1/*
2 *  Copyright 2012 The WebRTC Project Authors. All rights reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11// Borrowed from Chromium's src/base/memory/scoped_ptr.h.
12
13// Scopers help you manage ownership of a pointer, helping you easily manage a
14// pointer within a scope, and automatically destroying the pointer at the end
15// of a scope.  There are two main classes you will use, which correspond to the
16// operators new/delete and new[]/delete[].
17//
18// Example usage (scoped_ptr<T>):
19//   {
20//     scoped_ptr<Foo> foo(new Foo("wee"));
21//   }  // foo goes out of scope, releasing the pointer with it.
22//
23//   {
24//     scoped_ptr<Foo> foo;          // No pointer managed.
25//     foo.reset(new Foo("wee"));    // Now a pointer is managed.
26//     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
27//     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
28//     foo->Method();                // Foo::Method() called.
29//     foo.get()->Method();          // Foo::Method() called.
30//     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
31//                                   // manages a pointer.
32//     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
33//     foo.reset();                  // Foo("wee4") destroyed, foo no longer
34//                                   // manages a pointer.
35//   }  // foo wasn't managing a pointer, so nothing was destroyed.
36//
37// Example usage (scoped_ptr<T[]>):
38//   {
39//     scoped_ptr<Foo[]> foo(new Foo[100]);
40//     foo.get()->Method();  // Foo::Method on the 0th element.
41//     foo[10].Method();     // Foo::Method on the 10th element.
42//   }
43//
44// These scopers also implement part of the functionality of C++11 unique_ptr
45// in that they are "movable but not copyable." You can use the scopers in the
46// parameter and return types of functions to signify ownership transfer in to
47// and out of a function. When calling a function that has a scoper as the
48// argument type, it must be called with the result of calling std::move on an
49// analogous scoper, or another function that generates a temporary; passing by
50// copy will NOT work. Here is an example using scoped_ptr:
51//
52//   void TakesOwnership(scoped_ptr<Foo> arg) {
53//     // Do something with arg
54//   }
55//   scoped_ptr<Foo> CreateFoo() {
56//     // No need for calling std::move because we are constructing a temporary
57//     // for the return value.
58//     return scoped_ptr<Foo>(new Foo("new"));
59//   }
60//   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
61//     return std::move(arg);
62//   }
63//
64//   {
65//     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay").
66//     TakesOwnership(std::move(ptr));       // ptr no longer owns Foo("yay").
67//     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo.
68//     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2.
69//         PassThru(std::move(ptr2));        // ptr2 is correspondingly nullptr.
70//   }
71//
72// Notice that if you do not call std::move when returning from PassThru(), or
73// when invoking TakesOwnership(), the code will not compile because scopers
74// are not copyable; they only implement move semantics which require calling
75// std::move to signify a destructive transfer of state. CreateFoo() is
76// different though because we are constructing a temporary on the return line
77// and thus can avoid needing to call std::move.
78
79#ifndef WEBRTC_BASE_SCOPED_PTR_H__
80#define WEBRTC_BASE_SCOPED_PTR_H__
81
82// This is an implementation designed to match the anticipated future TR2
83// implementation of the scoped_ptr class.
84
85#include <assert.h>
86#include <stddef.h>
87#include <stdlib.h>
88
89#include <algorithm>  // For std::swap().
90#include <cstddef>
91
92#include "webrtc/base/constructormagic.h"
93#include "webrtc/base/deprecation.h"
94#include "webrtc/base/template_util.h"
95#include "webrtc/typedefs.h"
96
97namespace rtc {
98
99// Function object which deletes its parameter, which must be a pointer.
100// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
101// invokes 'delete'. The default deleter for scoped_ptr<T>.
102template <class T>
103struct DefaultDeleter {
104  DefaultDeleter() {}
105  template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
106    // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
107    // if U* is implicitly convertible to T* and U is not an array type.
108    //
109    // Correct implementation should use SFINAE to disable this
110    // constructor. However, since there are no other 1-argument constructors,
111    // using a static_assert based on is_convertible<> and requiring
112    // complete types is simpler and will cause compile failures for equivalent
113    // misuses.
114    //
115    // Note, the is_convertible<U*, T*> check also ensures that U is not an
116    // array. T is guaranteed to be a non-array, so any U* where U is an array
117    // cannot convert to T*.
118    enum { T_must_be_complete = sizeof(T) };
119    enum { U_must_be_complete = sizeof(U) };
120    static_assert((rtc::is_convertible<U*, T*>::value),
121                  "U* must implicitly convert to T*");
122  }
123  inline void operator()(T* ptr) const {
124    enum { type_must_be_complete = sizeof(T) };
125    delete ptr;
126  }
127};
128
129// Specialization of DefaultDeleter for array types.
130template <class T>
131struct DefaultDeleter<T[]> {
132  inline void operator()(T* ptr) const {
133    enum { type_must_be_complete = sizeof(T) };
134    delete[] ptr;
135  }
136
137 private:
138  // Disable this operator for any U != T because it is undefined to execute
139  // an array delete when the static type of the array mismatches the dynamic
140  // type.
141  //
142  // References:
143  //   C++98 [expr.delete]p3
144  //   http://cplusplus.github.com/LWG/lwg-defects.html#938
145  template <typename U> void operator()(U* array) const;
146};
147
148template <class T, int n>
149struct DefaultDeleter<T[n]> {
150  // Never allow someone to declare something like scoped_ptr<int[10]>.
151  static_assert(sizeof(T) == -1, "do not use array with size as type");
152};
153
154// Function object which invokes 'free' on its parameter, which must be
155// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
156//
157// scoped_ptr<int, rtc::FreeDeleter> foo_ptr(
158//     static_cast<int*>(malloc(sizeof(int))));
159struct FreeDeleter {
160  inline void operator()(void* ptr) const {
161    free(ptr);
162  }
163};
164
165namespace internal {
166
167template <typename T>
168struct ShouldAbortOnSelfReset {
169  template <typename U>
170  static rtc::internal::NoType Test(const typename U::AllowSelfReset*);
171
172  template <typename U>
173  static rtc::internal::YesType Test(...);
174
175  static const bool value =
176      sizeof(Test<T>(0)) == sizeof(rtc::internal::YesType);
177};
178
179// Minimal implementation of the core logic of scoped_ptr, suitable for
180// reuse in both scoped_ptr and its specializations.
181template <class T, class D>
182class scoped_ptr_impl {
183 public:
184  explicit scoped_ptr_impl(T* p) : data_(p) {}
185
186  // Initializer for deleters that have data parameters.
187  scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
188
189  // Templated constructor that destructively takes the value from another
190  // scoped_ptr_impl.
191  template <typename U, typename V>
192  scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
193      : data_(other->release(), other->get_deleter()) {
194    // We do not support move-only deleters.  We could modify our move
195    // emulation to have rtc::subtle::move() and rtc::subtle::forward()
196    // functions that are imperfect emulations of their C++11 equivalents,
197    // but until there's a requirement, just assume deleters are copyable.
198  }
199
200  template <typename U, typename V>
201  void TakeState(scoped_ptr_impl<U, V>* other) {
202    // See comment in templated constructor above regarding lack of support
203    // for move-only deleters.
204    reset(other->release());
205    get_deleter() = other->get_deleter();
206  }
207
208  ~scoped_ptr_impl() {
209    if (data_.ptr != nullptr) {
210      // Not using get_deleter() saves one function call in non-optimized
211      // builds.
212      static_cast<D&>(data_)(data_.ptr);
213    }
214  }
215
216  void reset(T* p) {
217    // This is a self-reset, which is no longer allowed for default deleters:
218    // https://crbug.com/162971
219    assert(!ShouldAbortOnSelfReset<D>::value || p == nullptr || p != data_.ptr);
220
221    // Note that running data_.ptr = p can lead to undefined behavior if
222    // get_deleter()(get()) deletes this. In order to prevent this, reset()
223    // should update the stored pointer before deleting its old value.
224    //
225    // However, changing reset() to use that behavior may cause current code to
226    // break in unexpected ways. If the destruction of the owned object
227    // dereferences the scoped_ptr when it is destroyed by a call to reset(),
228    // then it will incorrectly dispatch calls to |p| rather than the original
229    // value of |data_.ptr|.
230    //
231    // During the transition period, set the stored pointer to nullptr while
232    // deleting the object. Eventually, this safety check will be removed to
233    // prevent the scenario initially described from occurring and
234    // http://crbug.com/176091 can be closed.
235    T* old = data_.ptr;
236    data_.ptr = nullptr;
237    if (old != nullptr)
238      static_cast<D&>(data_)(old);
239    data_.ptr = p;
240  }
241
242  T* get() const { return data_.ptr; }
243
244  D& get_deleter() { return data_; }
245  const D& get_deleter() const { return data_; }
246
247  void swap(scoped_ptr_impl& p2) {
248    // Standard swap idiom: 'using std::swap' ensures that std::swap is
249    // present in the overload set, but we call swap unqualified so that
250    // any more-specific overloads can be used, if available.
251    using std::swap;
252    swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
253    swap(data_.ptr, p2.data_.ptr);
254  }
255
256  T* release() {
257    T* old_ptr = data_.ptr;
258    data_.ptr = nullptr;
259    return old_ptr;
260  }
261
262  T** accept() {
263    reset(nullptr);
264    return &(data_.ptr);
265  }
266
267  T** use() {
268    return &(data_.ptr);
269  }
270
271 private:
272  // Needed to allow type-converting constructor.
273  template <typename U, typename V> friend class scoped_ptr_impl;
274
275  // Use the empty base class optimization to allow us to have a D
276  // member, while avoiding any space overhead for it when D is an
277  // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
278  // discussion of this technique.
279  struct Data : public D {
280    explicit Data(T* ptr_in) : ptr(ptr_in) {}
281    Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
282    T* ptr;
283  };
284
285  Data data_;
286
287  RTC_DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
288};
289
290}  // namespace internal
291
292// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
293// automatically deletes the pointer it holds (if any).
294// That is, scoped_ptr<T> owns the T object that it points to.
295// Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T
296// object. Also like T*, scoped_ptr<T> is thread-compatible, and once you
297// dereference it, you get the thread safety guarantees of T.
298//
299// The size of scoped_ptr is small. On most compilers, when using the
300// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
301// increase the size proportional to whatever state they need to have. See
302// comments inside scoped_ptr_impl<> for details.
303//
304// Current implementation targets having a strict subset of  C++11's
305// unique_ptr<> features. Known deficiencies include not supporting move-only
306// deleters, function pointers as deleters, and deleters with reference
307// types.
308template <class T, class D = rtc::DefaultDeleter<T> >
309class scoped_ptr {
310
311  // TODO(ajm): If we ever import RefCountedBase, this check needs to be
312  // enabled.
313  //static_assert(rtc::internal::IsNotRefCounted<T>::value,
314  //              "T is refcounted type and needs scoped refptr");
315
316 public:
317  // The element and deleter types.
318  typedef T element_type;
319  typedef D deleter_type;
320
321  // Constructor.  Defaults to initializing with nullptr.
322  scoped_ptr() : impl_(nullptr) {}
323
324  // Constructor.  Takes ownership of p.
325  explicit scoped_ptr(element_type* p) : impl_(p) {}
326
327  // Constructor.  Allows initialization of a stateful deleter.
328  scoped_ptr(element_type* p, const D& d) : impl_(p, d) {}
329
330  // Constructor.  Allows construction from a nullptr.
331  scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
332
333  // Constructor.  Allows construction from a scoped_ptr rvalue for a
334  // convertible type and deleter.
335  //
336  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
337  // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
338  // has different post-conditions if D is a reference type. Since this
339  // implementation does not support deleters with reference type,
340  // we do not need a separate move constructor allowing us to avoid one
341  // use of SFINAE. You only need to care about this if you modify the
342  // implementation of scoped_ptr.
343  template <typename U, typename V>
344  scoped_ptr(scoped_ptr<U, V>&& other)
345      : impl_(&other.impl_) {
346    static_assert(!rtc::is_array<U>::value, "U cannot be an array");
347  }
348
349  // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
350  // type and deleter.
351  //
352  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
353  // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
354  // form has different requirements on for move-only Deleters. Since this
355  // implementation does not support move-only Deleters, we do not need a
356  // separate move assignment operator allowing us to avoid one use of SFINAE.
357  // You only need to care about this if you modify the implementation of
358  // scoped_ptr.
359  template <typename U, typename V>
360  scoped_ptr& operator=(scoped_ptr<U, V>&& rhs) {
361    static_assert(!rtc::is_array<U>::value, "U cannot be an array");
362    impl_.TakeState(&rhs.impl_);
363    return *this;
364  }
365
366  // operator=.  Allows assignment from a nullptr. Deletes the currently owned
367  // object, if any.
368  scoped_ptr& operator=(std::nullptr_t) {
369    reset();
370    return *this;
371  }
372
373  // Deleted copy constructor and copy assignment, to make the type move-only.
374  scoped_ptr(const scoped_ptr& other) = delete;
375  scoped_ptr& operator=(const scoped_ptr& other) = delete;
376
377  // Get an rvalue reference. (sp.Pass() does the same thing as std::move(sp).)
378  // Deprecated; remove in March 2016 (bug 5373).
379  RTC_DEPRECATED scoped_ptr&& Pass() {
380    return std::move(*this);
381  }
382
383  // Reset.  Deletes the currently owned object, if any.
384  // Then takes ownership of a new object, if given.
385  void reset(element_type* p = nullptr) { impl_.reset(p); }
386
387  // Accessors to get the owned object.
388  // operator* and operator-> will assert() if there is no current object.
389  element_type& operator*() const {
390    assert(impl_.get() != nullptr);
391    return *impl_.get();
392  }
393  element_type* operator->() const  {
394    assert(impl_.get() != nullptr);
395    return impl_.get();
396  }
397  element_type* get() const { return impl_.get(); }
398
399  // Access to the deleter.
400  deleter_type& get_deleter() { return impl_.get_deleter(); }
401  const deleter_type& get_deleter() const { return impl_.get_deleter(); }
402
403  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
404  // implicitly convertible to a real bool (which is dangerous).
405  //
406  // Note that this trick is only safe when the == and != operators
407  // are declared explicitly, as otherwise "scoped_ptr1 ==
408  // scoped_ptr2" will compile but do the wrong thing (i.e., convert
409  // to Testable and then do the comparison).
410 private:
411  typedef rtc::internal::scoped_ptr_impl<element_type, deleter_type>
412      scoped_ptr::*Testable;
413
414 public:
415  operator Testable() const {
416    return impl_.get() ? &scoped_ptr::impl_ : nullptr;
417  }
418
419  // Comparison operators.
420  // These return whether two scoped_ptr refer to the same object, not just to
421  // two different but equal objects.
422  bool operator==(const element_type* p) const { return impl_.get() == p; }
423  bool operator!=(const element_type* p) const { return impl_.get() != p; }
424
425  // Swap two scoped pointers.
426  void swap(scoped_ptr& p2) {
427    impl_.swap(p2.impl_);
428  }
429
430  // Release a pointer.
431  // The return value is the current pointer held by this object. If this object
432  // holds a nullptr, the return value is nullptr. After this operation, this
433  // object will hold a nullptr, and will not own the object any more.
434  element_type* release() WARN_UNUSED_RESULT {
435    return impl_.release();
436  }
437
438  // Delete the currently held pointer and return a pointer
439  // to allow overwriting of the current pointer address.
440  element_type** accept() WARN_UNUSED_RESULT {
441    return impl_.accept();
442  }
443
444  // Return a pointer to the current pointer address.
445  element_type** use() WARN_UNUSED_RESULT {
446    return impl_.use();
447  }
448
449 private:
450  // Needed to reach into |impl_| in the constructor.
451  template <typename U, typename V> friend class scoped_ptr;
452  rtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
453
454  // Forbidden for API compatibility with std::unique_ptr.
455  explicit scoped_ptr(int disallow_construction_from_null);
456
457  // Forbid comparison of scoped_ptr types.  If U != T, it totally
458  // doesn't make sense, and if U == T, it still doesn't make sense
459  // because you should never have the same object owned by two different
460  // scoped_ptrs.
461  template <class U> bool operator==(scoped_ptr<U> const& p2) const;
462  template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
463};
464
465template <class T, class D>
466class scoped_ptr<T[], D> {
467 public:
468  // The element and deleter types.
469  typedef T element_type;
470  typedef D deleter_type;
471
472  // Constructor.  Defaults to initializing with nullptr.
473  scoped_ptr() : impl_(nullptr) {}
474
475  // Constructor. Stores the given array. Note that the argument's type
476  // must exactly match T*. In particular:
477  // - it cannot be a pointer to a type derived from T, because it is
478  //   inherently unsafe in the general case to access an array through a
479  //   pointer whose dynamic type does not match its static type (eg., if
480  //   T and the derived types had different sizes access would be
481  //   incorrectly calculated). Deletion is also always undefined
482  //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
483  // - it cannot be const-qualified differently from T per unique_ptr spec
484  //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
485  //   to work around this may use implicit_cast<const T*>().
486  //   However, because of the first bullet in this comment, users MUST
487  //   NOT use implicit_cast<Base*>() to upcast the static type of the array.
488  explicit scoped_ptr(element_type* array) : impl_(array) {}
489
490  // Constructor.  Allows construction from a nullptr.
491  scoped_ptr(std::nullptr_t) : impl_(nullptr) {}
492
493  // Constructor.  Allows construction from a scoped_ptr rvalue.
494  scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
495
496  // operator=.  Allows assignment from a scoped_ptr rvalue.
497  scoped_ptr& operator=(scoped_ptr&& rhs) {
498    impl_.TakeState(&rhs.impl_);
499    return *this;
500  }
501
502  // operator=.  Allows assignment from a nullptr. Deletes the currently owned
503  // array, if any.
504  scoped_ptr& operator=(std::nullptr_t) {
505    reset();
506    return *this;
507  }
508
509  // Deleted copy constructor and copy assignment, to make the type move-only.
510  scoped_ptr(const scoped_ptr& other) = delete;
511  scoped_ptr& operator=(const scoped_ptr& other) = delete;
512
513  // Get an rvalue reference. (sp.Pass() does the same thing as std::move(sp).)
514  // Deprecated; remove in March 2016 (bug 5373).
515  RTC_DEPRECATED scoped_ptr&& Pass() {
516    return std::move(*this);
517  }
518
519  // Reset.  Deletes the currently owned array, if any.
520  // Then takes ownership of a new object, if given.
521  void reset(element_type* array = nullptr) { impl_.reset(array); }
522
523  // Accessors to get the owned array.
524  element_type& operator[](size_t i) const {
525    assert(impl_.get() != nullptr);
526    return impl_.get()[i];
527  }
528  element_type* get() const { return impl_.get(); }
529
530  // Access to the deleter.
531  deleter_type& get_deleter() { return impl_.get_deleter(); }
532  const deleter_type& get_deleter() const { return impl_.get_deleter(); }
533
534  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
535  // implicitly convertible to a real bool (which is dangerous).
536 private:
537  typedef rtc::internal::scoped_ptr_impl<element_type, deleter_type>
538      scoped_ptr::*Testable;
539
540 public:
541  operator Testable() const {
542    return impl_.get() ? &scoped_ptr::impl_ : nullptr;
543  }
544
545  // Comparison operators.
546  // These return whether two scoped_ptr refer to the same object, not just to
547  // two different but equal objects.
548  bool operator==(element_type* array) const { return impl_.get() == array; }
549  bool operator!=(element_type* array) const { return impl_.get() != array; }
550
551  // Swap two scoped pointers.
552  void swap(scoped_ptr& p2) {
553    impl_.swap(p2.impl_);
554  }
555
556  // Release a pointer.
557  // The return value is the current pointer held by this object. If this object
558  // holds a nullptr, the return value is nullptr. After this operation, this
559  // object will hold a nullptr, and will not own the object any more.
560  element_type* release() WARN_UNUSED_RESULT {
561    return impl_.release();
562  }
563
564  // Delete the currently held pointer and return a pointer
565  // to allow overwriting of the current pointer address.
566  element_type** accept() WARN_UNUSED_RESULT {
567    return impl_.accept();
568  }
569
570  // Return a pointer to the current pointer address.
571  element_type** use() WARN_UNUSED_RESULT {
572    return impl_.use();
573  }
574
575 private:
576  // Force element_type to be a complete type.
577  enum { type_must_be_complete = sizeof(element_type) };
578
579  // Actually hold the data.
580  rtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
581
582  // Disable initialization from any type other than element_type*, by
583  // providing a constructor that matches such an initialization, but is
584  // private and has no definition. This is disabled because it is not safe to
585  // call delete[] on an array whose static type does not match its dynamic
586  // type.
587  template <typename U> explicit scoped_ptr(U* array);
588  explicit scoped_ptr(int disallow_construction_from_null);
589
590  // Disable reset() from any type other than element_type*, for the same
591  // reasons as the constructor above.
592  template <typename U> void reset(U* array);
593  void reset(int disallow_reset_from_null);
594
595  // Forbid comparison of scoped_ptr types.  If U != T, it totally
596  // doesn't make sense, and if U == T, it still doesn't make sense
597  // because you should never have the same object owned by two different
598  // scoped_ptrs.
599  template <class U> bool operator==(scoped_ptr<U> const& p2) const;
600  template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
601};
602
603template <class T, class D>
604void swap(rtc::scoped_ptr<T, D>& p1, rtc::scoped_ptr<T, D>& p2) {
605  p1.swap(p2);
606}
607
608}  // namespace rtc
609
610template <class T, class D>
611bool operator==(T* p1, const rtc::scoped_ptr<T, D>& p2) {
612  return p1 == p2.get();
613}
614
615template <class T, class D>
616bool operator!=(T* p1, const rtc::scoped_ptr<T, D>& p2) {
617  return p1 != p2.get();
618}
619
620// A function to convert T* into scoped_ptr<T>
621// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
622// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
623template <typename T>
624rtc::scoped_ptr<T> rtc_make_scoped_ptr(T* ptr) {
625  return rtc::scoped_ptr<T>(ptr);
626}
627
628#endif  // #ifndef WEBRTC_BASE_SCOPED_PTR_H__
629