PPCISelLowering.h revision 44ab89eb376af838d1123293a79975aede501464
1fa63f976522bd4faf19249e8c9ac4d3edda498d9Tom Stellard//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard//
3a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard//                     The LLVM Compiler Infrastructure
4a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard//
5a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard// This file is distributed under the University of Illinois Open Source
6a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard// License. See LICENSE.TXT for details.
7a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard//
8fa63f976522bd4faf19249e8c9ac4d3edda498d9Tom Stellard//===----------------------------------------------------------------------===//
9a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard//
10fa63f976522bd4faf19249e8c9ac4d3edda498d9Tom Stellard// This file defines the interfaces that PPC uses to lower LLVM code into a
11fa63f976522bd4faf19249e8c9ac4d3edda498d9Tom Stellard// selection DAG.
12fa63f976522bd4faf19249e8c9ac4d3edda498d9Tom Stellard//
13a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard//===----------------------------------------------------------------------===//
14fa63f976522bd4faf19249e8c9ac4d3edda498d9Tom Stellard
15a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
16a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
17a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
18a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard#include "llvm/Target/TargetLowering.h"
19b655f78b25454e00f4300fb5ccd35b3d0ab8a740Vadim Girlin#include "llvm/CodeGen/SelectionDAG.h"
20788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard#include "PPC.h"
21a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard#include "PPCSubtarget.h"
22a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
23a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellardnamespace llvm {
24a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard  namespace PPCISD {
25a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard    enum NodeType {
26a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      // Start the numbering where the builtin ops and target ops leave off.
27a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      FIRST_NUMBER = ISD::BUILTIN_OP_END,
2876b44034b9b234d3db4012342f0fae677d4f10f6Tom Stellard
29a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// FSEL - Traditional three-operand fsel node.
30a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      ///
31a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      FSEL,
3276b44034b9b234d3db4012342f0fae677d4f10f6Tom Stellard
33a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// FCFID - The FCFID instruction, taking an f64 operand and producing
34a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// and f64 value containing the FP representation of the integer that
35a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// was temporarily in the f64 operand.
36a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      FCFID,
37a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
38a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
39a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// operand, producing an f64 value containing the integer representation
40a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// of that FP value.
41a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      FCTIDZ, FCTIWZ,
42a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
43a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// STFIWX - The STFIWX instruction.  The first operand is an input token
44a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// chain, then an f64 value to store, then an address to store it to.
45a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      STFIWX,
46a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
47a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
48a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      // three v4f32 operands and producing a v4f32 result.
49a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      VMADDFP, VNMSUBFP,
50a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
51a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// VPERM - The PPC VPERM Instruction.
52a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      ///
53a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      VPERM,
54a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
55a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// Hi/Lo - These represent the high and low 16-bit parts of a global
56a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// address respectively.  These nodes have two operands, the first of
57a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// which must be a TargetGlobalAddress, and the second of which must be a
58a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
59a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// though these are usually folded into other nodes.
60a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      Hi, Lo,
61a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
62a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      TOC_ENTRY,
63a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
64a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// The following three target-specific nodes are used for calls through
65a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// function pointers in the 64-bit SVR4 ABI.
66a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
67a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// Restore the TOC from the TOC save area of the current stack frame.
68a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// This is basically a hard coded load instruction which additionally
69a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// takes/produces a flag.
70a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      TOC_RESTORE,
71a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
728263408a91b6b3beb5af5de6bdc7e5d13197a268Vincent Lejeune      /// Like a regular LOAD but additionally taking/producing a flag.
738263408a91b6b3beb5af5de6bdc7e5d13197a268Vincent Lejeune      LOAD,
748263408a91b6b3beb5af5de6bdc7e5d13197a268Vincent Lejeune
758263408a91b6b3beb5af5de6bdc7e5d13197a268Vincent Lejeune      /// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is
76a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// a hard coded load instruction.
7776b44034b9b234d3db4012342f0fae677d4f10f6Tom Stellard      LOAD_TOC,
78a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
79a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
8076b44034b9b234d3db4012342f0fae677d4f10f6Tom Stellard      /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
81a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// compute an allocation on the stack.
82a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      DYNALLOC,
8376b44034b9b234d3db4012342f0fae677d4f10f6Tom Stellard
84a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
85a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// at function entry, used for PIC code.
8676b44034b9b234d3db4012342f0fae677d4f10f6Tom Stellard      GlobalBaseReg,
87a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
88a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
89a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// shift amounts.  These nodes are generated by the multi-precision shift
90a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// code.
918263408a91b6b3beb5af5de6bdc7e5d13197a268Vincent Lejeune      SRL, SRA, SHL,
928263408a91b6b3beb5af5de6bdc7e5d13197a268Vincent Lejeune
938263408a91b6b3beb5af5de6bdc7e5d13197a268Vincent Lejeune      /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
948263408a91b6b3beb5af5de6bdc7e5d13197a268Vincent Lejeune      /// registers.
958263408a91b6b3beb5af5de6bdc7e5d13197a268Vincent Lejeune      EXTSW_32,
968263408a91b6b3beb5af5de6bdc7e5d13197a268Vincent Lejeune
9776b44034b9b234d3db4012342f0fae677d4f10f6Tom Stellard      /// CALL - A direct function call.
98a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      CALL_Darwin, CALL_SVR4,
99a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
100a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// NOP - Special NOP which follows 64-bit SVR4 calls.
101b3863eb9a5a7a844f04acde5f15151c898ff3bacTom Stellard      NOP,
102a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
103a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
104a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// MTCTR instruction.
105a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      MTCTR,
106a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
107a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
108a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// BCTRL instruction.
109a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      BCTRL_Darwin, BCTRL_SVR4,
110a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
111a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// Return with a flag operand, matched by 'blr'
112a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      RET_FLAG,
113a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
114a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCRpseud/MFOCRF
115a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// instructions.  This copies the bits corresponding to the specified
116a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// CRREG into the resultant GPR.  Bits corresponding to other CR regs
117a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// are undefined.
118a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      MFCR,
119a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
120a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
121a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// instructions.  For lack of better number, we use the opcode number
122a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// encoding for the OPC field to identify the compare.  For example, 838
123a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// is VCMPGTSH.
124a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      VCMP,
125a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
126a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
127a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// altivec VCMP*o instructions.  For lack of better number, we use the
128a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// opcode number encoding for the OPC field to identify the compare.  For
129a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// example, 838 is VCMPGTSH.
130a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      VCMPo,
131a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
132a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
133a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
134a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// condition register to branch on, OPC is the branch opcode to use (e.g.
13576b44034b9b234d3db4012342f0fae677d4f10f6Tom Stellard      /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
136a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// an optional input flag argument.
137a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      COND_BRANCH,
138a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
139a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      // The following 5 instructions are used only as part of the
140a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      // long double-to-int conversion sequence.
141a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
142a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
143a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// register.
144a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      MFFS,
145a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
146a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
147a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      MTFSB0,
148a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
149a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
150a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      MTFSB1,
151a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
15276b44034b9b234d3db4012342f0fae677d4f10f6Tom Stellard      /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
153a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// rounding towards zero.  It has flags added so it won't move past the
154a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// FPSCR-setting instructions.
155a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      FADDRTZ,
156a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
157a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
158a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      MTFSF,
159a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
160a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
161a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// reserve indexed. This is used to implement atomic operations.
162a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      LARX,
163a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
164a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// STCX = This corresponds to PPC stcx. instrcution: store conditional
165a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// indexed. This is used to implement atomic operations.
166a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      STCX,
167a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
168a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// TC_RETURN - A tail call return.
169a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      ///   operand #0 chain
170a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      ///   operand #1 callee (register or absolute)
171a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      ///   operand #2 stack adjustment
172a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      ///   operand #3 optional in flag
173a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      TC_RETURN,
174a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
175a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// STD_32 - This is the STD instruction for use with "32-bit" registers.
176a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      STD_32 = ISD::FIRST_TARGET_MEMORY_OPCODE,
177a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
178a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
179a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
180a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
181a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// i32.
182a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      STBRX,
183a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard
184a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
185a75c6163e605f35b14f26930dd9227e4f337ec9eTom Stellard      /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
186788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard      /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
187788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard      /// or i32.
188788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard      LBRX
189788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard    };
190788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard  }
191788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard
192788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard  /// Define some predicates that are used for node matching.
193788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard  namespace PPC {
194788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard    /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
195788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard    /// VPKUHUM instruction.
196788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard    bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
197788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard
198788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard    /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
199788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard    /// VPKUWUM instruction.
200788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard    bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
201788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard
202788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard    /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
203788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard    /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
204788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard    bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
205788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard                            bool isUnary);
206788fd04dacb9eb1e32010050c57cd2f49779311bTom Stellard
207    /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
208    /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
209    bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
210                            bool isUnary);
211
212    /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
213    /// amount, otherwise return -1.
214    int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
215
216    /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
217    /// specifies a splat of a single element that is suitable for input to
218    /// VSPLTB/VSPLTH/VSPLTW.
219    bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
220
221    /// isAllNegativeZeroVector - Returns true if all elements of build_vector
222    /// are -0.0.
223    bool isAllNegativeZeroVector(SDNode *N);
224
225    /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
226    /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
227    unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
228
229    /// get_VSPLTI_elt - If this is a build_vector of constants which can be
230    /// formed by using a vspltis[bhw] instruction of the specified element
231    /// size, return the constant being splatted.  The ByteSize field indicates
232    /// the number of bytes of each element [124] -> [bhw].
233    SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
234  }
235
236  class PPCTargetLowering : public TargetLowering {
237    const PPCSubtarget &PPCSubTarget;
238
239  public:
240    explicit PPCTargetLowering(PPCTargetMachine &TM);
241
242    /// getTargetNodeName() - This method returns the name of a target specific
243    /// DAG node.
244    virtual const char *getTargetNodeName(unsigned Opcode) const;
245
246    /// getSetCCResultType - Return the ISD::SETCC ValueType
247    virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
248
249    /// getPreIndexedAddressParts - returns true by value, base pointer and
250    /// offset pointer and addressing mode by reference if the node's address
251    /// can be legally represented as pre-indexed load / store address.
252    virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
253                                           SDValue &Offset,
254                                           ISD::MemIndexedMode &AM,
255                                           SelectionDAG &DAG) const;
256
257    /// SelectAddressRegReg - Given the specified addressed, check to see if it
258    /// can be represented as an indexed [r+r] operation.  Returns false if it
259    /// can be more efficiently represented with [r+imm].
260    bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
261                             SelectionDAG &DAG) const;
262
263    /// SelectAddressRegImm - Returns true if the address N can be represented
264    /// by a base register plus a signed 16-bit displacement [r+imm], and if it
265    /// is not better represented as reg+reg.
266    bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
267                             SelectionDAG &DAG) const;
268
269    /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
270    /// represented as an indexed [r+r] operation.
271    bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
272                                 SelectionDAG &DAG) const;
273
274    /// SelectAddressRegImmShift - Returns true if the address N can be
275    /// represented by a base register plus a signed 14-bit displacement
276    /// [r+imm*4].  Suitable for use by STD and friends.
277    bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
278                                  SelectionDAG &DAG) const;
279
280
281    /// LowerOperation - Provide custom lowering hooks for some operations.
282    ///
283    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
284
285    /// ReplaceNodeResults - Replace the results of node with an illegal result
286    /// type with new values built out of custom code.
287    ///
288    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
289                                    SelectionDAG &DAG) const;
290
291    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
292
293    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
294                                                const APInt &Mask,
295                                                APInt &KnownZero,
296                                                APInt &KnownOne,
297                                                const SelectionDAG &DAG,
298                                                unsigned Depth = 0) const;
299
300    virtual MachineBasicBlock *
301      EmitInstrWithCustomInserter(MachineInstr *MI,
302                                  MachineBasicBlock *MBB) const;
303    MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
304                                        MachineBasicBlock *MBB, bool is64Bit,
305                                        unsigned BinOpcode) const;
306    MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
307                                                MachineBasicBlock *MBB,
308                                            bool is8bit, unsigned Opcode) const;
309
310    ConstraintType getConstraintType(const std::string &Constraint) const;
311
312    /// Examine constraint string and operand type and determine a weight value.
313    /// The operand object must already have been set up with the operand type.
314    ConstraintWeight getSingleConstraintMatchWeight(
315      AsmOperandInfo &info, const char *constraint) const;
316
317    std::pair<unsigned, const TargetRegisterClass*>
318      getRegForInlineAsmConstraint(const std::string &Constraint,
319                                   EVT VT) const;
320
321    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
322    /// function arguments in the caller parameter area.  This is the actual
323    /// alignment, not its logarithm.
324    unsigned getByValTypeAlignment(const Type *Ty) const;
325
326    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
327    /// vector.  If it is invalid, don't add anything to Ops.
328    virtual void LowerAsmOperandForConstraint(SDValue Op,
329                                              char ConstraintLetter,
330                                              std::vector<SDValue> &Ops,
331                                              SelectionDAG &DAG) const;
332
333    /// isLegalAddressingMode - Return true if the addressing mode represented
334    /// by AM is legal for this target, for a load/store of the specified type.
335    virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
336
337    /// isLegalAddressImmediate - Return true if the integer value can be used
338    /// as the offset of the target addressing mode for load / store of the
339    /// given type.
340    virtual bool isLegalAddressImmediate(int64_t V, const Type *Ty) const;
341
342    /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
343    /// the offset of the target addressing mode.
344    virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
345
346    virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
347
348    /// getOptimalMemOpType - Returns the target specific optimal type for load
349    /// and store operations as a result of memset, memcpy, and memmove
350    /// lowering. If DstAlign is zero that means it's safe to destination
351    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
352    /// means there isn't a need to check it against alignment requirement,
353    /// probably because the source does not need to be loaded. If
354    /// 'NonScalarIntSafe' is true, that means it's safe to return a
355    /// non-scalar-integer type, e.g. empty string source, constant, or loaded
356    /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
357    /// constant so it does not need to be loaded.
358    /// It returns EVT::Other if the type should be determined using generic
359    /// target-independent logic.
360    virtual EVT
361    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
362                        bool NonScalarIntSafe, bool MemcpyStrSrc,
363                        MachineFunction &MF) const;
364
365    /// getFunctionAlignment - Return the Log2 alignment of this function.
366    virtual unsigned getFunctionAlignment(const Function *F) const;
367
368  private:
369    SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
370    SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
371
372    bool
373    IsEligibleForTailCallOptimization(SDValue Callee,
374                                      CallingConv::ID CalleeCC,
375                                      bool isVarArg,
376                                      const SmallVectorImpl<ISD::InputArg> &Ins,
377                                      SelectionDAG& DAG) const;
378
379    SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
380                                         int SPDiff,
381                                         SDValue Chain,
382                                         SDValue &LROpOut,
383                                         SDValue &FPOpOut,
384                                         bool isDarwinABI,
385                                         DebugLoc dl) const;
386
387    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
388    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
389    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
390    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
391    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
392    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
393    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
394    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
395    SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
396    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
397                         const PPCSubtarget &Subtarget) const;
398    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
399                       const PPCSubtarget &Subtarget) const;
400    SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
401                                const PPCSubtarget &Subtarget) const;
402    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
403                                      const PPCSubtarget &Subtarget) const;
404    SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
405    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl) const;
406    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
407    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
408    SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
409    SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
410    SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
411    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
412    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
413    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
414    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
415    SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
416
417    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
418                            CallingConv::ID CallConv, bool isVarArg,
419                            const SmallVectorImpl<ISD::InputArg> &Ins,
420                            DebugLoc dl, SelectionDAG &DAG,
421                            SmallVectorImpl<SDValue> &InVals) const;
422    SDValue FinishCall(CallingConv::ID CallConv, DebugLoc dl, bool isTailCall,
423                       bool isVarArg,
424                       SelectionDAG &DAG,
425                       SmallVector<std::pair<unsigned, SDValue>, 8>
426                         &RegsToPass,
427                       SDValue InFlag, SDValue Chain,
428                       SDValue &Callee,
429                       int SPDiff, unsigned NumBytes,
430                       const SmallVectorImpl<ISD::InputArg> &Ins,
431                       SmallVectorImpl<SDValue> &InVals) const;
432
433    virtual SDValue
434      LowerFormalArguments(SDValue Chain,
435                           CallingConv::ID CallConv, bool isVarArg,
436                           const SmallVectorImpl<ISD::InputArg> &Ins,
437                           DebugLoc dl, SelectionDAG &DAG,
438                           SmallVectorImpl<SDValue> &InVals) const;
439
440    virtual SDValue
441      LowerCall(SDValue Chain, SDValue Callee,
442                CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
443                const SmallVectorImpl<ISD::OutputArg> &Outs,
444                const SmallVectorImpl<SDValue> &OutVals,
445                const SmallVectorImpl<ISD::InputArg> &Ins,
446                DebugLoc dl, SelectionDAG &DAG,
447                SmallVectorImpl<SDValue> &InVals) const;
448
449    virtual SDValue
450      LowerReturn(SDValue Chain,
451                  CallingConv::ID CallConv, bool isVarArg,
452                  const SmallVectorImpl<ISD::OutputArg> &Outs,
453                  const SmallVectorImpl<SDValue> &OutVals,
454                  DebugLoc dl, SelectionDAG &DAG) const;
455
456    SDValue
457      LowerFormalArguments_Darwin(SDValue Chain,
458                                  CallingConv::ID CallConv, bool isVarArg,
459                                  const SmallVectorImpl<ISD::InputArg> &Ins,
460                                  DebugLoc dl, SelectionDAG &DAG,
461                                  SmallVectorImpl<SDValue> &InVals) const;
462    SDValue
463      LowerFormalArguments_SVR4(SDValue Chain,
464                                CallingConv::ID CallConv, bool isVarArg,
465                                const SmallVectorImpl<ISD::InputArg> &Ins,
466                                DebugLoc dl, SelectionDAG &DAG,
467                                SmallVectorImpl<SDValue> &InVals) const;
468
469    SDValue
470      LowerCall_Darwin(SDValue Chain, SDValue Callee,
471                       CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
472                       const SmallVectorImpl<ISD::OutputArg> &Outs,
473                       const SmallVectorImpl<SDValue> &OutVals,
474                       const SmallVectorImpl<ISD::InputArg> &Ins,
475                       DebugLoc dl, SelectionDAG &DAG,
476                       SmallVectorImpl<SDValue> &InVals) const;
477    SDValue
478      LowerCall_SVR4(SDValue Chain, SDValue Callee,
479                     CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
480                     const SmallVectorImpl<ISD::OutputArg> &Outs,
481                     const SmallVectorImpl<SDValue> &OutVals,
482                     const SmallVectorImpl<ISD::InputArg> &Ins,
483                     DebugLoc dl, SelectionDAG &DAG,
484                     SmallVectorImpl<SDValue> &InVals) const;
485  };
486}
487
488#endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
489