PPCISelLowering.cpp revision b1eb987ccd86e58d81dde75424d37369785910d7
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/VectorExtras.h"
20#include "llvm/Analysis/ScalarEvolutionExpressions.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/SSARegMap.h"
26#include "llvm/Constants.h"
27#include "llvm/Function.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Support/CommandLine.h"
32using namespace llvm;
33
34static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc");
35
36PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
37  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
38
39  // Fold away setcc operations if possible.
40  setSetCCIsExpensive();
41  setPow2DivIsCheap();
42
43  // Use _setjmp/_longjmp instead of setjmp/longjmp.
44  setUseUnderscoreSetJmpLongJmp(true);
45
46  // Set up the register classes.
47  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
48  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
49  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
50
51  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
52  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
53  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
54
55  // PowerPC does not have truncstore for i1.
56  setStoreXAction(MVT::i1, Promote);
57
58  // PowerPC has pre-inc load and store's.
59  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
60  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
61  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
64  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
65  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
66  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
69
70  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
71  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
72
73  // PowerPC has no intrinsics for these particular operations
74  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
75  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
76  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
77
78  // PowerPC has no SREM/UREM instructions
79  setOperationAction(ISD::SREM, MVT::i32, Expand);
80  setOperationAction(ISD::UREM, MVT::i32, Expand);
81  setOperationAction(ISD::SREM, MVT::i64, Expand);
82  setOperationAction(ISD::UREM, MVT::i64, Expand);
83
84  // We don't support sin/cos/sqrt/fmod
85  setOperationAction(ISD::FSIN , MVT::f64, Expand);
86  setOperationAction(ISD::FCOS , MVT::f64, Expand);
87  setOperationAction(ISD::FREM , MVT::f64, Expand);
88  setOperationAction(ISD::FSIN , MVT::f32, Expand);
89  setOperationAction(ISD::FCOS , MVT::f32, Expand);
90  setOperationAction(ISD::FREM , MVT::f32, Expand);
91
92  // If we're enabling GP optimizations, use hardware square root
93  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
94    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
95    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
96  }
97
98  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
99  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
100
101  // PowerPC does not have BSWAP, CTPOP or CTTZ
102  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
103  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
104  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
105  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
106  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
107  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
108
109  // PowerPC does not have ROTR
110  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
111
112  // PowerPC does not have Select
113  setOperationAction(ISD::SELECT, MVT::i32, Expand);
114  setOperationAction(ISD::SELECT, MVT::i64, Expand);
115  setOperationAction(ISD::SELECT, MVT::f32, Expand);
116  setOperationAction(ISD::SELECT, MVT::f64, Expand);
117
118  // PowerPC wants to turn select_cc of FP into fsel when possible.
119  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
120  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
121
122  // PowerPC wants to optimize integer setcc a bit
123  setOperationAction(ISD::SETCC, MVT::i32, Custom);
124
125  // PowerPC does not have BRCOND which requires SetCC
126  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
127
128  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
129
130  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
131  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
132
133  // PowerPC does not have [U|S]INT_TO_FP
134  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
135  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
136
137  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
138  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
139  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
140  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
141
142  // We cannot sextinreg(i1).  Expand to shifts.
143  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
144
145
146  // Support label based line numbers.
147  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
148  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
149  // FIXME - use subtarget debug flags
150  if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
151    setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
152
153  // We want to legalize GlobalAddress and ConstantPool nodes into the
154  // appropriate instructions to materialize the address.
155  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
156  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
157  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
158  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
159  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
160  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
161
162  // RET must be custom lowered, to meet ABI requirements
163  setOperationAction(ISD::RET               , MVT::Other, Custom);
164
165  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
166  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
167
168  // Use the default implementation.
169  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
170  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
171  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
172  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
173  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);
174  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
175  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
176
177  // We want to custom lower some of our intrinsics.
178  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
179
180  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
181    // They also have instructions for converting between i64 and fp.
182    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
183    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
184
185    // FIXME: disable this lowered code.  This generates 64-bit register values,
186    // and we don't model the fact that the top part is clobbered by calls.  We
187    // need to flag these together so that the value isn't live across a call.
188    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
189
190    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
191    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
192  } else {
193    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
194    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
195  }
196
197  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
198    // 64 bit PowerPC implementations can support i64 types directly
199    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
200    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
201    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
202  } else {
203    // 32 bit PowerPC wants to expand i64 shifts itself.
204    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
205    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
206    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
207  }
208
209  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
210    // First set operation action for all vector types to expand. Then we
211    // will selectively turn on ones that can be effectively codegen'd.
212    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
213         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
214      // add/sub are legal for all supported vector VT's.
215      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
216      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
217
218      // We promote all shuffles to v16i8.
219      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
220      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
221
222      // We promote all non-typed operations to v4i32.
223      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
224      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
225      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
226      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
227      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
228      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
229      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
230      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
231      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
232      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
233      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
234      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
235
236      // No other operations are legal.
237      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
238      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
239      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
240      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
241      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
242      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
243      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
244      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
245      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
246
247      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
248    }
249
250    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
251    // with merges, splats, etc.
252    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
253
254    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
255    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
256    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
257    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
258    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
259    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
260
261    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
262    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
263    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
264    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
265
266    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
267    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
268    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
269    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
270
271    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
272    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
273
274    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
275    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
276    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
277    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
278  }
279
280  setSetCCResultType(MVT::i32);
281  setShiftAmountType(MVT::i32);
282  setSetCCResultContents(ZeroOrOneSetCCResult);
283
284  if (TM.getSubtarget<PPCSubtarget>().isPPC64())
285    setStackPointerRegisterToSaveRestore(PPC::X1);
286  else
287    setStackPointerRegisterToSaveRestore(PPC::R1);
288
289  // We have target-specific dag combine patterns for the following nodes:
290  setTargetDAGCombine(ISD::SINT_TO_FP);
291  setTargetDAGCombine(ISD::STORE);
292  setTargetDAGCombine(ISD::BR_CC);
293  setTargetDAGCombine(ISD::BSWAP);
294
295  computeRegisterProperties();
296}
297
298const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
299  switch (Opcode) {
300  default: return 0;
301  case PPCISD::FSEL:          return "PPCISD::FSEL";
302  case PPCISD::FCFID:         return "PPCISD::FCFID";
303  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
304  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
305  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
306  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
307  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
308  case PPCISD::VPERM:         return "PPCISD::VPERM";
309  case PPCISD::Hi:            return "PPCISD::Hi";
310  case PPCISD::Lo:            return "PPCISD::Lo";
311  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
312  case PPCISD::SRL:           return "PPCISD::SRL";
313  case PPCISD::SRA:           return "PPCISD::SRA";
314  case PPCISD::SHL:           return "PPCISD::SHL";
315  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
316  case PPCISD::STD_32:        return "PPCISD::STD_32";
317  case PPCISD::CALL:          return "PPCISD::CALL";
318  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
319  case PPCISD::BCTRL:         return "PPCISD::BCTRL";
320  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
321  case PPCISD::MFCR:          return "PPCISD::MFCR";
322  case PPCISD::VCMP:          return "PPCISD::VCMP";
323  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
324  case PPCISD::LBRX:          return "PPCISD::LBRX";
325  case PPCISD::STBRX:         return "PPCISD::STBRX";
326  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
327  }
328}
329
330//===----------------------------------------------------------------------===//
331// Node matching predicates, for use by the tblgen matching code.
332//===----------------------------------------------------------------------===//
333
334/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
335static bool isFloatingPointZero(SDOperand Op) {
336  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
337    return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
338  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
339    // Maybe this has already been legalized into the constant pool?
340    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
341      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
342        return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
343  }
344  return false;
345}
346
347/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
348/// true if Op is undef or if it matches the specified value.
349static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
350  return Op.getOpcode() == ISD::UNDEF ||
351         cast<ConstantSDNode>(Op)->getValue() == Val;
352}
353
354/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
355/// VPKUHUM instruction.
356bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
357  if (!isUnary) {
358    for (unsigned i = 0; i != 16; ++i)
359      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
360        return false;
361  } else {
362    for (unsigned i = 0; i != 8; ++i)
363      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
364          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
365        return false;
366  }
367  return true;
368}
369
370/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
371/// VPKUWUM instruction.
372bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
373  if (!isUnary) {
374    for (unsigned i = 0; i != 16; i += 2)
375      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
376          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
377        return false;
378  } else {
379    for (unsigned i = 0; i != 8; i += 2)
380      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
381          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
382          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
383          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
384        return false;
385  }
386  return true;
387}
388
389/// isVMerge - Common function, used to match vmrg* shuffles.
390///
391static bool isVMerge(SDNode *N, unsigned UnitSize,
392                     unsigned LHSStart, unsigned RHSStart) {
393  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
394         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
395  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
396         "Unsupported merge size!");
397
398  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
399    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
400      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
401                             LHSStart+j+i*UnitSize) ||
402          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
403                             RHSStart+j+i*UnitSize))
404        return false;
405    }
406      return true;
407}
408
409/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
410/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
411bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
412  if (!isUnary)
413    return isVMerge(N, UnitSize, 8, 24);
414  return isVMerge(N, UnitSize, 8, 8);
415}
416
417/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
418/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
419bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
420  if (!isUnary)
421    return isVMerge(N, UnitSize, 0, 16);
422  return isVMerge(N, UnitSize, 0, 0);
423}
424
425
426/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
427/// amount, otherwise return -1.
428int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
429  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
430         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
431  // Find the first non-undef value in the shuffle mask.
432  unsigned i;
433  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
434    /*search*/;
435
436  if (i == 16) return -1;  // all undef.
437
438  // Otherwise, check to see if the rest of the elements are consequtively
439  // numbered from this value.
440  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
441  if (ShiftAmt < i) return -1;
442  ShiftAmt -= i;
443
444  if (!isUnary) {
445    // Check the rest of the elements to see if they are consequtive.
446    for (++i; i != 16; ++i)
447      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
448        return -1;
449  } else {
450    // Check the rest of the elements to see if they are consequtive.
451    for (++i; i != 16; ++i)
452      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
453        return -1;
454  }
455
456  return ShiftAmt;
457}
458
459/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
460/// specifies a splat of a single element that is suitable for input to
461/// VSPLTB/VSPLTH/VSPLTW.
462bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
463  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
464         N->getNumOperands() == 16 &&
465         (EltSize == 1 || EltSize == 2 || EltSize == 4));
466
467  // This is a splat operation if each element of the permute is the same, and
468  // if the value doesn't reference the second vector.
469  unsigned ElementBase = 0;
470  SDOperand Elt = N->getOperand(0);
471  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
472    ElementBase = EltV->getValue();
473  else
474    return false;   // FIXME: Handle UNDEF elements too!
475
476  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
477    return false;
478
479  // Check that they are consequtive.
480  for (unsigned i = 1; i != EltSize; ++i) {
481    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
482        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
483      return false;
484  }
485
486  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
487  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
488    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
489    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
490           "Invalid VECTOR_SHUFFLE mask!");
491    for (unsigned j = 0; j != EltSize; ++j)
492      if (N->getOperand(i+j) != N->getOperand(j))
493        return false;
494  }
495
496  return true;
497}
498
499/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
500/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
501unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
502  assert(isSplatShuffleMask(N, EltSize));
503  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
504}
505
506/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
507/// by using a vspltis[bhw] instruction of the specified element size, return
508/// the constant being splatted.  The ByteSize field indicates the number of
509/// bytes of each element [124] -> [bhw].
510SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
511  SDOperand OpVal(0, 0);
512
513  // If ByteSize of the splat is bigger than the element size of the
514  // build_vector, then we have a case where we are checking for a splat where
515  // multiple elements of the buildvector are folded together into a single
516  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
517  unsigned EltSize = 16/N->getNumOperands();
518  if (EltSize < ByteSize) {
519    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
520    SDOperand UniquedVals[4];
521    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
522
523    // See if all of the elements in the buildvector agree across.
524    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
525      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
526      // If the element isn't a constant, bail fully out.
527      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
528
529
530      if (UniquedVals[i&(Multiple-1)].Val == 0)
531        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
532      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
533        return SDOperand();  // no match.
534    }
535
536    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
537    // either constant or undef values that are identical for each chunk.  See
538    // if these chunks can form into a larger vspltis*.
539
540    // Check to see if all of the leading entries are either 0 or -1.  If
541    // neither, then this won't fit into the immediate field.
542    bool LeadingZero = true;
543    bool LeadingOnes = true;
544    for (unsigned i = 0; i != Multiple-1; ++i) {
545      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
546
547      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
548      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
549    }
550    // Finally, check the least significant entry.
551    if (LeadingZero) {
552      if (UniquedVals[Multiple-1].Val == 0)
553        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
554      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
555      if (Val < 16)
556        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
557    }
558    if (LeadingOnes) {
559      if (UniquedVals[Multiple-1].Val == 0)
560        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
561      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
562      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
563        return DAG.getTargetConstant(Val, MVT::i32);
564    }
565
566    return SDOperand();
567  }
568
569  // Check to see if this buildvec has a single non-undef value in its elements.
570  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
571    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
572    if (OpVal.Val == 0)
573      OpVal = N->getOperand(i);
574    else if (OpVal != N->getOperand(i))
575      return SDOperand();
576  }
577
578  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
579
580  unsigned ValSizeInBytes = 0;
581  uint64_t Value = 0;
582  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
583    Value = CN->getValue();
584    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
585  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
586    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
587    Value = FloatToBits(CN->getValue());
588    ValSizeInBytes = 4;
589  }
590
591  // If the splat value is larger than the element value, then we can never do
592  // this splat.  The only case that we could fit the replicated bits into our
593  // immediate field for would be zero, and we prefer to use vxor for it.
594  if (ValSizeInBytes < ByteSize) return SDOperand();
595
596  // If the element value is larger than the splat value, cut it in half and
597  // check to see if the two halves are equal.  Continue doing this until we
598  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
599  while (ValSizeInBytes > ByteSize) {
600    ValSizeInBytes >>= 1;
601
602    // If the top half equals the bottom half, we're still ok.
603    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
604         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
605      return SDOperand();
606  }
607
608  // Properly sign extend the value.
609  int ShAmt = (4-ByteSize)*8;
610  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
611
612  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
613  if (MaskVal == 0) return SDOperand();
614
615  // Finally, if this value fits in a 5 bit sext field, return it
616  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
617    return DAG.getTargetConstant(MaskVal, MVT::i32);
618  return SDOperand();
619}
620
621//===----------------------------------------------------------------------===//
622//  Addressing Mode Selection
623//===----------------------------------------------------------------------===//
624
625/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
626/// or 64-bit immediate, and if the value can be accurately represented as a
627/// sign extension from a 16-bit value.  If so, this returns true and the
628/// immediate.
629static bool isIntS16Immediate(SDNode *N, short &Imm) {
630  if (N->getOpcode() != ISD::Constant)
631    return false;
632
633  Imm = (short)cast<ConstantSDNode>(N)->getValue();
634  if (N->getValueType(0) == MVT::i32)
635    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
636  else
637    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
638}
639static bool isIntS16Immediate(SDOperand Op, short &Imm) {
640  return isIntS16Immediate(Op.Val, Imm);
641}
642
643
644/// SelectAddressRegReg - Given the specified addressed, check to see if it
645/// can be represented as an indexed [r+r] operation.  Returns false if it
646/// can be more efficiently represented with [r+imm].
647bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
648                                            SDOperand &Index,
649                                            SelectionDAG &DAG) {
650  short imm = 0;
651  if (N.getOpcode() == ISD::ADD) {
652    if (isIntS16Immediate(N.getOperand(1), imm))
653      return false;    // r+i
654    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
655      return false;    // r+i
656
657    Base = N.getOperand(0);
658    Index = N.getOperand(1);
659    return true;
660  } else if (N.getOpcode() == ISD::OR) {
661    if (isIntS16Immediate(N.getOperand(1), imm))
662      return false;    // r+i can fold it if we can.
663
664    // If this is an or of disjoint bitfields, we can codegen this as an add
665    // (for better address arithmetic) if the LHS and RHS of the OR are provably
666    // disjoint.
667    uint64_t LHSKnownZero, LHSKnownOne;
668    uint64_t RHSKnownZero, RHSKnownOne;
669    ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
670
671    if (LHSKnownZero) {
672      ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
673      // If all of the bits are known zero on the LHS or RHS, the add won't
674      // carry.
675      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
676        Base = N.getOperand(0);
677        Index = N.getOperand(1);
678        return true;
679      }
680    }
681  }
682
683  return false;
684}
685
686/// Returns true if the address N can be represented by a base register plus
687/// a signed 16-bit displacement [r+imm], and if it is not better
688/// represented as reg+reg.
689bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
690                                            SDOperand &Base, SelectionDAG &DAG){
691  // If this can be more profitably realized as r+r, fail.
692  if (SelectAddressRegReg(N, Disp, Base, DAG))
693    return false;
694
695  if (N.getOpcode() == ISD::ADD) {
696    short imm = 0;
697    if (isIntS16Immediate(N.getOperand(1), imm)) {
698      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
699      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
700        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
701      } else {
702        Base = N.getOperand(0);
703      }
704      return true; // [r+i]
705    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
706      // Match LOAD (ADD (X, Lo(G))).
707      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
708             && "Cannot handle constant offsets yet!");
709      Disp = N.getOperand(1).getOperand(0);  // The global address.
710      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
711             Disp.getOpcode() == ISD::TargetConstantPool ||
712             Disp.getOpcode() == ISD::TargetJumpTable);
713      Base = N.getOperand(0);
714      return true;  // [&g+r]
715    }
716  } else if (N.getOpcode() == ISD::OR) {
717    short imm = 0;
718    if (isIntS16Immediate(N.getOperand(1), imm)) {
719      // If this is an or of disjoint bitfields, we can codegen this as an add
720      // (for better address arithmetic) if the LHS and RHS of the OR are
721      // provably disjoint.
722      uint64_t LHSKnownZero, LHSKnownOne;
723      ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
724      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
725        // If all of the bits are known zero on the LHS or RHS, the add won't
726        // carry.
727        Base = N.getOperand(0);
728        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
729        return true;
730      }
731    }
732  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
733    // Loading from a constant address.
734
735    // If this address fits entirely in a 16-bit sext immediate field, codegen
736    // this as "d, 0"
737    short Imm;
738    if (isIntS16Immediate(CN, Imm)) {
739      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
740      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
741      return true;
742    }
743
744    // FIXME: Handle small sext constant offsets in PPC64 mode also!
745    if (CN->getValueType(0) == MVT::i32) {
746      int Addr = (int)CN->getValue();
747
748      // Otherwise, break this down into an LIS + disp.
749      Disp =  DAG.getTargetConstant((short)Addr, MVT::i32);
750      Base = DAG.getConstant(Addr - (signed short)Addr, MVT::i32);
751      return true;
752    }
753  }
754
755  Disp = DAG.getTargetConstant(0, getPointerTy());
756  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
757    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
758  else
759    Base = N;
760  return true;      // [r+0]
761}
762
763/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
764/// represented as an indexed [r+r] operation.
765bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
766                                                SDOperand &Index,
767                                                SelectionDAG &DAG) {
768  // Check to see if we can easily represent this as an [r+r] address.  This
769  // will fail if it thinks that the address is more profitably represented as
770  // reg+imm, e.g. where imm = 0.
771  if (SelectAddressRegReg(N, Base, Index, DAG))
772    return true;
773
774  // If the operand is an addition, always emit this as [r+r], since this is
775  // better (for code size, and execution, as the memop does the add for free)
776  // than emitting an explicit add.
777  if (N.getOpcode() == ISD::ADD) {
778    Base = N.getOperand(0);
779    Index = N.getOperand(1);
780    return true;
781  }
782
783  // Otherwise, do it the hard way, using R0 as the base register.
784  Base = DAG.getRegister(PPC::R0, N.getValueType());
785  Index = N;
786  return true;
787}
788
789/// SelectAddressRegImmShift - Returns true if the address N can be
790/// represented by a base register plus a signed 14-bit displacement
791/// [r+imm*4].  Suitable for use by STD and friends.
792bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
793                                                 SDOperand &Base,
794                                                 SelectionDAG &DAG) {
795  // If this can be more profitably realized as r+r, fail.
796  if (SelectAddressRegReg(N, Disp, Base, DAG))
797    return false;
798
799  if (N.getOpcode() == ISD::ADD) {
800    short imm = 0;
801    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
802      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
803      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
804        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
805      } else {
806        Base = N.getOperand(0);
807      }
808      return true; // [r+i]
809    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
810      // Match LOAD (ADD (X, Lo(G))).
811      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
812             && "Cannot handle constant offsets yet!");
813      Disp = N.getOperand(1).getOperand(0);  // The global address.
814      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
815             Disp.getOpcode() == ISD::TargetConstantPool ||
816             Disp.getOpcode() == ISD::TargetJumpTable);
817      Base = N.getOperand(0);
818      return true;  // [&g+r]
819    }
820  } else if (N.getOpcode() == ISD::OR) {
821    short imm = 0;
822    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
823      // If this is an or of disjoint bitfields, we can codegen this as an add
824      // (for better address arithmetic) if the LHS and RHS of the OR are
825      // provably disjoint.
826      uint64_t LHSKnownZero, LHSKnownOne;
827      ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
828      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
829        // If all of the bits are known zero on the LHS or RHS, the add won't
830        // carry.
831        Base = N.getOperand(0);
832        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
833        return true;
834      }
835    }
836  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
837    // Loading from a constant address.
838
839    // If this address fits entirely in a 14-bit sext immediate field, codegen
840    // this as "d, 0"
841    short Imm;
842    if (isIntS16Immediate(CN, Imm)) {
843      Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
844      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
845      return true;
846    }
847
848    // FIXME: Handle small sext constant offsets in PPC64 mode also!
849    if (CN->getValueType(0) == MVT::i32) {
850      int Addr = (int)CN->getValue();
851
852      // Otherwise, break this down into an LIS + disp.
853      Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
854      Base = DAG.getConstant(Addr - (signed short)Addr, MVT::i32);
855      return true;
856    }
857  }
858
859  Disp = DAG.getTargetConstant(0, getPointerTy());
860  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
861    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
862  else
863    Base = N;
864  return true;      // [r+0]
865}
866
867
868/// getPreIndexedAddressParts - returns true by value, base pointer and
869/// offset pointer and addressing mode by reference if the node's address
870/// can be legally represented as pre-indexed load / store address.
871bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
872                                                  SDOperand &Offset,
873                                                  ISD::MemIndexedMode &AM,
874                                                  SelectionDAG &DAG) {
875  // Disabled by default for now.
876  if (!EnablePPCPreinc) return false;
877
878  SDOperand Ptr;
879  MVT::ValueType VT;
880  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
881    Ptr = LD->getBasePtr();
882    VT = LD->getLoadedVT();
883
884  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
885    ST = ST;
886    Ptr = ST->getBasePtr();
887    VT  = ST->getStoredVT();
888  } else
889    return false;
890
891  // PowerPC doesn't have preinc load/store instructions for vectors.
892  if (MVT::isVector(VT))
893    return false;
894
895  // TODO: Check reg+reg first.
896
897  // LDU/STU use reg+imm*4, others use reg+imm.
898  if (VT != MVT::i64) {
899    // reg + imm
900    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
901      return false;
902  } else {
903    // reg + imm * 4.
904    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
905      return false;
906  }
907
908  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
909    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
910    // sext i32 to i64 when addr mode is r+i.
911    if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
912        LD->getExtensionType() == ISD::SEXTLOAD &&
913        isa<ConstantSDNode>(Offset))
914      return false;
915  }
916
917  AM = ISD::PRE_INC;
918  return true;
919}
920
921//===----------------------------------------------------------------------===//
922//  LowerOperation implementation
923//===----------------------------------------------------------------------===//
924
925static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
926  MVT::ValueType PtrVT = Op.getValueType();
927  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
928  Constant *C = CP->getConstVal();
929  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
930  SDOperand Zero = DAG.getConstant(0, PtrVT);
931
932  const TargetMachine &TM = DAG.getTarget();
933
934  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
935  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
936
937  // If this is a non-darwin platform, we don't support non-static relo models
938  // yet.
939  if (TM.getRelocationModel() == Reloc::Static ||
940      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
941    // Generate non-pic code that has direct accesses to the constant pool.
942    // The address of the global is just (hi(&g)+lo(&g)).
943    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
944  }
945
946  if (TM.getRelocationModel() == Reloc::PIC_) {
947    // With PIC, the first instruction is actually "GR+hi(&G)".
948    Hi = DAG.getNode(ISD::ADD, PtrVT,
949                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
950  }
951
952  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
953  return Lo;
954}
955
956static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
957  MVT::ValueType PtrVT = Op.getValueType();
958  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
959  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
960  SDOperand Zero = DAG.getConstant(0, PtrVT);
961
962  const TargetMachine &TM = DAG.getTarget();
963
964  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
965  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
966
967  // If this is a non-darwin platform, we don't support non-static relo models
968  // yet.
969  if (TM.getRelocationModel() == Reloc::Static ||
970      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
971    // Generate non-pic code that has direct accesses to the constant pool.
972    // The address of the global is just (hi(&g)+lo(&g)).
973    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
974  }
975
976  if (TM.getRelocationModel() == Reloc::PIC_) {
977    // With PIC, the first instruction is actually "GR+hi(&G)".
978    Hi = DAG.getNode(ISD::ADD, PtrVT,
979                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
980  }
981
982  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
983  return Lo;
984}
985
986static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
987  MVT::ValueType PtrVT = Op.getValueType();
988  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
989  GlobalValue *GV = GSDN->getGlobal();
990  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
991  SDOperand Zero = DAG.getConstant(0, PtrVT);
992
993  const TargetMachine &TM = DAG.getTarget();
994
995  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
996  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
997
998  // If this is a non-darwin platform, we don't support non-static relo models
999  // yet.
1000  if (TM.getRelocationModel() == Reloc::Static ||
1001      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1002    // Generate non-pic code that has direct accesses to globals.
1003    // The address of the global is just (hi(&g)+lo(&g)).
1004    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1005  }
1006
1007  if (TM.getRelocationModel() == Reloc::PIC_) {
1008    // With PIC, the first instruction is actually "GR+hi(&G)".
1009    Hi = DAG.getNode(ISD::ADD, PtrVT,
1010                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1011  }
1012
1013  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1014
1015  if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
1016      (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
1017    return Lo;
1018
1019  // If the global is weak or external, we have to go through the lazy
1020  // resolution stub.
1021  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1022}
1023
1024static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1025  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1026
1027  // If we're comparing for equality to zero, expose the fact that this is
1028  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1029  // fold the new nodes.
1030  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1031    if (C->isNullValue() && CC == ISD::SETEQ) {
1032      MVT::ValueType VT = Op.getOperand(0).getValueType();
1033      SDOperand Zext = Op.getOperand(0);
1034      if (VT < MVT::i32) {
1035        VT = MVT::i32;
1036        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1037      }
1038      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1039      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1040      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1041                                  DAG.getConstant(Log2b, MVT::i32));
1042      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1043    }
1044    // Leave comparisons against 0 and -1 alone for now, since they're usually
1045    // optimized.  FIXME: revisit this when we can custom lower all setcc
1046    // optimizations.
1047    if (C->isAllOnesValue() || C->isNullValue())
1048      return SDOperand();
1049  }
1050
1051  // If we have an integer seteq/setne, turn it into a compare against zero
1052  // by xor'ing the rhs with the lhs, which is faster than setting a
1053  // condition register, reading it back out, and masking the correct bit.  The
1054  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1055  // the result to other bit-twiddling opportunities.
1056  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1057  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1058    MVT::ValueType VT = Op.getValueType();
1059    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1060                                Op.getOperand(1));
1061    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1062  }
1063  return SDOperand();
1064}
1065
1066static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1067                              unsigned VarArgsFrameIndex) {
1068  // vastart just stores the address of the VarArgsFrameIndex slot into the
1069  // memory location argument.
1070  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1071  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1072  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1073  return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1074                      SV->getOffset());
1075}
1076
1077static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1078                                       int &VarArgsFrameIndex) {
1079  // TODO: add description of PPC stack frame format, or at least some docs.
1080  //
1081  MachineFunction &MF = DAG.getMachineFunction();
1082  MachineFrameInfo *MFI = MF.getFrameInfo();
1083  SSARegMap *RegMap = MF.getSSARegMap();
1084  SmallVector<SDOperand, 8> ArgValues;
1085  SDOperand Root = Op.getOperand(0);
1086
1087  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1088  bool isPPC64 = PtrVT == MVT::i64;
1089
1090  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64);
1091
1092  static const unsigned GPR_32[] = {           // 32-bit registers.
1093    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1094    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1095  };
1096  static const unsigned GPR_64[] = {           // 64-bit registers.
1097    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1098    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1099  };
1100  static const unsigned FPR[] = {
1101    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1102    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1103  };
1104  static const unsigned VR[] = {
1105    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1106    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1107  };
1108
1109  const unsigned Num_GPR_Regs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1110  const unsigned Num_FPR_Regs = sizeof(FPR)/sizeof(FPR[0]);
1111  const unsigned Num_VR_Regs  = sizeof( VR)/sizeof( VR[0]);
1112
1113  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1114
1115  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1116
1117  // Add DAG nodes to load the arguments or copy them out of registers.  On
1118  // entry to a function on PPC, the arguments start after the linkage area,
1119  // although the first ones are often in registers.
1120  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1121    SDOperand ArgVal;
1122    bool needsLoad = false;
1123    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1124    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1125
1126    unsigned CurArgOffset = ArgOffset;
1127    switch (ObjectVT) {
1128    default: assert(0 && "Unhandled argument type!");
1129    case MVT::i32:
1130      // All int arguments reserve stack space.
1131      ArgOffset += isPPC64 ? 8 : 4;
1132
1133      if (GPR_idx != Num_GPR_Regs) {
1134        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1135        MF.addLiveIn(GPR[GPR_idx], VReg);
1136        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1137        ++GPR_idx;
1138      } else {
1139        needsLoad = true;
1140      }
1141      break;
1142    case MVT::i64:  // PPC64
1143      // All int arguments reserve stack space.
1144      ArgOffset += 8;
1145
1146      if (GPR_idx != Num_GPR_Regs) {
1147        unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1148        MF.addLiveIn(GPR[GPR_idx], VReg);
1149        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1150        ++GPR_idx;
1151      } else {
1152        needsLoad = true;
1153      }
1154      break;
1155    case MVT::f32:
1156    case MVT::f64:
1157      // All FP arguments reserve stack space.
1158      ArgOffset += isPPC64 ? 8 : ObjSize;
1159
1160      // Every 4 bytes of argument space consumes one of the GPRs available for
1161      // argument passing.
1162      if (GPR_idx != Num_GPR_Regs) {
1163        ++GPR_idx;
1164        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1165          ++GPR_idx;
1166      }
1167      if (FPR_idx != Num_FPR_Regs) {
1168        unsigned VReg;
1169        if (ObjectVT == MVT::f32)
1170          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
1171        else
1172          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1173        MF.addLiveIn(FPR[FPR_idx], VReg);
1174        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1175        ++FPR_idx;
1176      } else {
1177        needsLoad = true;
1178      }
1179      break;
1180    case MVT::v4f32:
1181    case MVT::v4i32:
1182    case MVT::v8i16:
1183    case MVT::v16i8:
1184      // Note that vector arguments in registers don't reserve stack space.
1185      if (VR_idx != Num_VR_Regs) {
1186        unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
1187        MF.addLiveIn(VR[VR_idx], VReg);
1188        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1189        ++VR_idx;
1190      } else {
1191        // This should be simple, but requires getting 16-byte aligned stack
1192        // values.
1193        assert(0 && "Loading VR argument not implemented yet!");
1194        needsLoad = true;
1195      }
1196      break;
1197    }
1198
1199    // We need to load the argument to a virtual register if we determined above
1200    // that we ran out of physical registers of the appropriate type
1201    if (needsLoad) {
1202      // If the argument is actually used, emit a load from the right stack
1203      // slot.
1204      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1205        int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1206        SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1207        ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1208      } else {
1209        // Don't emit a dead load.
1210        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1211      }
1212    }
1213
1214    ArgValues.push_back(ArgVal);
1215  }
1216
1217  // If the function takes variable number of arguments, make a frame index for
1218  // the start of the first vararg value... for expansion of llvm.va_start.
1219  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1220  if (isVarArg) {
1221    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1222                                               ArgOffset);
1223    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1224    // If this function is vararg, store any remaining integer argument regs
1225    // to their spots on the stack so that they may be loaded by deferencing the
1226    // result of va_next.
1227    SmallVector<SDOperand, 8> MemOps;
1228    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1229      unsigned VReg;
1230      if (isPPC64)
1231        VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1232      else
1233        VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1234
1235      MF.addLiveIn(GPR[GPR_idx], VReg);
1236      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1237      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1238      MemOps.push_back(Store);
1239      // Increment the address by four for the next argument to store
1240      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1241      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1242    }
1243    if (!MemOps.empty())
1244      Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1245  }
1246
1247  ArgValues.push_back(Root);
1248
1249  // Return the new list of results.
1250  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1251                                    Op.Val->value_end());
1252  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1253}
1254
1255/// isCallCompatibleAddress - Return the immediate to use if the specified
1256/// 32-bit value is representable in the immediate field of a BxA instruction.
1257static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1258  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1259  if (!C) return 0;
1260
1261  int Addr = C->getValue();
1262  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1263      (Addr << 6 >> 6) != Addr)
1264    return 0;  // Top 6 bits have to be sext of immediate.
1265
1266  return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
1267}
1268
1269
1270static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) {
1271  SDOperand Chain = Op.getOperand(0);
1272  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1273  SDOperand Callee    = Op.getOperand(4);
1274  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1275
1276  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1277  bool isPPC64 = PtrVT == MVT::i64;
1278  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1279
1280  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1281  // SelectExpr to use to put the arguments in the appropriate registers.
1282  std::vector<SDOperand> args_to_use;
1283
1284  // Count how many bytes are to be pushed on the stack, including the linkage
1285  // area, and parameter passing area.  We start with 24/48 bytes, which is
1286  // prereserved space for [SP][CR][LR][3 x unused].
1287  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64);
1288
1289  // Add up all the space actually used.
1290  for (unsigned i = 0; i != NumOps; ++i)
1291    NumBytes += MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1292
1293  // The prolog code of the callee may store up to 8 GPR argument registers to
1294  // the stack, allowing va_start to index over them in memory if its varargs.
1295  // Because we cannot tell if this is needed on the caller side, we have to
1296  // conservatively assume that it is needed.  As such, make sure we have at
1297  // least enough stack space for the caller to store the 8 GPRs.
1298  NumBytes = std::max(NumBytes, PPCFrameInfo::getMinCallFrameSize(isPPC64));
1299
1300  // Adjust the stack pointer for the new arguments...
1301  // These operations are automatically eliminated by the prolog/epilog pass
1302  Chain = DAG.getCALLSEQ_START(Chain,
1303                               DAG.getConstant(NumBytes, PtrVT));
1304
1305  // Set up a copy of the stack pointer for use loading and storing any
1306  // arguments that may not fit in the registers available for argument
1307  // passing.
1308  SDOperand StackPtr;
1309  if (isPPC64)
1310    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1311  else
1312    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1313
1314  // Figure out which arguments are going to go in registers, and which in
1315  // memory.  Also, if this is a vararg function, floating point operations
1316  // must be stored to our stack, and loaded into integer regs as well, if
1317  // any integer regs are available for argument passing.
1318  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64);
1319  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1320
1321  static const unsigned GPR_32[] = {           // 32-bit registers.
1322    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1323    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1324  };
1325  static const unsigned GPR_64[] = {           // 64-bit registers.
1326    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1327    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1328  };
1329  static const unsigned FPR[] = {
1330    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1331    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1332  };
1333  static const unsigned VR[] = {
1334    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1335    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1336  };
1337  const unsigned NumGPRs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1338  const unsigned NumFPRs = sizeof(FPR)/sizeof(FPR[0]);
1339  const unsigned NumVRs  = sizeof( VR)/sizeof( VR[0]);
1340
1341  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1342
1343  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1344  SmallVector<SDOperand, 8> MemOpChains;
1345  for (unsigned i = 0; i != NumOps; ++i) {
1346    SDOperand Arg = Op.getOperand(5+2*i);
1347
1348    // PtrOff will be used to store the current argument to the stack if a
1349    // register cannot be found for it.
1350    SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1351    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1352
1353    // On PPC64, promote integers to 64-bit values.
1354    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1355      unsigned ExtOp = ISD::ZERO_EXTEND;
1356      if (cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue())
1357        ExtOp = ISD::SIGN_EXTEND;
1358      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1359    }
1360
1361    switch (Arg.getValueType()) {
1362    default: assert(0 && "Unexpected ValueType for argument!");
1363    case MVT::i32:
1364    case MVT::i64:
1365      if (GPR_idx != NumGPRs) {
1366        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1367      } else {
1368        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1369      }
1370      ArgOffset += PtrByteSize;
1371      break;
1372    case MVT::f32:
1373    case MVT::f64:
1374      if (FPR_idx != NumFPRs) {
1375        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1376
1377        if (isVarArg) {
1378          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1379          MemOpChains.push_back(Store);
1380
1381          // Float varargs are always shadowed in available integer registers
1382          if (GPR_idx != NumGPRs) {
1383            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1384            MemOpChains.push_back(Load.getValue(1));
1385            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1386          }
1387          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64) {
1388            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1389            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1390            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1391            MemOpChains.push_back(Load.getValue(1));
1392            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1393          }
1394        } else {
1395          // If we have any FPRs remaining, we may also have GPRs remaining.
1396          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1397          // GPRs.
1398          if (GPR_idx != NumGPRs)
1399            ++GPR_idx;
1400          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64)
1401            ++GPR_idx;
1402        }
1403      } else {
1404        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1405      }
1406      if (isPPC64)
1407        ArgOffset += 8;
1408      else
1409        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1410      break;
1411    case MVT::v4f32:
1412    case MVT::v4i32:
1413    case MVT::v8i16:
1414    case MVT::v16i8:
1415      assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1416      assert(VR_idx != NumVRs &&
1417             "Don't support passing more than 12 vector args yet!");
1418      RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1419      break;
1420    }
1421  }
1422  if (!MemOpChains.empty())
1423    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1424                        &MemOpChains[0], MemOpChains.size());
1425
1426  // Build a sequence of copy-to-reg nodes chained together with token chain
1427  // and flag operands which copy the outgoing args into the appropriate regs.
1428  SDOperand InFlag;
1429  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1430    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1431                             InFlag);
1432    InFlag = Chain.getValue(1);
1433  }
1434
1435  std::vector<MVT::ValueType> NodeTys;
1436  NodeTys.push_back(MVT::Other);   // Returns a chain
1437  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1438
1439  SmallVector<SDOperand, 8> Ops;
1440  unsigned CallOpc = PPCISD::CALL;
1441
1442  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1443  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1444  // node so that legalize doesn't hack it.
1445  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1446    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1447  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1448    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1449  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1450    // If this is an absolute destination address, use the munged value.
1451    Callee = SDOperand(Dest, 0);
1452  else {
1453    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
1454    // to do the call, we can't use PPCISD::CALL.
1455    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1456    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1457    InFlag = Chain.getValue(1);
1458
1459    // Copy the callee address into R12 on darwin.
1460    Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1461    InFlag = Chain.getValue(1);
1462
1463    NodeTys.clear();
1464    NodeTys.push_back(MVT::Other);
1465    NodeTys.push_back(MVT::Flag);
1466    Ops.push_back(Chain);
1467    CallOpc = PPCISD::BCTRL;
1468    Callee.Val = 0;
1469  }
1470
1471  // If this is a direct call, pass the chain and the callee.
1472  if (Callee.Val) {
1473    Ops.push_back(Chain);
1474    Ops.push_back(Callee);
1475  }
1476
1477  // Add argument registers to the end of the list so that they are known live
1478  // into the call.
1479  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1480    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1481                                  RegsToPass[i].second.getValueType()));
1482
1483  if (InFlag.Val)
1484    Ops.push_back(InFlag);
1485  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1486  InFlag = Chain.getValue(1);
1487
1488  SDOperand ResultVals[3];
1489  unsigned NumResults = 0;
1490  NodeTys.clear();
1491
1492  // If the call has results, copy the values out of the ret val registers.
1493  switch (Op.Val->getValueType(0)) {
1494  default: assert(0 && "Unexpected ret value!");
1495  case MVT::Other: break;
1496  case MVT::i32:
1497    if (Op.Val->getValueType(1) == MVT::i32) {
1498      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32, InFlag).getValue(1);
1499      ResultVals[0] = Chain.getValue(0);
1500      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32,
1501                                 Chain.getValue(2)).getValue(1);
1502      ResultVals[1] = Chain.getValue(0);
1503      NumResults = 2;
1504      NodeTys.push_back(MVT::i32);
1505    } else {
1506      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1507      ResultVals[0] = Chain.getValue(0);
1508      NumResults = 1;
1509    }
1510    NodeTys.push_back(MVT::i32);
1511    break;
1512  case MVT::i64:
1513    Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1514    ResultVals[0] = Chain.getValue(0);
1515    NumResults = 1;
1516    NodeTys.push_back(MVT::i64);
1517    break;
1518  case MVT::f32:
1519  case MVT::f64:
1520    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1521                               InFlag).getValue(1);
1522    ResultVals[0] = Chain.getValue(0);
1523    NumResults = 1;
1524    NodeTys.push_back(Op.Val->getValueType(0));
1525    break;
1526  case MVT::v4f32:
1527  case MVT::v4i32:
1528  case MVT::v8i16:
1529  case MVT::v16i8:
1530    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1531                                   InFlag).getValue(1);
1532    ResultVals[0] = Chain.getValue(0);
1533    NumResults = 1;
1534    NodeTys.push_back(Op.Val->getValueType(0));
1535    break;
1536  }
1537
1538  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1539                      DAG.getConstant(NumBytes, PtrVT));
1540  NodeTys.push_back(MVT::Other);
1541
1542  // If the function returns void, just return the chain.
1543  if (NumResults == 0)
1544    return Chain;
1545
1546  // Otherwise, merge everything together with a MERGE_VALUES node.
1547  ResultVals[NumResults++] = Chain;
1548  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1549                              ResultVals, NumResults);
1550  return Res.getValue(Op.ResNo);
1551}
1552
1553static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
1554  SDOperand Copy;
1555  switch(Op.getNumOperands()) {
1556  default:
1557    assert(0 && "Do not know how to return this many arguments!");
1558    abort();
1559  case 1:
1560    return SDOperand(); // ret void is legal
1561  case 3: {
1562    MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
1563    unsigned ArgReg;
1564    if (ArgVT == MVT::i32) {
1565      ArgReg = PPC::R3;
1566    } else if (ArgVT == MVT::i64) {
1567      ArgReg = PPC::X3;
1568    } else if (MVT::isVector(ArgVT)) {
1569      ArgReg = PPC::V2;
1570    } else {
1571      assert(MVT::isFloatingPoint(ArgVT));
1572      ArgReg = PPC::F1;
1573    }
1574
1575    Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
1576                            SDOperand());
1577
1578    // If we haven't noted the R3/F1 are live out, do so now.
1579    if (DAG.getMachineFunction().liveout_empty())
1580      DAG.getMachineFunction().addLiveOut(ArgReg);
1581    break;
1582  }
1583  case 5:
1584    Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(3),
1585                            SDOperand());
1586    Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
1587    // If we haven't noted the R3+R4 are live out, do so now.
1588    if (DAG.getMachineFunction().liveout_empty()) {
1589      DAG.getMachineFunction().addLiveOut(PPC::R3);
1590      DAG.getMachineFunction().addLiveOut(PPC::R4);
1591    }
1592    break;
1593  }
1594  return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
1595}
1596
1597static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1598                                         const PPCSubtarget &Subtarget) {
1599  MachineFunction &MF = DAG.getMachineFunction();
1600  bool IsPPC64 = Subtarget.isPPC64();
1601
1602  // Get current frame pointer save index.  The users of this index will be
1603  // primarily DYNALLOC instructions.
1604  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1605  int FPSI = FI->getFramePointerSaveIndex();
1606
1607  // If the frame pointer save index hasn't been defined yet.
1608  if (!FPSI) {
1609    // Find out what the fix offset of the frame pointer save area.
1610    int Offset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64);
1611    // Allocate the frame index for frame pointer save area.
1612    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, Offset);
1613    // Save the result.
1614    FI->setFramePointerSaveIndex(FPSI);
1615  }
1616
1617  // Get the inputs.
1618  SDOperand Chain = Op.getOperand(0);
1619  SDOperand Size  = Op.getOperand(1);
1620
1621  // Get the corect type for pointers.
1622  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1623  // Negate the size.
1624  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1625                                  DAG.getConstant(0, PtrVT), Size);
1626  // Construct a node for the frame pointer save index.
1627  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1628  // Build a DYNALLOC node.
1629  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1630  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1631  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1632}
1633
1634
1635/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1636/// possible.
1637static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1638  // Not FP? Not a fsel.
1639  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1640      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1641    return SDOperand();
1642
1643  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1644
1645  // Cannot handle SETEQ/SETNE.
1646  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
1647
1648  MVT::ValueType ResVT = Op.getValueType();
1649  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
1650  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1651  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
1652
1653  // If the RHS of the comparison is a 0.0, we don't need to do the
1654  // subtraction at all.
1655  if (isFloatingPointZero(RHS))
1656    switch (CC) {
1657    default: break;       // SETUO etc aren't handled by fsel.
1658    case ISD::SETULT:
1659    case ISD::SETOLT:
1660    case ISD::SETLT:
1661      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1662    case ISD::SETUGE:
1663    case ISD::SETOGE:
1664    case ISD::SETGE:
1665      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1666        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1667      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
1668    case ISD::SETUGT:
1669    case ISD::SETOGT:
1670    case ISD::SETGT:
1671      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1672    case ISD::SETULE:
1673    case ISD::SETOLE:
1674    case ISD::SETLE:
1675      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1676        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1677      return DAG.getNode(PPCISD::FSEL, ResVT,
1678                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
1679    }
1680
1681      SDOperand Cmp;
1682  switch (CC) {
1683  default: break;       // SETUO etc aren't handled by fsel.
1684  case ISD::SETULT:
1685  case ISD::SETOLT:
1686  case ISD::SETLT:
1687    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1688    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1689      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1690      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1691  case ISD::SETUGE:
1692  case ISD::SETOGE:
1693  case ISD::SETGE:
1694    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1695    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1696      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1697      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1698  case ISD::SETUGT:
1699  case ISD::SETOGT:
1700  case ISD::SETGT:
1701    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1702    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1703      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1704      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1705  case ISD::SETULE:
1706  case ISD::SETOLE:
1707  case ISD::SETLE:
1708    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1709    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1710      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1711      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1712  }
1713  return SDOperand();
1714}
1715
1716static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
1717  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
1718  SDOperand Src = Op.getOperand(0);
1719  if (Src.getValueType() == MVT::f32)
1720    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
1721
1722  SDOperand Tmp;
1723  switch (Op.getValueType()) {
1724  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
1725  case MVT::i32:
1726    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
1727    break;
1728  case MVT::i64:
1729    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
1730    break;
1731  }
1732
1733  // Convert the FP value to an int value through memory.
1734  SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
1735  if (Op.getValueType() == MVT::i32)
1736    Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
1737  return Bits;
1738}
1739
1740static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
1741  if (Op.getOperand(0).getValueType() == MVT::i64) {
1742    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
1743    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
1744    if (Op.getValueType() == MVT::f32)
1745      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1746    return FP;
1747  }
1748
1749  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
1750         "Unhandled SINT_TO_FP type in custom expander!");
1751  // Since we only generate this in 64-bit mode, we can take advantage of
1752  // 64-bit registers.  In particular, sign extend the input value into the
1753  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
1754  // then lfd it and fcfid it.
1755  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1756  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
1757  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1758  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
1759
1760  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
1761                                Op.getOperand(0));
1762
1763  // STD the extended value into the stack slot.
1764  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
1765                                DAG.getEntryNode(), Ext64, FIdx,
1766                                DAG.getSrcValue(NULL));
1767  // Load the value as a double.
1768  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
1769
1770  // FCFID it and return it.
1771  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
1772  if (Op.getValueType() == MVT::f32)
1773    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1774  return FP;
1775}
1776
1777static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
1778  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1779         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1780
1781  // Expand into a bunch of logical ops.  Note that these ops
1782  // depend on the PPC behavior for oversized shift amounts.
1783  SDOperand Lo = Op.getOperand(0);
1784  SDOperand Hi = Op.getOperand(1);
1785  SDOperand Amt = Op.getOperand(2);
1786
1787  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1788                               DAG.getConstant(32, MVT::i32), Amt);
1789  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
1790  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
1791  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1792  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1793                               DAG.getConstant(-32U, MVT::i32));
1794  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
1795  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1796  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
1797  SDOperand OutOps[] = { OutLo, OutHi };
1798  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1799                     OutOps, 2);
1800}
1801
1802static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
1803  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1804         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
1805
1806  // Otherwise, expand into a bunch of logical ops.  Note that these ops
1807  // depend on the PPC behavior for oversized shift amounts.
1808  SDOperand Lo = Op.getOperand(0);
1809  SDOperand Hi = Op.getOperand(1);
1810  SDOperand Amt = Op.getOperand(2);
1811
1812  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1813                               DAG.getConstant(32, MVT::i32), Amt);
1814  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1815  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1816  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1817  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1818                               DAG.getConstant(-32U, MVT::i32));
1819  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
1820  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1821  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
1822  SDOperand OutOps[] = { OutLo, OutHi };
1823  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1824                     OutOps, 2);
1825}
1826
1827static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
1828  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1829         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
1830
1831  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
1832  SDOperand Lo = Op.getOperand(0);
1833  SDOperand Hi = Op.getOperand(1);
1834  SDOperand Amt = Op.getOperand(2);
1835
1836  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1837                               DAG.getConstant(32, MVT::i32), Amt);
1838  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1839  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1840  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1841  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1842                               DAG.getConstant(-32U, MVT::i32));
1843  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
1844  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
1845  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
1846                                    Tmp4, Tmp6, ISD::SETLE);
1847  SDOperand OutOps[] = { OutLo, OutHi };
1848  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1849                     OutOps, 2);
1850}
1851
1852//===----------------------------------------------------------------------===//
1853// Vector related lowering.
1854//
1855
1856// If this is a vector of constants or undefs, get the bits.  A bit in
1857// UndefBits is set if the corresponding element of the vector is an
1858// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
1859// zero.   Return true if this is not an array of constants, false if it is.
1860//
1861static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
1862                                       uint64_t UndefBits[2]) {
1863  // Start with zero'd results.
1864  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
1865
1866  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
1867  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
1868    SDOperand OpVal = BV->getOperand(i);
1869
1870    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
1871    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
1872
1873    uint64_t EltBits = 0;
1874    if (OpVal.getOpcode() == ISD::UNDEF) {
1875      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
1876      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
1877      continue;
1878    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1879      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
1880    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1881      assert(CN->getValueType(0) == MVT::f32 &&
1882             "Only one legal FP vector type!");
1883      EltBits = FloatToBits(CN->getValue());
1884    } else {
1885      // Nonconstant element.
1886      return true;
1887    }
1888
1889    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
1890  }
1891
1892  //printf("%llx %llx  %llx %llx\n",
1893  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
1894  return false;
1895}
1896
1897// If this is a splat (repetition) of a value across the whole vector, return
1898// the smallest size that splats it.  For example, "0x01010101010101..." is a
1899// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
1900// SplatSize = 1 byte.
1901static bool isConstantSplat(const uint64_t Bits128[2],
1902                            const uint64_t Undef128[2],
1903                            unsigned &SplatBits, unsigned &SplatUndef,
1904                            unsigned &SplatSize) {
1905
1906  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
1907  // the same as the lower 64-bits, ignoring undefs.
1908  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
1909    return false;  // Can't be a splat if two pieces don't match.
1910
1911  uint64_t Bits64  = Bits128[0] | Bits128[1];
1912  uint64_t Undef64 = Undef128[0] & Undef128[1];
1913
1914  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
1915  // undefs.
1916  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
1917    return false;  // Can't be a splat if two pieces don't match.
1918
1919  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
1920  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
1921
1922  // If the top 16-bits are different than the lower 16-bits, ignoring
1923  // undefs, we have an i32 splat.
1924  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
1925    SplatBits = Bits32;
1926    SplatUndef = Undef32;
1927    SplatSize = 4;
1928    return true;
1929  }
1930
1931  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
1932  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
1933
1934  // If the top 8-bits are different than the lower 8-bits, ignoring
1935  // undefs, we have an i16 splat.
1936  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
1937    SplatBits = Bits16;
1938    SplatUndef = Undef16;
1939    SplatSize = 2;
1940    return true;
1941  }
1942
1943  // Otherwise, we have an 8-bit splat.
1944  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
1945  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
1946  SplatSize = 1;
1947  return true;
1948}
1949
1950/// BuildSplatI - Build a canonical splati of Val with an element size of
1951/// SplatSize.  Cast the result to VT.
1952static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
1953                             SelectionDAG &DAG) {
1954  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
1955
1956  // Force vspltis[hw] -1 to vspltisb -1.
1957  if (Val == -1) SplatSize = 1;
1958
1959  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
1960    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
1961  };
1962  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
1963
1964  // Build a canonical splat for this value.
1965  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
1966  SmallVector<SDOperand, 8> Ops;
1967  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
1968  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
1969                              &Ops[0], Ops.size());
1970  return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
1971}
1972
1973/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
1974/// specified intrinsic ID.
1975static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
1976                                  SelectionDAG &DAG,
1977                                  MVT::ValueType DestVT = MVT::Other) {
1978  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
1979  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1980                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
1981}
1982
1983/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
1984/// specified intrinsic ID.
1985static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
1986                                  SDOperand Op2, SelectionDAG &DAG,
1987                                  MVT::ValueType DestVT = MVT::Other) {
1988  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
1989  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1990                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
1991}
1992
1993
1994/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
1995/// amount.  The result has the specified value type.
1996static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
1997                             MVT::ValueType VT, SelectionDAG &DAG) {
1998  // Force LHS/RHS to be the right type.
1999  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2000  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2001
2002  SDOperand Ops[16];
2003  for (unsigned i = 0; i != 16; ++i)
2004    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2005  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2006                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2007  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2008}
2009
2010// If this is a case we can't handle, return null and let the default
2011// expansion code take care of it.  If we CAN select this case, and if it
2012// selects to a single instruction, return Op.  Otherwise, if we can codegen
2013// this case more efficiently than a constant pool load, lower it to the
2014// sequence of ops that should be used.
2015static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2016  // If this is a vector of constants or undefs, get the bits.  A bit in
2017  // UndefBits is set if the corresponding element of the vector is an
2018  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2019  // zero.
2020  uint64_t VectorBits[2];
2021  uint64_t UndefBits[2];
2022  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2023    return SDOperand();   // Not a constant vector.
2024
2025  // If this is a splat (repetition) of a value across the whole vector, return
2026  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2027  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2028  // SplatSize = 1 byte.
2029  unsigned SplatBits, SplatUndef, SplatSize;
2030  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2031    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2032
2033    // First, handle single instruction cases.
2034
2035    // All zeros?
2036    if (SplatBits == 0) {
2037      // Canonicalize all zero vectors to be v4i32.
2038      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2039        SDOperand Z = DAG.getConstant(0, MVT::i32);
2040        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2041        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2042      }
2043      return Op;
2044    }
2045
2046    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2047    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2048    if (SextVal >= -16 && SextVal <= 15)
2049      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2050
2051
2052    // Two instruction sequences.
2053
2054    // If this value is in the range [-32,30] and is even, use:
2055    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2056    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2057      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2058      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2059    }
2060
2061    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2062    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2063    // for fneg/fabs.
2064    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2065      // Make -1 and vspltisw -1:
2066      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2067
2068      // Make the VSLW intrinsic, computing 0x8000_0000.
2069      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2070                                       OnesV, DAG);
2071
2072      // xor by OnesV to invert it.
2073      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2074      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2075    }
2076
2077    // Check to see if this is a wide variety of vsplti*, binop self cases.
2078    unsigned SplatBitSize = SplatSize*8;
2079    static const char SplatCsts[] = {
2080      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2081      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2082    };
2083    for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
2084      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2085      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2086      int i = SplatCsts[idx];
2087
2088      // Figure out what shift amount will be used by altivec if shifted by i in
2089      // this splat size.
2090      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2091
2092      // vsplti + shl self.
2093      if (SextVal == (i << (int)TypeShiftAmt)) {
2094        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
2095        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2096          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2097          Intrinsic::ppc_altivec_vslw
2098        };
2099        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
2100      }
2101
2102      // vsplti + srl self.
2103      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2104        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
2105        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2106          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2107          Intrinsic::ppc_altivec_vsrw
2108        };
2109        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
2110      }
2111
2112      // vsplti + sra self.
2113      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2114        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
2115        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2116          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2117          Intrinsic::ppc_altivec_vsraw
2118        };
2119        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
2120      }
2121
2122      // vsplti + rol self.
2123      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2124                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2125        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
2126        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2127          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2128          Intrinsic::ppc_altivec_vrlw
2129        };
2130        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
2131      }
2132
2133      // t = vsplti c, result = vsldoi t, t, 1
2134      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2135        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2136        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2137      }
2138      // t = vsplti c, result = vsldoi t, t, 2
2139      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2140        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2141        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2142      }
2143      // t = vsplti c, result = vsldoi t, t, 3
2144      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2145        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2146        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2147      }
2148    }
2149
2150    // Three instruction sequences.
2151
2152    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2153    if (SextVal >= 0 && SextVal <= 31) {
2154      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
2155      SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
2156      return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
2157    }
2158    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2159    if (SextVal >= -31 && SextVal <= 0) {
2160      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
2161      SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
2162      return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
2163    }
2164  }
2165
2166  return SDOperand();
2167}
2168
2169/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2170/// the specified operations to build the shuffle.
2171static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2172                                        SDOperand RHS, SelectionDAG &DAG) {
2173  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2174  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
2175  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2176
2177  enum {
2178    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2179    OP_VMRGHW,
2180    OP_VMRGLW,
2181    OP_VSPLTISW0,
2182    OP_VSPLTISW1,
2183    OP_VSPLTISW2,
2184    OP_VSPLTISW3,
2185    OP_VSLDOI4,
2186    OP_VSLDOI8,
2187    OP_VSLDOI12
2188  };
2189
2190  if (OpNum == OP_COPY) {
2191    if (LHSID == (1*9+2)*9+3) return LHS;
2192    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2193    return RHS;
2194  }
2195
2196  SDOperand OpLHS, OpRHS;
2197  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2198  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2199
2200  unsigned ShufIdxs[16];
2201  switch (OpNum) {
2202  default: assert(0 && "Unknown i32 permute!");
2203  case OP_VMRGHW:
2204    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
2205    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2206    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
2207    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2208    break;
2209  case OP_VMRGLW:
2210    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2211    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2212    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2213    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2214    break;
2215  case OP_VSPLTISW0:
2216    for (unsigned i = 0; i != 16; ++i)
2217      ShufIdxs[i] = (i&3)+0;
2218    break;
2219  case OP_VSPLTISW1:
2220    for (unsigned i = 0; i != 16; ++i)
2221      ShufIdxs[i] = (i&3)+4;
2222    break;
2223  case OP_VSPLTISW2:
2224    for (unsigned i = 0; i != 16; ++i)
2225      ShufIdxs[i] = (i&3)+8;
2226    break;
2227  case OP_VSPLTISW3:
2228    for (unsigned i = 0; i != 16; ++i)
2229      ShufIdxs[i] = (i&3)+12;
2230    break;
2231  case OP_VSLDOI4:
2232    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2233  case OP_VSLDOI8:
2234    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2235  case OP_VSLDOI12:
2236    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2237  }
2238  SDOperand Ops[16];
2239  for (unsigned i = 0; i != 16; ++i)
2240    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2241
2242  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2243                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2244}
2245
2246/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
2247/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
2248/// return the code it can be lowered into.  Worst case, it can always be
2249/// lowered into a vperm.
2250static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2251  SDOperand V1 = Op.getOperand(0);
2252  SDOperand V2 = Op.getOperand(1);
2253  SDOperand PermMask = Op.getOperand(2);
2254
2255  // Cases that are handled by instructions that take permute immediates
2256  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2257  // selected by the instruction selector.
2258  if (V2.getOpcode() == ISD::UNDEF) {
2259    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2260        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2261        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2262        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2263        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2264        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2265        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2266        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2267        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2268        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2269        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2270        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2271      return Op;
2272    }
2273  }
2274
2275  // Altivec has a variety of "shuffle immediates" that take two vector inputs
2276  // and produce a fixed permutation.  If any of these match, do not lower to
2277  // VPERM.
2278  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2279      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2280      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2281      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2282      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2283      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2284      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2285      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2286      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2287    return Op;
2288
2289  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
2290  // perfect shuffle table to emit an optimal matching sequence.
2291  unsigned PFIndexes[4];
2292  bool isFourElementShuffle = true;
2293  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2294    unsigned EltNo = 8;   // Start out undef.
2295    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
2296      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2297        continue;   // Undef, ignore it.
2298
2299      unsigned ByteSource =
2300        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2301      if ((ByteSource & 3) != j) {
2302        isFourElementShuffle = false;
2303        break;
2304      }
2305
2306      if (EltNo == 8) {
2307        EltNo = ByteSource/4;
2308      } else if (EltNo != ByteSource/4) {
2309        isFourElementShuffle = false;
2310        break;
2311      }
2312    }
2313    PFIndexes[i] = EltNo;
2314  }
2315
2316  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2317  // perfect shuffle vector to determine if it is cost effective to do this as
2318  // discrete instructions, or whether we should use a vperm.
2319  if (isFourElementShuffle) {
2320    // Compute the index in the perfect shuffle table.
2321    unsigned PFTableIndex =
2322      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2323
2324    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2325    unsigned Cost  = (PFEntry >> 30);
2326
2327    // Determining when to avoid vperm is tricky.  Many things affect the cost
2328    // of vperm, particularly how many times the perm mask needs to be computed.
2329    // For example, if the perm mask can be hoisted out of a loop or is already
2330    // used (perhaps because there are multiple permutes with the same shuffle
2331    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
2332    // the loop requires an extra register.
2333    //
2334    // As a compromise, we only emit discrete instructions if the shuffle can be
2335    // generated in 3 or fewer operations.  When we have loop information
2336    // available, if this block is within a loop, we should avoid using vperm
2337    // for 3-operation perms and use a constant pool load instead.
2338    if (Cost < 3)
2339      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2340  }
2341
2342  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2343  // vector that will get spilled to the constant pool.
2344  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2345
2346  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2347  // that it is in input element units, not in bytes.  Convert now.
2348  MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
2349  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2350
2351  SmallVector<SDOperand, 16> ResultMask;
2352  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2353    unsigned SrcElt;
2354    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2355      SrcElt = 0;
2356    else
2357      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2358
2359    for (unsigned j = 0; j != BytesPerElement; ++j)
2360      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2361                                           MVT::i8));
2362  }
2363
2364  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2365                                    &ResultMask[0], ResultMask.size());
2366  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2367}
2368
2369/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2370/// altivec comparison.  If it is, return true and fill in Opc/isDot with
2371/// information about the intrinsic.
2372static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2373                                  bool &isDot) {
2374  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2375  CompareOpc = -1;
2376  isDot = false;
2377  switch (IntrinsicID) {
2378  default: return false;
2379    // Comparison predicates.
2380  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
2381  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2382  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
2383  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
2384  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2385  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2386  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2387  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2388  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2389  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2390  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2391  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2392  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2393
2394    // Normal Comparisons.
2395  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
2396  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
2397  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
2398  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
2399  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
2400  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
2401  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
2402  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
2403  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
2404  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
2405  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
2406  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
2407  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
2408  }
2409  return true;
2410}
2411
2412/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2413/// lower, do it, otherwise return null.
2414static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2415  // If this is a lowered altivec predicate compare, CompareOpc is set to the
2416  // opcode number of the comparison.
2417  int CompareOpc;
2418  bool isDot;
2419  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2420    return SDOperand();    // Don't custom lower most intrinsics.
2421
2422  // If this is a non-dot comparison, make the VCMP node and we are done.
2423  if (!isDot) {
2424    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2425                                Op.getOperand(1), Op.getOperand(2),
2426                                DAG.getConstant(CompareOpc, MVT::i32));
2427    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2428  }
2429
2430  // Create the PPCISD altivec 'dot' comparison node.
2431  SDOperand Ops[] = {
2432    Op.getOperand(2),  // LHS
2433    Op.getOperand(3),  // RHS
2434    DAG.getConstant(CompareOpc, MVT::i32)
2435  };
2436  std::vector<MVT::ValueType> VTs;
2437  VTs.push_back(Op.getOperand(2).getValueType());
2438  VTs.push_back(MVT::Flag);
2439  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2440
2441  // Now that we have the comparison, emit a copy from the CR to a GPR.
2442  // This is flagged to the above dot comparison.
2443  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2444                                DAG.getRegister(PPC::CR6, MVT::i32),
2445                                CompNode.getValue(1));
2446
2447  // Unpack the result based on how the target uses it.
2448  unsigned BitNo;   // Bit # of CR6.
2449  bool InvertBit;   // Invert result?
2450  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2451  default:  // Can't happen, don't crash on invalid number though.
2452  case 0:   // Return the value of the EQ bit of CR6.
2453    BitNo = 0; InvertBit = false;
2454    break;
2455  case 1:   // Return the inverted value of the EQ bit of CR6.
2456    BitNo = 0; InvertBit = true;
2457    break;
2458  case 2:   // Return the value of the LT bit of CR6.
2459    BitNo = 2; InvertBit = false;
2460    break;
2461  case 3:   // Return the inverted value of the LT bit of CR6.
2462    BitNo = 2; InvertBit = true;
2463    break;
2464  }
2465
2466  // Shift the bit into the low position.
2467  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2468                      DAG.getConstant(8-(3-BitNo), MVT::i32));
2469  // Isolate the bit.
2470  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2471                      DAG.getConstant(1, MVT::i32));
2472
2473  // If we are supposed to, toggle the bit.
2474  if (InvertBit)
2475    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2476                        DAG.getConstant(1, MVT::i32));
2477  return Flags;
2478}
2479
2480static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2481  // Create a stack slot that is 16-byte aligned.
2482  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2483  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2484  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2485  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2486
2487  // Store the input value into Value#0 of the stack slot.
2488  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2489                                 Op.getOperand(0), FIdx, NULL, 0);
2490  // Load it out.
2491  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2492}
2493
2494static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2495  if (Op.getValueType() == MVT::v4i32) {
2496    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2497
2498    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
2499    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2500
2501    SDOperand RHSSwap =   // = vrlw RHS, 16
2502      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2503
2504    // Shrinkify inputs to v8i16.
2505    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2506    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2507    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2508
2509    // Low parts multiplied together, generating 32-bit results (we ignore the
2510    // top parts).
2511    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2512                                        LHS, RHS, DAG, MVT::v4i32);
2513
2514    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2515                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2516    // Shift the high parts up 16 bits.
2517    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2518    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2519  } else if (Op.getValueType() == MVT::v8i16) {
2520    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2521
2522    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2523
2524    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2525                            LHS, RHS, Zero, DAG);
2526  } else if (Op.getValueType() == MVT::v16i8) {
2527    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2528
2529    // Multiply the even 8-bit parts, producing 16-bit sums.
2530    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2531                                           LHS, RHS, DAG, MVT::v8i16);
2532    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2533
2534    // Multiply the odd 8-bit parts, producing 16-bit sums.
2535    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2536                                          LHS, RHS, DAG, MVT::v8i16);
2537    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2538
2539    // Merge the results together.
2540    SDOperand Ops[16];
2541    for (unsigned i = 0; i != 8; ++i) {
2542      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
2543      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2544    }
2545    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2546                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2547  } else {
2548    assert(0 && "Unknown mul to lower!");
2549    abort();
2550  }
2551}
2552
2553/// LowerOperation - Provide custom lowering hooks for some operations.
2554///
2555SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2556  switch (Op.getOpcode()) {
2557  default: assert(0 && "Wasn't expecting to be able to lower this!");
2558  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
2559  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
2560  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
2561  case ISD::SETCC:              return LowerSETCC(Op, DAG);
2562  case ISD::VASTART:            return LowerVASTART(Op, DAG, VarArgsFrameIndex);
2563  case ISD::FORMAL_ARGUMENTS:
2564      return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex);
2565  case ISD::CALL:               return LowerCALL(Op, DAG);
2566  case ISD::RET:                return LowerRET(Op, DAG);
2567  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG,
2568                                                               PPCSubTarget);
2569
2570  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
2571  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
2572  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
2573
2574  // Lower 64-bit shifts.
2575  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
2576  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
2577  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
2578
2579  // Vector-related lowering.
2580  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
2581  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
2582  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2583  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
2584  case ISD::MUL:                return LowerMUL(Op, DAG);
2585  }
2586  return SDOperand();
2587}
2588
2589//===----------------------------------------------------------------------===//
2590//  Other Lowering Code
2591//===----------------------------------------------------------------------===//
2592
2593MachineBasicBlock *
2594PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2595                                           MachineBasicBlock *BB) {
2596  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
2597          MI->getOpcode() == PPC::SELECT_CC_I8 ||
2598          MI->getOpcode() == PPC::SELECT_CC_F4 ||
2599          MI->getOpcode() == PPC::SELECT_CC_F8 ||
2600          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2601         "Unexpected instr type to insert");
2602
2603  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2604  // control-flow pattern.  The incoming instruction knows the destination vreg
2605  // to set, the condition code register to branch on, the true/false values to
2606  // select between, and a branch opcode to use.
2607  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2608  ilist<MachineBasicBlock>::iterator It = BB;
2609  ++It;
2610
2611  //  thisMBB:
2612  //  ...
2613  //   TrueVal = ...
2614  //   cmpTY ccX, r1, r2
2615  //   bCC copy1MBB
2616  //   fallthrough --> copy0MBB
2617  MachineBasicBlock *thisMBB = BB;
2618  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2619  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2620  unsigned SelectPred = MI->getOperand(4).getImm();
2621  BuildMI(BB, PPC::BCC, 3)
2622    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2623  MachineFunction *F = BB->getParent();
2624  F->getBasicBlockList().insert(It, copy0MBB);
2625  F->getBasicBlockList().insert(It, sinkMBB);
2626  // Update machine-CFG edges by first adding all successors of the current
2627  // block to the new block which will contain the Phi node for the select.
2628  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2629      e = BB->succ_end(); i != e; ++i)
2630    sinkMBB->addSuccessor(*i);
2631  // Next, remove all successors of the current block, and add the true
2632  // and fallthrough blocks as its successors.
2633  while(!BB->succ_empty())
2634    BB->removeSuccessor(BB->succ_begin());
2635  BB->addSuccessor(copy0MBB);
2636  BB->addSuccessor(sinkMBB);
2637
2638  //  copy0MBB:
2639  //   %FalseValue = ...
2640  //   # fallthrough to sinkMBB
2641  BB = copy0MBB;
2642
2643  // Update machine-CFG edges
2644  BB->addSuccessor(sinkMBB);
2645
2646  //  sinkMBB:
2647  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2648  //  ...
2649  BB = sinkMBB;
2650  BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
2651    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2652    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2653
2654  delete MI;   // The pseudo instruction is gone now.
2655  return BB;
2656}
2657
2658//===----------------------------------------------------------------------===//
2659// Target Optimization Hooks
2660//===----------------------------------------------------------------------===//
2661
2662SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2663                                               DAGCombinerInfo &DCI) const {
2664  TargetMachine &TM = getTargetMachine();
2665  SelectionDAG &DAG = DCI.DAG;
2666  switch (N->getOpcode()) {
2667  default: break;
2668  case PPCISD::SHL:
2669    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2670      if (C->getValue() == 0)   // 0 << V -> 0.
2671        return N->getOperand(0);
2672    }
2673    break;
2674  case PPCISD::SRL:
2675    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2676      if (C->getValue() == 0)   // 0 >>u V -> 0.
2677        return N->getOperand(0);
2678    }
2679    break;
2680  case PPCISD::SRA:
2681    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2682      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
2683          C->isAllOnesValue())    // -1 >>s V -> -1.
2684        return N->getOperand(0);
2685    }
2686    break;
2687
2688  case ISD::SINT_TO_FP:
2689    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
2690      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
2691        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
2692        // We allow the src/dst to be either f32/f64, but the intermediate
2693        // type must be i64.
2694        if (N->getOperand(0).getValueType() == MVT::i64) {
2695          SDOperand Val = N->getOperand(0).getOperand(0);
2696          if (Val.getValueType() == MVT::f32) {
2697            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2698            DCI.AddToWorklist(Val.Val);
2699          }
2700
2701          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
2702          DCI.AddToWorklist(Val.Val);
2703          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
2704          DCI.AddToWorklist(Val.Val);
2705          if (N->getValueType(0) == MVT::f32) {
2706            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
2707            DCI.AddToWorklist(Val.Val);
2708          }
2709          return Val;
2710        } else if (N->getOperand(0).getValueType() == MVT::i32) {
2711          // If the intermediate type is i32, we can avoid the load/store here
2712          // too.
2713        }
2714      }
2715    }
2716    break;
2717  case ISD::STORE:
2718    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
2719    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
2720        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
2721        N->getOperand(1).getValueType() == MVT::i32) {
2722      SDOperand Val = N->getOperand(1).getOperand(0);
2723      if (Val.getValueType() == MVT::f32) {
2724        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2725        DCI.AddToWorklist(Val.Val);
2726      }
2727      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
2728      DCI.AddToWorklist(Val.Val);
2729
2730      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
2731                        N->getOperand(2), N->getOperand(3));
2732      DCI.AddToWorklist(Val.Val);
2733      return Val;
2734    }
2735
2736    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
2737    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
2738        N->getOperand(1).Val->hasOneUse() &&
2739        (N->getOperand(1).getValueType() == MVT::i32 ||
2740         N->getOperand(1).getValueType() == MVT::i16)) {
2741      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
2742      // Do an any-extend to 32-bits if this is a half-word input.
2743      if (BSwapOp.getValueType() == MVT::i16)
2744        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
2745
2746      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
2747                         N->getOperand(2), N->getOperand(3),
2748                         DAG.getValueType(N->getOperand(1).getValueType()));
2749    }
2750    break;
2751  case ISD::BSWAP:
2752    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
2753    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
2754        N->getOperand(0).hasOneUse() &&
2755        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
2756      SDOperand Load = N->getOperand(0);
2757      LoadSDNode *LD = cast<LoadSDNode>(Load);
2758      // Create the byte-swapping load.
2759      std::vector<MVT::ValueType> VTs;
2760      VTs.push_back(MVT::i32);
2761      VTs.push_back(MVT::Other);
2762      SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
2763      SDOperand Ops[] = {
2764        LD->getChain(),    // Chain
2765        LD->getBasePtr(),  // Ptr
2766        SV,                // SrcValue
2767        DAG.getValueType(N->getValueType(0)) // VT
2768      };
2769      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
2770
2771      // If this is an i16 load, insert the truncate.
2772      SDOperand ResVal = BSLoad;
2773      if (N->getValueType(0) == MVT::i16)
2774        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
2775
2776      // First, combine the bswap away.  This makes the value produced by the
2777      // load dead.
2778      DCI.CombineTo(N, ResVal);
2779
2780      // Next, combine the load away, we give it a bogus result value but a real
2781      // chain result.  The result value is dead because the bswap is dead.
2782      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
2783
2784      // Return N so it doesn't get rechecked!
2785      return SDOperand(N, 0);
2786    }
2787
2788    break;
2789  case PPCISD::VCMP: {
2790    // If a VCMPo node already exists with exactly the same operands as this
2791    // node, use its result instead of this node (VCMPo computes both a CR6 and
2792    // a normal output).
2793    //
2794    if (!N->getOperand(0).hasOneUse() &&
2795        !N->getOperand(1).hasOneUse() &&
2796        !N->getOperand(2).hasOneUse()) {
2797
2798      // Scan all of the users of the LHS, looking for VCMPo's that match.
2799      SDNode *VCMPoNode = 0;
2800
2801      SDNode *LHSN = N->getOperand(0).Val;
2802      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2803           UI != E; ++UI)
2804        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2805            (*UI)->getOperand(1) == N->getOperand(1) &&
2806            (*UI)->getOperand(2) == N->getOperand(2) &&
2807            (*UI)->getOperand(0) == N->getOperand(0)) {
2808          VCMPoNode = *UI;
2809          break;
2810        }
2811
2812      // If there is no VCMPo node, or if the flag value has a single use, don't
2813      // transform this.
2814      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
2815        break;
2816
2817      // Look at the (necessarily single) use of the flag value.  If it has a
2818      // chain, this transformation is more complex.  Note that multiple things
2819      // could use the value result, which we should ignore.
2820      SDNode *FlagUser = 0;
2821      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
2822           FlagUser == 0; ++UI) {
2823        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
2824        SDNode *User = *UI;
2825        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2826          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
2827            FlagUser = User;
2828            break;
2829          }
2830        }
2831      }
2832
2833      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
2834      // give up for right now.
2835      if (FlagUser->getOpcode() == PPCISD::MFCR)
2836        return SDOperand(VCMPoNode, 0);
2837    }
2838    break;
2839  }
2840  case ISD::BR_CC: {
2841    // If this is a branch on an altivec predicate comparison, lower this so
2842    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
2843    // lowering is done pre-legalize, because the legalizer lowers the predicate
2844    // compare down to code that is difficult to reassemble.
2845    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2846    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
2847    int CompareOpc;
2848    bool isDot;
2849
2850    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2851        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
2852        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
2853      assert(isDot && "Can't compare against a vector result!");
2854
2855      // If this is a comparison against something other than 0/1, then we know
2856      // that the condition is never/always true.
2857      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
2858      if (Val != 0 && Val != 1) {
2859        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
2860          return N->getOperand(0);
2861        // Always !=, turn it into an unconditional branch.
2862        return DAG.getNode(ISD::BR, MVT::Other,
2863                           N->getOperand(0), N->getOperand(4));
2864      }
2865
2866      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
2867
2868      // Create the PPCISD altivec 'dot' comparison node.
2869      std::vector<MVT::ValueType> VTs;
2870      SDOperand Ops[] = {
2871        LHS.getOperand(2),  // LHS of compare
2872        LHS.getOperand(3),  // RHS of compare
2873        DAG.getConstant(CompareOpc, MVT::i32)
2874      };
2875      VTs.push_back(LHS.getOperand(2).getValueType());
2876      VTs.push_back(MVT::Flag);
2877      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2878
2879      // Unpack the result based on how the target uses it.
2880      PPC::Predicate CompOpc;
2881      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
2882      default:  // Can't happen, don't crash on invalid number though.
2883      case 0:   // Branch on the value of the EQ bit of CR6.
2884        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
2885        break;
2886      case 1:   // Branch on the inverted value of the EQ bit of CR6.
2887        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
2888        break;
2889      case 2:   // Branch on the value of the LT bit of CR6.
2890        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
2891        break;
2892      case 3:   // Branch on the inverted value of the LT bit of CR6.
2893        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
2894        break;
2895      }
2896
2897      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
2898                         DAG.getConstant(CompOpc, MVT::i32),
2899                         DAG.getRegister(PPC::CR6, MVT::i32),
2900                         N->getOperand(4), CompNode.getValue(1));
2901    }
2902    break;
2903  }
2904  }
2905
2906  return SDOperand();
2907}
2908
2909//===----------------------------------------------------------------------===//
2910// Inline Assembly Support
2911//===----------------------------------------------------------------------===//
2912
2913void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2914                                                       uint64_t Mask,
2915                                                       uint64_t &KnownZero,
2916                                                       uint64_t &KnownOne,
2917                                                       unsigned Depth) const {
2918  KnownZero = 0;
2919  KnownOne = 0;
2920  switch (Op.getOpcode()) {
2921  default: break;
2922  case PPCISD::LBRX: {
2923    // lhbrx is known to have the top bits cleared out.
2924    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
2925      KnownZero = 0xFFFF0000;
2926    break;
2927  }
2928  case ISD::INTRINSIC_WO_CHAIN: {
2929    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
2930    default: break;
2931    case Intrinsic::ppc_altivec_vcmpbfp_p:
2932    case Intrinsic::ppc_altivec_vcmpeqfp_p:
2933    case Intrinsic::ppc_altivec_vcmpequb_p:
2934    case Intrinsic::ppc_altivec_vcmpequh_p:
2935    case Intrinsic::ppc_altivec_vcmpequw_p:
2936    case Intrinsic::ppc_altivec_vcmpgefp_p:
2937    case Intrinsic::ppc_altivec_vcmpgtfp_p:
2938    case Intrinsic::ppc_altivec_vcmpgtsb_p:
2939    case Intrinsic::ppc_altivec_vcmpgtsh_p:
2940    case Intrinsic::ppc_altivec_vcmpgtsw_p:
2941    case Intrinsic::ppc_altivec_vcmpgtub_p:
2942    case Intrinsic::ppc_altivec_vcmpgtuh_p:
2943    case Intrinsic::ppc_altivec_vcmpgtuw_p:
2944      KnownZero = ~1U;  // All bits but the low one are known to be zero.
2945      break;
2946    }
2947  }
2948  }
2949}
2950
2951
2952/// getConstraintType - Given a constraint letter, return the type of
2953/// constraint it is for this target.
2954PPCTargetLowering::ConstraintType
2955PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
2956  switch (ConstraintLetter) {
2957  default: break;
2958  case 'b':
2959  case 'r':
2960  case 'f':
2961  case 'v':
2962  case 'y':
2963    return C_RegisterClass;
2964  }
2965  return TargetLowering::getConstraintType(ConstraintLetter);
2966}
2967
2968std::pair<unsigned, const TargetRegisterClass*>
2969PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
2970                                                MVT::ValueType VT) const {
2971  if (Constraint.size() == 1) {
2972    // GCC RS6000 Constraint Letters
2973    switch (Constraint[0]) {
2974    case 'b':   // R1-R31
2975    case 'r':   // R0-R31
2976      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
2977        return std::make_pair(0U, PPC::G8RCRegisterClass);
2978      return std::make_pair(0U, PPC::GPRCRegisterClass);
2979    case 'f':
2980      if (VT == MVT::f32)
2981        return std::make_pair(0U, PPC::F4RCRegisterClass);
2982      else if (VT == MVT::f64)
2983        return std::make_pair(0U, PPC::F8RCRegisterClass);
2984      break;
2985    case 'v':
2986      return std::make_pair(0U, PPC::VRRCRegisterClass);
2987    case 'y':   // crrc
2988      return std::make_pair(0U, PPC::CRRCRegisterClass);
2989    }
2990  }
2991
2992  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2993}
2994
2995
2996// isOperandValidForConstraint
2997SDOperand PPCTargetLowering::
2998isOperandValidForConstraint(SDOperand Op, char Letter, SelectionDAG &DAG) {
2999  switch (Letter) {
3000  default: break;
3001  case 'I':
3002  case 'J':
3003  case 'K':
3004  case 'L':
3005  case 'M':
3006  case 'N':
3007  case 'O':
3008  case 'P': {
3009    if (!isa<ConstantSDNode>(Op)) return SDOperand(0,0);// Must be an immediate.
3010    unsigned Value = cast<ConstantSDNode>(Op)->getValue();
3011    switch (Letter) {
3012    default: assert(0 && "Unknown constraint letter!");
3013    case 'I':  // "I" is a signed 16-bit constant.
3014      if ((short)Value == (int)Value) return Op;
3015      break;
3016    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3017    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3018      if ((short)Value == 0) return Op;
3019      break;
3020    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3021      if ((Value >> 16) == 0) return Op;
3022      break;
3023    case 'M':  // "M" is a constant that is greater than 31.
3024      if (Value > 31) return Op;
3025      break;
3026    case 'N':  // "N" is a positive constant that is an exact power of two.
3027      if ((int)Value > 0 && isPowerOf2_32(Value)) return Op;
3028      break;
3029    case 'O':  // "O" is the constant zero.
3030      if (Value == 0) return Op;
3031      break;
3032    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3033      if ((short)-Value == (int)-Value) return Op;
3034      break;
3035    }
3036    break;
3037  }
3038  }
3039
3040  // Handle standard constraint letters.
3041  return TargetLowering::isOperandValidForConstraint(Op, Letter, DAG);
3042}
3043
3044/// isLegalAddressImmediate - Return true if the integer value can be used
3045/// as the offset of the target addressing mode.
3046bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
3047  // PPC allows a sign-extended 16-bit immediate field.
3048  return (V > -(1 << 16) && V < (1 << 16)-1);
3049}
3050
3051bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3052  return TargetLowering::isLegalAddressImmediate(GV);
3053}
3054