = 0;
3253      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3254           FlagUser == 0; ++UI) {
3255        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3256        SDNode *User = *UI;
3257        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3258          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3259            FlagUser = User;
3260            break;
3261          }
3262        }
3263      }
3264
3265      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
3266      // give up for right now.
3267      if (FlagUser->getOpcode() == PPCISD::MFCR)
3268        return SDOperand(VCMPoNode, 0);
3269    }
3270    break;
3271  }
3272  case ISD::BR_CC: {
3273    // If this is a branch on an altivec predicate comparison, lower this so
3274    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
3275    // lowering is done pre-legalize, because the legalizer lowers the predicate
3276    // compare down to code that is difficult to reassemble.
3277    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3278    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3279    int CompareOpc;
3280    bool isDot;
3281
3282    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3283        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3284        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3285      assert(isDot && "Can't compare against a vector result!");
3286
3287      // If this is a comparison against something other than 0/1, then we know
3288      // that the condition is never/always true.
3289      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3290      if (Val != 0 && Val != 1) {
3291        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
3292          return N->getOperand(0);
3293        // Always !=, turn it into an unconditional branch.
3294        return DAG.getNode(ISD::BR, MVT::Other,
3295                           N->getOperand(0), N->getOperand(4));
3296      }
3297
3298      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3299
3300      // Create the PPCISD altivec 'dot' comparison node.
3301      std::vector<MVT::ValueType> VTs;
3302      SDOperand Ops[] = {
3303        LHS.getOperand(2),  // LHS of compare
3304        LHS.getOperand(3),  // RHS of compare
3305        DAG.getConstant(CompareOpc, MVT::i32)
3306      };
3307      VTs.push_back(LHS.getOperand(2).getValueType());
3308      VTs.push_back(MVT::Flag);
3309      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3310
3311      // Unpack the result based on how the target uses it.
3312      PPC::Predicate CompOpc;
3313      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3314      default:  // Can't happen, don't crash on invalid number though.
3315      case 0:   // Branch on the value of the EQ bit of CR6.
3316        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3317        break;
3318      case 1:   // Branch on the inverted value of the EQ bit of CR6.
3319        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3320        break;
3321      case 2:   // Branch on the value of the LT bit of CR6.
3322        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3323        break;
3324      case 3:   // Branch on the inverted value of the LT bit of CR6.
3325        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3326        break;
3327      }
3328
3329      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3330                         DAG.getConstant(CompOpc, MVT::i32),
3331                         DAG.getRegister(PPC::CR6, MVT::i32),
3332                         N->getOperand(4), CompNode.getValue(1));
3333    }
3334    break;
3335  }
3336  }
3337
3338  return SDOperand();
3339}
3340
3341//===----------------------------------------------------------------------===//
3342// Inline Assembly Support
3343//===----------------------------------------------------------------------===//
3344
3345void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3346                                                       uint64_t Mask,
3347                                                       uint64_t &KnownZero,
3348                                                       uint64_t &KnownOne,
3349                                                       const SelectionDAG &DAG,
3350                                                       unsigned Depth) const {
3351  KnownZero = 0;
3352  KnownOne = 0;
3353  switch (Op.getOpcode()) {
3354  default: break;
3355  case PPCISD::LBRX: {
3356    // lhbrx is known to have the top bits cleared out.
3357    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3358      KnownZero = 0xFFFF0000;
3359    break;
3360  }
3361  case ISD::INTRINSIC_WO_CHAIN: {
3362    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3363    default: break;
3364    case Intrinsic::ppc_altivec_vcmpbfp_p:
3365    case Intrinsic::ppc_altivec_vcmpeqfp_p:
3366    case Intrinsic::ppc_altivec_vcmpequb_p:
3367    case Intrinsic::ppc_altivec_vcmpequh_p:
3368    case Intrinsic::ppc_altivec_vcmpequw_p:
3369    case Intrinsic::ppc_altivec_vcmpgefp_p:
3370    case Intrinsic::ppc_altivec_vcmpgtfp_p:
3371    case Intrinsic::ppc_altivec_vcmpgtsb_p:
3372    case Intrinsic::ppc_altivec_vcmpgtsh_p:
3373    case Intrinsic::ppc_altivec_vcmpgtsw_p:
3374    case Intrinsic::ppc_altivec_vcmpgtub_p:
3375    case Intrinsic::ppc_altivec_vcmpgtuh_p:
3376    case Intrinsic::ppc_altivec_vcmpgtuw_p:
3377      KnownZero = ~1U;  // All bits but the low one are known to be zero.
3378      break;
3379    }
3380  }
3381  }
3382}
3383
3384
3385/// getConstraintType - Given a constraint, return the type of
3386/// constraint it is for this target.
3387PPCTargetLowering::ConstraintType
3388PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3389  if (Constraint.size() == 1) {
3390    switch (Constraint[0]) {
3391    default: break;
3392    case 'b':
3393    case 'r':
3394    case 'f':
3395    case 'v':
3396    case 'y':
3397      return C_RegisterClass;
3398    }
3399  }
3400  return TargetLowering::getConstraintType(Constraint);
3401}
3402
3403std::pair<unsigned, const TargetRegisterClass*>
3404PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3405                                                MVT::ValueType VT) const {
3406  if (Constraint.size() == 1) {
3407    // GCC RS6000 Constraint Letters
3408    switch (Constraint[0]) {
3409    case 'b':   // R1-R31
3410    case 'r':   // R0-R31
3411      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3412        return std::make_pair(0U, PPC::G8RCRegisterClass);
3413      return std::make_pair(0U, PPC::GPRCRegisterClass);
3414    case 'f':
3415      if (VT == MVT::f32)
3416        return std::make_pair(0U, PPC::F4RCRegisterClass);
3417      else if (VT == MVT::f64)
3418        return std::make_pair(0U, PPC::F8RCRegisterClass);
3419      break;
3420    case 'v':
3421      return std::make_pair(0U, PPC::VRRCRegisterClass);
3422    case 'y':   // crrc
3423      return std::make_pair(0U, PPC::CRRCRegisterClass);
3424    }
3425  }
3426
3427  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3428}
3429
3430
3431/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3432/// vector.  If it is invalid, don't add anything to Ops.
3433void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3434                                                     std::vector<SDOperand>&Ops,
3435                                                     SelectionDAG &DAG) {
3436  SDOperand Result(0,0);
3437  switch (Letter) {
3438  default: break;
3439  case 'I':
3440  case 'J':
3441  case 'K':
3442  case 'L':
3443  case 'M':
3444  case 'N':
3445  case 'O':
3446  case 'P': {
3447    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
3448    if (!CST) return; // Must be an immediate to match.
3449    unsigned Value = CST->getValue();
3450    switch (Letter) {
3451    default: assert(0 && "Unknown constraint letter!");
3452    case 'I':  // "I" is a signed 16-bit constant.
3453      if ((short)Value == (int)Value)
3454        Result = DAG.getTargetConstant(Value, Op.getValueType());
3455      break;
3456    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3457    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3458      if ((short)Value == 0)
3459        Result = DAG.getTargetConstant(Value, Op.getValueType());
3460      break;
3461    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3462      if ((Value >> 16) == 0)
3463        Result = DAG.getTargetConstant(Value, Op.getValueType());
3464      break;
3465    case 'M':  // "M" is a constant that is greater than 31.
3466      if (Value > 31)
3467        Result = DAG.getTargetConstant(Value, Op.getValueType());
3468      break;
3469    case 'N':  // "N" is a positive constant that is an exact power of two.
3470      if ((int)Value > 0 && isPowerOf2_32(Value))
3471        Result = DAG.getTargetConstant(Value, Op.getValueType());
3472      break;
3473    case 'O':  // "O" is the constant zero.
3474      if (Value == 0)
3475        Result = DAG.getTargetConstant(Value, Op.getValueType());
3476      break;
3477    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3478      if ((short)-Value == (int)-Value)
3479        Result = DAG.getTargetConstant(Value, Op.getValueType());
3480      break;
3481    }
3482    break;
3483  }
3484  }
3485
3486  if (Result.Val) {
3487    Ops.push_back(Result);
3488    return;
3489  }
3490
3491  // Handle standard constraint letters.
3492  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
3493}
3494
3495// isLegalAddressingMode - Return true if the addressing mode represented
3496// by AM is legal for this target, for a load/store of the specified type.
3497bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3498                                              const Type *Ty) const {
3499  // FIXME: PPC does not allow r+i addressing modes for vectors!
3500
3501  // PPC allows a sign-extended 16-bit immediate field.
3502  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3503    return false;
3504
3505  // No global is ever allowed as a base.
3506  if (AM.BaseGV)
3507    return false;
3508
3509  // PPC only support r+r,
3510  switch (AM.Scale) {
3511  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3512    break;
3513  case 1:
3514    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3515      return false;
3516    // Otherwise we have r+r or r+i.
3517    break;
3518  case 2:
3519    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3520      return false;
3521    // Allow 2*r as r+r.
3522    break;
3523  default:
3524    // No other scales are supported.
3525    return false;
3526  }
3527
3528  return true;
3529}
3530
3531/// isLegalAddressImmediate - Return true if the integer value can be used
3532/// as the offset of the target addressing mode for load / store of the
3533/// given type.
3534bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3535  // PPC allows a sign-extended 16-bit immediate field.
3536  return (V > -(1 << 16) && V < (1 << 16)-1);
3537}
3538
3539bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3540  return false;
3541}
3542
3543SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG)
3544{
3545  // Depths > 0 not supported yet!
3546  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3547    return SDOperand();
3548
3549  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3550  bool isPPC64 = PtrVT == MVT::i64;
3551
3552  MachineFunction &MF = DAG.getMachineFunction();
3553  MachineFrameInfo *MFI = MF.getFrameInfo();
3554  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3555                  && MFI->getStackSize();
3556
3557  if (isPPC64)
3558    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
3559      MVT::i64);
3560  else
3561    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3562      MVT::i32);
3563}
3564