PPCISelLowering.cpp revision 97efa365869d3b7b62836434585360a232836f0e
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/ParameterAttributes.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36using namespace llvm;
37
38static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
39cl::desc("enable preincrement load/store generation on PPC (experimental)"),
40                                     cl::Hidden);
41
42PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
43  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
44
45  setPow2DivIsCheap();
46
47  // Use _setjmp/_longjmp instead of setjmp/longjmp.
48  setUseUnderscoreSetJmp(true);
49  setUseUnderscoreLongJmp(true);
50
51  // Set up the register classes.
52  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
53  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
54  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
55
56  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
57  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
58  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
59
60  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
61
62  // PowerPC has pre-inc load and store's.
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
67  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
72  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
73
74  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
75  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
76  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
77  // This is used in the ppcf128->int sequence.  Note it has different semantics
78  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
79  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
80
81  // PowerPC has no SREM/UREM instructions
82  setOperationAction(ISD::SREM, MVT::i32, Expand);
83  setOperationAction(ISD::UREM, MVT::i32, Expand);
84  setOperationAction(ISD::SREM, MVT::i64, Expand);
85  setOperationAction(ISD::UREM, MVT::i64, Expand);
86
87  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
88  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
89  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
90  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
91  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
92  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
93  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
94  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
95  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
96
97  // We don't support sin/cos/sqrt/fmod/pow
98  setOperationAction(ISD::FSIN , MVT::f64, Expand);
99  setOperationAction(ISD::FCOS , MVT::f64, Expand);
100  setOperationAction(ISD::FREM , MVT::f64, Expand);
101  setOperationAction(ISD::FPOW , MVT::f64, Expand);
102  setOperationAction(ISD::FSIN , MVT::f32, Expand);
103  setOperationAction(ISD::FCOS , MVT::f32, Expand);
104  setOperationAction(ISD::FREM , MVT::f32, Expand);
105  setOperationAction(ISD::FPOW , MVT::f32, Expand);
106
107  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
108
109  // If we're enabling GP optimizations, use hardware square root
110  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
111    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
112    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
113  }
114
115  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
116  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
117
118  // PowerPC does not have BSWAP, CTPOP or CTTZ
119  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
120  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
121  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
122  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
123  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
124  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
125
126  // PowerPC does not have ROTR
127  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
128
129  // PowerPC does not have Select
130  setOperationAction(ISD::SELECT, MVT::i32, Expand);
131  setOperationAction(ISD::SELECT, MVT::i64, Expand);
132  setOperationAction(ISD::SELECT, MVT::f32, Expand);
133  setOperationAction(ISD::SELECT, MVT::f64, Expand);
134
135  // PowerPC wants to turn select_cc of FP into fsel when possible.
136  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
137  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
138
139  // PowerPC wants to optimize integer setcc a bit
140  setOperationAction(ISD::SETCC, MVT::i32, Custom);
141
142  // PowerPC does not have BRCOND which requires SetCC
143  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
144
145  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
146
147  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
148  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
149
150  // PowerPC does not have [U|S]INT_TO_FP
151  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
152  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
153
154  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
155  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
156  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
157  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
158
159  // We cannot sextinreg(i1).  Expand to shifts.
160  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
161
162  // Support label based line numbers.
163  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
164  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
165
166  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
167  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
168  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
169  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
170
171
172  // We want to legalize GlobalAddress and ConstantPool nodes into the
173  // appropriate instructions to materialize the address.
174  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
175  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
176  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
177  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
178  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
179  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
180  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
181  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
182
183  // RET must be custom lowered, to meet ABI requirements.
184  setOperationAction(ISD::RET               , MVT::Other, Custom);
185
186  // TRAP is legal.
187  setOperationAction(ISD::TRAP, MVT::Other, Legal);
188
189  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
190  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
191
192  // VAARG is custom lowered with ELF 32 ABI
193  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
194    setOperationAction(ISD::VAARG, MVT::Other, Custom);
195  else
196    setOperationAction(ISD::VAARG, MVT::Other, Expand);
197
198  // Use the default implementation.
199  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
200  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
201  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
202  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
203  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
204  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
205
206  // We want to custom lower some of our intrinsics.
207  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
208
209  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
210    // They also have instructions for converting between i64 and fp.
211    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
212    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
213    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
214    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
215    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
216
217    // FIXME: disable this lowered code.  This generates 64-bit register values,
218    // and we don't model the fact that the top part is clobbered by calls.  We
219    // need to flag these together so that the value isn't live across a call.
220    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
221
222    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
223    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
224  } else {
225    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
226    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
227  }
228
229  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
230    // 64-bit PowerPC implementations can support i64 types directly
231    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
232    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
233    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
234    // 64-bit PowerPC wants to expand i128 shifts itself.
235    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
236    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
237    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
238  } else {
239    // 32-bit PowerPC wants to expand i64 shifts itself.
240    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
241    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
242    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
243  }
244
245  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
246    // First set operation action for all vector types to expand. Then we
247    // will selectively turn on ones that can be effectively codegen'd.
248    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
249         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
250      MVT VT = (MVT::SimpleValueType)i;
251
252      // add/sub are legal for all supported vector VT's.
253      setOperationAction(ISD::ADD , VT, Legal);
254      setOperationAction(ISD::SUB , VT, Legal);
255
256      // We promote all shuffles to v16i8.
257      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
258      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
259
260      // We promote all non-typed operations to v4i32.
261      setOperationAction(ISD::AND   , VT, Promote);
262      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
263      setOperationAction(ISD::OR    , VT, Promote);
264      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
265      setOperationAction(ISD::XOR   , VT, Promote);
266      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
267      setOperationAction(ISD::LOAD  , VT, Promote);
268      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
269      setOperationAction(ISD::SELECT, VT, Promote);
270      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
271      setOperationAction(ISD::STORE, VT, Promote);
272      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
273
274      // No other operations are legal.
275      setOperationAction(ISD::MUL , VT, Expand);
276      setOperationAction(ISD::SDIV, VT, Expand);
277      setOperationAction(ISD::SREM, VT, Expand);
278      setOperationAction(ISD::UDIV, VT, Expand);
279      setOperationAction(ISD::UREM, VT, Expand);
280      setOperationAction(ISD::FDIV, VT, Expand);
281      setOperationAction(ISD::FNEG, VT, Expand);
282      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
283      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
284      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
285      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
286      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
287      setOperationAction(ISD::UDIVREM, VT, Expand);
288      setOperationAction(ISD::SDIVREM, VT, Expand);
289      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
290      setOperationAction(ISD::FPOW, VT, Expand);
291      setOperationAction(ISD::CTPOP, VT, Expand);
292      setOperationAction(ISD::CTLZ, VT, Expand);
293      setOperationAction(ISD::CTTZ, VT, Expand);
294    }
295
296    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
297    // with merges, splats, etc.
298    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
299
300    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
301    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
302    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
303    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
304    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
305    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
306
307    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
308    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
309    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
310    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
311
312    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
313    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
314    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
315    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
316
317    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
318    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
319
320    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
321    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
322    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
323    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
324  }
325
326  setShiftAmountType(MVT::i32);
327  setSetCCResultContents(ZeroOrOneSetCCResult);
328
329  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
330    setStackPointerRegisterToSaveRestore(PPC::X1);
331    setExceptionPointerRegister(PPC::X3);
332    setExceptionSelectorRegister(PPC::X4);
333  } else {
334    setStackPointerRegisterToSaveRestore(PPC::R1);
335    setExceptionPointerRegister(PPC::R3);
336    setExceptionSelectorRegister(PPC::R4);
337  }
338
339  // We have target-specific dag combine patterns for the following nodes:
340  setTargetDAGCombine(ISD::SINT_TO_FP);
341  setTargetDAGCombine(ISD::STORE);
342  setTargetDAGCombine(ISD::BR_CC);
343  setTargetDAGCombine(ISD::BSWAP);
344
345  // Darwin long double math library functions have $LDBL128 appended.
346  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
347    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
348    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
349    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
350    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
351    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
352  }
353
354  computeRegisterProperties();
355}
356
357/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
358/// function arguments in the caller parameter area.
359unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
360  TargetMachine &TM = getTargetMachine();
361  // Darwin passes everything on 4 byte boundary.
362  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
363    return 4;
364  // FIXME Elf TBD
365  return 4;
366}
367
368const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
369  switch (Opcode) {
370  default: return 0;
371  case PPCISD::FSEL:            return "PPCISD::FSEL";
372  case PPCISD::FCFID:           return "PPCISD::FCFID";
373  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
374  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
375  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
376  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
377  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
378  case PPCISD::VPERM:           return "PPCISD::VPERM";
379  case PPCISD::Hi:              return "PPCISD::Hi";
380  case PPCISD::Lo:              return "PPCISD::Lo";
381  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
382  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
383  case PPCISD::SRL:             return "PPCISD::SRL";
384  case PPCISD::SRA:             return "PPCISD::SRA";
385  case PPCISD::SHL:             return "PPCISD::SHL";
386  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
387  case PPCISD::STD_32:          return "PPCISD::STD_32";
388  case PPCISD::CALL_ELF:        return "PPCISD::CALL_ELF";
389  case PPCISD::CALL_Macho:      return "PPCISD::CALL_Macho";
390  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
391  case PPCISD::BCTRL_Macho:     return "PPCISD::BCTRL_Macho";
392  case PPCISD::BCTRL_ELF:       return "PPCISD::BCTRL_ELF";
393  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
394  case PPCISD::MFCR:            return "PPCISD::MFCR";
395  case PPCISD::VCMP:            return "PPCISD::VCMP";
396  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
397  case PPCISD::LBRX:            return "PPCISD::LBRX";
398  case PPCISD::STBRX:           return "PPCISD::STBRX";
399  case PPCISD::LARX:            return "PPCISD::LARX";
400  case PPCISD::STCX:            return "PPCISD::STCX";
401  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
402  case PPCISD::MFFS:            return "PPCISD::MFFS";
403  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
404  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
405  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
406  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
407  case PPCISD::TAILCALL:        return "PPCISD::TAILCALL";
408  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
409  }
410}
411
412
413MVT PPCTargetLowering::getSetCCResultType(const SDValue &) const {
414  return MVT::i32;
415}
416
417
418//===----------------------------------------------------------------------===//
419// Node matching predicates, for use by the tblgen matching code.
420//===----------------------------------------------------------------------===//
421
422/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
423static bool isFloatingPointZero(SDValue Op) {
424  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
425    return CFP->getValueAPF().isZero();
426  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
427    // Maybe this has already been legalized into the constant pool?
428    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
429      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
430        return CFP->getValueAPF().isZero();
431  }
432  return false;
433}
434
435/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
436/// true if Op is undef or if it matches the specified value.
437static bool isConstantOrUndef(SDValue Op, unsigned Val) {
438  return Op.getOpcode() == ISD::UNDEF ||
439         cast<ConstantSDNode>(Op)->getValue() == Val;
440}
441
442/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
443/// VPKUHUM instruction.
444bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
445  if (!isUnary) {
446    for (unsigned i = 0; i != 16; ++i)
447      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
448        return false;
449  } else {
450    for (unsigned i = 0; i != 8; ++i)
451      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
452          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
453        return false;
454  }
455  return true;
456}
457
458/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
459/// VPKUWUM instruction.
460bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
461  if (!isUnary) {
462    for (unsigned i = 0; i != 16; i += 2)
463      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
464          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
465        return false;
466  } else {
467    for (unsigned i = 0; i != 8; i += 2)
468      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
469          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
470          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
471          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
472        return false;
473  }
474  return true;
475}
476
477/// isVMerge - Common function, used to match vmrg* shuffles.
478///
479static bool isVMerge(SDNode *N, unsigned UnitSize,
480                     unsigned LHSStart, unsigned RHSStart) {
481  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
482         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
483  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
484         "Unsupported merge size!");
485
486  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
487    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
488      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
489                             LHSStart+j+i*UnitSize) ||
490          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
491                             RHSStart+j+i*UnitSize))
492        return false;
493    }
494      return true;
495}
496
497/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
498/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
499bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
500  if (!isUnary)
501    return isVMerge(N, UnitSize, 8, 24);
502  return isVMerge(N, UnitSize, 8, 8);
503}
504
505/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
506/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
507bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
508  if (!isUnary)
509    return isVMerge(N, UnitSize, 0, 16);
510  return isVMerge(N, UnitSize, 0, 0);
511}
512
513
514/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
515/// amount, otherwise return -1.
516int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
517  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
518         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
519  // Find the first non-undef value in the shuffle mask.
520  unsigned i;
521  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
522    /*search*/;
523
524  if (i == 16) return -1;  // all undef.
525
526  // Otherwise, check to see if the rest of the elements are consequtively
527  // numbered from this value.
528  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
529  if (ShiftAmt < i) return -1;
530  ShiftAmt -= i;
531
532  if (!isUnary) {
533    // Check the rest of the elements to see if they are consequtive.
534    for (++i; i != 16; ++i)
535      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
536        return -1;
537  } else {
538    // Check the rest of the elements to see if they are consequtive.
539    for (++i; i != 16; ++i)
540      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
541        return -1;
542  }
543
544  return ShiftAmt;
545}
546
547/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
548/// specifies a splat of a single element that is suitable for input to
549/// VSPLTB/VSPLTH/VSPLTW.
550bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
551  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
552         N->getNumOperands() == 16 &&
553         (EltSize == 1 || EltSize == 2 || EltSize == 4));
554
555  // This is a splat operation if each element of the permute is the same, and
556  // if the value doesn't reference the second vector.
557  unsigned ElementBase = 0;
558  SDValue Elt = N->getOperand(0);
559  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
560    ElementBase = EltV->getValue();
561  else
562    return false;   // FIXME: Handle UNDEF elements too!
563
564  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
565    return false;
566
567  // Check that they are consequtive.
568  for (unsigned i = 1; i != EltSize; ++i) {
569    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
570        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
571      return false;
572  }
573
574  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
575  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
576    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
577    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
578           "Invalid VECTOR_SHUFFLE mask!");
579    for (unsigned j = 0; j != EltSize; ++j)
580      if (N->getOperand(i+j) != N->getOperand(j))
581        return false;
582  }
583
584  return true;
585}
586
587/// isAllNegativeZeroVector - Returns true if all elements of build_vector
588/// are -0.0.
589bool PPC::isAllNegativeZeroVector(SDNode *N) {
590  assert(N->getOpcode() == ISD::BUILD_VECTOR);
591  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
592    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
593      return CFP->getValueAPF().isNegZero();
594  return false;
595}
596
597/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
598/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
599unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
600  assert(isSplatShuffleMask(N, EltSize));
601  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
602}
603
604/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
605/// by using a vspltis[bhw] instruction of the specified element size, return
606/// the constant being splatted.  The ByteSize field indicates the number of
607/// bytes of each element [124] -> [bhw].
608SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
609  SDValue OpVal(0, 0);
610
611  // If ByteSize of the splat is bigger than the element size of the
612  // build_vector, then we have a case where we are checking for a splat where
613  // multiple elements of the buildvector are folded together into a single
614  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
615  unsigned EltSize = 16/N->getNumOperands();
616  if (EltSize < ByteSize) {
617    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
618    SDValue UniquedVals[4];
619    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
620
621    // See if all of the elements in the buildvector agree across.
622    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
623      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
624      // If the element isn't a constant, bail fully out.
625      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
626
627
628      if (UniquedVals[i&(Multiple-1)].Val == 0)
629        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
630      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
631        return SDValue();  // no match.
632    }
633
634    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
635    // either constant or undef values that are identical for each chunk.  See
636    // if these chunks can form into a larger vspltis*.
637
638    // Check to see if all of the leading entries are either 0 or -1.  If
639    // neither, then this won't fit into the immediate field.
640    bool LeadingZero = true;
641    bool LeadingOnes = true;
642    for (unsigned i = 0; i != Multiple-1; ++i) {
643      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
644
645      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
646      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
647    }
648    // Finally, check the least significant entry.
649    if (LeadingZero) {
650      if (UniquedVals[Multiple-1].Val == 0)
651        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
652      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
653      if (Val < 16)
654        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
655    }
656    if (LeadingOnes) {
657      if (UniquedVals[Multiple-1].Val == 0)
658        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
659      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
660      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
661        return DAG.getTargetConstant(Val, MVT::i32);
662    }
663
664    return SDValue();
665  }
666
667  // Check to see if this buildvec has a single non-undef value in its elements.
668  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
669    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
670    if (OpVal.Val == 0)
671      OpVal = N->getOperand(i);
672    else if (OpVal != N->getOperand(i))
673      return SDValue();
674  }
675
676  if (OpVal.Val == 0) return SDValue();  // All UNDEF: use implicit def.
677
678  unsigned ValSizeInBytes = 0;
679  uint64_t Value = 0;
680  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
681    Value = CN->getValue();
682    ValSizeInBytes = CN->getValueType(0).getSizeInBits()/8;
683  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
684    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
685    Value = FloatToBits(CN->getValueAPF().convertToFloat());
686    ValSizeInBytes = 4;
687  }
688
689  // If the splat value is larger than the element value, then we can never do
690  // this splat.  The only case that we could fit the replicated bits into our
691  // immediate field for would be zero, and we prefer to use vxor for it.
692  if (ValSizeInBytes < ByteSize) return SDValue();
693
694  // If the element value is larger than the splat value, cut it in half and
695  // check to see if the two halves are equal.  Continue doing this until we
696  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
697  while (ValSizeInBytes > ByteSize) {
698    ValSizeInBytes >>= 1;
699
700    // If the top half equals the bottom half, we're still ok.
701    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
702         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
703      return SDValue();
704  }
705
706  // Properly sign extend the value.
707  int ShAmt = (4-ByteSize)*8;
708  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
709
710  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
711  if (MaskVal == 0) return SDValue();
712
713  // Finally, if this value fits in a 5 bit sext field, return it
714  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
715    return DAG.getTargetConstant(MaskVal, MVT::i32);
716  return SDValue();
717}
718
719//===----------------------------------------------------------------------===//
720//  Addressing Mode Selection
721//===----------------------------------------------------------------------===//
722
723/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
724/// or 64-bit immediate, and if the value can be accurately represented as a
725/// sign extension from a 16-bit value.  If so, this returns true and the
726/// immediate.
727static bool isIntS16Immediate(SDNode *N, short &Imm) {
728  if (N->getOpcode() != ISD::Constant)
729    return false;
730
731  Imm = (short)cast<ConstantSDNode>(N)->getValue();
732  if (N->getValueType(0) == MVT::i32)
733    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
734  else
735    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
736}
737static bool isIntS16Immediate(SDValue Op, short &Imm) {
738  return isIntS16Immediate(Op.Val, Imm);
739}
740
741
742/// SelectAddressRegReg - Given the specified addressed, check to see if it
743/// can be represented as an indexed [r+r] operation.  Returns false if it
744/// can be more efficiently represented with [r+imm].
745bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
746                                            SDValue &Index,
747                                            SelectionDAG &DAG) {
748  short imm = 0;
749  if (N.getOpcode() == ISD::ADD) {
750    if (isIntS16Immediate(N.getOperand(1), imm))
751      return false;    // r+i
752    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
753      return false;    // r+i
754
755    Base = N.getOperand(0);
756    Index = N.getOperand(1);
757    return true;
758  } else if (N.getOpcode() == ISD::OR) {
759    if (isIntS16Immediate(N.getOperand(1), imm))
760      return false;    // r+i can fold it if we can.
761
762    // If this is an or of disjoint bitfields, we can codegen this as an add
763    // (for better address arithmetic) if the LHS and RHS of the OR are provably
764    // disjoint.
765    APInt LHSKnownZero, LHSKnownOne;
766    APInt RHSKnownZero, RHSKnownOne;
767    DAG.ComputeMaskedBits(N.getOperand(0),
768                          APInt::getAllOnesValue(N.getOperand(0)
769                            .getValueSizeInBits()),
770                          LHSKnownZero, LHSKnownOne);
771
772    if (LHSKnownZero.getBoolValue()) {
773      DAG.ComputeMaskedBits(N.getOperand(1),
774                            APInt::getAllOnesValue(N.getOperand(1)
775                              .getValueSizeInBits()),
776                            RHSKnownZero, RHSKnownOne);
777      // If all of the bits are known zero on the LHS or RHS, the add won't
778      // carry.
779      if (~(LHSKnownZero | RHSKnownZero) == 0) {
780        Base = N.getOperand(0);
781        Index = N.getOperand(1);
782        return true;
783      }
784    }
785  }
786
787  return false;
788}
789
790/// Returns true if the address N can be represented by a base register plus
791/// a signed 16-bit displacement [r+imm], and if it is not better
792/// represented as reg+reg.
793bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
794                                            SDValue &Base, SelectionDAG &DAG){
795  // If this can be more profitably realized as r+r, fail.
796  if (SelectAddressRegReg(N, Disp, Base, DAG))
797    return false;
798
799  if (N.getOpcode() == ISD::ADD) {
800    short imm = 0;
801    if (isIntS16Immediate(N.getOperand(1), imm)) {
802      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
803      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
804        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
805      } else {
806        Base = N.getOperand(0);
807      }
808      return true; // [r+i]
809    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
810      // Match LOAD (ADD (X, Lo(G))).
811      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
812             && "Cannot handle constant offsets yet!");
813      Disp = N.getOperand(1).getOperand(0);  // The global address.
814      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
815             Disp.getOpcode() == ISD::TargetConstantPool ||
816             Disp.getOpcode() == ISD::TargetJumpTable);
817      Base = N.getOperand(0);
818      return true;  // [&g+r]
819    }
820  } else if (N.getOpcode() == ISD::OR) {
821    short imm = 0;
822    if (isIntS16Immediate(N.getOperand(1), imm)) {
823      // If this is an or of disjoint bitfields, we can codegen this as an add
824      // (for better address arithmetic) if the LHS and RHS of the OR are
825      // provably disjoint.
826      APInt LHSKnownZero, LHSKnownOne;
827      DAG.ComputeMaskedBits(N.getOperand(0),
828                            APInt::getAllOnesValue(N.getOperand(0)
829                                                   .getValueSizeInBits()),
830                            LHSKnownZero, LHSKnownOne);
831
832      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
833        // If all of the bits are known zero on the LHS or RHS, the add won't
834        // carry.
835        Base = N.getOperand(0);
836        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
837        return true;
838      }
839    }
840  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
841    // Loading from a constant address.
842
843    // If this address fits entirely in a 16-bit sext immediate field, codegen
844    // this as "d, 0"
845    short Imm;
846    if (isIntS16Immediate(CN, Imm)) {
847      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
848      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
849      return true;
850    }
851
852    // Handle 32-bit sext immediates with LIS + addr mode.
853    if (CN->getValueType(0) == MVT::i32 ||
854        (int64_t)CN->getValue() == (int)CN->getValue()) {
855      int Addr = (int)CN->getValue();
856
857      // Otherwise, break this down into an LIS + disp.
858      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
859
860      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
861      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
862      Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
863      return true;
864    }
865  }
866
867  Disp = DAG.getTargetConstant(0, getPointerTy());
868  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
869    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
870  else
871    Base = N;
872  return true;      // [r+0]
873}
874
875/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
876/// represented as an indexed [r+r] operation.
877bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
878                                                SDValue &Index,
879                                                SelectionDAG &DAG) {
880  // Check to see if we can easily represent this as an [r+r] address.  This
881  // will fail if it thinks that the address is more profitably represented as
882  // reg+imm, e.g. where imm = 0.
883  if (SelectAddressRegReg(N, Base, Index, DAG))
884    return true;
885
886  // If the operand is an addition, always emit this as [r+r], since this is
887  // better (for code size, and execution, as the memop does the add for free)
888  // than emitting an explicit add.
889  if (N.getOpcode() == ISD::ADD) {
890    Base = N.getOperand(0);
891    Index = N.getOperand(1);
892    return true;
893  }
894
895  // Otherwise, do it the hard way, using R0 as the base register.
896  Base = DAG.getRegister(PPC::R0, N.getValueType());
897  Index = N;
898  return true;
899}
900
901/// SelectAddressRegImmShift - Returns true if the address N can be
902/// represented by a base register plus a signed 14-bit displacement
903/// [r+imm*4].  Suitable for use by STD and friends.
904bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
905                                                 SDValue &Base,
906                                                 SelectionDAG &DAG) {
907  // If this can be more profitably realized as r+r, fail.
908  if (SelectAddressRegReg(N, Disp, Base, DAG))
909    return false;
910
911  if (N.getOpcode() == ISD::ADD) {
912    short imm = 0;
913    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
914      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
915      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
916        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
917      } else {
918        Base = N.getOperand(0);
919      }
920      return true; // [r+i]
921    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
922      // Match LOAD (ADD (X, Lo(G))).
923      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
924             && "Cannot handle constant offsets yet!");
925      Disp = N.getOperand(1).getOperand(0);  // The global address.
926      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
927             Disp.getOpcode() == ISD::TargetConstantPool ||
928             Disp.getOpcode() == ISD::TargetJumpTable);
929      Base = N.getOperand(0);
930      return true;  // [&g+r]
931    }
932  } else if (N.getOpcode() == ISD::OR) {
933    short imm = 0;
934    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
935      // If this is an or of disjoint bitfields, we can codegen this as an add
936      // (for better address arithmetic) if the LHS and RHS of the OR are
937      // provably disjoint.
938      APInt LHSKnownZero, LHSKnownOne;
939      DAG.ComputeMaskedBits(N.getOperand(0),
940                            APInt::getAllOnesValue(N.getOperand(0)
941                                                   .getValueSizeInBits()),
942                            LHSKnownZero, LHSKnownOne);
943      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
944        // If all of the bits are known zero on the LHS or RHS, the add won't
945        // carry.
946        Base = N.getOperand(0);
947        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
948        return true;
949      }
950    }
951  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
952    // Loading from a constant address.  Verify low two bits are clear.
953    if ((CN->getValue() & 3) == 0) {
954      // If this address fits entirely in a 14-bit sext immediate field, codegen
955      // this as "d, 0"
956      short Imm;
957      if (isIntS16Immediate(CN, Imm)) {
958        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
959        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
960        return true;
961      }
962
963      // Fold the low-part of 32-bit absolute addresses into addr mode.
964      if (CN->getValueType(0) == MVT::i32 ||
965          (int64_t)CN->getValue() == (int)CN->getValue()) {
966        int Addr = (int)CN->getValue();
967
968        // Otherwise, break this down into an LIS + disp.
969        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
970
971        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
972        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
973        Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
974        return true;
975      }
976    }
977  }
978
979  Disp = DAG.getTargetConstant(0, getPointerTy());
980  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
981    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
982  else
983    Base = N;
984  return true;      // [r+0]
985}
986
987
988/// getPreIndexedAddressParts - returns true by value, base pointer and
989/// offset pointer and addressing mode by reference if the node's address
990/// can be legally represented as pre-indexed load / store address.
991bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
992                                                  SDValue &Offset,
993                                                  ISD::MemIndexedMode &AM,
994                                                  SelectionDAG &DAG) {
995  // Disabled by default for now.
996  if (!EnablePPCPreinc) return false;
997
998  SDValue Ptr;
999  MVT VT;
1000  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1001    Ptr = LD->getBasePtr();
1002    VT = LD->getMemoryVT();
1003
1004  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1005    ST = ST;
1006    Ptr = ST->getBasePtr();
1007    VT  = ST->getMemoryVT();
1008  } else
1009    return false;
1010
1011  // PowerPC doesn't have preinc load/store instructions for vectors.
1012  if (VT.isVector())
1013    return false;
1014
1015  // TODO: Check reg+reg first.
1016
1017  // LDU/STU use reg+imm*4, others use reg+imm.
1018  if (VT != MVT::i64) {
1019    // reg + imm
1020    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1021      return false;
1022  } else {
1023    // reg + imm * 4.
1024    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1025      return false;
1026  }
1027
1028  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1029    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1030    // sext i32 to i64 when addr mode is r+i.
1031    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1032        LD->getExtensionType() == ISD::SEXTLOAD &&
1033        isa<ConstantSDNode>(Offset))
1034      return false;
1035  }
1036
1037  AM = ISD::PRE_INC;
1038  return true;
1039}
1040
1041//===----------------------------------------------------------------------===//
1042//  LowerOperation implementation
1043//===----------------------------------------------------------------------===//
1044
1045SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1046                                             SelectionDAG &DAG) {
1047  MVT PtrVT = Op.getValueType();
1048  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1049  Constant *C = CP->getConstVal();
1050  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1051  SDValue Zero = DAG.getConstant(0, PtrVT);
1052
1053  const TargetMachine &TM = DAG.getTarget();
1054
1055  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1056  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1057
1058  // If this is a non-darwin platform, we don't support non-static relo models
1059  // yet.
1060  if (TM.getRelocationModel() == Reloc::Static ||
1061      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1062    // Generate non-pic code that has direct accesses to the constant pool.
1063    // The address of the global is just (hi(&g)+lo(&g)).
1064    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1065  }
1066
1067  if (TM.getRelocationModel() == Reloc::PIC_) {
1068    // With PIC, the first instruction is actually "GR+hi(&G)".
1069    Hi = DAG.getNode(ISD::ADD, PtrVT,
1070                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1071  }
1072
1073  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1074  return Lo;
1075}
1076
1077SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1078  MVT PtrVT = Op.getValueType();
1079  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1080  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1081  SDValue Zero = DAG.getConstant(0, PtrVT);
1082
1083  const TargetMachine &TM = DAG.getTarget();
1084
1085  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1086  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1087
1088  // If this is a non-darwin platform, we don't support non-static relo models
1089  // yet.
1090  if (TM.getRelocationModel() == Reloc::Static ||
1091      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1092    // Generate non-pic code that has direct accesses to the constant pool.
1093    // The address of the global is just (hi(&g)+lo(&g)).
1094    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1095  }
1096
1097  if (TM.getRelocationModel() == Reloc::PIC_) {
1098    // With PIC, the first instruction is actually "GR+hi(&G)".
1099    Hi = DAG.getNode(ISD::ADD, PtrVT,
1100                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1101  }
1102
1103  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1104  return Lo;
1105}
1106
1107SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1108                                                   SelectionDAG &DAG) {
1109  assert(0 && "TLS not implemented for PPC.");
1110  return SDValue(); // Not reached
1111}
1112
1113SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1114                                                SelectionDAG &DAG) {
1115  MVT PtrVT = Op.getValueType();
1116  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1117  GlobalValue *GV = GSDN->getGlobal();
1118  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1119  // If it's a debug information descriptor, don't mess with it.
1120  if (DAG.isVerifiedDebugInfoDesc(Op))
1121    return GA;
1122  SDValue Zero = DAG.getConstant(0, PtrVT);
1123
1124  const TargetMachine &TM = DAG.getTarget();
1125
1126  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1127  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1128
1129  // If this is a non-darwin platform, we don't support non-static relo models
1130  // yet.
1131  if (TM.getRelocationModel() == Reloc::Static ||
1132      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1133    // Generate non-pic code that has direct accesses to globals.
1134    // The address of the global is just (hi(&g)+lo(&g)).
1135    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1136  }
1137
1138  if (TM.getRelocationModel() == Reloc::PIC_) {
1139    // With PIC, the first instruction is actually "GR+hi(&G)".
1140    Hi = DAG.getNode(ISD::ADD, PtrVT,
1141                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1142  }
1143
1144  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1145
1146  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1147    return Lo;
1148
1149  // If the global is weak or external, we have to go through the lazy
1150  // resolution stub.
1151  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1152}
1153
1154SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1155  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1156
1157  // If we're comparing for equality to zero, expose the fact that this is
1158  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1159  // fold the new nodes.
1160  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1161    if (C->isNullValue() && CC == ISD::SETEQ) {
1162      MVT VT = Op.getOperand(0).getValueType();
1163      SDValue Zext = Op.getOperand(0);
1164      if (VT.bitsLT(MVT::i32)) {
1165        VT = MVT::i32;
1166        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1167      }
1168      unsigned Log2b = Log2_32(VT.getSizeInBits());
1169      SDValue Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1170      SDValue Scc = DAG.getNode(ISD::SRL, VT, Clz,
1171                                  DAG.getConstant(Log2b, MVT::i32));
1172      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1173    }
1174    // Leave comparisons against 0 and -1 alone for now, since they're usually
1175    // optimized.  FIXME: revisit this when we can custom lower all setcc
1176    // optimizations.
1177    if (C->isAllOnesValue() || C->isNullValue())
1178      return SDValue();
1179  }
1180
1181  // If we have an integer seteq/setne, turn it into a compare against zero
1182  // by xor'ing the rhs with the lhs, which is faster than setting a
1183  // condition register, reading it back out, and masking the correct bit.  The
1184  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1185  // the result to other bit-twiddling opportunities.
1186  MVT LHSVT = Op.getOperand(0).getValueType();
1187  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1188    MVT VT = Op.getValueType();
1189    SDValue Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1190                                Op.getOperand(1));
1191    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1192  }
1193  return SDValue();
1194}
1195
1196SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1197                              int VarArgsFrameIndex,
1198                              int VarArgsStackOffset,
1199                              unsigned VarArgsNumGPR,
1200                              unsigned VarArgsNumFPR,
1201                              const PPCSubtarget &Subtarget) {
1202
1203  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1204  return SDValue(); // Not reached
1205}
1206
1207SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1208                              int VarArgsFrameIndex,
1209                              int VarArgsStackOffset,
1210                              unsigned VarArgsNumGPR,
1211                              unsigned VarArgsNumFPR,
1212                              const PPCSubtarget &Subtarget) {
1213
1214  if (Subtarget.isMachoABI()) {
1215    // vastart just stores the address of the VarArgsFrameIndex slot into the
1216    // memory location argument.
1217    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1218    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1219    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1220    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
1221  }
1222
1223  // For ELF 32 ABI we follow the layout of the va_list struct.
1224  // We suppose the given va_list is already allocated.
1225  //
1226  // typedef struct {
1227  //  char gpr;     /* index into the array of 8 GPRs
1228  //                 * stored in the register save area
1229  //                 * gpr=0 corresponds to r3,
1230  //                 * gpr=1 to r4, etc.
1231  //                 */
1232  //  char fpr;     /* index into the array of 8 FPRs
1233  //                 * stored in the register save area
1234  //                 * fpr=0 corresponds to f1,
1235  //                 * fpr=1 to f2, etc.
1236  //                 */
1237  //  char *overflow_arg_area;
1238  //                /* location on stack that holds
1239  //                 * the next overflow argument
1240  //                 */
1241  //  char *reg_save_area;
1242  //               /* where r3:r10 and f1:f8 (if saved)
1243  //                * are stored
1244  //                */
1245  // } va_list[1];
1246
1247
1248  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1249  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1250
1251
1252  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1253
1254  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1255  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1256
1257  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1258  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1259
1260  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1261  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1262
1263  uint64_t FPROffset = 1;
1264  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1265
1266  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1267
1268  // Store first byte : number of int regs
1269  SDValue firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1270                                      Op.getOperand(1), SV, 0);
1271  uint64_t nextOffset = FPROffset;
1272  SDValue nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1273                                  ConstFPROffset);
1274
1275  // Store second byte : number of float regs
1276  SDValue secondStore =
1277    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1278  nextOffset += StackOffset;
1279  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1280
1281  // Store second word : arguments given on stack
1282  SDValue thirdStore =
1283    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1284  nextOffset += FrameOffset;
1285  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1286
1287  // Store third word : arguments given in registers
1288  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
1289
1290}
1291
1292#include "PPCGenCallingConv.inc"
1293
1294/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1295/// depending on which subtarget is selected.
1296static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1297  if (Subtarget.isMachoABI()) {
1298    static const unsigned FPR[] = {
1299      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1300      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1301    };
1302    return FPR;
1303  }
1304
1305
1306  static const unsigned FPR[] = {
1307    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1308    PPC::F8
1309  };
1310  return FPR;
1311}
1312
1313/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1314/// the stack.
1315static unsigned CalculateStackSlotSize(SDValue Arg, SDValue Flag,
1316                                       bool isVarArg, unsigned PtrByteSize) {
1317  MVT ArgVT = Arg.getValueType();
1318  ISD::ArgFlagsTy Flags = cast<ARG_FLAGSSDNode>(Flag)->getArgFlags();
1319  unsigned ArgSize =ArgVT.getSizeInBits()/8;
1320  if (Flags.isByVal())
1321    ArgSize = Flags.getByValSize();
1322  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1323
1324  return ArgSize;
1325}
1326
1327SDValue
1328PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
1329                                         SelectionDAG &DAG,
1330                                         int &VarArgsFrameIndex,
1331                                         int &VarArgsStackOffset,
1332                                         unsigned &VarArgsNumGPR,
1333                                         unsigned &VarArgsNumFPR,
1334                                         const PPCSubtarget &Subtarget) {
1335  // TODO: add description of PPC stack frame format, or at least some docs.
1336  //
1337  MachineFunction &MF = DAG.getMachineFunction();
1338  MachineFrameInfo *MFI = MF.getFrameInfo();
1339  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1340  SmallVector<SDValue, 8> ArgValues;
1341  SDValue Root = Op.getOperand(0);
1342  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1343
1344  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1345  bool isPPC64 = PtrVT == MVT::i64;
1346  bool isMachoABI = Subtarget.isMachoABI();
1347  bool isELF32_ABI = Subtarget.isELF32_ABI();
1348  // Potential tail calls could cause overwriting of argument stack slots.
1349  unsigned CC = MF.getFunction()->getCallingConv();
1350  bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
1351  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1352
1353  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1354  // Area that is at least reserved in caller of this function.
1355  unsigned MinReservedArea = ArgOffset;
1356
1357  static const unsigned GPR_32[] = {           // 32-bit registers.
1358    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1359    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1360  };
1361  static const unsigned GPR_64[] = {           // 64-bit registers.
1362    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1363    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1364  };
1365
1366  static const unsigned *FPR = GetFPR(Subtarget);
1367
1368  static const unsigned VR[] = {
1369    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1370    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1371  };
1372
1373  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1374  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1375  const unsigned Num_VR_Regs  = array_lengthof( VR);
1376
1377  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1378
1379  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1380
1381  // In 32-bit non-varargs functions, the stack space for vectors is after the
1382  // stack space for non-vectors.  We do not use this space unless we have
1383  // too many vectors to fit in registers, something that only occurs in
1384  // constructed examples:), but we have to walk the arglist to figure
1385  // that out...for the pathological case, compute VecArgOffset as the
1386  // start of the vector parameter area.  Computing VecArgOffset is the
1387  // entire point of the following loop.
1388  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1389  // to handle Elf here.
1390  unsigned VecArgOffset = ArgOffset;
1391  if (!isVarArg && !isPPC64) {
1392    for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e;
1393         ++ArgNo) {
1394      MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1395      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1396      ISD::ArgFlagsTy Flags =
1397        cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1398
1399      if (Flags.isByVal()) {
1400        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1401        ObjSize = Flags.getByValSize();
1402        unsigned ArgSize =
1403                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1404        VecArgOffset += ArgSize;
1405        continue;
1406      }
1407
1408      switch(ObjectVT.getSimpleVT()) {
1409      default: assert(0 && "Unhandled argument type!");
1410      case MVT::i32:
1411      case MVT::f32:
1412        VecArgOffset += isPPC64 ? 8 : 4;
1413        break;
1414      case MVT::i64:  // PPC64
1415      case MVT::f64:
1416        VecArgOffset += 8;
1417        break;
1418      case MVT::v4f32:
1419      case MVT::v4i32:
1420      case MVT::v8i16:
1421      case MVT::v16i8:
1422        // Nothing to do, we're only looking at Nonvector args here.
1423        break;
1424      }
1425    }
1426  }
1427  // We've found where the vector parameter area in memory is.  Skip the
1428  // first 12 parameters; these don't use that memory.
1429  VecArgOffset = ((VecArgOffset+15)/16)*16;
1430  VecArgOffset += 12*16;
1431
1432  // Add DAG nodes to load the arguments or copy them out of registers.  On
1433  // entry to a function on PPC, the arguments start after the linkage area,
1434  // although the first ones are often in registers.
1435  //
1436  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1437  // represented with two words (long long or double) must be copied to an
1438  // even GPR_idx value or to an even ArgOffset value.
1439
1440  SmallVector<SDValue, 8> MemOps;
1441  unsigned nAltivecParamsAtEnd = 0;
1442  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1443    SDValue ArgVal;
1444    bool needsLoad = false;
1445    MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1446    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1447    unsigned ArgSize = ObjSize;
1448    ISD::ArgFlagsTy Flags =
1449      cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1450    // See if next argument requires stack alignment in ELF
1451    bool Align = Flags.isSplit();
1452
1453    unsigned CurArgOffset = ArgOffset;
1454
1455    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1456    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1457        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1458      if (isVarArg || isPPC64) {
1459        MinReservedArea = ((MinReservedArea+15)/16)*16;
1460        MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1461                                                  Op.getOperand(ArgNo+3),
1462                                                  isVarArg,
1463                                                  PtrByteSize);
1464      } else  nAltivecParamsAtEnd++;
1465    } else
1466      // Calculate min reserved area.
1467      MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1468                                                Op.getOperand(ArgNo+3),
1469                                                isVarArg,
1470                                                PtrByteSize);
1471
1472    // FIXME alignment for ELF may not be right
1473    // FIXME the codegen can be much improved in some cases.
1474    // We do not have to keep everything in memory.
1475    if (Flags.isByVal()) {
1476      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1477      ObjSize = Flags.getByValSize();
1478      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1479      // Double word align in ELF
1480      if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1481      // Objects of size 1 and 2 are right justified, everything else is
1482      // left justified.  This means the memory address is adjusted forwards.
1483      if (ObjSize==1 || ObjSize==2) {
1484        CurArgOffset = CurArgOffset + (4 - ObjSize);
1485      }
1486      // The value of the object is its address.
1487      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1488      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1489      ArgValues.push_back(FIN);
1490      if (ObjSize==1 || ObjSize==2) {
1491        if (GPR_idx != Num_GPR_Regs) {
1492          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1493          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1494          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1495          SDValue Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1496                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1497          MemOps.push_back(Store);
1498          ++GPR_idx;
1499          if (isMachoABI) ArgOffset += PtrByteSize;
1500        } else {
1501          ArgOffset += PtrByteSize;
1502        }
1503        continue;
1504      }
1505      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1506        // Store whatever pieces of the object are in registers
1507        // to memory.  ArgVal will be address of the beginning of
1508        // the object.
1509        if (GPR_idx != Num_GPR_Regs) {
1510          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1511          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1512          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1513          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1514          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1515          SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1516          MemOps.push_back(Store);
1517          ++GPR_idx;
1518          if (isMachoABI) ArgOffset += PtrByteSize;
1519        } else {
1520          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1521          break;
1522        }
1523      }
1524      continue;
1525    }
1526
1527    switch (ObjectVT.getSimpleVT()) {
1528    default: assert(0 && "Unhandled argument type!");
1529    case MVT::i32:
1530      if (!isPPC64) {
1531        // Double word align in ELF
1532        if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1533
1534        if (GPR_idx != Num_GPR_Regs) {
1535          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1536          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1537          ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1538          ++GPR_idx;
1539        } else {
1540          needsLoad = true;
1541          ArgSize = PtrByteSize;
1542        }
1543        // Stack align in ELF
1544        if (needsLoad && Align && isELF32_ABI)
1545          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1546        // All int arguments reserve stack space in Macho ABI.
1547        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1548        break;
1549      }
1550      // FALLTHROUGH
1551    case MVT::i64:  // PPC64
1552      if (GPR_idx != Num_GPR_Regs) {
1553        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1554        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1555        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1556
1557        if (ObjectVT == MVT::i32) {
1558          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1559          // value to MVT::i64 and then truncate to the correct register size.
1560          if (Flags.isSExt())
1561            ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1562                                 DAG.getValueType(ObjectVT));
1563          else if (Flags.isZExt())
1564            ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1565                                 DAG.getValueType(ObjectVT));
1566
1567          ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1568        }
1569
1570        ++GPR_idx;
1571      } else {
1572        needsLoad = true;
1573        ArgSize = PtrByteSize;
1574      }
1575      // All int arguments reserve stack space in Macho ABI.
1576      if (isMachoABI || needsLoad) ArgOffset += 8;
1577      break;
1578
1579    case MVT::f32:
1580    case MVT::f64:
1581      // Every 4 bytes of argument space consumes one of the GPRs available for
1582      // argument passing.
1583      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1584        ++GPR_idx;
1585        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1586          ++GPR_idx;
1587      }
1588      if (FPR_idx != Num_FPR_Regs) {
1589        unsigned VReg;
1590        if (ObjectVT == MVT::f32)
1591          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1592        else
1593          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1594        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1595        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1596        ++FPR_idx;
1597      } else {
1598        needsLoad = true;
1599      }
1600
1601      // Stack align in ELF
1602      if (needsLoad && Align && isELF32_ABI)
1603        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1604      // All FP arguments reserve stack space in Macho ABI.
1605      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1606      break;
1607    case MVT::v4f32:
1608    case MVT::v4i32:
1609    case MVT::v8i16:
1610    case MVT::v16i8:
1611      // Note that vector arguments in registers don't reserve stack space,
1612      // except in varargs functions.
1613      if (VR_idx != Num_VR_Regs) {
1614        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1615        RegInfo.addLiveIn(VR[VR_idx], VReg);
1616        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1617        if (isVarArg) {
1618          while ((ArgOffset % 16) != 0) {
1619            ArgOffset += PtrByteSize;
1620            if (GPR_idx != Num_GPR_Regs)
1621              GPR_idx++;
1622          }
1623          ArgOffset += 16;
1624          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1625        }
1626        ++VR_idx;
1627      } else {
1628        if (!isVarArg && !isPPC64) {
1629          // Vectors go after all the nonvectors.
1630          CurArgOffset = VecArgOffset;
1631          VecArgOffset += 16;
1632        } else {
1633          // Vectors are aligned.
1634          ArgOffset = ((ArgOffset+15)/16)*16;
1635          CurArgOffset = ArgOffset;
1636          ArgOffset += 16;
1637        }
1638        needsLoad = true;
1639      }
1640      break;
1641    }
1642
1643    // We need to load the argument to a virtual register if we determined above
1644    // that we ran out of physical registers of the appropriate type.
1645    if (needsLoad) {
1646      int FI = MFI->CreateFixedObject(ObjSize,
1647                                      CurArgOffset + (ArgSize - ObjSize),
1648                                      isImmutable);
1649      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1650      ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1651    }
1652
1653    ArgValues.push_back(ArgVal);
1654  }
1655
1656  // Set the size that is at least reserved in caller of this function.  Tail
1657  // call optimized function's reserved stack space needs to be aligned so that
1658  // taking the difference between two stack areas will result in an aligned
1659  // stack.
1660  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1661  // Add the Altivec parameters at the end, if needed.
1662  if (nAltivecParamsAtEnd) {
1663    MinReservedArea = ((MinReservedArea+15)/16)*16;
1664    MinReservedArea += 16*nAltivecParamsAtEnd;
1665  }
1666  MinReservedArea =
1667    std::max(MinReservedArea,
1668             PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1669  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1670    getStackAlignment();
1671  unsigned AlignMask = TargetAlign-1;
1672  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1673  FI->setMinReservedArea(MinReservedArea);
1674
1675  // If the function takes variable number of arguments, make a frame index for
1676  // the start of the first vararg value... for expansion of llvm.va_start.
1677  if (isVarArg) {
1678
1679    int depth;
1680    if (isELF32_ABI) {
1681      VarArgsNumGPR = GPR_idx;
1682      VarArgsNumFPR = FPR_idx;
1683
1684      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1685      // pointer.
1686      depth = -(Num_GPR_Regs * PtrVT.getSizeInBits()/8 +
1687                Num_FPR_Regs * MVT(MVT::f64).getSizeInBits()/8 +
1688                PtrVT.getSizeInBits()/8);
1689
1690      VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1691                                                  ArgOffset);
1692
1693    }
1694    else
1695      depth = ArgOffset;
1696
1697    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1698                                               depth);
1699    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1700
1701    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1702    // stored to the VarArgsFrameIndex on the stack.
1703    if (isELF32_ABI) {
1704      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1705        SDValue Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1706        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1707        MemOps.push_back(Store);
1708        // Increment the address by four for the next argument to store
1709        SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1710        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1711      }
1712    }
1713
1714    // If this function is vararg, store any remaining integer argument regs
1715    // to their spots on the stack so that they may be loaded by deferencing the
1716    // result of va_next.
1717    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1718      unsigned VReg;
1719      if (isPPC64)
1720        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1721      else
1722        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1723
1724      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1725      SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1726      SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1727      MemOps.push_back(Store);
1728      // Increment the address by four for the next argument to store
1729      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1730      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1731    }
1732
1733    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1734    // on the stack.
1735    if (isELF32_ABI) {
1736      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1737        SDValue Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1738        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1739        MemOps.push_back(Store);
1740        // Increment the address by eight for the next argument to store
1741        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1742                                           PtrVT);
1743        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1744      }
1745
1746      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1747        unsigned VReg;
1748        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1749
1750        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1751        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1752        SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1753        MemOps.push_back(Store);
1754        // Increment the address by eight for the next argument to store
1755        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1756                                           PtrVT);
1757        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1758      }
1759    }
1760  }
1761
1762  if (!MemOps.empty())
1763    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1764
1765  ArgValues.push_back(Root);
1766
1767  // Return the new list of results.
1768  return DAG.getMergeValues(Op.Val->getVTList(), &ArgValues[0],
1769                            ArgValues.size());
1770}
1771
1772/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
1773/// linkage area.
1774static unsigned
1775CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
1776                                     bool isPPC64,
1777                                     bool isMachoABI,
1778                                     bool isVarArg,
1779                                     unsigned CC,
1780                                     SDValue Call,
1781                                     unsigned &nAltivecParamsAtEnd) {
1782  // Count how many bytes are to be pushed on the stack, including the linkage
1783  // area, and parameter passing area.  We start with 24/48 bytes, which is
1784  // prereserved space for [SP][CR][LR][3 x unused].
1785  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1786  unsigned NumOps = (Call.getNumOperands() - 5) / 2;
1787  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1788
1789  // Add up all the space actually used.
1790  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1791  // they all go in registers, but we must reserve stack space for them for
1792  // possible use by the caller.  In varargs or 64-bit calls, parameters are
1793  // assigned stack space in order, with padding so Altivec parameters are
1794  // 16-byte aligned.
1795  nAltivecParamsAtEnd = 0;
1796  for (unsigned i = 0; i != NumOps; ++i) {
1797    SDValue Arg = Call.getOperand(5+2*i);
1798    SDValue Flag = Call.getOperand(5+2*i+1);
1799    MVT ArgVT = Arg.getValueType();
1800    // Varargs Altivec parameters are padded to a 16 byte boundary.
1801    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1802        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1803      if (!isVarArg && !isPPC64) {
1804        // Non-varargs Altivec parameters go after all the non-Altivec
1805        // parameters; handle those later so we know how much padding we need.
1806        nAltivecParamsAtEnd++;
1807        continue;
1808      }
1809      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1810      NumBytes = ((NumBytes+15)/16)*16;
1811    }
1812    NumBytes += CalculateStackSlotSize(Arg, Flag, isVarArg, PtrByteSize);
1813  }
1814
1815   // Allow for Altivec parameters at the end, if needed.
1816  if (nAltivecParamsAtEnd) {
1817    NumBytes = ((NumBytes+15)/16)*16;
1818    NumBytes += 16*nAltivecParamsAtEnd;
1819  }
1820
1821  // The prolog code of the callee may store up to 8 GPR argument registers to
1822  // the stack, allowing va_start to index over them in memory if its varargs.
1823  // Because we cannot tell if this is needed on the caller side, we have to
1824  // conservatively assume that it is needed.  As such, make sure we have at
1825  // least enough stack space for the caller to store the 8 GPRs.
1826  NumBytes = std::max(NumBytes,
1827                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1828
1829  // Tail call needs the stack to be aligned.
1830  if (CC==CallingConv::Fast && PerformTailCallOpt) {
1831    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1832      getStackAlignment();
1833    unsigned AlignMask = TargetAlign-1;
1834    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
1835  }
1836
1837  return NumBytes;
1838}
1839
1840/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
1841/// adjusted to accomodate the arguments for the tailcall.
1842static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
1843                                   unsigned ParamSize) {
1844
1845  if (!IsTailCall) return 0;
1846
1847  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
1848  unsigned CallerMinReservedArea = FI->getMinReservedArea();
1849  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
1850  // Remember only if the new adjustement is bigger.
1851  if (SPDiff < FI->getTailCallSPDelta())
1852    FI->setTailCallSPDelta(SPDiff);
1853
1854  return SPDiff;
1855}
1856
1857/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1858/// following the call is a return. A function is eligible if caller/callee
1859/// calling conventions match, currently only fastcc supports tail calls, and
1860/// the function CALL is immediatly followed by a RET.
1861bool
1862PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Call,
1863                                                     SDValue Ret,
1864                                                     SelectionDAG& DAG) const {
1865  // Variable argument functions are not supported.
1866  if (!PerformTailCallOpt ||
1867      cast<ConstantSDNode>(Call.getOperand(2))->getValue() != 0) return false;
1868
1869  if (CheckTailCallReturnConstraints(Call, Ret)) {
1870    MachineFunction &MF = DAG.getMachineFunction();
1871    unsigned CallerCC = MF.getFunction()->getCallingConv();
1872    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1873    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1874      // Functions containing by val parameters are not supported.
1875      for (unsigned i = 0; i != ((Call.getNumOperands()-5)/2); i++) {
1876         ISD::ArgFlagsTy Flags = cast<ARG_FLAGSSDNode>(Call.getOperand(5+2*i+1))
1877           ->getArgFlags();
1878         if (Flags.isByVal()) return false;
1879      }
1880
1881      SDValue Callee = Call.getOperand(4);
1882      // Non PIC/GOT  tail calls are supported.
1883      if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1884        return true;
1885
1886      // At the moment we can only do local tail calls (in same module, hidden
1887      // or protected) if we are generating PIC.
1888      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1889        return G->getGlobal()->hasHiddenVisibility()
1890            || G->getGlobal()->hasProtectedVisibility();
1891    }
1892  }
1893
1894  return false;
1895}
1896
1897/// isCallCompatibleAddress - Return the immediate to use if the specified
1898/// 32-bit value is representable in the immediate field of a BxA instruction.
1899static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
1900  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1901  if (!C) return 0;
1902
1903  int Addr = C->getValue();
1904  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1905      (Addr << 6 >> 6) != Addr)
1906    return 0;  // Top 6 bits have to be sext of immediate.
1907
1908  return DAG.getConstant((int)C->getValue() >> 2,
1909                         DAG.getTargetLoweringInfo().getPointerTy()).Val;
1910}
1911
1912namespace {
1913
1914struct TailCallArgumentInfo {
1915  SDValue Arg;
1916  SDValue FrameIdxOp;
1917  int       FrameIdx;
1918
1919  TailCallArgumentInfo() : FrameIdx(0) {}
1920};
1921
1922}
1923
1924/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
1925static void
1926StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
1927                                           SDValue Chain,
1928                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
1929                   SmallVector<SDValue, 8> &MemOpChains) {
1930  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
1931    SDValue Arg = TailCallArgs[i].Arg;
1932    SDValue FIN = TailCallArgs[i].FrameIdxOp;
1933    int FI = TailCallArgs[i].FrameIdx;
1934    // Store relative to framepointer.
1935    MemOpChains.push_back(DAG.getStore(Chain, Arg, FIN,
1936                                       PseudoSourceValue::getFixedStack(FI),
1937                                       0));
1938  }
1939}
1940
1941/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
1942/// the appropriate stack slot for the tail call optimized function call.
1943static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
1944                                               MachineFunction &MF,
1945                                               SDValue Chain,
1946                                               SDValue OldRetAddr,
1947                                               SDValue OldFP,
1948                                               int SPDiff,
1949                                               bool isPPC64,
1950                                               bool isMachoABI) {
1951  if (SPDiff) {
1952    // Calculate the new stack slot for the return address.
1953    int SlotSize = isPPC64 ? 8 : 4;
1954    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
1955                                                                   isMachoABI);
1956    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
1957                                                          NewRetAddrLoc);
1958    int NewFPLoc = SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
1959                                                                    isMachoABI);
1960    int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
1961
1962    MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
1963    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
1964    Chain = DAG.getStore(Chain, OldRetAddr, NewRetAddrFrIdx,
1965                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
1966    SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
1967    Chain = DAG.getStore(Chain, OldFP, NewFramePtrIdx,
1968                         PseudoSourceValue::getFixedStack(NewFPIdx), 0);
1969  }
1970  return Chain;
1971}
1972
1973/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
1974/// the position of the argument.
1975static void
1976CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
1977                         SDValue Arg, int SPDiff, unsigned ArgOffset,
1978                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
1979  int Offset = ArgOffset + SPDiff;
1980  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
1981  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1982  MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
1983  SDValue FIN = DAG.getFrameIndex(FI, VT);
1984  TailCallArgumentInfo Info;
1985  Info.Arg = Arg;
1986  Info.FrameIdxOp = FIN;
1987  Info.FrameIdx = FI;
1988  TailCallArguments.push_back(Info);
1989}
1990
1991/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
1992/// stack slot. Returns the chain as result and the loaded frame pointers in
1993/// LROpOut/FPOpout. Used when tail calling.
1994SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
1995                                                          int SPDiff,
1996                                                          SDValue Chain,
1997                                                          SDValue &LROpOut,
1998                                                          SDValue &FPOpOut) {
1999  if (SPDiff) {
2000    // Load the LR and FP stack slot for later adjusting.
2001    MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2002    LROpOut = getReturnAddrFrameIndex(DAG);
2003    LROpOut = DAG.getLoad(VT, Chain, LROpOut, NULL, 0);
2004    Chain = SDValue(LROpOut.Val, 1);
2005    FPOpOut = getFramePointerFrameIndex(DAG);
2006    FPOpOut = DAG.getLoad(VT, Chain, FPOpOut, NULL, 0);
2007    Chain = SDValue(FPOpOut.Val, 1);
2008  }
2009  return Chain;
2010}
2011
2012/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2013/// by "Src" to address "Dst" of size "Size".  Alignment information is
2014/// specified by the specific parameter attribute. The copy will be passed as
2015/// a byval function parameter.
2016/// Sometimes what we are copying is the end of a larger object, the part that
2017/// does not fit in registers.
2018static SDValue
2019CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2020                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2021                          unsigned Size) {
2022  SDValue SizeNode = DAG.getConstant(Size, MVT::i32);
2023  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(), false,
2024                       NULL, 0, NULL, 0);
2025}
2026
2027/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2028/// tail calls.
2029static void
2030LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2031                 SDValue Arg, SDValue PtrOff, int SPDiff,
2032                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2033                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2034                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2035  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2036  if (!isTailCall) {
2037    if (isVector) {
2038      SDValue StackPtr;
2039      if (isPPC64)
2040        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2041      else
2042        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2043      PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2044                           DAG.getConstant(ArgOffset, PtrVT));
2045    }
2046    MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
2047  // Calculate and remember argument location.
2048  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2049                                  TailCallArguments);
2050}
2051
2052SDValue PPCTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG,
2053                                       const PPCSubtarget &Subtarget,
2054                                       TargetMachine &TM) {
2055  SDValue Chain  = Op.getOperand(0);
2056  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
2057  unsigned CC      = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2058  bool isTailCall  = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0 &&
2059                     CC == CallingConv::Fast && PerformTailCallOpt;
2060  SDValue Callee = Op.getOperand(4);
2061  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
2062
2063  bool isMachoABI = Subtarget.isMachoABI();
2064  bool isELF32_ABI  = Subtarget.isELF32_ABI();
2065
2066  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2067  bool isPPC64 = PtrVT == MVT::i64;
2068  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2069
2070  MachineFunction &MF = DAG.getMachineFunction();
2071
2072  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
2073  // SelectExpr to use to put the arguments in the appropriate registers.
2074  std::vector<SDValue> args_to_use;
2075
2076  // Mark this function as potentially containing a function that contains a
2077  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2078  // and restoring the callers stack pointer in this functions epilog. This is
2079  // done because by tail calling the called function might overwrite the value
2080  // in this function's (MF) stack pointer stack slot 0(SP).
2081  if (PerformTailCallOpt && CC==CallingConv::Fast)
2082    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2083
2084  unsigned nAltivecParamsAtEnd = 0;
2085
2086  // Count how many bytes are to be pushed on the stack, including the linkage
2087  // area, and parameter passing area.  We start with 24/48 bytes, which is
2088  // prereserved space for [SP][CR][LR][3 x unused].
2089  unsigned NumBytes =
2090    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isMachoABI, isVarArg, CC,
2091                                         Op, nAltivecParamsAtEnd);
2092
2093  // Calculate by how many bytes the stack has to be adjusted in case of tail
2094  // call optimization.
2095  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2096
2097  // Adjust the stack pointer for the new arguments...
2098  // These operations are automatically eliminated by the prolog/epilog pass
2099  Chain = DAG.getCALLSEQ_START(Chain,
2100                               DAG.getConstant(NumBytes, PtrVT));
2101  SDValue CallSeqStart = Chain;
2102
2103  // Load the return address and frame pointer so it can be move somewhere else
2104  // later.
2105  SDValue LROp, FPOp;
2106  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp);
2107
2108  // Set up a copy of the stack pointer for use loading and storing any
2109  // arguments that may not fit in the registers available for argument
2110  // passing.
2111  SDValue StackPtr;
2112  if (isPPC64)
2113    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2114  else
2115    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2116
2117  // Figure out which arguments are going to go in registers, and which in
2118  // memory.  Also, if this is a vararg function, floating point operations
2119  // must be stored to our stack, and loaded into integer regs as well, if
2120  // any integer regs are available for argument passing.
2121  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
2122  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2123
2124  static const unsigned GPR_32[] = {           // 32-bit registers.
2125    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2126    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2127  };
2128  static const unsigned GPR_64[] = {           // 64-bit registers.
2129    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2130    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2131  };
2132  static const unsigned *FPR = GetFPR(Subtarget);
2133
2134  static const unsigned VR[] = {
2135    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2136    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2137  };
2138  const unsigned NumGPRs = array_lengthof(GPR_32);
2139  const unsigned NumFPRs = isMachoABI ? 13 : 8;
2140  const unsigned NumVRs  = array_lengthof( VR);
2141
2142  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2143
2144  std::vector<std::pair<unsigned, SDValue> > RegsToPass;
2145  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2146
2147  SmallVector<SDValue, 8> MemOpChains;
2148  for (unsigned i = 0; i != NumOps; ++i) {
2149    bool inMem = false;
2150    SDValue Arg = Op.getOperand(5+2*i);
2151    ISD::ArgFlagsTy Flags =
2152      cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags();
2153    // See if next argument requires stack alignment in ELF
2154    bool Align = Flags.isSplit();
2155
2156    // PtrOff will be used to store the current argument to the stack if a
2157    // register cannot be found for it.
2158    SDValue PtrOff;
2159
2160    // Stack align in ELF 32
2161    if (isELF32_ABI && Align)
2162      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
2163                               StackPtr.getValueType());
2164    else
2165      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2166
2167    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
2168
2169    // On PPC64, promote integers to 64-bit values.
2170    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2171      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2172      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2173      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
2174    }
2175
2176    // FIXME Elf untested, what are alignment rules?
2177    // FIXME memcpy is used way more than necessary.  Correctness first.
2178    if (Flags.isByVal()) {
2179      unsigned Size = Flags.getByValSize();
2180      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2181      if (Size==1 || Size==2) {
2182        // Very small objects are passed right-justified.
2183        // Everything else is passed left-justified.
2184        MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2185        if (GPR_idx != NumGPRs) {
2186          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
2187                                          NULL, 0, VT);
2188          MemOpChains.push_back(Load.getValue(1));
2189          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2190          if (isMachoABI)
2191            ArgOffset += PtrByteSize;
2192        } else {
2193          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2194          SDValue AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
2195          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2196                                CallSeqStart.Val->getOperand(0),
2197                                Flags, DAG, Size);
2198          // This must go outside the CALLSEQ_START..END.
2199          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2200                               CallSeqStart.Val->getOperand(1));
2201          DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
2202          Chain = CallSeqStart = NewCallSeqStart;
2203          ArgOffset += PtrByteSize;
2204        }
2205        continue;
2206      }
2207      // Copy entire object into memory.  There are cases where gcc-generated
2208      // code assumes it is there, even if it could be put entirely into
2209      // registers.  (This is not what the doc says.)
2210      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2211                            CallSeqStart.Val->getOperand(0),
2212                            Flags, DAG, Size);
2213      // This must go outside the CALLSEQ_START..END.
2214      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2215                           CallSeqStart.Val->getOperand(1));
2216      DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
2217      Chain = CallSeqStart = NewCallSeqStart;
2218      // And copy the pieces of it that fit into registers.
2219      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2220        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2221        SDValue AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
2222        if (GPR_idx != NumGPRs) {
2223          SDValue Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
2224          MemOpChains.push_back(Load.getValue(1));
2225          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2226          if (isMachoABI)
2227            ArgOffset += PtrByteSize;
2228        } else {
2229          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2230          break;
2231        }
2232      }
2233      continue;
2234    }
2235
2236    switch (Arg.getValueType().getSimpleVT()) {
2237    default: assert(0 && "Unexpected ValueType for argument!");
2238    case MVT::i32:
2239    case MVT::i64:
2240      // Double word align in ELF
2241      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2242      if (GPR_idx != NumGPRs) {
2243        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2244      } else {
2245        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2246                         isPPC64, isTailCall, false, MemOpChains,
2247                         TailCallArguments);
2248        inMem = true;
2249      }
2250      if (inMem || isMachoABI) {
2251        // Stack align in ELF
2252        if (isELF32_ABI && Align)
2253          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2254
2255        ArgOffset += PtrByteSize;
2256      }
2257      break;
2258    case MVT::f32:
2259    case MVT::f64:
2260      if (FPR_idx != NumFPRs) {
2261        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2262
2263        if (isVarArg) {
2264          SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2265          MemOpChains.push_back(Store);
2266
2267          // Float varargs are always shadowed in available integer registers
2268          if (GPR_idx != NumGPRs) {
2269            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2270            MemOpChains.push_back(Load.getValue(1));
2271            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2272                                                                Load));
2273          }
2274          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2275            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2276            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
2277            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2278            MemOpChains.push_back(Load.getValue(1));
2279            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2280                                                                Load));
2281          }
2282        } else {
2283          // If we have any FPRs remaining, we may also have GPRs remaining.
2284          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2285          // GPRs.
2286          if (isMachoABI) {
2287            if (GPR_idx != NumGPRs)
2288              ++GPR_idx;
2289            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2290                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2291              ++GPR_idx;
2292          }
2293        }
2294      } else {
2295        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2296                         isPPC64, isTailCall, false, MemOpChains,
2297                         TailCallArguments);
2298        inMem = true;
2299      }
2300      if (inMem || isMachoABI) {
2301        // Stack align in ELF
2302        if (isELF32_ABI && Align)
2303          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2304        if (isPPC64)
2305          ArgOffset += 8;
2306        else
2307          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2308      }
2309      break;
2310    case MVT::v4f32:
2311    case MVT::v4i32:
2312    case MVT::v8i16:
2313    case MVT::v16i8:
2314      if (isVarArg) {
2315        // These go aligned on the stack, or in the corresponding R registers
2316        // when within range.  The Darwin PPC ABI doc claims they also go in
2317        // V registers; in fact gcc does this only for arguments that are
2318        // prototyped, not for those that match the ...  We do it for all
2319        // arguments, seems to work.
2320        while (ArgOffset % 16 !=0) {
2321          ArgOffset += PtrByteSize;
2322          if (GPR_idx != NumGPRs)
2323            GPR_idx++;
2324        }
2325        // We could elide this store in the case where the object fits
2326        // entirely in R registers.  Maybe later.
2327        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2328                            DAG.getConstant(ArgOffset, PtrVT));
2329        SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2330        MemOpChains.push_back(Store);
2331        if (VR_idx != NumVRs) {
2332          SDValue Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
2333          MemOpChains.push_back(Load.getValue(1));
2334          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2335        }
2336        ArgOffset += 16;
2337        for (unsigned i=0; i<16; i+=PtrByteSize) {
2338          if (GPR_idx == NumGPRs)
2339            break;
2340          SDValue Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
2341                                  DAG.getConstant(i, PtrVT));
2342          SDValue Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
2343          MemOpChains.push_back(Load.getValue(1));
2344          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2345        }
2346        break;
2347      }
2348
2349      // Non-varargs Altivec params generally go in registers, but have
2350      // stack space allocated at the end.
2351      if (VR_idx != NumVRs) {
2352        // Doesn't have GPR space allocated.
2353        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2354      } else if (nAltivecParamsAtEnd==0) {
2355        // We are emitting Altivec params in order.
2356        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2357                         isPPC64, isTailCall, true, MemOpChains,
2358                         TailCallArguments);
2359        ArgOffset += 16;
2360      }
2361      break;
2362    }
2363  }
2364  // If all Altivec parameters fit in registers, as they usually do,
2365  // they get stack space following the non-Altivec parameters.  We
2366  // don't track this here because nobody below needs it.
2367  // If there are more Altivec parameters than fit in registers emit
2368  // the stores here.
2369  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2370    unsigned j = 0;
2371    // Offset is aligned; skip 1st 12 params which go in V registers.
2372    ArgOffset = ((ArgOffset+15)/16)*16;
2373    ArgOffset += 12*16;
2374    for (unsigned i = 0; i != NumOps; ++i) {
2375      SDValue Arg = Op.getOperand(5+2*i);
2376      MVT ArgType = Arg.getValueType();
2377      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2378          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2379        if (++j > NumVRs) {
2380          SDValue PtrOff;
2381          // We are emitting Altivec params in order.
2382          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2383                           isPPC64, isTailCall, true, MemOpChains,
2384                           TailCallArguments);
2385          ArgOffset += 16;
2386        }
2387      }
2388    }
2389  }
2390
2391  if (!MemOpChains.empty())
2392    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2393                        &MemOpChains[0], MemOpChains.size());
2394
2395  // Build a sequence of copy-to-reg nodes chained together with token chain
2396  // and flag operands which copy the outgoing args into the appropriate regs.
2397  SDValue InFlag;
2398  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2399    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2400                             InFlag);
2401    InFlag = Chain.getValue(1);
2402  }
2403
2404  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2405  if (isVarArg && isELF32_ABI) {
2406    SDValue SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
2407    Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
2408    InFlag = Chain.getValue(1);
2409  }
2410
2411  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2412  // might overwrite each other in case of tail call optimization.
2413  if (isTailCall) {
2414    SmallVector<SDValue, 8> MemOpChains2;
2415    // Do not flag preceeding copytoreg stuff together with the following stuff.
2416    InFlag = SDValue();
2417    StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2418                                      MemOpChains2);
2419    if (!MemOpChains2.empty())
2420      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2421                          &MemOpChains2[0], MemOpChains2.size());
2422
2423    // Store the return address to the appropriate stack slot.
2424    Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2425                                          isPPC64, isMachoABI);
2426  }
2427
2428  // Emit callseq_end just before tailcall node.
2429  if (isTailCall) {
2430    SmallVector<SDValue, 8> CallSeqOps;
2431    SDVTList CallSeqNodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2432    CallSeqOps.push_back(Chain);
2433    CallSeqOps.push_back(DAG.getIntPtrConstant(NumBytes));
2434    CallSeqOps.push_back(DAG.getIntPtrConstant(0));
2435    if (InFlag.Val)
2436      CallSeqOps.push_back(InFlag);
2437    Chain = DAG.getNode(ISD::CALLSEQ_END, CallSeqNodeTys, &CallSeqOps[0],
2438                        CallSeqOps.size());
2439    InFlag = Chain.getValue(1);
2440  }
2441
2442  std::vector<MVT> NodeTys;
2443  NodeTys.push_back(MVT::Other);   // Returns a chain
2444  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2445
2446  SmallVector<SDValue, 8> Ops;
2447  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2448
2449  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2450  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2451  // node so that legalize doesn't hack it.
2452  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2453    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2454  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2455    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2456  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2457    // If this is an absolute destination address, use the munged value.
2458    Callee = SDValue(Dest, 0);
2459  else {
2460    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2461    // to do the call, we can't use PPCISD::CALL.
2462    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2463    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
2464    InFlag = Chain.getValue(1);
2465
2466    // Copy the callee address into R12/X12 on darwin.
2467    if (isMachoABI) {
2468      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2469      Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
2470      InFlag = Chain.getValue(1);
2471    }
2472
2473    NodeTys.clear();
2474    NodeTys.push_back(MVT::Other);
2475    NodeTys.push_back(MVT::Flag);
2476    Ops.push_back(Chain);
2477    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2478    Callee.Val = 0;
2479    // Add CTR register as callee so a bctr can be emitted later.
2480    if (isTailCall)
2481      Ops.push_back(DAG.getRegister(PPC::CTR, getPointerTy()));
2482  }
2483
2484  // If this is a direct call, pass the chain and the callee.
2485  if (Callee.Val) {
2486    Ops.push_back(Chain);
2487    Ops.push_back(Callee);
2488  }
2489  // If this is a tail call add stack pointer delta.
2490  if (isTailCall)
2491    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2492
2493  // Add argument registers to the end of the list so that they are known live
2494  // into the call.
2495  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2496    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2497                                  RegsToPass[i].second.getValueType()));
2498
2499  // When performing tail call optimization the callee pops its arguments off
2500  // the stack. Account for this here so these bytes can be pushed back on in
2501  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2502  int BytesCalleePops =
2503    (CC==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2504
2505  if (InFlag.Val)
2506    Ops.push_back(InFlag);
2507
2508  // Emit tail call.
2509  if (isTailCall) {
2510    assert(InFlag.Val &&
2511           "Flag must be set. Depend on flag being set in LowerRET");
2512    Chain = DAG.getNode(PPCISD::TAILCALL,
2513                        Op.Val->getVTList(), &Ops[0], Ops.size());
2514    return SDValue(Chain.Val, Op.getResNo());
2515  }
2516
2517  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2518  InFlag = Chain.getValue(1);
2519
2520  Chain = DAG.getCALLSEQ_END(Chain,
2521                             DAG.getConstant(NumBytes, PtrVT),
2522                             DAG.getConstant(BytesCalleePops, PtrVT),
2523                             InFlag);
2524  if (Op.Val->getValueType(0) != MVT::Other)
2525    InFlag = Chain.getValue(1);
2526
2527  SmallVector<SDValue, 16> ResultVals;
2528  SmallVector<CCValAssign, 16> RVLocs;
2529  unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
2530  CCState CCInfo(CallerCC, isVarArg, TM, RVLocs);
2531  CCInfo.AnalyzeCallResult(Op.Val, RetCC_PPC);
2532
2533  // Copy all of the result registers out of their specified physreg.
2534  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2535    CCValAssign &VA = RVLocs[i];
2536    MVT VT = VA.getValVT();
2537    assert(VA.isRegLoc() && "Can only return in registers!");
2538    Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1);
2539    ResultVals.push_back(Chain.getValue(0));
2540    InFlag = Chain.getValue(2);
2541  }
2542
2543  // If the function returns void, just return the chain.
2544  if (RVLocs.empty())
2545    return Chain;
2546
2547  // Otherwise, merge everything together with a MERGE_VALUES node.
2548  ResultVals.push_back(Chain);
2549  SDValue Res = DAG.getMergeValues(Op.Val->getVTList(), &ResultVals[0],
2550                                     ResultVals.size());
2551  return Res.getValue(Op.getResNo());
2552}
2553
2554SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
2555                                      TargetMachine &TM) {
2556  SmallVector<CCValAssign, 16> RVLocs;
2557  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2558  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2559  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2560  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
2561
2562  // If this is the first return lowered for this function, add the regs to the
2563  // liveout set for the function.
2564  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2565    for (unsigned i = 0; i != RVLocs.size(); ++i)
2566      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2567  }
2568
2569  SDValue Chain = Op.getOperand(0);
2570
2571  Chain = GetPossiblePreceedingTailCall(Chain, PPCISD::TAILCALL);
2572  if (Chain.getOpcode() == PPCISD::TAILCALL) {
2573    SDValue TailCall = Chain;
2574    SDValue TargetAddress = TailCall.getOperand(1);
2575    SDValue StackAdjustment = TailCall.getOperand(2);
2576
2577    assert(((TargetAddress.getOpcode() == ISD::Register &&
2578             cast<RegisterSDNode>(TargetAddress)->getReg() == PPC::CTR) ||
2579            TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
2580            TargetAddress.getOpcode() == ISD::TargetGlobalAddress ||
2581            isa<ConstantSDNode>(TargetAddress)) &&
2582    "Expecting an global address, external symbol, absolute value or register");
2583
2584    assert(StackAdjustment.getOpcode() == ISD::Constant &&
2585           "Expecting a const value");
2586
2587    SmallVector<SDValue,8> Operands;
2588    Operands.push_back(Chain.getOperand(0));
2589    Operands.push_back(TargetAddress);
2590    Operands.push_back(StackAdjustment);
2591    // Copy registers used by the call. Last operand is a flag so it is not
2592    // copied.
2593    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
2594      Operands.push_back(Chain.getOperand(i));
2595    }
2596    return DAG.getNode(PPCISD::TC_RETURN, MVT::Other, &Operands[0],
2597                       Operands.size());
2598  }
2599
2600  SDValue Flag;
2601
2602  // Copy the result values into the output registers.
2603  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2604    CCValAssign &VA = RVLocs[i];
2605    assert(VA.isRegLoc() && "Can only return in registers!");
2606    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2607    Flag = Chain.getValue(1);
2608  }
2609
2610  if (Flag.Val)
2611    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2612  else
2613    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2614}
2615
2616SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
2617                                   const PPCSubtarget &Subtarget) {
2618  // When we pop the dynamic allocation we need to restore the SP link.
2619
2620  // Get the corect type for pointers.
2621  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2622
2623  // Construct the stack pointer operand.
2624  bool IsPPC64 = Subtarget.isPPC64();
2625  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2626  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
2627
2628  // Get the operands for the STACKRESTORE.
2629  SDValue Chain = Op.getOperand(0);
2630  SDValue SaveSP = Op.getOperand(1);
2631
2632  // Load the old link SP.
2633  SDValue LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2634
2635  // Restore the stack pointer.
2636  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2637
2638  // Store the old link SP.
2639  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2640}
2641
2642
2643
2644SDValue
2645PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
2646  MachineFunction &MF = DAG.getMachineFunction();
2647  bool IsPPC64 = PPCSubTarget.isPPC64();
2648  bool isMachoABI = PPCSubTarget.isMachoABI();
2649  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2650
2651  // Get current frame pointer save index.  The users of this index will be
2652  // primarily DYNALLOC instructions.
2653  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2654  int RASI = FI->getReturnAddrSaveIndex();
2655
2656  // If the frame pointer save index hasn't been defined yet.
2657  if (!RASI) {
2658    // Find out what the fix offset of the frame pointer save area.
2659    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isMachoABI);
2660    // Allocate the frame index for frame pointer save area.
2661    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
2662    // Save the result.
2663    FI->setReturnAddrSaveIndex(RASI);
2664  }
2665  return DAG.getFrameIndex(RASI, PtrVT);
2666}
2667
2668SDValue
2669PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
2670  MachineFunction &MF = DAG.getMachineFunction();
2671  bool IsPPC64 = PPCSubTarget.isPPC64();
2672  bool isMachoABI = PPCSubTarget.isMachoABI();
2673  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2674
2675  // Get current frame pointer save index.  The users of this index will be
2676  // primarily DYNALLOC instructions.
2677  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2678  int FPSI = FI->getFramePointerSaveIndex();
2679
2680  // If the frame pointer save index hasn't been defined yet.
2681  if (!FPSI) {
2682    // Find out what the fix offset of the frame pointer save area.
2683    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2684
2685    // Allocate the frame index for frame pointer save area.
2686    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2687    // Save the result.
2688    FI->setFramePointerSaveIndex(FPSI);
2689  }
2690  return DAG.getFrameIndex(FPSI, PtrVT);
2691}
2692
2693SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
2694                                         SelectionDAG &DAG,
2695                                         const PPCSubtarget &Subtarget) {
2696  // Get the inputs.
2697  SDValue Chain = Op.getOperand(0);
2698  SDValue Size  = Op.getOperand(1);
2699
2700  // Get the corect type for pointers.
2701  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2702  // Negate the size.
2703  SDValue NegSize = DAG.getNode(ISD::SUB, PtrVT,
2704                                  DAG.getConstant(0, PtrVT), Size);
2705  // Construct a node for the frame pointer save index.
2706  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
2707  // Build a DYNALLOC node.
2708  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
2709  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2710  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2711}
2712
2713/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2714/// possible.
2715SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
2716  // Not FP? Not a fsel.
2717  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
2718      !Op.getOperand(2).getValueType().isFloatingPoint())
2719    return SDValue();
2720
2721  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2722
2723  // Cannot handle SETEQ/SETNE.
2724  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDValue();
2725
2726  MVT ResVT = Op.getValueType();
2727  MVT CmpVT = Op.getOperand(0).getValueType();
2728  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2729  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2730
2731  // If the RHS of the comparison is a 0.0, we don't need to do the
2732  // subtraction at all.
2733  if (isFloatingPointZero(RHS))
2734    switch (CC) {
2735    default: break;       // SETUO etc aren't handled by fsel.
2736    case ISD::SETULT:
2737    case ISD::SETOLT:
2738    case ISD::SETLT:
2739      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2740    case ISD::SETUGE:
2741    case ISD::SETOGE:
2742    case ISD::SETGE:
2743      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2744        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2745      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2746    case ISD::SETUGT:
2747    case ISD::SETOGT:
2748    case ISD::SETGT:
2749      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2750    case ISD::SETULE:
2751    case ISD::SETOLE:
2752    case ISD::SETLE:
2753      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2754        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2755      return DAG.getNode(PPCISD::FSEL, ResVT,
2756                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2757    }
2758
2759  SDValue Cmp;
2760  switch (CC) {
2761  default: break;       // SETUO etc aren't handled by fsel.
2762  case ISD::SETULT:
2763  case ISD::SETOLT:
2764  case ISD::SETLT:
2765    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2766    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2767      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2768      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2769  case ISD::SETUGE:
2770  case ISD::SETOGE:
2771  case ISD::SETGE:
2772    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2773    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2774      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2775      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2776  case ISD::SETUGT:
2777  case ISD::SETOGT:
2778  case ISD::SETGT:
2779    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2780    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2781      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2782      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2783  case ISD::SETULE:
2784  case ISD::SETOLE:
2785  case ISD::SETLE:
2786    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2787    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2788      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2789      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2790  }
2791  return SDValue();
2792}
2793
2794// FIXME: Split this code up when LegalizeDAGTypes lands.
2795SDValue PPCTargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
2796  assert(Op.getOperand(0).getValueType().isFloatingPoint());
2797  SDValue Src = Op.getOperand(0);
2798  if (Src.getValueType() == MVT::f32)
2799    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2800
2801  SDValue Tmp;
2802  switch (Op.getValueType().getSimpleVT()) {
2803  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2804  case MVT::i32:
2805    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2806    break;
2807  case MVT::i64:
2808    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2809    break;
2810  }
2811
2812  // Convert the FP value to an int value through memory.
2813  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
2814
2815  // Emit a store to the stack slot.
2816  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2817
2818  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2819  // add in a bias.
2820  if (Op.getValueType() == MVT::i32)
2821    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2822                        DAG.getConstant(4, FIPtr.getValueType()));
2823  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2824}
2825
2826SDValue PPCTargetLowering::LowerFP_ROUND_INREG(SDValue Op,
2827                                                 SelectionDAG &DAG) {
2828  assert(Op.getValueType() == MVT::ppcf128);
2829  SDNode *Node = Op.Val;
2830  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2831  assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
2832  SDValue Lo = Node->getOperand(0).Val->getOperand(0);
2833  SDValue Hi = Node->getOperand(0).Val->getOperand(1);
2834
2835  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2836  // of the long double, and puts FPSCR back the way it was.  We do not
2837  // actually model FPSCR.
2838  std::vector<MVT> NodeTys;
2839  SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
2840
2841  NodeTys.push_back(MVT::f64);   // Return register
2842  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2843  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2844  MFFSreg = Result.getValue(0);
2845  InFlag = Result.getValue(1);
2846
2847  NodeTys.clear();
2848  NodeTys.push_back(MVT::Flag);   // Returns a flag
2849  Ops[0] = DAG.getConstant(31, MVT::i32);
2850  Ops[1] = InFlag;
2851  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2852  InFlag = Result.getValue(0);
2853
2854  NodeTys.clear();
2855  NodeTys.push_back(MVT::Flag);   // Returns a flag
2856  Ops[0] = DAG.getConstant(30, MVT::i32);
2857  Ops[1] = InFlag;
2858  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2859  InFlag = Result.getValue(0);
2860
2861  NodeTys.clear();
2862  NodeTys.push_back(MVT::f64);    // result of add
2863  NodeTys.push_back(MVT::Flag);   // Returns a flag
2864  Ops[0] = Lo;
2865  Ops[1] = Hi;
2866  Ops[2] = InFlag;
2867  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2868  FPreg = Result.getValue(0);
2869  InFlag = Result.getValue(1);
2870
2871  NodeTys.clear();
2872  NodeTys.push_back(MVT::f64);
2873  Ops[0] = DAG.getConstant(1, MVT::i32);
2874  Ops[1] = MFFSreg;
2875  Ops[2] = FPreg;
2876  Ops[3] = InFlag;
2877  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2878  FPreg = Result.getValue(0);
2879
2880  // We know the low half is about to be thrown away, so just use something
2881  // convenient.
2882  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2883}
2884
2885SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2886  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2887  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2888    return SDValue();
2889
2890  if (Op.getOperand(0).getValueType() == MVT::i64) {
2891    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2892    SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2893    if (Op.getValueType() == MVT::f32)
2894      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2895    return FP;
2896  }
2897
2898  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2899         "Unhandled SINT_TO_FP type in custom expander!");
2900  // Since we only generate this in 64-bit mode, we can take advantage of
2901  // 64-bit registers.  In particular, sign extend the input value into the
2902  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2903  // then lfd it and fcfid it.
2904  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2905  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2906  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2907  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2908
2909  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2910                                Op.getOperand(0));
2911
2912  // STD the extended value into the stack slot.
2913  MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
2914                       MachineMemOperand::MOStore, 0, 8, 8);
2915  SDValue Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2916                                DAG.getEntryNode(), Ext64, FIdx,
2917                                DAG.getMemOperand(MO));
2918  // Load the value as a double.
2919  SDValue Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2920
2921  // FCFID it and return it.
2922  SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2923  if (Op.getValueType() == MVT::f32)
2924    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2925  return FP;
2926}
2927
2928SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
2929  /*
2930   The rounding mode is in bits 30:31 of FPSR, and has the following
2931   settings:
2932     00 Round to nearest
2933     01 Round to 0
2934     10 Round to +inf
2935     11 Round to -inf
2936
2937  FLT_ROUNDS, on the other hand, expects the following:
2938    -1 Undefined
2939     0 Round to 0
2940     1 Round to nearest
2941     2 Round to +inf
2942     3 Round to -inf
2943
2944  To perform the conversion, we do:
2945    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2946  */
2947
2948  MachineFunction &MF = DAG.getMachineFunction();
2949  MVT VT = Op.getValueType();
2950  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2951  std::vector<MVT> NodeTys;
2952  SDValue MFFSreg, InFlag;
2953
2954  // Save FP Control Word to register
2955  NodeTys.push_back(MVT::f64);    // return register
2956  NodeTys.push_back(MVT::Flag);   // unused in this context
2957  SDValue Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2958
2959  // Save FP register to stack slot
2960  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2961  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2962  SDValue Store = DAG.getStore(DAG.getEntryNode(), Chain,
2963                                 StackSlot, NULL, 0);
2964
2965  // Load FP Control Word from low 32 bits of stack slot.
2966  SDValue Four = DAG.getConstant(4, PtrVT);
2967  SDValue Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2968  SDValue CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2969
2970  // Transform as necessary
2971  SDValue CWD1 =
2972    DAG.getNode(ISD::AND, MVT::i32,
2973                CWD, DAG.getConstant(3, MVT::i32));
2974  SDValue CWD2 =
2975    DAG.getNode(ISD::SRL, MVT::i32,
2976                DAG.getNode(ISD::AND, MVT::i32,
2977                            DAG.getNode(ISD::XOR, MVT::i32,
2978                                        CWD, DAG.getConstant(3, MVT::i32)),
2979                            DAG.getConstant(3, MVT::i32)),
2980                DAG.getConstant(1, MVT::i8));
2981
2982  SDValue RetVal =
2983    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2984
2985  return DAG.getNode((VT.getSizeInBits() < 16 ?
2986                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2987}
2988
2989SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
2990  MVT VT = Op.getValueType();
2991  unsigned BitWidth = VT.getSizeInBits();
2992  assert(Op.getNumOperands() == 3 &&
2993         VT == Op.getOperand(1).getValueType() &&
2994         "Unexpected SHL!");
2995
2996  // Expand into a bunch of logical ops.  Note that these ops
2997  // depend on the PPC behavior for oversized shift amounts.
2998  SDValue Lo = Op.getOperand(0);
2999  SDValue Hi = Op.getOperand(1);
3000  SDValue Amt = Op.getOperand(2);
3001  MVT AmtVT = Amt.getValueType();
3002
3003  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3004                               DAG.getConstant(BitWidth, AmtVT), Amt);
3005  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
3006  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
3007  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3008  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3009                               DAG.getConstant(-BitWidth, AmtVT));
3010  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
3011  SDValue OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3012  SDValue OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
3013  SDValue OutOps[] = { OutLo, OutHi };
3014  return DAG.getMergeValues(OutOps, 2);
3015}
3016
3017SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3018  MVT VT = Op.getValueType();
3019  unsigned BitWidth = VT.getSizeInBits();
3020  assert(Op.getNumOperands() == 3 &&
3021         VT == Op.getOperand(1).getValueType() &&
3022         "Unexpected SRL!");
3023
3024  // Expand into a bunch of logical ops.  Note that these ops
3025  // depend on the PPC behavior for oversized shift amounts.
3026  SDValue Lo = Op.getOperand(0);
3027  SDValue Hi = Op.getOperand(1);
3028  SDValue Amt = Op.getOperand(2);
3029  MVT AmtVT = Amt.getValueType();
3030
3031  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3032                               DAG.getConstant(BitWidth, AmtVT), Amt);
3033  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3034  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3035  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3036  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3037                               DAG.getConstant(-BitWidth, AmtVT));
3038  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
3039  SDValue OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3040  SDValue OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
3041  SDValue OutOps[] = { OutLo, OutHi };
3042  return DAG.getMergeValues(OutOps, 2);
3043}
3044
3045SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3046  MVT VT = Op.getValueType();
3047  unsigned BitWidth = VT.getSizeInBits();
3048  assert(Op.getNumOperands() == 3 &&
3049         VT == Op.getOperand(1).getValueType() &&
3050         "Unexpected SRA!");
3051
3052  // Expand into a bunch of logical ops, followed by a select_cc.
3053  SDValue Lo = Op.getOperand(0);
3054  SDValue Hi = Op.getOperand(1);
3055  SDValue Amt = Op.getOperand(2);
3056  MVT AmtVT = Amt.getValueType();
3057
3058  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3059                               DAG.getConstant(BitWidth, AmtVT), Amt);
3060  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3061  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3062  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3063  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3064                               DAG.getConstant(-BitWidth, AmtVT));
3065  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
3066  SDValue OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
3067  SDValue OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
3068                                    Tmp4, Tmp6, ISD::SETLE);
3069  SDValue OutOps[] = { OutLo, OutHi };
3070  return DAG.getMergeValues(OutOps, 2);
3071}
3072
3073//===----------------------------------------------------------------------===//
3074// Vector related lowering.
3075//
3076
3077// If this is a vector of constants or undefs, get the bits.  A bit in
3078// UndefBits is set if the corresponding element of the vector is an
3079// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3080// zero.   Return true if this is not an array of constants, false if it is.
3081//
3082static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
3083                                       uint64_t UndefBits[2]) {
3084  // Start with zero'd results.
3085  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
3086
3087  unsigned EltBitSize = BV->getOperand(0).getValueType().getSizeInBits();
3088  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3089    SDValue OpVal = BV->getOperand(i);
3090
3091    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
3092    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
3093
3094    uint64_t EltBits = 0;
3095    if (OpVal.getOpcode() == ISD::UNDEF) {
3096      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
3097      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
3098      continue;
3099    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
3100      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
3101    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
3102      assert(CN->getValueType(0) == MVT::f32 &&
3103             "Only one legal FP vector type!");
3104      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
3105    } else {
3106      // Nonconstant element.
3107      return true;
3108    }
3109
3110    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
3111  }
3112
3113  //printf("%llx %llx  %llx %llx\n",
3114  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
3115  return false;
3116}
3117
3118// If this is a splat (repetition) of a value across the whole vector, return
3119// the smallest size that splats it.  For example, "0x01010101010101..." is a
3120// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3121// SplatSize = 1 byte.
3122static bool isConstantSplat(const uint64_t Bits128[2],
3123                            const uint64_t Undef128[2],
3124                            unsigned &SplatBits, unsigned &SplatUndef,
3125                            unsigned &SplatSize) {
3126
3127  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
3128  // the same as the lower 64-bits, ignoring undefs.
3129  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
3130    return false;  // Can't be a splat if two pieces don't match.
3131
3132  uint64_t Bits64  = Bits128[0] | Bits128[1];
3133  uint64_t Undef64 = Undef128[0] & Undef128[1];
3134
3135  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
3136  // undefs.
3137  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
3138    return false;  // Can't be a splat if two pieces don't match.
3139
3140  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
3141  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
3142
3143  // If the top 16-bits are different than the lower 16-bits, ignoring
3144  // undefs, we have an i32 splat.
3145  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
3146    SplatBits = Bits32;
3147    SplatUndef = Undef32;
3148    SplatSize = 4;
3149    return true;
3150  }
3151
3152  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
3153  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
3154
3155  // If the top 8-bits are different than the lower 8-bits, ignoring
3156  // undefs, we have an i16 splat.
3157  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
3158    SplatBits = Bits16;
3159    SplatUndef = Undef16;
3160    SplatSize = 2;
3161    return true;
3162  }
3163
3164  // Otherwise, we have an 8-bit splat.
3165  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
3166  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
3167  SplatSize = 1;
3168  return true;
3169}
3170
3171/// BuildSplatI - Build a canonical splati of Val with an element size of
3172/// SplatSize.  Cast the result to VT.
3173static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT,
3174                             SelectionDAG &DAG) {
3175  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3176
3177  static const MVT VTys[] = { // canonical VT to use for each size.
3178    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3179  };
3180
3181  MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3182
3183  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3184  if (Val == -1)
3185    SplatSize = 1;
3186
3187  MVT CanonicalVT = VTys[SplatSize-1];
3188
3189  // Build a canonical splat for this value.
3190  SDValue Elt = DAG.getConstant(Val, CanonicalVT.getVectorElementType());
3191  SmallVector<SDValue, 8> Ops;
3192  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3193  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
3194                              &Ops[0], Ops.size());
3195  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
3196}
3197
3198/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3199/// specified intrinsic ID.
3200static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3201                                  SelectionDAG &DAG,
3202                                  MVT DestVT = MVT::Other) {
3203  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3204  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3205                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3206}
3207
3208/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3209/// specified intrinsic ID.
3210static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3211                                  SDValue Op2, SelectionDAG &DAG,
3212                                  MVT DestVT = MVT::Other) {
3213  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3214  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3215                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3216}
3217
3218
3219/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3220/// amount.  The result has the specified value type.
3221static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3222                             MVT VT, SelectionDAG &DAG) {
3223  // Force LHS/RHS to be the right type.
3224  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
3225  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
3226
3227  SDValue Ops[16];
3228  for (unsigned i = 0; i != 16; ++i)
3229    Ops[i] = DAG.getConstant(i+Amt, MVT::i8);
3230  SDValue T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
3231                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
3232  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
3233}
3234
3235// If this is a case we can't handle, return null and let the default
3236// expansion code take care of it.  If we CAN select this case, and if it
3237// selects to a single instruction, return Op.  Otherwise, if we can codegen
3238// this case more efficiently than a constant pool load, lower it to the
3239// sequence of ops that should be used.
3240SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3241                                               SelectionDAG &DAG) {
3242  // If this is a vector of constants or undefs, get the bits.  A bit in
3243  // UndefBits is set if the corresponding element of the vector is an
3244  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3245  // zero.
3246  uint64_t VectorBits[2];
3247  uint64_t UndefBits[2];
3248  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
3249    return SDValue();   // Not a constant vector.
3250
3251  // If this is a splat (repetition) of a value across the whole vector, return
3252  // the smallest size that splats it.  For example, "0x01010101010101..." is a
3253  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3254  // SplatSize = 1 byte.
3255  unsigned SplatBits, SplatUndef, SplatSize;
3256  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
3257    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
3258
3259    // First, handle single instruction cases.
3260
3261    // All zeros?
3262    if (SplatBits == 0) {
3263      // Canonicalize all zero vectors to be v4i32.
3264      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3265        SDValue Z = DAG.getConstant(0, MVT::i32);
3266        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
3267        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
3268      }
3269      return Op;
3270    }
3271
3272    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3273    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
3274    if (SextVal >= -16 && SextVal <= 15)
3275      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
3276
3277
3278    // Two instruction sequences.
3279
3280    // If this value is in the range [-32,30] and is even, use:
3281    //    tmp = VSPLTI[bhw], result = add tmp, tmp
3282    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3283      SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG);
3284      Res = DAG.getNode(ISD::ADD, Res.getValueType(), Res, Res);
3285      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3286    }
3287
3288    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3289    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3290    // for fneg/fabs.
3291    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3292      // Make -1 and vspltisw -1:
3293      SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
3294
3295      // Make the VSLW intrinsic, computing 0x8000_0000.
3296      SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3297                                       OnesV, DAG);
3298
3299      // xor by OnesV to invert it.
3300      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
3301      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3302    }
3303
3304    // Check to see if this is a wide variety of vsplti*, binop self cases.
3305    unsigned SplatBitSize = SplatSize*8;
3306    static const signed char SplatCsts[] = {
3307      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3308      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3309    };
3310
3311    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3312      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3313      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3314      int i = SplatCsts[idx];
3315
3316      // Figure out what shift amount will be used by altivec if shifted by i in
3317      // this splat size.
3318      unsigned TypeShiftAmt = i & (SplatBitSize-1);
3319
3320      // vsplti + shl self.
3321      if (SextVal == (i << (int)TypeShiftAmt)) {
3322        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3323        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3324          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3325          Intrinsic::ppc_altivec_vslw
3326        };
3327        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3328        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3329      }
3330
3331      // vsplti + srl self.
3332      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3333        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3334        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3335          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3336          Intrinsic::ppc_altivec_vsrw
3337        };
3338        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3339        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3340      }
3341
3342      // vsplti + sra self.
3343      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3344        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3345        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3346          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3347          Intrinsic::ppc_altivec_vsraw
3348        };
3349        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3350        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3351      }
3352
3353      // vsplti + rol self.
3354      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3355                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3356        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3357        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3358          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3359          Intrinsic::ppc_altivec_vrlw
3360        };
3361        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3362        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3363      }
3364
3365      // t = vsplti c, result = vsldoi t, t, 1
3366      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3367        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3368        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
3369      }
3370      // t = vsplti c, result = vsldoi t, t, 2
3371      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3372        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3373        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
3374      }
3375      // t = vsplti c, result = vsldoi t, t, 3
3376      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3377        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3378        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
3379      }
3380    }
3381
3382    // Three instruction sequences.
3383
3384    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3385    if (SextVal >= 0 && SextVal <= 31) {
3386      SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
3387      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3388      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
3389      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3390    }
3391    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3392    if (SextVal >= -31 && SextVal <= 0) {
3393      SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
3394      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3395      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
3396      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3397    }
3398  }
3399
3400  return SDValue();
3401}
3402
3403/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3404/// the specified operations to build the shuffle.
3405static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3406                                        SDValue RHS, SelectionDAG &DAG) {
3407  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3408  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
3409  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3410
3411  enum {
3412    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3413    OP_VMRGHW,
3414    OP_VMRGLW,
3415    OP_VSPLTISW0,
3416    OP_VSPLTISW1,
3417    OP_VSPLTISW2,
3418    OP_VSPLTISW3,
3419    OP_VSLDOI4,
3420    OP_VSLDOI8,
3421    OP_VSLDOI12
3422  };
3423
3424  if (OpNum == OP_COPY) {
3425    if (LHSID == (1*9+2)*9+3) return LHS;
3426    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3427    return RHS;
3428  }
3429
3430  SDValue OpLHS, OpRHS;
3431  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
3432  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
3433
3434  unsigned ShufIdxs[16];
3435  switch (OpNum) {
3436  default: assert(0 && "Unknown i32 permute!");
3437  case OP_VMRGHW:
3438    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3439    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3440    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3441    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3442    break;
3443  case OP_VMRGLW:
3444    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3445    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3446    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3447    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3448    break;
3449  case OP_VSPLTISW0:
3450    for (unsigned i = 0; i != 16; ++i)
3451      ShufIdxs[i] = (i&3)+0;
3452    break;
3453  case OP_VSPLTISW1:
3454    for (unsigned i = 0; i != 16; ++i)
3455      ShufIdxs[i] = (i&3)+4;
3456    break;
3457  case OP_VSPLTISW2:
3458    for (unsigned i = 0; i != 16; ++i)
3459      ShufIdxs[i] = (i&3)+8;
3460    break;
3461  case OP_VSPLTISW3:
3462    for (unsigned i = 0; i != 16; ++i)
3463      ShufIdxs[i] = (i&3)+12;
3464    break;
3465  case OP_VSLDOI4:
3466    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
3467  case OP_VSLDOI8:
3468    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
3469  case OP_VSLDOI12:
3470    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
3471  }
3472  SDValue Ops[16];
3473  for (unsigned i = 0; i != 16; ++i)
3474    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i8);
3475
3476  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
3477                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3478}
3479
3480/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3481/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3482/// return the code it can be lowered into.  Worst case, it can always be
3483/// lowered into a vperm.
3484SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3485                                                 SelectionDAG &DAG) {
3486  SDValue V1 = Op.getOperand(0);
3487  SDValue V2 = Op.getOperand(1);
3488  SDValue PermMask = Op.getOperand(2);
3489
3490  // Cases that are handled by instructions that take permute immediates
3491  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3492  // selected by the instruction selector.
3493  if (V2.getOpcode() == ISD::UNDEF) {
3494    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
3495        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
3496        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
3497        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
3498        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
3499        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
3500        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
3501        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
3502        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
3503        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
3504        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
3505        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
3506      return Op;
3507    }
3508  }
3509
3510  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3511  // and produce a fixed permutation.  If any of these match, do not lower to
3512  // VPERM.
3513  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
3514      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
3515      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
3516      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
3517      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
3518      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
3519      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
3520      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
3521      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
3522    return Op;
3523
3524  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3525  // perfect shuffle table to emit an optimal matching sequence.
3526  unsigned PFIndexes[4];
3527  bool isFourElementShuffle = true;
3528  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3529    unsigned EltNo = 8;   // Start out undef.
3530    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3531      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3532        continue;   // Undef, ignore it.
3533
3534      unsigned ByteSource =
3535        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
3536      if ((ByteSource & 3) != j) {
3537        isFourElementShuffle = false;
3538        break;
3539      }
3540
3541      if (EltNo == 8) {
3542        EltNo = ByteSource/4;
3543      } else if (EltNo != ByteSource/4) {
3544        isFourElementShuffle = false;
3545        break;
3546      }
3547    }
3548    PFIndexes[i] = EltNo;
3549  }
3550
3551  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3552  // perfect shuffle vector to determine if it is cost effective to do this as
3553  // discrete instructions, or whether we should use a vperm.
3554  if (isFourElementShuffle) {
3555    // Compute the index in the perfect shuffle table.
3556    unsigned PFTableIndex =
3557      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3558
3559    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3560    unsigned Cost  = (PFEntry >> 30);
3561
3562    // Determining when to avoid vperm is tricky.  Many things affect the cost
3563    // of vperm, particularly how many times the perm mask needs to be computed.
3564    // For example, if the perm mask can be hoisted out of a loop or is already
3565    // used (perhaps because there are multiple permutes with the same shuffle
3566    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3567    // the loop requires an extra register.
3568    //
3569    // As a compromise, we only emit discrete instructions if the shuffle can be
3570    // generated in 3 or fewer operations.  When we have loop information
3571    // available, if this block is within a loop, we should avoid using vperm
3572    // for 3-operation perms and use a constant pool load instead.
3573    if (Cost < 3)
3574      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3575  }
3576
3577  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3578  // vector that will get spilled to the constant pool.
3579  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3580
3581  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3582  // that it is in input element units, not in bytes.  Convert now.
3583  MVT EltVT = V1.getValueType().getVectorElementType();
3584  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3585
3586  SmallVector<SDValue, 16> ResultMask;
3587  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3588    unsigned SrcElt;
3589    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3590      SrcElt = 0;
3591    else
3592      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
3593
3594    for (unsigned j = 0; j != BytesPerElement; ++j)
3595      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3596                                           MVT::i8));
3597  }
3598
3599  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3600                                    &ResultMask[0], ResultMask.size());
3601  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3602}
3603
3604/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3605/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3606/// information about the intrinsic.
3607static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
3608                                  bool &isDot) {
3609  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
3610  CompareOpc = -1;
3611  isDot = false;
3612  switch (IntrinsicID) {
3613  default: return false;
3614    // Comparison predicates.
3615  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3616  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3617  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3618  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3619  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3620  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3621  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3622  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3623  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3624  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3625  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3626  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3627  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3628
3629    // Normal Comparisons.
3630  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3631  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3632  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3633  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3634  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3635  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3636  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3637  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3638  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3639  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3640  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3641  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3642  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3643  }
3644  return true;
3645}
3646
3647/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3648/// lower, do it, otherwise return null.
3649SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3650                                                     SelectionDAG &DAG) {
3651  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3652  // opcode number of the comparison.
3653  int CompareOpc;
3654  bool isDot;
3655  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3656    return SDValue();    // Don't custom lower most intrinsics.
3657
3658  // If this is a non-dot comparison, make the VCMP node and we are done.
3659  if (!isDot) {
3660    SDValue Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3661                                Op.getOperand(1), Op.getOperand(2),
3662                                DAG.getConstant(CompareOpc, MVT::i32));
3663    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3664  }
3665
3666  // Create the PPCISD altivec 'dot' comparison node.
3667  SDValue Ops[] = {
3668    Op.getOperand(2),  // LHS
3669    Op.getOperand(3),  // RHS
3670    DAG.getConstant(CompareOpc, MVT::i32)
3671  };
3672  std::vector<MVT> VTs;
3673  VTs.push_back(Op.getOperand(2).getValueType());
3674  VTs.push_back(MVT::Flag);
3675  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3676
3677  // Now that we have the comparison, emit a copy from the CR to a GPR.
3678  // This is flagged to the above dot comparison.
3679  SDValue Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3680                                DAG.getRegister(PPC::CR6, MVT::i32),
3681                                CompNode.getValue(1));
3682
3683  // Unpack the result based on how the target uses it.
3684  unsigned BitNo;   // Bit # of CR6.
3685  bool InvertBit;   // Invert result?
3686  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
3687  default:  // Can't happen, don't crash on invalid number though.
3688  case 0:   // Return the value of the EQ bit of CR6.
3689    BitNo = 0; InvertBit = false;
3690    break;
3691  case 1:   // Return the inverted value of the EQ bit of CR6.
3692    BitNo = 0; InvertBit = true;
3693    break;
3694  case 2:   // Return the value of the LT bit of CR6.
3695    BitNo = 2; InvertBit = false;
3696    break;
3697  case 3:   // Return the inverted value of the LT bit of CR6.
3698    BitNo = 2; InvertBit = true;
3699    break;
3700  }
3701
3702  // Shift the bit into the low position.
3703  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3704                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3705  // Isolate the bit.
3706  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3707                      DAG.getConstant(1, MVT::i32));
3708
3709  // If we are supposed to, toggle the bit.
3710  if (InvertBit)
3711    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3712                        DAG.getConstant(1, MVT::i32));
3713  return Flags;
3714}
3715
3716SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
3717                                                   SelectionDAG &DAG) {
3718  // Create a stack slot that is 16-byte aligned.
3719  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3720  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3721  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3722  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3723
3724  // Store the input value into Value#0 of the stack slot.
3725  SDValue Store = DAG.getStore(DAG.getEntryNode(),
3726                                 Op.getOperand(0), FIdx, NULL, 0);
3727  // Load it out.
3728  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3729}
3730
3731SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
3732  if (Op.getValueType() == MVT::v4i32) {
3733    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3734
3735    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
3736    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3737
3738    SDValue RHSSwap =   // = vrlw RHS, 16
3739      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3740
3741    // Shrinkify inputs to v8i16.
3742    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3743    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3744    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3745
3746    // Low parts multiplied together, generating 32-bit results (we ignore the
3747    // top parts).
3748    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3749                                        LHS, RHS, DAG, MVT::v4i32);
3750
3751    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3752                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3753    // Shift the high parts up 16 bits.
3754    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3755    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3756  } else if (Op.getValueType() == MVT::v8i16) {
3757    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3758
3759    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3760
3761    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3762                            LHS, RHS, Zero, DAG);
3763  } else if (Op.getValueType() == MVT::v16i8) {
3764    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3765
3766    // Multiply the even 8-bit parts, producing 16-bit sums.
3767    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3768                                           LHS, RHS, DAG, MVT::v8i16);
3769    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3770
3771    // Multiply the odd 8-bit parts, producing 16-bit sums.
3772    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3773                                          LHS, RHS, DAG, MVT::v8i16);
3774    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3775
3776    // Merge the results together.
3777    SDValue Ops[16];
3778    for (unsigned i = 0; i != 8; ++i) {
3779      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3780      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3781    }
3782    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3783                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3784  } else {
3785    assert(0 && "Unknown mul to lower!");
3786    abort();
3787  }
3788}
3789
3790/// LowerOperation - Provide custom lowering hooks for some operations.
3791///
3792SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
3793  switch (Op.getOpcode()) {
3794  default: assert(0 && "Wasn't expecting to be able to lower this!");
3795  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3796  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3797  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3798  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3799  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3800  case ISD::VASTART:
3801    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3802                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3803
3804  case ISD::VAARG:
3805    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3806                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3807
3808  case ISD::FORMAL_ARGUMENTS:
3809    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3810                                 VarArgsStackOffset, VarArgsNumGPR,
3811                                 VarArgsNumFPR, PPCSubTarget);
3812
3813  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget,
3814                                                 getTargetMachine());
3815  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3816  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3817  case ISD::DYNAMIC_STACKALLOC:
3818    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3819
3820  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3821  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3822  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3823  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3824  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3825
3826  // Lower 64-bit shifts.
3827  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3828  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3829  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3830
3831  // Vector-related lowering.
3832  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3833  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3834  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3835  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3836  case ISD::MUL:                return LowerMUL(Op, DAG);
3837
3838  // Frame & Return address.
3839  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3840  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3841  }
3842  return SDValue();
3843}
3844
3845SDNode *PPCTargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
3846  switch (N->getOpcode()) {
3847  default: assert(0 && "Wasn't expecting to be able to lower this!");
3848  case ISD::FP_TO_SINT: {
3849    SDValue Res = LowerFP_TO_SINT(SDValue(N, 0), DAG);
3850    // Use MERGE_VALUES to drop the chain result value and get a node with one
3851    // result.  This requires turning off getMergeValues simplification, since
3852    // otherwise it will give us Res back.
3853    return DAG.getMergeValues(&Res, 1, false).Val;
3854  }
3855  }
3856}
3857
3858
3859//===----------------------------------------------------------------------===//
3860//  Other Lowering Code
3861//===----------------------------------------------------------------------===//
3862
3863MachineBasicBlock *
3864PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3865                                    bool is64bit, unsigned BinOpcode) {
3866  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3867
3868  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3869  MachineFunction *F = BB->getParent();
3870  MachineFunction::iterator It = BB;
3871  ++It;
3872
3873  unsigned dest = MI->getOperand(0).getReg();
3874  unsigned ptrA = MI->getOperand(1).getReg();
3875  unsigned ptrB = MI->getOperand(2).getReg();
3876  unsigned incr = MI->getOperand(3).getReg();
3877
3878  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3879  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3880  F->insert(It, loopMBB);
3881  F->insert(It, exitMBB);
3882  exitMBB->transferSuccessors(BB);
3883
3884  MachineRegisterInfo &RegInfo = F->getRegInfo();
3885  unsigned TmpReg = RegInfo.createVirtualRegister(
3886    is64bit ? (const TargetRegisterClass *) &PPC::GPRCRegClass :
3887              (const TargetRegisterClass *) &PPC::G8RCRegClass);
3888
3889  //  thisMBB:
3890  //   ...
3891  //   fallthrough --> loopMBB
3892  BB->addSuccessor(loopMBB);
3893
3894  //  loopMBB:
3895  //   l[wd]arx dest, ptr
3896  //   add r0, dest, incr
3897  //   st[wd]cx. r0, ptr
3898  //   bne- loopMBB
3899  //   fallthrough --> exitMBB
3900  BB = loopMBB;
3901  BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
3902    .addReg(ptrA).addReg(ptrB);
3903  BuildMI(BB, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
3904  BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
3905    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
3906  BuildMI(BB, TII->get(PPC::BCC))
3907    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
3908  BB->addSuccessor(loopMBB);
3909  BB->addSuccessor(exitMBB);
3910
3911  //  exitMBB:
3912  //   ...
3913  BB = exitMBB;
3914  return BB;
3915}
3916
3917MachineBasicBlock *
3918PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
3919                                            MachineBasicBlock *BB,
3920                                            bool is8bit,    // operation
3921                                            unsigned BinOpcode) {
3922  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3923  // In 64 bit mode we have to use 64 bits for addresses, even though the
3924  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
3925  // registers without caring whether they're 32 or 64, but here we're
3926  // doing actual arithmetic on the addresses.
3927  bool is64bit = PPCSubTarget.isPPC64();
3928
3929  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3930  MachineFunction *F = BB->getParent();
3931  MachineFunction::iterator It = BB;
3932  ++It;
3933
3934  unsigned dest = MI->getOperand(0).getReg();
3935  unsigned ptrA = MI->getOperand(1).getReg();
3936  unsigned ptrB = MI->getOperand(2).getReg();
3937  unsigned incr = MI->getOperand(3).getReg();
3938
3939  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3940  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3941  F->insert(It, loopMBB);
3942  F->insert(It, exitMBB);
3943  exitMBB->transferSuccessors(BB);
3944
3945  MachineRegisterInfo &RegInfo = F->getRegInfo();
3946  const TargetRegisterClass *RC =
3947    is64bit ? (const TargetRegisterClass *) &PPC::GPRCRegClass :
3948              (const TargetRegisterClass *) &PPC::G8RCRegClass;
3949  unsigned TmpReg = RegInfo.createVirtualRegister(RC);
3950  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
3951  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
3952  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
3953  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
3954  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
3955  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
3956  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
3957  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
3958  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
3959  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
3960  unsigned Ptr1Reg;
3961
3962  //  thisMBB:
3963  //   ...
3964  //   fallthrough --> loopMBB
3965  BB->addSuccessor(loopMBB);
3966
3967  // The 4-byte load must be aligned, while a char or short may be
3968  // anywhere in the word.  Hence all this nasty bookkeeping code.
3969  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
3970  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
3971  //   xor shift, shift1, 24 [16]
3972  //   rlwinm ptr, ptr1, 0, 0, 29
3973  //   slw incr2, incr, shift
3974  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
3975  //   slw mask, mask2, shift
3976  //  loopMBB:
3977  //   l[wd]arx dest, ptr
3978  //   add tmp, dest, incr2
3979  //   andc tmp2, dest, mask
3980  //   and tmp3, tmp, mask
3981  //   or tmp4, tmp3, tmp2
3982  //   st[wd]cx. tmp4, ptr
3983  //   bne- loopMBB
3984  //   fallthrough --> exitMBB
3985
3986  if (ptrA!=PPC::R0) {
3987    Ptr1Reg = RegInfo.createVirtualRegister(RC);
3988    BuildMI(BB, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
3989      .addReg(ptrA).addReg(ptrB);
3990  } else {
3991    Ptr1Reg = ptrB;
3992  }
3993  BuildMI(BB, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
3994      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
3995  BuildMI(BB, TII->get(is64bit ? PPC::XOR8 : PPC::XOR), ShiftReg)
3996      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
3997  if (is64bit)
3998    BuildMI(BB, TII->get(PPC::RLDICR), PtrReg)
3999      .addReg(Ptr1Reg).addImm(0).addImm(61);
4000  else
4001    BuildMI(BB, TII->get(PPC::RLWINM), PtrReg)
4002      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4003  BuildMI(BB, TII->get(PPC::SLW), Incr2Reg)
4004      .addReg(incr).addReg(ShiftReg);
4005  if (is8bit)
4006    BuildMI(BB, TII->get(PPC::LI), Mask2Reg).addImm(255);
4007  else {
4008    BuildMI(BB, TII->get(PPC::LI), Mask3Reg).addImm(0);
4009    BuildMI(BB, TII->get(PPC::ORI), Mask2Reg).addReg(Mask3Reg).addImm(65535);
4010  }
4011  BuildMI(BB, TII->get(PPC::SLW), MaskReg)
4012      .addReg(Mask2Reg).addReg(ShiftReg);
4013
4014  BB = loopMBB;
4015  BuildMI(BB, TII->get(PPC::LWARX), dest)
4016    .addReg(PPC::R0).addReg(PtrReg);
4017  BuildMI(BB, TII->get(BinOpcode), TmpReg).addReg(Incr2Reg).addReg(dest);
4018  BuildMI(BB, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4019    .addReg(dest).addReg(MaskReg);
4020  BuildMI(BB, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4021    .addReg(TmpReg).addReg(MaskReg);
4022  BuildMI(BB, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4023    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4024  BuildMI(BB, TII->get(PPC::STWCX))
4025    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4026  BuildMI(BB, TII->get(PPC::BCC))
4027    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4028  BB->addSuccessor(loopMBB);
4029  BB->addSuccessor(exitMBB);
4030
4031  //  exitMBB:
4032  //   ...
4033  BB = exitMBB;
4034  return BB;
4035}
4036
4037MachineBasicBlock *
4038PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4039                                               MachineBasicBlock *BB) {
4040  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4041
4042  // To "insert" these instructions we actually have to insert their
4043  // control-flow patterns.
4044  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4045  MachineFunction::iterator It = BB;
4046  ++It;
4047
4048  MachineFunction *F = BB->getParent();
4049
4050  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4051      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4052      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4053      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4054      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4055
4056    // The incoming instruction knows the destination vreg to set, the
4057    // condition code register to branch on, the true/false values to
4058    // select between, and a branch opcode to use.
4059
4060    //  thisMBB:
4061    //  ...
4062    //   TrueVal = ...
4063    //   cmpTY ccX, r1, r2
4064    //   bCC copy1MBB
4065    //   fallthrough --> copy0MBB
4066    MachineBasicBlock *thisMBB = BB;
4067    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4068    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4069    unsigned SelectPred = MI->getOperand(4).getImm();
4070    BuildMI(BB, TII->get(PPC::BCC))
4071      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4072    F->insert(It, copy0MBB);
4073    F->insert(It, sinkMBB);
4074    // Update machine-CFG edges by transferring all successors of the current
4075    // block to the new block which will contain the Phi node for the select.
4076    sinkMBB->transferSuccessors(BB);
4077    // Next, add the true and fallthrough blocks as its successors.
4078    BB->addSuccessor(copy0MBB);
4079    BB->addSuccessor(sinkMBB);
4080
4081    //  copy0MBB:
4082    //   %FalseValue = ...
4083    //   # fallthrough to sinkMBB
4084    BB = copy0MBB;
4085
4086    // Update machine-CFG edges
4087    BB->addSuccessor(sinkMBB);
4088
4089    //  sinkMBB:
4090    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4091    //  ...
4092    BB = sinkMBB;
4093    BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4094      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4095      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4096  }
4097  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4098    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4099  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4100    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4101  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4102    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4103  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4104    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4105
4106  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4107    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4108  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4109    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4110  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4111    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4112  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4113    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4114
4115  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4116    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4117  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4118    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4119  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4120    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4121  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4122    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4123
4124  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4125    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4126  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4127    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4128  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4129    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4130  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4131    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4132
4133  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4134    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
4135  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4136    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
4137  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4138    BB = EmitAtomicBinary(MI, BB, false, PPC::NAND);
4139  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4140    BB = EmitAtomicBinary(MI, BB, true, PPC::NAND8);
4141
4142  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4143    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4144  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4145    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4146  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4147    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4148  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4149    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4150
4151  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4152           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4153    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4154
4155    unsigned dest   = MI->getOperand(0).getReg();
4156    unsigned ptrA   = MI->getOperand(1).getReg();
4157    unsigned ptrB   = MI->getOperand(2).getReg();
4158    unsigned oldval = MI->getOperand(3).getReg();
4159    unsigned newval = MI->getOperand(4).getReg();
4160
4161    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4162    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4163    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4164    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4165    F->insert(It, loop1MBB);
4166    F->insert(It, loop2MBB);
4167    F->insert(It, midMBB);
4168    F->insert(It, exitMBB);
4169    exitMBB->transferSuccessors(BB);
4170
4171    //  thisMBB:
4172    //   ...
4173    //   fallthrough --> loopMBB
4174    BB->addSuccessor(loop1MBB);
4175
4176    // loop1MBB:
4177    //   l[wd]arx dest, ptr
4178    //   cmp[wd] dest, oldval
4179    //   bne- midMBB
4180    // loop2MBB:
4181    //   st[wd]cx. newval, ptr
4182    //   bne- loopMBB
4183    //   b exitBB
4184    // midMBB:
4185    //   st[wd]cx. dest, ptr
4186    // exitBB:
4187    BB = loop1MBB;
4188    BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4189      .addReg(ptrA).addReg(ptrB);
4190    BuildMI(BB, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4191      .addReg(oldval).addReg(dest);
4192    BuildMI(BB, TII->get(PPC::BCC))
4193      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4194    BB->addSuccessor(loop2MBB);
4195    BB->addSuccessor(midMBB);
4196
4197    BB = loop2MBB;
4198    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4199      .addReg(newval).addReg(ptrA).addReg(ptrB);
4200    BuildMI(BB, TII->get(PPC::BCC))
4201      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4202    BuildMI(BB, TII->get(PPC::B)).addMBB(exitMBB);
4203    BB->addSuccessor(loop1MBB);
4204    BB->addSuccessor(exitMBB);
4205
4206    BB = midMBB;
4207    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4208      .addReg(dest).addReg(ptrA).addReg(ptrB);
4209    BB->addSuccessor(exitMBB);
4210
4211    //  exitMBB:
4212    //   ...
4213    BB = exitMBB;
4214  }
4215  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32 ||
4216           MI->getOpcode() == PPC::ATOMIC_SWAP_I64) {
4217    bool is64bit = MI->getOpcode() == PPC::ATOMIC_SWAP_I64;
4218
4219    unsigned dest   = MI->getOperand(0).getReg();
4220    unsigned ptrA   = MI->getOperand(1).getReg();
4221    unsigned ptrB   = MI->getOperand(2).getReg();
4222    unsigned newval = MI->getOperand(3).getReg();
4223
4224    MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4225    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4226    F->insert(It, loopMBB);
4227    F->insert(It, exitMBB);
4228    exitMBB->transferSuccessors(BB);
4229
4230    //  thisMBB:
4231    //   ...
4232    //   fallthrough --> loopMBB
4233    BB->addSuccessor(loopMBB);
4234
4235    //  loopMBB:
4236    //   l[wd]arx dest, ptr
4237    //   st[wd]cx. newval, ptr
4238    //   bne- loopMBB
4239    //   fallthrough --> exitMBB
4240    BB = loopMBB;
4241    BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4242      .addReg(ptrA).addReg(ptrB);
4243    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4244      .addReg(newval).addReg(ptrA).addReg(ptrB);
4245    BuildMI(BB, TII->get(PPC::BCC))
4246      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4247    BB->addSuccessor(loopMBB);
4248    BB->addSuccessor(exitMBB);
4249
4250    //  exitMBB:
4251    //   ...
4252    BB = exitMBB;
4253  }
4254  else {
4255    assert(0 && "Unexpected instr type to insert");
4256  }
4257
4258  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4259  return BB;
4260}
4261
4262//===----------------------------------------------------------------------===//
4263// Target Optimization Hooks
4264//===----------------------------------------------------------------------===//
4265
4266SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4267                                               DAGCombinerInfo &DCI) const {
4268  TargetMachine &TM = getTargetMachine();
4269  SelectionDAG &DAG = DCI.DAG;
4270  switch (N->getOpcode()) {
4271  default: break;
4272  case PPCISD::SHL:
4273    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4274      if (C->getValue() == 0)   // 0 << V -> 0.
4275        return N->getOperand(0);
4276    }
4277    break;
4278  case PPCISD::SRL:
4279    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4280      if (C->getValue() == 0)   // 0 >>u V -> 0.
4281        return N->getOperand(0);
4282    }
4283    break;
4284  case PPCISD::SRA:
4285    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4286      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
4287          C->isAllOnesValue())    // -1 >>s V -> -1.
4288        return N->getOperand(0);
4289    }
4290    break;
4291
4292  case ISD::SINT_TO_FP:
4293    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4294      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4295        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4296        // We allow the src/dst to be either f32/f64, but the intermediate
4297        // type must be i64.
4298        if (N->getOperand(0).getValueType() == MVT::i64 &&
4299            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4300          SDValue Val = N->getOperand(0).getOperand(0);
4301          if (Val.getValueType() == MVT::f32) {
4302            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4303            DCI.AddToWorklist(Val.Val);
4304          }
4305
4306          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
4307          DCI.AddToWorklist(Val.Val);
4308          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
4309          DCI.AddToWorklist(Val.Val);
4310          if (N->getValueType(0) == MVT::f32) {
4311            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
4312                              DAG.getIntPtrConstant(0));
4313            DCI.AddToWorklist(Val.Val);
4314          }
4315          return Val;
4316        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4317          // If the intermediate type is i32, we can avoid the load/store here
4318          // too.
4319        }
4320      }
4321    }
4322    break;
4323  case ISD::STORE:
4324    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4325    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4326        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4327        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4328        N->getOperand(1).getValueType() == MVT::i32 &&
4329        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4330      SDValue Val = N->getOperand(1).getOperand(0);
4331      if (Val.getValueType() == MVT::f32) {
4332        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4333        DCI.AddToWorklist(Val.Val);
4334      }
4335      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
4336      DCI.AddToWorklist(Val.Val);
4337
4338      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
4339                        N->getOperand(2), N->getOperand(3));
4340      DCI.AddToWorklist(Val.Val);
4341      return Val;
4342    }
4343
4344    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4345    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4346        N->getOperand(1).Val->hasOneUse() &&
4347        (N->getOperand(1).getValueType() == MVT::i32 ||
4348         N->getOperand(1).getValueType() == MVT::i16)) {
4349      SDValue BSwapOp = N->getOperand(1).getOperand(0);
4350      // Do an any-extend to 32-bits if this is a half-word input.
4351      if (BSwapOp.getValueType() == MVT::i16)
4352        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
4353
4354      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
4355                         N->getOperand(2), N->getOperand(3),
4356                         DAG.getValueType(N->getOperand(1).getValueType()));
4357    }
4358    break;
4359  case ISD::BSWAP:
4360    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4361    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
4362        N->getOperand(0).hasOneUse() &&
4363        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4364      SDValue Load = N->getOperand(0);
4365      LoadSDNode *LD = cast<LoadSDNode>(Load);
4366      // Create the byte-swapping load.
4367      std::vector<MVT> VTs;
4368      VTs.push_back(MVT::i32);
4369      VTs.push_back(MVT::Other);
4370      SDValue MO = DAG.getMemOperand(LD->getMemOperand());
4371      SDValue Ops[] = {
4372        LD->getChain(),    // Chain
4373        LD->getBasePtr(),  // Ptr
4374        MO,                // MemOperand
4375        DAG.getValueType(N->getValueType(0)) // VT
4376      };
4377      SDValue BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
4378
4379      // If this is an i16 load, insert the truncate.
4380      SDValue ResVal = BSLoad;
4381      if (N->getValueType(0) == MVT::i16)
4382        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
4383
4384      // First, combine the bswap away.  This makes the value produced by the
4385      // load dead.
4386      DCI.CombineTo(N, ResVal);
4387
4388      // Next, combine the load away, we give it a bogus result value but a real
4389      // chain result.  The result value is dead because the bswap is dead.
4390      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
4391
4392      // Return N so it doesn't get rechecked!
4393      return SDValue(N, 0);
4394    }
4395
4396    break;
4397  case PPCISD::VCMP: {
4398    // If a VCMPo node already exists with exactly the same operands as this
4399    // node, use its result instead of this node (VCMPo computes both a CR6 and
4400    // a normal output).
4401    //
4402    if (!N->getOperand(0).hasOneUse() &&
4403        !N->getOperand(1).hasOneUse() &&
4404        !N->getOperand(2).hasOneUse()) {
4405
4406      // Scan all of the users of the LHS, looking for VCMPo's that match.
4407      SDNode *VCMPoNode = 0;
4408
4409      SDNode *LHSN = N->getOperand(0).Val;
4410      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4411           UI != E; ++UI)
4412        if (UI->getOpcode() == PPCISD::VCMPo &&
4413            UI->getOperand(1) == N->getOperand(1) &&
4414            UI->getOperand(2) == N->getOperand(2) &&
4415            UI->getOperand(0) == N->getOperand(0)) {
4416          VCMPoNode = *UI;
4417          break;
4418        }
4419
4420      // If there is no VCMPo node, or if the flag value has a single use, don't
4421      // transform this.
4422      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
4423        break;
4424
4425      // Look at the (necessarily single) use of the flag value.  If it has a
4426      // chain, this transformation is more complex.  Note that multiple things
4427      // could use the value result, which we should ignore.
4428      SDNode *FlagUser = 0;
4429      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
4430           FlagUser == 0; ++UI) {
4431        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
4432        SDNode *User = *UI;
4433        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
4434          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
4435            FlagUser = User;
4436            break;
4437          }
4438        }
4439      }
4440
4441      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
4442      // give up for right now.
4443      if (FlagUser->getOpcode() == PPCISD::MFCR)
4444        return SDValue(VCMPoNode, 0);
4445    }
4446    break;
4447  }
4448  case ISD::BR_CC: {
4449    // If this is a branch on an altivec predicate comparison, lower this so
4450    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
4451    // lowering is done pre-legalize, because the legalizer lowers the predicate
4452    // compare down to code that is difficult to reassemble.
4453    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4454    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4455    int CompareOpc;
4456    bool isDot;
4457
4458    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
4459        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
4460        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
4461      assert(isDot && "Can't compare against a vector result!");
4462
4463      // If this is a comparison against something other than 0/1, then we know
4464      // that the condition is never/always true.
4465      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
4466      if (Val != 0 && Val != 1) {
4467        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
4468          return N->getOperand(0);
4469        // Always !=, turn it into an unconditional branch.
4470        return DAG.getNode(ISD::BR, MVT::Other,
4471                           N->getOperand(0), N->getOperand(4));
4472      }
4473
4474      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
4475
4476      // Create the PPCISD altivec 'dot' comparison node.
4477      std::vector<MVT> VTs;
4478      SDValue Ops[] = {
4479        LHS.getOperand(2),  // LHS of compare
4480        LHS.getOperand(3),  // RHS of compare
4481        DAG.getConstant(CompareOpc, MVT::i32)
4482      };
4483      VTs.push_back(LHS.getOperand(2).getValueType());
4484      VTs.push_back(MVT::Flag);
4485      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
4486
4487      // Unpack the result based on how the target uses it.
4488      PPC::Predicate CompOpc;
4489      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
4490      default:  // Can't happen, don't crash on invalid number though.
4491      case 0:   // Branch on the value of the EQ bit of CR6.
4492        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
4493        break;
4494      case 1:   // Branch on the inverted value of the EQ bit of CR6.
4495        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
4496        break;
4497      case 2:   // Branch on the value of the LT bit of CR6.
4498        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
4499        break;
4500      case 3:   // Branch on the inverted value of the LT bit of CR6.
4501        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
4502        break;
4503      }
4504
4505      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
4506                         DAG.getConstant(CompOpc, MVT::i32),
4507                         DAG.getRegister(PPC::CR6, MVT::i32),
4508                         N->getOperand(4), CompNode.getValue(1));
4509    }
4510    break;
4511  }
4512  }
4513
4514  return SDValue();
4515}
4516
4517//===----------------------------------------------------------------------===//
4518// Inline Assembly Support
4519//===----------------------------------------------------------------------===//
4520
4521void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
4522                                                       const APInt &Mask,
4523                                                       APInt &KnownZero,
4524                                                       APInt &KnownOne,
4525                                                       const SelectionDAG &DAG,
4526                                                       unsigned Depth) const {
4527  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
4528  switch (Op.getOpcode()) {
4529  default: break;
4530  case PPCISD::LBRX: {
4531    // lhbrx is known to have the top bits cleared out.
4532    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
4533      KnownZero = 0xFFFF0000;
4534    break;
4535  }
4536  case ISD::INTRINSIC_WO_CHAIN: {
4537    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
4538    default: break;
4539    case Intrinsic::ppc_altivec_vcmpbfp_p:
4540    case Intrinsic::ppc_altivec_vcmpeqfp_p:
4541    case Intrinsic::ppc_altivec_vcmpequb_p:
4542    case Intrinsic::ppc_altivec_vcmpequh_p:
4543    case Intrinsic::ppc_altivec_vcmpequw_p:
4544    case Intrinsic::ppc_altivec_vcmpgefp_p:
4545    case Intrinsic::ppc_altivec_vcmpgtfp_p:
4546    case Intrinsic::ppc_altivec_vcmpgtsb_p:
4547    case Intrinsic::ppc_altivec_vcmpgtsh_p:
4548    case Intrinsic::ppc_altivec_vcmpgtsw_p:
4549    case Intrinsic::ppc_altivec_vcmpgtub_p:
4550    case Intrinsic::ppc_altivec_vcmpgtuh_p:
4551    case Intrinsic::ppc_altivec_vcmpgtuw_p:
4552      KnownZero = ~1U;  // All bits but the low one are known to be zero.
4553      break;
4554    }
4555  }
4556  }
4557}
4558
4559
4560/// getConstraintType - Given a constraint, return the type of
4561/// constraint it is for this target.
4562PPCTargetLowering::ConstraintType
4563PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
4564  if (Constraint.size() == 1) {
4565    switch (Constraint[0]) {
4566    default: break;
4567    case 'b':
4568    case 'r':
4569    case 'f':
4570    case 'v':
4571    case 'y':
4572      return C_RegisterClass;
4573    }
4574  }
4575  return TargetLowering::getConstraintType(Constraint);
4576}
4577
4578std::pair<unsigned, const TargetRegisterClass*>
4579PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4580                                                MVT VT) const {
4581  if (Constraint.size() == 1) {
4582    // GCC RS6000 Constraint Letters
4583    switch (Constraint[0]) {
4584    case 'b':   // R1-R31
4585    case 'r':   // R0-R31
4586      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
4587        return std::make_pair(0U, PPC::G8RCRegisterClass);
4588      return std::make_pair(0U, PPC::GPRCRegisterClass);
4589    case 'f':
4590      if (VT == MVT::f32)
4591        return std::make_pair(0U, PPC::F4RCRegisterClass);
4592      else if (VT == MVT::f64)
4593        return std::make_pair(0U, PPC::F8RCRegisterClass);
4594      break;
4595    case 'v':
4596      return std::make_pair(0U, PPC::VRRCRegisterClass);
4597    case 'y':   // crrc
4598      return std::make_pair(0U, PPC::CRRCRegisterClass);
4599    }
4600  }
4601
4602  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4603}
4604
4605
4606/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4607/// vector.  If it is invalid, don't add anything to Ops.
4608void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
4609                                                     std::vector<SDValue>&Ops,
4610                                                     SelectionDAG &DAG) const {
4611  SDValue Result(0,0);
4612  switch (Letter) {
4613  default: break;
4614  case 'I':
4615  case 'J':
4616  case 'K':
4617  case 'L':
4618  case 'M':
4619  case 'N':
4620  case 'O':
4621  case 'P': {
4622    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
4623    if (!CST) return; // Must be an immediate to match.
4624    unsigned Value = CST->getValue();
4625    switch (Letter) {
4626    default: assert(0 && "Unknown constraint letter!");
4627    case 'I':  // "I" is a signed 16-bit constant.
4628      if ((short)Value == (int)Value)
4629        Result = DAG.getTargetConstant(Value, Op.getValueType());
4630      break;
4631    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
4632    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
4633      if ((short)Value == 0)
4634        Result = DAG.getTargetConstant(Value, Op.getValueType());
4635      break;
4636    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
4637      if ((Value >> 16) == 0)
4638        Result = DAG.getTargetConstant(Value, Op.getValueType());
4639      break;
4640    case 'M':  // "M" is a constant that is greater than 31.
4641      if (Value > 31)
4642        Result = DAG.getTargetConstant(Value, Op.getValueType());
4643      break;
4644    case 'N':  // "N" is a positive constant that is an exact power of two.
4645      if ((int)Value > 0 && isPowerOf2_32(Value))
4646        Result = DAG.getTargetConstant(Value, Op.getValueType());
4647      break;
4648    case 'O':  // "O" is the constant zero.
4649      if (Value == 0)
4650        Result = DAG.getTargetConstant(Value, Op.getValueType());
4651      break;
4652    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
4653      if ((short)-Value == (int)-Value)
4654        Result = DAG.getTargetConstant(Value, Op.getValueType());
4655      break;
4656    }
4657    break;
4658  }
4659  }
4660
4661  if (Result.Val) {
4662    Ops.push_back(Result);
4663    return;
4664  }
4665
4666  // Handle standard constraint letters.
4667  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
4668}
4669
4670// isLegalAddressingMode - Return true if the addressing mode represented
4671// by AM is legal for this target, for a load/store of the specified type.
4672bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4673                                              const Type *Ty) const {
4674  // FIXME: PPC does not allow r+i addressing modes for vectors!
4675
4676  // PPC allows a sign-extended 16-bit immediate field.
4677  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
4678    return false;
4679
4680  // No global is ever allowed as a base.
4681  if (AM.BaseGV)
4682    return false;
4683
4684  // PPC only support r+r,
4685  switch (AM.Scale) {
4686  case 0:  // "r+i" or just "i", depending on HasBaseReg.
4687    break;
4688  case 1:
4689    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
4690      return false;
4691    // Otherwise we have r+r or r+i.
4692    break;
4693  case 2:
4694    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
4695      return false;
4696    // Allow 2*r as r+r.
4697    break;
4698  default:
4699    // No other scales are supported.
4700    return false;
4701  }
4702
4703  return true;
4704}
4705
4706/// isLegalAddressImmediate - Return true if the integer value can be used
4707/// as the offset of the target addressing mode for load / store of the
4708/// given type.
4709bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
4710  // PPC allows a sign-extended 16-bit immediate field.
4711  return (V > -(1 << 16) && V < (1 << 16)-1);
4712}
4713
4714bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
4715  return false;
4716}
4717
4718SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
4719  // Depths > 0 not supported yet!
4720  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4721    return SDValue();
4722
4723  MachineFunction &MF = DAG.getMachineFunction();
4724  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4725
4726  // Just load the return address off the stack.
4727  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
4728
4729  // Make sure the function really does not optimize away the store of the RA
4730  // to the stack.
4731  FuncInfo->setLRStoreRequired();
4732  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4733}
4734
4735SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
4736  // Depths > 0 not supported yet!
4737  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4738    return SDValue();
4739
4740  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4741  bool isPPC64 = PtrVT == MVT::i64;
4742
4743  MachineFunction &MF = DAG.getMachineFunction();
4744  MachineFrameInfo *MFI = MF.getFrameInfo();
4745  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4746                  && MFI->getStackSize();
4747
4748  if (isPPC64)
4749    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
4750      MVT::i64);
4751  else
4752    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
4753      MVT::i32);
4754}
4755