1//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the SmallVector class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_SMALLVECTOR_H
15#define LLVM_ADT_SMALLVECTOR_H
16
17#include "llvm/Support/type_traits.h"
18#include <algorithm>
19#include <cassert>
20#include <cstddef>
21#include <cstdlib>
22#include <cstring>
23#include <iterator>
24#include <memory>
25
26#ifdef _MSC_VER
27namespace std {
28#if _MSC_VER <= 1310
29  // Work around flawed VC++ implementation of std::uninitialized_copy.  Define
30  // additional overloads so that elements with pointer types are recognized as
31  // scalars and not objects, causing bizarre type conversion errors.
32  template<class T1, class T2>
33  inline _Scalar_ptr_iterator_tag _Ptr_cat(T1 **, T2 **) {
34    _Scalar_ptr_iterator_tag _Cat;
35    return _Cat;
36  }
37
38  template<class T1, class T2>
39  inline _Scalar_ptr_iterator_tag _Ptr_cat(T1* const *, T2 **) {
40    _Scalar_ptr_iterator_tag _Cat;
41    return _Cat;
42  }
43#else
44// FIXME: It is not clear if the problem is fixed in VS 2005.  What is clear
45// is that the above hack won't work if it wasn't fixed.
46#endif
47}
48#endif
49
50namespace llvm {
51
52/// SmallVectorBase - This is all the non-templated stuff common to all
53/// SmallVectors.
54class SmallVectorBase {
55protected:
56  void *BeginX, *EndX, *CapacityX;
57
58  // Allocate raw space for N elements of type T.  If T has a ctor or dtor, we
59  // don't want it to be automatically run, so we need to represent the space as
60  // something else.  An array of char would work great, but might not be
61  // aligned sufficiently.  Instead we use some number of union instances for
62  // the space, which guarantee maximal alignment.
63  union U {
64    double D;
65    long double LD;
66    long long L;
67    void *P;
68  } FirstEl;
69  // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
70
71protected:
72  SmallVectorBase(size_t Size)
73    : BeginX(&FirstEl), EndX(&FirstEl), CapacityX((char*)&FirstEl+Size) {}
74
75  /// isSmall - Return true if this is a smallvector which has not had dynamic
76  /// memory allocated for it.
77  bool isSmall() const {
78    return BeginX == static_cast<const void*>(&FirstEl);
79  }
80
81  /// grow_pod - This is an implementation of the grow() method which only works
82  /// on POD-like data types and is out of line to reduce code duplication.
83  void grow_pod(size_t MinSizeInBytes, size_t TSize);
84
85public:
86  /// size_in_bytes - This returns size()*sizeof(T).
87  size_t size_in_bytes() const {
88    return size_t((char*)EndX - (char*)BeginX);
89  }
90
91  /// capacity_in_bytes - This returns capacity()*sizeof(T).
92  size_t capacity_in_bytes() const {
93    return size_t((char*)CapacityX - (char*)BeginX);
94  }
95
96  bool empty() const { return BeginX == EndX; }
97};
98
99
100template <typename T>
101class SmallVectorTemplateCommon : public SmallVectorBase {
102protected:
103  void setEnd(T *P) { this->EndX = P; }
104public:
105  SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(Size) {}
106
107  typedef size_t size_type;
108  typedef ptrdiff_t difference_type;
109  typedef T value_type;
110  typedef T *iterator;
111  typedef const T *const_iterator;
112
113  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
114  typedef std::reverse_iterator<iterator> reverse_iterator;
115
116  typedef T &reference;
117  typedef const T &const_reference;
118  typedef T *pointer;
119  typedef const T *const_pointer;
120
121  // forward iterator creation methods.
122  iterator begin() { return (iterator)this->BeginX; }
123  const_iterator begin() const { return (const_iterator)this->BeginX; }
124  iterator end() { return (iterator)this->EndX; }
125  const_iterator end() const { return (const_iterator)this->EndX; }
126protected:
127  iterator capacity_ptr() { return (iterator)this->CapacityX; }
128  const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
129public:
130
131  // reverse iterator creation methods.
132  reverse_iterator rbegin()            { return reverse_iterator(end()); }
133  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
134  reverse_iterator rend()              { return reverse_iterator(begin()); }
135  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
136
137  size_type size() const { return end()-begin(); }
138  size_type max_size() const { return size_type(-1) / sizeof(T); }
139
140  /// capacity - Return the total number of elements in the currently allocated
141  /// buffer.
142  size_t capacity() const { return capacity_ptr() - begin(); }
143
144  /// data - Return a pointer to the vector's buffer, even if empty().
145  pointer data() { return pointer(begin()); }
146  /// data - Return a pointer to the vector's buffer, even if empty().
147  const_pointer data() const { return const_pointer(begin()); }
148
149  reference operator[](unsigned idx) {
150    assert(begin() + idx < end());
151    return begin()[idx];
152  }
153  const_reference operator[](unsigned idx) const {
154    assert(begin() + idx < end());
155    return begin()[idx];
156  }
157
158  reference front() {
159    return begin()[0];
160  }
161  const_reference front() const {
162    return begin()[0];
163  }
164
165  reference back() {
166    return end()[-1];
167  }
168  const_reference back() const {
169    return end()[-1];
170  }
171};
172
173/// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
174/// implementations that are designed to work with non-POD-like T's.
175template <typename T, bool isPodLike>
176class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
177public:
178  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
179
180  static void destroy_range(T *S, T *E) {
181    while (S != E) {
182      --E;
183      E->~T();
184    }
185  }
186
187  /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
188  /// starting with "Dest", constructing elements into it as needed.
189  template<typename It1, typename It2>
190  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
191    std::uninitialized_copy(I, E, Dest);
192  }
193
194  /// grow - double the size of the allocated memory, guaranteeing space for at
195  /// least one more element or MinSize if specified.
196  void grow(size_t MinSize = 0);
197};
198
199// Define this out-of-line to dissuade the C++ compiler from inlining it.
200template <typename T, bool isPodLike>
201void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
202  size_t CurCapacity = this->capacity();
203  size_t CurSize = this->size();
204  size_t NewCapacity = 2*CurCapacity + 1; // Always grow, even from zero.
205  if (NewCapacity < MinSize)
206    NewCapacity = MinSize;
207  T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T)));
208
209  // Copy the elements over.
210  this->uninitialized_copy(this->begin(), this->end(), NewElts);
211
212  // Destroy the original elements.
213  destroy_range(this->begin(), this->end());
214
215  // If this wasn't grown from the inline copy, deallocate the old space.
216  if (!this->isSmall())
217    free(this->begin());
218
219  this->setEnd(NewElts+CurSize);
220  this->BeginX = NewElts;
221  this->CapacityX = this->begin()+NewCapacity;
222}
223
224
225/// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
226/// implementations that are designed to work with POD-like T's.
227template <typename T>
228class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
229public:
230  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
231
232  // No need to do a destroy loop for POD's.
233  static void destroy_range(T *, T *) {}
234
235  /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
236  /// starting with "Dest", constructing elements into it as needed.
237  template<typename It1, typename It2>
238  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
239    // Arbitrary iterator types; just use the basic implementation.
240    std::uninitialized_copy(I, E, Dest);
241  }
242
243  /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
244  /// starting with "Dest", constructing elements into it as needed.
245  template<typename T1, typename T2>
246  static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest) {
247    // Use memcpy for PODs iterated by pointers (which includes SmallVector
248    // iterators): std::uninitialized_copy optimizes to memmove, but we can
249    // use memcpy here.
250    memcpy(Dest, I, (E-I)*sizeof(T));
251  }
252
253  /// grow - double the size of the allocated memory, guaranteeing space for at
254  /// least one more element or MinSize if specified.
255  void grow(size_t MinSize = 0) {
256    this->grow_pod(MinSize*sizeof(T), sizeof(T));
257  }
258};
259
260
261/// SmallVectorImpl - This class consists of common code factored out of the
262/// SmallVector class to reduce code duplication based on the SmallVector 'N'
263/// template parameter.
264template <typename T>
265class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
266  typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
267
268  SmallVectorImpl(const SmallVectorImpl&); // DISABLED.
269public:
270  typedef typename SuperClass::iterator iterator;
271  typedef typename SuperClass::size_type size_type;
272
273  // Default ctor - Initialize to empty.
274  explicit SmallVectorImpl(unsigned N)
275    : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
276  }
277
278  ~SmallVectorImpl() {
279    // Destroy the constructed elements in the vector.
280    this->destroy_range(this->begin(), this->end());
281
282    // If this wasn't grown from the inline copy, deallocate the old space.
283    if (!this->isSmall())
284      free(this->begin());
285  }
286
287
288  void clear() {
289    this->destroy_range(this->begin(), this->end());
290    this->EndX = this->BeginX;
291  }
292
293  void resize(unsigned N) {
294    if (N < this->size()) {
295      this->destroy_range(this->begin()+N, this->end());
296      this->setEnd(this->begin()+N);
297    } else if (N > this->size()) {
298      if (this->capacity() < N)
299        this->grow(N);
300      this->construct_range(this->end(), this->begin()+N, T());
301      this->setEnd(this->begin()+N);
302    }
303  }
304
305  void resize(unsigned N, const T &NV) {
306    if (N < this->size()) {
307      this->destroy_range(this->begin()+N, this->end());
308      this->setEnd(this->begin()+N);
309    } else if (N > this->size()) {
310      if (this->capacity() < N)
311        this->grow(N);
312      construct_range(this->end(), this->begin()+N, NV);
313      this->setEnd(this->begin()+N);
314    }
315  }
316
317  void reserve(unsigned N) {
318    if (this->capacity() < N)
319      this->grow(N);
320  }
321
322  void push_back(const T &Elt) {
323    if (this->EndX < this->CapacityX) {
324    Retry:
325      new (this->end()) T(Elt);
326      this->setEnd(this->end()+1);
327      return;
328    }
329    this->grow();
330    goto Retry;
331  }
332
333  void pop_back() {
334    this->setEnd(this->end()-1);
335    this->end()->~T();
336  }
337
338  T pop_back_val() {
339    T Result = this->back();
340    pop_back();
341    return Result;
342  }
343
344  void swap(SmallVectorImpl &RHS);
345
346  /// append - Add the specified range to the end of the SmallVector.
347  ///
348  template<typename in_iter>
349  void append(in_iter in_start, in_iter in_end) {
350    size_type NumInputs = std::distance(in_start, in_end);
351    // Grow allocated space if needed.
352    if (NumInputs > size_type(this->capacity_ptr()-this->end()))
353      this->grow(this->size()+NumInputs);
354
355    // Copy the new elements over.
356    // TODO: NEED To compile time dispatch on whether in_iter is a random access
357    // iterator to use the fast uninitialized_copy.
358    std::uninitialized_copy(in_start, in_end, this->end());
359    this->setEnd(this->end() + NumInputs);
360  }
361
362  /// append - Add the specified range to the end of the SmallVector.
363  ///
364  void append(size_type NumInputs, const T &Elt) {
365    // Grow allocated space if needed.
366    if (NumInputs > size_type(this->capacity_ptr()-this->end()))
367      this->grow(this->size()+NumInputs);
368
369    // Copy the new elements over.
370    std::uninitialized_fill_n(this->end(), NumInputs, Elt);
371    this->setEnd(this->end() + NumInputs);
372  }
373
374  void assign(unsigned NumElts, const T &Elt) {
375    clear();
376    if (this->capacity() < NumElts)
377      this->grow(NumElts);
378    this->setEnd(this->begin()+NumElts);
379    construct_range(this->begin(), this->end(), Elt);
380  }
381
382  iterator erase(iterator I) {
383    iterator N = I;
384    // Shift all elts down one.
385    std::copy(I+1, this->end(), I);
386    // Drop the last elt.
387    pop_back();
388    return(N);
389  }
390
391  iterator erase(iterator S, iterator E) {
392    iterator N = S;
393    // Shift all elts down.
394    iterator I = std::copy(E, this->end(), S);
395    // Drop the last elts.
396    this->destroy_range(I, this->end());
397    this->setEnd(I);
398    return(N);
399  }
400
401  iterator insert(iterator I, const T &Elt) {
402    if (I == this->end()) {  // Important special case for empty vector.
403      push_back(Elt);
404      return this->end()-1;
405    }
406
407    if (this->EndX < this->CapacityX) {
408    Retry:
409      new (this->end()) T(this->back());
410      this->setEnd(this->end()+1);
411      // Push everything else over.
412      std::copy_backward(I, this->end()-1, this->end());
413
414      // If we just moved the element we're inserting, be sure to update
415      // the reference.
416      const T *EltPtr = &Elt;
417      if (I <= EltPtr && EltPtr < this->EndX)
418        ++EltPtr;
419
420      *I = *EltPtr;
421      return I;
422    }
423    size_t EltNo = I-this->begin();
424    this->grow();
425    I = this->begin()+EltNo;
426    goto Retry;
427  }
428
429  iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
430    if (I == this->end()) {  // Important special case for empty vector.
431      append(NumToInsert, Elt);
432      return this->end()-1;
433    }
434
435    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
436    size_t InsertElt = I - this->begin();
437
438    // Ensure there is enough space.
439    reserve(static_cast<unsigned>(this->size() + NumToInsert));
440
441    // Uninvalidate the iterator.
442    I = this->begin()+InsertElt;
443
444    // If there are more elements between the insertion point and the end of the
445    // range than there are being inserted, we can use a simple approach to
446    // insertion.  Since we already reserved space, we know that this won't
447    // reallocate the vector.
448    if (size_t(this->end()-I) >= NumToInsert) {
449      T *OldEnd = this->end();
450      append(this->end()-NumToInsert, this->end());
451
452      // Copy the existing elements that get replaced.
453      std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
454
455      std::fill_n(I, NumToInsert, Elt);
456      return I;
457    }
458
459    // Otherwise, we're inserting more elements than exist already, and we're
460    // not inserting at the end.
461
462    // Copy over the elements that we're about to overwrite.
463    T *OldEnd = this->end();
464    this->setEnd(this->end() + NumToInsert);
465    size_t NumOverwritten = OldEnd-I;
466    this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
467
468    // Replace the overwritten part.
469    std::fill_n(I, NumOverwritten, Elt);
470
471    // Insert the non-overwritten middle part.
472    std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
473    return I;
474  }
475
476  template<typename ItTy>
477  iterator insert(iterator I, ItTy From, ItTy To) {
478    if (I == this->end()) {  // Important special case for empty vector.
479      append(From, To);
480      return this->end()-1;
481    }
482
483    size_t NumToInsert = std::distance(From, To);
484    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
485    size_t InsertElt = I - this->begin();
486
487    // Ensure there is enough space.
488    reserve(static_cast<unsigned>(this->size() + NumToInsert));
489
490    // Uninvalidate the iterator.
491    I = this->begin()+InsertElt;
492
493    // If there are more elements between the insertion point and the end of the
494    // range than there are being inserted, we can use a simple approach to
495    // insertion.  Since we already reserved space, we know that this won't
496    // reallocate the vector.
497    if (size_t(this->end()-I) >= NumToInsert) {
498      T *OldEnd = this->end();
499      append(this->end()-NumToInsert, this->end());
500
501      // Copy the existing elements that get replaced.
502      std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
503
504      std::copy(From, To, I);
505      return I;
506    }
507
508    // Otherwise, we're inserting more elements than exist already, and we're
509    // not inserting at the end.
510
511    // Copy over the elements that we're about to overwrite.
512    T *OldEnd = this->end();
513    this->setEnd(this->end() + NumToInsert);
514    size_t NumOverwritten = OldEnd-I;
515    this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
516
517    // Replace the overwritten part.
518    for (; NumOverwritten > 0; --NumOverwritten) {
519      *I = *From;
520      ++I; ++From;
521    }
522
523    // Insert the non-overwritten middle part.
524    this->uninitialized_copy(From, To, OldEnd);
525    return I;
526  }
527
528  const SmallVectorImpl
529  &operator=(const SmallVectorImpl &RHS);
530
531  bool operator==(const SmallVectorImpl &RHS) const {
532    if (this->size() != RHS.size()) return false;
533    return std::equal(this->begin(), this->end(), RHS.begin());
534  }
535  bool operator!=(const SmallVectorImpl &RHS) const {
536    return !(*this == RHS);
537  }
538
539  bool operator<(const SmallVectorImpl &RHS) const {
540    return std::lexicographical_compare(this->begin(), this->end(),
541                                        RHS.begin(), RHS.end());
542  }
543
544  /// set_size - Set the array size to \arg N, which the current array must have
545  /// enough capacity for.
546  ///
547  /// This does not construct or destroy any elements in the vector.
548  ///
549  /// Clients can use this in conjunction with capacity() to write past the end
550  /// of the buffer when they know that more elements are available, and only
551  /// update the size later. This avoids the cost of value initializing elements
552  /// which will only be overwritten.
553  void set_size(unsigned N) {
554    assert(N <= this->capacity());
555    this->setEnd(this->begin() + N);
556  }
557
558private:
559  static void construct_range(T *S, T *E, const T &Elt) {
560    for (; S != E; ++S)
561      new (S) T(Elt);
562  }
563};
564
565
566template <typename T>
567void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
568  if (this == &RHS) return;
569
570  // We can only avoid copying elements if neither vector is small.
571  if (!this->isSmall() && !RHS.isSmall()) {
572    std::swap(this->BeginX, RHS.BeginX);
573    std::swap(this->EndX, RHS.EndX);
574    std::swap(this->CapacityX, RHS.CapacityX);
575    return;
576  }
577  if (RHS.size() > this->capacity())
578    this->grow(RHS.size());
579  if (this->size() > RHS.capacity())
580    RHS.grow(this->size());
581
582  // Swap the shared elements.
583  size_t NumShared = this->size();
584  if (NumShared > RHS.size()) NumShared = RHS.size();
585  for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
586    std::swap((*this)[i], RHS[i]);
587
588  // Copy over the extra elts.
589  if (this->size() > RHS.size()) {
590    size_t EltDiff = this->size() - RHS.size();
591    this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
592    RHS.setEnd(RHS.end()+EltDiff);
593    this->destroy_range(this->begin()+NumShared, this->end());
594    this->setEnd(this->begin()+NumShared);
595  } else if (RHS.size() > this->size()) {
596    size_t EltDiff = RHS.size() - this->size();
597    this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
598    this->setEnd(this->end() + EltDiff);
599    this->destroy_range(RHS.begin()+NumShared, RHS.end());
600    RHS.setEnd(RHS.begin()+NumShared);
601  }
602}
603
604template <typename T>
605const SmallVectorImpl<T> &SmallVectorImpl<T>::
606  operator=(const SmallVectorImpl<T> &RHS) {
607  // Avoid self-assignment.
608  if (this == &RHS) return *this;
609
610  // If we already have sufficient space, assign the common elements, then
611  // destroy any excess.
612  size_t RHSSize = RHS.size();
613  size_t CurSize = this->size();
614  if (CurSize >= RHSSize) {
615    // Assign common elements.
616    iterator NewEnd;
617    if (RHSSize)
618      NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
619    else
620      NewEnd = this->begin();
621
622    // Destroy excess elements.
623    this->destroy_range(NewEnd, this->end());
624
625    // Trim.
626    this->setEnd(NewEnd);
627    return *this;
628  }
629
630  // If we have to grow to have enough elements, destroy the current elements.
631  // This allows us to avoid copying them during the grow.
632  if (this->capacity() < RHSSize) {
633    // Destroy current elements.
634    this->destroy_range(this->begin(), this->end());
635    this->setEnd(this->begin());
636    CurSize = 0;
637    this->grow(RHSSize);
638  } else if (CurSize) {
639    // Otherwise, use assignment for the already-constructed elements.
640    std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
641  }
642
643  // Copy construct the new elements in place.
644  this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
645                           this->begin()+CurSize);
646
647  // Set end.
648  this->setEnd(this->begin()+RHSSize);
649  return *this;
650}
651
652
653/// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
654/// for the case when the array is small.  It contains some number of elements
655/// in-place, which allows it to avoid heap allocation when the actual number of
656/// elements is below that threshold.  This allows normal "small" cases to be
657/// fast without losing generality for large inputs.
658///
659/// Note that this does not attempt to be exception safe.
660///
661template <typename T, unsigned N>
662class SmallVector : public SmallVectorImpl<T> {
663  /// InlineElts - These are 'N-1' elements that are stored inline in the body
664  /// of the vector.  The extra '1' element is stored in SmallVectorImpl.
665  typedef typename SmallVectorImpl<T>::U U;
666  enum {
667    // MinUs - The number of U's require to cover N T's.
668    MinUs = (static_cast<unsigned int>(sizeof(T))*N +
669             static_cast<unsigned int>(sizeof(U)) - 1) /
670            static_cast<unsigned int>(sizeof(U)),
671
672    // NumInlineEltsElts - The number of elements actually in this array.  There
673    // is already one in the parent class, and we have to round up to avoid
674    // having a zero-element array.
675    NumInlineEltsElts = MinUs > 1 ? (MinUs - 1) : 1,
676
677    // NumTsAvailable - The number of T's we actually have space for, which may
678    // be more than N due to rounding.
679    NumTsAvailable = (NumInlineEltsElts+1)*static_cast<unsigned int>(sizeof(U))/
680                     static_cast<unsigned int>(sizeof(T))
681  };
682  U InlineElts[NumInlineEltsElts];
683public:
684  SmallVector() : SmallVectorImpl<T>(NumTsAvailable) {
685  }
686
687  explicit SmallVector(unsigned Size, const T &Value = T())
688    : SmallVectorImpl<T>(NumTsAvailable) {
689    this->reserve(Size);
690    while (Size--)
691      this->push_back(Value);
692  }
693
694  template<typename ItTy>
695  SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(NumTsAvailable) {
696    this->append(S, E);
697  }
698
699  SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(NumTsAvailable) {
700    if (!RHS.empty())
701      SmallVectorImpl<T>::operator=(RHS);
702  }
703
704  const SmallVector &operator=(const SmallVector &RHS) {
705    SmallVectorImpl<T>::operator=(RHS);
706    return *this;
707  }
708
709};
710
711/// Specialize SmallVector at N=0.  This specialization guarantees
712/// that it can be instantiated at an incomplete T if none of its
713/// members are required.
714template <typename T>
715class SmallVector<T,0> : public SmallVectorImpl<T> {
716public:
717  SmallVector() : SmallVectorImpl<T>(0) {}
718
719  explicit SmallVector(unsigned Size, const T &Value = T())
720    : SmallVectorImpl<T>(0) {
721    this->reserve(Size);
722    while (Size--)
723      this->push_back(Value);
724  }
725
726  template<typename ItTy>
727  SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(0) {
728    this->append(S, E);
729  }
730
731  SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(0) {
732    SmallVectorImpl<T>::operator=(RHS);
733  }
734
735  SmallVector &operator=(const SmallVectorImpl<T> &RHS) {
736    return SmallVectorImpl<T>::operator=(RHS);
737  }
738
739};
740
741template<typename T, unsigned N>
742static inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
743  return X.capacity_in_bytes();
744}
745
746} // End llvm namespace
747
748namespace std {
749  /// Implement std::swap in terms of SmallVector swap.
750  template<typename T>
751  inline void
752  swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
753    LHS.swap(RHS);
754  }
755
756  /// Implement std::swap in terms of SmallVector swap.
757  template<typename T, unsigned N>
758  inline void
759  swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
760    LHS.swap(RHS);
761  }
762}
763
764#endif
765