PPCISelLowering.h revision 86765fbe170198e7bb40fd8499d1354f4c786f60
1//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that PPC uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
16#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
17
18#include "PPC.h"
19#include "PPCRegisterInfo.h"
20#include "PPCSubtarget.h"
21#include "llvm/CodeGen/SelectionDAG.h"
22#include "llvm/Target/TargetLowering.h"
23
24namespace llvm {
25  namespace PPCISD {
26    enum NodeType {
27      // Start the numbering where the builtin ops and target ops leave off.
28      FIRST_NUMBER = ISD::BUILTIN_OP_END,
29
30      /// FSEL - Traditional three-operand fsel node.
31      ///
32      FSEL,
33
34      /// FCFID - The FCFID instruction, taking an f64 operand and producing
35      /// and f64 value containing the FP representation of the integer that
36      /// was temporarily in the f64 operand.
37      FCFID,
38
39      /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
40      /// operand, producing an f64 value containing the integer representation
41      /// of that FP value.
42      FCTIDZ, FCTIWZ,
43
44      /// STFIWX - The STFIWX instruction.  The first operand is an input token
45      /// chain, then an f64 value to store, then an address to store it to.
46      STFIWX,
47
48      // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
49      // three v4f32 operands and producing a v4f32 result.
50      VMADDFP, VNMSUBFP,
51
52      /// VPERM - The PPC VPERM Instruction.
53      ///
54      VPERM,
55
56      /// Hi/Lo - These represent the high and low 16-bit parts of a global
57      /// address respectively.  These nodes have two operands, the first of
58      /// which must be a TargetGlobalAddress, and the second of which must be a
59      /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
60      /// though these are usually folded into other nodes.
61      Hi, Lo,
62
63      TOC_ENTRY,
64
65      /// The following three target-specific nodes are used for calls through
66      /// function pointers in the 64-bit SVR4 ABI.
67
68      /// Restore the TOC from the TOC save area of the current stack frame.
69      /// This is basically a hard coded load instruction which additionally
70      /// takes/produces a flag.
71      TOC_RESTORE,
72
73      /// Like a regular LOAD but additionally taking/producing a flag.
74      LOAD,
75
76      /// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is
77      /// a hard coded load instruction.
78      LOAD_TOC,
79
80      /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
81      /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
82      /// compute an allocation on the stack.
83      DYNALLOC,
84
85      /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
86      /// at function entry, used for PIC code.
87      GlobalBaseReg,
88
89      /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
90      /// shift amounts.  These nodes are generated by the multi-precision shift
91      /// code.
92      SRL, SRA, SHL,
93
94      /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
95      /// registers.
96      EXTSW_32,
97
98      /// CALL - A direct function call.
99      /// CALL_NOP is a call with the special NOP which follows 64-bit
100      /// SVR4 calls.
101      CALL, CALL_NOP,
102
103      /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
104      /// MTCTR instruction.
105      MTCTR,
106
107      /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
108      /// BCTRL instruction.
109      BCTRL,
110
111      /// Return with a flag operand, matched by 'blr'
112      RET_FLAG,
113
114      /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCRpseud/MFOCRF
115      /// instructions.  This copies the bits corresponding to the specified
116      /// CRREG into the resultant GPR.  Bits corresponding to other CR regs
117      /// are undefined.
118      MFCR,
119
120      // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
121      EH_SJLJ_SETJMP,
122
123      // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
124      EH_SJLJ_LONGJMP,
125
126      /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
127      /// instructions.  For lack of better number, we use the opcode number
128      /// encoding for the OPC field to identify the compare.  For example, 838
129      /// is VCMPGTSH.
130      VCMP,
131
132      /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
133      /// altivec VCMP*o instructions.  For lack of better number, we use the
134      /// opcode number encoding for the OPC field to identify the compare.  For
135      /// example, 838 is VCMPGTSH.
136      VCMPo,
137
138      /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
139      /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
140      /// condition register to branch on, OPC is the branch opcode to use (e.g.
141      /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
142      /// an optional input flag argument.
143      COND_BRANCH,
144
145      // The following 5 instructions are used only as part of the
146      // long double-to-int conversion sequence.
147
148      /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
149      /// register.
150      MFFS,
151
152      /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
153      MTFSB0,
154
155      /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
156      MTFSB1,
157
158      /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
159      /// rounding towards zero.  It has flags added so it won't move past the
160      /// FPSCR-setting instructions.
161      FADDRTZ,
162
163      /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
164      MTFSF,
165
166      /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
167      /// reserve indexed. This is used to implement atomic operations.
168      LARX,
169
170      /// STCX = This corresponds to PPC stcx. instrcution: store conditional
171      /// indexed. This is used to implement atomic operations.
172      STCX,
173
174      /// TC_RETURN - A tail call return.
175      ///   operand #0 chain
176      ///   operand #1 callee (register or absolute)
177      ///   operand #2 stack adjustment
178      ///   operand #3 optional in flag
179      TC_RETURN,
180
181      /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
182      CR6SET,
183      CR6UNSET,
184
185      /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
186      /// TLS model, produces an ADDIS8 instruction that adds the GOT
187      /// base to sym@got@tprel@ha.
188      ADDIS_GOT_TPREL_HA,
189
190      /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
191      /// TLS model, produces a LD instruction with base register G8RReg
192      /// and offset sym@got@tprel@l.  This completes the addition that
193      /// finds the offset of "sym" relative to the thread pointer.
194      LD_GOT_TPREL_L,
195
196      /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
197      /// model, produces an ADD instruction that adds the contents of
198      /// G8RReg to the thread pointer.  Symbol contains a relocation
199      /// sym@tls which is to be replaced by the thread pointer and
200      /// identifies to the linker that the instruction is part of a
201      /// TLS sequence.
202      ADD_TLS,
203
204      /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
205      /// model, produces an ADDIS8 instruction that adds the GOT base
206      /// register to sym@got@tlsgd@ha.
207      ADDIS_TLSGD_HA,
208
209      /// G8RC = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
210      /// model, produces an ADDI8 instruction that adds G8RReg to
211      /// sym@got@tlsgd@l.
212      ADDI_TLSGD_L,
213
214      /// G8RC = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
215      /// model, produces a call to __tls_get_addr(sym@tlsgd).
216      GET_TLS_ADDR,
217
218      /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
219      /// model, produces an ADDIS8 instruction that adds the GOT base
220      /// register to sym@got@tlsld@ha.
221      ADDIS_TLSLD_HA,
222
223      /// G8RC = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
224      /// model, produces an ADDI8 instruction that adds G8RReg to
225      /// sym@got@tlsld@l.
226      ADDI_TLSLD_L,
227
228      /// G8RC = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
229      /// model, produces a call to __tls_get_addr(sym@tlsld).
230      GET_TLSLD_ADDR,
231
232      /// G8RC = ADDIS_DTPREL_HA %X3, Symbol, Chain - For the
233      /// local-dynamic TLS model, produces an ADDIS8 instruction
234      /// that adds X3 to sym@dtprel@ha.  The Chain operand is needed
235      /// to tie this in place following a copy to %X3 from the result
236      /// of a GET_TLSLD_ADDR.
237      ADDIS_DTPREL_HA,
238
239      /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
240      /// model, produces an ADDI8 instruction that adds G8RReg to
241      /// sym@got@dtprel@l.
242      ADDI_DTPREL_L,
243
244      /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
245      /// during instruction selection to optimize a BUILD_VECTOR into
246      /// operations on splats.  This is necessary to avoid losing these
247      /// optimizations due to constant folding.
248      VADD_SPLAT,
249
250      /// STD_32 - This is the STD instruction for use with "32-bit" registers.
251      STD_32 = ISD::FIRST_TARGET_MEMORY_OPCODE,
252
253      /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
254      /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
255      /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
256      /// i32.
257      STBRX,
258
259      /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
260      /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
261      /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
262      /// or i32.
263      LBRX,
264
265      /// G8RC = ADDIS_TOC_HA %X2, Symbol - For medium and large code model,
266      /// produces an ADDIS8 instruction that adds the TOC base register to
267      /// sym@toc@ha.
268      ADDIS_TOC_HA,
269
270      /// G8RC = LD_TOC_L Symbol, G8RReg - For medium and large code model,
271      /// produces a LD instruction with base register G8RReg and offset
272      /// sym@toc@l.  Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
273      LD_TOC_L,
274
275      /// G8RC = ADDI_TOC_L G8RReg, Symbol - For medium code model, produces
276      /// an ADDI8 instruction that adds G8RReg to sym@toc@l.
277      /// Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
278      ADDI_TOC_L
279    };
280  }
281
282  /// Define some predicates that are used for node matching.
283  namespace PPC {
284    /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
285    /// VPKUHUM instruction.
286    bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
287
288    /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
289    /// VPKUWUM instruction.
290    bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
291
292    /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
293    /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
294    bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
295                            bool isUnary);
296
297    /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
298    /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
299    bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
300                            bool isUnary);
301
302    /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
303    /// amount, otherwise return -1.
304    int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
305
306    /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
307    /// specifies a splat of a single element that is suitable for input to
308    /// VSPLTB/VSPLTH/VSPLTW.
309    bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
310
311    /// isAllNegativeZeroVector - Returns true if all elements of build_vector
312    /// are -0.0.
313    bool isAllNegativeZeroVector(SDNode *N);
314
315    /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
316    /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
317    unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
318
319    /// get_VSPLTI_elt - If this is a build_vector of constants which can be
320    /// formed by using a vspltis[bhw] instruction of the specified element
321    /// size, return the constant being splatted.  The ByteSize field indicates
322    /// the number of bytes of each element [124] -> [bhw].
323    SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
324  }
325
326  class PPCTargetLowering : public TargetLowering {
327    const PPCSubtarget &PPCSubTarget;
328    const PPCRegisterInfo *PPCRegInfo;
329
330  public:
331    explicit PPCTargetLowering(PPCTargetMachine &TM);
332
333    /// getTargetNodeName() - This method returns the name of a target specific
334    /// DAG node.
335    virtual const char *getTargetNodeName(unsigned Opcode) const;
336
337    virtual MVT getScalarShiftAmountTy(EVT LHSTy) const { return MVT::i32; }
338
339    /// getSetCCResultType - Return the ISD::SETCC ValueType
340    virtual EVT getSetCCResultType(EVT VT) const;
341
342    /// getPreIndexedAddressParts - returns true by value, base pointer and
343    /// offset pointer and addressing mode by reference if the node's address
344    /// can be legally represented as pre-indexed load / store address.
345    virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
346                                           SDValue &Offset,
347                                           ISD::MemIndexedMode &AM,
348                                           SelectionDAG &DAG) const;
349
350    /// SelectAddressRegReg - Given the specified addressed, check to see if it
351    /// can be represented as an indexed [r+r] operation.  Returns false if it
352    /// can be more efficiently represented with [r+imm].
353    bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
354                             SelectionDAG &DAG) const;
355
356    /// SelectAddressRegImm - Returns true if the address N can be represented
357    /// by a base register plus a signed 16-bit displacement [r+imm], and if it
358    /// is not better represented as reg+reg.
359    bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
360                             SelectionDAG &DAG) const;
361
362    /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
363    /// represented as an indexed [r+r] operation.
364    bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
365                                 SelectionDAG &DAG) const;
366
367    /// SelectAddressRegImmShift - Returns true if the address N can be
368    /// represented by a base register plus a signed 14-bit displacement
369    /// [r+imm*4].  Suitable for use by STD and friends.
370    bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
371                                  SelectionDAG &DAG) const;
372
373    Sched::Preference getSchedulingPreference(SDNode *N) const;
374
375    /// LowerOperation - Provide custom lowering hooks for some operations.
376    ///
377    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
378
379    /// ReplaceNodeResults - Replace the results of node with an illegal result
380    /// type with new values built out of custom code.
381    ///
382    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
383                                    SelectionDAG &DAG) const;
384
385    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
386
387    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
388                                                APInt &KnownZero,
389                                                APInt &KnownOne,
390                                                const SelectionDAG &DAG,
391                                                unsigned Depth = 0) const;
392
393    virtual MachineBasicBlock *
394      EmitInstrWithCustomInserter(MachineInstr *MI,
395                                  MachineBasicBlock *MBB) const;
396    MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
397                                        MachineBasicBlock *MBB, bool is64Bit,
398                                        unsigned BinOpcode) const;
399    MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
400                                                MachineBasicBlock *MBB,
401                                            bool is8bit, unsigned Opcode) const;
402
403    MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
404                                        MachineBasicBlock *MBB) const;
405
406    MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
407                                         MachineBasicBlock *MBB) const;
408
409    ConstraintType getConstraintType(const std::string &Constraint) const;
410
411    /// Examine constraint string and operand type and determine a weight value.
412    /// The operand object must already have been set up with the operand type.
413    ConstraintWeight getSingleConstraintMatchWeight(
414      AsmOperandInfo &info, const char *constraint) const;
415
416    std::pair<unsigned, const TargetRegisterClass*>
417      getRegForInlineAsmConstraint(const std::string &Constraint,
418                                   EVT VT) const;
419
420    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
421    /// function arguments in the caller parameter area.  This is the actual
422    /// alignment, not its logarithm.
423    unsigned getByValTypeAlignment(Type *Ty) const;
424
425    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
426    /// vector.  If it is invalid, don't add anything to Ops.
427    virtual void LowerAsmOperandForConstraint(SDValue Op,
428                                              std::string &Constraint,
429                                              std::vector<SDValue> &Ops,
430                                              SelectionDAG &DAG) const;
431
432    /// isLegalAddressingMode - Return true if the addressing mode represented
433    /// by AM is legal for this target, for a load/store of the specified type.
434    virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
435
436    /// isLegalAddressImmediate - Return true if the integer value can be used
437    /// as the offset of the target addressing mode for load / store of the
438    /// given type.
439    virtual bool isLegalAddressImmediate(int64_t V, Type *Ty) const;
440
441    /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
442    /// the offset of the target addressing mode.
443    virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
444
445    virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
446
447    /// getOptimalMemOpType - Returns the target specific optimal type for load
448    /// and store operations as a result of memset, memcpy, and memmove
449    /// lowering. If DstAlign is zero that means it's safe to destination
450    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
451    /// means there isn't a need to check it against alignment requirement,
452    /// probably because the source does not need to be loaded. If 'IsMemset' is
453    /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
454    /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
455    /// source is constant so it does not need to be loaded.
456    /// It returns EVT::Other if the type should be determined using generic
457    /// target-independent logic.
458    virtual EVT
459    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
460                        bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
461                        MachineFunction &MF) const;
462
463    /// Is unaligned memory access allowed for the given type, and is it fast
464    /// relative to software emulation.
465    virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast = 0) const;
466
467    /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
468    /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
469    /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
470    /// is expanded to mul + add.
471    virtual bool isFMAFasterThanMulAndAdd(EVT VT) const;
472
473  private:
474    SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
475    SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
476
477    bool
478    IsEligibleForTailCallOptimization(SDValue Callee,
479                                      CallingConv::ID CalleeCC,
480                                      bool isVarArg,
481                                      const SmallVectorImpl<ISD::InputArg> &Ins,
482                                      SelectionDAG& DAG) const;
483
484    SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
485                                         int SPDiff,
486                                         SDValue Chain,
487                                         SDValue &LROpOut,
488                                         SDValue &FPOpOut,
489                                         bool isDarwinABI,
490                                         DebugLoc dl) const;
491
492    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
493    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
494    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
495    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
496    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
497    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
498    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
499    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
500    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
501    SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
502    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
503                         const PPCSubtarget &Subtarget) const;
504    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
505                       const PPCSubtarget &Subtarget) const;
506    SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
507                                const PPCSubtarget &Subtarget) const;
508    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
509                                      const PPCSubtarget &Subtarget) const;
510    SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
511    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl) const;
512    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
513    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
514    SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
515    SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
516    SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
517    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
518    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
519    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
520    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
521    SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
522
523    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
524                            CallingConv::ID CallConv, bool isVarArg,
525                            const SmallVectorImpl<ISD::InputArg> &Ins,
526                            DebugLoc dl, SelectionDAG &DAG,
527                            SmallVectorImpl<SDValue> &InVals) const;
528    SDValue FinishCall(CallingConv::ID CallConv, DebugLoc dl, bool isTailCall,
529                       bool isVarArg,
530                       SelectionDAG &DAG,
531                       SmallVector<std::pair<unsigned, SDValue>, 8>
532                         &RegsToPass,
533                       SDValue InFlag, SDValue Chain,
534                       SDValue &Callee,
535                       int SPDiff, unsigned NumBytes,
536                       const SmallVectorImpl<ISD::InputArg> &Ins,
537                       SmallVectorImpl<SDValue> &InVals) const;
538
539    virtual SDValue
540      LowerFormalArguments(SDValue Chain,
541                           CallingConv::ID CallConv, bool isVarArg,
542                           const SmallVectorImpl<ISD::InputArg> &Ins,
543                           DebugLoc dl, SelectionDAG &DAG,
544                           SmallVectorImpl<SDValue> &InVals) const;
545
546    virtual SDValue
547      LowerCall(TargetLowering::CallLoweringInfo &CLI,
548                SmallVectorImpl<SDValue> &InVals) const;
549
550    virtual bool
551      CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
552                   bool isVarArg,
553                   const SmallVectorImpl<ISD::OutputArg> &Outs,
554                   LLVMContext &Context) const;
555
556    virtual SDValue
557      LowerReturn(SDValue Chain,
558                  CallingConv::ID CallConv, bool isVarArg,
559                  const SmallVectorImpl<ISD::OutputArg> &Outs,
560                  const SmallVectorImpl<SDValue> &OutVals,
561                  DebugLoc dl, SelectionDAG &DAG) const;
562
563    SDValue
564      extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
565                        SDValue ArgVal, DebugLoc dl) const;
566
567    void
568      setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
569                         unsigned nAltivecParamsAtEnd,
570                         unsigned MinReservedArea, bool isPPC64) const;
571
572    SDValue
573      LowerFormalArguments_Darwin(SDValue Chain,
574                                  CallingConv::ID CallConv, bool isVarArg,
575                                  const SmallVectorImpl<ISD::InputArg> &Ins,
576                                  DebugLoc dl, SelectionDAG &DAG,
577                                  SmallVectorImpl<SDValue> &InVals) const;
578    SDValue
579      LowerFormalArguments_64SVR4(SDValue Chain,
580                                  CallingConv::ID CallConv, bool isVarArg,
581                                  const SmallVectorImpl<ISD::InputArg> &Ins,
582                                  DebugLoc dl, SelectionDAG &DAG,
583                                  SmallVectorImpl<SDValue> &InVals) const;
584    SDValue
585      LowerFormalArguments_32SVR4(SDValue Chain,
586                                  CallingConv::ID CallConv, bool isVarArg,
587                                  const SmallVectorImpl<ISD::InputArg> &Ins,
588                                  DebugLoc dl, SelectionDAG &DAG,
589                                  SmallVectorImpl<SDValue> &InVals) const;
590
591    SDValue
592      createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
593                                 SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
594                                 SelectionDAG &DAG, DebugLoc dl) const;
595
596    SDValue
597      LowerCall_Darwin(SDValue Chain, SDValue Callee,
598                       CallingConv::ID CallConv,
599                       bool isVarArg, bool isTailCall,
600                       const SmallVectorImpl<ISD::OutputArg> &Outs,
601                       const SmallVectorImpl<SDValue> &OutVals,
602                       const SmallVectorImpl<ISD::InputArg> &Ins,
603                       DebugLoc dl, SelectionDAG &DAG,
604                       SmallVectorImpl<SDValue> &InVals) const;
605    SDValue
606      LowerCall_64SVR4(SDValue Chain, SDValue Callee,
607                       CallingConv::ID CallConv,
608                       bool isVarArg, bool isTailCall,
609                       const SmallVectorImpl<ISD::OutputArg> &Outs,
610                       const SmallVectorImpl<SDValue> &OutVals,
611                       const SmallVectorImpl<ISD::InputArg> &Ins,
612                       DebugLoc dl, SelectionDAG &DAG,
613                       SmallVectorImpl<SDValue> &InVals) const;
614    SDValue
615    LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
616                     bool isVarArg, bool isTailCall,
617                     const SmallVectorImpl<ISD::OutputArg> &Outs,
618                     const SmallVectorImpl<SDValue> &OutVals,
619                     const SmallVectorImpl<ISD::InputArg> &Ins,
620                     DebugLoc dl, SelectionDAG &DAG,
621                     SmallVectorImpl<SDValue> &InVals) const;
622
623    SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
624    SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
625  };
626}
627
628#endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
629