PPCISelLowering.h revision b453e16855f347e300f1dc0cd0dfbdd65c27b0d2
1//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that PPC uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
16#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
17
18#include "PPC.h"
19#include "PPCSubtarget.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/Target/TargetLowering.h"
22
23namespace llvm {
24  namespace PPCISD {
25    enum NodeType {
26      // Start the numbering where the builtin ops and target ops leave off.
27      FIRST_NUMBER = ISD::BUILTIN_OP_END,
28
29      /// FSEL - Traditional three-operand fsel node.
30      ///
31      FSEL,
32
33      /// FCFID - The FCFID instruction, taking an f64 operand and producing
34      /// and f64 value containing the FP representation of the integer that
35      /// was temporarily in the f64 operand.
36      FCFID,
37
38      /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
39      /// operand, producing an f64 value containing the integer representation
40      /// of that FP value.
41      FCTIDZ, FCTIWZ,
42
43      /// STFIWX - The STFIWX instruction.  The first operand is an input token
44      /// chain, then an f64 value to store, then an address to store it to.
45      STFIWX,
46
47      // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
48      // three v4f32 operands and producing a v4f32 result.
49      VMADDFP, VNMSUBFP,
50
51      /// VPERM - The PPC VPERM Instruction.
52      ///
53      VPERM,
54
55      /// Hi/Lo - These represent the high and low 16-bit parts of a global
56      /// address respectively.  These nodes have two operands, the first of
57      /// which must be a TargetGlobalAddress, and the second of which must be a
58      /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
59      /// though these are usually folded into other nodes.
60      Hi, Lo,
61
62      TOC_ENTRY,
63
64      /// The following three target-specific nodes are used for calls through
65      /// function pointers in the 64-bit SVR4 ABI.
66
67      /// Restore the TOC from the TOC save area of the current stack frame.
68      /// This is basically a hard coded load instruction which additionally
69      /// takes/produces a flag.
70      TOC_RESTORE,
71
72      /// Like a regular LOAD but additionally taking/producing a flag.
73      LOAD,
74
75      /// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is
76      /// a hard coded load instruction.
77      LOAD_TOC,
78
79      /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
80      /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
81      /// compute an allocation on the stack.
82      DYNALLOC,
83
84      /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
85      /// at function entry, used for PIC code.
86      GlobalBaseReg,
87
88      /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
89      /// shift amounts.  These nodes are generated by the multi-precision shift
90      /// code.
91      SRL, SRA, SHL,
92
93      /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
94      /// registers.
95      EXTSW_32,
96
97      /// CALL - A direct function call.
98      /// CALL_NOP_SVR4 is a call with the special  NOP which follows 64-bit
99      /// SVR4 calls.
100      CALL_Darwin, CALL_SVR4, CALL_NOP_SVR4,
101
102      /// NOP - Special NOP which follows 64-bit SVR4 calls.
103      NOP,
104
105      /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
106      /// MTCTR instruction.
107      MTCTR,
108
109      /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
110      /// BCTRL instruction.
111      BCTRL_Darwin, BCTRL_SVR4,
112
113      /// Return with a flag operand, matched by 'blr'
114      RET_FLAG,
115
116      /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCRpseud/MFOCRF
117      /// instructions.  This copies the bits corresponding to the specified
118      /// CRREG into the resultant GPR.  Bits corresponding to other CR regs
119      /// are undefined.
120      MFCR,
121
122      /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
123      /// instructions.  For lack of better number, we use the opcode number
124      /// encoding for the OPC field to identify the compare.  For example, 838
125      /// is VCMPGTSH.
126      VCMP,
127
128      /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
129      /// altivec VCMP*o instructions.  For lack of better number, we use the
130      /// opcode number encoding for the OPC field to identify the compare.  For
131      /// example, 838 is VCMPGTSH.
132      VCMPo,
133
134      /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
135      /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
136      /// condition register to branch on, OPC is the branch opcode to use (e.g.
137      /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
138      /// an optional input flag argument.
139      COND_BRANCH,
140
141      // The following 5 instructions are used only as part of the
142      // long double-to-int conversion sequence.
143
144      /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
145      /// register.
146      MFFS,
147
148      /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
149      MTFSB0,
150
151      /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
152      MTFSB1,
153
154      /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
155      /// rounding towards zero.  It has flags added so it won't move past the
156      /// FPSCR-setting instructions.
157      FADDRTZ,
158
159      /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
160      MTFSF,
161
162      /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
163      /// reserve indexed. This is used to implement atomic operations.
164      LARX,
165
166      /// STCX = This corresponds to PPC stcx. instrcution: store conditional
167      /// indexed. This is used to implement atomic operations.
168      STCX,
169
170      /// TC_RETURN - A tail call return.
171      ///   operand #0 chain
172      ///   operand #1 callee (register or absolute)
173      ///   operand #2 stack adjustment
174      ///   operand #3 optional in flag
175      TC_RETURN,
176
177      /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
178      CR6SET,
179      CR6UNSET,
180
181      /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
182      /// TLS model, produces an ADDIS8 instruction that adds the GOT
183      /// base to sym@got@tprel@ha.
184      ADDIS_GOT_TPREL_HA,
185
186      /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
187      /// TLS model, produces a LD instruction with base register G8RReg
188      /// and offset sym@got@tprel@l.  This completes the addition that
189      /// finds the offset of "sym" relative to the thread pointer.
190      LD_GOT_TPREL_L,
191
192      /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
193      /// model, produces an ADD instruction that adds the contents of
194      /// G8RReg to the thread pointer.  Symbol contains a relocation
195      /// sym@tls which is to be replaced by the thread pointer and
196      /// identifies to the linker that the instruction is part of a
197      /// TLS sequence.
198      ADD_TLS,
199
200      /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
201      /// model, produces an ADDIS8 instruction that adds the GOT base
202      /// register to sym@got@tlsgd@ha.
203      ADDIS_TLSGD_HA,
204
205      /// G8RC = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
206      /// model, produces an ADDI8 instruction that adds G8RReg to
207      /// sym@got@tlsgd@l.
208      ADDI_TLSGD_L,
209
210      /// G8RC = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
211      /// model, produces a call to __tls_get_addr(sym@tlsgd).
212      GET_TLS_ADDR,
213
214      /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
215      /// model, produces an ADDIS8 instruction that adds the GOT base
216      /// register to sym@got@tlsld@ha.
217      ADDIS_TLSLD_HA,
218
219      /// G8RC = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
220      /// model, produces an ADDI8 instruction that adds G8RReg to
221      /// sym@got@tlsld@l.
222      ADDI_TLSLD_L,
223
224      /// G8RC = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
225      /// model, produces a call to __tls_get_addr(sym@tlsld).
226      GET_TLSLD_ADDR,
227
228      /// G8RC = ADDIS_DTPREL_HA %X3, Symbol, Chain - For the
229      /// local-dynamic TLS model, produces an ADDIS8 instruction
230      /// that adds X3 to sym@dtprel@ha.  The Chain operand is needed
231      /// to tie this in place following a copy to %X3 from the result
232      /// of a GET_TLSLD_ADDR.
233      ADDIS_DTPREL_HA,
234
235      /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
236      /// model, produces an ADDI8 instruction that adds G8RReg to
237      /// sym@got@dtprel@l.
238      ADDI_DTPREL_L,
239
240      /// STD_32 - This is the STD instruction for use with "32-bit" registers.
241      STD_32 = ISD::FIRST_TARGET_MEMORY_OPCODE,
242
243      /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
244      /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
245      /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
246      /// i32.
247      STBRX,
248
249      /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
250      /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
251      /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
252      /// or i32.
253      LBRX,
254
255      /// G8RC = ADDIS_TOC_HA %X2, Symbol - For medium code model, produces
256      /// an ADDIS8 instruction that adds the TOC base register to sym@toc@ha.
257      ADDIS_TOC_HA,
258
259      /// G8RC = LD_TOC_L Symbol, G8RReg - For medium code model, produces a
260      /// LD instruction with base register G8RReg and offset sym@toc@l.
261      /// Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
262      LD_TOC_L,
263
264      /// G8RC = ADDI_TOC_L G8RReg, Symbol - For medium code model, produces
265      /// an ADDI8 instruction that adds G8RReg to sym@toc@l.
266      /// Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
267      ADDI_TOC_L
268    };
269  }
270
271  /// Define some predicates that are used for node matching.
272  namespace PPC {
273    /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
274    /// VPKUHUM instruction.
275    bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
276
277    /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
278    /// VPKUWUM instruction.
279    bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
280
281    /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
282    /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
283    bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
284                            bool isUnary);
285
286    /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
287    /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
288    bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
289                            bool isUnary);
290
291    /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
292    /// amount, otherwise return -1.
293    int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
294
295    /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
296    /// specifies a splat of a single element that is suitable for input to
297    /// VSPLTB/VSPLTH/VSPLTW.
298    bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
299
300    /// isAllNegativeZeroVector - Returns true if all elements of build_vector
301    /// are -0.0.
302    bool isAllNegativeZeroVector(SDNode *N);
303
304    /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
305    /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
306    unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
307
308    /// get_VSPLTI_elt - If this is a build_vector of constants which can be
309    /// formed by using a vspltis[bhw] instruction of the specified element
310    /// size, return the constant being splatted.  The ByteSize field indicates
311    /// the number of bytes of each element [124] -> [bhw].
312    SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
313  }
314
315  class PPCTargetLowering : public TargetLowering {
316    const PPCSubtarget &PPCSubTarget;
317
318  public:
319    explicit PPCTargetLowering(PPCTargetMachine &TM);
320
321    /// getTargetNodeName() - This method returns the name of a target specific
322    /// DAG node.
323    virtual const char *getTargetNodeName(unsigned Opcode) const;
324
325    virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i32; }
326
327    /// getSetCCResultType - Return the ISD::SETCC ValueType
328    virtual EVT getSetCCResultType(EVT VT) const;
329
330    /// getPreIndexedAddressParts - returns true by value, base pointer and
331    /// offset pointer and addressing mode by reference if the node's address
332    /// can be legally represented as pre-indexed load / store address.
333    virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
334                                           SDValue &Offset,
335                                           ISD::MemIndexedMode &AM,
336                                           SelectionDAG &DAG) const;
337
338    /// SelectAddressRegReg - Given the specified addressed, check to see if it
339    /// can be represented as an indexed [r+r] operation.  Returns false if it
340    /// can be more efficiently represented with [r+imm].
341    bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
342                             SelectionDAG &DAG) const;
343
344    /// SelectAddressRegImm - Returns true if the address N can be represented
345    /// by a base register plus a signed 16-bit displacement [r+imm], and if it
346    /// is not better represented as reg+reg.
347    bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
348                             SelectionDAG &DAG) const;
349
350    /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
351    /// represented as an indexed [r+r] operation.
352    bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
353                                 SelectionDAG &DAG) const;
354
355    /// SelectAddressRegImmShift - Returns true if the address N can be
356    /// represented by a base register plus a signed 14-bit displacement
357    /// [r+imm*4].  Suitable for use by STD and friends.
358    bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
359                                  SelectionDAG &DAG) const;
360
361    Sched::Preference getSchedulingPreference(SDNode *N) const;
362
363    /// LowerOperation - Provide custom lowering hooks for some operations.
364    ///
365    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
366
367    /// ReplaceNodeResults - Replace the results of node with an illegal result
368    /// type with new values built out of custom code.
369    ///
370    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
371                                    SelectionDAG &DAG) const;
372
373    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
374
375    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
376                                                APInt &KnownZero,
377                                                APInt &KnownOne,
378                                                const SelectionDAG &DAG,
379                                                unsigned Depth = 0) const;
380
381    virtual MachineBasicBlock *
382      EmitInstrWithCustomInserter(MachineInstr *MI,
383                                  MachineBasicBlock *MBB) const;
384    MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
385                                        MachineBasicBlock *MBB, bool is64Bit,
386                                        unsigned BinOpcode) const;
387    MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
388                                                MachineBasicBlock *MBB,
389                                            bool is8bit, unsigned Opcode) const;
390
391    ConstraintType getConstraintType(const std::string &Constraint) const;
392
393    /// Examine constraint string and operand type and determine a weight value.
394    /// The operand object must already have been set up with the operand type.
395    ConstraintWeight getSingleConstraintMatchWeight(
396      AsmOperandInfo &info, const char *constraint) const;
397
398    std::pair<unsigned, const TargetRegisterClass*>
399      getRegForInlineAsmConstraint(const std::string &Constraint,
400                                   EVT VT) const;
401
402    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
403    /// function arguments in the caller parameter area.  This is the actual
404    /// alignment, not its logarithm.
405    unsigned getByValTypeAlignment(Type *Ty) const;
406
407    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
408    /// vector.  If it is invalid, don't add anything to Ops.
409    virtual void LowerAsmOperandForConstraint(SDValue Op,
410                                              std::string &Constraint,
411                                              std::vector<SDValue> &Ops,
412                                              SelectionDAG &DAG) const;
413
414    /// isLegalAddressingMode - Return true if the addressing mode represented
415    /// by AM is legal for this target, for a load/store of the specified type.
416    virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
417
418    /// isLegalAddressImmediate - Return true if the integer value can be used
419    /// as the offset of the target addressing mode for load / store of the
420    /// given type.
421    virtual bool isLegalAddressImmediate(int64_t V, Type *Ty) const;
422
423    /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
424    /// the offset of the target addressing mode.
425    virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
426
427    virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
428
429    /// getOptimalMemOpType - Returns the target specific optimal type for load
430    /// and store operations as a result of memset, memcpy, and memmove
431    /// lowering. If DstAlign is zero that means it's safe to destination
432    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
433    /// means there isn't a need to check it against alignment requirement,
434    /// probably because the source does not need to be loaded. If 'IsMemset' is
435    /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
436    /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
437    /// source is constant so it does not need to be loaded.
438    /// It returns EVT::Other if the type should be determined using generic
439    /// target-independent logic.
440    virtual EVT
441    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
442                        bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
443                        MachineFunction &MF) const;
444
445    /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
446    /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
447    /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
448    /// is expanded to mul + add.
449    virtual bool isFMAFasterThanMulAndAdd(EVT VT) const;
450
451  private:
452    SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
453    SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
454
455    bool
456    IsEligibleForTailCallOptimization(SDValue Callee,
457                                      CallingConv::ID CalleeCC,
458                                      bool isVarArg,
459                                      const SmallVectorImpl<ISD::InputArg> &Ins,
460                                      SelectionDAG& DAG) const;
461
462    SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
463                                         int SPDiff,
464                                         SDValue Chain,
465                                         SDValue &LROpOut,
466                                         SDValue &FPOpOut,
467                                         bool isDarwinABI,
468                                         DebugLoc dl) const;
469
470    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
471    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
472    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
473    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
474    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
475    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
476    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
477    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
478    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
479    SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
480    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
481                         const PPCSubtarget &Subtarget) const;
482    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
483                       const PPCSubtarget &Subtarget) const;
484    SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
485                                const PPCSubtarget &Subtarget) const;
486    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
487                                      const PPCSubtarget &Subtarget) const;
488    SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
489    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl) const;
490    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
491    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
492    SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
493    SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
494    SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
495    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
496    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
497    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
498    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
499    SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
500
501    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
502                            CallingConv::ID CallConv, bool isVarArg,
503                            const SmallVectorImpl<ISD::InputArg> &Ins,
504                            DebugLoc dl, SelectionDAG &DAG,
505                            SmallVectorImpl<SDValue> &InVals) const;
506    SDValue FinishCall(CallingConv::ID CallConv, DebugLoc dl, bool isTailCall,
507                       bool isVarArg,
508                       SelectionDAG &DAG,
509                       SmallVector<std::pair<unsigned, SDValue>, 8>
510                         &RegsToPass,
511                       SDValue InFlag, SDValue Chain,
512                       SDValue &Callee,
513                       int SPDiff, unsigned NumBytes,
514                       const SmallVectorImpl<ISD::InputArg> &Ins,
515                       SmallVectorImpl<SDValue> &InVals) const;
516
517    virtual SDValue
518      LowerFormalArguments(SDValue Chain,
519                           CallingConv::ID CallConv, bool isVarArg,
520                           const SmallVectorImpl<ISD::InputArg> &Ins,
521                           DebugLoc dl, SelectionDAG &DAG,
522                           SmallVectorImpl<SDValue> &InVals) const;
523
524    virtual SDValue
525      LowerCall(TargetLowering::CallLoweringInfo &CLI,
526                SmallVectorImpl<SDValue> &InVals) const;
527
528    virtual bool
529      CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
530                   bool isVarArg,
531                   const SmallVectorImpl<ISD::OutputArg> &Outs,
532                   LLVMContext &Context) const;
533
534    virtual SDValue
535      LowerReturn(SDValue Chain,
536                  CallingConv::ID CallConv, bool isVarArg,
537                  const SmallVectorImpl<ISD::OutputArg> &Outs,
538                  const SmallVectorImpl<SDValue> &OutVals,
539                  DebugLoc dl, SelectionDAG &DAG) const;
540
541    SDValue
542      extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
543                        SDValue ArgVal, DebugLoc dl) const;
544
545    void
546      setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
547                         unsigned nAltivecParamsAtEnd,
548                         unsigned MinReservedArea, bool isPPC64) const;
549
550    SDValue
551      LowerFormalArguments_Darwin(SDValue Chain,
552                                  CallingConv::ID CallConv, bool isVarArg,
553                                  const SmallVectorImpl<ISD::InputArg> &Ins,
554                                  DebugLoc dl, SelectionDAG &DAG,
555                                  SmallVectorImpl<SDValue> &InVals) const;
556    SDValue
557      LowerFormalArguments_64SVR4(SDValue Chain,
558                                  CallingConv::ID CallConv, bool isVarArg,
559                                  const SmallVectorImpl<ISD::InputArg> &Ins,
560                                  DebugLoc dl, SelectionDAG &DAG,
561                                  SmallVectorImpl<SDValue> &InVals) const;
562    SDValue
563      LowerFormalArguments_32SVR4(SDValue Chain,
564                                  CallingConv::ID CallConv, bool isVarArg,
565                                  const SmallVectorImpl<ISD::InputArg> &Ins,
566                                  DebugLoc dl, SelectionDAG &DAG,
567                                  SmallVectorImpl<SDValue> &InVals) const;
568
569    SDValue
570      createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
571                                 SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
572                                 SelectionDAG &DAG, DebugLoc dl) const;
573
574    SDValue
575      LowerCall_Darwin(SDValue Chain, SDValue Callee,
576                       CallingConv::ID CallConv,
577                       bool isVarArg, bool isTailCall,
578                       const SmallVectorImpl<ISD::OutputArg> &Outs,
579                       const SmallVectorImpl<SDValue> &OutVals,
580                       const SmallVectorImpl<ISD::InputArg> &Ins,
581                       DebugLoc dl, SelectionDAG &DAG,
582                       SmallVectorImpl<SDValue> &InVals) const;
583    SDValue
584      LowerCall_64SVR4(SDValue Chain, SDValue Callee,
585                       CallingConv::ID CallConv,
586                       bool isVarArg, bool isTailCall,
587                       const SmallVectorImpl<ISD::OutputArg> &Outs,
588                       const SmallVectorImpl<SDValue> &OutVals,
589                       const SmallVectorImpl<ISD::InputArg> &Ins,
590                       DebugLoc dl, SelectionDAG &DAG,
591                       SmallVectorImpl<SDValue> &InVals) const;
592    SDValue
593    LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
594                     bool isVarArg, bool isTailCall,
595                     const SmallVectorImpl<ISD::OutputArg> &Outs,
596                     const SmallVectorImpl<SDValue> &OutVals,
597                     const SmallVectorImpl<ISD::InputArg> &Ins,
598                     DebugLoc dl, SelectionDAG &DAG,
599                     SmallVectorImpl<SDValue> &InVals) const;
600  };
601}
602
603#endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
604