/external/eigen/doc/snippets/ |
H A D | MatrixBase_adjoint.cpp | 3 cout << "Here is the adjoint of m:" << endl << m.adjoint() << endl;
|
H A D | Jacobi_makeJacobi.cpp | 2 m = (m + m.adjoint()).eval(); 6 m.applyOnTheLeft(0, 1, J.adjoint());
|
H A D | LLT_solve.cpp | 7 = (samples.adjoint() * samples).llt().solve((samples.adjoint()*elevations));
|
H A D | tut_arithmetic_transpose_conjugate.cpp | 10 cout << "Here is the matrix a^*\n" << a.adjoint() << endl;
|
H A D | Jacobi_makeGivens.cpp | 5 v.applyOnTheLeft(0, 1, G.adjoint());
|
H A D | RealQZ_compute.cpp | 15 << "\n|QQ* - I|: " << (qz.matrixQ()*qz.matrixQ().adjoint() - MatrixXf::Identity(4,4)).norm() 16 << ", |ZZ* - I|: " << (qz.matrixZ()*qz.matrixZ().adjoint() - MatrixXf::Identity(4,4)).norm()
|
H A D | HouseholderSequence_HouseholderSequence.cpp | 15 Matrix3d H0 = Matrix3d::Identity() - h(0) * v0 * v0.adjoint(); 18 Matrix3d H1 = Matrix3d::Identity() - h(1) * v1 * v1.adjoint(); 21 Matrix3d H2 = Matrix3d::Identity() - h(2) * v2 * v2.adjoint();
|
H A D | Tridiagonalization_diagonal.cpp | 2 MatrixXcd A = X + X.adjoint(); 3 cout << "Here is a random self-adjoint 4x4 matrix:" << endl << A << endl << endl;
|
/external/eigen/test/ |
H A D | product_syrk.cpp | 39 ((s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Lower>().toDenseMatrix())); 41 VERIFY_IS_APPROX(((m2.template triangularView<Lower>() += s1 * rhs2 * rhs22.adjoint()).nestedExpression()), 42 ((s1 * rhs2 * rhs22.adjoint()).eval().template triangularView<Lower>().toDenseMatrix())); 47 (s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Upper>().toDenseMatrix()); 49 VERIFY_IS_APPROX((m2.template triangularView<Upper>() += s1 * rhs22 * rhs2.adjoint()).nestedExpression(), 50 (s1 * rhs22 * rhs2.adjoint()).eval().template triangularView<Upper>().toDenseMatrix()); 54 VERIFY_IS_APPROX(m2.template selfadjointView<Lower>().rankUpdate(rhs1.adjoint(),s1)._expression(), 55 (s1 * rhs1.adjoint() * rhs1).eval().template triangularView<Lower>().toDenseMatrix()); 57 VERIFY_IS_APPROX((m2.template triangularView<Lower>() += s1 * rhs11.adjoint() * rhs1).nestedExpression(), 58 (s1 * rhs11.adjoint() * rhs [all...] |
H A D | product_extra.cpp | 41 VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(), m1 * m2.adjoint().eval()); 42 VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(), m1.adjoint().eval() * square.adjoint().eval()); 43 VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2, m1.adjoint().eval() * m2); 44 VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2, (s1 * m1.adjoint()) [all...] |
H A D | product_selfadjoint.cpp | 38 m1 = (m1.adjoint() + m1).eval(); 43 VERIFY_IS_APPROX(m2, (m1 + v1 * v2.adjoint()+ v2 * v1.adjoint()).template triangularView<Lower>().toDenseMatrix()); 47 VERIFY_IS_APPROX(m2, (m1 + (s3*(-v1)*(s2*v2).adjoint()+numext::conj(s3)*(s2*v2)*(-v1).adjoint())).template triangularView<Upper>().toDenseMatrix()); 50 m2.template selfadjointView<Upper>().rankUpdate(-s2*r1.adjoint(),r2.adjoint()*s3,s1); 51 VERIFY_IS_APPROX(m2, (m1 + s1*(-s2*r1.adjoint())*(r2.adjoint()*s3).adjoint() [all...] |
H A D | product_mmtr.cpp | 38 CHECK_MMTR(matc, Lower, = s*soc*sor.adjoint()); 39 CHECK_MMTR(matc, Upper, = s*(soc*soc.adjoint())); 40 CHECK_MMTR(matr, Lower, = s*soc*soc.adjoint()); 41 CHECK_MMTR(matr, Upper, = soc*(s*sor.adjoint())); 43 CHECK_MMTR(matc, Lower, += s*soc*soc.adjoint()); 45 CHECK_MMTR(matr, Lower, += s*sor*soc.adjoint()); 46 CHECK_MMTR(matr, Upper, += soc*(s*soc.adjoint())); 48 CHECK_MMTR(matc, Lower, -= s*soc*soc.adjoint()); 50 CHECK_MMTR(matr, Lower, -= s*soc*soc.adjoint()); 51 CHECK_MMTR(matr, Upper, -= soc*(s*soc.adjoint())); [all...] |
H A D | product_notemporary.cpp | 60 VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()), 1); 61 VERIFY_EVALUATION_COUNT( m3.noalias() = m1 * m2.adjoint(), 0); 65 VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * m1 * s2 * m2.adjoint(), 0); 66 VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * m1 * s2 * (m1*s3+m2*s2).adjoint(), 1); 67 VERIFY_EVALUATION_COUNT( m3.noalias() = (s1 * m1).adjoint() * s2 * m2, 0); 68 VERIFY_EVALUATION_COUNT( m3.noalias() += s1 * (-m1*s3).adjoint() * (s2 * m2 * s3), 0); 71 VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1).noalias() += -m1.block(r0,c0,r1,c1) * (s2*m2.block(r0,c0,r1,c1)).adjoint() ), 0); 78 VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template triangularView<Upper>() * (m2+m2), 1); 79 VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template triangularView<UnitUpper>() * m2.adjoint(), [all...] |
H A D | adjoint.cpp | 22 // check compatibility of dot and adjoint 23 VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0)); 46 // check compatibility of dot and adjoint 47 ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm())); 48 VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>())); 56 template<typename MatrixType> void adjoint(const MatrixType& m) function 83 // check basic compatibility of adjoint, transpose, conjugate 84 VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); 85 VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); 88 VERIFY_IS_APPROX((m1.adjoint() * m [all...] |
H A D | product_trmm.cpp | 46 VERIFY_IS_APPROX( ge_xs.noalias() = (s1*mat.adjoint()).template triangularView<Mode>() * (s2*ge_left.transpose()), s1*triTr.conjugate() * (s2*ge_left.transpose())); 47 VERIFY_IS_APPROX( ge_sx.noalias() = ge_right.transpose() * mat.adjoint().template triangularView<Mode>(), ge_right.transpose() * triTr.conjugate()); 49 VERIFY_IS_APPROX( ge_xs.noalias() = (s1*mat.adjoint()).template triangularView<Mode>() * (s2*ge_left.adjoint()), s1*triTr.conjugate() * (s2*ge_left.adjoint())); 50 VERIFY_IS_APPROX( ge_sx.noalias() = ge_right.adjoint() * mat.adjoint().template triangularView<Mode>(), ge_right.adjoint() * triTr.conjugate()); 53 VERIFY_IS_APPROX( (ge_xs_save + s1*triTr.conjugate() * (s2*ge_left.adjoint())).eval(), ge_xs.noalias() += (s1*mat.adjoint()) [all...] |
H A D | mixingtypes.cpp | 111 VERIFY_IS_APPROX(sf*vcf.adjoint()*mf, sf*vcf.adjoint()*mf.template cast<CF>().eval()); 112 VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast<CF>().eval()); 113 VERIFY_IS_APPROX(sf*vf.adjoint()*mcf, sf*vf.adjoint().template cast<CF>().eval()*mcf); 114 VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast<CF>().eval()*mcf); 121 VERIFY_IS_APPROX(sd*vcd.adjoint()*md, sd*vcd.adjoint()*m [all...] |
H A D | upperbidiagonalization.cpp | 26 MatrixType c = ubd.householderU() * b * ubd.householderV().adjoint(); 28 TransposeMatrixType d = ubd.householderV() * b.adjoint() * ubd.householderU().adjoint(); 29 VERIFY_IS_APPROX(a.adjoint(),d);
|
H A D | nomalloc.cpp | 58 m2.col(0).noalias() -= m1.adjoint() * m1.col(0); 59 m2.col(0).noalias() -= m1 * m1.row(0).adjoint(); 60 m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint(); 63 m2.row(0).noalias() -= m1.row(0) * m1.adjoint(); 64 m2.row(0).noalias() -= m1.col(0).adjoint() * m1; 65 m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint(); 69 m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0); 70 m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint(); [all...] |
H A D | product_symm.cpp | 27 m1 = (m1+m1.adjoint()).eval(); 49 VERIFY_IS_APPROX(rhs12 = (s1*m2).template selfadjointView<Lower>() * (s2*rhs2.adjoint()), 50 rhs13 = (s1*m1) * (s2*rhs2.adjoint())); 53 VERIFY_IS_APPROX(rhs12 = (s1*m2).template selfadjointView<Upper>() * (s2*rhs2.adjoint()), 54 rhs13 = (s1*m1) * (s2*rhs2.adjoint())); 57 VERIFY_IS_APPROX(rhs12 = (s1*m2.adjoint()).template selfadjointView<Lower>() * (s2*rhs2.adjoint()), 58 rhs13 = (s1*m1.adjoint()) * (s2*rhs2.adjoint())); 66 VERIFY_IS_APPROX(rhs12 = (s1*m2.adjoint()) [all...] |
H A D | eigensolver_generalized_real.cpp | 30 MatrixType spdA = a.adjoint() * a + a1.adjoint() * a1; 31 MatrixType spdB = b.adjoint() * b + b1.adjoint() * b1;
|
H A D | product_trmv.cpp | 60 VERIFY((m3.adjoint() * v1).isApprox(m1.adjoint().template triangularView<Eigen::Lower>() * v1, largerEps)); 62 VERIFY((m3.adjoint() * (s1*v1.conjugate())).isApprox(m1.adjoint().template triangularView<Eigen::Upper>() * (s1*v1.conjugate()), largerEps)); 68 VERIFY((v1.adjoint() * m3).isApprox(v1.adjoint() * m1.template triangularView<Eigen::Lower>(), largerEps)); 69 VERIFY((v1.adjoint() * m3.adjoint()).isApprox(v1.adjoint() * m1.template triangularView<Eigen::Lower>().adjoint(), largerEp [all...] |
/external/eigen/test/eigen2/ |
H A D | eigen2_adjoint.cpp | 12 template<typename MatrixType> void adjoint(const MatrixType& m) function 41 // check basic compatibility of adjoint, transpose, conjugate 42 VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); 43 VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); 46 VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); 47 VERIFY_IS_APPROX((s1 * m1).adjoint(), ei_conj(s1) * m1.adjoint()); 61 // check compatibility of dot and adjoint [all...] |
H A D | eigen2_svd.cpp | 47 a += a * a.adjoint() + a1 * a1.adjoint(); 60 VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows())); 61 VERIFY_IS_APPROX(positive, positive.adjoint()); 66 VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows())); 67 VERIFY_IS_APPROX(positive, positive.adjoint());
|
H A D | eigen2_qr.cpp | 31 SquareMatrixType b = a.adjoint() * a; 35 VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint()); 39 VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint()); 43 VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
|
/external/eigen/doc/examples/ |
H A D | tut_arithmetic_dot_cross.cpp | 12 double dp = v.adjoint()*w; // automatic conversion of the inner product to a scalar
|