PPCISelLowering.cpp revision ef97c676f97d33312eb5009522a9d51f2c25ccb1
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Target/TargetOptions.h"
33#include "llvm/Support/CommandLine.h"
34using namespace llvm;
35
36static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
37cl::desc("enable preincrement load/store generation on PPC (experimental)"),
38                                     cl::Hidden);
39
40PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
41  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
42
43  setPow2DivIsCheap();
44
45  // Use _setjmp/_longjmp instead of setjmp/longjmp.
46  setUseUnderscoreSetJmp(true);
47  setUseUnderscoreLongJmp(true);
48
49  // Set up the register classes.
50  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
51  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
52  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
53
54  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
56  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
57
58  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
59
60  // PowerPC has pre-inc load and store's.
61  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
66  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
71
72  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
73  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
74
75  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
76  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
77  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
78  // This is used in the ppcf128->int sequence.  Note it has different semantics
79  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
80  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
81
82  // PowerPC has no intrinsics for these particular operations
83  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
84  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
85  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
86
87  // PowerPC has no SREM/UREM instructions
88  setOperationAction(ISD::SREM, MVT::i32, Expand);
89  setOperationAction(ISD::UREM, MVT::i32, Expand);
90  setOperationAction(ISD::SREM, MVT::i64, Expand);
91  setOperationAction(ISD::UREM, MVT::i64, Expand);
92
93  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
94  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
95  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
96  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
97  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
98  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
99  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
100  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
101  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
102
103  // We don't support sin/cos/sqrt/fmod/pow
104  setOperationAction(ISD::FSIN , MVT::f64, Expand);
105  setOperationAction(ISD::FCOS , MVT::f64, Expand);
106  setOperationAction(ISD::FREM , MVT::f64, Expand);
107  setOperationAction(ISD::FPOW , MVT::f64, Expand);
108  setOperationAction(ISD::FSIN , MVT::f32, Expand);
109  setOperationAction(ISD::FCOS , MVT::f32, Expand);
110  setOperationAction(ISD::FREM , MVT::f32, Expand);
111  setOperationAction(ISD::FPOW , MVT::f32, Expand);
112
113  // If we're enabling GP optimizations, use hardware square root
114  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
115    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
116    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
117  }
118
119  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
120  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
121
122  // PowerPC does not have BSWAP, CTPOP or CTTZ
123  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
124  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
125  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
126  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
127  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
128  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
129
130  // PowerPC does not have ROTR
131  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
132
133  // PowerPC does not have Select
134  setOperationAction(ISD::SELECT, MVT::i32, Expand);
135  setOperationAction(ISD::SELECT, MVT::i64, Expand);
136  setOperationAction(ISD::SELECT, MVT::f32, Expand);
137  setOperationAction(ISD::SELECT, MVT::f64, Expand);
138
139  // PowerPC wants to turn select_cc of FP into fsel when possible.
140  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
141  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
142
143  // PowerPC wants to optimize integer setcc a bit
144  setOperationAction(ISD::SETCC, MVT::i32, Custom);
145
146  // PowerPC does not have BRCOND which requires SetCC
147  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
148
149  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
150
151  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
152  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
153
154  // PowerPC does not have [U|S]INT_TO_FP
155  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
156  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
157
158  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
159  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
160  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
161  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
162
163  // We cannot sextinreg(i1).  Expand to shifts.
164  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
165
166  // Support label based line numbers.
167  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
168  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
169
170  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
171  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
172  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
173  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
174
175
176  // We want to legalize GlobalAddress and ConstantPool nodes into the
177  // appropriate instructions to materialize the address.
178  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
179  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
180  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
181  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
182  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
183  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
184  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
185  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
186
187  // RET must be custom lowered, to meet ABI requirements
188  setOperationAction(ISD::RET               , MVT::Other, Custom);
189
190  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
191  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
192
193  // VAARG is custom lowered with ELF 32 ABI
194  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
195    setOperationAction(ISD::VAARG, MVT::Other, Custom);
196  else
197    setOperationAction(ISD::VAARG, MVT::Other, Expand);
198
199  // Use the default implementation.
200  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
201  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
202  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
203  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
204  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
205  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
206
207  // We want to custom lower some of our intrinsics.
208  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
209
210  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
211    // They also have instructions for converting between i64 and fp.
212    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
213    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
214    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
215    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
216    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
217
218    // FIXME: disable this lowered code.  This generates 64-bit register values,
219    // and we don't model the fact that the top part is clobbered by calls.  We
220    // need to flag these together so that the value isn't live across a call.
221    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
222
223    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
224    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
225  } else {
226    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
227    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
228  }
229
230  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
231    // 64-bit PowerPC implementations can support i64 types directly
232    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
233    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
234    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
235  } else {
236    // 32-bit PowerPC wants to expand i64 shifts itself.
237    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
238    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
239    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
240  }
241
242  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
243    // First set operation action for all vector types to expand. Then we
244    // will selectively turn on ones that can be effectively codegen'd.
245    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
246         VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
247      // add/sub are legal for all supported vector VT's.
248      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
249      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
250
251      // We promote all shuffles to v16i8.
252      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
253      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
254
255      // We promote all non-typed operations to v4i32.
256      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
257      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
258      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
259      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
260      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
261      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
262      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
263      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
264      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
265      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
266      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
267      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
268
269      // No other operations are legal.
270      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
271      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
272      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
273      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
274      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
275      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
276      setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
277      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
278      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
279      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
280      setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
281      setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
282      setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
283      setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
284      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
285      setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
286      setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
287      setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
288      setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
289    }
290
291    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
292    // with merges, splats, etc.
293    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
294
295    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
296    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
297    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
298    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
299    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
300    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
301
302    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
303    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
304    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
305    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
306
307    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
308    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
309    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
310    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
311
312    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
313    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
314
315    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
316    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
317    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
318    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
319  }
320
321  setSetCCResultType(MVT::i32);
322  setShiftAmountType(MVT::i32);
323  setSetCCResultContents(ZeroOrOneSetCCResult);
324
325  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
326    setStackPointerRegisterToSaveRestore(PPC::X1);
327    setExceptionPointerRegister(PPC::X3);
328    setExceptionSelectorRegister(PPC::X4);
329  } else {
330    setStackPointerRegisterToSaveRestore(PPC::R1);
331    setExceptionPointerRegister(PPC::R3);
332    setExceptionSelectorRegister(PPC::R4);
333  }
334
335  // We have target-specific dag combine patterns for the following nodes:
336  setTargetDAGCombine(ISD::SINT_TO_FP);
337  setTargetDAGCombine(ISD::STORE);
338  setTargetDAGCombine(ISD::BR_CC);
339  setTargetDAGCombine(ISD::BSWAP);
340
341  // Darwin long double math library functions have $LDBL128 appended.
342  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
343    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
344    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
345    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
346    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
347    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
348  }
349
350  computeRegisterProperties();
351}
352
353const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
354  switch (Opcode) {
355  default: return 0;
356  case PPCISD::FSEL:          return "PPCISD::FSEL";
357  case PPCISD::FCFID:         return "PPCISD::FCFID";
358  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
359  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
360  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
361  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
362  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
363  case PPCISD::VPERM:         return "PPCISD::VPERM";
364  case PPCISD::Hi:            return "PPCISD::Hi";
365  case PPCISD::Lo:            return "PPCISD::Lo";
366  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
367  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
368  case PPCISD::SRL:           return "PPCISD::SRL";
369  case PPCISD::SRA:           return "PPCISD::SRA";
370  case PPCISD::SHL:           return "PPCISD::SHL";
371  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
372  case PPCISD::STD_32:        return "PPCISD::STD_32";
373  case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF";
374  case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho";
375  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
376  case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho";
377  case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF";
378  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
379  case PPCISD::MFCR:          return "PPCISD::MFCR";
380  case PPCISD::VCMP:          return "PPCISD::VCMP";
381  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
382  case PPCISD::LBRX:          return "PPCISD::LBRX";
383  case PPCISD::STBRX:         return "PPCISD::STBRX";
384  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
385  case PPCISD::MFFS:          return "PPCISD::MFFS";
386  case PPCISD::MTFSB0:        return "PPCISD::MTFSB0";
387  case PPCISD::MTFSB1:        return "PPCISD::MTFSB1";
388  case PPCISD::FADDRTZ:       return "PPCISD::FADDRTZ";
389  case PPCISD::MTFSF:         return "PPCISD::MTFSF";
390  }
391}
392
393//===----------------------------------------------------------------------===//
394// Node matching predicates, for use by the tblgen matching code.
395//===----------------------------------------------------------------------===//
396
397/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
398static bool isFloatingPointZero(SDOperand Op) {
399  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
400    return CFP->getValueAPF().isZero();
401  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
402    // Maybe this has already been legalized into the constant pool?
403    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
404      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
405        return CFP->getValueAPF().isZero();
406  }
407  return false;
408}
409
410/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
411/// true if Op is undef or if it matches the specified value.
412static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
413  return Op.getOpcode() == ISD::UNDEF ||
414         cast<ConstantSDNode>(Op)->getValue() == Val;
415}
416
417/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
418/// VPKUHUM instruction.
419bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
420  if (!isUnary) {
421    for (unsigned i = 0; i != 16; ++i)
422      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
423        return false;
424  } else {
425    for (unsigned i = 0; i != 8; ++i)
426      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
427          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
428        return false;
429  }
430  return true;
431}
432
433/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
434/// VPKUWUM instruction.
435bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
436  if (!isUnary) {
437    for (unsigned i = 0; i != 16; i += 2)
438      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
439          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
440        return false;
441  } else {
442    for (unsigned i = 0; i != 8; i += 2)
443      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
444          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
445          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
446          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
447        return false;
448  }
449  return true;
450}
451
452/// isVMerge - Common function, used to match vmrg* shuffles.
453///
454static bool isVMerge(SDNode *N, unsigned UnitSize,
455                     unsigned LHSStart, unsigned RHSStart) {
456  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
457         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
458  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
459         "Unsupported merge size!");
460
461  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
462    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
463      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
464                             LHSStart+j+i*UnitSize) ||
465          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
466                             RHSStart+j+i*UnitSize))
467        return false;
468    }
469      return true;
470}
471
472/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
473/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
474bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
475  if (!isUnary)
476    return isVMerge(N, UnitSize, 8, 24);
477  return isVMerge(N, UnitSize, 8, 8);
478}
479
480/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
481/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
482bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
483  if (!isUnary)
484    return isVMerge(N, UnitSize, 0, 16);
485  return isVMerge(N, UnitSize, 0, 0);
486}
487
488
489/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
490/// amount, otherwise return -1.
491int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
492  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
493         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
494  // Find the first non-undef value in the shuffle mask.
495  unsigned i;
496  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
497    /*search*/;
498
499  if (i == 16) return -1;  // all undef.
500
501  // Otherwise, check to see if the rest of the elements are consequtively
502  // numbered from this value.
503  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
504  if (ShiftAmt < i) return -1;
505  ShiftAmt -= i;
506
507  if (!isUnary) {
508    // Check the rest of the elements to see if they are consequtive.
509    for (++i; i != 16; ++i)
510      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
511        return -1;
512  } else {
513    // Check the rest of the elements to see if they are consequtive.
514    for (++i; i != 16; ++i)
515      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
516        return -1;
517  }
518
519  return ShiftAmt;
520}
521
522/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
523/// specifies a splat of a single element that is suitable for input to
524/// VSPLTB/VSPLTH/VSPLTW.
525bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
526  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
527         N->getNumOperands() == 16 &&
528         (EltSize == 1 || EltSize == 2 || EltSize == 4));
529
530  // This is a splat operation if each element of the permute is the same, and
531  // if the value doesn't reference the second vector.
532  unsigned ElementBase = 0;
533  SDOperand Elt = N->getOperand(0);
534  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
535    ElementBase = EltV->getValue();
536  else
537    return false;   // FIXME: Handle UNDEF elements too!
538
539  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
540    return false;
541
542  // Check that they are consequtive.
543  for (unsigned i = 1; i != EltSize; ++i) {
544    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
545        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
546      return false;
547  }
548
549  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
550  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
551    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
552    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
553           "Invalid VECTOR_SHUFFLE mask!");
554    for (unsigned j = 0; j != EltSize; ++j)
555      if (N->getOperand(i+j) != N->getOperand(j))
556        return false;
557  }
558
559  return true;
560}
561
562/// isAllNegativeZeroVector - Returns true if all elements of build_vector
563/// are -0.0.
564bool PPC::isAllNegativeZeroVector(SDNode *N) {
565  assert(N->getOpcode() == ISD::BUILD_VECTOR);
566  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
567    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
568      return CFP->getValueAPF().isNegZero();
569  return false;
570}
571
572/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
573/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
574unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
575  assert(isSplatShuffleMask(N, EltSize));
576  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
577}
578
579/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
580/// by using a vspltis[bhw] instruction of the specified element size, return
581/// the constant being splatted.  The ByteSize field indicates the number of
582/// bytes of each element [124] -> [bhw].
583SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
584  SDOperand OpVal(0, 0);
585
586  // If ByteSize of the splat is bigger than the element size of the
587  // build_vector, then we have a case where we are checking for a splat where
588  // multiple elements of the buildvector are folded together into a single
589  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
590  unsigned EltSize = 16/N->getNumOperands();
591  if (EltSize < ByteSize) {
592    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
593    SDOperand UniquedVals[4];
594    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
595
596    // See if all of the elements in the buildvector agree across.
597    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
598      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
599      // If the element isn't a constant, bail fully out.
600      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
601
602
603      if (UniquedVals[i&(Multiple-1)].Val == 0)
604        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
605      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
606        return SDOperand();  // no match.
607    }
608
609    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
610    // either constant or undef values that are identical for each chunk.  See
611    // if these chunks can form into a larger vspltis*.
612
613    // Check to see if all of the leading entries are either 0 or -1.  If
614    // neither, then this won't fit into the immediate field.
615    bool LeadingZero = true;
616    bool LeadingOnes = true;
617    for (unsigned i = 0; i != Multiple-1; ++i) {
618      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
619
620      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
621      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
622    }
623    // Finally, check the least significant entry.
624    if (LeadingZero) {
625      if (UniquedVals[Multiple-1].Val == 0)
626        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
627      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
628      if (Val < 16)
629        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
630    }
631    if (LeadingOnes) {
632      if (UniquedVals[Multiple-1].Val == 0)
633        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
634      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
635      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
636        return DAG.getTargetConstant(Val, MVT::i32);
637    }
638
639    return SDOperand();
640  }
641
642  // Check to see if this buildvec has a single non-undef value in its elements.
643  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
644    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
645    if (OpVal.Val == 0)
646      OpVal = N->getOperand(i);
647    else if (OpVal != N->getOperand(i))
648      return SDOperand();
649  }
650
651  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
652
653  unsigned ValSizeInBytes = 0;
654  uint64_t Value = 0;
655  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
656    Value = CN->getValue();
657    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
658  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
659    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
660    Value = FloatToBits(CN->getValueAPF().convertToFloat());
661    ValSizeInBytes = 4;
662  }
663
664  // If the splat value is larger than the element value, then we can never do
665  // this splat.  The only case that we could fit the replicated bits into our
666  // immediate field for would be zero, and we prefer to use vxor for it.
667  if (ValSizeInBytes < ByteSize) return SDOperand();
668
669  // If the element value is larger than the splat value, cut it in half and
670  // check to see if the two halves are equal.  Continue doing this until we
671  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
672  while (ValSizeInBytes > ByteSize) {
673    ValSizeInBytes >>= 1;
674
675    // If the top half equals the bottom half, we're still ok.
676    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
677         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
678      return SDOperand();
679  }
680
681  // Properly sign extend the value.
682  int ShAmt = (4-ByteSize)*8;
683  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
684
685  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
686  if (MaskVal == 0) return SDOperand();
687
688  // Finally, if this value fits in a 5 bit sext field, return it
689  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
690    return DAG.getTargetConstant(MaskVal, MVT::i32);
691  return SDOperand();
692}
693
694//===----------------------------------------------------------------------===//
695//  Addressing Mode Selection
696//===----------------------------------------------------------------------===//
697
698/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
699/// or 64-bit immediate, and if the value can be accurately represented as a
700/// sign extension from a 16-bit value.  If so, this returns true and the
701/// immediate.
702static bool isIntS16Immediate(SDNode *N, short &Imm) {
703  if (N->getOpcode() != ISD::Constant)
704    return false;
705
706  Imm = (short)cast<ConstantSDNode>(N)->getValue();
707  if (N->getValueType(0) == MVT::i32)
708    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
709  else
710    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
711}
712static bool isIntS16Immediate(SDOperand Op, short &Imm) {
713  return isIntS16Immediate(Op.Val, Imm);
714}
715
716
717/// SelectAddressRegReg - Given the specified addressed, check to see if it
718/// can be represented as an indexed [r+r] operation.  Returns false if it
719/// can be more efficiently represented with [r+imm].
720bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
721                                            SDOperand &Index,
722                                            SelectionDAG &DAG) {
723  short imm = 0;
724  if (N.getOpcode() == ISD::ADD) {
725    if (isIntS16Immediate(N.getOperand(1), imm))
726      return false;    // r+i
727    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
728      return false;    // r+i
729
730    Base = N.getOperand(0);
731    Index = N.getOperand(1);
732    return true;
733  } else if (N.getOpcode() == ISD::OR) {
734    if (isIntS16Immediate(N.getOperand(1), imm))
735      return false;    // r+i can fold it if we can.
736
737    // If this is an or of disjoint bitfields, we can codegen this as an add
738    // (for better address arithmetic) if the LHS and RHS of the OR are provably
739    // disjoint.
740    uint64_t LHSKnownZero, LHSKnownOne;
741    uint64_t RHSKnownZero, RHSKnownOne;
742    DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
743
744    if (LHSKnownZero) {
745      DAG.ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
746      // If all of the bits are known zero on the LHS or RHS, the add won't
747      // carry.
748      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
749        Base = N.getOperand(0);
750        Index = N.getOperand(1);
751        return true;
752      }
753    }
754  }
755
756  return false;
757}
758
759/// Returns true if the address N can be represented by a base register plus
760/// a signed 16-bit displacement [r+imm], and if it is not better
761/// represented as reg+reg.
762bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
763                                            SDOperand &Base, SelectionDAG &DAG){
764  // If this can be more profitably realized as r+r, fail.
765  if (SelectAddressRegReg(N, Disp, Base, DAG))
766    return false;
767
768  if (N.getOpcode() == ISD::ADD) {
769    short imm = 0;
770    if (isIntS16Immediate(N.getOperand(1), imm)) {
771      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
772      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
773        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
774      } else {
775        Base = N.getOperand(0);
776      }
777      return true; // [r+i]
778    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
779      // Match LOAD (ADD (X, Lo(G))).
780      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
781             && "Cannot handle constant offsets yet!");
782      Disp = N.getOperand(1).getOperand(0);  // The global address.
783      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
784             Disp.getOpcode() == ISD::TargetConstantPool ||
785             Disp.getOpcode() == ISD::TargetJumpTable);
786      Base = N.getOperand(0);
787      return true;  // [&g+r]
788    }
789  } else if (N.getOpcode() == ISD::OR) {
790    short imm = 0;
791    if (isIntS16Immediate(N.getOperand(1), imm)) {
792      // If this is an or of disjoint bitfields, we can codegen this as an add
793      // (for better address arithmetic) if the LHS and RHS of the OR are
794      // provably disjoint.
795      uint64_t LHSKnownZero, LHSKnownOne;
796      DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
797      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
798        // If all of the bits are known zero on the LHS or RHS, the add won't
799        // carry.
800        Base = N.getOperand(0);
801        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
802        return true;
803      }
804    }
805  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
806    // Loading from a constant address.
807
808    // If this address fits entirely in a 16-bit sext immediate field, codegen
809    // this as "d, 0"
810    short Imm;
811    if (isIntS16Immediate(CN, Imm)) {
812      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
813      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
814      return true;
815    }
816
817    // Handle 32-bit sext immediates with LIS + addr mode.
818    if (CN->getValueType(0) == MVT::i32 ||
819        (int64_t)CN->getValue() == (int)CN->getValue()) {
820      int Addr = (int)CN->getValue();
821
822      // Otherwise, break this down into an LIS + disp.
823      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
824
825      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
826      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
827      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
828      return true;
829    }
830  }
831
832  Disp = DAG.getTargetConstant(0, getPointerTy());
833  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
834    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
835  else
836    Base = N;
837  return true;      // [r+0]
838}
839
840/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
841/// represented as an indexed [r+r] operation.
842bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
843                                                SDOperand &Index,
844                                                SelectionDAG &DAG) {
845  // Check to see if we can easily represent this as an [r+r] address.  This
846  // will fail if it thinks that the address is more profitably represented as
847  // reg+imm, e.g. where imm = 0.
848  if (SelectAddressRegReg(N, Base, Index, DAG))
849    return true;
850
851  // If the operand is an addition, always emit this as [r+r], since this is
852  // better (for code size, and execution, as the memop does the add for free)
853  // than emitting an explicit add.
854  if (N.getOpcode() == ISD::ADD) {
855    Base = N.getOperand(0);
856    Index = N.getOperand(1);
857    return true;
858  }
859
860  // Otherwise, do it the hard way, using R0 as the base register.
861  Base = DAG.getRegister(PPC::R0, N.getValueType());
862  Index = N;
863  return true;
864}
865
866/// SelectAddressRegImmShift - Returns true if the address N can be
867/// represented by a base register plus a signed 14-bit displacement
868/// [r+imm*4].  Suitable for use by STD and friends.
869bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
870                                                 SDOperand &Base,
871                                                 SelectionDAG &DAG) {
872  // If this can be more profitably realized as r+r, fail.
873  if (SelectAddressRegReg(N, Disp, Base, DAG))
874    return false;
875
876  if (N.getOpcode() == ISD::ADD) {
877    short imm = 0;
878    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
879      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
880      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
881        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
882      } else {
883        Base = N.getOperand(0);
884      }
885      return true; // [r+i]
886    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
887      // Match LOAD (ADD (X, Lo(G))).
888      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
889             && "Cannot handle constant offsets yet!");
890      Disp = N.getOperand(1).getOperand(0);  // The global address.
891      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
892             Disp.getOpcode() == ISD::TargetConstantPool ||
893             Disp.getOpcode() == ISD::TargetJumpTable);
894      Base = N.getOperand(0);
895      return true;  // [&g+r]
896    }
897  } else if (N.getOpcode() == ISD::OR) {
898    short imm = 0;
899    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
900      // If this is an or of disjoint bitfields, we can codegen this as an add
901      // (for better address arithmetic) if the LHS and RHS of the OR are
902      // provably disjoint.
903      uint64_t LHSKnownZero, LHSKnownOne;
904      DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
905      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
906        // If all of the bits are known zero on the LHS or RHS, the add won't
907        // carry.
908        Base = N.getOperand(0);
909        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
910        return true;
911      }
912    }
913  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
914    // Loading from a constant address.  Verify low two bits are clear.
915    if ((CN->getValue() & 3) == 0) {
916      // If this address fits entirely in a 14-bit sext immediate field, codegen
917      // this as "d, 0"
918      short Imm;
919      if (isIntS16Immediate(CN, Imm)) {
920        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
921        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
922        return true;
923      }
924
925      // Fold the low-part of 32-bit absolute addresses into addr mode.
926      if (CN->getValueType(0) == MVT::i32 ||
927          (int64_t)CN->getValue() == (int)CN->getValue()) {
928        int Addr = (int)CN->getValue();
929
930        // Otherwise, break this down into an LIS + disp.
931        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
932
933        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
934        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
935        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
936        return true;
937      }
938    }
939  }
940
941  Disp = DAG.getTargetConstant(0, getPointerTy());
942  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
943    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
944  else
945    Base = N;
946  return true;      // [r+0]
947}
948
949
950/// getPreIndexedAddressParts - returns true by value, base pointer and
951/// offset pointer and addressing mode by reference if the node's address
952/// can be legally represented as pre-indexed load / store address.
953bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
954                                                  SDOperand &Offset,
955                                                  ISD::MemIndexedMode &AM,
956                                                  SelectionDAG &DAG) {
957  // Disabled by default for now.
958  if (!EnablePPCPreinc) return false;
959
960  SDOperand Ptr;
961  MVT::ValueType VT;
962  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
963    Ptr = LD->getBasePtr();
964    VT = LD->getLoadedVT();
965
966  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
967    ST = ST;
968    Ptr = ST->getBasePtr();
969    VT  = ST->getStoredVT();
970  } else
971    return false;
972
973  // PowerPC doesn't have preinc load/store instructions for vectors.
974  if (MVT::isVector(VT))
975    return false;
976
977  // TODO: Check reg+reg first.
978
979  // LDU/STU use reg+imm*4, others use reg+imm.
980  if (VT != MVT::i64) {
981    // reg + imm
982    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
983      return false;
984  } else {
985    // reg + imm * 4.
986    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
987      return false;
988  }
989
990  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
991    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
992    // sext i32 to i64 when addr mode is r+i.
993    if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
994        LD->getExtensionType() == ISD::SEXTLOAD &&
995        isa<ConstantSDNode>(Offset))
996      return false;
997  }
998
999  AM = ISD::PRE_INC;
1000  return true;
1001}
1002
1003//===----------------------------------------------------------------------===//
1004//  LowerOperation implementation
1005//===----------------------------------------------------------------------===//
1006
1007static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
1008  MVT::ValueType PtrVT = Op.getValueType();
1009  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1010  Constant *C = CP->getConstVal();
1011  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1012  SDOperand Zero = DAG.getConstant(0, PtrVT);
1013
1014  const TargetMachine &TM = DAG.getTarget();
1015
1016  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1017  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1018
1019  // If this is a non-darwin platform, we don't support non-static relo models
1020  // yet.
1021  if (TM.getRelocationModel() == Reloc::Static ||
1022      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1023    // Generate non-pic code that has direct accesses to the constant pool.
1024    // The address of the global is just (hi(&g)+lo(&g)).
1025    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1026  }
1027
1028  if (TM.getRelocationModel() == Reloc::PIC_) {
1029    // With PIC, the first instruction is actually "GR+hi(&G)".
1030    Hi = DAG.getNode(ISD::ADD, PtrVT,
1031                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1032  }
1033
1034  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1035  return Lo;
1036}
1037
1038static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1039  MVT::ValueType PtrVT = Op.getValueType();
1040  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1041  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1042  SDOperand Zero = DAG.getConstant(0, PtrVT);
1043
1044  const TargetMachine &TM = DAG.getTarget();
1045
1046  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1047  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1048
1049  // If this is a non-darwin platform, we don't support non-static relo models
1050  // yet.
1051  if (TM.getRelocationModel() == Reloc::Static ||
1052      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1053    // Generate non-pic code that has direct accesses to the constant pool.
1054    // The address of the global is just (hi(&g)+lo(&g)).
1055    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1056  }
1057
1058  if (TM.getRelocationModel() == Reloc::PIC_) {
1059    // With PIC, the first instruction is actually "GR+hi(&G)".
1060    Hi = DAG.getNode(ISD::ADD, PtrVT,
1061                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1062  }
1063
1064  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1065  return Lo;
1066}
1067
1068static SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
1069  assert(0 && "TLS not implemented for PPC.");
1070}
1071
1072static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
1073  MVT::ValueType PtrVT = Op.getValueType();
1074  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1075  GlobalValue *GV = GSDN->getGlobal();
1076  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1077  SDOperand Zero = DAG.getConstant(0, PtrVT);
1078
1079  const TargetMachine &TM = DAG.getTarget();
1080
1081  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1082  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1083
1084  // If this is a non-darwin platform, we don't support non-static relo models
1085  // yet.
1086  if (TM.getRelocationModel() == Reloc::Static ||
1087      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1088    // Generate non-pic code that has direct accesses to globals.
1089    // The address of the global is just (hi(&g)+lo(&g)).
1090    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1091  }
1092
1093  if (TM.getRelocationModel() == Reloc::PIC_) {
1094    // With PIC, the first instruction is actually "GR+hi(&G)".
1095    Hi = DAG.getNode(ISD::ADD, PtrVT,
1096                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1097  }
1098
1099  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1100
1101  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1102    return Lo;
1103
1104  // If the global is weak or external, we have to go through the lazy
1105  // resolution stub.
1106  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1107}
1108
1109static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1110  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1111
1112  // If we're comparing for equality to zero, expose the fact that this is
1113  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1114  // fold the new nodes.
1115  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1116    if (C->isNullValue() && CC == ISD::SETEQ) {
1117      MVT::ValueType VT = Op.getOperand(0).getValueType();
1118      SDOperand Zext = Op.getOperand(0);
1119      if (VT < MVT::i32) {
1120        VT = MVT::i32;
1121        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1122      }
1123      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1124      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1125      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1126                                  DAG.getConstant(Log2b, MVT::i32));
1127      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1128    }
1129    // Leave comparisons against 0 and -1 alone for now, since they're usually
1130    // optimized.  FIXME: revisit this when we can custom lower all setcc
1131    // optimizations.
1132    if (C->isAllOnesValue() || C->isNullValue())
1133      return SDOperand();
1134  }
1135
1136  // If we have an integer seteq/setne, turn it into a compare against zero
1137  // by xor'ing the rhs with the lhs, which is faster than setting a
1138  // condition register, reading it back out, and masking the correct bit.  The
1139  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1140  // the result to other bit-twiddling opportunities.
1141  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1142  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1143    MVT::ValueType VT = Op.getValueType();
1144    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1145                                Op.getOperand(1));
1146    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1147  }
1148  return SDOperand();
1149}
1150
1151static SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1152                              int VarArgsFrameIndex,
1153                              int VarArgsStackOffset,
1154                              unsigned VarArgsNumGPR,
1155                              unsigned VarArgsNumFPR,
1156                              const PPCSubtarget &Subtarget) {
1157
1158  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1159}
1160
1161static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1162                              int VarArgsFrameIndex,
1163                              int VarArgsStackOffset,
1164                              unsigned VarArgsNumGPR,
1165                              unsigned VarArgsNumFPR,
1166                              const PPCSubtarget &Subtarget) {
1167
1168  if (Subtarget.isMachoABI()) {
1169    // vastart just stores the address of the VarArgsFrameIndex slot into the
1170    // memory location argument.
1171    MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1172    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1173    SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1174    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1175                        SV->getOffset());
1176  }
1177
1178  // For ELF 32 ABI we follow the layout of the va_list struct.
1179  // We suppose the given va_list is already allocated.
1180  //
1181  // typedef struct {
1182  //  char gpr;     /* index into the array of 8 GPRs
1183  //                 * stored in the register save area
1184  //                 * gpr=0 corresponds to r3,
1185  //                 * gpr=1 to r4, etc.
1186  //                 */
1187  //  char fpr;     /* index into the array of 8 FPRs
1188  //                 * stored in the register save area
1189  //                 * fpr=0 corresponds to f1,
1190  //                 * fpr=1 to f2, etc.
1191  //                 */
1192  //  char *overflow_arg_area;
1193  //                /* location on stack that holds
1194  //                 * the next overflow argument
1195  //                 */
1196  //  char *reg_save_area;
1197  //               /* where r3:r10 and f1:f8 (if saved)
1198  //                * are stored
1199  //                */
1200  // } va_list[1];
1201
1202
1203  SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1204  SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1205
1206
1207  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1208
1209  SDOperand StackOffset = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1210  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1211
1212  SDOperand ConstFrameOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8,
1213                                               PtrVT);
1214  SDOperand ConstStackOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8 - 1,
1215                                               PtrVT);
1216  SDOperand ConstFPROffset   = DAG.getConstant(1, PtrVT);
1217
1218  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1219
1220  // Store first byte : number of int regs
1221  SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1222                                      Op.getOperand(1), SV->getValue(),
1223                                      SV->getOffset());
1224  SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1225                                  ConstFPROffset);
1226
1227  // Store second byte : number of float regs
1228  SDOperand secondStore = DAG.getStore(firstStore, ArgFPR, nextPtr,
1229                                       SV->getValue(), SV->getOffset());
1230  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1231
1232  // Store second word : arguments given on stack
1233  SDOperand thirdStore = DAG.getStore(secondStore, StackOffset, nextPtr,
1234                                      SV->getValue(), SV->getOffset());
1235  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1236
1237  // Store third word : arguments given in registers
1238  return DAG.getStore(thirdStore, FR, nextPtr, SV->getValue(),
1239                      SV->getOffset());
1240
1241}
1242
1243#include "PPCGenCallingConv.inc"
1244
1245/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1246/// depending on which subtarget is selected.
1247static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1248  if (Subtarget.isMachoABI()) {
1249    static const unsigned FPR[] = {
1250      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1251      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1252    };
1253    return FPR;
1254  }
1255
1256
1257  static const unsigned FPR[] = {
1258    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1259    PPC::F8
1260  };
1261  return FPR;
1262}
1263
1264static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1265                                       int &VarArgsFrameIndex,
1266                                       int &VarArgsStackOffset,
1267                                       unsigned &VarArgsNumGPR,
1268                                       unsigned &VarArgsNumFPR,
1269                                       const PPCSubtarget &Subtarget) {
1270  // TODO: add description of PPC stack frame format, or at least some docs.
1271  //
1272  MachineFunction &MF = DAG.getMachineFunction();
1273  MachineFrameInfo *MFI = MF.getFrameInfo();
1274  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1275  SmallVector<SDOperand, 8> ArgValues;
1276  SDOperand Root = Op.getOperand(0);
1277
1278  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1279  bool isPPC64 = PtrVT == MVT::i64;
1280  bool isMachoABI = Subtarget.isMachoABI();
1281  bool isELF32_ABI = Subtarget.isELF32_ABI();
1282  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1283
1284  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1285
1286  static const unsigned GPR_32[] = {           // 32-bit registers.
1287    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1288    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1289  };
1290  static const unsigned GPR_64[] = {           // 64-bit registers.
1291    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1292    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1293  };
1294
1295  static const unsigned *FPR = GetFPR(Subtarget);
1296
1297  static const unsigned VR[] = {
1298    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1299    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1300  };
1301
1302  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1303  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1304  const unsigned Num_VR_Regs  = array_lengthof( VR);
1305
1306  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1307
1308  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1309
1310  // Add DAG nodes to load the arguments or copy them out of registers.  On
1311  // entry to a function on PPC, the arguments start after the linkage area,
1312  // although the first ones are often in registers.
1313  //
1314  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1315  // represented with two words (long long or double) must be copied to an
1316  // even GPR_idx value or to an even ArgOffset value.
1317
1318  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1319    SDOperand ArgVal;
1320    bool needsLoad = false;
1321    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1322    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1323    unsigned ArgSize = ObjSize;
1324    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1325    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1326    // See if next argument requires stack alignment in ELF
1327    bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1328      (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1329      (!(Flags & AlignFlag)));
1330
1331    unsigned CurArgOffset = ArgOffset;
1332    switch (ObjectVT) {
1333    default: assert(0 && "Unhandled argument type!");
1334    case MVT::i32:
1335      // Double word align in ELF
1336      if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1337      if (GPR_idx != Num_GPR_Regs) {
1338        unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1339        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1340        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1341        ++GPR_idx;
1342      } else {
1343        needsLoad = true;
1344        ArgSize = PtrByteSize;
1345      }
1346      // Stack align in ELF
1347      if (needsLoad && Expand && isELF32_ABI)
1348        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1349      // All int arguments reserve stack space in Macho ABI.
1350      if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1351      break;
1352
1353    case MVT::i64:  // PPC64
1354      if (GPR_idx != Num_GPR_Regs) {
1355        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1356        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1357        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1358        ++GPR_idx;
1359      } else {
1360        needsLoad = true;
1361      }
1362      // All int arguments reserve stack space in Macho ABI.
1363      if (isMachoABI || needsLoad) ArgOffset += 8;
1364      break;
1365
1366    case MVT::f32:
1367    case MVT::f64:
1368      // Every 4 bytes of argument space consumes one of the GPRs available for
1369      // argument passing.
1370      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1371        ++GPR_idx;
1372        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1373          ++GPR_idx;
1374      }
1375      if (FPR_idx != Num_FPR_Regs) {
1376        unsigned VReg;
1377        if (ObjectVT == MVT::f32)
1378          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1379        else
1380          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1381        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1382        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1383        ++FPR_idx;
1384      } else {
1385        needsLoad = true;
1386      }
1387
1388      // Stack align in ELF
1389      if (needsLoad && Expand && isELF32_ABI)
1390        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1391      // All FP arguments reserve stack space in Macho ABI.
1392      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1393      break;
1394    case MVT::v4f32:
1395    case MVT::v4i32:
1396    case MVT::v8i16:
1397    case MVT::v16i8:
1398      // Note that vector arguments in registers don't reserve stack space.
1399      if (VR_idx != Num_VR_Regs) {
1400        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1401        RegInfo.addLiveIn(VR[VR_idx], VReg);
1402        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1403        ++VR_idx;
1404      } else {
1405        // This should be simple, but requires getting 16-byte aligned stack
1406        // values.
1407        assert(0 && "Loading VR argument not implemented yet!");
1408        needsLoad = true;
1409      }
1410      break;
1411    }
1412
1413    // We need to load the argument to a virtual register if we determined above
1414    // that we ran out of physical registers of the appropriate type
1415    if (needsLoad) {
1416      // If the argument is actually used, emit a load from the right stack
1417      // slot.
1418      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1419        int FI = MFI->CreateFixedObject(ObjSize,
1420                                        CurArgOffset + (ArgSize - ObjSize));
1421        SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1422        ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1423      } else {
1424        // Don't emit a dead load.
1425        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1426      }
1427    }
1428
1429    ArgValues.push_back(ArgVal);
1430  }
1431
1432  // If the function takes variable number of arguments, make a frame index for
1433  // the start of the first vararg value... for expansion of llvm.va_start.
1434  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1435  if (isVarArg) {
1436
1437    int depth;
1438    if (isELF32_ABI) {
1439      VarArgsNumGPR = GPR_idx;
1440      VarArgsNumFPR = FPR_idx;
1441
1442      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1443      // pointer.
1444      depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1445                Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1446                MVT::getSizeInBits(PtrVT)/8);
1447
1448      VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1449                                                  ArgOffset);
1450
1451    }
1452    else
1453      depth = ArgOffset;
1454
1455    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1456                                               depth);
1457    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1458
1459    SmallVector<SDOperand, 8> MemOps;
1460
1461    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1462    // stored to the VarArgsFrameIndex on the stack.
1463    if (isELF32_ABI) {
1464      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1465        SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1466        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1467        MemOps.push_back(Store);
1468        // Increment the address by four for the next argument to store
1469        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1470        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1471      }
1472    }
1473
1474    // If this function is vararg, store any remaining integer argument regs
1475    // to their spots on the stack so that they may be loaded by deferencing the
1476    // result of va_next.
1477    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1478      unsigned VReg;
1479      if (isPPC64)
1480        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1481      else
1482        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1483
1484      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1485      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1486      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1487      MemOps.push_back(Store);
1488      // Increment the address by four for the next argument to store
1489      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1490      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1491    }
1492
1493    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1494    // on the stack.
1495    if (isELF32_ABI) {
1496      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1497        SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1498        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1499        MemOps.push_back(Store);
1500        // Increment the address by eight for the next argument to store
1501        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1502                                           PtrVT);
1503        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1504      }
1505
1506      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1507        unsigned VReg;
1508        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1509
1510        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1511        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1512        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1513        MemOps.push_back(Store);
1514        // Increment the address by eight for the next argument to store
1515        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1516                                           PtrVT);
1517        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1518      }
1519    }
1520
1521    if (!MemOps.empty())
1522      Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1523  }
1524
1525  ArgValues.push_back(Root);
1526
1527  // Return the new list of results.
1528  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1529                                    Op.Val->value_end());
1530  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1531}
1532
1533/// isCallCompatibleAddress - Return the immediate to use if the specified
1534/// 32-bit value is representable in the immediate field of a BxA instruction.
1535static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1536  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1537  if (!C) return 0;
1538
1539  int Addr = C->getValue();
1540  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1541      (Addr << 6 >> 6) != Addr)
1542    return 0;  // Top 6 bits have to be sext of immediate.
1543
1544  return DAG.getConstant((int)C->getValue() >> 2,
1545                         DAG.getTargetLoweringInfo().getPointerTy()).Val;
1546}
1547
1548
1549static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
1550                           const PPCSubtarget &Subtarget) {
1551  SDOperand Chain  = Op.getOperand(0);
1552  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1553  SDOperand Callee = Op.getOperand(4);
1554  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
1555
1556  bool isMachoABI = Subtarget.isMachoABI();
1557  bool isELF32_ABI  = Subtarget.isELF32_ABI();
1558
1559  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1560  bool isPPC64 = PtrVT == MVT::i64;
1561  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1562
1563  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1564  // SelectExpr to use to put the arguments in the appropriate registers.
1565  std::vector<SDOperand> args_to_use;
1566
1567  // Count how many bytes are to be pushed on the stack, including the linkage
1568  // area, and parameter passing area.  We start with 24/48 bytes, which is
1569  // prereserved space for [SP][CR][LR][3 x unused].
1570  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1571
1572  // Add up all the space actually used.
1573  for (unsigned i = 0; i != NumOps; ++i) {
1574    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1575    ArgSize = std::max(ArgSize, PtrByteSize);
1576    NumBytes += ArgSize;
1577  }
1578
1579  // The prolog code of the callee may store up to 8 GPR argument registers to
1580  // the stack, allowing va_start to index over them in memory if its varargs.
1581  // Because we cannot tell if this is needed on the caller side, we have to
1582  // conservatively assume that it is needed.  As such, make sure we have at
1583  // least enough stack space for the caller to store the 8 GPRs.
1584  NumBytes = std::max(NumBytes,
1585                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1586
1587  // Adjust the stack pointer for the new arguments...
1588  // These operations are automatically eliminated by the prolog/epilog pass
1589  Chain = DAG.getCALLSEQ_START(Chain,
1590                               DAG.getConstant(NumBytes, PtrVT));
1591
1592  // Set up a copy of the stack pointer for use loading and storing any
1593  // arguments that may not fit in the registers available for argument
1594  // passing.
1595  SDOperand StackPtr;
1596  if (isPPC64)
1597    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1598  else
1599    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1600
1601  // Figure out which arguments are going to go in registers, and which in
1602  // memory.  Also, if this is a vararg function, floating point operations
1603  // must be stored to our stack, and loaded into integer regs as well, if
1604  // any integer regs are available for argument passing.
1605  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1606  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1607
1608  static const unsigned GPR_32[] = {           // 32-bit registers.
1609    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1610    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1611  };
1612  static const unsigned GPR_64[] = {           // 64-bit registers.
1613    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1614    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1615  };
1616  static const unsigned *FPR = GetFPR(Subtarget);
1617
1618  static const unsigned VR[] = {
1619    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1620    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1621  };
1622  const unsigned NumGPRs = array_lengthof(GPR_32);
1623  const unsigned NumFPRs = isMachoABI ? 13 : 8;
1624  const unsigned NumVRs  = array_lengthof( VR);
1625
1626  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1627
1628  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1629  SmallVector<SDOperand, 8> MemOpChains;
1630  for (unsigned i = 0; i != NumOps; ++i) {
1631    bool inMem = false;
1632    SDOperand Arg = Op.getOperand(5+2*i);
1633    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1634    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1635    // See if next argument requires stack alignment in ELF
1636    unsigned next = 5+2*(i+1)+1;
1637    bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1638      (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1639      (!(Flags & AlignFlag)));
1640
1641    // PtrOff will be used to store the current argument to the stack if a
1642    // register cannot be found for it.
1643    SDOperand PtrOff;
1644
1645    // Stack align in ELF 32
1646    if (isELF32_ABI && Expand)
1647      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1648                               StackPtr.getValueType());
1649    else
1650      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1651
1652    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1653
1654    // On PPC64, promote integers to 64-bit values.
1655    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1656      unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1657
1658      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1659    }
1660
1661    switch (Arg.getValueType()) {
1662    default: assert(0 && "Unexpected ValueType for argument!");
1663    case MVT::i32:
1664    case MVT::i64:
1665      // Double word align in ELF
1666      if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1667      if (GPR_idx != NumGPRs) {
1668        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1669      } else {
1670        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1671        inMem = true;
1672      }
1673      if (inMem || isMachoABI) {
1674        // Stack align in ELF
1675        if (isELF32_ABI && Expand)
1676          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1677
1678        ArgOffset += PtrByteSize;
1679      }
1680      break;
1681    case MVT::f32:
1682    case MVT::f64:
1683      if (isVarArg) {
1684        // Float varargs need to be promoted to double.
1685        if (Arg.getValueType() == MVT::f32)
1686          Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1687      }
1688
1689      if (FPR_idx != NumFPRs) {
1690        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1691
1692        if (isVarArg) {
1693          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1694          MemOpChains.push_back(Store);
1695
1696          // Float varargs are always shadowed in available integer registers
1697          if (GPR_idx != NumGPRs) {
1698            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1699            MemOpChains.push_back(Load.getValue(1));
1700            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1701                                                                Load));
1702          }
1703          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1704            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1705            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1706            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1707            MemOpChains.push_back(Load.getValue(1));
1708            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1709                                                                Load));
1710          }
1711        } else {
1712          // If we have any FPRs remaining, we may also have GPRs remaining.
1713          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1714          // GPRs.
1715          if (isMachoABI) {
1716            if (GPR_idx != NumGPRs)
1717              ++GPR_idx;
1718            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1719                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
1720              ++GPR_idx;
1721          }
1722        }
1723      } else {
1724        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1725        inMem = true;
1726      }
1727      if (inMem || isMachoABI) {
1728        // Stack align in ELF
1729        if (isELF32_ABI && Expand)
1730          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1731        if (isPPC64)
1732          ArgOffset += 8;
1733        else
1734          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1735      }
1736      break;
1737    case MVT::v4f32:
1738    case MVT::v4i32:
1739    case MVT::v8i16:
1740    case MVT::v16i8:
1741      assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1742      assert(VR_idx != NumVRs &&
1743             "Don't support passing more than 12 vector args yet!");
1744      RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1745      break;
1746    }
1747  }
1748  if (!MemOpChains.empty())
1749    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1750                        &MemOpChains[0], MemOpChains.size());
1751
1752  // Build a sequence of copy-to-reg nodes chained together with token chain
1753  // and flag operands which copy the outgoing args into the appropriate regs.
1754  SDOperand InFlag;
1755  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1756    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1757                             InFlag);
1758    InFlag = Chain.getValue(1);
1759  }
1760
1761  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1762  if (isVarArg && isELF32_ABI) {
1763    SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1764    Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1765    InFlag = Chain.getValue(1);
1766  }
1767
1768  std::vector<MVT::ValueType> NodeTys;
1769  NodeTys.push_back(MVT::Other);   // Returns a chain
1770  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1771
1772  SmallVector<SDOperand, 8> Ops;
1773  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1774
1775  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1776  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1777  // node so that legalize doesn't hack it.
1778  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1779    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1780  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1781    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1782  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1783    // If this is an absolute destination address, use the munged value.
1784    Callee = SDOperand(Dest, 0);
1785  else {
1786    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
1787    // to do the call, we can't use PPCISD::CALL.
1788    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1789    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1790    InFlag = Chain.getValue(1);
1791
1792    // Copy the callee address into R12 on darwin.
1793    if (isMachoABI) {
1794      Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1795      InFlag = Chain.getValue(1);
1796    }
1797
1798    NodeTys.clear();
1799    NodeTys.push_back(MVT::Other);
1800    NodeTys.push_back(MVT::Flag);
1801    Ops.push_back(Chain);
1802    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1803    Callee.Val = 0;
1804  }
1805
1806  // If this is a direct call, pass the chain and the callee.
1807  if (Callee.Val) {
1808    Ops.push_back(Chain);
1809    Ops.push_back(Callee);
1810  }
1811
1812  // Add argument registers to the end of the list so that they are known live
1813  // into the call.
1814  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1815    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1816                                  RegsToPass[i].second.getValueType()));
1817
1818  if (InFlag.Val)
1819    Ops.push_back(InFlag);
1820  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1821  InFlag = Chain.getValue(1);
1822
1823  Chain = DAG.getCALLSEQ_END(Chain,
1824                             DAG.getConstant(NumBytes, PtrVT),
1825                             DAG.getConstant(0, PtrVT),
1826                             InFlag);
1827  if (Op.Val->getValueType(0) != MVT::Other)
1828    InFlag = Chain.getValue(1);
1829
1830  SDOperand ResultVals[3];
1831  unsigned NumResults = 0;
1832  NodeTys.clear();
1833
1834  // If the call has results, copy the values out of the ret val registers.
1835  switch (Op.Val->getValueType(0)) {
1836  default: assert(0 && "Unexpected ret value!");
1837  case MVT::Other: break;
1838  case MVT::i32:
1839    if (Op.Val->getValueType(1) == MVT::i32) {
1840      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1841      ResultVals[0] = Chain.getValue(0);
1842      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
1843                                 Chain.getValue(2)).getValue(1);
1844      ResultVals[1] = Chain.getValue(0);
1845      NumResults = 2;
1846      NodeTys.push_back(MVT::i32);
1847    } else {
1848      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1849      ResultVals[0] = Chain.getValue(0);
1850      NumResults = 1;
1851    }
1852    NodeTys.push_back(MVT::i32);
1853    break;
1854  case MVT::i64:
1855    Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1856    ResultVals[0] = Chain.getValue(0);
1857    NumResults = 1;
1858    NodeTys.push_back(MVT::i64);
1859    break;
1860  case MVT::f64:
1861    if (Op.Val->getValueType(1) == MVT::f64) {
1862      Chain = DAG.getCopyFromReg(Chain, PPC::F1, MVT::f64, InFlag).getValue(1);
1863      ResultVals[0] = Chain.getValue(0);
1864      Chain = DAG.getCopyFromReg(Chain, PPC::F2, MVT::f64,
1865                                 Chain.getValue(2)).getValue(1);
1866      ResultVals[1] = Chain.getValue(0);
1867      NumResults = 2;
1868      NodeTys.push_back(MVT::f64);
1869      NodeTys.push_back(MVT::f64);
1870      break;
1871    }
1872    // else fall through
1873  case MVT::f32:
1874    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1875                               InFlag).getValue(1);
1876    ResultVals[0] = Chain.getValue(0);
1877    NumResults = 1;
1878    NodeTys.push_back(Op.Val->getValueType(0));
1879    break;
1880  case MVT::v4f32:
1881  case MVT::v4i32:
1882  case MVT::v8i16:
1883  case MVT::v16i8:
1884    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1885                                   InFlag).getValue(1);
1886    ResultVals[0] = Chain.getValue(0);
1887    NumResults = 1;
1888    NodeTys.push_back(Op.Val->getValueType(0));
1889    break;
1890  }
1891
1892  NodeTys.push_back(MVT::Other);
1893
1894  // If the function returns void, just return the chain.
1895  if (NumResults == 0)
1896    return Chain;
1897
1898  // Otherwise, merge everything together with a MERGE_VALUES node.
1899  ResultVals[NumResults++] = Chain;
1900  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1901                              ResultVals, NumResults);
1902  return Res.getValue(Op.ResNo);
1903}
1904
1905static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) {
1906  SmallVector<CCValAssign, 16> RVLocs;
1907  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1908  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1909  CCState CCInfo(CC, isVarArg, TM, RVLocs);
1910  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
1911
1912  // If this is the first return lowered for this function, add the regs to the
1913  // liveout set for the function.
1914  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1915    for (unsigned i = 0; i != RVLocs.size(); ++i)
1916      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1917  }
1918
1919  SDOperand Chain = Op.getOperand(0);
1920  SDOperand Flag;
1921
1922  // Copy the result values into the output registers.
1923  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1924    CCValAssign &VA = RVLocs[i];
1925    assert(VA.isRegLoc() && "Can only return in registers!");
1926    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
1927    Flag = Chain.getValue(1);
1928  }
1929
1930  if (Flag.Val)
1931    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
1932  else
1933    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
1934}
1935
1936static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1937                                   const PPCSubtarget &Subtarget) {
1938  // When we pop the dynamic allocation we need to restore the SP link.
1939
1940  // Get the corect type for pointers.
1941  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1942
1943  // Construct the stack pointer operand.
1944  bool IsPPC64 = Subtarget.isPPC64();
1945  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1946  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1947
1948  // Get the operands for the STACKRESTORE.
1949  SDOperand Chain = Op.getOperand(0);
1950  SDOperand SaveSP = Op.getOperand(1);
1951
1952  // Load the old link SP.
1953  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1954
1955  // Restore the stack pointer.
1956  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1957
1958  // Store the old link SP.
1959  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1960}
1961
1962static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1963                                         const PPCSubtarget &Subtarget) {
1964  MachineFunction &MF = DAG.getMachineFunction();
1965  bool IsPPC64 = Subtarget.isPPC64();
1966  bool isMachoABI = Subtarget.isMachoABI();
1967
1968  // Get current frame pointer save index.  The users of this index will be
1969  // primarily DYNALLOC instructions.
1970  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1971  int FPSI = FI->getFramePointerSaveIndex();
1972
1973  // If the frame pointer save index hasn't been defined yet.
1974  if (!FPSI) {
1975    // Find out what the fix offset of the frame pointer save area.
1976    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
1977
1978    // Allocate the frame index for frame pointer save area.
1979    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
1980    // Save the result.
1981    FI->setFramePointerSaveIndex(FPSI);
1982  }
1983
1984  // Get the inputs.
1985  SDOperand Chain = Op.getOperand(0);
1986  SDOperand Size  = Op.getOperand(1);
1987
1988  // Get the corect type for pointers.
1989  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1990  // Negate the size.
1991  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1992                                  DAG.getConstant(0, PtrVT), Size);
1993  // Construct a node for the frame pointer save index.
1994  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1995  // Build a DYNALLOC node.
1996  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1997  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1998  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1999}
2000
2001
2002/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2003/// possible.
2004static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
2005  // Not FP? Not a fsel.
2006  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2007      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2008    return SDOperand();
2009
2010  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2011
2012  // Cannot handle SETEQ/SETNE.
2013  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2014
2015  MVT::ValueType ResVT = Op.getValueType();
2016  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2017  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2018  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2019
2020  // If the RHS of the comparison is a 0.0, we don't need to do the
2021  // subtraction at all.
2022  if (isFloatingPointZero(RHS))
2023    switch (CC) {
2024    default: break;       // SETUO etc aren't handled by fsel.
2025    case ISD::SETULT:
2026    case ISD::SETOLT:
2027    case ISD::SETLT:
2028      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2029    case ISD::SETUGE:
2030    case ISD::SETOGE:
2031    case ISD::SETGE:
2032      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2033        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2034      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2035    case ISD::SETUGT:
2036    case ISD::SETOGT:
2037    case ISD::SETGT:
2038      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2039    case ISD::SETULE:
2040    case ISD::SETOLE:
2041    case ISD::SETLE:
2042      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2043        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2044      return DAG.getNode(PPCISD::FSEL, ResVT,
2045                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2046    }
2047
2048  SDOperand Cmp;
2049  switch (CC) {
2050  default: break;       // SETUO etc aren't handled by fsel.
2051  case ISD::SETULT:
2052  case ISD::SETOLT:
2053  case ISD::SETLT:
2054    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2055    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2056      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2057      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2058  case ISD::SETUGE:
2059  case ISD::SETOGE:
2060  case ISD::SETGE:
2061    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2062    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2063      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2064      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2065  case ISD::SETUGT:
2066  case ISD::SETOGT:
2067  case ISD::SETGT:
2068    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2069    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2070      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2071      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2072  case ISD::SETULE:
2073  case ISD::SETOLE:
2074  case ISD::SETLE:
2075    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2076    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2077      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2078      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2079  }
2080  return SDOperand();
2081}
2082
2083// FIXME: Split this code up when LegalizeDAGTypes lands.
2084static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2085  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2086  SDOperand Src = Op.getOperand(0);
2087  if (Src.getValueType() == MVT::f32)
2088    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2089
2090  SDOperand Tmp;
2091  switch (Op.getValueType()) {
2092  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2093  case MVT::i32:
2094    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2095    break;
2096  case MVT::i64:
2097    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2098    break;
2099  }
2100
2101  // Convert the FP value to an int value through memory.
2102  SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2103
2104  // Emit a store to the stack slot.
2105  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2106
2107  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2108  // add in a bias.
2109  if (Op.getValueType() == MVT::i32)
2110    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2111                        DAG.getConstant(4, FIPtr.getValueType()));
2112  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2113}
2114
2115static SDOperand LowerFP_ROUND_INREG(SDOperand Op, SelectionDAG &DAG) {
2116  assert(Op.getValueType() == MVT::ppcf128);
2117  SDNode *Node = Op.Val;
2118  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2119  assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
2120  SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2121  SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2122
2123  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2124  // of the long double, and puts FPSCR back the way it was.  We do not
2125  // actually model FPSCR.
2126  std::vector<MVT::ValueType> NodeTys;
2127  SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2128
2129  NodeTys.push_back(MVT::f64);   // Return register
2130  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2131  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2132  MFFSreg = Result.getValue(0);
2133  InFlag = Result.getValue(1);
2134
2135  NodeTys.clear();
2136  NodeTys.push_back(MVT::Flag);   // Returns a flag
2137  Ops[0] = DAG.getConstant(31, MVT::i32);
2138  Ops[1] = InFlag;
2139  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2140  InFlag = Result.getValue(0);
2141
2142  NodeTys.clear();
2143  NodeTys.push_back(MVT::Flag);   // Returns a flag
2144  Ops[0] = DAG.getConstant(30, MVT::i32);
2145  Ops[1] = InFlag;
2146  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2147  InFlag = Result.getValue(0);
2148
2149  NodeTys.clear();
2150  NodeTys.push_back(MVT::f64);    // result of add
2151  NodeTys.push_back(MVT::Flag);   // Returns a flag
2152  Ops[0] = Lo;
2153  Ops[1] = Hi;
2154  Ops[2] = InFlag;
2155  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2156  FPreg = Result.getValue(0);
2157  InFlag = Result.getValue(1);
2158
2159  NodeTys.clear();
2160  NodeTys.push_back(MVT::f64);
2161  Ops[0] = DAG.getConstant(1, MVT::i32);
2162  Ops[1] = MFFSreg;
2163  Ops[2] = FPreg;
2164  Ops[3] = InFlag;
2165  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2166  FPreg = Result.getValue(0);
2167
2168  // We know the low half is about to be thrown away, so just use something
2169  // convenient.
2170  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2171}
2172
2173static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2174  if (Op.getOperand(0).getValueType() == MVT::i64) {
2175    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2176    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2177    if (Op.getValueType() == MVT::f32)
2178      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2179    return FP;
2180  }
2181
2182  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2183         "Unhandled SINT_TO_FP type in custom expander!");
2184  // Since we only generate this in 64-bit mode, we can take advantage of
2185  // 64-bit registers.  In particular, sign extend the input value into the
2186  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2187  // then lfd it and fcfid it.
2188  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2189  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2190  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2191  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2192
2193  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2194                                Op.getOperand(0));
2195
2196  // STD the extended value into the stack slot.
2197  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2198                                DAG.getEntryNode(), Ext64, FIdx,
2199                                DAG.getSrcValue(NULL));
2200  // Load the value as a double.
2201  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2202
2203  // FCFID it and return it.
2204  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2205  if (Op.getValueType() == MVT::f32)
2206    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2207  return FP;
2208}
2209
2210static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2211  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2212         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
2213
2214  // Expand into a bunch of logical ops.  Note that these ops
2215  // depend on the PPC behavior for oversized shift amounts.
2216  SDOperand Lo = Op.getOperand(0);
2217  SDOperand Hi = Op.getOperand(1);
2218  SDOperand Amt = Op.getOperand(2);
2219
2220  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2221                               DAG.getConstant(32, MVT::i32), Amt);
2222  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
2223  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
2224  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2225  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2226                               DAG.getConstant(-32U, MVT::i32));
2227  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
2228  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2229  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
2230  SDOperand OutOps[] = { OutLo, OutHi };
2231  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2232                     OutOps, 2);
2233}
2234
2235static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2236  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2237         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
2238
2239  // Otherwise, expand into a bunch of logical ops.  Note that these ops
2240  // depend on the PPC behavior for oversized shift amounts.
2241  SDOperand Lo = Op.getOperand(0);
2242  SDOperand Hi = Op.getOperand(1);
2243  SDOperand Amt = Op.getOperand(2);
2244
2245  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2246                               DAG.getConstant(32, MVT::i32), Amt);
2247  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2248  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2249  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2250  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2251                               DAG.getConstant(-32U, MVT::i32));
2252  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
2253  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2254  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
2255  SDOperand OutOps[] = { OutLo, OutHi };
2256  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2257                     OutOps, 2);
2258}
2259
2260static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2261  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2262         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
2263
2264  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
2265  SDOperand Lo = Op.getOperand(0);
2266  SDOperand Hi = Op.getOperand(1);
2267  SDOperand Amt = Op.getOperand(2);
2268
2269  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2270                               DAG.getConstant(32, MVT::i32), Amt);
2271  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2272  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2273  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2274  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2275                               DAG.getConstant(-32U, MVT::i32));
2276  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
2277  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
2278  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
2279                                    Tmp4, Tmp6, ISD::SETLE);
2280  SDOperand OutOps[] = { OutLo, OutHi };
2281  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2282                     OutOps, 2);
2283}
2284
2285//===----------------------------------------------------------------------===//
2286// Vector related lowering.
2287//
2288
2289// If this is a vector of constants or undefs, get the bits.  A bit in
2290// UndefBits is set if the corresponding element of the vector is an
2291// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2292// zero.   Return true if this is not an array of constants, false if it is.
2293//
2294static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2295                                       uint64_t UndefBits[2]) {
2296  // Start with zero'd results.
2297  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2298
2299  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2300  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2301    SDOperand OpVal = BV->getOperand(i);
2302
2303    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
2304    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
2305
2306    uint64_t EltBits = 0;
2307    if (OpVal.getOpcode() == ISD::UNDEF) {
2308      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2309      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2310      continue;
2311    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2312      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2313    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2314      assert(CN->getValueType(0) == MVT::f32 &&
2315             "Only one legal FP vector type!");
2316      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
2317    } else {
2318      // Nonconstant element.
2319      return true;
2320    }
2321
2322    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2323  }
2324
2325  //printf("%llx %llx  %llx %llx\n",
2326  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2327  return false;
2328}
2329
2330// If this is a splat (repetition) of a value across the whole vector, return
2331// the smallest size that splats it.  For example, "0x01010101010101..." is a
2332// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2333// SplatSize = 1 byte.
2334static bool isConstantSplat(const uint64_t Bits128[2],
2335                            const uint64_t Undef128[2],
2336                            unsigned &SplatBits, unsigned &SplatUndef,
2337                            unsigned &SplatSize) {
2338
2339  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
2340  // the same as the lower 64-bits, ignoring undefs.
2341  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2342    return false;  // Can't be a splat if two pieces don't match.
2343
2344  uint64_t Bits64  = Bits128[0] | Bits128[1];
2345  uint64_t Undef64 = Undef128[0] & Undef128[1];
2346
2347  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2348  // undefs.
2349  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2350    return false;  // Can't be a splat if two pieces don't match.
2351
2352  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2353  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2354
2355  // If the top 16-bits are different than the lower 16-bits, ignoring
2356  // undefs, we have an i32 splat.
2357  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2358    SplatBits = Bits32;
2359    SplatUndef = Undef32;
2360    SplatSize = 4;
2361    return true;
2362  }
2363
2364  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
2365  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2366
2367  // If the top 8-bits are different than the lower 8-bits, ignoring
2368  // undefs, we have an i16 splat.
2369  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2370    SplatBits = Bits16;
2371    SplatUndef = Undef16;
2372    SplatSize = 2;
2373    return true;
2374  }
2375
2376  // Otherwise, we have an 8-bit splat.
2377  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
2378  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2379  SplatSize = 1;
2380  return true;
2381}
2382
2383/// BuildSplatI - Build a canonical splati of Val with an element size of
2384/// SplatSize.  Cast the result to VT.
2385static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2386                             SelectionDAG &DAG) {
2387  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2388
2389  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2390    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2391  };
2392
2393  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2394
2395  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2396  if (Val == -1)
2397    SplatSize = 1;
2398
2399  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2400
2401  // Build a canonical splat for this value.
2402  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2403  SmallVector<SDOperand, 8> Ops;
2404  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2405  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2406                              &Ops[0], Ops.size());
2407  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2408}
2409
2410/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2411/// specified intrinsic ID.
2412static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2413                                  SelectionDAG &DAG,
2414                                  MVT::ValueType DestVT = MVT::Other) {
2415  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2416  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2417                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2418}
2419
2420/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2421/// specified intrinsic ID.
2422static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2423                                  SDOperand Op2, SelectionDAG &DAG,
2424                                  MVT::ValueType DestVT = MVT::Other) {
2425  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2426  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2427                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2428}
2429
2430
2431/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2432/// amount.  The result has the specified value type.
2433static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2434                             MVT::ValueType VT, SelectionDAG &DAG) {
2435  // Force LHS/RHS to be the right type.
2436  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2437  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2438
2439  SDOperand Ops[16];
2440  for (unsigned i = 0; i != 16; ++i)
2441    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2442  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2443                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2444  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2445}
2446
2447// If this is a case we can't handle, return null and let the default
2448// expansion code take care of it.  If we CAN select this case, and if it
2449// selects to a single instruction, return Op.  Otherwise, if we can codegen
2450// this case more efficiently than a constant pool load, lower it to the
2451// sequence of ops that should be used.
2452static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2453  // If this is a vector of constants or undefs, get the bits.  A bit in
2454  // UndefBits is set if the corresponding element of the vector is an
2455  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2456  // zero.
2457  uint64_t VectorBits[2];
2458  uint64_t UndefBits[2];
2459  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2460    return SDOperand();   // Not a constant vector.
2461
2462  // If this is a splat (repetition) of a value across the whole vector, return
2463  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2464  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2465  // SplatSize = 1 byte.
2466  unsigned SplatBits, SplatUndef, SplatSize;
2467  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2468    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2469
2470    // First, handle single instruction cases.
2471
2472    // All zeros?
2473    if (SplatBits == 0) {
2474      // Canonicalize all zero vectors to be v4i32.
2475      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2476        SDOperand Z = DAG.getConstant(0, MVT::i32);
2477        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2478        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2479      }
2480      return Op;
2481    }
2482
2483    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2484    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2485    if (SextVal >= -16 && SextVal <= 15)
2486      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2487
2488
2489    // Two instruction sequences.
2490
2491    // If this value is in the range [-32,30] and is even, use:
2492    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2493    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2494      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2495      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2496    }
2497
2498    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2499    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2500    // for fneg/fabs.
2501    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2502      // Make -1 and vspltisw -1:
2503      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2504
2505      // Make the VSLW intrinsic, computing 0x8000_0000.
2506      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2507                                       OnesV, DAG);
2508
2509      // xor by OnesV to invert it.
2510      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2511      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2512    }
2513
2514    // Check to see if this is a wide variety of vsplti*, binop self cases.
2515    unsigned SplatBitSize = SplatSize*8;
2516    static const signed char SplatCsts[] = {
2517      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2518      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2519    };
2520
2521    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
2522      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2523      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2524      int i = SplatCsts[idx];
2525
2526      // Figure out what shift amount will be used by altivec if shifted by i in
2527      // this splat size.
2528      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2529
2530      // vsplti + shl self.
2531      if (SextVal == (i << (int)TypeShiftAmt)) {
2532        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2533        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2534          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2535          Intrinsic::ppc_altivec_vslw
2536        };
2537        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2538        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2539      }
2540
2541      // vsplti + srl self.
2542      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2543        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2544        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2545          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2546          Intrinsic::ppc_altivec_vsrw
2547        };
2548        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2549        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2550      }
2551
2552      // vsplti + sra self.
2553      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2554        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2555        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2556          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2557          Intrinsic::ppc_altivec_vsraw
2558        };
2559        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2560        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2561      }
2562
2563      // vsplti + rol self.
2564      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2565                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2566        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2567        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2568          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2569          Intrinsic::ppc_altivec_vrlw
2570        };
2571        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2572        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2573      }
2574
2575      // t = vsplti c, result = vsldoi t, t, 1
2576      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2577        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2578        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2579      }
2580      // t = vsplti c, result = vsldoi t, t, 2
2581      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2582        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2583        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2584      }
2585      // t = vsplti c, result = vsldoi t, t, 3
2586      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2587        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2588        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2589      }
2590    }
2591
2592    // Three instruction sequences.
2593
2594    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2595    if (SextVal >= 0 && SextVal <= 31) {
2596      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2597      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2598      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
2599      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2600    }
2601    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2602    if (SextVal >= -31 && SextVal <= 0) {
2603      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2604      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2605      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
2606      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2607    }
2608  }
2609
2610  return SDOperand();
2611}
2612
2613/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2614/// the specified operations to build the shuffle.
2615static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2616                                        SDOperand RHS, SelectionDAG &DAG) {
2617  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2618  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
2619  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2620
2621  enum {
2622    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2623    OP_VMRGHW,
2624    OP_VMRGLW,
2625    OP_VSPLTISW0,
2626    OP_VSPLTISW1,
2627    OP_VSPLTISW2,
2628    OP_VSPLTISW3,
2629    OP_VSLDOI4,
2630    OP_VSLDOI8,
2631    OP_VSLDOI12
2632  };
2633
2634  if (OpNum == OP_COPY) {
2635    if (LHSID == (1*9+2)*9+3) return LHS;
2636    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2637    return RHS;
2638  }
2639
2640  SDOperand OpLHS, OpRHS;
2641  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2642  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2643
2644  unsigned ShufIdxs[16];
2645  switch (OpNum) {
2646  default: assert(0 && "Unknown i32 permute!");
2647  case OP_VMRGHW:
2648    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
2649    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2650    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
2651    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2652    break;
2653  case OP_VMRGLW:
2654    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2655    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2656    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2657    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2658    break;
2659  case OP_VSPLTISW0:
2660    for (unsigned i = 0; i != 16; ++i)
2661      ShufIdxs[i] = (i&3)+0;
2662    break;
2663  case OP_VSPLTISW1:
2664    for (unsigned i = 0; i != 16; ++i)
2665      ShufIdxs[i] = (i&3)+4;
2666    break;
2667  case OP_VSPLTISW2:
2668    for (unsigned i = 0; i != 16; ++i)
2669      ShufIdxs[i] = (i&3)+8;
2670    break;
2671  case OP_VSPLTISW3:
2672    for (unsigned i = 0; i != 16; ++i)
2673      ShufIdxs[i] = (i&3)+12;
2674    break;
2675  case OP_VSLDOI4:
2676    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2677  case OP_VSLDOI8:
2678    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2679  case OP_VSLDOI12:
2680    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2681  }
2682  SDOperand Ops[16];
2683  for (unsigned i = 0; i != 16; ++i)
2684    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2685
2686  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2687                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2688}
2689
2690/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
2691/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
2692/// return the code it can be lowered into.  Worst case, it can always be
2693/// lowered into a vperm.
2694static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2695  SDOperand V1 = Op.getOperand(0);
2696  SDOperand V2 = Op.getOperand(1);
2697  SDOperand PermMask = Op.getOperand(2);
2698
2699  // Cases that are handled by instructions that take permute immediates
2700  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2701  // selected by the instruction selector.
2702  if (V2.getOpcode() == ISD::UNDEF) {
2703    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2704        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2705        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2706        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2707        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2708        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2709        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2710        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2711        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2712        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2713        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2714        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2715      return Op;
2716    }
2717  }
2718
2719  // Altivec has a variety of "shuffle immediates" that take two vector inputs
2720  // and produce a fixed permutation.  If any of these match, do not lower to
2721  // VPERM.
2722  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2723      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2724      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2725      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2726      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2727      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2728      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2729      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2730      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2731    return Op;
2732
2733  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
2734  // perfect shuffle table to emit an optimal matching sequence.
2735  unsigned PFIndexes[4];
2736  bool isFourElementShuffle = true;
2737  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2738    unsigned EltNo = 8;   // Start out undef.
2739    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
2740      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2741        continue;   // Undef, ignore it.
2742
2743      unsigned ByteSource =
2744        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2745      if ((ByteSource & 3) != j) {
2746        isFourElementShuffle = false;
2747        break;
2748      }
2749
2750      if (EltNo == 8) {
2751        EltNo = ByteSource/4;
2752      } else if (EltNo != ByteSource/4) {
2753        isFourElementShuffle = false;
2754        break;
2755      }
2756    }
2757    PFIndexes[i] = EltNo;
2758  }
2759
2760  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2761  // perfect shuffle vector to determine if it is cost effective to do this as
2762  // discrete instructions, or whether we should use a vperm.
2763  if (isFourElementShuffle) {
2764    // Compute the index in the perfect shuffle table.
2765    unsigned PFTableIndex =
2766      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2767
2768    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2769    unsigned Cost  = (PFEntry >> 30);
2770
2771    // Determining when to avoid vperm is tricky.  Many things affect the cost
2772    // of vperm, particularly how many times the perm mask needs to be computed.
2773    // For example, if the perm mask can be hoisted out of a loop or is already
2774    // used (perhaps because there are multiple permutes with the same shuffle
2775    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
2776    // the loop requires an extra register.
2777    //
2778    // As a compromise, we only emit discrete instructions if the shuffle can be
2779    // generated in 3 or fewer operations.  When we have loop information
2780    // available, if this block is within a loop, we should avoid using vperm
2781    // for 3-operation perms and use a constant pool load instead.
2782    if (Cost < 3)
2783      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2784  }
2785
2786  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2787  // vector that will get spilled to the constant pool.
2788  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2789
2790  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2791  // that it is in input element units, not in bytes.  Convert now.
2792  MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
2793  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2794
2795  SmallVector<SDOperand, 16> ResultMask;
2796  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2797    unsigned SrcElt;
2798    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2799      SrcElt = 0;
2800    else
2801      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2802
2803    for (unsigned j = 0; j != BytesPerElement; ++j)
2804      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2805                                           MVT::i8));
2806  }
2807
2808  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2809                                    &ResultMask[0], ResultMask.size());
2810  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2811}
2812
2813/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2814/// altivec comparison.  If it is, return true and fill in Opc/isDot with
2815/// information about the intrinsic.
2816static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2817                                  bool &isDot) {
2818  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2819  CompareOpc = -1;
2820  isDot = false;
2821  switch (IntrinsicID) {
2822  default: return false;
2823    // Comparison predicates.
2824  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
2825  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2826  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
2827  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
2828  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2829  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2830  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2831  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2832  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2833  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2834  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2835  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2836  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2837
2838    // Normal Comparisons.
2839  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
2840  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
2841  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
2842  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
2843  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
2844  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
2845  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
2846  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
2847  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
2848  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
2849  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
2850  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
2851  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
2852  }
2853  return true;
2854}
2855
2856/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2857/// lower, do it, otherwise return null.
2858static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2859  // If this is a lowered altivec predicate compare, CompareOpc is set to the
2860  // opcode number of the comparison.
2861  int CompareOpc;
2862  bool isDot;
2863  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2864    return SDOperand();    // Don't custom lower most intrinsics.
2865
2866  // If this is a non-dot comparison, make the VCMP node and we are done.
2867  if (!isDot) {
2868    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2869                                Op.getOperand(1), Op.getOperand(2),
2870                                DAG.getConstant(CompareOpc, MVT::i32));
2871    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2872  }
2873
2874  // Create the PPCISD altivec 'dot' comparison node.
2875  SDOperand Ops[] = {
2876    Op.getOperand(2),  // LHS
2877    Op.getOperand(3),  // RHS
2878    DAG.getConstant(CompareOpc, MVT::i32)
2879  };
2880  std::vector<MVT::ValueType> VTs;
2881  VTs.push_back(Op.getOperand(2).getValueType());
2882  VTs.push_back(MVT::Flag);
2883  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2884
2885  // Now that we have the comparison, emit a copy from the CR to a GPR.
2886  // This is flagged to the above dot comparison.
2887  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2888                                DAG.getRegister(PPC::CR6, MVT::i32),
2889                                CompNode.getValue(1));
2890
2891  // Unpack the result based on how the target uses it.
2892  unsigned BitNo;   // Bit # of CR6.
2893  bool InvertBit;   // Invert result?
2894  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2895  default:  // Can't happen, don't crash on invalid number though.
2896  case 0:   // Return the value of the EQ bit of CR6.
2897    BitNo = 0; InvertBit = false;
2898    break;
2899  case 1:   // Return the inverted value of the EQ bit of CR6.
2900    BitNo = 0; InvertBit = true;
2901    break;
2902  case 2:   // Return the value of the LT bit of CR6.
2903    BitNo = 2; InvertBit = false;
2904    break;
2905  case 3:   // Return the inverted value of the LT bit of CR6.
2906    BitNo = 2; InvertBit = true;
2907    break;
2908  }
2909
2910  // Shift the bit into the low position.
2911  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2912                      DAG.getConstant(8-(3-BitNo), MVT::i32));
2913  // Isolate the bit.
2914  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2915                      DAG.getConstant(1, MVT::i32));
2916
2917  // If we are supposed to, toggle the bit.
2918  if (InvertBit)
2919    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2920                        DAG.getConstant(1, MVT::i32));
2921  return Flags;
2922}
2923
2924static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2925  // Create a stack slot that is 16-byte aligned.
2926  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2927  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2928  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2929  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2930
2931  // Store the input value into Value#0 of the stack slot.
2932  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2933                                 Op.getOperand(0), FIdx, NULL, 0);
2934  // Load it out.
2935  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2936}
2937
2938static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2939  if (Op.getValueType() == MVT::v4i32) {
2940    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2941
2942    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
2943    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2944
2945    SDOperand RHSSwap =   // = vrlw RHS, 16
2946      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2947
2948    // Shrinkify inputs to v8i16.
2949    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2950    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2951    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2952
2953    // Low parts multiplied together, generating 32-bit results (we ignore the
2954    // top parts).
2955    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2956                                        LHS, RHS, DAG, MVT::v4i32);
2957
2958    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2959                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2960    // Shift the high parts up 16 bits.
2961    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2962    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2963  } else if (Op.getValueType() == MVT::v8i16) {
2964    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2965
2966    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2967
2968    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2969                            LHS, RHS, Zero, DAG);
2970  } else if (Op.getValueType() == MVT::v16i8) {
2971    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2972
2973    // Multiply the even 8-bit parts, producing 16-bit sums.
2974    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2975                                           LHS, RHS, DAG, MVT::v8i16);
2976    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2977
2978    // Multiply the odd 8-bit parts, producing 16-bit sums.
2979    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2980                                          LHS, RHS, DAG, MVT::v8i16);
2981    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2982
2983    // Merge the results together.
2984    SDOperand Ops[16];
2985    for (unsigned i = 0; i != 8; ++i) {
2986      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
2987      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2988    }
2989    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2990                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2991  } else {
2992    assert(0 && "Unknown mul to lower!");
2993    abort();
2994  }
2995}
2996
2997/// LowerOperation - Provide custom lowering hooks for some operations.
2998///
2999SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3000  switch (Op.getOpcode()) {
3001  default: assert(0 && "Wasn't expecting to be able to lower this!");
3002  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3003  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3004  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3005  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3006  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3007  case ISD::VASTART:
3008    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3009                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3010
3011  case ISD::VAARG:
3012    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3013                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3014
3015  case ISD::FORMAL_ARGUMENTS:
3016    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3017                                 VarArgsStackOffset, VarArgsNumGPR,
3018                                 VarArgsNumFPR, PPCSubTarget);
3019
3020  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget);
3021  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3022  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3023  case ISD::DYNAMIC_STACKALLOC:
3024    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3025
3026  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3027  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3028  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3029  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3030
3031  // Lower 64-bit shifts.
3032  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3033  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3034  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3035
3036  // Vector-related lowering.
3037  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3038  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3039  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3040  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3041  case ISD::MUL:                return LowerMUL(Op, DAG);
3042
3043  // Frame & Return address.
3044  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3045  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3046  }
3047  return SDOperand();
3048}
3049
3050SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3051  switch (N->getOpcode()) {
3052  default: assert(0 && "Wasn't expecting to be able to lower this!");
3053  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3054  }
3055}
3056
3057
3058//===----------------------------------------------------------------------===//
3059//  Other Lowering Code
3060//===----------------------------------------------------------------------===//
3061
3062MachineBasicBlock *
3063PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3064                                           MachineBasicBlock *BB) {
3065  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3066  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3067          MI->getOpcode() == PPC::SELECT_CC_I8 ||
3068          MI->getOpcode() == PPC::SELECT_CC_F4 ||
3069          MI->getOpcode() == PPC::SELECT_CC_F8 ||
3070          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3071         "Unexpected instr type to insert");
3072
3073  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3074  // control-flow pattern.  The incoming instruction knows the destination vreg
3075  // to set, the condition code register to branch on, the true/false values to
3076  // select between, and a branch opcode to use.
3077  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3078  ilist<MachineBasicBlock>::iterator It = BB;
3079  ++It;
3080
3081  //  thisMBB:
3082  //  ...
3083  //   TrueVal = ...
3084  //   cmpTY ccX, r1, r2
3085  //   bCC copy1MBB
3086  //   fallthrough --> copy0MBB
3087  MachineBasicBlock *thisMBB = BB;
3088  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3089  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3090  unsigned SelectPred = MI->getOperand(4).getImm();
3091  BuildMI(BB, TII->get(PPC::BCC))
3092    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3093  MachineFunction *F = BB->getParent();
3094  F->getBasicBlockList().insert(It, copy0MBB);
3095  F->getBasicBlockList().insert(It, sinkMBB);
3096  // Update machine-CFG edges by first adding all successors of the current
3097  // block to the new block which will contain the Phi node for the select.
3098  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3099      e = BB->succ_end(); i != e; ++i)
3100    sinkMBB->addSuccessor(*i);
3101  // Next, remove all successors of the current block, and add the true
3102  // and fallthrough blocks as its successors.
3103  while(!BB->succ_empty())
3104    BB->removeSuccessor(BB->succ_begin());
3105  BB->addSuccessor(copy0MBB);
3106  BB->addSuccessor(sinkMBB);
3107
3108  //  copy0MBB:
3109  //   %FalseValue = ...
3110  //   # fallthrough to sinkMBB
3111  BB = copy0MBB;
3112
3113  // Update machine-CFG edges
3114  BB->addSuccessor(sinkMBB);
3115
3116  //  sinkMBB:
3117  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3118  //  ...
3119  BB = sinkMBB;
3120  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3121    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3122    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3123
3124  delete MI;   // The pseudo instruction is gone now.
3125  return BB;
3126}
3127
3128//===----------------------------------------------------------------------===//
3129// Target Optimization Hooks
3130//===----------------------------------------------------------------------===//
3131
3132SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3133                                               DAGCombinerInfo &DCI) const {
3134  TargetMachine &TM = getTargetMachine();
3135  SelectionDAG &DAG = DCI.DAG;
3136  switch (N->getOpcode()) {
3137  default: break;
3138  case PPCISD::SHL:
3139    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3140      if (C->getValue() == 0)   // 0 << V -> 0.
3141        return N->getOperand(0);
3142    }
3143    break;
3144  case PPCISD::SRL:
3145    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3146      if (C->getValue() == 0)   // 0 >>u V -> 0.
3147        return N->getOperand(0);
3148    }
3149    break;
3150  case PPCISD::SRA:
3151    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3152      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
3153          C->isAllOnesValue())    // -1 >>s V -> -1.
3154        return N->getOperand(0);
3155    }
3156    break;
3157
3158  case ISD::SINT_TO_FP:
3159    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3160      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3161        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3162        // We allow the src/dst to be either f32/f64, but the intermediate
3163        // type must be i64.
3164        if (N->getOperand(0).getValueType() == MVT::i64 &&
3165            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
3166          SDOperand Val = N->getOperand(0).getOperand(0);
3167          if (Val.getValueType() == MVT::f32) {
3168            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3169            DCI.AddToWorklist(Val.Val);
3170          }
3171
3172          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3173          DCI.AddToWorklist(Val.Val);
3174          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3175          DCI.AddToWorklist(Val.Val);
3176          if (N->getValueType(0) == MVT::f32) {
3177            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
3178                              DAG.getIntPtrConstant(0));
3179            DCI.AddToWorklist(Val.Val);
3180          }
3181          return Val;
3182        } else if (N->getOperand(0).getValueType() == MVT::i32) {
3183          // If the intermediate type is i32, we can avoid the load/store here
3184          // too.
3185        }
3186      }
3187    }
3188    break;
3189  case ISD::STORE:
3190    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3191    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3192        !cast<StoreSDNode>(N)->isTruncatingStore() &&
3193        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3194        N->getOperand(1).getValueType() == MVT::i32 &&
3195        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
3196      SDOperand Val = N->getOperand(1).getOperand(0);
3197      if (Val.getValueType() == MVT::f32) {
3198        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3199        DCI.AddToWorklist(Val.Val);
3200      }
3201      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3202      DCI.AddToWorklist(Val.Val);
3203
3204      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3205                        N->getOperand(2), N->getOperand(3));
3206      DCI.AddToWorklist(Val.Val);
3207      return Val;
3208    }
3209
3210    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3211    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3212        N->getOperand(1).Val->hasOneUse() &&
3213        (N->getOperand(1).getValueType() == MVT::i32 ||
3214         N->getOperand(1).getValueType() == MVT::i16)) {
3215      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3216      // Do an any-extend to 32-bits if this is a half-word input.
3217      if (BSwapOp.getValueType() == MVT::i16)
3218        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3219
3220      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3221                         N->getOperand(2), N->getOperand(3),
3222                         DAG.getValueType(N->getOperand(1).getValueType()));
3223    }
3224    break;
3225  case ISD::BSWAP:
3226    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3227    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3228        N->getOperand(0).hasOneUse() &&
3229        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3230      SDOperand Load = N->getOperand(0);
3231      LoadSDNode *LD = cast<LoadSDNode>(Load);
3232      // Create the byte-swapping load.
3233      std::vector<MVT::ValueType> VTs;
3234      VTs.push_back(MVT::i32);
3235      VTs.push_back(MVT::Other);
3236      SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
3237      SDOperand Ops[] = {
3238        LD->getChain(),    // Chain
3239        LD->getBasePtr(),  // Ptr
3240        SV,                // SrcValue
3241        DAG.getValueType(N->getValueType(0)) // VT
3242      };
3243      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3244
3245      // If this is an i16 load, insert the truncate.
3246      SDOperand ResVal = BSLoad;
3247      if (N->getValueType(0) == MVT::i16)
3248        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3249
3250      // First, combine the bswap away.  This makes the value produced by the
3251      // load dead.
3252      DCI.CombineTo(N, ResVal);
3253
3254      // Next, combine the load away, we give it a bogus result value but a real
3255      // chain result.  The result value is dead because the bswap is dead.
3256      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3257
3258      // Return N so it doesn't get rechecked!
3259      return SDOperand(N, 0);
3260    }
3261
3262    break;
3263  case PPCISD::VCMP: {
3264    // If a VCMPo node already exists with exactly the same operands as this
3265    // node, use its result instead of this node (VCMPo computes both a CR6 and
3266    // a normal output).
3267    //
3268    if (!N->getOperand(0).hasOneUse() &&
3269        !N->getOperand(1).hasOneUse() &&
3270        !N->getOperand(2).hasOneUse()) {
3271
3272      // Scan all of the users of the LHS, looking for VCMPo's that match.
3273      SDNode *VCMPoNode = 0;
3274
3275      SDNode *LHSN = N->getOperand(0).Val;
3276      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3277           UI != E; ++UI)
3278        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3279            (*UI)->getOperand(1) == N->getOperand(1) &&
3280            (*UI)->getOperand(2) == N->getOperand(2) &&
3281            (*UI)->getOperand(0) == N->getOperand(0)) {
3282          VCMPoNode = *UI;
3283          break;
3284        }
3285
3286      // If there is no VCMPo node, or if the flag value has a single use, don't
3287      // transform this.
3288      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3289        break;
3290
3291      // Look at the (necessarily single) use of the flag value.  If it has a
3292      // chain, this transformation is more complex.  Note that multiple things
3293      // could use the value result, which we should ignore.
3294      SDNode *FlagUser = 0;
3295      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3296           FlagUser == 0; ++UI) {
3297        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3298        SDNode *User = *UI;
3299        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3300          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3301            FlagUser = User;
3302            break;
3303          }
3304        }
3305      }
3306
3307      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
3308      // give up for right now.
3309      if (FlagUser->getOpcode() == PPCISD::MFCR)
3310        return SDOperand(VCMPoNode, 0);
3311    }
3312    break;
3313  }
3314  case ISD::BR_CC: {
3315    // If this is a branch on an altivec predicate comparison, lower this so
3316    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
3317    // lowering is done pre-legalize, because the legalizer lowers the predicate
3318    // compare down to code that is difficult to reassemble.
3319    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3320    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3321    int CompareOpc;
3322    bool isDot;
3323
3324    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3325        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3326        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3327      assert(isDot && "Can't compare against a vector result!");
3328
3329      // If this is a comparison against something other than 0/1, then we know
3330      // that the condition is never/always true.
3331      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3332      if (Val != 0 && Val != 1) {
3333        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
3334          return N->getOperand(0);
3335        // Always !=, turn it into an unconditional branch.
3336        return DAG.getNode(ISD::BR, MVT::Other,
3337                           N->getOperand(0), N->getOperand(4));
3338      }
3339
3340      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3341
3342      // Create the PPCISD altivec 'dot' comparison node.
3343      std::vector<MVT::ValueType> VTs;
3344      SDOperand Ops[] = {
3345        LHS.getOperand(2),  // LHS of compare
3346        LHS.getOperand(3),  // RHS of compare
3347        DAG.getConstant(CompareOpc, MVT::i32)
3348      };
3349      VTs.push_back(LHS.getOperand(2).getValueType());
3350      VTs.push_back(MVT::Flag);
3351      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3352
3353      // Unpack the result based on how the target uses it.
3354      PPC::Predicate CompOpc;
3355      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3356      default:  // Can't happen, don't crash on invalid number though.
3357      case 0:   // Branch on the value of the EQ bit of CR6.
3358        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3359        break;
3360      case 1:   // Branch on the inverted value of the EQ bit of CR6.
3361        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3362        break;
3363      case 2:   // Branch on the value of the LT bit of CR6.
3364        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3365        break;
3366      case 3:   // Branch on the inverted value of the LT bit of CR6.
3367        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3368        break;
3369      }
3370
3371      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3372                         DAG.getConstant(CompOpc, MVT::i32),
3373                         DAG.getRegister(PPC::CR6, MVT::i32),
3374                         N->getOperand(4), CompNode.getValue(1));
3375    }
3376    break;
3377  }
3378  }
3379
3380  return SDOperand();
3381}
3382
3383//===----------------------------------------------------------------------===//
3384// Inline Assembly Support
3385//===----------------------------------------------------------------------===//
3386
3387void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3388                                                       uint64_t Mask,
3389                                                       uint64_t &KnownZero,
3390                                                       uint64_t &KnownOne,
3391                                                       const SelectionDAG &DAG,
3392                                                       unsigned Depth) const {
3393  KnownZero = 0;
3394  KnownOne = 0;
3395  switch (Op.getOpcode()) {
3396  default: break;
3397  case PPCISD::LBRX: {
3398    // lhbrx is known to have the top bits cleared out.
3399    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3400      KnownZero = 0xFFFF0000;
3401    break;
3402  }
3403  case ISD::INTRINSIC_WO_CHAIN: {
3404    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3405    default: break;
3406    case Intrinsic::ppc_altivec_vcmpbfp_p:
3407    case Intrinsic::ppc_altivec_vcmpeqfp_p:
3408    case Intrinsic::ppc_altivec_vcmpequb_p:
3409    case Intrinsic::ppc_altivec_vcmpequh_p:
3410    case Intrinsic::ppc_altivec_vcmpequw_p:
3411    case Intrinsic::ppc_altivec_vcmpgefp_p:
3412    case Intrinsic::ppc_altivec_vcmpgtfp_p:
3413    case Intrinsic::ppc_altivec_vcmpgtsb_p:
3414    case Intrinsic::ppc_altivec_vcmpgtsh_p:
3415    case Intrinsic::ppc_altivec_vcmpgtsw_p:
3416    case Intrinsic::ppc_altivec_vcmpgtub_p:
3417    case Intrinsic::ppc_altivec_vcmpgtuh_p:
3418    case Intrinsic::ppc_altivec_vcmpgtuw_p:
3419      KnownZero = ~1U;  // All bits but the low one are known to be zero.
3420      break;
3421    }
3422  }
3423  }
3424}
3425
3426
3427/// getConstraintType - Given a constraint, return the type of
3428/// constraint it is for this target.
3429PPCTargetLowering::ConstraintType
3430PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3431  if (Constraint.size() == 1) {
3432    switch (Constraint[0]) {
3433    default: break;
3434    case 'b':
3435    case 'r':
3436    case 'f':
3437    case 'v':
3438    case 'y':
3439      return C_RegisterClass;
3440    }
3441  }
3442  return TargetLowering::getConstraintType(Constraint);
3443}
3444
3445std::pair<unsigned, const TargetRegisterClass*>
3446PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3447                                                MVT::ValueType VT) const {
3448  if (Constraint.size() == 1) {
3449    // GCC RS6000 Constraint Letters
3450    switch (Constraint[0]) {
3451    case 'b':   // R1-R31
3452    case 'r':   // R0-R31
3453      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3454        return std::make_pair(0U, PPC::G8RCRegisterClass);
3455      return std::make_pair(0U, PPC::GPRCRegisterClass);
3456    case 'f':
3457      if (VT == MVT::f32)
3458        return std::make_pair(0U, PPC::F4RCRegisterClass);
3459      else if (VT == MVT::f64)
3460        return std::make_pair(0U, PPC::F8RCRegisterClass);
3461      break;
3462    case 'v':
3463      return std::make_pair(0U, PPC::VRRCRegisterClass);
3464    case 'y':   // crrc
3465      return std::make_pair(0U, PPC::CRRCRegisterClass);
3466    }
3467  }
3468
3469  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3470}
3471
3472
3473/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3474/// vector.  If it is invalid, don't add anything to Ops.
3475void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3476                                                     std::vector<SDOperand>&Ops,
3477                                                     SelectionDAG &DAG) {
3478  SDOperand Result(0,0);
3479  switch (Letter) {
3480  default: break;
3481  case 'I':
3482  case 'J':
3483  case 'K':
3484  case 'L':
3485  case 'M':
3486  case 'N':
3487  case 'O':
3488  case 'P': {
3489    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
3490    if (!CST) return; // Must be an immediate to match.
3491    unsigned Value = CST->getValue();
3492    switch (Letter) {
3493    default: assert(0 && "Unknown constraint letter!");
3494    case 'I':  // "I" is a signed 16-bit constant.
3495      if ((short)Value == (int)Value)
3496        Result = DAG.getTargetConstant(Value, Op.getValueType());
3497      break;
3498    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3499    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3500      if ((short)Value == 0)
3501        Result = DAG.getTargetConstant(Value, Op.getValueType());
3502      break;
3503    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3504      if ((Value >> 16) == 0)
3505        Result = DAG.getTargetConstant(Value, Op.getValueType());
3506      break;
3507    case 'M':  // "M" is a constant that is greater than 31.
3508      if (Value > 31)
3509        Result = DAG.getTargetConstant(Value, Op.getValueType());
3510      break;
3511    case 'N':  // "N" is a positive constant that is an exact power of two.
3512      if ((int)Value > 0 && isPowerOf2_32(Value))
3513        Result = DAG.getTargetConstant(Value, Op.getValueType());
3514      break;
3515    case 'O':  // "O" is the constant zero.
3516      if (Value == 0)
3517        Result = DAG.getTargetConstant(Value, Op.getValueType());
3518      break;
3519    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3520      if ((short)-Value == (int)-Value)
3521        Result = DAG.getTargetConstant(Value, Op.getValueType());
3522      break;
3523    }
3524    break;
3525  }
3526  }
3527
3528  if (Result.Val) {
3529    Ops.push_back(Result);
3530    return;
3531  }
3532
3533  // Handle standard constraint letters.
3534  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
3535}
3536
3537// isLegalAddressingMode - Return true if the addressing mode represented
3538// by AM is legal for this target, for a load/store of the specified type.
3539bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3540                                              const Type *Ty) const {
3541  // FIXME: PPC does not allow r+i addressing modes for vectors!
3542
3543  // PPC allows a sign-extended 16-bit immediate field.
3544  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3545    return false;
3546
3547  // No global is ever allowed as a base.
3548  if (AM.BaseGV)
3549    return false;
3550
3551  // PPC only support r+r,
3552  switch (AM.Scale) {
3553  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3554    break;
3555  case 1:
3556    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3557      return false;
3558    // Otherwise we have r+r or r+i.
3559    break;
3560  case 2:
3561    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3562      return false;
3563    // Allow 2*r as r+r.
3564    break;
3565  default:
3566    // No other scales are supported.
3567    return false;
3568  }
3569
3570  return true;
3571}
3572
3573/// isLegalAddressImmediate - Return true if the integer value can be used
3574/// as the offset of the target addressing mode for load / store of the
3575/// given type.
3576bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3577  // PPC allows a sign-extended 16-bit immediate field.
3578  return (V > -(1 << 16) && V < (1 << 16)-1);
3579}
3580
3581bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3582  return false;
3583}
3584
3585SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3586  // Depths > 0 not supported yet!
3587  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3588    return SDOperand();
3589
3590  MachineFunction &MF = DAG.getMachineFunction();
3591  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3592  int RAIdx = FuncInfo->getReturnAddrSaveIndex();
3593  if (RAIdx == 0) {
3594    bool isPPC64 = PPCSubTarget.isPPC64();
3595    int Offset =
3596      PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
3597
3598    // Set up a frame object for the return address.
3599    RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
3600
3601    // Remember it for next time.
3602    FuncInfo->setReturnAddrSaveIndex(RAIdx);
3603
3604    // Make sure the function really does not optimize away the store of the RA
3605    // to the stack.
3606    FuncInfo->setLRStoreRequired();
3607  }
3608
3609  // Just load the return address off the stack.
3610  SDOperand RetAddrFI =  DAG.getFrameIndex(RAIdx, getPointerTy());
3611  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
3612}
3613
3614SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
3615  // Depths > 0 not supported yet!
3616  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3617    return SDOperand();
3618
3619  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3620  bool isPPC64 = PtrVT == MVT::i64;
3621
3622  MachineFunction &MF = DAG.getMachineFunction();
3623  MachineFrameInfo *MFI = MF.getFrameInfo();
3624  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3625                  && MFI->getStackSize();
3626
3627  if (isPPC64)
3628    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
3629      MVT::i64);
3630  else
3631    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3632      MVT::i32);
3633}
3634