/external/skia/src/pathops/ |
H A D | SkPathOpsRect.cpp | 17 int roots = 0; local 19 roots = SkDQuad::FindExtrema(&sub[0].fX, tValues); 22 roots += SkDQuad::FindExtrema(&sub[0].fY, &tValues[roots]); 24 for (int index = 0; index < roots; ++index) { 34 int roots = 0; local 36 roots = SkDConic::FindExtrema(&sub[0].fX, sub.fWeight, tValues); 39 roots += SkDConic::FindExtrema(&sub[0].fY, sub.fWeight, &tValues[roots]); 41 for (int index = 0; index < roots; 51 int roots = 0; local [all...] |
H A D | SkDCubicLineIntersection.cpp | 120 int intersectRay(double roots[3]) { argument 129 int count = SkDCubic::RootsValidT(A, B, C, D, roots); 131 SkDPoint calcPt = c.ptAtT(roots[index]); 139 count = c.searchRoots(extremeTs, extrema, 0, SkDCubic::kXAxis, roots); 152 int roots = intersectRay(rootVals); local 153 for (int index = 0; index < roots; ++index) { 165 static int HorizontalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) { argument 169 int count = SkDCubic::RootsValidT(A, B, C, D, roots); 171 SkDPoint calcPt = c.ptAtT(roots[index]); 175 count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kYAxis, roots); 187 double roots[3]; local 228 VerticalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) argument 250 double roots[3]; local [all...] |
H A D | SkDConicLineIntersection.cpp | 66 int horizontalIntersect(double axisIntercept, double roots[2]) { argument 68 return this->validT(conicVals, axisIntercept, roots); 76 double roots[2]; local 77 int count = this->horizontalIntersect(axisIntercept, roots); 79 double conicT = roots[index]; 102 int roots = this->intersectRay(rootVals); local 103 for (int index = 0; index < roots; ++index) { 119 int intersectRay(double roots[2]) { argument 126 return this->validT(r, 0, roots); 129 int validT(double r[3], double axisIntercept, double roots[ argument 139 verticalIntersect(double axisIntercept, double roots[2]) argument 149 double roots[2]; local 355 HorizontalIntercept(const SkDConic& conic, SkScalar y, double* roots) argument 360 VerticalIntercept(const SkDConic& conic, SkScalar x, double* roots) argument [all...] |
H A D | SkDQuadLineIntersection.cpp | 138 int intersectRay(double roots[2]) { argument 140 solve by rotating line+quad so line is horizontal, then finding the roots 165 return SkDQuad::RootsValidT(A, 2 * B, C, roots); 174 int roots = intersectRay(rootVals); local 175 for (int index = 0; index < roots; ++index) { 187 int horizontalIntersect(double axisIntercept, double roots[2]) { argument 194 return SkDQuad::RootsValidT(D, 2 * E, F, roots); 203 int roots = horizontalIntersect(axisIntercept, rootVals); local 204 for (int index = 0; index < roots; ++index) { 243 int verticalIntersect(double axisIntercept, double roots[ argument 259 int roots = verticalIntersect(axisIntercept, rootVals); local 436 HorizontalIntercept(const SkDQuad& quad, SkScalar y, double* roots) argument 441 VerticalIntercept(const SkDQuad& quad, SkScalar x, double* roots) argument [all...] |
H A D | SkPathOpsCurve.h | 272 static int line_intercept_h(const SkPoint a[2], SkScalar , SkScalar y, double* roots) { argument 274 roots[0] = SkIntersections::HorizontalIntercept(line.set(a), y); 275 return between(0, roots[0], 1); 278 static int line_intercept_v(const SkPoint a[2], SkScalar , SkScalar x, double* roots) { argument 280 roots[0] = SkIntersections::VerticalIntercept(line.set(a), x); 281 return between(0, roots[0], 1); 284 static int quad_intercept_h(const SkPoint a[2], SkScalar , SkScalar y, double* roots) { argument 286 return SkIntersections::HorizontalIntercept(quad.set(a), y, roots); 289 static int quad_intercept_v(const SkPoint a[2], SkScalar , SkScalar x, double* roots) { argument 291 return SkIntersections::VerticalIntercept(quad.set(a), x, roots); 294 conic_intercept_h(const SkPoint a[2], SkScalar w, SkScalar y, double* roots) argument 299 conic_intercept_v(const SkPoint a[2], SkScalar w, SkScalar x, double* roots) argument 304 cubic_intercept_h(const SkPoint a[3], SkScalar , SkScalar y, double* roots) argument 309 cubic_intercept_v(const SkPoint a[3], SkScalar , SkScalar x, double* roots) argument [all...] |
H A D | SkPathOpsConic.cpp | 36 int roots = SkDQuad::RootsValidT(coeff[0], coeff[1], coeff[2], tValues); local 37 SkASSERT(0 == roots || 1 == roots); 39 if (1 == roots) {
|
/external/smali/util/src/test/java/org/jf/util/ |
H A D | PathUtilTest.java | 39 File[] roots = File.listRoots(); 41 if (roots.length > 1) { 42 File basePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar + "test.txt"); 43 File relativePath = new File(roots[1] + "some" + File.separatorChar + "dir" + File.separatorChar + "test.txt"); 53 File[] roots = File.listRoots(); 55 File basePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar + "test.txt"); 56 File relativePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar + "test.txt"); 68 File[] roots = File.listRoots(); 70 File basePath = new File(roots[0] + "some" + File.separatorChar + "dir" + File.separatorChar); 71 File relativePath = new File(roots[ [all...] |
/external/eigen/unsupported/doc/examples/ |
H A D | PolynomialSolver1.cpp | 12 Vector5d roots = Vector5d::Random(); local 13 cout << "Roots: " << roots.transpose() << endl; 15 roots_to_monicPolynomial( roots, polynomial ); 18 cout << "Complex roots: " << psolve.roots().transpose() << endl; 23 cout << "Real roots: " << mapRR.transpose() << endl; 33 cout << "Complex roots: " << psolvef.roots().transpose() << endl; 35 for( int i=0; i<6; ++i ){ evals[i] = std::abs( poly_eval( hardCase_polynomial, psolvef.roots()[i] ) ); } 36 cout << "Norms of the evaluations of the polynomial at the roots [all...] |
H A D | PolynomialUtils1.cpp | 9 Vector4d roots = Vector4d::Random(); local 10 cout << "Roots: " << roots.transpose() << endl; 12 roots_to_monicPolynomial( roots, polynomial ); 18 evaluation[i] = poly_eval( polynomial, roots[i] ); } 19 cout << "Evaluation of the polynomial at the roots: " << evaluation.transpose();
|
/external/eigen/unsupported/test/ |
H A D | polynomialutils.cpp | 36 EvalRootsType roots = EvalRootsType::Random(deg); local 37 roots_to_monicPolynomial( roots, pols ); 40 for( int i=0; i<roots.size(); ++i ){ 41 evr[i] = std::abs( poly_eval( pols, roots[i] ) ); } 74 EvalRootsType roots = EvalRootsType::Random(deg); local 75 roots_to_monicPolynomial( roots, pols ); 78 _Scalar Max = roots.array().abs().maxCoeff(); 79 _Scalar min = roots.array().abs().minCoeff(); 83 cerr << "Roots: " << roots << endl;
|
H A D | polynomialsolver.cpp | 42 const RootsType& roots( psolve.roots() ); 44 for( int i=0; i<roots.size(); ++i ){ 45 evr[i] = std::abs( poly_eval( pols, roots[i] ) ); } 52 cerr << "Roots found: " << roots.transpose() << endl; 53 cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl; 57 std::vector<Scalar> rootModuli( roots.size() ); 58 Map< EvalRootsType > aux( &rootModuli[0], roots.size() ); 59 aux = roots.array().abs(); 93 void evalSolverSugarFunction( const POLYNOMIAL& pols, const ROOTS& roots, cons argument [all...] |
/external/eigen/bench/ |
H A D | eig33.cpp | 49 inline void computeRoots(const Matrix& m, Roots& roots) argument 56 // eigenvalues are the roots to this equation, all guaranteed to be 62 // Construct the parameters used in classifying the roots of the equation 63 // and in solving the equation for the roots in closed form. 75 // Compute the eigenvalues by solving for the roots of the polynomial. 80 roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta; 81 roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); 82 roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); 85 if (roots(0) >= roots( [all...] |
/external/ceres-solver/internal/ceres/ |
H A D | polynomial_test.cc | 78 // Needed because the roots are not returned in sorted order. 85 // Run a test with the polynomial defined by the N real roots in roots_real. 141 const double roots[1] = { 42.42 }; local 142 RunPolynomialTestRealRoots(roots, true, true, kEpsilon); 146 const double roots[1] = { -42.42 }; local 147 RunPolynomialTestRealRoots(roots, true, true, kEpsilon); 151 const double roots[2] = { 1.0, 42.42 }; local 152 RunPolynomialTestRealRoots(roots, true, true, kEpsilon); 156 const double roots[2] = { -42.42, 1.0 }; local 157 RunPolynomialTestRealRoots(roots, tru 161 const double roots[2] = { -42.42, -1.0 }; local 166 const double roots[2] = { 42.42, 42.43 }; local 189 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; local 194 const double roots[4] = { 1.23e-1, 2.46e-1, 1.23e+5, 2.46e+5 }; local 199 const double roots[4] = { -42.42, 0.0, 0.0, 42.42 }; local 204 const double roots[4] = { 0.0, 0.0, 0.0, 0.0 }; local 209 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; local 214 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; local 219 const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; local [all...] |
/external/dbus/test/ |
H A D | unused-code-gc.py | 11 roots = {} variable 176 ## now we need to find the roots (exported symbols) 185 if roots.has_key(name): 188 roots[name] = 1 190 print "%d symbols exported from this object" % len(roots) 193 ## notice they are used. Manually add them as roots... 214 if roots.has_key(vr): 216 roots[vr] = 1 218 for k in roots.keys(): 237 print "The following are hardcoded in as vtable roots [all...] |
/external/skia/src/core/ |
H A D | SkQuadClipper.cpp | 32 SkScalar roots[2]; // we only expect one, but make room for 2 for safety local 33 int count = SkFindUnitQuadRoots(A, B, C, roots); 35 *t = roots[0];
|
H A D | SkGeometry.cpp | 71 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) { argument 72 SkASSERT(roots); 75 return valid_unit_divide(-C, B, roots); 78 SkScalar* r = roots; 81 if (R < 0 || !SkScalarIsFinite(R)) { // complex roots 95 if (r - roots == 2) { 96 if (roots[0] > roots[1]) 97 SkTSwap<SkScalar>(roots[0], roots[ 873 double roots[3]; local 940 int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues); local [all...] |
/external/v8/test/unittests/compiler/ |
H A D | graph-trimmer-unittest.cc | 22 Node* const roots[1] = {root}; local 24 trimmer.TrimGraph(&roots[0], &roots[arraysize(roots)]);
|
/external/skia/tests/ |
H A D | PathOpsCubicConicIntersectionTest.cpp | 49 int roots = i.intersect(cubic, conic); local 50 for (int pt = 0; pt < roots; ++pt) {
|
H A D | PathOpsCubicQuadIntersectionTest.cpp | 73 int roots = i.intersect(cubic, quad); local 74 for (int pt = 0; pt < roots; ++pt) {
|
/external/jarjar/src/main/com/tonicsystems/jarjar/ |
H A D | KeepProcessor.java | 31 private final List<String> roots = new ArrayList<String>(); field in class:KeepProcessor 44 closureHelper(closure, roots); 68 roots.add(name);
|
/external/skia/src/effects/gradients/ |
H A D | SkTwoPointConicalGradient.cpp | 32 // Return the number of distinct real roots, and write them into roots[] in 34 static int find_quad_roots(float A, float B, float C, float roots[2], bool descendingOrder = false) { argument 35 SkASSERT(roots); 38 return valid_divide(-C, B, roots); 60 roots[0] = 0; 66 roots[0] = r0 < r1 ? r0 : r1; 67 roots[1] = r0 > r1 ? r0 : r1; 69 SkTSwap(roots[0], roots[ 108 float roots[2]; local [all...] |
/external/fonttools/Lib/fontTools/misc/ |
H A D | bezierTools.py | 36 roots = [] 38 roots.append(-bx/ax2) 40 roots.append(-by/ay2) 41 points = [(ax*t*t + bx*t + cx, ay*t*t + by*t + cy) for t in roots if 0 <= t < 1] + [pt1, pt3] 64 roots = xRoots + yRoots 66 points = [(ax*t*t*t + bx*t*t + cx * t + dx, ay*t*t*t + by*t*t + cy * t + dy) for t in roots] + [pt1, pt4] 260 This function returns a list of roots. Note that the returned list 266 roots = [] 269 roots = [-c/b] 271 # We have a true quadratic equation. Apply the quadratic formula to find two roots [all...] |
/external/fonttools/Tools/fontTools/misc/ |
H A D | bezierTools.py | 36 roots = [] 38 roots.append(-bx/ax2) 40 roots.append(-by/ay2) 41 points = [(ax*t*t + bx*t + cx, ay*t*t + by*t + cy) for t in roots if 0 <= t < 1] + [pt1, pt3] 64 roots = xRoots + yRoots 66 points = [(ax*t*t*t + bx*t*t + cx * t + dx, ay*t*t*t + by*t*t + cy * t + dy) for t in roots] + [pt1, pt4] 260 This function returns a list of roots. Note that the returned list 266 roots = [] 269 roots = [-c/b] 271 # We have a true quadratic equation. Apply the quadratic formula to find two roots [all...] |
/external/compiler-rt/test/BlocksRuntime/ |
H A D | makefile | 55 ditto $(RootsDirectory)/libclosure.roots/libclosure~dst/usr/local/lib/system $(ALTUSRLOCALLIBSYSTEM) 67 LibsystemRootPath ?= $(RootsDirectory)/Libsystem-$(LibsystemVersion).roots/Libsystem-$(LibsystemVersion)~dst/usr/lib/
|
/external/eclipse-basebuilder/basebuilder-3.6.2/org.eclipse.releng.basebuilder/plugins/ |
H A D | org.eclipse.equinox.p2.director.app_1.0.201.R36x_v20100823.jar | ... .eclipse.equinox.p2.query.IQueryResult roots
boolean install
org.eclipse.equinox.internal. ... |