1// © 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html#License
3/*
4*******************************************************************************
5*
6*   Copyright (C) 1999-2015, International Business Machines
7*   Corporation and others.  All Rights Reserved.
8*
9*******************************************************************************
10*   CollationWeights.java, ported from collationweights.h/.cpp
11*
12*   C++ version created on: 2001mar08 as ucol_wgt.h
13*   created by: Markus W. Scherer
14*/
15
16package com.ibm.icu.impl.coll;
17
18import java.util.Arrays;
19
20/**
21 * Allocates n collation element weights between two exclusive limits.
22 * Used only internally by the collation tailoring builder.
23 */
24public final class CollationWeights {
25    public CollationWeights() {}
26
27    public void initForPrimary(boolean compressible) {
28        middleLength=1;
29        minBytes[1] = Collation.MERGE_SEPARATOR_BYTE + 1;
30        maxBytes[1] = Collation.TRAIL_WEIGHT_BYTE;
31        if(compressible) {
32            minBytes[2] = Collation.PRIMARY_COMPRESSION_LOW_BYTE + 1;
33            maxBytes[2] = Collation.PRIMARY_COMPRESSION_HIGH_BYTE - 1;
34        } else {
35            minBytes[2] = 2;
36            maxBytes[2] = 0xff;
37        }
38        minBytes[3] = 2;
39        maxBytes[3] = 0xff;
40        minBytes[4] = 2;
41        maxBytes[4] = 0xff;
42    }
43
44    public void initForSecondary() {
45        // We use only the lower 16 bits for secondary weights.
46        middleLength=3;
47        minBytes[1] = 0;
48        maxBytes[1] = 0;
49        minBytes[2] = 0;
50        maxBytes[2] = 0;
51        minBytes[3] = Collation.LEVEL_SEPARATOR_BYTE + 1;
52        maxBytes[3] = 0xff;
53        minBytes[4] = 2;
54        maxBytes[4] = 0xff;
55    }
56
57    public void initForTertiary() {
58        // We use only the lower 16 bits for tertiary weights.
59        middleLength=3;
60        minBytes[1] = 0;
61        maxBytes[1] = 0;
62        minBytes[2] = 0;
63        maxBytes[2] = 0;
64        // We use only 6 bits per byte.
65        // The other bits are used for case & quaternary weights.
66        minBytes[3] = Collation.LEVEL_SEPARATOR_BYTE + 1;
67        maxBytes[3] = 0x3f;
68        minBytes[4] = 2;
69        maxBytes[4] = 0x3f;
70    }
71
72    /**
73     * Determine heuristically
74     * what ranges to use for a given number of weights between (excluding)
75     * two limits.
76     *
77     * @param lowerLimit A collation element weight; the ranges will be filled to cover
78     *                   weights greater than this one.
79     * @param upperLimit A collation element weight; the ranges will be filled to cover
80     *                   weights less than this one.
81     * @param n          The number of collation element weights w necessary such that
82     *                   lowerLimit<w<upperLimit in lexical order.
83     * @return true if it is possible to fit n elements between the limits
84     */
85    public boolean allocWeights(long lowerLimit, long upperLimit, int n) {
86        // Call getWeightRanges() and then determine heuristically
87        // which ranges to use for a given number of weights between (excluding)
88        // two limits.
89        // puts("");
90
91        if(!getWeightRanges(lowerLimit, upperLimit)) {
92            // printf("error: unable to get Weight ranges\n");
93            return false;
94        }
95
96        /* try until we find suitably large ranges */
97        for(;;) {
98            /* get the smallest number of bytes in a range */
99            int minLength=ranges[0].length;
100
101            if(allocWeightsInShortRanges(n, minLength)) { break; }
102
103            if(minLength == 4) {
104                // printf("error: the maximum number of %ld weights is insufficient for n=%ld\n",
105                //       minLengthCount, n);
106                return false;
107            }
108
109            if(allocWeightsInMinLengthRanges(n, minLength)) { break; }
110
111            /* no good match, lengthen all minLength ranges and iterate */
112            // printf("lengthen the short ranges from %ld bytes to %ld and iterate\n", minLength, minLength+1);
113            for (int i = 0; i < rangeCount && ranges[i].length == minLength; ++i) {
114                lengthenRange(ranges[i]);
115            }
116        }
117
118        /* puts("final ranges:");
119        for(int i=0; i<rangeCount; ++i) {
120            printf("ranges[%ld] .start=0x%08lx .end=0x%08lx .length=%ld .count=%ld\n",
121                  i, ranges[i].start, ranges[i].end, ranges[i].length, ranges[i].count);
122        } */
123
124        rangeIndex = 0;
125        if(rangeCount < ranges.length) {
126            ranges[rangeCount] = null;  // force a crash when going out of bounds
127        }
128        return true;
129    }
130
131    /**
132     * Given a set of ranges calculated by allocWeights(),
133     * iterate through the weights.
134     * The ranges are modified to keep the current iteration state.
135     *
136     * @return The next weight in the ranges, or 0xffffffff if there is none left.
137     */
138    public long nextWeight() {
139        if(rangeIndex >= rangeCount) {
140            return 0xffffffffL;
141        } else {
142            /* get the next weight */
143            WeightRange range = ranges[rangeIndex];
144            long weight = range.start;
145            if(--range.count == 0) {
146                /* this range is finished */
147                ++rangeIndex;
148            } else {
149                /* increment the weight for the next value */
150                range.start = incWeight(weight, range.length);
151                assert(range.start <= range.end);
152            }
153
154            return weight;
155        }
156    }
157
158    /** @internal */
159    private static final class WeightRange implements Comparable<WeightRange> {
160        long start, end;
161        int length, count;
162
163        @Override
164        public int compareTo(WeightRange other) {
165            long l=start;
166            long r=other.start;
167            if(l<r) {
168                return -1;
169            } else if(l>r) {
170                return 1;
171            } else {
172                return 0;
173            }
174        }
175    }
176
177    /* helper functions for CE weights */
178
179    public static int lengthOfWeight(long weight) {
180        if((weight&0xffffff)==0) {
181            return 1;
182        } else if((weight&0xffff)==0) {
183            return 2;
184        } else if((weight&0xff)==0) {
185            return 3;
186        } else {
187            return 4;
188        }
189    }
190
191    private static int getWeightTrail(long weight, int length) {
192        return (int)(weight>>(8*(4-length)))&0xff;
193    }
194
195    private static long setWeightTrail(long weight, int length, int trail) {
196        length=8*(4-length);
197        return (weight&(0xffffff00L<<length))|((long)trail<<length);
198    }
199
200    private static int getWeightByte(long weight, int idx) {
201        return getWeightTrail(weight, idx); /* same calculation */
202    }
203
204    private static long setWeightByte(long weight, int idx, int b) {
205        long mask; /* 0xffffffff except a 00 "hole" for the index-th byte */
206
207        idx*=8;
208        if(idx<32) {
209            mask=0xffffffffL>>idx;
210        } else {
211            // Do not use int>>32 because on some platforms that does not shift at all
212            // while we need it to become 0.
213            // PowerPC: 0xffffffff>>32 = 0           (wanted)
214            // x86:     0xffffffff>>32 = 0xffffffff  (not wanted)
215            //
216            // ANSI C99 6.5.7 Bitwise shift operators:
217            // "If the value of the right operand is negative
218            // or is greater than or equal to the width of the promoted left operand,
219            // the behavior is undefined."
220            mask=0;
221        }
222        idx=32-idx;
223        mask|=0xffffff00L<<idx;
224        return (weight&mask)|((long)b<<idx);
225    }
226
227    private static long truncateWeight(long weight, int length) {
228        return weight&(0xffffffffL<<(8*(4-length)));
229    }
230
231    private static long incWeightTrail(long weight, int length) {
232        return weight+(1L<<(8*(4-length)));
233    }
234
235    private static long decWeightTrail(long weight, int length) {
236        return weight-(1L<<(8*(4-length)));
237    }
238
239    /** @return number of usable byte values for byte idx */
240    private int countBytes(int idx) {
241        return maxBytes[idx] - minBytes[idx] + 1;
242    }
243
244    private long incWeight(long weight, int length) {
245        for(;;) {
246            int b=getWeightByte(weight, length);
247            if(b<maxBytes[length]) {
248                return setWeightByte(weight, length, b+1);
249            } else {
250                // Roll over, set this byte to the minimum and increment the previous one.
251                weight=setWeightByte(weight, length, minBytes[length]);
252                --length;
253                assert(length > 0);
254            }
255        }
256    }
257
258    private long incWeightByOffset(long weight, int length, int offset) {
259        for(;;) {
260            offset += getWeightByte(weight, length);
261            if(offset <= maxBytes[length]) {
262                return setWeightByte(weight, length, offset);
263            } else {
264                // Split the offset between this byte and the previous one.
265                offset -= minBytes[length];
266                weight = setWeightByte(weight, length, minBytes[length] + offset % countBytes(length));
267                offset /= countBytes(length);
268                --length;
269                assert(length > 0);
270            }
271        }
272    }
273
274    private void lengthenRange(WeightRange range) {
275        int length=range.length+1;
276        range.start=setWeightTrail(range.start, length, minBytes[length]);
277        range.end=setWeightTrail(range.end, length, maxBytes[length]);
278        range.count*=countBytes(length);
279        range.length=length;
280    }
281
282    /**
283     * Takes two CE weights and calculates the
284     * possible ranges of weights between the two limits, excluding them.
285     * For weights with up to 4 bytes there are up to 2*4-1=7 ranges.
286     */
287    private boolean getWeightRanges(long lowerLimit, long upperLimit) {
288        assert(lowerLimit != 0);
289        assert(upperLimit != 0);
290
291        /* get the lengths of the limits */
292        int lowerLength=lengthOfWeight(lowerLimit);
293        int upperLength=lengthOfWeight(upperLimit);
294
295        // printf("length of lower limit 0x%08lx is %ld\n", lowerLimit, lowerLength);
296        // printf("length of upper limit 0x%08lx is %ld\n", upperLimit, upperLength);
297        assert(lowerLength>=middleLength);
298        // Permit upperLength<middleLength: The upper limit for secondaries is 0x10000.
299
300        if(lowerLimit>=upperLimit) {
301            // printf("error: no space between lower & upper limits\n");
302            return false;
303        }
304
305        /* check that neither is a prefix of the other */
306        if(lowerLength<upperLength) {
307            if(lowerLimit==truncateWeight(upperLimit, lowerLength)) {
308                // printf("error: lower limit 0x%08lx is a prefix of upper limit 0x%08lx\n", lowerLimit, upperLimit);
309                return false;
310            }
311        }
312        /* if the upper limit is a prefix of the lower limit then the earlier test lowerLimit>=upperLimit has caught it */
313
314        WeightRange[] lower = new WeightRange[5]; /* [0] and [1] are not used - this simplifies indexing */
315        WeightRange middle = new WeightRange();
316        WeightRange[] upper = new WeightRange[5];
317
318        /*
319         * With the limit lengths of 1..4, there are up to 7 ranges for allocation:
320         * range     minimum length
321         * lower[4]  4
322         * lower[3]  3
323         * lower[2]  2
324         * middle    1
325         * upper[2]  2
326         * upper[3]  3
327         * upper[4]  4
328         *
329         * We are now going to calculate up to 7 ranges.
330         * Some of them will typically overlap, so we will then have to merge and eliminate ranges.
331         */
332        long weight=lowerLimit;
333        for(int length=lowerLength; length>middleLength; --length) {
334            int trail=getWeightTrail(weight, length);
335            if(trail<maxBytes[length]) {
336                lower[length] = new WeightRange();
337                lower[length].start=incWeightTrail(weight, length);
338                lower[length].end=setWeightTrail(weight, length, maxBytes[length]);
339                lower[length].length=length;
340                lower[length].count=maxBytes[length]-trail;
341            }
342            weight=truncateWeight(weight, length-1);
343        }
344        if(weight<0xff000000L) {
345            middle.start=incWeightTrail(weight, middleLength);
346        } else {
347            // Prevent overflow for primary lead byte FF
348            // which would yield a middle range starting at 0.
349            middle.start=0xffffffffL;  // no middle range
350        }
351
352        weight=upperLimit;
353        for(int length=upperLength; length>middleLength; --length) {
354            int trail=getWeightTrail(weight, length);
355            if(trail>minBytes[length]) {
356                upper[length] = new WeightRange();
357                upper[length].start=setWeightTrail(weight, length, minBytes[length]);
358                upper[length].end=decWeightTrail(weight, length);
359                upper[length].length=length;
360                upper[length].count=trail-minBytes[length];
361            }
362            weight=truncateWeight(weight, length-1);
363        }
364        middle.end=decWeightTrail(weight, middleLength);
365
366        /* set the middle range */
367        middle.length=middleLength;
368        if(middle.end>=middle.start) {
369            middle.count=(int)((middle.end-middle.start)>>(8*(4-middleLength)))+1;
370        } else {
371            /* no middle range, eliminate overlaps */
372            for(int length=4; length>middleLength; --length) {
373                if(lower[length] != null && upper[length] != null &&
374                        lower[length].count>0 && upper[length].count>0) {
375                    // Note: The lowerEnd and upperStart weights are versions of
376                    // lowerLimit and upperLimit (which are lowerLimit<upperLimit),
377                    // truncated (still less-or-equal)
378                    // and then with their last bytes changed to the
379                    // maxByte (for lowerEnd) or minByte (for upperStart).
380                    final long lowerEnd=lower[length].end;
381                    final long upperStart=upper[length].start;
382                    boolean merged=false;
383
384                    if(lowerEnd>upperStart) {
385                        // These two lower and upper ranges collide.
386                        // Since lowerLimit<upperLimit and lowerEnd and upperStart
387                        // are versions with only their last bytes modified
388                        // (and following ones removed/reset to 0),
389                        // lowerEnd>upperStart is only possible
390                        // if the leading bytes are equal
391                        // and lastByte(lowerEnd)>lastByte(upperStart).
392                        assert(truncateWeight(lowerEnd, length-1)==
393                                truncateWeight(upperStart, length-1));
394                        // Intersect these two ranges.
395                        lower[length].end=upper[length].end;
396                        lower[length].count=
397                                getWeightTrail(lower[length].end, length)-
398                                getWeightTrail(lower[length].start, length)+1;
399                        // count might be <=0 in which case there is no room,
400                        // and the range-collecting code below will ignore this range.
401                        merged=true;
402                    } else if(lowerEnd==upperStart) {
403                        // Not possible, unless minByte==maxByte which is not allowed.
404                        assert(minBytes[length]<maxBytes[length]);
405                    } else /* lowerEnd<upperStart */ {
406                        if(incWeight(lowerEnd, length)==upperStart) {
407                            // Merge adjacent ranges.
408                            lower[length].end=upper[length].end;
409                            lower[length].count+=upper[length].count;  // might be >countBytes
410                            merged=true;
411                        }
412                    }
413                    if(merged) {
414                        // Remove all shorter ranges.
415                        // There was no room available for them between the ranges we just merged.
416                        upper[length].count=0;
417                        while(--length>middleLength) {
418                            lower[length]=upper[length]=null;
419                        }
420                        break;
421                    }
422                }
423            }
424        }
425
426        /* print ranges
427        for(int length=4; length>=2; --length) {
428            if(lower[length].count>0) {
429                printf("lower[%ld] .start=0x%08lx .end=0x%08lx .count=%ld\n", length, lower[length].start, lower[length].end, lower[length].count);
430            }
431        }
432        if(middle.count>0) {
433            printf("middle   .start=0x%08lx .end=0x%08lx .count=%ld\n", middle.start, middle.end, middle.count);
434        }
435        for(int length=2; length<=4; ++length) {
436            if(upper[length].count>0) {
437                printf("upper[%ld] .start=0x%08lx .end=0x%08lx .count=%ld\n", length, upper[length].start, upper[length].end, upper[length].count);
438            }
439        } */
440
441        /* copy the ranges, shortest first, into the result array */
442        rangeCount=0;
443        if(middle.count>0) {
444            ranges[0] = middle;
445            rangeCount=1;
446        }
447        for(int length=middleLength+1; length<=4; ++length) {
448            /* copy upper first so that later the middle range is more likely the first one to use */
449            if(upper[length] != null && upper[length].count>0) {
450                ranges[rangeCount++]=upper[length];
451            }
452            if(lower[length] != null && lower[length].count>0) {
453                ranges[rangeCount++]=lower[length];
454            }
455        }
456        return rangeCount>0;
457    }
458
459    private boolean allocWeightsInShortRanges(int n, int minLength) {
460        // See if the first few minLength and minLength+1 ranges have enough weights.
461        for(int i = 0; i < rangeCount && ranges[i].length <= (minLength + 1); ++i) {
462            if(n <= ranges[i].count) {
463                // Use the first few minLength and minLength+1 ranges.
464                if(ranges[i].length > minLength) {
465                    // Reduce the number of weights from the last minLength+1 range
466                    // which might sort before some minLength ranges,
467                    // so that we use all weights in the minLength ranges.
468                    ranges[i].count = n;
469                }
470                rangeCount = i + 1;
471                // printf("take first %ld ranges\n", rangeCount);
472
473                if(rangeCount>1) {
474                    /* sort the ranges by weight values */
475                    Arrays.sort(ranges, 0, rangeCount);
476                }
477                return true;
478            }
479            n -= ranges[i].count;  // still >0
480        }
481        return false;
482    }
483
484    private boolean allocWeightsInMinLengthRanges(int n, int minLength) {
485        // See if the minLength ranges have enough weights
486        // when we split one and lengthen the following ones.
487        int count = 0;
488        int minLengthRangeCount;
489        for(minLengthRangeCount = 0;
490                minLengthRangeCount < rangeCount &&
491                    ranges[minLengthRangeCount].length == minLength;
492                ++minLengthRangeCount) {
493            count += ranges[minLengthRangeCount].count;
494        }
495
496        int nextCountBytes = countBytes(minLength + 1);
497        if(n > count * nextCountBytes) { return false; }
498
499        // Use the minLength ranges. Merge them, and then split again as necessary.
500        long start = ranges[0].start;
501        long end = ranges[0].end;
502        for(int i = 1; i < minLengthRangeCount; ++i) {
503            if(ranges[i].start < start) { start = ranges[i].start; }
504            if(ranges[i].end > end) { end = ranges[i].end; }
505        }
506
507        // Calculate how to split the range between minLength (count1) and minLength+1 (count2).
508        // Goal:
509        //   count1 + count2 * nextCountBytes = n
510        //   count1 + count2 = count
511        // These turn into
512        //   (count - count2) + count2 * nextCountBytes = n
513        // and then into the following count1 & count2 computations.
514        int count2 = (n - count) / (nextCountBytes - 1);  // number of weights to be lengthened
515        int count1 = count - count2;  // number of minLength weights
516        if(count2 == 0 || (count1 + count2 * nextCountBytes) < n) {
517            // round up
518            ++count2;
519            --count1;
520            assert((count1 + count2 * nextCountBytes) >= n);
521        }
522
523        ranges[0].start = start;
524
525        if(count1 == 0) {
526            // Make one long range.
527            ranges[0].end = end;
528            ranges[0].count = count;
529            lengthenRange(ranges[0]);
530            rangeCount = 1;
531        } else {
532            // Split the range, lengthen the second part.
533            // printf("split the range number %ld (out of %ld minLength ranges) by %ld:%ld\n",
534            //       splitRange, rangeCount, count1, count2);
535
536            // Next start = start + count1. First end = 1 before that.
537            ranges[0].end = incWeightByOffset(start, minLength, count1 - 1);
538            ranges[0].count = count1;
539
540            if(ranges[1] == null) {
541                ranges[1] = new WeightRange();
542            }
543            ranges[1].start = incWeight(ranges[0].end, minLength);
544            ranges[1].end = end;
545            ranges[1].length = minLength;  // +1 when lengthened
546            ranges[1].count = count2;  // *countBytes when lengthened
547            lengthenRange(ranges[1]);
548            rangeCount = 2;
549        }
550        return true;
551    }
552
553    private int middleLength;
554    private int[] minBytes = new int[5];  // for byte 1, 2, 3, 4
555    private int[] maxBytes = new int[5];
556    private WeightRange[] ranges = new WeightRange[7];
557    private int rangeIndex;
558    private int rangeCount;
559}
560