PPCISelLowering.cpp revision fd94f0ab358ea12cf2b17c9628207b3fd11d40b4
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPCMachineFunctionInfo.h"
17#include "PPCPerfectShuffle.h"
18#include "PPCTargetMachine.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/CodeGen/CallingConvLower.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/SelectionDAG.h"
26#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetOptions.h"
37using namespace llvm;
38
39static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
40                                       CCValAssign::LocInfo &LocInfo,
41                                       ISD::ArgFlagsTy &ArgFlags,
42                                       CCState &State);
43static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
44                                              MVT &LocVT,
45                                              CCValAssign::LocInfo &LocInfo,
46                                              ISD::ArgFlagsTy &ArgFlags,
47                                              CCState &State);
48static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
49                                                MVT &LocVT,
50                                                CCValAssign::LocInfo &LocInfo,
51                                                ISD::ArgFlagsTy &ArgFlags,
52                                                CCState &State);
53
54static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
55cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
56
57static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
58cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
59
60static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
61cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
62
63static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
64  if (TM.getSubtargetImpl()->isDarwin())
65    return new TargetLoweringObjectFileMachO();
66
67  return new TargetLoweringObjectFileELF();
68}
69
70PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
71  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
72  const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
73  PPCRegInfo = TM.getRegisterInfo();
74  PPCII = TM.getInstrInfo();
75
76  setPow2DivIsCheap();
77
78  // Use _setjmp/_longjmp instead of setjmp/longjmp.
79  setUseUnderscoreSetJmp(true);
80  setUseUnderscoreLongJmp(true);
81
82  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
83  // arguments are at least 4/8 bytes aligned.
84  bool isPPC64 = Subtarget->isPPC64();
85  setMinStackArgumentAlignment(isPPC64 ? 8:4);
86
87  // Set up the register classes.
88  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
89  addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
90  addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
91
92  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
93  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
94  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
95
96  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
97
98  // PowerPC has pre-inc load and store's.
99  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
100  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
101  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
102  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
103  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
104  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
105  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
106  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
107  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
108  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
109
110  // This is used in the ppcf128->int sequence.  Note it has different semantics
111  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
112  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
113
114  // We do not currently implement these libm ops for PowerPC.
115  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
116  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
117  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
118  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
119  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
120  setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
121
122  // PowerPC has no SREM/UREM instructions
123  setOperationAction(ISD::SREM, MVT::i32, Expand);
124  setOperationAction(ISD::UREM, MVT::i32, Expand);
125  setOperationAction(ISD::SREM, MVT::i64, Expand);
126  setOperationAction(ISD::UREM, MVT::i64, Expand);
127
128  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
129  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
130  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
131  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
132  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
133  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
134  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
135  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
136  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
137
138  // We don't support sin/cos/sqrt/fmod/pow
139  setOperationAction(ISD::FSIN , MVT::f64, Expand);
140  setOperationAction(ISD::FCOS , MVT::f64, Expand);
141  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
142  setOperationAction(ISD::FREM , MVT::f64, Expand);
143  setOperationAction(ISD::FPOW , MVT::f64, Expand);
144  setOperationAction(ISD::FMA  , MVT::f64, Legal);
145  setOperationAction(ISD::FSIN , MVT::f32, Expand);
146  setOperationAction(ISD::FCOS , MVT::f32, Expand);
147  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
148  setOperationAction(ISD::FREM , MVT::f32, Expand);
149  setOperationAction(ISD::FPOW , MVT::f32, Expand);
150  setOperationAction(ISD::FMA  , MVT::f32, Legal);
151
152  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
153
154  // If we're enabling GP optimizations, use hardware square root
155  if (!Subtarget->hasFSQRT() &&
156      !(TM.Options.UnsafeFPMath &&
157        Subtarget->hasFRSQRTE() && Subtarget->hasFRE()))
158    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
159
160  if (!Subtarget->hasFSQRT() &&
161      !(TM.Options.UnsafeFPMath &&
162        Subtarget->hasFRSQRTES() && Subtarget->hasFRES()))
163    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
164
165  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
166  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
167
168  if (Subtarget->hasFPRND()) {
169    setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
170    setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
171    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
172
173    setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
174    setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
175    setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
176
177    // frin does not implement "ties to even." Thus, this is safe only in
178    // fast-math mode.
179    if (TM.Options.UnsafeFPMath) {
180      setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
181      setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
182
183      // These need to set FE_INEXACT, and use a custom inserter.
184      setOperationAction(ISD::FRINT, MVT::f64, Legal);
185      setOperationAction(ISD::FRINT, MVT::f32, Legal);
186    }
187  }
188
189  // PowerPC does not have BSWAP, CTPOP or CTTZ
190  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
191  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
192  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
193  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
194  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
195  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
196  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
197  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
198
199  if (Subtarget->hasPOPCNTD()) {
200    setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
201    setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
202  } else {
203    setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
204    setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
205  }
206
207  // PowerPC does not have ROTR
208  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
209  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
210
211  // PowerPC does not have Select
212  setOperationAction(ISD::SELECT, MVT::i32, Expand);
213  setOperationAction(ISD::SELECT, MVT::i64, Expand);
214  setOperationAction(ISD::SELECT, MVT::f32, Expand);
215  setOperationAction(ISD::SELECT, MVT::f64, Expand);
216
217  // PowerPC wants to turn select_cc of FP into fsel when possible.
218  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
219  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
220
221  // PowerPC wants to optimize integer setcc a bit
222  setOperationAction(ISD::SETCC, MVT::i32, Custom);
223
224  // PowerPC does not have BRCOND which requires SetCC
225  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
226
227  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
228
229  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
230  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
231
232  // PowerPC does not have [U|S]INT_TO_FP
233  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
234  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
235
236  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
237  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
238  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
239  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
240
241  // We cannot sextinreg(i1).  Expand to shifts.
242  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
243
244  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
245  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
246  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
247  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
248
249  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
250  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
251  // support continuation, user-level threading, and etc.. As a result, no
252  // other SjLj exception interfaces are implemented and please don't build
253  // your own exception handling based on them.
254  // LLVM/Clang supports zero-cost DWARF exception handling.
255  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
256  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
257
258  // We want to legalize GlobalAddress and ConstantPool nodes into the
259  // appropriate instructions to materialize the address.
260  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
261  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
262  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
263  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
264  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
265  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
266  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
267  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
268  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
269  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
270
271  // TRAP is legal.
272  setOperationAction(ISD::TRAP, MVT::Other, Legal);
273
274  // TRAMPOLINE is custom lowered.
275  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
276  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
277
278  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
279  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
280
281  if (Subtarget->isSVR4ABI()) {
282    if (isPPC64) {
283      // VAARG always uses double-word chunks, so promote anything smaller.
284      setOperationAction(ISD::VAARG, MVT::i1, Promote);
285      AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
286      setOperationAction(ISD::VAARG, MVT::i8, Promote);
287      AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
288      setOperationAction(ISD::VAARG, MVT::i16, Promote);
289      AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
290      setOperationAction(ISD::VAARG, MVT::i32, Promote);
291      AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
292      setOperationAction(ISD::VAARG, MVT::Other, Expand);
293    } else {
294      // VAARG is custom lowered with the 32-bit SVR4 ABI.
295      setOperationAction(ISD::VAARG, MVT::Other, Custom);
296      setOperationAction(ISD::VAARG, MVT::i64, Custom);
297    }
298  } else
299    setOperationAction(ISD::VAARG, MVT::Other, Expand);
300
301  // Use the default implementation.
302  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
303  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
304  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
305  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
306  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
307  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
308
309  // We want to custom lower some of our intrinsics.
310  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
311
312  // Comparisons that require checking two conditions.
313  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
314  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
315  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
316  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
317  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
318  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
319  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
320  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
321  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
322  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
323  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
324  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
325
326  if (Subtarget->has64BitSupport()) {
327    // They also have instructions for converting between i64 and fp.
328    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
329    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
330    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
331    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
332    // This is just the low 32 bits of a (signed) fp->i64 conversion.
333    // We cannot do this with Promote because i64 is not a legal type.
334    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
335
336    if (PPCSubTarget.hasLFIWAX() || Subtarget->isPPC64())
337      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
338  } else {
339    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
340    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
341  }
342
343  // With the instructions enabled under FPCVT, we can do everything.
344  if (PPCSubTarget.hasFPCVT()) {
345    if (Subtarget->has64BitSupport()) {
346      setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
347      setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
348      setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
349      setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
350    }
351
352    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
353    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
354    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
355    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
356  }
357
358  if (Subtarget->use64BitRegs()) {
359    // 64-bit PowerPC implementations can support i64 types directly
360    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
361    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
362    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
363    // 64-bit PowerPC wants to expand i128 shifts itself.
364    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
365    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
366    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
367  } else {
368    // 32-bit PowerPC wants to expand i64 shifts itself.
369    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
370    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
371    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
372  }
373
374  if (Subtarget->hasAltivec()) {
375    // First set operation action for all vector types to expand. Then we
376    // will selectively turn on ones that can be effectively codegen'd.
377    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
378         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
379      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
380
381      // add/sub are legal for all supported vector VT's.
382      setOperationAction(ISD::ADD , VT, Legal);
383      setOperationAction(ISD::SUB , VT, Legal);
384
385      // We promote all shuffles to v16i8.
386      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
387      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
388
389      // We promote all non-typed operations to v4i32.
390      setOperationAction(ISD::AND   , VT, Promote);
391      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
392      setOperationAction(ISD::OR    , VT, Promote);
393      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
394      setOperationAction(ISD::XOR   , VT, Promote);
395      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
396      setOperationAction(ISD::LOAD  , VT, Promote);
397      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
398      setOperationAction(ISD::SELECT, VT, Promote);
399      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
400      setOperationAction(ISD::STORE, VT, Promote);
401      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
402
403      // No other operations are legal.
404      setOperationAction(ISD::MUL , VT, Expand);
405      setOperationAction(ISD::SDIV, VT, Expand);
406      setOperationAction(ISD::SREM, VT, Expand);
407      setOperationAction(ISD::UDIV, VT, Expand);
408      setOperationAction(ISD::UREM, VT, Expand);
409      setOperationAction(ISD::FDIV, VT, Expand);
410      setOperationAction(ISD::FNEG, VT, Expand);
411      setOperationAction(ISD::FSQRT, VT, Expand);
412      setOperationAction(ISD::FLOG, VT, Expand);
413      setOperationAction(ISD::FLOG10, VT, Expand);
414      setOperationAction(ISD::FLOG2, VT, Expand);
415      setOperationAction(ISD::FEXP, VT, Expand);
416      setOperationAction(ISD::FEXP2, VT, Expand);
417      setOperationAction(ISD::FSIN, VT, Expand);
418      setOperationAction(ISD::FCOS, VT, Expand);
419      setOperationAction(ISD::FABS, VT, Expand);
420      setOperationAction(ISD::FPOWI, VT, Expand);
421      setOperationAction(ISD::FFLOOR, VT, Expand);
422      setOperationAction(ISD::FCEIL,  VT, Expand);
423      setOperationAction(ISD::FTRUNC, VT, Expand);
424      setOperationAction(ISD::FRINT,  VT, Expand);
425      setOperationAction(ISD::FNEARBYINT, VT, Expand);
426      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
427      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
428      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
429      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
430      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
431      setOperationAction(ISD::UDIVREM, VT, Expand);
432      setOperationAction(ISD::SDIVREM, VT, Expand);
433      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
434      setOperationAction(ISD::FPOW, VT, Expand);
435      setOperationAction(ISD::CTPOP, VT, Expand);
436      setOperationAction(ISD::CTLZ, VT, Expand);
437      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
438      setOperationAction(ISD::CTTZ, VT, Expand);
439      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
440      setOperationAction(ISD::VSELECT, VT, Expand);
441      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
442
443      for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
444           j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
445        MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
446        setTruncStoreAction(VT, InnerVT, Expand);
447      }
448      setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
449      setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
450      setLoadExtAction(ISD::EXTLOAD, VT, Expand);
451    }
452
453    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
454    // with merges, splats, etc.
455    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
456
457    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
458    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
459    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
460    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
461    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
462    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
463    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
464    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
465    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
466    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
467    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
468    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
469    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
470    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
471
472    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
473    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
474    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
475    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
476
477    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
478    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
479
480    if (TM.Options.UnsafeFPMath) {
481      setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
482      setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
483    }
484
485    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
486    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
487    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
488
489    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
490    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
491
492    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
493    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
494    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
495    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
496
497    // Altivec does not contain unordered floating-point compare instructions
498    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
499    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
500    setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
501    setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
502    setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
503    setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
504  }
505
506  if (Subtarget->has64BitSupport()) {
507    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
508    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
509  }
510
511  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
512  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
513  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
514  setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
515
516  setBooleanContents(ZeroOrOneBooleanContent);
517  // Altivec instructions set fields to all zeros or all ones.
518  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
519
520  if (isPPC64) {
521    setStackPointerRegisterToSaveRestore(PPC::X1);
522    setExceptionPointerRegister(PPC::X3);
523    setExceptionSelectorRegister(PPC::X4);
524  } else {
525    setStackPointerRegisterToSaveRestore(PPC::R1);
526    setExceptionPointerRegister(PPC::R3);
527    setExceptionSelectorRegister(PPC::R4);
528  }
529
530  // We have target-specific dag combine patterns for the following nodes:
531  setTargetDAGCombine(ISD::SINT_TO_FP);
532  setTargetDAGCombine(ISD::STORE);
533  setTargetDAGCombine(ISD::BR_CC);
534  setTargetDAGCombine(ISD::BSWAP);
535
536  // Use reciprocal estimates.
537  if (TM.Options.UnsafeFPMath) {
538    setTargetDAGCombine(ISD::FDIV);
539    setTargetDAGCombine(ISD::FSQRT);
540  }
541
542  // Darwin long double math library functions have $LDBL128 appended.
543  if (Subtarget->isDarwin()) {
544    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
545    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
546    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
547    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
548    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
549    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
550    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
551    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
552    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
553    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
554  }
555
556  setMinFunctionAlignment(2);
557  if (PPCSubTarget.isDarwin())
558    setPrefFunctionAlignment(4);
559
560  if (isPPC64 && Subtarget->isJITCodeModel())
561    // Temporary workaround for the inability of PPC64 JIT to handle jump
562    // tables.
563    setSupportJumpTables(false);
564
565  setInsertFencesForAtomic(true);
566
567  setSchedulingPreference(Sched::Hybrid);
568
569  computeRegisterProperties();
570
571  // The Freescale cores does better with aggressive inlining of memcpy and
572  // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
573  if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
574      Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
575    MaxStoresPerMemset = 32;
576    MaxStoresPerMemsetOptSize = 16;
577    MaxStoresPerMemcpy = 32;
578    MaxStoresPerMemcpyOptSize = 8;
579    MaxStoresPerMemmove = 32;
580    MaxStoresPerMemmoveOptSize = 8;
581
582    setPrefFunctionAlignment(4);
583  }
584}
585
586/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
587/// function arguments in the caller parameter area.
588unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
589  const TargetMachine &TM = getTargetMachine();
590  // Darwin passes everything on 4 byte boundary.
591  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
592    return 4;
593
594  // 16byte and wider vectors are passed on 16byte boundary.
595  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
596    if (VTy->getBitWidth() >= 128)
597      return 16;
598
599  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
600   if (PPCSubTarget.isPPC64())
601     return 8;
602
603  return 4;
604}
605
606const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
607  switch (Opcode) {
608  default: return 0;
609  case PPCISD::FSEL:            return "PPCISD::FSEL";
610  case PPCISD::FCFID:           return "PPCISD::FCFID";
611  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
612  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
613  case PPCISD::FRE:             return "PPCISD::FRE";
614  case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
615  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
616  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
617  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
618  case PPCISD::VPERM:           return "PPCISD::VPERM";
619  case PPCISD::Hi:              return "PPCISD::Hi";
620  case PPCISD::Lo:              return "PPCISD::Lo";
621  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
622  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
623  case PPCISD::LOAD:            return "PPCISD::LOAD";
624  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
625  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
626  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
627  case PPCISD::SRL:             return "PPCISD::SRL";
628  case PPCISD::SRA:             return "PPCISD::SRA";
629  case PPCISD::SHL:             return "PPCISD::SHL";
630  case PPCISD::CALL:            return "PPCISD::CALL";
631  case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
632  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
633  case PPCISD::BCTRL:           return "PPCISD::BCTRL";
634  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
635  case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
636  case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
637  case PPCISD::MFCR:            return "PPCISD::MFCR";
638  case PPCISD::VCMP:            return "PPCISD::VCMP";
639  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
640  case PPCISD::LBRX:            return "PPCISD::LBRX";
641  case PPCISD::STBRX:           return "PPCISD::STBRX";
642  case PPCISD::LARX:            return "PPCISD::LARX";
643  case PPCISD::STCX:            return "PPCISD::STCX";
644  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
645  case PPCISD::MFFS:            return "PPCISD::MFFS";
646  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
647  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
648  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
649  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
650  case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
651  case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
652  case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
653  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
654  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
655  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
656  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
657  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
658  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
659  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
660  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
661  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
662  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
663  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
664  case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
665  }
666}
667
668EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
669  if (!VT.isVector())
670    return MVT::i32;
671  return VT.changeVectorElementTypeToInteger();
672}
673
674//===----------------------------------------------------------------------===//
675// Node matching predicates, for use by the tblgen matching code.
676//===----------------------------------------------------------------------===//
677
678/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
679static bool isFloatingPointZero(SDValue Op) {
680  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
681    return CFP->getValueAPF().isZero();
682  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
683    // Maybe this has already been legalized into the constant pool?
684    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
685      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
686        return CFP->getValueAPF().isZero();
687  }
688  return false;
689}
690
691/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
692/// true if Op is undef or if it matches the specified value.
693static bool isConstantOrUndef(int Op, int Val) {
694  return Op < 0 || Op == Val;
695}
696
697/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
698/// VPKUHUM instruction.
699bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
700  if (!isUnary) {
701    for (unsigned i = 0; i != 16; ++i)
702      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
703        return false;
704  } else {
705    for (unsigned i = 0; i != 8; ++i)
706      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
707          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
708        return false;
709  }
710  return true;
711}
712
713/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
714/// VPKUWUM instruction.
715bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
716  if (!isUnary) {
717    for (unsigned i = 0; i != 16; i += 2)
718      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
719          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
720        return false;
721  } else {
722    for (unsigned i = 0; i != 8; i += 2)
723      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
724          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
725          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
726          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
727        return false;
728  }
729  return true;
730}
731
732/// isVMerge - Common function, used to match vmrg* shuffles.
733///
734static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
735                     unsigned LHSStart, unsigned RHSStart) {
736  assert(N->getValueType(0) == MVT::v16i8 &&
737         "PPC only supports shuffles by bytes!");
738  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
739         "Unsupported merge size!");
740
741  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
742    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
743      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
744                             LHSStart+j+i*UnitSize) ||
745          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
746                             RHSStart+j+i*UnitSize))
747        return false;
748    }
749  return true;
750}
751
752/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
753/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
754bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
755                             bool isUnary) {
756  if (!isUnary)
757    return isVMerge(N, UnitSize, 8, 24);
758  return isVMerge(N, UnitSize, 8, 8);
759}
760
761/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
762/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
763bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
764                             bool isUnary) {
765  if (!isUnary)
766    return isVMerge(N, UnitSize, 0, 16);
767  return isVMerge(N, UnitSize, 0, 0);
768}
769
770
771/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
772/// amount, otherwise return -1.
773int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
774  assert(N->getValueType(0) == MVT::v16i8 &&
775         "PPC only supports shuffles by bytes!");
776
777  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
778
779  // Find the first non-undef value in the shuffle mask.
780  unsigned i;
781  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
782    /*search*/;
783
784  if (i == 16) return -1;  // all undef.
785
786  // Otherwise, check to see if the rest of the elements are consecutively
787  // numbered from this value.
788  unsigned ShiftAmt = SVOp->getMaskElt(i);
789  if (ShiftAmt < i) return -1;
790  ShiftAmt -= i;
791
792  if (!isUnary) {
793    // Check the rest of the elements to see if they are consecutive.
794    for (++i; i != 16; ++i)
795      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
796        return -1;
797  } else {
798    // Check the rest of the elements to see if they are consecutive.
799    for (++i; i != 16; ++i)
800      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
801        return -1;
802  }
803  return ShiftAmt;
804}
805
806/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
807/// specifies a splat of a single element that is suitable for input to
808/// VSPLTB/VSPLTH/VSPLTW.
809bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
810  assert(N->getValueType(0) == MVT::v16i8 &&
811         (EltSize == 1 || EltSize == 2 || EltSize == 4));
812
813  // This is a splat operation if each element of the permute is the same, and
814  // if the value doesn't reference the second vector.
815  unsigned ElementBase = N->getMaskElt(0);
816
817  // FIXME: Handle UNDEF elements too!
818  if (ElementBase >= 16)
819    return false;
820
821  // Check that the indices are consecutive, in the case of a multi-byte element
822  // splatted with a v16i8 mask.
823  for (unsigned i = 1; i != EltSize; ++i)
824    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
825      return false;
826
827  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
828    if (N->getMaskElt(i) < 0) continue;
829    for (unsigned j = 0; j != EltSize; ++j)
830      if (N->getMaskElt(i+j) != N->getMaskElt(j))
831        return false;
832  }
833  return true;
834}
835
836/// isAllNegativeZeroVector - Returns true if all elements of build_vector
837/// are -0.0.
838bool PPC::isAllNegativeZeroVector(SDNode *N) {
839  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
840
841  APInt APVal, APUndef;
842  unsigned BitSize;
843  bool HasAnyUndefs;
844
845  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
846    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
847      return CFP->getValueAPF().isNegZero();
848
849  return false;
850}
851
852/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
853/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
854unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
855  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
856  assert(isSplatShuffleMask(SVOp, EltSize));
857  return SVOp->getMaskElt(0) / EltSize;
858}
859
860/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
861/// by using a vspltis[bhw] instruction of the specified element size, return
862/// the constant being splatted.  The ByteSize field indicates the number of
863/// bytes of each element [124] -> [bhw].
864SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
865  SDValue OpVal(0, 0);
866
867  // If ByteSize of the splat is bigger than the element size of the
868  // build_vector, then we have a case where we are checking for a splat where
869  // multiple elements of the buildvector are folded together into a single
870  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
871  unsigned EltSize = 16/N->getNumOperands();
872  if (EltSize < ByteSize) {
873    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
874    SDValue UniquedVals[4];
875    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
876
877    // See if all of the elements in the buildvector agree across.
878    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
879      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
880      // If the element isn't a constant, bail fully out.
881      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
882
883
884      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
885        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
886      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
887        return SDValue();  // no match.
888    }
889
890    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
891    // either constant or undef values that are identical for each chunk.  See
892    // if these chunks can form into a larger vspltis*.
893
894    // Check to see if all of the leading entries are either 0 or -1.  If
895    // neither, then this won't fit into the immediate field.
896    bool LeadingZero = true;
897    bool LeadingOnes = true;
898    for (unsigned i = 0; i != Multiple-1; ++i) {
899      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
900
901      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
902      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
903    }
904    // Finally, check the least significant entry.
905    if (LeadingZero) {
906      if (UniquedVals[Multiple-1].getNode() == 0)
907        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
908      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
909      if (Val < 16)
910        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
911    }
912    if (LeadingOnes) {
913      if (UniquedVals[Multiple-1].getNode() == 0)
914        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
915      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
916      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
917        return DAG.getTargetConstant(Val, MVT::i32);
918    }
919
920    return SDValue();
921  }
922
923  // Check to see if this buildvec has a single non-undef value in its elements.
924  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
925    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
926    if (OpVal.getNode() == 0)
927      OpVal = N->getOperand(i);
928    else if (OpVal != N->getOperand(i))
929      return SDValue();
930  }
931
932  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
933
934  unsigned ValSizeInBytes = EltSize;
935  uint64_t Value = 0;
936  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
937    Value = CN->getZExtValue();
938  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
939    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
940    Value = FloatToBits(CN->getValueAPF().convertToFloat());
941  }
942
943  // If the splat value is larger than the element value, then we can never do
944  // this splat.  The only case that we could fit the replicated bits into our
945  // immediate field for would be zero, and we prefer to use vxor for it.
946  if (ValSizeInBytes < ByteSize) return SDValue();
947
948  // If the element value is larger than the splat value, cut it in half and
949  // check to see if the two halves are equal.  Continue doing this until we
950  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
951  while (ValSizeInBytes > ByteSize) {
952    ValSizeInBytes >>= 1;
953
954    // If the top half equals the bottom half, we're still ok.
955    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
956         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
957      return SDValue();
958  }
959
960  // Properly sign extend the value.
961  int MaskVal = SignExtend32(Value, ByteSize * 8);
962
963  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
964  if (MaskVal == 0) return SDValue();
965
966  // Finally, if this value fits in a 5 bit sext field, return it
967  if (SignExtend32<5>(MaskVal) == MaskVal)
968    return DAG.getTargetConstant(MaskVal, MVT::i32);
969  return SDValue();
970}
971
972//===----------------------------------------------------------------------===//
973//  Addressing Mode Selection
974//===----------------------------------------------------------------------===//
975
976/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
977/// or 64-bit immediate, and if the value can be accurately represented as a
978/// sign extension from a 16-bit value.  If so, this returns true and the
979/// immediate.
980static bool isIntS16Immediate(SDNode *N, short &Imm) {
981  if (N->getOpcode() != ISD::Constant)
982    return false;
983
984  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
985  if (N->getValueType(0) == MVT::i32)
986    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
987  else
988    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
989}
990static bool isIntS16Immediate(SDValue Op, short &Imm) {
991  return isIntS16Immediate(Op.getNode(), Imm);
992}
993
994
995/// SelectAddressRegReg - Given the specified addressed, check to see if it
996/// can be represented as an indexed [r+r] operation.  Returns false if it
997/// can be more efficiently represented with [r+imm].
998bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
999                                            SDValue &Index,
1000                                            SelectionDAG &DAG) const {
1001  short imm = 0;
1002  if (N.getOpcode() == ISD::ADD) {
1003    if (isIntS16Immediate(N.getOperand(1), imm))
1004      return false;    // r+i
1005    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1006      return false;    // r+i
1007
1008    Base = N.getOperand(0);
1009    Index = N.getOperand(1);
1010    return true;
1011  } else if (N.getOpcode() == ISD::OR) {
1012    if (isIntS16Immediate(N.getOperand(1), imm))
1013      return false;    // r+i can fold it if we can.
1014
1015    // If this is an or of disjoint bitfields, we can codegen this as an add
1016    // (for better address arithmetic) if the LHS and RHS of the OR are provably
1017    // disjoint.
1018    APInt LHSKnownZero, LHSKnownOne;
1019    APInt RHSKnownZero, RHSKnownOne;
1020    DAG.ComputeMaskedBits(N.getOperand(0),
1021                          LHSKnownZero, LHSKnownOne);
1022
1023    if (LHSKnownZero.getBoolValue()) {
1024      DAG.ComputeMaskedBits(N.getOperand(1),
1025                            RHSKnownZero, RHSKnownOne);
1026      // If all of the bits are known zero on the LHS or RHS, the add won't
1027      // carry.
1028      if (~(LHSKnownZero | RHSKnownZero) == 0) {
1029        Base = N.getOperand(0);
1030        Index = N.getOperand(1);
1031        return true;
1032      }
1033    }
1034  }
1035
1036  return false;
1037}
1038
1039/// Returns true if the address N can be represented by a base register plus
1040/// a signed 16-bit displacement [r+imm], and if it is not better
1041/// represented as reg+reg.
1042bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1043                                            SDValue &Base,
1044                                            SelectionDAG &DAG) const {
1045  // FIXME dl should come from parent load or store, not from address
1046  DebugLoc dl = N.getDebugLoc();
1047  // If this can be more profitably realized as r+r, fail.
1048  if (SelectAddressRegReg(N, Disp, Base, DAG))
1049    return false;
1050
1051  if (N.getOpcode() == ISD::ADD) {
1052    short imm = 0;
1053    if (isIntS16Immediate(N.getOperand(1), imm)) {
1054      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
1055      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1056        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1057      } else {
1058        Base = N.getOperand(0);
1059      }
1060      return true; // [r+i]
1061    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1062      // Match LOAD (ADD (X, Lo(G))).
1063      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1064             && "Cannot handle constant offsets yet!");
1065      Disp = N.getOperand(1).getOperand(0);  // The global address.
1066      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1067             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1068             Disp.getOpcode() == ISD::TargetConstantPool ||
1069             Disp.getOpcode() == ISD::TargetJumpTable);
1070      Base = N.getOperand(0);
1071      return true;  // [&g+r]
1072    }
1073  } else if (N.getOpcode() == ISD::OR) {
1074    short imm = 0;
1075    if (isIntS16Immediate(N.getOperand(1), imm)) {
1076      // If this is an or of disjoint bitfields, we can codegen this as an add
1077      // (for better address arithmetic) if the LHS and RHS of the OR are
1078      // provably disjoint.
1079      APInt LHSKnownZero, LHSKnownOne;
1080      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1081
1082      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1083        // If all of the bits are known zero on the LHS or RHS, the add won't
1084        // carry.
1085        Base = N.getOperand(0);
1086        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
1087        return true;
1088      }
1089    }
1090  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1091    // Loading from a constant address.
1092
1093    // If this address fits entirely in a 16-bit sext immediate field, codegen
1094    // this as "d, 0"
1095    short Imm;
1096    if (isIntS16Immediate(CN, Imm)) {
1097      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
1098      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1099                             CN->getValueType(0));
1100      return true;
1101    }
1102
1103    // Handle 32-bit sext immediates with LIS + addr mode.
1104    if (CN->getValueType(0) == MVT::i32 ||
1105        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1106      int Addr = (int)CN->getZExtValue();
1107
1108      // Otherwise, break this down into an LIS + disp.
1109      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
1110
1111      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
1112      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1113      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1114      return true;
1115    }
1116  }
1117
1118  Disp = DAG.getTargetConstant(0, getPointerTy());
1119  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1120    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1121  else
1122    Base = N;
1123  return true;      // [r+0]
1124}
1125
1126/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1127/// represented as an indexed [r+r] operation.
1128bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1129                                                SDValue &Index,
1130                                                SelectionDAG &DAG) const {
1131  // Check to see if we can easily represent this as an [r+r] address.  This
1132  // will fail if it thinks that the address is more profitably represented as
1133  // reg+imm, e.g. where imm = 0.
1134  if (SelectAddressRegReg(N, Base, Index, DAG))
1135    return true;
1136
1137  // If the operand is an addition, always emit this as [r+r], since this is
1138  // better (for code size, and execution, as the memop does the add for free)
1139  // than emitting an explicit add.
1140  if (N.getOpcode() == ISD::ADD) {
1141    Base = N.getOperand(0);
1142    Index = N.getOperand(1);
1143    return true;
1144  }
1145
1146  // Otherwise, do it the hard way, using R0 as the base register.
1147  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1148                         N.getValueType());
1149  Index = N;
1150  return true;
1151}
1152
1153/// SelectAddressRegImmShift - Returns true if the address N can be
1154/// represented by a base register plus a signed 14-bit displacement
1155/// [r+imm*4].  Suitable for use by STD and friends.
1156bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
1157                                                 SDValue &Base,
1158                                                 SelectionDAG &DAG) const {
1159  // FIXME dl should come from the parent load or store, not the address
1160  DebugLoc dl = N.getDebugLoc();
1161  // If this can be more profitably realized as r+r, fail.
1162  if (SelectAddressRegReg(N, Disp, Base, DAG))
1163    return false;
1164
1165  if (N.getOpcode() == ISD::ADD) {
1166    short imm = 0;
1167    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1168      Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1169      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1170        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1171      } else {
1172        Base = N.getOperand(0);
1173      }
1174      return true; // [r+i]
1175    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1176      // Match LOAD (ADD (X, Lo(G))).
1177      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1178             && "Cannot handle constant offsets yet!");
1179      Disp = N.getOperand(1).getOperand(0);  // The global address.
1180      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1181             Disp.getOpcode() == ISD::TargetConstantPool ||
1182             Disp.getOpcode() == ISD::TargetJumpTable);
1183      Base = N.getOperand(0);
1184      return true;  // [&g+r]
1185    }
1186  } else if (N.getOpcode() == ISD::OR) {
1187    short imm = 0;
1188    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1189      // If this is an or of disjoint bitfields, we can codegen this as an add
1190      // (for better address arithmetic) if the LHS and RHS of the OR are
1191      // provably disjoint.
1192      APInt LHSKnownZero, LHSKnownOne;
1193      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1194      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1195        // If all of the bits are known zero on the LHS or RHS, the add won't
1196        // carry.
1197        Base = N.getOperand(0);
1198        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1199        return true;
1200      }
1201    }
1202  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1203    // Loading from a constant address.  Verify low two bits are clear.
1204    if ((CN->getZExtValue() & 3) == 0) {
1205      // If this address fits entirely in a 14-bit sext immediate field, codegen
1206      // this as "d, 0"
1207      short Imm;
1208      if (isIntS16Immediate(CN, Imm)) {
1209        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1210        Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1211                               CN->getValueType(0));
1212        return true;
1213      }
1214
1215      // Fold the low-part of 32-bit absolute addresses into addr mode.
1216      if (CN->getValueType(0) == MVT::i32 ||
1217          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1218        int Addr = (int)CN->getZExtValue();
1219
1220        // Otherwise, break this down into an LIS + disp.
1221        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1222        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1223        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1224        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1225        return true;
1226      }
1227    }
1228  }
1229
1230  Disp = DAG.getTargetConstant(0, getPointerTy());
1231  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1232    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1233  else
1234    Base = N;
1235  return true;      // [r+0]
1236}
1237
1238
1239/// getPreIndexedAddressParts - returns true by value, base pointer and
1240/// offset pointer and addressing mode by reference if the node's address
1241/// can be legally represented as pre-indexed load / store address.
1242bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1243                                                  SDValue &Offset,
1244                                                  ISD::MemIndexedMode &AM,
1245                                                  SelectionDAG &DAG) const {
1246  if (DisablePPCPreinc) return false;
1247
1248  bool isLoad = true;
1249  SDValue Ptr;
1250  EVT VT;
1251  unsigned Alignment;
1252  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1253    Ptr = LD->getBasePtr();
1254    VT = LD->getMemoryVT();
1255    Alignment = LD->getAlignment();
1256  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1257    Ptr = ST->getBasePtr();
1258    VT  = ST->getMemoryVT();
1259    Alignment = ST->getAlignment();
1260    isLoad = false;
1261  } else
1262    return false;
1263
1264  // PowerPC doesn't have preinc load/store instructions for vectors.
1265  if (VT.isVector())
1266    return false;
1267
1268  if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1269
1270    // Common code will reject creating a pre-inc form if the base pointer
1271    // is a frame index, or if N is a store and the base pointer is either
1272    // the same as or a predecessor of the value being stored.  Check for
1273    // those situations here, and try with swapped Base/Offset instead.
1274    bool Swap = false;
1275
1276    if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1277      Swap = true;
1278    else if (!isLoad) {
1279      SDValue Val = cast<StoreSDNode>(N)->getValue();
1280      if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1281        Swap = true;
1282    }
1283
1284    if (Swap)
1285      std::swap(Base, Offset);
1286
1287    AM = ISD::PRE_INC;
1288    return true;
1289  }
1290
1291  // LDU/STU use reg+imm*4, others use reg+imm.
1292  if (VT != MVT::i64) {
1293    // reg + imm
1294    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1295      return false;
1296  } else {
1297    // LDU/STU need an address with at least 4-byte alignment.
1298    if (Alignment < 4)
1299      return false;
1300
1301    // reg + imm * 4.
1302    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1303      return false;
1304  }
1305
1306  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1307    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1308    // sext i32 to i64 when addr mode is r+i.
1309    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1310        LD->getExtensionType() == ISD::SEXTLOAD &&
1311        isa<ConstantSDNode>(Offset))
1312      return false;
1313  }
1314
1315  AM = ISD::PRE_INC;
1316  return true;
1317}
1318
1319//===----------------------------------------------------------------------===//
1320//  LowerOperation implementation
1321//===----------------------------------------------------------------------===//
1322
1323/// GetLabelAccessInfo - Return true if we should reference labels using a
1324/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1325static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1326                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1327  HiOpFlags = PPCII::MO_HA16;
1328  LoOpFlags = PPCII::MO_LO16;
1329
1330  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1331  // non-darwin platform.  We don't support PIC on other platforms yet.
1332  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1333               TM.getSubtarget<PPCSubtarget>().isDarwin();
1334  if (isPIC) {
1335    HiOpFlags |= PPCII::MO_PIC_FLAG;
1336    LoOpFlags |= PPCII::MO_PIC_FLAG;
1337  }
1338
1339  // If this is a reference to a global value that requires a non-lazy-ptr, make
1340  // sure that instruction lowering adds it.
1341  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1342    HiOpFlags |= PPCII::MO_NLP_FLAG;
1343    LoOpFlags |= PPCII::MO_NLP_FLAG;
1344
1345    if (GV->hasHiddenVisibility()) {
1346      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1347      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1348    }
1349  }
1350
1351  return isPIC;
1352}
1353
1354static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1355                             SelectionDAG &DAG) {
1356  EVT PtrVT = HiPart.getValueType();
1357  SDValue Zero = DAG.getConstant(0, PtrVT);
1358  DebugLoc DL = HiPart.getDebugLoc();
1359
1360  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1361  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1362
1363  // With PIC, the first instruction is actually "GR+hi(&G)".
1364  if (isPIC)
1365    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1366                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1367
1368  // Generate non-pic code that has direct accesses to the constant pool.
1369  // The address of the global is just (hi(&g)+lo(&g)).
1370  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1371}
1372
1373SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1374                                             SelectionDAG &DAG) const {
1375  EVT PtrVT = Op.getValueType();
1376  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1377  const Constant *C = CP->getConstVal();
1378
1379  // 64-bit SVR4 ABI code is always position-independent.
1380  // The actual address of the GlobalValue is stored in the TOC.
1381  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1382    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1383    return DAG.getNode(PPCISD::TOC_ENTRY, CP->getDebugLoc(), MVT::i64, GA,
1384                       DAG.getRegister(PPC::X2, MVT::i64));
1385  }
1386
1387  unsigned MOHiFlag, MOLoFlag;
1388  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1389  SDValue CPIHi =
1390    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1391  SDValue CPILo =
1392    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1393  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1394}
1395
1396SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1397  EVT PtrVT = Op.getValueType();
1398  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1399
1400  // 64-bit SVR4 ABI code is always position-independent.
1401  // The actual address of the GlobalValue is stored in the TOC.
1402  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1403    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1404    return DAG.getNode(PPCISD::TOC_ENTRY, JT->getDebugLoc(), MVT::i64, GA,
1405                       DAG.getRegister(PPC::X2, MVT::i64));
1406  }
1407
1408  unsigned MOHiFlag, MOLoFlag;
1409  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1410  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1411  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1412  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1413}
1414
1415SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1416                                             SelectionDAG &DAG) const {
1417  EVT PtrVT = Op.getValueType();
1418
1419  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1420
1421  unsigned MOHiFlag, MOLoFlag;
1422  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1423  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1424  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1425  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1426}
1427
1428SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1429                                              SelectionDAG &DAG) const {
1430
1431  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1432  DebugLoc dl = GA->getDebugLoc();
1433  const GlobalValue *GV = GA->getGlobal();
1434  EVT PtrVT = getPointerTy();
1435  bool is64bit = PPCSubTarget.isPPC64();
1436
1437  TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
1438
1439  if (Model == TLSModel::LocalExec) {
1440    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1441                                               PPCII::MO_TPREL16_HA);
1442    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1443                                               PPCII::MO_TPREL16_LO);
1444    SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1445                                     is64bit ? MVT::i64 : MVT::i32);
1446    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1447    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1448  }
1449
1450  if (!is64bit)
1451    llvm_unreachable("only local-exec is currently supported for ppc32");
1452
1453  if (Model == TLSModel::InitialExec) {
1454    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1455    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1456    SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
1457                                     PtrVT, GOTReg, TGA);
1458    SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
1459                                   PtrVT, TGA, TPOffsetHi);
1460    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGA);
1461  }
1462
1463  if (Model == TLSModel::GeneralDynamic) {
1464    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1465    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1466    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
1467                                     GOTReg, TGA);
1468    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
1469                                   GOTEntryHi, TGA);
1470
1471    // We need a chain node, and don't have one handy.  The underlying
1472    // call has no side effects, so using the function entry node
1473    // suffices.
1474    SDValue Chain = DAG.getEntryNode();
1475    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1476    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1477    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
1478                                  PtrVT, ParmReg, TGA);
1479    // The return value from GET_TLS_ADDR really is in X3 already, but
1480    // some hacks are needed here to tie everything together.  The extra
1481    // copies dissolve during subsequent transforms.
1482    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1483    return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
1484  }
1485
1486  if (Model == TLSModel::LocalDynamic) {
1487    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1488    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1489    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
1490                                     GOTReg, TGA);
1491    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
1492                                   GOTEntryHi, TGA);
1493
1494    // We need a chain node, and don't have one handy.  The underlying
1495    // call has no side effects, so using the function entry node
1496    // suffices.
1497    SDValue Chain = DAG.getEntryNode();
1498    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1499    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1500    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
1501                                  PtrVT, ParmReg, TGA);
1502    // The return value from GET_TLSLD_ADDR really is in X3 already, but
1503    // some hacks are needed here to tie everything together.  The extra
1504    // copies dissolve during subsequent transforms.
1505    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1506    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
1507                                      Chain, ParmReg, TGA);
1508    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
1509  }
1510
1511  llvm_unreachable("Unknown TLS model!");
1512}
1513
1514SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1515                                              SelectionDAG &DAG) const {
1516  EVT PtrVT = Op.getValueType();
1517  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1518  DebugLoc DL = GSDN->getDebugLoc();
1519  const GlobalValue *GV = GSDN->getGlobal();
1520
1521  // 64-bit SVR4 ABI code is always position-independent.
1522  // The actual address of the GlobalValue is stored in the TOC.
1523  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1524    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1525    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1526                       DAG.getRegister(PPC::X2, MVT::i64));
1527  }
1528
1529  unsigned MOHiFlag, MOLoFlag;
1530  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1531
1532  SDValue GAHi =
1533    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1534  SDValue GALo =
1535    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1536
1537  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1538
1539  // If the global reference is actually to a non-lazy-pointer, we have to do an
1540  // extra load to get the address of the global.
1541  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1542    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1543                      false, false, false, 0);
1544  return Ptr;
1545}
1546
1547SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1548  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1549  DebugLoc dl = Op.getDebugLoc();
1550
1551  // If we're comparing for equality to zero, expose the fact that this is
1552  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1553  // fold the new nodes.
1554  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1555    if (C->isNullValue() && CC == ISD::SETEQ) {
1556      EVT VT = Op.getOperand(0).getValueType();
1557      SDValue Zext = Op.getOperand(0);
1558      if (VT.bitsLT(MVT::i32)) {
1559        VT = MVT::i32;
1560        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1561      }
1562      unsigned Log2b = Log2_32(VT.getSizeInBits());
1563      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1564      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1565                                DAG.getConstant(Log2b, MVT::i32));
1566      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1567    }
1568    // Leave comparisons against 0 and -1 alone for now, since they're usually
1569    // optimized.  FIXME: revisit this when we can custom lower all setcc
1570    // optimizations.
1571    if (C->isAllOnesValue() || C->isNullValue())
1572      return SDValue();
1573  }
1574
1575  // If we have an integer seteq/setne, turn it into a compare against zero
1576  // by xor'ing the rhs with the lhs, which is faster than setting a
1577  // condition register, reading it back out, and masking the correct bit.  The
1578  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1579  // the result to other bit-twiddling opportunities.
1580  EVT LHSVT = Op.getOperand(0).getValueType();
1581  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1582    EVT VT = Op.getValueType();
1583    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1584                                Op.getOperand(1));
1585    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1586  }
1587  return SDValue();
1588}
1589
1590SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1591                                      const PPCSubtarget &Subtarget) const {
1592  SDNode *Node = Op.getNode();
1593  EVT VT = Node->getValueType(0);
1594  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1595  SDValue InChain = Node->getOperand(0);
1596  SDValue VAListPtr = Node->getOperand(1);
1597  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1598  DebugLoc dl = Node->getDebugLoc();
1599
1600  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1601
1602  // gpr_index
1603  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1604                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1605                                    false, false, 0);
1606  InChain = GprIndex.getValue(1);
1607
1608  if (VT == MVT::i64) {
1609    // Check if GprIndex is even
1610    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1611                                 DAG.getConstant(1, MVT::i32));
1612    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1613                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1614    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1615                                          DAG.getConstant(1, MVT::i32));
1616    // Align GprIndex to be even if it isn't
1617    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1618                           GprIndex);
1619  }
1620
1621  // fpr index is 1 byte after gpr
1622  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1623                               DAG.getConstant(1, MVT::i32));
1624
1625  // fpr
1626  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1627                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1628                                    false, false, 0);
1629  InChain = FprIndex.getValue(1);
1630
1631  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1632                                       DAG.getConstant(8, MVT::i32));
1633
1634  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1635                                        DAG.getConstant(4, MVT::i32));
1636
1637  // areas
1638  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1639                                     MachinePointerInfo(), false, false,
1640                                     false, 0);
1641  InChain = OverflowArea.getValue(1);
1642
1643  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1644                                    MachinePointerInfo(), false, false,
1645                                    false, 0);
1646  InChain = RegSaveArea.getValue(1);
1647
1648  // select overflow_area if index > 8
1649  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1650                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1651
1652  // adjustment constant gpr_index * 4/8
1653  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1654                                    VT.isInteger() ? GprIndex : FprIndex,
1655                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1656                                                    MVT::i32));
1657
1658  // OurReg = RegSaveArea + RegConstant
1659  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1660                               RegConstant);
1661
1662  // Floating types are 32 bytes into RegSaveArea
1663  if (VT.isFloatingPoint())
1664    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1665                         DAG.getConstant(32, MVT::i32));
1666
1667  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1668  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1669                                   VT.isInteger() ? GprIndex : FprIndex,
1670                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1671                                                   MVT::i32));
1672
1673  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1674                              VT.isInteger() ? VAListPtr : FprPtr,
1675                              MachinePointerInfo(SV),
1676                              MVT::i8, false, false, 0);
1677
1678  // determine if we should load from reg_save_area or overflow_area
1679  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1680
1681  // increase overflow_area by 4/8 if gpr/fpr > 8
1682  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1683                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1684                                          MVT::i32));
1685
1686  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1687                             OverflowAreaPlusN);
1688
1689  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1690                              OverflowAreaPtr,
1691                              MachinePointerInfo(),
1692                              MVT::i32, false, false, 0);
1693
1694  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1695                     false, false, false, 0);
1696}
1697
1698SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1699                                                  SelectionDAG &DAG) const {
1700  return Op.getOperand(0);
1701}
1702
1703SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1704                                                SelectionDAG &DAG) const {
1705  SDValue Chain = Op.getOperand(0);
1706  SDValue Trmp = Op.getOperand(1); // trampoline
1707  SDValue FPtr = Op.getOperand(2); // nested function
1708  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1709  DebugLoc dl = Op.getDebugLoc();
1710
1711  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1712  bool isPPC64 = (PtrVT == MVT::i64);
1713  Type *IntPtrTy =
1714    DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
1715                                                             *DAG.getContext());
1716
1717  TargetLowering::ArgListTy Args;
1718  TargetLowering::ArgListEntry Entry;
1719
1720  Entry.Ty = IntPtrTy;
1721  Entry.Node = Trmp; Args.push_back(Entry);
1722
1723  // TrampSize == (isPPC64 ? 48 : 40);
1724  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1725                               isPPC64 ? MVT::i64 : MVT::i32);
1726  Args.push_back(Entry);
1727
1728  Entry.Node = FPtr; Args.push_back(Entry);
1729  Entry.Node = Nest; Args.push_back(Entry);
1730
1731  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1732  TargetLowering::CallLoweringInfo CLI(Chain,
1733                                       Type::getVoidTy(*DAG.getContext()),
1734                                       false, false, false, false, 0,
1735                                       CallingConv::C,
1736                /*isTailCall=*/false,
1737                                       /*doesNotRet=*/false,
1738                                       /*isReturnValueUsed=*/true,
1739                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1740                Args, DAG, dl);
1741  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1742
1743  return CallResult.second;
1744}
1745
1746SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1747                                        const PPCSubtarget &Subtarget) const {
1748  MachineFunction &MF = DAG.getMachineFunction();
1749  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1750
1751  DebugLoc dl = Op.getDebugLoc();
1752
1753  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1754    // vastart just stores the address of the VarArgsFrameIndex slot into the
1755    // memory location argument.
1756    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1757    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1758    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1759    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1760                        MachinePointerInfo(SV),
1761                        false, false, 0);
1762  }
1763
1764  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1765  // We suppose the given va_list is already allocated.
1766  //
1767  // typedef struct {
1768  //  char gpr;     /* index into the array of 8 GPRs
1769  //                 * stored in the register save area
1770  //                 * gpr=0 corresponds to r3,
1771  //                 * gpr=1 to r4, etc.
1772  //                 */
1773  //  char fpr;     /* index into the array of 8 FPRs
1774  //                 * stored in the register save area
1775  //                 * fpr=0 corresponds to f1,
1776  //                 * fpr=1 to f2, etc.
1777  //                 */
1778  //  char *overflow_arg_area;
1779  //                /* location on stack that holds
1780  //                 * the next overflow argument
1781  //                 */
1782  //  char *reg_save_area;
1783  //               /* where r3:r10 and f1:f8 (if saved)
1784  //                * are stored
1785  //                */
1786  // } va_list[1];
1787
1788
1789  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1790  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1791
1792
1793  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1794
1795  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1796                                            PtrVT);
1797  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1798                                 PtrVT);
1799
1800  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1801  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1802
1803  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1804  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1805
1806  uint64_t FPROffset = 1;
1807  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1808
1809  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1810
1811  // Store first byte : number of int regs
1812  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1813                                         Op.getOperand(1),
1814                                         MachinePointerInfo(SV),
1815                                         MVT::i8, false, false, 0);
1816  uint64_t nextOffset = FPROffset;
1817  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1818                                  ConstFPROffset);
1819
1820  // Store second byte : number of float regs
1821  SDValue secondStore =
1822    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1823                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1824                      false, false, 0);
1825  nextOffset += StackOffset;
1826  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1827
1828  // Store second word : arguments given on stack
1829  SDValue thirdStore =
1830    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1831                 MachinePointerInfo(SV, nextOffset),
1832                 false, false, 0);
1833  nextOffset += FrameOffset;
1834  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1835
1836  // Store third word : arguments given in registers
1837  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1838                      MachinePointerInfo(SV, nextOffset),
1839                      false, false, 0);
1840
1841}
1842
1843#include "PPCGenCallingConv.inc"
1844
1845static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1846                                       CCValAssign::LocInfo &LocInfo,
1847                                       ISD::ArgFlagsTy &ArgFlags,
1848                                       CCState &State) {
1849  return true;
1850}
1851
1852static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1853                                              MVT &LocVT,
1854                                              CCValAssign::LocInfo &LocInfo,
1855                                              ISD::ArgFlagsTy &ArgFlags,
1856                                              CCState &State) {
1857  static const uint16_t ArgRegs[] = {
1858    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1859    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1860  };
1861  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1862
1863  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1864
1865  // Skip one register if the first unallocated register has an even register
1866  // number and there are still argument registers available which have not been
1867  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1868  // need to skip a register if RegNum is odd.
1869  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1870    State.AllocateReg(ArgRegs[RegNum]);
1871  }
1872
1873  // Always return false here, as this function only makes sure that the first
1874  // unallocated register has an odd register number and does not actually
1875  // allocate a register for the current argument.
1876  return false;
1877}
1878
1879static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1880                                                MVT &LocVT,
1881                                                CCValAssign::LocInfo &LocInfo,
1882                                                ISD::ArgFlagsTy &ArgFlags,
1883                                                CCState &State) {
1884  static const uint16_t ArgRegs[] = {
1885    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1886    PPC::F8
1887  };
1888
1889  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1890
1891  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1892
1893  // If there is only one Floating-point register left we need to put both f64
1894  // values of a split ppc_fp128 value on the stack.
1895  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1896    State.AllocateReg(ArgRegs[RegNum]);
1897  }
1898
1899  // Always return false here, as this function only makes sure that the two f64
1900  // values a ppc_fp128 value is split into are both passed in registers or both
1901  // passed on the stack and does not actually allocate a register for the
1902  // current argument.
1903  return false;
1904}
1905
1906/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1907/// on Darwin.
1908static const uint16_t *GetFPR() {
1909  static const uint16_t FPR[] = {
1910    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1911    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1912  };
1913
1914  return FPR;
1915}
1916
1917/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1918/// the stack.
1919static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1920                                       unsigned PtrByteSize) {
1921  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1922  if (Flags.isByVal())
1923    ArgSize = Flags.getByValSize();
1924  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1925
1926  return ArgSize;
1927}
1928
1929SDValue
1930PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1931                                        CallingConv::ID CallConv, bool isVarArg,
1932                                        const SmallVectorImpl<ISD::InputArg>
1933                                          &Ins,
1934                                        DebugLoc dl, SelectionDAG &DAG,
1935                                        SmallVectorImpl<SDValue> &InVals)
1936                                          const {
1937  if (PPCSubTarget.isSVR4ABI()) {
1938    if (PPCSubTarget.isPPC64())
1939      return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
1940                                         dl, DAG, InVals);
1941    else
1942      return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
1943                                         dl, DAG, InVals);
1944  } else {
1945    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1946                                       dl, DAG, InVals);
1947  }
1948}
1949
1950SDValue
1951PPCTargetLowering::LowerFormalArguments_32SVR4(
1952                                      SDValue Chain,
1953                                      CallingConv::ID CallConv, bool isVarArg,
1954                                      const SmallVectorImpl<ISD::InputArg>
1955                                        &Ins,
1956                                      DebugLoc dl, SelectionDAG &DAG,
1957                                      SmallVectorImpl<SDValue> &InVals) const {
1958
1959  // 32-bit SVR4 ABI Stack Frame Layout:
1960  //              +-----------------------------------+
1961  //        +-->  |            Back chain             |
1962  //        |     +-----------------------------------+
1963  //        |     | Floating-point register save area |
1964  //        |     +-----------------------------------+
1965  //        |     |    General register save area     |
1966  //        |     +-----------------------------------+
1967  //        |     |          CR save word             |
1968  //        |     +-----------------------------------+
1969  //        |     |         VRSAVE save word          |
1970  //        |     +-----------------------------------+
1971  //        |     |         Alignment padding         |
1972  //        |     +-----------------------------------+
1973  //        |     |     Vector register save area     |
1974  //        |     +-----------------------------------+
1975  //        |     |       Local variable space        |
1976  //        |     +-----------------------------------+
1977  //        |     |        Parameter list area        |
1978  //        |     +-----------------------------------+
1979  //        |     |           LR save word            |
1980  //        |     +-----------------------------------+
1981  // SP-->  +---  |            Back chain             |
1982  //              +-----------------------------------+
1983  //
1984  // Specifications:
1985  //   System V Application Binary Interface PowerPC Processor Supplement
1986  //   AltiVec Technology Programming Interface Manual
1987
1988  MachineFunction &MF = DAG.getMachineFunction();
1989  MachineFrameInfo *MFI = MF.getFrameInfo();
1990  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1991
1992  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1993  // Potential tail calls could cause overwriting of argument stack slots.
1994  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1995                       (CallConv == CallingConv::Fast));
1996  unsigned PtrByteSize = 4;
1997
1998  // Assign locations to all of the incoming arguments.
1999  SmallVector<CCValAssign, 16> ArgLocs;
2000  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2001                 getTargetMachine(), ArgLocs, *DAG.getContext());
2002
2003  // Reserve space for the linkage area on the stack.
2004  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
2005
2006  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
2007
2008  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2009    CCValAssign &VA = ArgLocs[i];
2010
2011    // Arguments stored in registers.
2012    if (VA.isRegLoc()) {
2013      const TargetRegisterClass *RC;
2014      EVT ValVT = VA.getValVT();
2015
2016      switch (ValVT.getSimpleVT().SimpleTy) {
2017        default:
2018          llvm_unreachable("ValVT not supported by formal arguments Lowering");
2019        case MVT::i32:
2020          RC = &PPC::GPRCRegClass;
2021          break;
2022        case MVT::f32:
2023          RC = &PPC::F4RCRegClass;
2024          break;
2025        case MVT::f64:
2026          RC = &PPC::F8RCRegClass;
2027          break;
2028        case MVT::v16i8:
2029        case MVT::v8i16:
2030        case MVT::v4i32:
2031        case MVT::v4f32:
2032          RC = &PPC::VRRCRegClass;
2033          break;
2034      }
2035
2036      // Transform the arguments stored in physical registers into virtual ones.
2037      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2038      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
2039
2040      InVals.push_back(ArgValue);
2041    } else {
2042      // Argument stored in memory.
2043      assert(VA.isMemLoc());
2044
2045      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
2046      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
2047                                      isImmutable);
2048
2049      // Create load nodes to retrieve arguments from the stack.
2050      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2051      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2052                                   MachinePointerInfo(),
2053                                   false, false, false, 0));
2054    }
2055  }
2056
2057  // Assign locations to all of the incoming aggregate by value arguments.
2058  // Aggregates passed by value are stored in the local variable space of the
2059  // caller's stack frame, right above the parameter list area.
2060  SmallVector<CCValAssign, 16> ByValArgLocs;
2061  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2062                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
2063
2064  // Reserve stack space for the allocations in CCInfo.
2065  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2066
2067  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
2068
2069  // Area that is at least reserved in the caller of this function.
2070  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
2071
2072  // Set the size that is at least reserved in caller of this function.  Tail
2073  // call optimized function's reserved stack space needs to be aligned so that
2074  // taking the difference between two stack areas will result in an aligned
2075  // stack.
2076  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2077
2078  MinReservedArea =
2079    std::max(MinReservedArea,
2080             PPCFrameLowering::getMinCallFrameSize(false, false));
2081
2082  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2083    getStackAlignment();
2084  unsigned AlignMask = TargetAlign-1;
2085  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2086
2087  FI->setMinReservedArea(MinReservedArea);
2088
2089  SmallVector<SDValue, 8> MemOps;
2090
2091  // If the function takes variable number of arguments, make a frame index for
2092  // the start of the first vararg value... for expansion of llvm.va_start.
2093  if (isVarArg) {
2094    static const uint16_t GPArgRegs[] = {
2095      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2096      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2097    };
2098    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2099
2100    static const uint16_t FPArgRegs[] = {
2101      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2102      PPC::F8
2103    };
2104    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2105
2106    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
2107                                                          NumGPArgRegs));
2108    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
2109                                                          NumFPArgRegs));
2110
2111    // Make room for NumGPArgRegs and NumFPArgRegs.
2112    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2113                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
2114
2115    FuncInfo->setVarArgsStackOffset(
2116      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2117                             CCInfo.getNextStackOffset(), true));
2118
2119    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2120    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2121
2122    // The fixed integer arguments of a variadic function are stored to the
2123    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2124    // the result of va_next.
2125    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2126      // Get an existing live-in vreg, or add a new one.
2127      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2128      if (!VReg)
2129        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2130
2131      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2132      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2133                                   MachinePointerInfo(), false, false, 0);
2134      MemOps.push_back(Store);
2135      // Increment the address by four for the next argument to store
2136      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2137      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2138    }
2139
2140    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2141    // is set.
2142    // The double arguments are stored to the VarArgsFrameIndex
2143    // on the stack.
2144    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2145      // Get an existing live-in vreg, or add a new one.
2146      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2147      if (!VReg)
2148        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2149
2150      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2151      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2152                                   MachinePointerInfo(), false, false, 0);
2153      MemOps.push_back(Store);
2154      // Increment the address by eight for the next argument to store
2155      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
2156                                         PtrVT);
2157      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2158    }
2159  }
2160
2161  if (!MemOps.empty())
2162    Chain = DAG.getNode(ISD::TokenFactor, dl,
2163                        MVT::Other, &MemOps[0], MemOps.size());
2164
2165  return Chain;
2166}
2167
2168// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2169// value to MVT::i64 and then truncate to the correct register size.
2170SDValue
2171PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
2172                                     SelectionDAG &DAG, SDValue ArgVal,
2173                                     DebugLoc dl) const {
2174  if (Flags.isSExt())
2175    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2176                         DAG.getValueType(ObjectVT));
2177  else if (Flags.isZExt())
2178    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2179                         DAG.getValueType(ObjectVT));
2180
2181  return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2182}
2183
2184// Set the size that is at least reserved in caller of this function.  Tail
2185// call optimized functions' reserved stack space needs to be aligned so that
2186// taking the difference between two stack areas will result in an aligned
2187// stack.
2188void
2189PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
2190                                      unsigned nAltivecParamsAtEnd,
2191                                      unsigned MinReservedArea,
2192                                      bool isPPC64) const {
2193  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2194  // Add the Altivec parameters at the end, if needed.
2195  if (nAltivecParamsAtEnd) {
2196    MinReservedArea = ((MinReservedArea+15)/16)*16;
2197    MinReservedArea += 16*nAltivecParamsAtEnd;
2198  }
2199  MinReservedArea =
2200    std::max(MinReservedArea,
2201             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2202  unsigned TargetAlign
2203    = DAG.getMachineFunction().getTarget().getFrameLowering()->
2204        getStackAlignment();
2205  unsigned AlignMask = TargetAlign-1;
2206  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2207  FI->setMinReservedArea(MinReservedArea);
2208}
2209
2210SDValue
2211PPCTargetLowering::LowerFormalArguments_64SVR4(
2212                                      SDValue Chain,
2213                                      CallingConv::ID CallConv, bool isVarArg,
2214                                      const SmallVectorImpl<ISD::InputArg>
2215                                        &Ins,
2216                                      DebugLoc dl, SelectionDAG &DAG,
2217                                      SmallVectorImpl<SDValue> &InVals) const {
2218  // TODO: add description of PPC stack frame format, or at least some docs.
2219  //
2220  MachineFunction &MF = DAG.getMachineFunction();
2221  MachineFrameInfo *MFI = MF.getFrameInfo();
2222  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2223
2224  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2225  // Potential tail calls could cause overwriting of argument stack slots.
2226  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2227                       (CallConv == CallingConv::Fast));
2228  unsigned PtrByteSize = 8;
2229
2230  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
2231  // Area that is at least reserved in caller of this function.
2232  unsigned MinReservedArea = ArgOffset;
2233
2234  static const uint16_t GPR[] = {
2235    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2236    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2237  };
2238
2239  static const uint16_t *FPR = GetFPR();
2240
2241  static const uint16_t VR[] = {
2242    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2243    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2244  };
2245
2246  const unsigned Num_GPR_Regs = array_lengthof(GPR);
2247  const unsigned Num_FPR_Regs = 13;
2248  const unsigned Num_VR_Regs  = array_lengthof(VR);
2249
2250  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2251
2252  // Add DAG nodes to load the arguments or copy them out of registers.  On
2253  // entry to a function on PPC, the arguments start after the linkage area,
2254  // although the first ones are often in registers.
2255
2256  SmallVector<SDValue, 8> MemOps;
2257  unsigned nAltivecParamsAtEnd = 0;
2258  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2259  unsigned CurArgIdx = 0;
2260  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2261    SDValue ArgVal;
2262    bool needsLoad = false;
2263    EVT ObjectVT = Ins[ArgNo].VT;
2264    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2265    unsigned ArgSize = ObjSize;
2266    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2267    std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2268    CurArgIdx = Ins[ArgNo].OrigArgIndex;
2269
2270    unsigned CurArgOffset = ArgOffset;
2271
2272    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2273    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2274        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2275      if (isVarArg) {
2276        MinReservedArea = ((MinReservedArea+15)/16)*16;
2277        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2278                                                  Flags,
2279                                                  PtrByteSize);
2280      } else
2281        nAltivecParamsAtEnd++;
2282    } else
2283      // Calculate min reserved area.
2284      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2285                                                Flags,
2286                                                PtrByteSize);
2287
2288    // FIXME the codegen can be much improved in some cases.
2289    // We do not have to keep everything in memory.
2290    if (Flags.isByVal()) {
2291      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2292      ObjSize = Flags.getByValSize();
2293      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2294      // Empty aggregate parameters do not take up registers.  Examples:
2295      //   struct { } a;
2296      //   union  { } b;
2297      //   int c[0];
2298      // etc.  However, we have to provide a place-holder in InVals, so
2299      // pretend we have an 8-byte item at the current address for that
2300      // purpose.
2301      if (!ObjSize) {
2302        int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2303        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2304        InVals.push_back(FIN);
2305        continue;
2306      }
2307      // All aggregates smaller than 8 bytes must be passed right-justified.
2308      if (ObjSize < PtrByteSize)
2309        CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
2310      // The value of the object is its address.
2311      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2312      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2313      InVals.push_back(FIN);
2314
2315      if (ObjSize < 8) {
2316        if (GPR_idx != Num_GPR_Regs) {
2317          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2318          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2319          SDValue Store;
2320
2321          if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
2322            EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2323                           (ObjSize == 2 ? MVT::i16 : MVT::i32));
2324            Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2325                                      MachinePointerInfo(FuncArg, CurArgOffset),
2326                                      ObjType, false, false, 0);
2327          } else {
2328            // For sizes that don't fit a truncating store (3, 5, 6, 7),
2329            // store the whole register as-is to the parameter save area
2330            // slot.  The address of the parameter was already calculated
2331            // above (InVals.push_back(FIN)) to be the right-justified
2332            // offset within the slot.  For this store, we need a new
2333            // frame index that points at the beginning of the slot.
2334            int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2335            SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2336            Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2337                                 MachinePointerInfo(FuncArg, ArgOffset),
2338                                 false, false, 0);
2339          }
2340
2341          MemOps.push_back(Store);
2342          ++GPR_idx;
2343        }
2344        // Whether we copied from a register or not, advance the offset
2345        // into the parameter save area by a full doubleword.
2346        ArgOffset += PtrByteSize;
2347        continue;
2348      }
2349
2350      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2351        // Store whatever pieces of the object are in registers
2352        // to memory.  ArgOffset will be the address of the beginning
2353        // of the object.
2354        if (GPR_idx != Num_GPR_Regs) {
2355          unsigned VReg;
2356          VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2357          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2358          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2359          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2360          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2361                                       MachinePointerInfo(FuncArg, ArgOffset),
2362                                       false, false, 0);
2363          MemOps.push_back(Store);
2364          ++GPR_idx;
2365          ArgOffset += PtrByteSize;
2366        } else {
2367          ArgOffset += ArgSize - j;
2368          break;
2369        }
2370      }
2371      continue;
2372    }
2373
2374    switch (ObjectVT.getSimpleVT().SimpleTy) {
2375    default: llvm_unreachable("Unhandled argument type!");
2376    case MVT::i32:
2377    case MVT::i64:
2378      if (GPR_idx != Num_GPR_Regs) {
2379        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2380        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2381
2382        if (ObjectVT == MVT::i32)
2383          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2384          // value to MVT::i64 and then truncate to the correct register size.
2385          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2386
2387        ++GPR_idx;
2388      } else {
2389        needsLoad = true;
2390        ArgSize = PtrByteSize;
2391      }
2392      ArgOffset += 8;
2393      break;
2394
2395    case MVT::f32:
2396    case MVT::f64:
2397      // Every 8 bytes of argument space consumes one of the GPRs available for
2398      // argument passing.
2399      if (GPR_idx != Num_GPR_Regs) {
2400        ++GPR_idx;
2401      }
2402      if (FPR_idx != Num_FPR_Regs) {
2403        unsigned VReg;
2404
2405        if (ObjectVT == MVT::f32)
2406          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2407        else
2408          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2409
2410        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2411        ++FPR_idx;
2412      } else {
2413        needsLoad = true;
2414        ArgSize = PtrByteSize;
2415      }
2416
2417      ArgOffset += 8;
2418      break;
2419    case MVT::v4f32:
2420    case MVT::v4i32:
2421    case MVT::v8i16:
2422    case MVT::v16i8:
2423      // Note that vector arguments in registers don't reserve stack space,
2424      // except in varargs functions.
2425      if (VR_idx != Num_VR_Regs) {
2426        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2427        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2428        if (isVarArg) {
2429          while ((ArgOffset % 16) != 0) {
2430            ArgOffset += PtrByteSize;
2431            if (GPR_idx != Num_GPR_Regs)
2432              GPR_idx++;
2433          }
2434          ArgOffset += 16;
2435          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2436        }
2437        ++VR_idx;
2438      } else {
2439        // Vectors are aligned.
2440        ArgOffset = ((ArgOffset+15)/16)*16;
2441        CurArgOffset = ArgOffset;
2442        ArgOffset += 16;
2443        needsLoad = true;
2444      }
2445      break;
2446    }
2447
2448    // We need to load the argument to a virtual register if we determined
2449    // above that we ran out of physical registers of the appropriate type.
2450    if (needsLoad) {
2451      int FI = MFI->CreateFixedObject(ObjSize,
2452                                      CurArgOffset + (ArgSize - ObjSize),
2453                                      isImmutable);
2454      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2455      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2456                           false, false, false, 0);
2457    }
2458
2459    InVals.push_back(ArgVal);
2460  }
2461
2462  // Set the size that is at least reserved in caller of this function.  Tail
2463  // call optimized functions' reserved stack space needs to be aligned so that
2464  // taking the difference between two stack areas will result in an aligned
2465  // stack.
2466  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
2467
2468  // If the function takes variable number of arguments, make a frame index for
2469  // the start of the first vararg value... for expansion of llvm.va_start.
2470  if (isVarArg) {
2471    int Depth = ArgOffset;
2472
2473    FuncInfo->setVarArgsFrameIndex(
2474      MFI->CreateFixedObject(PtrByteSize, Depth, true));
2475    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2476
2477    // If this function is vararg, store any remaining integer argument regs
2478    // to their spots on the stack so that they may be loaded by deferencing the
2479    // result of va_next.
2480    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2481      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2482      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2483      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2484                                   MachinePointerInfo(), false, false, 0);
2485      MemOps.push_back(Store);
2486      // Increment the address by four for the next argument to store
2487      SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
2488      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2489    }
2490  }
2491
2492  if (!MemOps.empty())
2493    Chain = DAG.getNode(ISD::TokenFactor, dl,
2494                        MVT::Other, &MemOps[0], MemOps.size());
2495
2496  return Chain;
2497}
2498
2499SDValue
2500PPCTargetLowering::LowerFormalArguments_Darwin(
2501                                      SDValue Chain,
2502                                      CallingConv::ID CallConv, bool isVarArg,
2503                                      const SmallVectorImpl<ISD::InputArg>
2504                                        &Ins,
2505                                      DebugLoc dl, SelectionDAG &DAG,
2506                                      SmallVectorImpl<SDValue> &InVals) const {
2507  // TODO: add description of PPC stack frame format, or at least some docs.
2508  //
2509  MachineFunction &MF = DAG.getMachineFunction();
2510  MachineFrameInfo *MFI = MF.getFrameInfo();
2511  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2512
2513  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2514  bool isPPC64 = PtrVT == MVT::i64;
2515  // Potential tail calls could cause overwriting of argument stack slots.
2516  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2517                       (CallConv == CallingConv::Fast));
2518  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2519
2520  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
2521  // Area that is at least reserved in caller of this function.
2522  unsigned MinReservedArea = ArgOffset;
2523
2524  static const uint16_t GPR_32[] = {           // 32-bit registers.
2525    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2526    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2527  };
2528  static const uint16_t GPR_64[] = {           // 64-bit registers.
2529    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2530    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2531  };
2532
2533  static const uint16_t *FPR = GetFPR();
2534
2535  static const uint16_t VR[] = {
2536    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2537    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2538  };
2539
2540  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
2541  const unsigned Num_FPR_Regs = 13;
2542  const unsigned Num_VR_Regs  = array_lengthof( VR);
2543
2544  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2545
2546  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
2547
2548  // In 32-bit non-varargs functions, the stack space for vectors is after the
2549  // stack space for non-vectors.  We do not use this space unless we have
2550  // too many vectors to fit in registers, something that only occurs in
2551  // constructed examples:), but we have to walk the arglist to figure
2552  // that out...for the pathological case, compute VecArgOffset as the
2553  // start of the vector parameter area.  Computing VecArgOffset is the
2554  // entire point of the following loop.
2555  unsigned VecArgOffset = ArgOffset;
2556  if (!isVarArg && !isPPC64) {
2557    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
2558         ++ArgNo) {
2559      EVT ObjectVT = Ins[ArgNo].VT;
2560      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2561
2562      if (Flags.isByVal()) {
2563        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
2564        unsigned ObjSize = Flags.getByValSize();
2565        unsigned ArgSize =
2566                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2567        VecArgOffset += ArgSize;
2568        continue;
2569      }
2570
2571      switch(ObjectVT.getSimpleVT().SimpleTy) {
2572      default: llvm_unreachable("Unhandled argument type!");
2573      case MVT::i32:
2574      case MVT::f32:
2575        VecArgOffset += 4;
2576        break;
2577      case MVT::i64:  // PPC64
2578      case MVT::f64:
2579        // FIXME: We are guaranteed to be !isPPC64 at this point.
2580        // Does MVT::i64 apply?
2581        VecArgOffset += 8;
2582        break;
2583      case MVT::v4f32:
2584      case MVT::v4i32:
2585      case MVT::v8i16:
2586      case MVT::v16i8:
2587        // Nothing to do, we're only looking at Nonvector args here.
2588        break;
2589      }
2590    }
2591  }
2592  // We've found where the vector parameter area in memory is.  Skip the
2593  // first 12 parameters; these don't use that memory.
2594  VecArgOffset = ((VecArgOffset+15)/16)*16;
2595  VecArgOffset += 12*16;
2596
2597  // Add DAG nodes to load the arguments or copy them out of registers.  On
2598  // entry to a function on PPC, the arguments start after the linkage area,
2599  // although the first ones are often in registers.
2600
2601  SmallVector<SDValue, 8> MemOps;
2602  unsigned nAltivecParamsAtEnd = 0;
2603  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2604  unsigned CurArgIdx = 0;
2605  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2606    SDValue ArgVal;
2607    bool needsLoad = false;
2608    EVT ObjectVT = Ins[ArgNo].VT;
2609    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2610    unsigned ArgSize = ObjSize;
2611    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2612    std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2613    CurArgIdx = Ins[ArgNo].OrigArgIndex;
2614
2615    unsigned CurArgOffset = ArgOffset;
2616
2617    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2618    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2619        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2620      if (isVarArg || isPPC64) {
2621        MinReservedArea = ((MinReservedArea+15)/16)*16;
2622        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2623                                                  Flags,
2624                                                  PtrByteSize);
2625      } else  nAltivecParamsAtEnd++;
2626    } else
2627      // Calculate min reserved area.
2628      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2629                                                Flags,
2630                                                PtrByteSize);
2631
2632    // FIXME the codegen can be much improved in some cases.
2633    // We do not have to keep everything in memory.
2634    if (Flags.isByVal()) {
2635      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2636      ObjSize = Flags.getByValSize();
2637      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2638      // Objects of size 1 and 2 are right justified, everything else is
2639      // left justified.  This means the memory address is adjusted forwards.
2640      if (ObjSize==1 || ObjSize==2) {
2641        CurArgOffset = CurArgOffset + (4 - ObjSize);
2642      }
2643      // The value of the object is its address.
2644      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2645      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2646      InVals.push_back(FIN);
2647      if (ObjSize==1 || ObjSize==2) {
2648        if (GPR_idx != Num_GPR_Regs) {
2649          unsigned VReg;
2650          if (isPPC64)
2651            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2652          else
2653            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2654          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2655          EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
2656          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2657                                            MachinePointerInfo(FuncArg,
2658                                              CurArgOffset),
2659                                            ObjType, false, false, 0);
2660          MemOps.push_back(Store);
2661          ++GPR_idx;
2662        }
2663
2664        ArgOffset += PtrByteSize;
2665
2666        continue;
2667      }
2668      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2669        // Store whatever pieces of the object are in registers
2670        // to memory.  ArgOffset will be the address of the beginning
2671        // of the object.
2672        if (GPR_idx != Num_GPR_Regs) {
2673          unsigned VReg;
2674          if (isPPC64)
2675            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2676          else
2677            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2678          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2679          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2680          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2681          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2682                                       MachinePointerInfo(FuncArg, ArgOffset),
2683                                       false, false, 0);
2684          MemOps.push_back(Store);
2685          ++GPR_idx;
2686          ArgOffset += PtrByteSize;
2687        } else {
2688          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2689          break;
2690        }
2691      }
2692      continue;
2693    }
2694
2695    switch (ObjectVT.getSimpleVT().SimpleTy) {
2696    default: llvm_unreachable("Unhandled argument type!");
2697    case MVT::i32:
2698      if (!isPPC64) {
2699        if (GPR_idx != Num_GPR_Regs) {
2700          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2701          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2702          ++GPR_idx;
2703        } else {
2704          needsLoad = true;
2705          ArgSize = PtrByteSize;
2706        }
2707        // All int arguments reserve stack space in the Darwin ABI.
2708        ArgOffset += PtrByteSize;
2709        break;
2710      }
2711      // FALLTHROUGH
2712    case MVT::i64:  // PPC64
2713      if (GPR_idx != Num_GPR_Regs) {
2714        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2715        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2716
2717        if (ObjectVT == MVT::i32)
2718          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2719          // value to MVT::i64 and then truncate to the correct register size.
2720          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2721
2722        ++GPR_idx;
2723      } else {
2724        needsLoad = true;
2725        ArgSize = PtrByteSize;
2726      }
2727      // All int arguments reserve stack space in the Darwin ABI.
2728      ArgOffset += 8;
2729      break;
2730
2731    case MVT::f32:
2732    case MVT::f64:
2733      // Every 4 bytes of argument space consumes one of the GPRs available for
2734      // argument passing.
2735      if (GPR_idx != Num_GPR_Regs) {
2736        ++GPR_idx;
2737        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2738          ++GPR_idx;
2739      }
2740      if (FPR_idx != Num_FPR_Regs) {
2741        unsigned VReg;
2742
2743        if (ObjectVT == MVT::f32)
2744          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2745        else
2746          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2747
2748        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2749        ++FPR_idx;
2750      } else {
2751        needsLoad = true;
2752      }
2753
2754      // All FP arguments reserve stack space in the Darwin ABI.
2755      ArgOffset += isPPC64 ? 8 : ObjSize;
2756      break;
2757    case MVT::v4f32:
2758    case MVT::v4i32:
2759    case MVT::v8i16:
2760    case MVT::v16i8:
2761      // Note that vector arguments in registers don't reserve stack space,
2762      // except in varargs functions.
2763      if (VR_idx != Num_VR_Regs) {
2764        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2765        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2766        if (isVarArg) {
2767          while ((ArgOffset % 16) != 0) {
2768            ArgOffset += PtrByteSize;
2769            if (GPR_idx != Num_GPR_Regs)
2770              GPR_idx++;
2771          }
2772          ArgOffset += 16;
2773          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2774        }
2775        ++VR_idx;
2776      } else {
2777        if (!isVarArg && !isPPC64) {
2778          // Vectors go after all the nonvectors.
2779          CurArgOffset = VecArgOffset;
2780          VecArgOffset += 16;
2781        } else {
2782          // Vectors are aligned.
2783          ArgOffset = ((ArgOffset+15)/16)*16;
2784          CurArgOffset = ArgOffset;
2785          ArgOffset += 16;
2786        }
2787        needsLoad = true;
2788      }
2789      break;
2790    }
2791
2792    // We need to load the argument to a virtual register if we determined above
2793    // that we ran out of physical registers of the appropriate type.
2794    if (needsLoad) {
2795      int FI = MFI->CreateFixedObject(ObjSize,
2796                                      CurArgOffset + (ArgSize - ObjSize),
2797                                      isImmutable);
2798      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2799      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2800                           false, false, false, 0);
2801    }
2802
2803    InVals.push_back(ArgVal);
2804  }
2805
2806  // Set the size that is at least reserved in caller of this function.  Tail
2807  // call optimized functions' reserved stack space needs to be aligned so that
2808  // taking the difference between two stack areas will result in an aligned
2809  // stack.
2810  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
2811
2812  // If the function takes variable number of arguments, make a frame index for
2813  // the start of the first vararg value... for expansion of llvm.va_start.
2814  if (isVarArg) {
2815    int Depth = ArgOffset;
2816
2817    FuncInfo->setVarArgsFrameIndex(
2818      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2819                             Depth, true));
2820    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2821
2822    // If this function is vararg, store any remaining integer argument regs
2823    // to their spots on the stack so that they may be loaded by deferencing the
2824    // result of va_next.
2825    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2826      unsigned VReg;
2827
2828      if (isPPC64)
2829        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2830      else
2831        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2832
2833      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2834      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2835                                   MachinePointerInfo(), false, false, 0);
2836      MemOps.push_back(Store);
2837      // Increment the address by four for the next argument to store
2838      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2839      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2840    }
2841  }
2842
2843  if (!MemOps.empty())
2844    Chain = DAG.getNode(ISD::TokenFactor, dl,
2845                        MVT::Other, &MemOps[0], MemOps.size());
2846
2847  return Chain;
2848}
2849
2850/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
2851/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
2852static unsigned
2853CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2854                                     bool isPPC64,
2855                                     bool isVarArg,
2856                                     unsigned CC,
2857                                     const SmallVectorImpl<ISD::OutputArg>
2858                                       &Outs,
2859                                     const SmallVectorImpl<SDValue> &OutVals,
2860                                     unsigned &nAltivecParamsAtEnd) {
2861  // Count how many bytes are to be pushed on the stack, including the linkage
2862  // area, and parameter passing area.  We start with 24/48 bytes, which is
2863  // prereserved space for [SP][CR][LR][3 x unused].
2864  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2865  unsigned NumOps = Outs.size();
2866  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2867
2868  // Add up all the space actually used.
2869  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2870  // they all go in registers, but we must reserve stack space for them for
2871  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2872  // assigned stack space in order, with padding so Altivec parameters are
2873  // 16-byte aligned.
2874  nAltivecParamsAtEnd = 0;
2875  for (unsigned i = 0; i != NumOps; ++i) {
2876    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2877    EVT ArgVT = Outs[i].VT;
2878    // Varargs Altivec parameters are padded to a 16 byte boundary.
2879    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2880        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2881      if (!isVarArg && !isPPC64) {
2882        // Non-varargs Altivec parameters go after all the non-Altivec
2883        // parameters; handle those later so we know how much padding we need.
2884        nAltivecParamsAtEnd++;
2885        continue;
2886      }
2887      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2888      NumBytes = ((NumBytes+15)/16)*16;
2889    }
2890    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2891  }
2892
2893   // Allow for Altivec parameters at the end, if needed.
2894  if (nAltivecParamsAtEnd) {
2895    NumBytes = ((NumBytes+15)/16)*16;
2896    NumBytes += 16*nAltivecParamsAtEnd;
2897  }
2898
2899  // The prolog code of the callee may store up to 8 GPR argument registers to
2900  // the stack, allowing va_start to index over them in memory if its varargs.
2901  // Because we cannot tell if this is needed on the caller side, we have to
2902  // conservatively assume that it is needed.  As such, make sure we have at
2903  // least enough stack space for the caller to store the 8 GPRs.
2904  NumBytes = std::max(NumBytes,
2905                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2906
2907  // Tail call needs the stack to be aligned.
2908  if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
2909    unsigned TargetAlign = DAG.getMachineFunction().getTarget().
2910      getFrameLowering()->getStackAlignment();
2911    unsigned AlignMask = TargetAlign-1;
2912    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2913  }
2914
2915  return NumBytes;
2916}
2917
2918/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2919/// adjusted to accommodate the arguments for the tailcall.
2920static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2921                                   unsigned ParamSize) {
2922
2923  if (!isTailCall) return 0;
2924
2925  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2926  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2927  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2928  // Remember only if the new adjustement is bigger.
2929  if (SPDiff < FI->getTailCallSPDelta())
2930    FI->setTailCallSPDelta(SPDiff);
2931
2932  return SPDiff;
2933}
2934
2935/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2936/// for tail call optimization. Targets which want to do tail call
2937/// optimization should implement this function.
2938bool
2939PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2940                                                     CallingConv::ID CalleeCC,
2941                                                     bool isVarArg,
2942                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2943                                                     SelectionDAG& DAG) const {
2944  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
2945    return false;
2946
2947  // Variable argument functions are not supported.
2948  if (isVarArg)
2949    return false;
2950
2951  MachineFunction &MF = DAG.getMachineFunction();
2952  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2953  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2954    // Functions containing by val parameters are not supported.
2955    for (unsigned i = 0; i != Ins.size(); i++) {
2956       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2957       if (Flags.isByVal()) return false;
2958    }
2959
2960    // Non PIC/GOT  tail calls are supported.
2961    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2962      return true;
2963
2964    // At the moment we can only do local tail calls (in same module, hidden
2965    // or protected) if we are generating PIC.
2966    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2967      return G->getGlobal()->hasHiddenVisibility()
2968          || G->getGlobal()->hasProtectedVisibility();
2969  }
2970
2971  return false;
2972}
2973
2974/// isCallCompatibleAddress - Return the immediate to use if the specified
2975/// 32-bit value is representable in the immediate field of a BxA instruction.
2976static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2977  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2978  if (!C) return 0;
2979
2980  int Addr = C->getZExtValue();
2981  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2982      SignExtend32<26>(Addr) != Addr)
2983    return 0;  // Top 6 bits have to be sext of immediate.
2984
2985  return DAG.getConstant((int)C->getZExtValue() >> 2,
2986                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2987}
2988
2989namespace {
2990
2991struct TailCallArgumentInfo {
2992  SDValue Arg;
2993  SDValue FrameIdxOp;
2994  int       FrameIdx;
2995
2996  TailCallArgumentInfo() : FrameIdx(0) {}
2997};
2998
2999}
3000
3001/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
3002static void
3003StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
3004                                           SDValue Chain,
3005                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
3006                   SmallVector<SDValue, 8> &MemOpChains,
3007                   DebugLoc dl) {
3008  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
3009    SDValue Arg = TailCallArgs[i].Arg;
3010    SDValue FIN = TailCallArgs[i].FrameIdxOp;
3011    int FI = TailCallArgs[i].FrameIdx;
3012    // Store relative to framepointer.
3013    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
3014                                       MachinePointerInfo::getFixedStack(FI),
3015                                       false, false, 0));
3016  }
3017}
3018
3019/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
3020/// the appropriate stack slot for the tail call optimized function call.
3021static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
3022                                               MachineFunction &MF,
3023                                               SDValue Chain,
3024                                               SDValue OldRetAddr,
3025                                               SDValue OldFP,
3026                                               int SPDiff,
3027                                               bool isPPC64,
3028                                               bool isDarwinABI,
3029                                               DebugLoc dl) {
3030  if (SPDiff) {
3031    // Calculate the new stack slot for the return address.
3032    int SlotSize = isPPC64 ? 8 : 4;
3033    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
3034                                                                   isDarwinABI);
3035    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3036                                                          NewRetAddrLoc, true);
3037    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3038    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
3039    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
3040                         MachinePointerInfo::getFixedStack(NewRetAddr),
3041                         false, false, 0);
3042
3043    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
3044    // slot as the FP is never overwritten.
3045    if (isDarwinABI) {
3046      int NewFPLoc =
3047        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
3048      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
3049                                                          true);
3050      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
3051      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
3052                           MachinePointerInfo::getFixedStack(NewFPIdx),
3053                           false, false, 0);
3054    }
3055  }
3056  return Chain;
3057}
3058
3059/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
3060/// the position of the argument.
3061static void
3062CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
3063                         SDValue Arg, int SPDiff, unsigned ArgOffset,
3064                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
3065  int Offset = ArgOffset + SPDiff;
3066  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
3067  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3068  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3069  SDValue FIN = DAG.getFrameIndex(FI, VT);
3070  TailCallArgumentInfo Info;
3071  Info.Arg = Arg;
3072  Info.FrameIdxOp = FIN;
3073  Info.FrameIdx = FI;
3074  TailCallArguments.push_back(Info);
3075}
3076
3077/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
3078/// stack slot. Returns the chain as result and the loaded frame pointers in
3079/// LROpOut/FPOpout. Used when tail calling.
3080SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
3081                                                        int SPDiff,
3082                                                        SDValue Chain,
3083                                                        SDValue &LROpOut,
3084                                                        SDValue &FPOpOut,
3085                                                        bool isDarwinABI,
3086                                                        DebugLoc dl) const {
3087  if (SPDiff) {
3088    // Load the LR and FP stack slot for later adjusting.
3089    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
3090    LROpOut = getReturnAddrFrameIndex(DAG);
3091    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
3092                          false, false, false, 0);
3093    Chain = SDValue(LROpOut.getNode(), 1);
3094
3095    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
3096    // slot as the FP is never overwritten.
3097    if (isDarwinABI) {
3098      FPOpOut = getFramePointerFrameIndex(DAG);
3099      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
3100                            false, false, false, 0);
3101      Chain = SDValue(FPOpOut.getNode(), 1);
3102    }
3103  }
3104  return Chain;
3105}
3106
3107/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
3108/// by "Src" to address "Dst" of size "Size".  Alignment information is
3109/// specified by the specific parameter attribute. The copy will be passed as
3110/// a byval function parameter.
3111/// Sometimes what we are copying is the end of a larger object, the part that
3112/// does not fit in registers.
3113static SDValue
3114CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
3115                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
3116                          DebugLoc dl) {
3117  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
3118  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
3119                       false, false, MachinePointerInfo(0),
3120                       MachinePointerInfo(0));
3121}
3122
3123/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
3124/// tail calls.
3125static void
3126LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
3127                 SDValue Arg, SDValue PtrOff, int SPDiff,
3128                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
3129                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
3130                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
3131                 DebugLoc dl) {
3132  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3133  if (!isTailCall) {
3134    if (isVector) {
3135      SDValue StackPtr;
3136      if (isPPC64)
3137        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3138      else
3139        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3140      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3141                           DAG.getConstant(ArgOffset, PtrVT));
3142    }
3143    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3144                                       MachinePointerInfo(), false, false, 0));
3145  // Calculate and remember argument location.
3146  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
3147                                  TailCallArguments);
3148}
3149
3150static
3151void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
3152                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
3153                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
3154                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
3155  MachineFunction &MF = DAG.getMachineFunction();
3156
3157  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
3158  // might overwrite each other in case of tail call optimization.
3159  SmallVector<SDValue, 8> MemOpChains2;
3160  // Do not flag preceding copytoreg stuff together with the following stuff.
3161  InFlag = SDValue();
3162  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
3163                                    MemOpChains2, dl);
3164  if (!MemOpChains2.empty())
3165    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3166                        &MemOpChains2[0], MemOpChains2.size());
3167
3168  // Store the return address to the appropriate stack slot.
3169  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
3170                                        isPPC64, isDarwinABI, dl);
3171
3172  // Emit callseq_end just before tailcall node.
3173  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3174                             DAG.getIntPtrConstant(0, true), InFlag);
3175  InFlag = Chain.getValue(1);
3176}
3177
3178static
3179unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
3180                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
3181                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
3182                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
3183                     const PPCSubtarget &PPCSubTarget) {
3184
3185  bool isPPC64 = PPCSubTarget.isPPC64();
3186  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
3187
3188  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3189  NodeTys.push_back(MVT::Other);   // Returns a chain
3190  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
3191
3192  unsigned CallOpc = PPCISD::CALL;
3193
3194  bool needIndirectCall = true;
3195  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
3196    // If this is an absolute destination address, use the munged value.
3197    Callee = SDValue(Dest, 0);
3198    needIndirectCall = false;
3199  }
3200
3201  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3202    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
3203    // Use indirect calls for ALL functions calls in JIT mode, since the
3204    // far-call stubs may be outside relocation limits for a BL instruction.
3205    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
3206      unsigned OpFlags = 0;
3207      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3208          (PPCSubTarget.getTargetTriple().isMacOSX() &&
3209           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
3210          (G->getGlobal()->isDeclaration() ||
3211           G->getGlobal()->isWeakForLinker())) {
3212        // PC-relative references to external symbols should go through $stub,
3213        // unless we're building with the leopard linker or later, which
3214        // automatically synthesizes these stubs.
3215        OpFlags = PPCII::MO_DARWIN_STUB;
3216      }
3217
3218      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
3219      // every direct call is) turn it into a TargetGlobalAddress /
3220      // TargetExternalSymbol node so that legalize doesn't hack it.
3221      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3222                                          Callee.getValueType(),
3223                                          0, OpFlags);
3224      needIndirectCall = false;
3225    }
3226  }
3227
3228  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3229    unsigned char OpFlags = 0;
3230
3231    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3232        (PPCSubTarget.getTargetTriple().isMacOSX() &&
3233         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
3234      // PC-relative references to external symbols should go through $stub,
3235      // unless we're building with the leopard linker or later, which
3236      // automatically synthesizes these stubs.
3237      OpFlags = PPCII::MO_DARWIN_STUB;
3238    }
3239
3240    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
3241                                         OpFlags);
3242    needIndirectCall = false;
3243  }
3244
3245  if (needIndirectCall) {
3246    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
3247    // to do the call, we can't use PPCISD::CALL.
3248    SDValue MTCTROps[] = {Chain, Callee, InFlag};
3249
3250    if (isSVR4ABI && isPPC64) {
3251      // Function pointers in the 64-bit SVR4 ABI do not point to the function
3252      // entry point, but to the function descriptor (the function entry point
3253      // address is part of the function descriptor though).
3254      // The function descriptor is a three doubleword structure with the
3255      // following fields: function entry point, TOC base address and
3256      // environment pointer.
3257      // Thus for a call through a function pointer, the following actions need
3258      // to be performed:
3259      //   1. Save the TOC of the caller in the TOC save area of its stack
3260      //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
3261      //   2. Load the address of the function entry point from the function
3262      //      descriptor.
3263      //   3. Load the TOC of the callee from the function descriptor into r2.
3264      //   4. Load the environment pointer from the function descriptor into
3265      //      r11.
3266      //   5. Branch to the function entry point address.
3267      //   6. On return of the callee, the TOC of the caller needs to be
3268      //      restored (this is done in FinishCall()).
3269      //
3270      // All those operations are flagged together to ensure that no other
3271      // operations can be scheduled in between. E.g. without flagging the
3272      // operations together, a TOC access in the caller could be scheduled
3273      // between the load of the callee TOC and the branch to the callee, which
3274      // results in the TOC access going through the TOC of the callee instead
3275      // of going through the TOC of the caller, which leads to incorrect code.
3276
3277      // Load the address of the function entry point from the function
3278      // descriptor.
3279      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
3280      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
3281                                        InFlag.getNode() ? 3 : 2);
3282      Chain = LoadFuncPtr.getValue(1);
3283      InFlag = LoadFuncPtr.getValue(2);
3284
3285      // Load environment pointer into r11.
3286      // Offset of the environment pointer within the function descriptor.
3287      SDValue PtrOff = DAG.getIntPtrConstant(16);
3288
3289      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
3290      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
3291                                       InFlag);
3292      Chain = LoadEnvPtr.getValue(1);
3293      InFlag = LoadEnvPtr.getValue(2);
3294
3295      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
3296                                        InFlag);
3297      Chain = EnvVal.getValue(0);
3298      InFlag = EnvVal.getValue(1);
3299
3300      // Load TOC of the callee into r2. We are using a target-specific load
3301      // with r2 hard coded, because the result of a target-independent load
3302      // would never go directly into r2, since r2 is a reserved register (which
3303      // prevents the register allocator from allocating it), resulting in an
3304      // additional register being allocated and an unnecessary move instruction
3305      // being generated.
3306      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3307      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
3308                                       Callee, InFlag);
3309      Chain = LoadTOCPtr.getValue(0);
3310      InFlag = LoadTOCPtr.getValue(1);
3311
3312      MTCTROps[0] = Chain;
3313      MTCTROps[1] = LoadFuncPtr;
3314      MTCTROps[2] = InFlag;
3315    }
3316
3317    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
3318                        2 + (InFlag.getNode() != 0));
3319    InFlag = Chain.getValue(1);
3320
3321    NodeTys.clear();
3322    NodeTys.push_back(MVT::Other);
3323    NodeTys.push_back(MVT::Glue);
3324    Ops.push_back(Chain);
3325    CallOpc = PPCISD::BCTRL;
3326    Callee.setNode(0);
3327    // Add use of X11 (holding environment pointer)
3328    if (isSVR4ABI && isPPC64)
3329      Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
3330    // Add CTR register as callee so a bctr can be emitted later.
3331    if (isTailCall)
3332      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
3333  }
3334
3335  // If this is a direct call, pass the chain and the callee.
3336  if (Callee.getNode()) {
3337    Ops.push_back(Chain);
3338    Ops.push_back(Callee);
3339  }
3340  // If this is a tail call add stack pointer delta.
3341  if (isTailCall)
3342    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
3343
3344  // Add argument registers to the end of the list so that they are known live
3345  // into the call.
3346  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3347    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3348                                  RegsToPass[i].second.getValueType()));
3349
3350  return CallOpc;
3351}
3352
3353static
3354bool isLocalCall(const SDValue &Callee)
3355{
3356  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3357    return !G->getGlobal()->isDeclaration() &&
3358           !G->getGlobal()->isWeakForLinker();
3359  return false;
3360}
3361
3362SDValue
3363PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3364                                   CallingConv::ID CallConv, bool isVarArg,
3365                                   const SmallVectorImpl<ISD::InputArg> &Ins,
3366                                   DebugLoc dl, SelectionDAG &DAG,
3367                                   SmallVectorImpl<SDValue> &InVals) const {
3368
3369  SmallVector<CCValAssign, 16> RVLocs;
3370  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3371                    getTargetMachine(), RVLocs, *DAG.getContext());
3372  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3373
3374  // Copy all of the result registers out of their specified physreg.
3375  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3376    CCValAssign &VA = RVLocs[i];
3377    assert(VA.isRegLoc() && "Can only return in registers!");
3378
3379    SDValue Val = DAG.getCopyFromReg(Chain, dl,
3380                                     VA.getLocReg(), VA.getLocVT(), InFlag);
3381    Chain = Val.getValue(1);
3382    InFlag = Val.getValue(2);
3383
3384    switch (VA.getLocInfo()) {
3385    default: llvm_unreachable("Unknown loc info!");
3386    case CCValAssign::Full: break;
3387    case CCValAssign::AExt:
3388      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3389      break;
3390    case CCValAssign::ZExt:
3391      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
3392                        DAG.getValueType(VA.getValVT()));
3393      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3394      break;
3395    case CCValAssign::SExt:
3396      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
3397                        DAG.getValueType(VA.getValVT()));
3398      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3399      break;
3400    }
3401
3402    InVals.push_back(Val);
3403  }
3404
3405  return Chain;
3406}
3407
3408SDValue
3409PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
3410                              bool isTailCall, bool isVarArg,
3411                              SelectionDAG &DAG,
3412                              SmallVector<std::pair<unsigned, SDValue>, 8>
3413                                &RegsToPass,
3414                              SDValue InFlag, SDValue Chain,
3415                              SDValue &Callee,
3416                              int SPDiff, unsigned NumBytes,
3417                              const SmallVectorImpl<ISD::InputArg> &Ins,
3418                              SmallVectorImpl<SDValue> &InVals) const {
3419  std::vector<EVT> NodeTys;
3420  SmallVector<SDValue, 8> Ops;
3421  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
3422                                 isTailCall, RegsToPass, Ops, NodeTys,
3423                                 PPCSubTarget);
3424
3425  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
3426  if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
3427    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
3428
3429  // When performing tail call optimization the callee pops its arguments off
3430  // the stack. Account for this here so these bytes can be pushed back on in
3431  // PPCFrameLowering::eliminateCallFramePseudoInstr.
3432  int BytesCalleePops =
3433    (CallConv == CallingConv::Fast &&
3434     getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
3435
3436  // Add a register mask operand representing the call-preserved registers.
3437  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3438  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3439  assert(Mask && "Missing call preserved mask for calling convention");
3440  Ops.push_back(DAG.getRegisterMask(Mask));
3441
3442  if (InFlag.getNode())
3443    Ops.push_back(InFlag);
3444
3445  // Emit tail call.
3446  if (isTailCall) {
3447    assert(((Callee.getOpcode() == ISD::Register &&
3448             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
3449            Callee.getOpcode() == ISD::TargetExternalSymbol ||
3450            Callee.getOpcode() == ISD::TargetGlobalAddress ||
3451            isa<ConstantSDNode>(Callee)) &&
3452    "Expecting an global address, external symbol, absolute value or register");
3453
3454    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
3455  }
3456
3457  // Add a NOP immediately after the branch instruction when using the 64-bit
3458  // SVR4 ABI. At link time, if caller and callee are in a different module and
3459  // thus have a different TOC, the call will be replaced with a call to a stub
3460  // function which saves the current TOC, loads the TOC of the callee and
3461  // branches to the callee. The NOP will be replaced with a load instruction
3462  // which restores the TOC of the caller from the TOC save slot of the current
3463  // stack frame. If caller and callee belong to the same module (and have the
3464  // same TOC), the NOP will remain unchanged.
3465
3466  bool needsTOCRestore = false;
3467  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
3468    if (CallOpc == PPCISD::BCTRL) {
3469      // This is a call through a function pointer.
3470      // Restore the caller TOC from the save area into R2.
3471      // See PrepareCall() for more information about calls through function
3472      // pointers in the 64-bit SVR4 ABI.
3473      // We are using a target-specific load with r2 hard coded, because the
3474      // result of a target-independent load would never go directly into r2,
3475      // since r2 is a reserved register (which prevents the register allocator
3476      // from allocating it), resulting in an additional register being
3477      // allocated and an unnecessary move instruction being generated.
3478      needsTOCRestore = true;
3479    } else if ((CallOpc == PPCISD::CALL) && !isLocalCall(Callee)) {
3480      // Otherwise insert NOP for non-local calls.
3481      CallOpc = PPCISD::CALL_NOP;
3482    }
3483  }
3484
3485  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
3486  InFlag = Chain.getValue(1);
3487
3488  if (needsTOCRestore) {
3489    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3490    Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
3491    InFlag = Chain.getValue(1);
3492  }
3493
3494  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3495                             DAG.getIntPtrConstant(BytesCalleePops, true),
3496                             InFlag);
3497  if (!Ins.empty())
3498    InFlag = Chain.getValue(1);
3499
3500  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3501                         Ins, dl, DAG, InVals);
3502}
3503
3504SDValue
3505PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3506                             SmallVectorImpl<SDValue> &InVals) const {
3507  SelectionDAG &DAG                     = CLI.DAG;
3508  DebugLoc &dl                          = CLI.DL;
3509  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3510  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
3511  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
3512  SDValue Chain                         = CLI.Chain;
3513  SDValue Callee                        = CLI.Callee;
3514  bool &isTailCall                      = CLI.IsTailCall;
3515  CallingConv::ID CallConv              = CLI.CallConv;
3516  bool isVarArg                         = CLI.IsVarArg;
3517
3518  if (isTailCall)
3519    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
3520                                                   Ins, DAG);
3521
3522  if (PPCSubTarget.isSVR4ABI()) {
3523    if (PPCSubTarget.isPPC64())
3524      return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
3525                              isTailCall, Outs, OutVals, Ins,
3526                              dl, DAG, InVals);
3527    else
3528      return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
3529                              isTailCall, Outs, OutVals, Ins,
3530                              dl, DAG, InVals);
3531  }
3532
3533  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
3534                          isTailCall, Outs, OutVals, Ins,
3535                          dl, DAG, InVals);
3536}
3537
3538SDValue
3539PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
3540                                    CallingConv::ID CallConv, bool isVarArg,
3541                                    bool isTailCall,
3542                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3543                                    const SmallVectorImpl<SDValue> &OutVals,
3544                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3545                                    DebugLoc dl, SelectionDAG &DAG,
3546                                    SmallVectorImpl<SDValue> &InVals) const {
3547  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
3548  // of the 32-bit SVR4 ABI stack frame layout.
3549
3550  assert((CallConv == CallingConv::C ||
3551          CallConv == CallingConv::Fast) && "Unknown calling convention!");
3552
3553  unsigned PtrByteSize = 4;
3554
3555  MachineFunction &MF = DAG.getMachineFunction();
3556
3557  // Mark this function as potentially containing a function that contains a
3558  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3559  // and restoring the callers stack pointer in this functions epilog. This is
3560  // done because by tail calling the called function might overwrite the value
3561  // in this function's (MF) stack pointer stack slot 0(SP).
3562  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3563      CallConv == CallingConv::Fast)
3564    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3565
3566  // Count how many bytes are to be pushed on the stack, including the linkage
3567  // area, parameter list area and the part of the local variable space which
3568  // contains copies of aggregates which are passed by value.
3569
3570  // Assign locations to all of the outgoing arguments.
3571  SmallVector<CCValAssign, 16> ArgLocs;
3572  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3573                 getTargetMachine(), ArgLocs, *DAG.getContext());
3574
3575  // Reserve space for the linkage area on the stack.
3576  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
3577
3578  if (isVarArg) {
3579    // Handle fixed and variable vector arguments differently.
3580    // Fixed vector arguments go into registers as long as registers are
3581    // available. Variable vector arguments always go into memory.
3582    unsigned NumArgs = Outs.size();
3583
3584    for (unsigned i = 0; i != NumArgs; ++i) {
3585      MVT ArgVT = Outs[i].VT;
3586      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3587      bool Result;
3588
3589      if (Outs[i].IsFixed) {
3590        Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
3591                               CCInfo);
3592      } else {
3593        Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
3594                                      ArgFlags, CCInfo);
3595      }
3596
3597      if (Result) {
3598#ifndef NDEBUG
3599        errs() << "Call operand #" << i << " has unhandled type "
3600             << EVT(ArgVT).getEVTString() << "\n";
3601#endif
3602        llvm_unreachable(0);
3603      }
3604    }
3605  } else {
3606    // All arguments are treated the same.
3607    CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
3608  }
3609
3610  // Assign locations to all of the outgoing aggregate by value arguments.
3611  SmallVector<CCValAssign, 16> ByValArgLocs;
3612  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3613                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
3614
3615  // Reserve stack space for the allocations in CCInfo.
3616  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3617
3618  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
3619
3620  // Size of the linkage area, parameter list area and the part of the local
3621  // space variable where copies of aggregates which are passed by value are
3622  // stored.
3623  unsigned NumBytes = CCByValInfo.getNextStackOffset();
3624
3625  // Calculate by how many bytes the stack has to be adjusted in case of tail
3626  // call optimization.
3627  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3628
3629  // Adjust the stack pointer for the new arguments...
3630  // These operations are automatically eliminated by the prolog/epilog pass
3631  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3632  SDValue CallSeqStart = Chain;
3633
3634  // Load the return address and frame pointer so it can be moved somewhere else
3635  // later.
3636  SDValue LROp, FPOp;
3637  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
3638                                       dl);
3639
3640  // Set up a copy of the stack pointer for use loading and storing any
3641  // arguments that may not fit in the registers available for argument
3642  // passing.
3643  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3644
3645  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3646  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3647  SmallVector<SDValue, 8> MemOpChains;
3648
3649  bool seenFloatArg = false;
3650  // Walk the register/memloc assignments, inserting copies/loads.
3651  for (unsigned i = 0, j = 0, e = ArgLocs.size();
3652       i != e;
3653       ++i) {
3654    CCValAssign &VA = ArgLocs[i];
3655    SDValue Arg = OutVals[i];
3656    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3657
3658    if (Flags.isByVal()) {
3659      // Argument is an aggregate which is passed by value, thus we need to
3660      // create a copy of it in the local variable space of the current stack
3661      // frame (which is the stack frame of the caller) and pass the address of
3662      // this copy to the callee.
3663      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3664      CCValAssign &ByValVA = ByValArgLocs[j++];
3665      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3666
3667      // Memory reserved in the local variable space of the callers stack frame.
3668      unsigned LocMemOffset = ByValVA.getLocMemOffset();
3669
3670      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3671      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3672
3673      // Create a copy of the argument in the local area of the current
3674      // stack frame.
3675      SDValue MemcpyCall =
3676        CreateCopyOfByValArgument(Arg, PtrOff,
3677                                  CallSeqStart.getNode()->getOperand(0),
3678                                  Flags, DAG, dl);
3679
3680      // This must go outside the CALLSEQ_START..END.
3681      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3682                           CallSeqStart.getNode()->getOperand(1));
3683      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3684                             NewCallSeqStart.getNode());
3685      Chain = CallSeqStart = NewCallSeqStart;
3686
3687      // Pass the address of the aggregate copy on the stack either in a
3688      // physical register or in the parameter list area of the current stack
3689      // frame to the callee.
3690      Arg = PtrOff;
3691    }
3692
3693    if (VA.isRegLoc()) {
3694      seenFloatArg |= VA.getLocVT().isFloatingPoint();
3695      // Put argument in a physical register.
3696      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3697    } else {
3698      // Put argument in the parameter list area of the current stack frame.
3699      assert(VA.isMemLoc());
3700      unsigned LocMemOffset = VA.getLocMemOffset();
3701
3702      if (!isTailCall) {
3703        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3704        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3705
3706        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3707                                           MachinePointerInfo(),
3708                                           false, false, 0));
3709      } else {
3710        // Calculate and remember argument location.
3711        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3712                                 TailCallArguments);
3713      }
3714    }
3715  }
3716
3717  if (!MemOpChains.empty())
3718    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3719                        &MemOpChains[0], MemOpChains.size());
3720
3721  // Build a sequence of copy-to-reg nodes chained together with token chain
3722  // and flag operands which copy the outgoing args into the appropriate regs.
3723  SDValue InFlag;
3724  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3725    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3726                             RegsToPass[i].second, InFlag);
3727    InFlag = Chain.getValue(1);
3728  }
3729
3730  // Set CR bit 6 to true if this is a vararg call with floating args passed in
3731  // registers.
3732  if (isVarArg) {
3733    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3734    SDValue Ops[] = { Chain, InFlag };
3735
3736    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
3737                        dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
3738
3739    InFlag = Chain.getValue(1);
3740  }
3741
3742  if (isTailCall)
3743    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3744                    false, TailCallArguments);
3745
3746  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3747                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3748                    Ins, InVals);
3749}
3750
3751// Copy an argument into memory, being careful to do this outside the
3752// call sequence for the call to which the argument belongs.
3753SDValue
3754PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
3755                                              SDValue CallSeqStart,
3756                                              ISD::ArgFlagsTy Flags,
3757                                              SelectionDAG &DAG,
3758                                              DebugLoc dl) const {
3759  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3760                        CallSeqStart.getNode()->getOperand(0),
3761                        Flags, DAG, dl);
3762  // The MEMCPY must go outside the CALLSEQ_START..END.
3763  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3764                             CallSeqStart.getNode()->getOperand(1));
3765  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3766                         NewCallSeqStart.getNode());
3767  return NewCallSeqStart;
3768}
3769
3770SDValue
3771PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
3772                                    CallingConv::ID CallConv, bool isVarArg,
3773                                    bool isTailCall,
3774                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3775                                    const SmallVectorImpl<SDValue> &OutVals,
3776                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3777                                    DebugLoc dl, SelectionDAG &DAG,
3778                                    SmallVectorImpl<SDValue> &InVals) const {
3779
3780  unsigned NumOps = Outs.size();
3781
3782  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3783  unsigned PtrByteSize = 8;
3784
3785  MachineFunction &MF = DAG.getMachineFunction();
3786
3787  // Mark this function as potentially containing a function that contains a
3788  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3789  // and restoring the callers stack pointer in this functions epilog. This is
3790  // done because by tail calling the called function might overwrite the value
3791  // in this function's (MF) stack pointer stack slot 0(SP).
3792  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3793      CallConv == CallingConv::Fast)
3794    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3795
3796  unsigned nAltivecParamsAtEnd = 0;
3797
3798  // Count how many bytes are to be pushed on the stack, including the linkage
3799  // area, and parameter passing area.  We start with at least 48 bytes, which
3800  // is reserved space for [SP][CR][LR][3 x unused].
3801  // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
3802  // of this call.
3803  unsigned NumBytes =
3804    CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
3805                                         Outs, OutVals, nAltivecParamsAtEnd);
3806
3807  // Calculate by how many bytes the stack has to be adjusted in case of tail
3808  // call optimization.
3809  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3810
3811  // To protect arguments on the stack from being clobbered in a tail call,
3812  // force all the loads to happen before doing any other lowering.
3813  if (isTailCall)
3814    Chain = DAG.getStackArgumentTokenFactor(Chain);
3815
3816  // Adjust the stack pointer for the new arguments...
3817  // These operations are automatically eliminated by the prolog/epilog pass
3818  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3819  SDValue CallSeqStart = Chain;
3820
3821  // Load the return address and frame pointer so it can be move somewhere else
3822  // later.
3823  SDValue LROp, FPOp;
3824  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3825                                       dl);
3826
3827  // Set up a copy of the stack pointer for use loading and storing any
3828  // arguments that may not fit in the registers available for argument
3829  // passing.
3830  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3831
3832  // Figure out which arguments are going to go in registers, and which in
3833  // memory.  Also, if this is a vararg function, floating point operations
3834  // must be stored to our stack, and loaded into integer regs as well, if
3835  // any integer regs are available for argument passing.
3836  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
3837  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3838
3839  static const uint16_t GPR[] = {
3840    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3841    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3842  };
3843  static const uint16_t *FPR = GetFPR();
3844
3845  static const uint16_t VR[] = {
3846    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3847    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3848  };
3849  const unsigned NumGPRs = array_lengthof(GPR);
3850  const unsigned NumFPRs = 13;
3851  const unsigned NumVRs  = array_lengthof(VR);
3852
3853  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3854  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3855
3856  SmallVector<SDValue, 8> MemOpChains;
3857  for (unsigned i = 0; i != NumOps; ++i) {
3858    SDValue Arg = OutVals[i];
3859    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3860
3861    // PtrOff will be used to store the current argument to the stack if a
3862    // register cannot be found for it.
3863    SDValue PtrOff;
3864
3865    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3866
3867    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3868
3869    // Promote integers to 64-bit values.
3870    if (Arg.getValueType() == MVT::i32) {
3871      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3872      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3873      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3874    }
3875
3876    // FIXME memcpy is used way more than necessary.  Correctness first.
3877    // Note: "by value" is code for passing a structure by value, not
3878    // basic types.
3879    if (Flags.isByVal()) {
3880      // Note: Size includes alignment padding, so
3881      //   struct x { short a; char b; }
3882      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
3883      // These are the proper values we need for right-justifying the
3884      // aggregate in a parameter register.
3885      unsigned Size = Flags.getByValSize();
3886
3887      // An empty aggregate parameter takes up no storage and no
3888      // registers.
3889      if (Size == 0)
3890        continue;
3891
3892      // All aggregates smaller than 8 bytes must be passed right-justified.
3893      if (Size==1 || Size==2 || Size==4) {
3894        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
3895        if (GPR_idx != NumGPRs) {
3896          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3897                                        MachinePointerInfo(), VT,
3898                                        false, false, 0);
3899          MemOpChains.push_back(Load.getValue(1));
3900          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3901
3902          ArgOffset += PtrByteSize;
3903          continue;
3904        }
3905      }
3906
3907      if (GPR_idx == NumGPRs && Size < 8) {
3908        SDValue Const = DAG.getConstant(PtrByteSize - Size,
3909                                        PtrOff.getValueType());
3910        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3911        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3912                                                          CallSeqStart,
3913                                                          Flags, DAG, dl);
3914        ArgOffset += PtrByteSize;
3915        continue;
3916      }
3917      // Copy entire object into memory.  There are cases where gcc-generated
3918      // code assumes it is there, even if it could be put entirely into
3919      // registers.  (This is not what the doc says.)
3920
3921      // FIXME: The above statement is likely due to a misunderstanding of the
3922      // documents.  All arguments must be copied into the parameter area BY
3923      // THE CALLEE in the event that the callee takes the address of any
3924      // formal argument.  That has not yet been implemented.  However, it is
3925      // reasonable to use the stack area as a staging area for the register
3926      // load.
3927
3928      // Skip this for small aggregates, as we will use the same slot for a
3929      // right-justified copy, below.
3930      if (Size >= 8)
3931        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
3932                                                          CallSeqStart,
3933                                                          Flags, DAG, dl);
3934
3935      // When a register is available, pass a small aggregate right-justified.
3936      if (Size < 8 && GPR_idx != NumGPRs) {
3937        // The easiest way to get this right-justified in a register
3938        // is to copy the structure into the rightmost portion of a
3939        // local variable slot, then load the whole slot into the
3940        // register.
3941        // FIXME: The memcpy seems to produce pretty awful code for
3942        // small aggregates, particularly for packed ones.
3943        // FIXME: It would be preferable to use the slot in the
3944        // parameter save area instead of a new local variable.
3945        SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
3946        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3947        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3948                                                          CallSeqStart,
3949                                                          Flags, DAG, dl);
3950
3951        // Load the slot into the register.
3952        SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
3953                                   MachinePointerInfo(),
3954                                   false, false, false, 0);
3955        MemOpChains.push_back(Load.getValue(1));
3956        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3957
3958        // Done with this argument.
3959        ArgOffset += PtrByteSize;
3960        continue;
3961      }
3962
3963      // For aggregates larger than PtrByteSize, copy the pieces of the
3964      // object that fit into registers from the parameter save area.
3965      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3966        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3967        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3968        if (GPR_idx != NumGPRs) {
3969          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3970                                     MachinePointerInfo(),
3971                                     false, false, false, 0);
3972          MemOpChains.push_back(Load.getValue(1));
3973          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3974          ArgOffset += PtrByteSize;
3975        } else {
3976          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3977          break;
3978        }
3979      }
3980      continue;
3981    }
3982
3983    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3984    default: llvm_unreachable("Unexpected ValueType for argument!");
3985    case MVT::i32:
3986    case MVT::i64:
3987      if (GPR_idx != NumGPRs) {
3988        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3989      } else {
3990        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3991                         true, isTailCall, false, MemOpChains,
3992                         TailCallArguments, dl);
3993      }
3994      ArgOffset += PtrByteSize;
3995      break;
3996    case MVT::f32:
3997    case MVT::f64:
3998      if (FPR_idx != NumFPRs) {
3999        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4000
4001        if (isVarArg) {
4002          // A single float or an aggregate containing only a single float
4003          // must be passed right-justified in the stack doubleword, and
4004          // in the GPR, if one is available.
4005          SDValue StoreOff;
4006          if (Arg.getValueType().getSimpleVT().SimpleTy == MVT::f32) {
4007            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4008            StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4009          } else
4010            StoreOff = PtrOff;
4011
4012          SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
4013                                       MachinePointerInfo(), false, false, 0);
4014          MemOpChains.push_back(Store);
4015
4016          // Float varargs are always shadowed in available integer registers
4017          if (GPR_idx != NumGPRs) {
4018            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4019                                       MachinePointerInfo(), false, false,
4020                                       false, 0);
4021            MemOpChains.push_back(Load.getValue(1));
4022            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4023          }
4024        } else if (GPR_idx != NumGPRs)
4025          // If we have any FPRs remaining, we may also have GPRs remaining.
4026          ++GPR_idx;
4027      } else {
4028        // Single-precision floating-point values are mapped to the
4029        // second (rightmost) word of the stack doubleword.
4030        if (Arg.getValueType() == MVT::f32) {
4031          SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4032          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4033        }
4034
4035        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4036                         true, isTailCall, false, MemOpChains,
4037                         TailCallArguments, dl);
4038      }
4039      ArgOffset += 8;
4040      break;
4041    case MVT::v4f32:
4042    case MVT::v4i32:
4043    case MVT::v8i16:
4044    case MVT::v16i8:
4045      if (isVarArg) {
4046        // These go aligned on the stack, or in the corresponding R registers
4047        // when within range.  The Darwin PPC ABI doc claims they also go in
4048        // V registers; in fact gcc does this only for arguments that are
4049        // prototyped, not for those that match the ...  We do it for all
4050        // arguments, seems to work.
4051        while (ArgOffset % 16 !=0) {
4052          ArgOffset += PtrByteSize;
4053          if (GPR_idx != NumGPRs)
4054            GPR_idx++;
4055        }
4056        // We could elide this store in the case where the object fits
4057        // entirely in R registers.  Maybe later.
4058        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4059                            DAG.getConstant(ArgOffset, PtrVT));
4060        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4061                                     MachinePointerInfo(), false, false, 0);
4062        MemOpChains.push_back(Store);
4063        if (VR_idx != NumVRs) {
4064          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4065                                     MachinePointerInfo(),
4066                                     false, false, false, 0);
4067          MemOpChains.push_back(Load.getValue(1));
4068          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4069        }
4070        ArgOffset += 16;
4071        for (unsigned i=0; i<16; i+=PtrByteSize) {
4072          if (GPR_idx == NumGPRs)
4073            break;
4074          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4075                                  DAG.getConstant(i, PtrVT));
4076          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4077                                     false, false, false, 0);
4078          MemOpChains.push_back(Load.getValue(1));
4079          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4080        }
4081        break;
4082      }
4083
4084      // Non-varargs Altivec params generally go in registers, but have
4085      // stack space allocated at the end.
4086      if (VR_idx != NumVRs) {
4087        // Doesn't have GPR space allocated.
4088        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4089      } else {
4090        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4091                         true, isTailCall, true, MemOpChains,
4092                         TailCallArguments, dl);
4093        ArgOffset += 16;
4094      }
4095      break;
4096    }
4097  }
4098
4099  if (!MemOpChains.empty())
4100    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4101                        &MemOpChains[0], MemOpChains.size());
4102
4103  // Check if this is an indirect call (MTCTR/BCTRL).
4104  // See PrepareCall() for more information about calls through function
4105  // pointers in the 64-bit SVR4 ABI.
4106  if (!isTailCall &&
4107      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4108      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4109      !isBLACompatibleAddress(Callee, DAG)) {
4110    // Load r2 into a virtual register and store it to the TOC save area.
4111    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
4112    // TOC save area offset.
4113    SDValue PtrOff = DAG.getIntPtrConstant(40);
4114    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4115    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
4116                         false, false, 0);
4117    // R12 must contain the address of an indirect callee.  This does not
4118    // mean the MTCTR instruction must use R12; it's easier to model this
4119    // as an extra parameter, so do that.
4120    RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
4121  }
4122
4123  // Build a sequence of copy-to-reg nodes chained together with token chain
4124  // and flag operands which copy the outgoing args into the appropriate regs.
4125  SDValue InFlag;
4126  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4127    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4128                             RegsToPass[i].second, InFlag);
4129    InFlag = Chain.getValue(1);
4130  }
4131
4132  if (isTailCall)
4133    PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
4134                    FPOp, true, TailCallArguments);
4135
4136  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4137                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4138                    Ins, InVals);
4139}
4140
4141SDValue
4142PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
4143                                    CallingConv::ID CallConv, bool isVarArg,
4144                                    bool isTailCall,
4145                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
4146                                    const SmallVectorImpl<SDValue> &OutVals,
4147                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4148                                    DebugLoc dl, SelectionDAG &DAG,
4149                                    SmallVectorImpl<SDValue> &InVals) const {
4150
4151  unsigned NumOps = Outs.size();
4152
4153  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4154  bool isPPC64 = PtrVT == MVT::i64;
4155  unsigned PtrByteSize = isPPC64 ? 8 : 4;
4156
4157  MachineFunction &MF = DAG.getMachineFunction();
4158
4159  // Mark this function as potentially containing a function that contains a
4160  // tail call. As a consequence the frame pointer will be used for dynamicalloc
4161  // and restoring the callers stack pointer in this functions epilog. This is
4162  // done because by tail calling the called function might overwrite the value
4163  // in this function's (MF) stack pointer stack slot 0(SP).
4164  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4165      CallConv == CallingConv::Fast)
4166    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4167
4168  unsigned nAltivecParamsAtEnd = 0;
4169
4170  // Count how many bytes are to be pushed on the stack, including the linkage
4171  // area, and parameter passing area.  We start with 24/48 bytes, which is
4172  // prereserved space for [SP][CR][LR][3 x unused].
4173  unsigned NumBytes =
4174    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
4175                                         Outs, OutVals,
4176                                         nAltivecParamsAtEnd);
4177
4178  // Calculate by how many bytes the stack has to be adjusted in case of tail
4179  // call optimization.
4180  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4181
4182  // To protect arguments on the stack from being clobbered in a tail call,
4183  // force all the loads to happen before doing any other lowering.
4184  if (isTailCall)
4185    Chain = DAG.getStackArgumentTokenFactor(Chain);
4186
4187  // Adjust the stack pointer for the new arguments...
4188  // These operations are automatically eliminated by the prolog/epilog pass
4189  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
4190  SDValue CallSeqStart = Chain;
4191
4192  // Load the return address and frame pointer so it can be move somewhere else
4193  // later.
4194  SDValue LROp, FPOp;
4195  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4196                                       dl);
4197
4198  // Set up a copy of the stack pointer for use loading and storing any
4199  // arguments that may not fit in the registers available for argument
4200  // passing.
4201  SDValue StackPtr;
4202  if (isPPC64)
4203    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4204  else
4205    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4206
4207  // Figure out which arguments are going to go in registers, and which in
4208  // memory.  Also, if this is a vararg function, floating point operations
4209  // must be stored to our stack, and loaded into integer regs as well, if
4210  // any integer regs are available for argument passing.
4211  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
4212  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4213
4214  static const uint16_t GPR_32[] = {           // 32-bit registers.
4215    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4216    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4217  };
4218  static const uint16_t GPR_64[] = {           // 64-bit registers.
4219    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4220    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4221  };
4222  static const uint16_t *FPR = GetFPR();
4223
4224  static const uint16_t VR[] = {
4225    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4226    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4227  };
4228  const unsigned NumGPRs = array_lengthof(GPR_32);
4229  const unsigned NumFPRs = 13;
4230  const unsigned NumVRs  = array_lengthof(VR);
4231
4232  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
4233
4234  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4235  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4236
4237  SmallVector<SDValue, 8> MemOpChains;
4238  for (unsigned i = 0; i != NumOps; ++i) {
4239    SDValue Arg = OutVals[i];
4240    ISD::ArgFlagsTy Flags = Outs[i].Flags;
4241
4242    // PtrOff will be used to store the current argument to the stack if a
4243    // register cannot be found for it.
4244    SDValue PtrOff;
4245
4246    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4247
4248    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4249
4250    // On PPC64, promote integers to 64-bit values.
4251    if (isPPC64 && Arg.getValueType() == MVT::i32) {
4252      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4253      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4254      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4255    }
4256
4257    // FIXME memcpy is used way more than necessary.  Correctness first.
4258    // Note: "by value" is code for passing a structure by value, not
4259    // basic types.
4260    if (Flags.isByVal()) {
4261      unsigned Size = Flags.getByValSize();
4262      // Very small objects are passed right-justified.  Everything else is
4263      // passed left-justified.
4264      if (Size==1 || Size==2) {
4265        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
4266        if (GPR_idx != NumGPRs) {
4267          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4268                                        MachinePointerInfo(), VT,
4269                                        false, false, 0);
4270          MemOpChains.push_back(Load.getValue(1));
4271          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4272
4273          ArgOffset += PtrByteSize;
4274        } else {
4275          SDValue Const = DAG.getConstant(PtrByteSize - Size,
4276                                          PtrOff.getValueType());
4277          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4278          Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4279                                                            CallSeqStart,
4280                                                            Flags, DAG, dl);
4281          ArgOffset += PtrByteSize;
4282        }
4283        continue;
4284      }
4285      // Copy entire object into memory.  There are cases where gcc-generated
4286      // code assumes it is there, even if it could be put entirely into
4287      // registers.  (This is not what the doc says.)
4288      Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4289                                                        CallSeqStart,
4290                                                        Flags, DAG, dl);
4291
4292      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
4293      // copy the pieces of the object that fit into registers from the
4294      // parameter save area.
4295      for (unsigned j=0; j<Size; j+=PtrByteSize) {
4296        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4297        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4298        if (GPR_idx != NumGPRs) {
4299          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4300                                     MachinePointerInfo(),
4301                                     false, false, false, 0);
4302          MemOpChains.push_back(Load.getValue(1));
4303          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4304          ArgOffset += PtrByteSize;
4305        } else {
4306          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4307          break;
4308        }
4309      }
4310      continue;
4311    }
4312
4313    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
4314    default: llvm_unreachable("Unexpected ValueType for argument!");
4315    case MVT::i32:
4316    case MVT::i64:
4317      if (GPR_idx != NumGPRs) {
4318        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4319      } else {
4320        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4321                         isPPC64, isTailCall, false, MemOpChains,
4322                         TailCallArguments, dl);
4323      }
4324      ArgOffset += PtrByteSize;
4325      break;
4326    case MVT::f32:
4327    case MVT::f64:
4328      if (FPR_idx != NumFPRs) {
4329        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4330
4331        if (isVarArg) {
4332          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4333                                       MachinePointerInfo(), false, false, 0);
4334          MemOpChains.push_back(Store);
4335
4336          // Float varargs are always shadowed in available integer registers
4337          if (GPR_idx != NumGPRs) {
4338            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4339                                       MachinePointerInfo(), false, false,
4340                                       false, 0);
4341            MemOpChains.push_back(Load.getValue(1));
4342            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4343          }
4344          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
4345            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4346            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4347            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4348                                       MachinePointerInfo(),
4349                                       false, false, false, 0);
4350            MemOpChains.push_back(Load.getValue(1));
4351            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4352          }
4353        } else {
4354          // If we have any FPRs remaining, we may also have GPRs remaining.
4355          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
4356          // GPRs.
4357          if (GPR_idx != NumGPRs)
4358            ++GPR_idx;
4359          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
4360              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
4361            ++GPR_idx;
4362        }
4363      } else
4364        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4365                         isPPC64, isTailCall, false, MemOpChains,
4366                         TailCallArguments, dl);
4367      if (isPPC64)
4368        ArgOffset += 8;
4369      else
4370        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
4371      break;
4372    case MVT::v4f32:
4373    case MVT::v4i32:
4374    case MVT::v8i16:
4375    case MVT::v16i8:
4376      if (isVarArg) {
4377        // These go aligned on the stack, or in the corresponding R registers
4378        // when within range.  The Darwin PPC ABI doc claims they also go in
4379        // V registers; in fact gcc does this only for arguments that are
4380        // prototyped, not for those that match the ...  We do it for all
4381        // arguments, seems to work.
4382        while (ArgOffset % 16 !=0) {
4383          ArgOffset += PtrByteSize;
4384          if (GPR_idx != NumGPRs)
4385            GPR_idx++;
4386        }
4387        // We could elide this store in the case where the object fits
4388        // entirely in R registers.  Maybe later.
4389        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4390                            DAG.getConstant(ArgOffset, PtrVT));
4391        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4392                                     MachinePointerInfo(), false, false, 0);
4393        MemOpChains.push_back(Store);
4394        if (VR_idx != NumVRs) {
4395          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4396                                     MachinePointerInfo(),
4397                                     false, false, false, 0);
4398          MemOpChains.push_back(Load.getValue(1));
4399          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4400        }
4401        ArgOffset += 16;
4402        for (unsigned i=0; i<16; i+=PtrByteSize) {
4403          if (GPR_idx == NumGPRs)
4404            break;
4405          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4406                                  DAG.getConstant(i, PtrVT));
4407          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4408                                     false, false, false, 0);
4409          MemOpChains.push_back(Load.getValue(1));
4410          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4411        }
4412        break;
4413      }
4414
4415      // Non-varargs Altivec params generally go in registers, but have
4416      // stack space allocated at the end.
4417      if (VR_idx != NumVRs) {
4418        // Doesn't have GPR space allocated.
4419        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4420      } else if (nAltivecParamsAtEnd==0) {
4421        // We are emitting Altivec params in order.
4422        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4423                         isPPC64, isTailCall, true, MemOpChains,
4424                         TailCallArguments, dl);
4425        ArgOffset += 16;
4426      }
4427      break;
4428    }
4429  }
4430  // If all Altivec parameters fit in registers, as they usually do,
4431  // they get stack space following the non-Altivec parameters.  We
4432  // don't track this here because nobody below needs it.
4433  // If there are more Altivec parameters than fit in registers emit
4434  // the stores here.
4435  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
4436    unsigned j = 0;
4437    // Offset is aligned; skip 1st 12 params which go in V registers.
4438    ArgOffset = ((ArgOffset+15)/16)*16;
4439    ArgOffset += 12*16;
4440    for (unsigned i = 0; i != NumOps; ++i) {
4441      SDValue Arg = OutVals[i];
4442      EVT ArgType = Outs[i].VT;
4443      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
4444          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
4445        if (++j > NumVRs) {
4446          SDValue PtrOff;
4447          // We are emitting Altivec params in order.
4448          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4449                           isPPC64, isTailCall, true, MemOpChains,
4450                           TailCallArguments, dl);
4451          ArgOffset += 16;
4452        }
4453      }
4454    }
4455  }
4456
4457  if (!MemOpChains.empty())
4458    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4459                        &MemOpChains[0], MemOpChains.size());
4460
4461  // On Darwin, R12 must contain the address of an indirect callee.  This does
4462  // not mean the MTCTR instruction must use R12; it's easier to model this as
4463  // an extra parameter, so do that.
4464  if (!isTailCall &&
4465      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4466      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4467      !isBLACompatibleAddress(Callee, DAG))
4468    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
4469                                                   PPC::R12), Callee));
4470
4471  // Build a sequence of copy-to-reg nodes chained together with token chain
4472  // and flag operands which copy the outgoing args into the appropriate regs.
4473  SDValue InFlag;
4474  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4475    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4476                             RegsToPass[i].second, InFlag);
4477    InFlag = Chain.getValue(1);
4478  }
4479
4480  if (isTailCall)
4481    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
4482                    FPOp, true, TailCallArguments);
4483
4484  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4485                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4486                    Ins, InVals);
4487}
4488
4489bool
4490PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
4491                                  MachineFunction &MF, bool isVarArg,
4492                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
4493                                  LLVMContext &Context) const {
4494  SmallVector<CCValAssign, 16> RVLocs;
4495  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
4496                 RVLocs, Context);
4497  return CCInfo.CheckReturn(Outs, RetCC_PPC);
4498}
4499
4500SDValue
4501PPCTargetLowering::LowerReturn(SDValue Chain,
4502                               CallingConv::ID CallConv, bool isVarArg,
4503                               const SmallVectorImpl<ISD::OutputArg> &Outs,
4504                               const SmallVectorImpl<SDValue> &OutVals,
4505                               DebugLoc dl, SelectionDAG &DAG) const {
4506
4507  SmallVector<CCValAssign, 16> RVLocs;
4508  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4509                 getTargetMachine(), RVLocs, *DAG.getContext());
4510  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
4511
4512  SDValue Flag;
4513  SmallVector<SDValue, 4> RetOps(1, Chain);
4514
4515  // Copy the result values into the output registers.
4516  for (unsigned i = 0; i != RVLocs.size(); ++i) {
4517    CCValAssign &VA = RVLocs[i];
4518    assert(VA.isRegLoc() && "Can only return in registers!");
4519
4520    SDValue Arg = OutVals[i];
4521
4522    switch (VA.getLocInfo()) {
4523    default: llvm_unreachable("Unknown loc info!");
4524    case CCValAssign::Full: break;
4525    case CCValAssign::AExt:
4526      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
4527      break;
4528    case CCValAssign::ZExt:
4529      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
4530      break;
4531    case CCValAssign::SExt:
4532      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
4533      break;
4534    }
4535
4536    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
4537    Flag = Chain.getValue(1);
4538    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
4539  }
4540
4541  RetOps[0] = Chain;  // Update chain.
4542
4543  // Add the flag if we have it.
4544  if (Flag.getNode())
4545    RetOps.push_back(Flag);
4546
4547  return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other,
4548                     &RetOps[0], RetOps.size());
4549}
4550
4551SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
4552                                   const PPCSubtarget &Subtarget) const {
4553  // When we pop the dynamic allocation we need to restore the SP link.
4554  DebugLoc dl = Op.getDebugLoc();
4555
4556  // Get the corect type for pointers.
4557  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4558
4559  // Construct the stack pointer operand.
4560  bool isPPC64 = Subtarget.isPPC64();
4561  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
4562  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
4563
4564  // Get the operands for the STACKRESTORE.
4565  SDValue Chain = Op.getOperand(0);
4566  SDValue SaveSP = Op.getOperand(1);
4567
4568  // Load the old link SP.
4569  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
4570                                   MachinePointerInfo(),
4571                                   false, false, false, 0);
4572
4573  // Restore the stack pointer.
4574  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
4575
4576  // Store the old link SP.
4577  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
4578                      false, false, 0);
4579}
4580
4581
4582
4583SDValue
4584PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
4585  MachineFunction &MF = DAG.getMachineFunction();
4586  bool isPPC64 = PPCSubTarget.isPPC64();
4587  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4588  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4589
4590  // Get current frame pointer save index.  The users of this index will be
4591  // primarily DYNALLOC instructions.
4592  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4593  int RASI = FI->getReturnAddrSaveIndex();
4594
4595  // If the frame pointer save index hasn't been defined yet.
4596  if (!RASI) {
4597    // Find out what the fix offset of the frame pointer save area.
4598    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
4599    // Allocate the frame index for frame pointer save area.
4600    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
4601    // Save the result.
4602    FI->setReturnAddrSaveIndex(RASI);
4603  }
4604  return DAG.getFrameIndex(RASI, PtrVT);
4605}
4606
4607SDValue
4608PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
4609  MachineFunction &MF = DAG.getMachineFunction();
4610  bool isPPC64 = PPCSubTarget.isPPC64();
4611  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4612  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4613
4614  // Get current frame pointer save index.  The users of this index will be
4615  // primarily DYNALLOC instructions.
4616  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4617  int FPSI = FI->getFramePointerSaveIndex();
4618
4619  // If the frame pointer save index hasn't been defined yet.
4620  if (!FPSI) {
4621    // Find out what the fix offset of the frame pointer save area.
4622    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
4623                                                           isDarwinABI);
4624
4625    // Allocate the frame index for frame pointer save area.
4626    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
4627    // Save the result.
4628    FI->setFramePointerSaveIndex(FPSI);
4629  }
4630  return DAG.getFrameIndex(FPSI, PtrVT);
4631}
4632
4633SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4634                                         SelectionDAG &DAG,
4635                                         const PPCSubtarget &Subtarget) const {
4636  // Get the inputs.
4637  SDValue Chain = Op.getOperand(0);
4638  SDValue Size  = Op.getOperand(1);
4639  DebugLoc dl = Op.getDebugLoc();
4640
4641  // Get the corect type for pointers.
4642  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4643  // Negate the size.
4644  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
4645                                  DAG.getConstant(0, PtrVT), Size);
4646  // Construct a node for the frame pointer save index.
4647  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
4648  // Build a DYNALLOC node.
4649  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
4650  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
4651  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
4652}
4653
4654SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
4655                                               SelectionDAG &DAG) const {
4656  DebugLoc DL = Op.getDebugLoc();
4657  return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
4658                     DAG.getVTList(MVT::i32, MVT::Other),
4659                     Op.getOperand(0), Op.getOperand(1));
4660}
4661
4662SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
4663                                                SelectionDAG &DAG) const {
4664  DebugLoc DL = Op.getDebugLoc();
4665  return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
4666                     Op.getOperand(0), Op.getOperand(1));
4667}
4668
4669/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
4670/// possible.
4671SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4672  // Not FP? Not a fsel.
4673  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
4674      !Op.getOperand(2).getValueType().isFloatingPoint())
4675    return Op;
4676
4677  // We might be able to do better than this under some circumstances, but in
4678  // general, fsel-based lowering of select is a finite-math-only optimization.
4679  // For more information, see section F.3 of the 2.06 ISA specification.
4680  if (!DAG.getTarget().Options.NoInfsFPMath ||
4681      !DAG.getTarget().Options.NoNaNsFPMath)
4682    return Op;
4683
4684  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4685
4686  EVT ResVT = Op.getValueType();
4687  EVT CmpVT = Op.getOperand(0).getValueType();
4688  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4689  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
4690  DebugLoc dl = Op.getDebugLoc();
4691
4692  // If the RHS of the comparison is a 0.0, we don't need to do the
4693  // subtraction at all.
4694  SDValue Sel1;
4695  if (isFloatingPointZero(RHS))
4696    switch (CC) {
4697    default: break;       // SETUO etc aren't handled by fsel.
4698    case ISD::SETNE:
4699      std::swap(TV, FV);
4700    case ISD::SETEQ:
4701      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4702        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4703      Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4704      if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
4705        Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
4706      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4707                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
4708    case ISD::SETULT:
4709    case ISD::SETLT:
4710      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4711    case ISD::SETOGE:
4712    case ISD::SETGE:
4713      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4714        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4715      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4716    case ISD::SETUGT:
4717    case ISD::SETGT:
4718      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4719    case ISD::SETOLE:
4720    case ISD::SETLE:
4721      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4722        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4723      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4724                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
4725    }
4726
4727  SDValue Cmp;
4728  switch (CC) {
4729  default: break;       // SETUO etc aren't handled by fsel.
4730  case ISD::SETNE:
4731    std::swap(TV, FV);
4732  case ISD::SETEQ:
4733    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4734    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4735      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4736    Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4737    if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
4738      Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
4739    return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4740                       DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
4741  case ISD::SETULT:
4742  case ISD::SETLT:
4743    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4744    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4745      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4746    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4747  case ISD::SETOGE:
4748  case ISD::SETGE:
4749    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4750    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4751      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4752    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4753  case ISD::SETUGT:
4754  case ISD::SETGT:
4755    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4756    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4757      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4758    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4759  case ISD::SETOLE:
4760  case ISD::SETLE:
4761    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4762    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4763      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4764    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4765  }
4766  return Op;
4767}
4768
4769// FIXME: Split this code up when LegalizeDAGTypes lands.
4770SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
4771                                           DebugLoc dl) const {
4772  assert(Op.getOperand(0).getValueType().isFloatingPoint());
4773  SDValue Src = Op.getOperand(0);
4774  if (Src.getValueType() == MVT::f32)
4775    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
4776
4777  SDValue Tmp;
4778  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4779  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
4780  case MVT::i32:
4781    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
4782                        (PPCSubTarget.hasFPCVT() ? PPCISD::FCTIWUZ :
4783                                                   PPCISD::FCTIDZ),
4784                      dl, MVT::f64, Src);
4785    break;
4786  case MVT::i64:
4787    assert((Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT()) &&
4788           "i64 FP_TO_UINT is supported only with FPCVT");
4789    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
4790                                                        PPCISD::FCTIDUZ,
4791                      dl, MVT::f64, Src);
4792    break;
4793  }
4794
4795  // Convert the FP value to an int value through memory.
4796  bool i32Stack = Op.getValueType() == MVT::i32 && PPCSubTarget.hasSTFIWX() &&
4797    (Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT());
4798  SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
4799  int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
4800  MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
4801
4802  // Emit a store to the stack slot.
4803  SDValue Chain;
4804  if (i32Stack) {
4805    MachineFunction &MF = DAG.getMachineFunction();
4806    MachineMemOperand *MMO =
4807      MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
4808    SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
4809    Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
4810              DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
4811              MVT::i32, MMO);
4812  } else
4813    Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
4814                         MPI, false, false, 0);
4815
4816  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
4817  // add in a bias.
4818  if (Op.getValueType() == MVT::i32 && !i32Stack) {
4819    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
4820                        DAG.getConstant(4, FIPtr.getValueType()));
4821    MPI = MachinePointerInfo();
4822  }
4823
4824  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI,
4825                     false, false, false, 0);
4826}
4827
4828SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
4829                                           SelectionDAG &DAG) const {
4830  DebugLoc dl = Op.getDebugLoc();
4831  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
4832  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
4833    return SDValue();
4834
4835  assert((Op.getOpcode() == ISD::SINT_TO_FP || PPCSubTarget.hasFPCVT()) &&
4836         "UINT_TO_FP is supported only with FPCVT");
4837
4838  // If we have FCFIDS, then use it when converting to single-precision.
4839  // Otherwise, convert to double-precision and then round.
4840  unsigned FCFOp = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
4841                   (Op.getOpcode() == ISD::UINT_TO_FP ?
4842                    PPCISD::FCFIDUS : PPCISD::FCFIDS) :
4843                   (Op.getOpcode() == ISD::UINT_TO_FP ?
4844                    PPCISD::FCFIDU : PPCISD::FCFID);
4845  MVT      FCFTy = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
4846                   MVT::f32 : MVT::f64;
4847
4848  if (Op.getOperand(0).getValueType() == MVT::i64) {
4849    SDValue SINT = Op.getOperand(0);
4850    // When converting to single-precision, we actually need to convert
4851    // to double-precision first and then round to single-precision.
4852    // To avoid double-rounding effects during that operation, we have
4853    // to prepare the input operand.  Bits that might be truncated when
4854    // converting to double-precision are replaced by a bit that won't
4855    // be lost at this stage, but is below the single-precision rounding
4856    // position.
4857    //
4858    // However, if -enable-unsafe-fp-math is in effect, accept double
4859    // rounding to avoid the extra overhead.
4860    if (Op.getValueType() == MVT::f32 &&
4861        !PPCSubTarget.hasFPCVT() &&
4862        !DAG.getTarget().Options.UnsafeFPMath) {
4863
4864      // Twiddle input to make sure the low 11 bits are zero.  (If this
4865      // is the case, we are guaranteed the value will fit into the 53 bit
4866      // mantissa of an IEEE double-precision value without rounding.)
4867      // If any of those low 11 bits were not zero originally, make sure
4868      // bit 12 (value 2048) is set instead, so that the final rounding
4869      // to single-precision gets the correct result.
4870      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4871                                  SINT, DAG.getConstant(2047, MVT::i64));
4872      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
4873                          Round, DAG.getConstant(2047, MVT::i64));
4874      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
4875      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4876                          Round, DAG.getConstant(-2048, MVT::i64));
4877
4878      // However, we cannot use that value unconditionally: if the magnitude
4879      // of the input value is small, the bit-twiddling we did above might
4880      // end up visibly changing the output.  Fortunately, in that case, we
4881      // don't need to twiddle bits since the original input will convert
4882      // exactly to double-precision floating-point already.  Therefore,
4883      // construct a conditional to use the original value if the top 11
4884      // bits are all sign-bit copies, and use the rounded value computed
4885      // above otherwise.
4886      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
4887                                 SINT, DAG.getConstant(53, MVT::i32));
4888      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
4889                         Cond, DAG.getConstant(1, MVT::i64));
4890      Cond = DAG.getSetCC(dl, MVT::i32,
4891                          Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
4892
4893      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
4894    }
4895
4896    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
4897    SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
4898
4899    if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
4900      FP = DAG.getNode(ISD::FP_ROUND, dl,
4901                       MVT::f32, FP, DAG.getIntPtrConstant(0));
4902    return FP;
4903  }
4904
4905  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
4906         "Unhandled INT_TO_FP type in custom expander!");
4907  // Since we only generate this in 64-bit mode, we can take advantage of
4908  // 64-bit registers.  In particular, sign extend the input value into the
4909  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
4910  // then lfd it and fcfid it.
4911  MachineFunction &MF = DAG.getMachineFunction();
4912  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
4913  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4914
4915  SDValue Ld;
4916  if (PPCSubTarget.hasLFIWAX() || PPCSubTarget.hasFPCVT()) {
4917    int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
4918    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4919
4920    SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
4921                                 MachinePointerInfo::getFixedStack(FrameIdx),
4922                                 false, false, 0);
4923
4924    assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
4925           "Expected an i32 store");
4926    MachineMemOperand *MMO =
4927      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
4928                              MachineMemOperand::MOLoad, 4, 4);
4929    SDValue Ops[] = { Store, FIdx };
4930    Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
4931                                   PPCISD::LFIWZX : PPCISD::LFIWAX,
4932                                 dl, DAG.getVTList(MVT::f64, MVT::Other),
4933                                 Ops, 2, MVT::i32, MMO);
4934  } else {
4935    assert(PPCSubTarget.isPPC64() &&
4936           "i32->FP without LFIWAX supported only on PPC64");
4937
4938    int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
4939    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4940
4941    SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
4942                                Op.getOperand(0));
4943
4944    // STD the extended value into the stack slot.
4945    SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
4946                                 MachinePointerInfo::getFixedStack(FrameIdx),
4947                                 false, false, 0);
4948
4949    // Load the value as a double.
4950    Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
4951                     MachinePointerInfo::getFixedStack(FrameIdx),
4952                     false, false, false, 0);
4953  }
4954
4955  // FCFID it and return it.
4956  SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
4957  if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
4958    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
4959  return FP;
4960}
4961
4962SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4963                                            SelectionDAG &DAG) const {
4964  DebugLoc dl = Op.getDebugLoc();
4965  /*
4966   The rounding mode is in bits 30:31 of FPSR, and has the following
4967   settings:
4968     00 Round to nearest
4969     01 Round to 0
4970     10 Round to +inf
4971     11 Round to -inf
4972
4973  FLT_ROUNDS, on the other hand, expects the following:
4974    -1 Undefined
4975     0 Round to 0
4976     1 Round to nearest
4977     2 Round to +inf
4978     3 Round to -inf
4979
4980  To perform the conversion, we do:
4981    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
4982  */
4983
4984  MachineFunction &MF = DAG.getMachineFunction();
4985  EVT VT = Op.getValueType();
4986  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4987  SDValue MFFSreg, InFlag;
4988
4989  // Save FP Control Word to register
4990  EVT NodeTys[] = {
4991    MVT::f64,    // return register
4992    MVT::Glue    // unused in this context
4993  };
4994  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4995
4996  // Save FP register to stack slot
4997  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
4998  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
4999  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
5000                               StackSlot, MachinePointerInfo(), false, false,0);
5001
5002  // Load FP Control Word from low 32 bits of stack slot.
5003  SDValue Four = DAG.getConstant(4, PtrVT);
5004  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
5005  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
5006                            false, false, false, 0);
5007
5008  // Transform as necessary
5009  SDValue CWD1 =
5010    DAG.getNode(ISD::AND, dl, MVT::i32,
5011                CWD, DAG.getConstant(3, MVT::i32));
5012  SDValue CWD2 =
5013    DAG.getNode(ISD::SRL, dl, MVT::i32,
5014                DAG.getNode(ISD::AND, dl, MVT::i32,
5015                            DAG.getNode(ISD::XOR, dl, MVT::i32,
5016                                        CWD, DAG.getConstant(3, MVT::i32)),
5017                            DAG.getConstant(3, MVT::i32)),
5018                DAG.getConstant(1, MVT::i32));
5019
5020  SDValue RetVal =
5021    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
5022
5023  return DAG.getNode((VT.getSizeInBits() < 16 ?
5024                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
5025}
5026
5027SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
5028  EVT VT = Op.getValueType();
5029  unsigned BitWidth = VT.getSizeInBits();
5030  DebugLoc dl = Op.getDebugLoc();
5031  assert(Op.getNumOperands() == 3 &&
5032         VT == Op.getOperand(1).getValueType() &&
5033         "Unexpected SHL!");
5034
5035  // Expand into a bunch of logical ops.  Note that these ops
5036  // depend on the PPC behavior for oversized shift amounts.
5037  SDValue Lo = Op.getOperand(0);
5038  SDValue Hi = Op.getOperand(1);
5039  SDValue Amt = Op.getOperand(2);
5040  EVT AmtVT = Amt.getValueType();
5041
5042  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5043                             DAG.getConstant(BitWidth, AmtVT), Amt);
5044  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
5045  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
5046  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
5047  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5048                             DAG.getConstant(-BitWidth, AmtVT));
5049  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
5050  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
5051  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
5052  SDValue OutOps[] = { OutLo, OutHi };
5053  return DAG.getMergeValues(OutOps, 2, dl);
5054}
5055
5056SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
5057  EVT VT = Op.getValueType();
5058  DebugLoc dl = Op.getDebugLoc();
5059  unsigned BitWidth = VT.getSizeInBits();
5060  assert(Op.getNumOperands() == 3 &&
5061         VT == Op.getOperand(1).getValueType() &&
5062         "Unexpected SRL!");
5063
5064  // Expand into a bunch of logical ops.  Note that these ops
5065  // depend on the PPC behavior for oversized shift amounts.
5066  SDValue Lo = Op.getOperand(0);
5067  SDValue Hi = Op.getOperand(1);
5068  SDValue Amt = Op.getOperand(2);
5069  EVT AmtVT = Amt.getValueType();
5070
5071  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5072                             DAG.getConstant(BitWidth, AmtVT), Amt);
5073  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
5074  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
5075  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
5076  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5077                             DAG.getConstant(-BitWidth, AmtVT));
5078  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
5079  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
5080  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
5081  SDValue OutOps[] = { OutLo, OutHi };
5082  return DAG.getMergeValues(OutOps, 2, dl);
5083}
5084
5085SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
5086  DebugLoc dl = Op.getDebugLoc();
5087  EVT VT = Op.getValueType();
5088  unsigned BitWidth = VT.getSizeInBits();
5089  assert(Op.getNumOperands() == 3 &&
5090         VT == Op.getOperand(1).getValueType() &&
5091         "Unexpected SRA!");
5092
5093  // Expand into a bunch of logical ops, followed by a select_cc.
5094  SDValue Lo = Op.getOperand(0);
5095  SDValue Hi = Op.getOperand(1);
5096  SDValue Amt = Op.getOperand(2);
5097  EVT AmtVT = Amt.getValueType();
5098
5099  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5100                             DAG.getConstant(BitWidth, AmtVT), Amt);
5101  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
5102  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
5103  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
5104  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5105                             DAG.getConstant(-BitWidth, AmtVT));
5106  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
5107  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
5108  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
5109                                  Tmp4, Tmp6, ISD::SETLE);
5110  SDValue OutOps[] = { OutLo, OutHi };
5111  return DAG.getMergeValues(OutOps, 2, dl);
5112}
5113
5114//===----------------------------------------------------------------------===//
5115// Vector related lowering.
5116//
5117
5118/// BuildSplatI - Build a canonical splati of Val with an element size of
5119/// SplatSize.  Cast the result to VT.
5120static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
5121                             SelectionDAG &DAG, DebugLoc dl) {
5122  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
5123
5124  static const EVT VTys[] = { // canonical VT to use for each size.
5125    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
5126  };
5127
5128  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
5129
5130  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
5131  if (Val == -1)
5132    SplatSize = 1;
5133
5134  EVT CanonicalVT = VTys[SplatSize-1];
5135
5136  // Build a canonical splat for this value.
5137  SDValue Elt = DAG.getConstant(Val, MVT::i32);
5138  SmallVector<SDValue, 8> Ops;
5139  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
5140  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
5141                              &Ops[0], Ops.size());
5142  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
5143}
5144
5145/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
5146/// specified intrinsic ID.
5147static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
5148                                SelectionDAG &DAG, DebugLoc dl,
5149                                EVT DestVT = MVT::Other) {
5150  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
5151  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5152                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
5153}
5154
5155/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
5156/// specified intrinsic ID.
5157static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
5158                                SDValue Op2, SelectionDAG &DAG,
5159                                DebugLoc dl, EVT DestVT = MVT::Other) {
5160  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
5161  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5162                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
5163}
5164
5165
5166/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
5167/// amount.  The result has the specified value type.
5168static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
5169                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
5170  // Force LHS/RHS to be the right type.
5171  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
5172  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
5173
5174  int Ops[16];
5175  for (unsigned i = 0; i != 16; ++i)
5176    Ops[i] = i + Amt;
5177  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
5178  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5179}
5180
5181// If this is a case we can't handle, return null and let the default
5182// expansion code take care of it.  If we CAN select this case, and if it
5183// selects to a single instruction, return Op.  Otherwise, if we can codegen
5184// this case more efficiently than a constant pool load, lower it to the
5185// sequence of ops that should be used.
5186SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
5187                                             SelectionDAG &DAG) const {
5188  DebugLoc dl = Op.getDebugLoc();
5189  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5190  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
5191
5192  // Check if this is a splat of a constant value.
5193  APInt APSplatBits, APSplatUndef;
5194  unsigned SplatBitSize;
5195  bool HasAnyUndefs;
5196  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
5197                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
5198    return SDValue();
5199
5200  unsigned SplatBits = APSplatBits.getZExtValue();
5201  unsigned SplatUndef = APSplatUndef.getZExtValue();
5202  unsigned SplatSize = SplatBitSize / 8;
5203
5204  // First, handle single instruction cases.
5205
5206  // All zeros?
5207  if (SplatBits == 0) {
5208    // Canonicalize all zero vectors to be v4i32.
5209    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
5210      SDValue Z = DAG.getConstant(0, MVT::i32);
5211      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
5212      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
5213    }
5214    return Op;
5215  }
5216
5217  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
5218  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
5219                    (32-SplatBitSize));
5220  if (SextVal >= -16 && SextVal <= 15)
5221    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
5222
5223
5224  // Two instruction sequences.
5225
5226  // If this value is in the range [-32,30] and is even, use:
5227  //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
5228  // If this value is in the range [17,31] and is odd, use:
5229  //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
5230  // If this value is in the range [-31,-17] and is odd, use:
5231  //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
5232  // Note the last two are three-instruction sequences.
5233  if (SextVal >= -32 && SextVal <= 31) {
5234    // To avoid having these optimizations undone by constant folding,
5235    // we convert to a pseudo that will be expanded later into one of
5236    // the above forms.
5237    SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
5238    EVT VT = Op.getValueType();
5239    int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4);
5240    SDValue EltSize = DAG.getConstant(Size, MVT::i32);
5241    return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
5242  }
5243
5244  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
5245  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
5246  // for fneg/fabs.
5247  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
5248    // Make -1 and vspltisw -1:
5249    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
5250
5251    // Make the VSLW intrinsic, computing 0x8000_0000.
5252    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
5253                                   OnesV, DAG, dl);
5254
5255    // xor by OnesV to invert it.
5256    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
5257    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5258  }
5259
5260  // Check to see if this is a wide variety of vsplti*, binop self cases.
5261  static const signed char SplatCsts[] = {
5262    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
5263    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
5264  };
5265
5266  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
5267    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
5268    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
5269    int i = SplatCsts[idx];
5270
5271    // Figure out what shift amount will be used by altivec if shifted by i in
5272    // this splat size.
5273    unsigned TypeShiftAmt = i & (SplatBitSize-1);
5274
5275    // vsplti + shl self.
5276    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
5277      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5278      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5279        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
5280        Intrinsic::ppc_altivec_vslw
5281      };
5282      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5283      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5284    }
5285
5286    // vsplti + srl self.
5287    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5288      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5289      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5290        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
5291        Intrinsic::ppc_altivec_vsrw
5292      };
5293      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5294      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5295    }
5296
5297    // vsplti + sra self.
5298    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5299      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5300      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5301        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
5302        Intrinsic::ppc_altivec_vsraw
5303      };
5304      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5305      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5306    }
5307
5308    // vsplti + rol self.
5309    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
5310                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
5311      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5312      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5313        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
5314        Intrinsic::ppc_altivec_vrlw
5315      };
5316      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5317      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5318    }
5319
5320    // t = vsplti c, result = vsldoi t, t, 1
5321    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
5322      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5323      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
5324    }
5325    // t = vsplti c, result = vsldoi t, t, 2
5326    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
5327      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5328      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
5329    }
5330    // t = vsplti c, result = vsldoi t, t, 3
5331    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
5332      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5333      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
5334    }
5335  }
5336
5337  return SDValue();
5338}
5339
5340/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5341/// the specified operations to build the shuffle.
5342static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5343                                      SDValue RHS, SelectionDAG &DAG,
5344                                      DebugLoc dl) {
5345  unsigned OpNum = (PFEntry >> 26) & 0x0F;
5346  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5347  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
5348
5349  enum {
5350    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5351    OP_VMRGHW,
5352    OP_VMRGLW,
5353    OP_VSPLTISW0,
5354    OP_VSPLTISW1,
5355    OP_VSPLTISW2,
5356    OP_VSPLTISW3,
5357    OP_VSLDOI4,
5358    OP_VSLDOI8,
5359    OP_VSLDOI12
5360  };
5361
5362  if (OpNum == OP_COPY) {
5363    if (LHSID == (1*9+2)*9+3) return LHS;
5364    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5365    return RHS;
5366  }
5367
5368  SDValue OpLHS, OpRHS;
5369  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5370  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5371
5372  int ShufIdxs[16];
5373  switch (OpNum) {
5374  default: llvm_unreachable("Unknown i32 permute!");
5375  case OP_VMRGHW:
5376    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
5377    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
5378    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
5379    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
5380    break;
5381  case OP_VMRGLW:
5382    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
5383    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
5384    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
5385    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
5386    break;
5387  case OP_VSPLTISW0:
5388    for (unsigned i = 0; i != 16; ++i)
5389      ShufIdxs[i] = (i&3)+0;
5390    break;
5391  case OP_VSPLTISW1:
5392    for (unsigned i = 0; i != 16; ++i)
5393      ShufIdxs[i] = (i&3)+4;
5394    break;
5395  case OP_VSPLTISW2:
5396    for (unsigned i = 0; i != 16; ++i)
5397      ShufIdxs[i] = (i&3)+8;
5398    break;
5399  case OP_VSPLTISW3:
5400    for (unsigned i = 0; i != 16; ++i)
5401      ShufIdxs[i] = (i&3)+12;
5402    break;
5403  case OP_VSLDOI4:
5404    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
5405  case OP_VSLDOI8:
5406    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
5407  case OP_VSLDOI12:
5408    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
5409  }
5410  EVT VT = OpLHS.getValueType();
5411  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
5412  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
5413  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
5414  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5415}
5416
5417/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
5418/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
5419/// return the code it can be lowered into.  Worst case, it can always be
5420/// lowered into a vperm.
5421SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5422                                               SelectionDAG &DAG) const {
5423  DebugLoc dl = Op.getDebugLoc();
5424  SDValue V1 = Op.getOperand(0);
5425  SDValue V2 = Op.getOperand(1);
5426  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5427  EVT VT = Op.getValueType();
5428
5429  // Cases that are handled by instructions that take permute immediates
5430  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
5431  // selected by the instruction selector.
5432  if (V2.getOpcode() == ISD::UNDEF) {
5433    if (PPC::isSplatShuffleMask(SVOp, 1) ||
5434        PPC::isSplatShuffleMask(SVOp, 2) ||
5435        PPC::isSplatShuffleMask(SVOp, 4) ||
5436        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
5437        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
5438        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
5439        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
5440        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
5441        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
5442        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
5443        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
5444        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
5445      return Op;
5446    }
5447  }
5448
5449  // Altivec has a variety of "shuffle immediates" that take two vector inputs
5450  // and produce a fixed permutation.  If any of these match, do not lower to
5451  // VPERM.
5452  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
5453      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
5454      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
5455      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
5456      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
5457      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
5458      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
5459      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
5460      PPC::isVMRGHShuffleMask(SVOp, 4, false))
5461    return Op;
5462
5463  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
5464  // perfect shuffle table to emit an optimal matching sequence.
5465  ArrayRef<int> PermMask = SVOp->getMask();
5466
5467  unsigned PFIndexes[4];
5468  bool isFourElementShuffle = true;
5469  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
5470    unsigned EltNo = 8;   // Start out undef.
5471    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
5472      if (PermMask[i*4+j] < 0)
5473        continue;   // Undef, ignore it.
5474
5475      unsigned ByteSource = PermMask[i*4+j];
5476      if ((ByteSource & 3) != j) {
5477        isFourElementShuffle = false;
5478        break;
5479      }
5480
5481      if (EltNo == 8) {
5482        EltNo = ByteSource/4;
5483      } else if (EltNo != ByteSource/4) {
5484        isFourElementShuffle = false;
5485        break;
5486      }
5487    }
5488    PFIndexes[i] = EltNo;
5489  }
5490
5491  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
5492  // perfect shuffle vector to determine if it is cost effective to do this as
5493  // discrete instructions, or whether we should use a vperm.
5494  if (isFourElementShuffle) {
5495    // Compute the index in the perfect shuffle table.
5496    unsigned PFTableIndex =
5497      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5498
5499    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5500    unsigned Cost  = (PFEntry >> 30);
5501
5502    // Determining when to avoid vperm is tricky.  Many things affect the cost
5503    // of vperm, particularly how many times the perm mask needs to be computed.
5504    // For example, if the perm mask can be hoisted out of a loop or is already
5505    // used (perhaps because there are multiple permutes with the same shuffle
5506    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
5507    // the loop requires an extra register.
5508    //
5509    // As a compromise, we only emit discrete instructions if the shuffle can be
5510    // generated in 3 or fewer operations.  When we have loop information
5511    // available, if this block is within a loop, we should avoid using vperm
5512    // for 3-operation perms and use a constant pool load instead.
5513    if (Cost < 3)
5514      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5515  }
5516
5517  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
5518  // vector that will get spilled to the constant pool.
5519  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
5520
5521  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
5522  // that it is in input element units, not in bytes.  Convert now.
5523  EVT EltVT = V1.getValueType().getVectorElementType();
5524  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
5525
5526  SmallVector<SDValue, 16> ResultMask;
5527  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5528    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
5529
5530    for (unsigned j = 0; j != BytesPerElement; ++j)
5531      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
5532                                           MVT::i32));
5533  }
5534
5535  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
5536                                    &ResultMask[0], ResultMask.size());
5537  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
5538}
5539
5540/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
5541/// altivec comparison.  If it is, return true and fill in Opc/isDot with
5542/// information about the intrinsic.
5543static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
5544                                  bool &isDot) {
5545  unsigned IntrinsicID =
5546    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
5547  CompareOpc = -1;
5548  isDot = false;
5549  switch (IntrinsicID) {
5550  default: return false;
5551    // Comparison predicates.
5552  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
5553  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
5554  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
5555  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
5556  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
5557  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
5558  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
5559  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
5560  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
5561  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
5562  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
5563  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
5564  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
5565
5566    // Normal Comparisons.
5567  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
5568  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
5569  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
5570  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
5571  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
5572  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
5573  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
5574  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
5575  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
5576  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
5577  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
5578  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
5579  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
5580  }
5581  return true;
5582}
5583
5584/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
5585/// lower, do it, otherwise return null.
5586SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5587                                                   SelectionDAG &DAG) const {
5588  // If this is a lowered altivec predicate compare, CompareOpc is set to the
5589  // opcode number of the comparison.
5590  DebugLoc dl = Op.getDebugLoc();
5591  int CompareOpc;
5592  bool isDot;
5593  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
5594    return SDValue();    // Don't custom lower most intrinsics.
5595
5596  // If this is a non-dot comparison, make the VCMP node and we are done.
5597  if (!isDot) {
5598    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
5599                              Op.getOperand(1), Op.getOperand(2),
5600                              DAG.getConstant(CompareOpc, MVT::i32));
5601    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
5602  }
5603
5604  // Create the PPCISD altivec 'dot' comparison node.
5605  SDValue Ops[] = {
5606    Op.getOperand(2),  // LHS
5607    Op.getOperand(3),  // RHS
5608    DAG.getConstant(CompareOpc, MVT::i32)
5609  };
5610  EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
5611  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5612
5613  // Now that we have the comparison, emit a copy from the CR to a GPR.
5614  // This is flagged to the above dot comparison.
5615  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
5616                                DAG.getRegister(PPC::CR6, MVT::i32),
5617                                CompNode.getValue(1));
5618
5619  // Unpack the result based on how the target uses it.
5620  unsigned BitNo;   // Bit # of CR6.
5621  bool InvertBit;   // Invert result?
5622  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
5623  default:  // Can't happen, don't crash on invalid number though.
5624  case 0:   // Return the value of the EQ bit of CR6.
5625    BitNo = 0; InvertBit = false;
5626    break;
5627  case 1:   // Return the inverted value of the EQ bit of CR6.
5628    BitNo = 0; InvertBit = true;
5629    break;
5630  case 2:   // Return the value of the LT bit of CR6.
5631    BitNo = 2; InvertBit = false;
5632    break;
5633  case 3:   // Return the inverted value of the LT bit of CR6.
5634    BitNo = 2; InvertBit = true;
5635    break;
5636  }
5637
5638  // Shift the bit into the low position.
5639  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
5640                      DAG.getConstant(8-(3-BitNo), MVT::i32));
5641  // Isolate the bit.
5642  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
5643                      DAG.getConstant(1, MVT::i32));
5644
5645  // If we are supposed to, toggle the bit.
5646  if (InvertBit)
5647    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
5648                        DAG.getConstant(1, MVT::i32));
5649  return Flags;
5650}
5651
5652SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
5653                                                   SelectionDAG &DAG) const {
5654  DebugLoc dl = Op.getDebugLoc();
5655  // Create a stack slot that is 16-byte aligned.
5656  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
5657  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
5658  EVT PtrVT = getPointerTy();
5659  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5660
5661  // Store the input value into Value#0 of the stack slot.
5662  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
5663                               Op.getOperand(0), FIdx, MachinePointerInfo(),
5664                               false, false, 0);
5665  // Load it out.
5666  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
5667                     false, false, false, 0);
5668}
5669
5670SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
5671  DebugLoc dl = Op.getDebugLoc();
5672  if (Op.getValueType() == MVT::v4i32) {
5673    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5674
5675    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
5676    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
5677
5678    SDValue RHSSwap =   // = vrlw RHS, 16
5679      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
5680
5681    // Shrinkify inputs to v8i16.
5682    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
5683    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
5684    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
5685
5686    // Low parts multiplied together, generating 32-bit results (we ignore the
5687    // top parts).
5688    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
5689                                        LHS, RHS, DAG, dl, MVT::v4i32);
5690
5691    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
5692                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
5693    // Shift the high parts up 16 bits.
5694    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
5695                              Neg16, DAG, dl);
5696    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
5697  } else if (Op.getValueType() == MVT::v8i16) {
5698    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5699
5700    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
5701
5702    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
5703                            LHS, RHS, Zero, DAG, dl);
5704  } else if (Op.getValueType() == MVT::v16i8) {
5705    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5706
5707    // Multiply the even 8-bit parts, producing 16-bit sums.
5708    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
5709                                           LHS, RHS, DAG, dl, MVT::v8i16);
5710    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
5711
5712    // Multiply the odd 8-bit parts, producing 16-bit sums.
5713    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
5714                                          LHS, RHS, DAG, dl, MVT::v8i16);
5715    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
5716
5717    // Merge the results together.
5718    int Ops[16];
5719    for (unsigned i = 0; i != 8; ++i) {
5720      Ops[i*2  ] = 2*i+1;
5721      Ops[i*2+1] = 2*i+1+16;
5722    }
5723    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
5724  } else {
5725    llvm_unreachable("Unknown mul to lower!");
5726  }
5727}
5728
5729/// LowerOperation - Provide custom lowering hooks for some operations.
5730///
5731SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5732  switch (Op.getOpcode()) {
5733  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
5734  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5735  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
5736  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5737  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5738  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5739  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5740  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
5741  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
5742  case ISD::VASTART:
5743    return LowerVASTART(Op, DAG, PPCSubTarget);
5744
5745  case ISD::VAARG:
5746    return LowerVAARG(Op, DAG, PPCSubTarget);
5747
5748  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
5749  case ISD::DYNAMIC_STACKALLOC:
5750    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
5751
5752  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
5753  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
5754
5755  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
5756  case ISD::FP_TO_UINT:
5757  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
5758                                                       Op.getDebugLoc());
5759  case ISD::UINT_TO_FP:
5760  case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
5761  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5762
5763  // Lower 64-bit shifts.
5764  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
5765  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
5766  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
5767
5768  // Vector-related lowering.
5769  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5770  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5771  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5772  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5773  case ISD::MUL:                return LowerMUL(Op, DAG);
5774
5775  // Frame & Return address.
5776  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5777  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5778  }
5779}
5780
5781void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
5782                                           SmallVectorImpl<SDValue>&Results,
5783                                           SelectionDAG &DAG) const {
5784  const TargetMachine &TM = getTargetMachine();
5785  DebugLoc dl = N->getDebugLoc();
5786  switch (N->getOpcode()) {
5787  default:
5788    llvm_unreachable("Do not know how to custom type legalize this operation!");
5789  case ISD::VAARG: {
5790    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
5791        || TM.getSubtarget<PPCSubtarget>().isPPC64())
5792      return;
5793
5794    EVT VT = N->getValueType(0);
5795
5796    if (VT == MVT::i64) {
5797      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
5798
5799      Results.push_back(NewNode);
5800      Results.push_back(NewNode.getValue(1));
5801    }
5802    return;
5803  }
5804  case ISD::FP_ROUND_INREG: {
5805    assert(N->getValueType(0) == MVT::ppcf128);
5806    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
5807    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5808                             MVT::f64, N->getOperand(0),
5809                             DAG.getIntPtrConstant(0));
5810    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5811                             MVT::f64, N->getOperand(0),
5812                             DAG.getIntPtrConstant(1));
5813
5814    // Add the two halves of the long double in round-to-zero mode.
5815    SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
5816
5817    // We know the low half is about to be thrown away, so just use something
5818    // convenient.
5819    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
5820                                FPreg, FPreg));
5821    return;
5822  }
5823  case ISD::FP_TO_SINT:
5824    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
5825    return;
5826  }
5827}
5828
5829
5830//===----------------------------------------------------------------------===//
5831//  Other Lowering Code
5832//===----------------------------------------------------------------------===//
5833
5834MachineBasicBlock *
5835PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5836                                    bool is64bit, unsigned BinOpcode) const {
5837  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5838  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5839
5840  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5841  MachineFunction *F = BB->getParent();
5842  MachineFunction::iterator It = BB;
5843  ++It;
5844
5845  unsigned dest = MI->getOperand(0).getReg();
5846  unsigned ptrA = MI->getOperand(1).getReg();
5847  unsigned ptrB = MI->getOperand(2).getReg();
5848  unsigned incr = MI->getOperand(3).getReg();
5849  DebugLoc dl = MI->getDebugLoc();
5850
5851  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5852  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5853  F->insert(It, loopMBB);
5854  F->insert(It, exitMBB);
5855  exitMBB->splice(exitMBB->begin(), BB,
5856                  llvm::next(MachineBasicBlock::iterator(MI)),
5857                  BB->end());
5858  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5859
5860  MachineRegisterInfo &RegInfo = F->getRegInfo();
5861  unsigned TmpReg = (!BinOpcode) ? incr :
5862    RegInfo.createVirtualRegister(
5863       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5864                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
5865
5866  //  thisMBB:
5867  //   ...
5868  //   fallthrough --> loopMBB
5869  BB->addSuccessor(loopMBB);
5870
5871  //  loopMBB:
5872  //   l[wd]arx dest, ptr
5873  //   add r0, dest, incr
5874  //   st[wd]cx. r0, ptr
5875  //   bne- loopMBB
5876  //   fallthrough --> exitMBB
5877  BB = loopMBB;
5878  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5879    .addReg(ptrA).addReg(ptrB);
5880  if (BinOpcode)
5881    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
5882  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5883    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
5884  BuildMI(BB, dl, TII->get(PPC::BCC))
5885    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5886  BB->addSuccessor(loopMBB);
5887  BB->addSuccessor(exitMBB);
5888
5889  //  exitMBB:
5890  //   ...
5891  BB = exitMBB;
5892  return BB;
5893}
5894
5895MachineBasicBlock *
5896PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
5897                                            MachineBasicBlock *BB,
5898                                            bool is8bit,    // operation
5899                                            unsigned BinOpcode) const {
5900  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5901  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5902  // In 64 bit mode we have to use 64 bits for addresses, even though the
5903  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
5904  // registers without caring whether they're 32 or 64, but here we're
5905  // doing actual arithmetic on the addresses.
5906  bool is64bit = PPCSubTarget.isPPC64();
5907  unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
5908
5909  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5910  MachineFunction *F = BB->getParent();
5911  MachineFunction::iterator It = BB;
5912  ++It;
5913
5914  unsigned dest = MI->getOperand(0).getReg();
5915  unsigned ptrA = MI->getOperand(1).getReg();
5916  unsigned ptrB = MI->getOperand(2).getReg();
5917  unsigned incr = MI->getOperand(3).getReg();
5918  DebugLoc dl = MI->getDebugLoc();
5919
5920  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5921  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5922  F->insert(It, loopMBB);
5923  F->insert(It, exitMBB);
5924  exitMBB->splice(exitMBB->begin(), BB,
5925                  llvm::next(MachineBasicBlock::iterator(MI)),
5926                  BB->end());
5927  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5928
5929  MachineRegisterInfo &RegInfo = F->getRegInfo();
5930  const TargetRegisterClass *RC =
5931    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5932              (const TargetRegisterClass *) &PPC::GPRCRegClass;
5933  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5934  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5935  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5936  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
5937  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5938  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5939  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5940  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5941  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
5942  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5943  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5944  unsigned Ptr1Reg;
5945  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
5946
5947  //  thisMBB:
5948  //   ...
5949  //   fallthrough --> loopMBB
5950  BB->addSuccessor(loopMBB);
5951
5952  // The 4-byte load must be aligned, while a char or short may be
5953  // anywhere in the word.  Hence all this nasty bookkeeping code.
5954  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5955  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5956  //   xori shift, shift1, 24 [16]
5957  //   rlwinm ptr, ptr1, 0, 0, 29
5958  //   slw incr2, incr, shift
5959  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5960  //   slw mask, mask2, shift
5961  //  loopMBB:
5962  //   lwarx tmpDest, ptr
5963  //   add tmp, tmpDest, incr2
5964  //   andc tmp2, tmpDest, mask
5965  //   and tmp3, tmp, mask
5966  //   or tmp4, tmp3, tmp2
5967  //   stwcx. tmp4, ptr
5968  //   bne- loopMBB
5969  //   fallthrough --> exitMBB
5970  //   srw dest, tmpDest, shift
5971  if (ptrA != ZeroReg) {
5972    Ptr1Reg = RegInfo.createVirtualRegister(RC);
5973    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5974      .addReg(ptrA).addReg(ptrB);
5975  } else {
5976    Ptr1Reg = ptrB;
5977  }
5978  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5979      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5980  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5981      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5982  if (is64bit)
5983    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5984      .addReg(Ptr1Reg).addImm(0).addImm(61);
5985  else
5986    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5987      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5988  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
5989      .addReg(incr).addReg(ShiftReg);
5990  if (is8bit)
5991    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5992  else {
5993    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5994    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
5995  }
5996  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5997      .addReg(Mask2Reg).addReg(ShiftReg);
5998
5999  BB = loopMBB;
6000  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6001    .addReg(ZeroReg).addReg(PtrReg);
6002  if (BinOpcode)
6003    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
6004      .addReg(Incr2Reg).addReg(TmpDestReg);
6005  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
6006    .addReg(TmpDestReg).addReg(MaskReg);
6007  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
6008    .addReg(TmpReg).addReg(MaskReg);
6009  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
6010    .addReg(Tmp3Reg).addReg(Tmp2Reg);
6011  BuildMI(BB, dl, TII->get(PPC::STWCX))
6012    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
6013  BuildMI(BB, dl, TII->get(PPC::BCC))
6014    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
6015  BB->addSuccessor(loopMBB);
6016  BB->addSuccessor(exitMBB);
6017
6018  //  exitMBB:
6019  //   ...
6020  BB = exitMBB;
6021  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
6022    .addReg(ShiftReg);
6023  return BB;
6024}
6025
6026llvm::MachineBasicBlock*
6027PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
6028                                    MachineBasicBlock *MBB) const {
6029  DebugLoc DL = MI->getDebugLoc();
6030  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6031
6032  MachineFunction *MF = MBB->getParent();
6033  MachineRegisterInfo &MRI = MF->getRegInfo();
6034
6035  const BasicBlock *BB = MBB->getBasicBlock();
6036  MachineFunction::iterator I = MBB;
6037  ++I;
6038
6039  // Memory Reference
6040  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
6041  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
6042
6043  unsigned DstReg = MI->getOperand(0).getReg();
6044  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
6045  assert(RC->hasType(MVT::i32) && "Invalid destination!");
6046  unsigned mainDstReg = MRI.createVirtualRegister(RC);
6047  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
6048
6049  MVT PVT = getPointerTy();
6050  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6051         "Invalid Pointer Size!");
6052  // For v = setjmp(buf), we generate
6053  //
6054  // thisMBB:
6055  //  SjLjSetup mainMBB
6056  //  bl mainMBB
6057  //  v_restore = 1
6058  //  b sinkMBB
6059  //
6060  // mainMBB:
6061  //  buf[LabelOffset] = LR
6062  //  v_main = 0
6063  //
6064  // sinkMBB:
6065  //  v = phi(main, restore)
6066  //
6067
6068  MachineBasicBlock *thisMBB = MBB;
6069  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
6070  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
6071  MF->insert(I, mainMBB);
6072  MF->insert(I, sinkMBB);
6073
6074  MachineInstrBuilder MIB;
6075
6076  // Transfer the remainder of BB and its successor edges to sinkMBB.
6077  sinkMBB->splice(sinkMBB->begin(), MBB,
6078                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
6079  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
6080
6081  // Note that the structure of the jmp_buf used here is not compatible
6082  // with that used by libc, and is not designed to be. Specifically, it
6083  // stores only those 'reserved' registers that LLVM does not otherwise
6084  // understand how to spill. Also, by convention, by the time this
6085  // intrinsic is called, Clang has already stored the frame address in the
6086  // first slot of the buffer and stack address in the third. Following the
6087  // X86 target code, we'll store the jump address in the second slot. We also
6088  // need to save the TOC pointer (R2) to handle jumps between shared
6089  // libraries, and that will be stored in the fourth slot. The thread
6090  // identifier (R13) is not affected.
6091
6092  // thisMBB:
6093  const int64_t LabelOffset = 1 * PVT.getStoreSize();
6094  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
6095
6096  // Prepare IP either in reg.
6097  const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
6098  unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
6099  unsigned BufReg = MI->getOperand(1).getReg();
6100
6101  if (PPCSubTarget.isPPC64() && PPCSubTarget.isSVR4ABI()) {
6102    MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
6103            .addReg(PPC::X2)
6104            .addImm(TOCOffset / 4)
6105            .addReg(BufReg);
6106
6107    MIB.setMemRefs(MMOBegin, MMOEnd);
6108  }
6109
6110  // Setup
6111  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
6112  MIB.addRegMask(PPCRegInfo->getNoPreservedMask());
6113
6114  BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
6115
6116  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
6117          .addMBB(mainMBB);
6118  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
6119
6120  thisMBB->addSuccessor(mainMBB, /* weight */ 0);
6121  thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
6122
6123  // mainMBB:
6124  //  mainDstReg = 0
6125  MIB = BuildMI(mainMBB, DL,
6126    TII->get(PPCSubTarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
6127
6128  // Store IP
6129  if (PPCSubTarget.isPPC64()) {
6130    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
6131            .addReg(LabelReg)
6132            .addImm(LabelOffset / 4)
6133            .addReg(BufReg);
6134  } else {
6135    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
6136            .addReg(LabelReg)
6137            .addImm(LabelOffset)
6138            .addReg(BufReg);
6139  }
6140
6141  MIB.setMemRefs(MMOBegin, MMOEnd);
6142
6143  BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
6144  mainMBB->addSuccessor(sinkMBB);
6145
6146  // sinkMBB:
6147  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
6148          TII->get(PPC::PHI), DstReg)
6149    .addReg(mainDstReg).addMBB(mainMBB)
6150    .addReg(restoreDstReg).addMBB(thisMBB);
6151
6152  MI->eraseFromParent();
6153  return sinkMBB;
6154}
6155
6156MachineBasicBlock *
6157PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
6158                                     MachineBasicBlock *MBB) const {
6159  DebugLoc DL = MI->getDebugLoc();
6160  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6161
6162  MachineFunction *MF = MBB->getParent();
6163  MachineRegisterInfo &MRI = MF->getRegInfo();
6164
6165  // Memory Reference
6166  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
6167  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
6168
6169  MVT PVT = getPointerTy();
6170  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6171         "Invalid Pointer Size!");
6172
6173  const TargetRegisterClass *RC =
6174    (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6175  unsigned Tmp = MRI.createVirtualRegister(RC);
6176  // Since FP is only updated here but NOT referenced, it's treated as GPR.
6177  unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
6178  unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
6179
6180  MachineInstrBuilder MIB;
6181
6182  const int64_t LabelOffset = 1 * PVT.getStoreSize();
6183  const int64_t SPOffset    = 2 * PVT.getStoreSize();
6184  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
6185
6186  unsigned BufReg = MI->getOperand(0).getReg();
6187
6188  // Reload FP (the jumped-to function may not have had a
6189  // frame pointer, and if so, then its r31 will be restored
6190  // as necessary).
6191  if (PVT == MVT::i64) {
6192    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
6193            .addImm(0)
6194            .addReg(BufReg);
6195  } else {
6196    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
6197            .addImm(0)
6198            .addReg(BufReg);
6199  }
6200  MIB.setMemRefs(MMOBegin, MMOEnd);
6201
6202  // Reload IP
6203  if (PVT == MVT::i64) {
6204    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
6205            .addImm(LabelOffset / 4)
6206            .addReg(BufReg);
6207  } else {
6208    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
6209            .addImm(LabelOffset)
6210            .addReg(BufReg);
6211  }
6212  MIB.setMemRefs(MMOBegin, MMOEnd);
6213
6214  // Reload SP
6215  if (PVT == MVT::i64) {
6216    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
6217            .addImm(SPOffset / 4)
6218            .addReg(BufReg);
6219  } else {
6220    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
6221            .addImm(SPOffset)
6222            .addReg(BufReg);
6223  }
6224  MIB.setMemRefs(MMOBegin, MMOEnd);
6225
6226  // FIXME: When we also support base pointers, that register must also be
6227  // restored here.
6228
6229  // Reload TOC
6230  if (PVT == MVT::i64 && PPCSubTarget.isSVR4ABI()) {
6231    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
6232            .addImm(TOCOffset / 4)
6233            .addReg(BufReg);
6234
6235    MIB.setMemRefs(MMOBegin, MMOEnd);
6236  }
6237
6238  // Jump
6239  BuildMI(*MBB, MI, DL,
6240          TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
6241  BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
6242
6243  MI->eraseFromParent();
6244  return MBB;
6245}
6246
6247MachineBasicBlock *
6248PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6249                                               MachineBasicBlock *BB) const {
6250  if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
6251      MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
6252    return emitEHSjLjSetJmp(MI, BB);
6253  } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
6254             MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
6255    return emitEHSjLjLongJmp(MI, BB);
6256  }
6257
6258  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6259
6260  // To "insert" these instructions we actually have to insert their
6261  // control-flow patterns.
6262  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6263  MachineFunction::iterator It = BB;
6264  ++It;
6265
6266  MachineFunction *F = BB->getParent();
6267
6268  if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6269                                 MI->getOpcode() == PPC::SELECT_CC_I8)) {
6270    SmallVector<MachineOperand, 2> Cond;
6271    Cond.push_back(MI->getOperand(4));
6272    Cond.push_back(MI->getOperand(1));
6273
6274    DebugLoc dl = MI->getDebugLoc();
6275    PPCII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), Cond,
6276                        MI->getOperand(2).getReg(), MI->getOperand(3).getReg());
6277  } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6278             MI->getOpcode() == PPC::SELECT_CC_I8 ||
6279             MI->getOpcode() == PPC::SELECT_CC_F4 ||
6280             MI->getOpcode() == PPC::SELECT_CC_F8 ||
6281             MI->getOpcode() == PPC::SELECT_CC_VRRC) {
6282
6283
6284    // The incoming instruction knows the destination vreg to set, the
6285    // condition code register to branch on, the true/false values to
6286    // select between, and a branch opcode to use.
6287
6288    //  thisMBB:
6289    //  ...
6290    //   TrueVal = ...
6291    //   cmpTY ccX, r1, r2
6292    //   bCC copy1MBB
6293    //   fallthrough --> copy0MBB
6294    MachineBasicBlock *thisMBB = BB;
6295    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6296    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6297    unsigned SelectPred = MI->getOperand(4).getImm();
6298    DebugLoc dl = MI->getDebugLoc();
6299    F->insert(It, copy0MBB);
6300    F->insert(It, sinkMBB);
6301
6302    // Transfer the remainder of BB and its successor edges to sinkMBB.
6303    sinkMBB->splice(sinkMBB->begin(), BB,
6304                    llvm::next(MachineBasicBlock::iterator(MI)),
6305                    BB->end());
6306    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6307
6308    // Next, add the true and fallthrough blocks as its successors.
6309    BB->addSuccessor(copy0MBB);
6310    BB->addSuccessor(sinkMBB);
6311
6312    BuildMI(BB, dl, TII->get(PPC::BCC))
6313      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
6314
6315    //  copy0MBB:
6316    //   %FalseValue = ...
6317    //   # fallthrough to sinkMBB
6318    BB = copy0MBB;
6319
6320    // Update machine-CFG edges
6321    BB->addSuccessor(sinkMBB);
6322
6323    //  sinkMBB:
6324    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6325    //  ...
6326    BB = sinkMBB;
6327    BuildMI(*BB, BB->begin(), dl,
6328            TII->get(PPC::PHI), MI->getOperand(0).getReg())
6329      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
6330      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6331  }
6332  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
6333    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
6334  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
6335    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
6336  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
6337    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
6338  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
6339    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
6340
6341  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
6342    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
6343  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
6344    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
6345  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
6346    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
6347  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
6348    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
6349
6350  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
6351    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
6352  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
6353    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
6354  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
6355    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
6356  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
6357    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
6358
6359  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
6360    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
6361  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
6362    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
6363  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
6364    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
6365  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
6366    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
6367
6368  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
6369    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
6370  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
6371    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
6372  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
6373    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
6374  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
6375    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
6376
6377  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
6378    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
6379  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
6380    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
6381  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
6382    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
6383  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
6384    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
6385
6386  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
6387    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
6388  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
6389    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
6390  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
6391    BB = EmitAtomicBinary(MI, BB, false, 0);
6392  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
6393    BB = EmitAtomicBinary(MI, BB, true, 0);
6394
6395  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
6396           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
6397    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
6398
6399    unsigned dest   = MI->getOperand(0).getReg();
6400    unsigned ptrA   = MI->getOperand(1).getReg();
6401    unsigned ptrB   = MI->getOperand(2).getReg();
6402    unsigned oldval = MI->getOperand(3).getReg();
6403    unsigned newval = MI->getOperand(4).getReg();
6404    DebugLoc dl     = MI->getDebugLoc();
6405
6406    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6407    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6408    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6409    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6410    F->insert(It, loop1MBB);
6411    F->insert(It, loop2MBB);
6412    F->insert(It, midMBB);
6413    F->insert(It, exitMBB);
6414    exitMBB->splice(exitMBB->begin(), BB,
6415                    llvm::next(MachineBasicBlock::iterator(MI)),
6416                    BB->end());
6417    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6418
6419    //  thisMBB:
6420    //   ...
6421    //   fallthrough --> loopMBB
6422    BB->addSuccessor(loop1MBB);
6423
6424    // loop1MBB:
6425    //   l[wd]arx dest, ptr
6426    //   cmp[wd] dest, oldval
6427    //   bne- midMBB
6428    // loop2MBB:
6429    //   st[wd]cx. newval, ptr
6430    //   bne- loopMBB
6431    //   b exitBB
6432    // midMBB:
6433    //   st[wd]cx. dest, ptr
6434    // exitBB:
6435    BB = loop1MBB;
6436    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6437      .addReg(ptrA).addReg(ptrB);
6438    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
6439      .addReg(oldval).addReg(dest);
6440    BuildMI(BB, dl, TII->get(PPC::BCC))
6441      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6442    BB->addSuccessor(loop2MBB);
6443    BB->addSuccessor(midMBB);
6444
6445    BB = loop2MBB;
6446    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6447      .addReg(newval).addReg(ptrA).addReg(ptrB);
6448    BuildMI(BB, dl, TII->get(PPC::BCC))
6449      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6450    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6451    BB->addSuccessor(loop1MBB);
6452    BB->addSuccessor(exitMBB);
6453
6454    BB = midMBB;
6455    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6456      .addReg(dest).addReg(ptrA).addReg(ptrB);
6457    BB->addSuccessor(exitMBB);
6458
6459    //  exitMBB:
6460    //   ...
6461    BB = exitMBB;
6462  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
6463             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
6464    // We must use 64-bit registers for addresses when targeting 64-bit,
6465    // since we're actually doing arithmetic on them.  Other registers
6466    // can be 32-bit.
6467    bool is64bit = PPCSubTarget.isPPC64();
6468    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
6469
6470    unsigned dest   = MI->getOperand(0).getReg();
6471    unsigned ptrA   = MI->getOperand(1).getReg();
6472    unsigned ptrB   = MI->getOperand(2).getReg();
6473    unsigned oldval = MI->getOperand(3).getReg();
6474    unsigned newval = MI->getOperand(4).getReg();
6475    DebugLoc dl     = MI->getDebugLoc();
6476
6477    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6478    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6479    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6480    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6481    F->insert(It, loop1MBB);
6482    F->insert(It, loop2MBB);
6483    F->insert(It, midMBB);
6484    F->insert(It, exitMBB);
6485    exitMBB->splice(exitMBB->begin(), BB,
6486                    llvm::next(MachineBasicBlock::iterator(MI)),
6487                    BB->end());
6488    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6489
6490    MachineRegisterInfo &RegInfo = F->getRegInfo();
6491    const TargetRegisterClass *RC =
6492      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6493                (const TargetRegisterClass *) &PPC::GPRCRegClass;
6494    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6495    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6496    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6497    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
6498    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
6499    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
6500    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
6501    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6502    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6503    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6504    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6505    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6506    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6507    unsigned Ptr1Reg;
6508    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
6509    unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
6510    //  thisMBB:
6511    //   ...
6512    //   fallthrough --> loopMBB
6513    BB->addSuccessor(loop1MBB);
6514
6515    // The 4-byte load must be aligned, while a char or short may be
6516    // anywhere in the word.  Hence all this nasty bookkeeping code.
6517    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
6518    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6519    //   xori shift, shift1, 24 [16]
6520    //   rlwinm ptr, ptr1, 0, 0, 29
6521    //   slw newval2, newval, shift
6522    //   slw oldval2, oldval,shift
6523    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6524    //   slw mask, mask2, shift
6525    //   and newval3, newval2, mask
6526    //   and oldval3, oldval2, mask
6527    // loop1MBB:
6528    //   lwarx tmpDest, ptr
6529    //   and tmp, tmpDest, mask
6530    //   cmpw tmp, oldval3
6531    //   bne- midMBB
6532    // loop2MBB:
6533    //   andc tmp2, tmpDest, mask
6534    //   or tmp4, tmp2, newval3
6535    //   stwcx. tmp4, ptr
6536    //   bne- loop1MBB
6537    //   b exitBB
6538    // midMBB:
6539    //   stwcx. tmpDest, ptr
6540    // exitBB:
6541    //   srw dest, tmpDest, shift
6542    if (ptrA != ZeroReg) {
6543      Ptr1Reg = RegInfo.createVirtualRegister(RC);
6544      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
6545        .addReg(ptrA).addReg(ptrB);
6546    } else {
6547      Ptr1Reg = ptrB;
6548    }
6549    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
6550        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
6551    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
6552        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
6553    if (is64bit)
6554      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
6555        .addReg(Ptr1Reg).addImm(0).addImm(61);
6556    else
6557      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
6558        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
6559    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
6560        .addReg(newval).addReg(ShiftReg);
6561    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
6562        .addReg(oldval).addReg(ShiftReg);
6563    if (is8bit)
6564      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
6565    else {
6566      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
6567      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
6568        .addReg(Mask3Reg).addImm(65535);
6569    }
6570    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
6571        .addReg(Mask2Reg).addReg(ShiftReg);
6572    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
6573        .addReg(NewVal2Reg).addReg(MaskReg);
6574    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
6575        .addReg(OldVal2Reg).addReg(MaskReg);
6576
6577    BB = loop1MBB;
6578    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6579        .addReg(ZeroReg).addReg(PtrReg);
6580    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
6581        .addReg(TmpDestReg).addReg(MaskReg);
6582    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
6583        .addReg(TmpReg).addReg(OldVal3Reg);
6584    BuildMI(BB, dl, TII->get(PPC::BCC))
6585        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6586    BB->addSuccessor(loop2MBB);
6587    BB->addSuccessor(midMBB);
6588
6589    BB = loop2MBB;
6590    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
6591        .addReg(TmpDestReg).addReg(MaskReg);
6592    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
6593        .addReg(Tmp2Reg).addReg(NewVal3Reg);
6594    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
6595        .addReg(ZeroReg).addReg(PtrReg);
6596    BuildMI(BB, dl, TII->get(PPC::BCC))
6597      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6598    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6599    BB->addSuccessor(loop1MBB);
6600    BB->addSuccessor(exitMBB);
6601
6602    BB = midMBB;
6603    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
6604      .addReg(ZeroReg).addReg(PtrReg);
6605    BB->addSuccessor(exitMBB);
6606
6607    //  exitMBB:
6608    //   ...
6609    BB = exitMBB;
6610    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
6611      .addReg(ShiftReg);
6612  } else if (MI->getOpcode() == PPC::FADDrtz) {
6613    // This pseudo performs an FADD with rounding mode temporarily forced
6614    // to round-to-zero.  We emit this via custom inserter since the FPSCR
6615    // is not modeled at the SelectionDAG level.
6616    unsigned Dest = MI->getOperand(0).getReg();
6617    unsigned Src1 = MI->getOperand(1).getReg();
6618    unsigned Src2 = MI->getOperand(2).getReg();
6619    DebugLoc dl   = MI->getDebugLoc();
6620
6621    MachineRegisterInfo &RegInfo = F->getRegInfo();
6622    unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
6623
6624    // Save FPSCR value.
6625    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
6626
6627    // Set rounding mode to round-to-zero.
6628    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
6629    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
6630
6631    // Perform addition.
6632    BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
6633
6634    // Restore FPSCR value.
6635    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
6636  } else if (MI->getOpcode() == PPC::FRINDrint ||
6637             MI->getOpcode() == PPC::FRINSrint) {
6638    bool isf32 = MI->getOpcode() == PPC::FRINSrint;
6639    unsigned Dest = MI->getOperand(0).getReg();
6640    unsigned Src = MI->getOperand(1).getReg();
6641    DebugLoc dl   = MI->getDebugLoc();
6642
6643    MachineRegisterInfo &RegInfo = F->getRegInfo();
6644    unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
6645
6646    // Perform the rounding.
6647    BuildMI(*BB, MI, dl, TII->get(isf32 ? PPC::FRINS : PPC::FRIND), Dest)
6648      .addReg(Src);
6649
6650    // Compare the results.
6651    BuildMI(*BB, MI, dl, TII->get(isf32 ? PPC::FCMPUS : PPC::FCMPUD), CRReg)
6652      .addReg(Dest).addReg(Src);
6653
6654    // If the results were not equal, then set the FPSCR XX bit.
6655    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6656    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6657    F->insert(It, midMBB);
6658    F->insert(It, exitMBB);
6659    exitMBB->splice(exitMBB->begin(), BB,
6660                    llvm::next(MachineBasicBlock::iterator(MI)),
6661                    BB->end());
6662    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6663
6664    BuildMI(*BB, MI, dl, TII->get(PPC::BCC))
6665      .addImm(PPC::PRED_EQ).addReg(CRReg).addMBB(exitMBB);
6666
6667    BB->addSuccessor(midMBB);
6668    BB->addSuccessor(exitMBB);
6669
6670    BB = midMBB;
6671
6672    // Set the FPSCR XX bit (FE_INEXACT). Note that we cannot just set
6673    // the FI bit here because that will not automatically set XX also,
6674    // and XX is what libm interprets as the FE_INEXACT flag.
6675    BuildMI(BB, dl, TII->get(PPC::MTFSB1)).addImm(/* 38 - 32 = */ 6);
6676    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6677
6678    BB->addSuccessor(exitMBB);
6679
6680    BB = exitMBB;
6681  } else {
6682    llvm_unreachable("Unexpected instr type to insert");
6683  }
6684
6685  MI->eraseFromParent();   // The pseudo instruction is gone now.
6686  return BB;
6687}
6688
6689//===----------------------------------------------------------------------===//
6690// Target Optimization Hooks
6691//===----------------------------------------------------------------------===//
6692
6693SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op,
6694                                               DAGCombinerInfo &DCI) const {
6695  if (DCI.isAfterLegalizeVectorOps())
6696    return SDValue();
6697
6698  EVT VT = Op.getValueType();
6699
6700  if ((VT == MVT::f32 && PPCSubTarget.hasFRES()) ||
6701      (VT == MVT::f64 && PPCSubTarget.hasFRE())  ||
6702      (VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) {
6703
6704    // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
6705    // For the reciprocal, we need to find the zero of the function:
6706    //   F(X) = A X - 1 [which has a zero at X = 1/A]
6707    //     =>
6708    //   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
6709    //     does not require additional intermediate precision]
6710
6711    // Convergence is quadratic, so we essentially double the number of digits
6712    // correct after every iteration. The minimum architected relative
6713    // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
6714    // 23 digits and double has 52 digits.
6715    int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
6716    if (VT.getScalarType() == MVT::f64)
6717      ++Iterations;
6718
6719    SelectionDAG &DAG = DCI.DAG;
6720    DebugLoc dl = Op.getDebugLoc();
6721
6722    SDValue FPOne =
6723      DAG.getConstantFP(1.0, VT.getScalarType());
6724    if (VT.isVector()) {
6725      assert(VT.getVectorNumElements() == 4 &&
6726             "Unknown vector type");
6727      FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
6728                          FPOne, FPOne, FPOne, FPOne);
6729    }
6730
6731    SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op);
6732    DCI.AddToWorklist(Est.getNode());
6733
6734    // Newton iterations: Est = Est + Est (1 - Arg * Est)
6735    for (int i = 0; i < Iterations; ++i) {
6736      SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est);
6737      DCI.AddToWorklist(NewEst.getNode());
6738
6739      NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst);
6740      DCI.AddToWorklist(NewEst.getNode());
6741
6742      NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
6743      DCI.AddToWorklist(NewEst.getNode());
6744
6745      Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst);
6746      DCI.AddToWorklist(Est.getNode());
6747    }
6748
6749    return Est;
6750  }
6751
6752  return SDValue();
6753}
6754
6755SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op,
6756                                             DAGCombinerInfo &DCI) const {
6757  if (DCI.isAfterLegalizeVectorOps())
6758    return SDValue();
6759
6760  EVT VT = Op.getValueType();
6761
6762  if ((VT == MVT::f32 && PPCSubTarget.hasFRSQRTES()) ||
6763      (VT == MVT::f64 && PPCSubTarget.hasFRSQRTE())  ||
6764      (VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) {
6765
6766    // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
6767    // For the reciprocal sqrt, we need to find the zero of the function:
6768    //   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
6769    //     =>
6770    //   X_{i+1} = X_i (1.5 - A X_i^2 / 2)
6771    // As a result, we precompute A/2 prior to the iteration loop.
6772
6773    // Convergence is quadratic, so we essentially double the number of digits
6774    // correct after every iteration. The minimum architected relative
6775    // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
6776    // 23 digits and double has 52 digits.
6777    int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
6778    if (VT.getScalarType() == MVT::f64)
6779      ++Iterations;
6780
6781    SelectionDAG &DAG = DCI.DAG;
6782    DebugLoc dl = Op.getDebugLoc();
6783
6784    SDValue FPThreeHalves =
6785      DAG.getConstantFP(1.5, VT.getScalarType());
6786    if (VT.isVector()) {
6787      assert(VT.getVectorNumElements() == 4 &&
6788             "Unknown vector type");
6789      FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
6790                                  FPThreeHalves, FPThreeHalves,
6791                                  FPThreeHalves, FPThreeHalves);
6792    }
6793
6794    SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op);
6795    DCI.AddToWorklist(Est.getNode());
6796
6797    // We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that
6798    // this entire sequence requires only one FP constant.
6799    SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op);
6800    DCI.AddToWorklist(HalfArg.getNode());
6801
6802    HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op);
6803    DCI.AddToWorklist(HalfArg.getNode());
6804
6805    // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
6806    for (int i = 0; i < Iterations; ++i) {
6807      SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est);
6808      DCI.AddToWorklist(NewEst.getNode());
6809
6810      NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst);
6811      DCI.AddToWorklist(NewEst.getNode());
6812
6813      NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst);
6814      DCI.AddToWorklist(NewEst.getNode());
6815
6816      Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
6817      DCI.AddToWorklist(Est.getNode());
6818    }
6819
6820    return Est;
6821  }
6822
6823  return SDValue();
6824}
6825
6826SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
6827                                             DAGCombinerInfo &DCI) const {
6828  const TargetMachine &TM = getTargetMachine();
6829  SelectionDAG &DAG = DCI.DAG;
6830  DebugLoc dl = N->getDebugLoc();
6831  switch (N->getOpcode()) {
6832  default: break;
6833  case PPCISD::SHL:
6834    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6835      if (C->isNullValue())   // 0 << V -> 0.
6836        return N->getOperand(0);
6837    }
6838    break;
6839  case PPCISD::SRL:
6840    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6841      if (C->isNullValue())   // 0 >>u V -> 0.
6842        return N->getOperand(0);
6843    }
6844    break;
6845  case PPCISD::SRA:
6846    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6847      if (C->isNullValue() ||   //  0 >>s V -> 0.
6848          C->isAllOnesValue())    // -1 >>s V -> -1.
6849        return N->getOperand(0);
6850    }
6851    break;
6852  case ISD::FDIV: {
6853    assert(TM.Options.UnsafeFPMath &&
6854           "Reciprocal estimates require UnsafeFPMath");
6855
6856    if (N->getOperand(1).getOpcode() == ISD::FSQRT) {
6857      SDValue RV =
6858        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI);
6859      if (RV.getNode() != 0) {
6860        DCI.AddToWorklist(RV.getNode());
6861        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
6862                           N->getOperand(0), RV);
6863      }
6864    } else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND &&
6865               N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
6866      SDValue RV =
6867        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
6868                                 DCI);
6869      if (RV.getNode() != 0) {
6870        DCI.AddToWorklist(RV.getNode());
6871        RV = DAG.getNode(ISD::FP_EXTEND, N->getOperand(1).getDebugLoc(),
6872                         N->getValueType(0), RV);
6873        DCI.AddToWorklist(RV.getNode());
6874        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
6875                           N->getOperand(0), RV);
6876      }
6877    } else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND &&
6878               N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
6879      SDValue RV =
6880        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
6881                                 DCI);
6882      if (RV.getNode() != 0) {
6883        DCI.AddToWorklist(RV.getNode());
6884        RV = DAG.getNode(ISD::FP_ROUND, N->getOperand(1).getDebugLoc(),
6885                         N->getValueType(0), RV,
6886                         N->getOperand(1).getOperand(1));
6887        DCI.AddToWorklist(RV.getNode());
6888        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
6889                           N->getOperand(0), RV);
6890      }
6891    }
6892
6893    SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI);
6894    if (RV.getNode() != 0) {
6895      DCI.AddToWorklist(RV.getNode());
6896      return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
6897                         N->getOperand(0), RV);
6898    }
6899
6900    }
6901    break;
6902  case ISD::FSQRT: {
6903    assert(TM.Options.UnsafeFPMath &&
6904           "Reciprocal estimates require UnsafeFPMath");
6905
6906    // Compute this as 1/(1/sqrt(X)), which is the reciprocal of the
6907    // reciprocal sqrt.
6908    SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI);
6909    if (RV.getNode() != 0) {
6910      DCI.AddToWorklist(RV.getNode());
6911      RV = DAGCombineFastRecip(RV, DCI);
6912      if (RV.getNode() != 0)
6913        return RV;
6914    }
6915
6916    }
6917    break;
6918  case ISD::SINT_TO_FP:
6919    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
6920      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
6921        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
6922        // We allow the src/dst to be either f32/f64, but the intermediate
6923        // type must be i64.
6924        if (N->getOperand(0).getValueType() == MVT::i64 &&
6925            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
6926          SDValue Val = N->getOperand(0).getOperand(0);
6927          if (Val.getValueType() == MVT::f32) {
6928            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6929            DCI.AddToWorklist(Val.getNode());
6930          }
6931
6932          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
6933          DCI.AddToWorklist(Val.getNode());
6934          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
6935          DCI.AddToWorklist(Val.getNode());
6936          if (N->getValueType(0) == MVT::f32) {
6937            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
6938                              DAG.getIntPtrConstant(0));
6939            DCI.AddToWorklist(Val.getNode());
6940          }
6941          return Val;
6942        } else if (N->getOperand(0).getValueType() == MVT::i32) {
6943          // If the intermediate type is i32, we can avoid the load/store here
6944          // too.
6945        }
6946      }
6947    }
6948    break;
6949  case ISD::STORE:
6950    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
6951    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
6952        !cast<StoreSDNode>(N)->isTruncatingStore() &&
6953        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
6954        N->getOperand(1).getValueType() == MVT::i32 &&
6955        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
6956      SDValue Val = N->getOperand(1).getOperand(0);
6957      if (Val.getValueType() == MVT::f32) {
6958        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6959        DCI.AddToWorklist(Val.getNode());
6960      }
6961      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
6962      DCI.AddToWorklist(Val.getNode());
6963
6964      SDValue Ops[] = {
6965        N->getOperand(0), Val, N->getOperand(2),
6966        DAG.getValueType(N->getOperand(1).getValueType())
6967      };
6968
6969      Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6970              DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
6971              cast<StoreSDNode>(N)->getMemoryVT(),
6972              cast<StoreSDNode>(N)->getMemOperand());
6973      DCI.AddToWorklist(Val.getNode());
6974      return Val;
6975    }
6976
6977    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
6978    if (cast<StoreSDNode>(N)->isUnindexed() &&
6979        N->getOperand(1).getOpcode() == ISD::BSWAP &&
6980        N->getOperand(1).getNode()->hasOneUse() &&
6981        (N->getOperand(1).getValueType() == MVT::i32 ||
6982         N->getOperand(1).getValueType() == MVT::i16 ||
6983         (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
6984          TM.getSubtarget<PPCSubtarget>().isPPC64() &&
6985          N->getOperand(1).getValueType() == MVT::i64))) {
6986      SDValue BSwapOp = N->getOperand(1).getOperand(0);
6987      // Do an any-extend to 32-bits if this is a half-word input.
6988      if (BSwapOp.getValueType() == MVT::i16)
6989        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
6990
6991      SDValue Ops[] = {
6992        N->getOperand(0), BSwapOp, N->getOperand(2),
6993        DAG.getValueType(N->getOperand(1).getValueType())
6994      };
6995      return
6996        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
6997                                Ops, array_lengthof(Ops),
6998                                cast<StoreSDNode>(N)->getMemoryVT(),
6999                                cast<StoreSDNode>(N)->getMemOperand());
7000    }
7001    break;
7002  case ISD::BSWAP:
7003    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
7004    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7005        N->getOperand(0).hasOneUse() &&
7006        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
7007         (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
7008          TM.getSubtarget<PPCSubtarget>().isPPC64() &&
7009          N->getValueType(0) == MVT::i64))) {
7010      SDValue Load = N->getOperand(0);
7011      LoadSDNode *LD = cast<LoadSDNode>(Load);
7012      // Create the byte-swapping load.
7013      SDValue Ops[] = {
7014        LD->getChain(),    // Chain
7015        LD->getBasePtr(),  // Ptr
7016        DAG.getValueType(N->getValueType(0)) // VT
7017      };
7018      SDValue BSLoad =
7019        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
7020                                DAG.getVTList(N->getValueType(0) == MVT::i64 ?
7021                                              MVT::i64 : MVT::i32, MVT::Other),
7022                                Ops, 3, LD->getMemoryVT(), LD->getMemOperand());
7023
7024      // If this is an i16 load, insert the truncate.
7025      SDValue ResVal = BSLoad;
7026      if (N->getValueType(0) == MVT::i16)
7027        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
7028
7029      // First, combine the bswap away.  This makes the value produced by the
7030      // load dead.
7031      DCI.CombineTo(N, ResVal);
7032
7033      // Next, combine the load away, we give it a bogus result value but a real
7034      // chain result.  The result value is dead because the bswap is dead.
7035      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
7036
7037      // Return N so it doesn't get rechecked!
7038      return SDValue(N, 0);
7039    }
7040
7041    break;
7042  case PPCISD::VCMP: {
7043    // If a VCMPo node already exists with exactly the same operands as this
7044    // node, use its result instead of this node (VCMPo computes both a CR6 and
7045    // a normal output).
7046    //
7047    if (!N->getOperand(0).hasOneUse() &&
7048        !N->getOperand(1).hasOneUse() &&
7049        !N->getOperand(2).hasOneUse()) {
7050
7051      // Scan all of the users of the LHS, looking for VCMPo's that match.
7052      SDNode *VCMPoNode = 0;
7053
7054      SDNode *LHSN = N->getOperand(0).getNode();
7055      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
7056           UI != E; ++UI)
7057        if (UI->getOpcode() == PPCISD::VCMPo &&
7058            UI->getOperand(1) == N->getOperand(1) &&
7059            UI->getOperand(2) == N->getOperand(2) &&
7060            UI->getOperand(0) == N->getOperand(0)) {
7061          VCMPoNode = *UI;
7062          break;
7063        }
7064
7065      // If there is no VCMPo node, or if the flag value has a single use, don't
7066      // transform this.
7067      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
7068        break;
7069
7070      // Look at the (necessarily single) use of the flag value.  If it has a
7071      // chain, this transformation is more complex.  Note that multiple things
7072      // could use the value result, which we should ignore.
7073      SDNode *FlagUser = 0;
7074      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
7075           FlagUser == 0; ++UI) {
7076        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
7077        SDNode *User = *UI;
7078        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
7079          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
7080            FlagUser = User;
7081            break;
7082          }
7083        }
7084      }
7085
7086      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
7087      // give up for right now.
7088      if (FlagUser->getOpcode() == PPCISD::MFCR)
7089        return SDValue(VCMPoNode, 0);
7090    }
7091    break;
7092  }
7093  case ISD::BR_CC: {
7094    // If this is a branch on an altivec predicate comparison, lower this so
7095    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
7096    // lowering is done pre-legalize, because the legalizer lowers the predicate
7097    // compare down to code that is difficult to reassemble.
7098    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
7099    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
7100    int CompareOpc;
7101    bool isDot;
7102
7103    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
7104        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
7105        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
7106      assert(isDot && "Can't compare against a vector result!");
7107
7108      // If this is a comparison against something other than 0/1, then we know
7109      // that the condition is never/always true.
7110      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
7111      if (Val != 0 && Val != 1) {
7112        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
7113          return N->getOperand(0);
7114        // Always !=, turn it into an unconditional branch.
7115        return DAG.getNode(ISD::BR, dl, MVT::Other,
7116                           N->getOperand(0), N->getOperand(4));
7117      }
7118
7119      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
7120
7121      // Create the PPCISD altivec 'dot' comparison node.
7122      SDValue Ops[] = {
7123        LHS.getOperand(2),  // LHS of compare
7124        LHS.getOperand(3),  // RHS of compare
7125        DAG.getConstant(CompareOpc, MVT::i32)
7126      };
7127      EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
7128      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
7129
7130      // Unpack the result based on how the target uses it.
7131      PPC::Predicate CompOpc;
7132      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
7133      default:  // Can't happen, don't crash on invalid number though.
7134      case 0:   // Branch on the value of the EQ bit of CR6.
7135        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
7136        break;
7137      case 1:   // Branch on the inverted value of the EQ bit of CR6.
7138        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
7139        break;
7140      case 2:   // Branch on the value of the LT bit of CR6.
7141        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
7142        break;
7143      case 3:   // Branch on the inverted value of the LT bit of CR6.
7144        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
7145        break;
7146      }
7147
7148      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
7149                         DAG.getConstant(CompOpc, MVT::i32),
7150                         DAG.getRegister(PPC::CR6, MVT::i32),
7151                         N->getOperand(4), CompNode.getValue(1));
7152    }
7153    break;
7154  }
7155  }
7156
7157  return SDValue();
7158}
7159
7160//===----------------------------------------------------------------------===//
7161// Inline Assembly Support
7162//===----------------------------------------------------------------------===//
7163
7164void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7165                                                       APInt &KnownZero,
7166                                                       APInt &KnownOne,
7167                                                       const SelectionDAG &DAG,
7168                                                       unsigned Depth) const {
7169  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
7170  switch (Op.getOpcode()) {
7171  default: break;
7172  case PPCISD::LBRX: {
7173    // lhbrx is known to have the top bits cleared out.
7174    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
7175      KnownZero = 0xFFFF0000;
7176    break;
7177  }
7178  case ISD::INTRINSIC_WO_CHAIN: {
7179    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
7180    default: break;
7181    case Intrinsic::ppc_altivec_vcmpbfp_p:
7182    case Intrinsic::ppc_altivec_vcmpeqfp_p:
7183    case Intrinsic::ppc_altivec_vcmpequb_p:
7184    case Intrinsic::ppc_altivec_vcmpequh_p:
7185    case Intrinsic::ppc_altivec_vcmpequw_p:
7186    case Intrinsic::ppc_altivec_vcmpgefp_p:
7187    case Intrinsic::ppc_altivec_vcmpgtfp_p:
7188    case Intrinsic::ppc_altivec_vcmpgtsb_p:
7189    case Intrinsic::ppc_altivec_vcmpgtsh_p:
7190    case Intrinsic::ppc_altivec_vcmpgtsw_p:
7191    case Intrinsic::ppc_altivec_vcmpgtub_p:
7192    case Intrinsic::ppc_altivec_vcmpgtuh_p:
7193    case Intrinsic::ppc_altivec_vcmpgtuw_p:
7194      KnownZero = ~1U;  // All bits but the low one are known to be zero.
7195      break;
7196    }
7197  }
7198  }
7199}
7200
7201
7202/// getConstraintType - Given a constraint, return the type of
7203/// constraint it is for this target.
7204PPCTargetLowering::ConstraintType
7205PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
7206  if (Constraint.size() == 1) {
7207    switch (Constraint[0]) {
7208    default: break;
7209    case 'b':
7210    case 'r':
7211    case 'f':
7212    case 'v':
7213    case 'y':
7214      return C_RegisterClass;
7215    case 'Z':
7216      // FIXME: While Z does indicate a memory constraint, it specifically
7217      // indicates an r+r address (used in conjunction with the 'y' modifier
7218      // in the replacement string). Currently, we're forcing the base
7219      // register to be r0 in the asm printer (which is interpreted as zero)
7220      // and forming the complete address in the second register. This is
7221      // suboptimal.
7222      return C_Memory;
7223    }
7224  }
7225  return TargetLowering::getConstraintType(Constraint);
7226}
7227
7228/// Examine constraint type and operand type and determine a weight value.
7229/// This object must already have been set up with the operand type
7230/// and the current alternative constraint selected.
7231TargetLowering::ConstraintWeight
7232PPCTargetLowering::getSingleConstraintMatchWeight(
7233    AsmOperandInfo &info, const char *constraint) const {
7234  ConstraintWeight weight = CW_Invalid;
7235  Value *CallOperandVal = info.CallOperandVal;
7236    // If we don't have a value, we can't do a match,
7237    // but allow it at the lowest weight.
7238  if (CallOperandVal == NULL)
7239    return CW_Default;
7240  Type *type = CallOperandVal->getType();
7241  // Look at the constraint type.
7242  switch (*constraint) {
7243  default:
7244    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
7245    break;
7246  case 'b':
7247    if (type->isIntegerTy())
7248      weight = CW_Register;
7249    break;
7250  case 'f':
7251    if (type->isFloatTy())
7252      weight = CW_Register;
7253    break;
7254  case 'd':
7255    if (type->isDoubleTy())
7256      weight = CW_Register;
7257    break;
7258  case 'v':
7259    if (type->isVectorTy())
7260      weight = CW_Register;
7261    break;
7262  case 'y':
7263    weight = CW_Register;
7264    break;
7265  case 'Z':
7266    weight = CW_Memory;
7267    break;
7268  }
7269  return weight;
7270}
7271
7272std::pair<unsigned, const TargetRegisterClass*>
7273PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7274                                                EVT VT) const {
7275  if (Constraint.size() == 1) {
7276    // GCC RS6000 Constraint Letters
7277    switch (Constraint[0]) {
7278    case 'b':   // R1-R31
7279      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
7280        return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
7281      return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
7282    case 'r':   // R0-R31
7283      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
7284        return std::make_pair(0U, &PPC::G8RCRegClass);
7285      return std::make_pair(0U, &PPC::GPRCRegClass);
7286    case 'f':
7287      if (VT == MVT::f32 || VT == MVT::i32)
7288        return std::make_pair(0U, &PPC::F4RCRegClass);
7289      if (VT == MVT::f64 || VT == MVT::i64)
7290        return std::make_pair(0U, &PPC::F8RCRegClass);
7291      break;
7292    case 'v':
7293      return std::make_pair(0U, &PPC::VRRCRegClass);
7294    case 'y':   // crrc
7295      return std::make_pair(0U, &PPC::CRRCRegClass);
7296    }
7297  }
7298
7299  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7300}
7301
7302
7303/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7304/// vector.  If it is invalid, don't add anything to Ops.
7305void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7306                                                     std::string &Constraint,
7307                                                     std::vector<SDValue>&Ops,
7308                                                     SelectionDAG &DAG) const {
7309  SDValue Result(0,0);
7310
7311  // Only support length 1 constraints.
7312  if (Constraint.length() > 1) return;
7313
7314  char Letter = Constraint[0];
7315  switch (Letter) {
7316  default: break;
7317  case 'I':
7318  case 'J':
7319  case 'K':
7320  case 'L':
7321  case 'M':
7322  case 'N':
7323  case 'O':
7324  case 'P': {
7325    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
7326    if (!CST) return; // Must be an immediate to match.
7327    unsigned Value = CST->getZExtValue();
7328    switch (Letter) {
7329    default: llvm_unreachable("Unknown constraint letter!");
7330    case 'I':  // "I" is a signed 16-bit constant.
7331      if ((short)Value == (int)Value)
7332        Result = DAG.getTargetConstant(Value, Op.getValueType());
7333      break;
7334    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
7335    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
7336      if ((short)Value == 0)
7337        Result = DAG.getTargetConstant(Value, Op.getValueType());
7338      break;
7339    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
7340      if ((Value >> 16) == 0)
7341        Result = DAG.getTargetConstant(Value, Op.getValueType());
7342      break;
7343    case 'M':  // "M" is a constant that is greater than 31.
7344      if (Value > 31)
7345        Result = DAG.getTargetConstant(Value, Op.getValueType());
7346      break;
7347    case 'N':  // "N" is a positive constant that is an exact power of two.
7348      if ((int)Value > 0 && isPowerOf2_32(Value))
7349        Result = DAG.getTargetConstant(Value, Op.getValueType());
7350      break;
7351    case 'O':  // "O" is the constant zero.
7352      if (Value == 0)
7353        Result = DAG.getTargetConstant(Value, Op.getValueType());
7354      break;
7355    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
7356      if ((short)-Value == (int)-Value)
7357        Result = DAG.getTargetConstant(Value, Op.getValueType());
7358      break;
7359    }
7360    break;
7361  }
7362  }
7363
7364  if (Result.getNode()) {
7365    Ops.push_back(Result);
7366    return;
7367  }
7368
7369  // Handle standard constraint letters.
7370  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7371}
7372
7373// isLegalAddressingMode - Return true if the addressing mode represented
7374// by AM is legal for this target, for a load/store of the specified type.
7375bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
7376                                              Type *Ty) const {
7377  // FIXME: PPC does not allow r+i addressing modes for vectors!
7378
7379  // PPC allows a sign-extended 16-bit immediate field.
7380  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
7381    return false;
7382
7383  // No global is ever allowed as a base.
7384  if (AM.BaseGV)
7385    return false;
7386
7387  // PPC only support r+r,
7388  switch (AM.Scale) {
7389  case 0:  // "r+i" or just "i", depending on HasBaseReg.
7390    break;
7391  case 1:
7392    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
7393      return false;
7394    // Otherwise we have r+r or r+i.
7395    break;
7396  case 2:
7397    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
7398      return false;
7399    // Allow 2*r as r+r.
7400    break;
7401  default:
7402    // No other scales are supported.
7403    return false;
7404  }
7405
7406  return true;
7407}
7408
7409SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
7410                                           SelectionDAG &DAG) const {
7411  MachineFunction &MF = DAG.getMachineFunction();
7412  MachineFrameInfo *MFI = MF.getFrameInfo();
7413  MFI->setReturnAddressIsTaken(true);
7414
7415  DebugLoc dl = Op.getDebugLoc();
7416  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7417
7418  // Make sure the function does not optimize away the store of the RA to
7419  // the stack.
7420  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7421  FuncInfo->setLRStoreRequired();
7422  bool isPPC64 = PPCSubTarget.isPPC64();
7423  bool isDarwinABI = PPCSubTarget.isDarwinABI();
7424
7425  if (Depth > 0) {
7426    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7427    SDValue Offset =
7428
7429      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
7430                      isPPC64? MVT::i64 : MVT::i32);
7431    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7432                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7433                                   FrameAddr, Offset),
7434                       MachinePointerInfo(), false, false, false, 0);
7435  }
7436
7437  // Just load the return address off the stack.
7438  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
7439  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7440                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
7441}
7442
7443SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
7444                                          SelectionDAG &DAG) const {
7445  DebugLoc dl = Op.getDebugLoc();
7446  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7447
7448  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
7449  bool isPPC64 = PtrVT == MVT::i64;
7450
7451  MachineFunction &MF = DAG.getMachineFunction();
7452  MachineFrameInfo *MFI = MF.getFrameInfo();
7453  MFI->setFrameAddressIsTaken(true);
7454
7455  // Naked functions never have a frame pointer, and so we use r1. For all
7456  // other functions, this decision must be delayed until during PEI.
7457  unsigned FrameReg;
7458  if (MF.getFunction()->getAttributes().hasAttribute(
7459        AttributeSet::FunctionIndex, Attribute::Naked))
7460    FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
7461  else
7462    FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
7463
7464  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
7465                                         PtrVT);
7466  while (Depth--)
7467    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
7468                            FrameAddr, MachinePointerInfo(), false, false,
7469                            false, 0);
7470  return FrameAddr;
7471}
7472
7473bool
7474PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
7475  // The PowerPC target isn't yet aware of offsets.
7476  return false;
7477}
7478
7479/// getOptimalMemOpType - Returns the target specific optimal type for load
7480/// and store operations as a result of memset, memcpy, and memmove
7481/// lowering. If DstAlign is zero that means it's safe to destination
7482/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
7483/// means there isn't a need to check it against alignment requirement,
7484/// probably because the source does not need to be loaded. If 'IsMemset' is
7485/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
7486/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
7487/// source is constant so it does not need to be loaded.
7488/// It returns EVT::Other if the type should be determined using generic
7489/// target-independent logic.
7490EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
7491                                           unsigned DstAlign, unsigned SrcAlign,
7492                                           bool IsMemset, bool ZeroMemset,
7493                                           bool MemcpyStrSrc,
7494                                           MachineFunction &MF) const {
7495  if (this->PPCSubTarget.isPPC64()) {
7496    return MVT::i64;
7497  } else {
7498    return MVT::i32;
7499  }
7500}
7501
7502bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
7503                                                      bool *Fast) const {
7504  if (DisablePPCUnaligned)
7505    return false;
7506
7507  // PowerPC supports unaligned memory access for simple non-vector types.
7508  // Although accessing unaligned addresses is not as efficient as accessing
7509  // aligned addresses, it is generally more efficient than manual expansion,
7510  // and generally only traps for software emulation when crossing page
7511  // boundaries.
7512
7513  if (!VT.isSimple())
7514    return false;
7515
7516  if (VT.getSimpleVT().isVector())
7517    return false;
7518
7519  if (VT == MVT::ppcf128)
7520    return false;
7521
7522  if (Fast)
7523    *Fast = true;
7524
7525  return true;
7526}
7527
7528/// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
7529/// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
7530/// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
7531/// is expanded to mul + add.
7532bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const {
7533  if (!VT.isSimple())
7534    return false;
7535
7536  switch (VT.getSimpleVT().SimpleTy) {
7537  case MVT::f32:
7538  case MVT::f64:
7539  case MVT::v4f32:
7540    return true;
7541  default:
7542    break;
7543  }
7544
7545  return false;
7546}
7547
7548Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
7549  if (DisableILPPref)
7550    return TargetLowering::getSchedulingPreference(N);
7551
7552  return Sched::ILP;
7553}
7554
7555