1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/MC/MCRegisterInfo.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/ValueTypes.h"
22#include "llvm/ADT/ArrayRef.h"
23#include <cassert>
24#include <functional>
25
26namespace llvm {
27
28class BitVector;
29class MachineFunction;
30class RegScavenger;
31template<class T> class SmallVectorImpl;
32class raw_ostream;
33
34class TargetRegisterClass {
35public:
36  typedef const unsigned* iterator;
37  typedef const unsigned* const_iterator;
38  typedef const EVT* vt_iterator;
39  typedef const TargetRegisterClass* const * sc_iterator;
40private:
41  const MCRegisterClass *MC;
42  const vt_iterator VTs;
43  const unsigned *SubClassMask;
44  const sc_iterator SuperClasses;
45  const sc_iterator SuperRegClasses;
46public:
47  TargetRegisterClass(const MCRegisterClass *MC, const EVT *vts,
48                      const unsigned *subcm,
49                      const TargetRegisterClass * const *supcs,
50                      const TargetRegisterClass * const *superregcs)
51    : MC(MC), VTs(vts), SubClassMask(subcm), SuperClasses(supcs),
52      SuperRegClasses(superregcs) {}
53
54  virtual ~TargetRegisterClass() {}     // Allow subclasses
55
56  /// getID() - Return the register class ID number.
57  ///
58  unsigned getID() const { return MC->getID(); }
59
60  /// getName() - Return the register class name for debugging.
61  ///
62  const char *getName() const { return MC->getName(); }
63
64  /// begin/end - Return all of the registers in this class.
65  ///
66  iterator       begin() const { return MC->begin(); }
67  iterator         end() const { return MC->end(); }
68
69  /// getNumRegs - Return the number of registers in this class.
70  ///
71  unsigned getNumRegs() const { return MC->getNumRegs(); }
72
73  /// getRegister - Return the specified register in the class.
74  ///
75  unsigned getRegister(unsigned i) const {
76    return MC->getRegister(i);
77  }
78
79  /// contains - Return true if the specified register is included in this
80  /// register class.  This does not include virtual registers.
81  bool contains(unsigned Reg) const {
82    return MC->contains(Reg);
83  }
84
85  /// contains - Return true if both registers are in this class.
86  bool contains(unsigned Reg1, unsigned Reg2) const {
87    return MC->contains(Reg1, Reg2);
88  }
89
90  /// getSize - Return the size of the register in bytes, which is also the size
91  /// of a stack slot allocated to hold a spilled copy of this register.
92  unsigned getSize() const { return MC->getSize(); }
93
94  /// getAlignment - Return the minimum required alignment for a register of
95  /// this class.
96  unsigned getAlignment() const { return MC->getAlignment(); }
97
98  /// getCopyCost - Return the cost of copying a value between two registers in
99  /// this class. A negative number means the register class is very expensive
100  /// to copy e.g. status flag register classes.
101  int getCopyCost() const { return MC->getCopyCost(); }
102
103  /// isAllocatable - Return true if this register class may be used to create
104  /// virtual registers.
105  bool isAllocatable() const { return MC->isAllocatable(); }
106
107  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
108  ///
109  bool hasType(EVT vt) const {
110    for(int i = 0; VTs[i] != MVT::Other; ++i)
111      if (VTs[i] == vt)
112        return true;
113    return false;
114  }
115
116  /// vt_begin / vt_end - Loop over all of the value types that can be
117  /// represented by values in this register class.
118  vt_iterator vt_begin() const {
119    return VTs;
120  }
121
122  vt_iterator vt_end() const {
123    vt_iterator I = VTs;
124    while (*I != MVT::Other) ++I;
125    return I;
126  }
127
128  /// superregclasses_begin / superregclasses_end - Loop over all of
129  /// the superreg register classes of this register class.
130  sc_iterator superregclasses_begin() const {
131    return SuperRegClasses;
132  }
133
134  sc_iterator superregclasses_end() const {
135    sc_iterator I = SuperRegClasses;
136    while (*I != NULL) ++I;
137    return I;
138  }
139
140  /// hasSubClass - return true if the specified TargetRegisterClass
141  /// is a proper sub-class of this TargetRegisterClass.
142  bool hasSubClass(const TargetRegisterClass *RC) const {
143    return RC != this && hasSubClassEq(RC);
144  }
145
146  /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this
147  /// class.
148  bool hasSubClassEq(const TargetRegisterClass *RC) const {
149    unsigned ID = RC->getID();
150    return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
151  }
152
153  /// hasSuperClass - return true if the specified TargetRegisterClass is a
154  /// proper super-class of this TargetRegisterClass.
155  bool hasSuperClass(const TargetRegisterClass *RC) const {
156    return RC->hasSubClass(this);
157  }
158
159  /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this
160  /// class.
161  bool hasSuperClassEq(const TargetRegisterClass *RC) const {
162    return RC->hasSubClassEq(this);
163  }
164
165  /// getSubClassMask - Returns a bit vector of subclasses, including this one.
166  /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
167  /// use it.
168  const unsigned *getSubClassMask() const {
169    return SubClassMask;
170  }
171
172  /// getSuperClasses - Returns a NULL terminated list of super-classes.  The
173  /// classes are ordered by ID which is also a topological ordering from large
174  /// to small classes.  The list does NOT include the current class.
175  sc_iterator getSuperClasses() const {
176    return SuperClasses;
177  }
178
179  /// isASubClass - return true if this TargetRegisterClass is a subset
180  /// class of at least one other TargetRegisterClass.
181  bool isASubClass() const {
182    return SuperClasses[0] != 0;
183  }
184
185  /// getRawAllocationOrder - Returns the preferred order for allocating
186  /// registers from this register class in MF. The raw order comes directly
187  /// from the .td file and may include reserved registers that are not
188  /// allocatable. Register allocators should also make sure to allocate
189  /// callee-saved registers only after all the volatiles are used. The
190  /// RegisterClassInfo class provides filtered allocation orders with
191  /// callee-saved registers moved to the end.
192  ///
193  /// The MachineFunction argument can be used to tune the allocatable
194  /// registers based on the characteristics of the function, subtarget, or
195  /// other criteria.
196  ///
197  /// By default, this method returns all registers in the class.
198  ///
199  virtual
200  ArrayRef<unsigned> getRawAllocationOrder(const MachineFunction &MF) const {
201    return makeArrayRef(begin(), getNumRegs());
202  }
203};
204
205/// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
206/// registers. These are used by codegen, not by MC.
207struct TargetRegisterInfoDesc {
208  unsigned CostPerUse;          // Extra cost of instructions using register.
209  bool inAllocatableClass;      // Register belongs to an allocatable regclass.
210};
211
212/// TargetRegisterInfo base class - We assume that the target defines a static
213/// array of TargetRegisterDesc objects that represent all of the machine
214/// registers that the target has.  As such, we simply have to track a pointer
215/// to this array so that we can turn register number into a register
216/// descriptor.
217///
218class TargetRegisterInfo : public MCRegisterInfo {
219public:
220  typedef const TargetRegisterClass * const * regclass_iterator;
221private:
222  const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
223  const char *const *SubRegIndexNames;        // Names of subreg indexes.
224  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
225
226protected:
227  TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
228                     regclass_iterator RegClassBegin,
229                     regclass_iterator RegClassEnd,
230                     const char *const *subregindexnames);
231  virtual ~TargetRegisterInfo();
232public:
233
234  // Register numbers can represent physical registers, virtual registers, and
235  // sometimes stack slots. The unsigned values are divided into these ranges:
236  //
237  //   0           Not a register, can be used as a sentinel.
238  //   [1;2^30)    Physical registers assigned by TableGen.
239  //   [2^30;2^31) Stack slots. (Rarely used.)
240  //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
241  //
242  // Further sentinels can be allocated from the small negative integers.
243  // DenseMapInfo<unsigned> uses -1u and -2u.
244
245  /// isStackSlot - Sometimes it is useful the be able to store a non-negative
246  /// frame index in a variable that normally holds a register. isStackSlot()
247  /// returns true if Reg is in the range used for stack slots.
248  ///
249  /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
250  /// slots, so if a variable may contains a stack slot, always check
251  /// isStackSlot() first.
252  ///
253  static bool isStackSlot(unsigned Reg) {
254    return int(Reg) >= (1 << 30);
255  }
256
257  /// stackSlot2Index - Compute the frame index from a register value
258  /// representing a stack slot.
259  static int stackSlot2Index(unsigned Reg) {
260    assert(isStackSlot(Reg) && "Not a stack slot");
261    return int(Reg - (1u << 30));
262  }
263
264  /// index2StackSlot - Convert a non-negative frame index to a stack slot
265  /// register value.
266  static unsigned index2StackSlot(int FI) {
267    assert(FI >= 0 && "Cannot hold a negative frame index.");
268    return FI + (1u << 30);
269  }
270
271  /// isPhysicalRegister - Return true if the specified register number is in
272  /// the physical register namespace.
273  static bool isPhysicalRegister(unsigned Reg) {
274    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
275    return int(Reg) > 0;
276  }
277
278  /// isVirtualRegister - Return true if the specified register number is in
279  /// the virtual register namespace.
280  static bool isVirtualRegister(unsigned Reg) {
281    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
282    return int(Reg) < 0;
283  }
284
285  /// virtReg2Index - Convert a virtual register number to a 0-based index.
286  /// The first virtual register in a function will get the index 0.
287  static unsigned virtReg2Index(unsigned Reg) {
288    assert(isVirtualRegister(Reg) && "Not a virtual register");
289    return Reg & ~(1u << 31);
290  }
291
292  /// index2VirtReg - Convert a 0-based index to a virtual register number.
293  /// This is the inverse operation of VirtReg2IndexFunctor below.
294  static unsigned index2VirtReg(unsigned Index) {
295    return Index | (1u << 31);
296  }
297
298  /// getMinimalPhysRegClass - Returns the Register Class of a physical
299  /// register of the given type, picking the most sub register class of
300  /// the right type that contains this physreg.
301  const TargetRegisterClass *
302    getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
303
304  /// getAllocatableSet - Returns a bitset indexed by register number
305  /// indicating if a register is allocatable or not. If a register class is
306  /// specified, returns the subset for the class.
307  BitVector getAllocatableSet(const MachineFunction &MF,
308                              const TargetRegisterClass *RC = NULL) const;
309
310  /// getCostPerUse - Return the additional cost of using this register instead
311  /// of other registers in its class.
312  unsigned getCostPerUse(unsigned RegNo) const {
313    return InfoDesc[RegNo].CostPerUse;
314  }
315
316  /// isInAllocatableClass - Return true if the register is in the allocation
317  /// of any register class.
318  bool isInAllocatableClass(unsigned RegNo) const {
319    return InfoDesc[RegNo].inAllocatableClass;
320  }
321
322  /// getSubRegIndexName - Return the human-readable symbolic target-specific
323  /// name for the specified SubRegIndex.
324  const char *getSubRegIndexName(unsigned SubIdx) const {
325    assert(SubIdx && "This is not a subregister index");
326    return SubRegIndexNames[SubIdx-1];
327  }
328
329  /// regsOverlap - Returns true if the two registers are equal or alias each
330  /// other. The registers may be virtual register.
331  bool regsOverlap(unsigned regA, unsigned regB) const {
332    if (regA == regB) return true;
333    if (isVirtualRegister(regA) || isVirtualRegister(regB))
334      return false;
335    for (const unsigned *regList = getOverlaps(regA)+1; *regList; ++regList) {
336      if (*regList == regB) return true;
337    }
338    return false;
339  }
340
341  /// isSubRegister - Returns true if regB is a sub-register of regA.
342  ///
343  bool isSubRegister(unsigned regA, unsigned regB) const {
344    return isSuperRegister(regB, regA);
345  }
346
347  /// isSuperRegister - Returns true if regB is a super-register of regA.
348  ///
349  bool isSuperRegister(unsigned regA, unsigned regB) const {
350    for (const unsigned *regList = getSuperRegisters(regA); *regList;++regList){
351      if (*regList == regB) return true;
352    }
353    return false;
354  }
355
356  /// getCalleeSavedRegs - Return a null-terminated list of all of the
357  /// callee saved registers on this target. The register should be in the
358  /// order of desired callee-save stack frame offset. The first register is
359  /// closed to the incoming stack pointer if stack grows down, and vice versa.
360  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
361                                                                      const = 0;
362
363
364  /// getReservedRegs - Returns a bitset indexed by physical register number
365  /// indicating if a register is a special register that has particular uses
366  /// and should be considered unavailable at all times, e.g. SP, RA. This is
367  /// used by register scavenger to determine what registers are free.
368  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
369
370  /// getSubReg - Returns the physical register number of sub-register "Index"
371  /// for physical register RegNo. Return zero if the sub-register does not
372  /// exist.
373  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
374
375  /// getSubRegIndex - For a given register pair, return the sub-register index
376  /// if the second register is a sub-register of the first. Return zero
377  /// otherwise.
378  virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;
379
380  /// getMatchingSuperReg - Return a super-register of the specified register
381  /// Reg so its sub-register of index SubIdx is Reg.
382  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
383                               const TargetRegisterClass *RC) const {
384    for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
385      if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
386        return SR;
387    return 0;
388  }
389
390  /// canCombineSubRegIndices - Given a register class and a list of
391  /// subregister indices, return true if it's possible to combine the
392  /// subregister indices into one that corresponds to a larger
393  /// subregister. Return the new subregister index by reference. Note the
394  /// new index may be zero if the given subregisters can be combined to
395  /// form the whole register.
396  virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
397                                       SmallVectorImpl<unsigned> &SubIndices,
398                                       unsigned &NewSubIdx) const {
399    return 0;
400  }
401
402  /// getMatchingSuperRegClass - Return a subclass of the specified register
403  /// class A so that each register in it has a sub-register of the
404  /// specified sub-register index which is in the specified register class B.
405  virtual const TargetRegisterClass *
406  getMatchingSuperRegClass(const TargetRegisterClass *A,
407                           const TargetRegisterClass *B, unsigned Idx) const {
408    return 0;
409  }
410
411  /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that
412  /// supports the sub-register index Idx.
413  /// If no such sub-class exists, return NULL.
414  /// If all registers in RC already have an Idx sub-register, return RC.
415  ///
416  /// TableGen generates a version of this function that is good enough in most
417  /// cases.  Targets can override if they have constraints that TableGen
418  /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
419  /// supported by the full GR32 register class in 64-bit mode, but only by the
420  /// GR32_ABCD regiister class in 32-bit mode.
421  ///
422  virtual const TargetRegisterClass *
423  getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const =0;
424
425  /// composeSubRegIndices - Return the subregister index you get from composing
426  /// two subregister indices.
427  ///
428  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
429  /// returns c. Note that composeSubRegIndices does not tell you about illegal
430  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
431  /// b, composeSubRegIndices doesn't tell you.
432  ///
433  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
434  /// ssub_0:S0 - ssub_3:S3 subregs.
435  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
436  ///
437  virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
438    // This default implementation is correct for most targets.
439    return b;
440  }
441
442  //===--------------------------------------------------------------------===//
443  // Register Class Information
444  //
445
446  /// Register class iterators
447  ///
448  regclass_iterator regclass_begin() const { return RegClassBegin; }
449  regclass_iterator regclass_end() const { return RegClassEnd; }
450
451  unsigned getNumRegClasses() const {
452    return (unsigned)(regclass_end()-regclass_begin());
453  }
454
455  /// getRegClass - Returns the register class associated with the enumeration
456  /// value.  See class MCOperandInfo.
457  const TargetRegisterClass *getRegClass(unsigned i) const {
458    assert(i < getNumRegClasses() && "Register Class ID out of range");
459    return RegClassBegin[i];
460  }
461
462  /// getCommonSubClass - find the largest common subclass of A and B. Return
463  /// NULL if there is no common subclass.
464  const TargetRegisterClass *
465  getCommonSubClass(const TargetRegisterClass *A,
466                    const TargetRegisterClass *B) const;
467
468  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
469  /// values.  If a target supports multiple different pointer register classes,
470  /// kind specifies which one is indicated.
471  virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
472    assert(0 && "Target didn't implement getPointerRegClass!");
473    return 0; // Must return a value in order to compile with VS 2005
474  }
475
476  /// getCrossCopyRegClass - Returns a legal register class to copy a register
477  /// in the specified class to or from. If it is possible to copy the register
478  /// directly without using a cross register class copy, return the specified
479  /// RC. Returns NULL if it is not possible to copy between a two registers of
480  /// the specified class.
481  virtual const TargetRegisterClass *
482  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
483    return RC;
484  }
485
486  /// getLargestLegalSuperClass - Returns the largest super class of RC that is
487  /// legal to use in the current sub-target and has the same spill size.
488  /// The returned register class can be used to create virtual registers which
489  /// means that all its registers can be copied and spilled.
490  virtual const TargetRegisterClass*
491  getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
492    /// The default implementation is very conservative and doesn't allow the
493    /// register allocator to inflate register classes.
494    return RC;
495  }
496
497  /// getRegPressureLimit - Return the register pressure "high water mark" for
498  /// the specific register class. The scheduler is in high register pressure
499  /// mode (for the specific register class) if it goes over the limit.
500  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
501                                       MachineFunction &MF) const {
502    return 0;
503  }
504
505  /// getRawAllocationOrder - Returns the register allocation order for a
506  /// specified register class with a target-dependent hint. The returned list
507  /// may contain reserved registers that cannot be allocated.
508  ///
509  /// Register allocators need only call this function to resolve
510  /// target-dependent hints, but it should work without hinting as well.
511  virtual ArrayRef<unsigned>
512  getRawAllocationOrder(const TargetRegisterClass *RC,
513                        unsigned HintType, unsigned HintReg,
514                        const MachineFunction &MF) const {
515    return RC->getRawAllocationOrder(MF);
516  }
517
518  /// ResolveRegAllocHint - Resolves the specified register allocation hint
519  /// to a physical register. Returns the physical register if it is successful.
520  virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
521                                       const MachineFunction &MF) const {
522    if (Type == 0 && Reg && isPhysicalRegister(Reg))
523      return Reg;
524    return 0;
525  }
526
527  /// avoidWriteAfterWrite - Return true if the register allocator should avoid
528  /// writing a register from RC in two consecutive instructions.
529  /// This can avoid pipeline stalls on certain architectures.
530  /// It does cause increased register pressure, though.
531  virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
532    return false;
533  }
534
535  /// UpdateRegAllocHint - A callback to allow target a chance to update
536  /// register allocation hints when a register is "changed" (e.g. coalesced)
537  /// to another register. e.g. On ARM, some virtual registers should target
538  /// register pairs, if one of pair is coalesced to another register, the
539  /// allocation hint of the other half of the pair should be changed to point
540  /// to the new register.
541  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
542                                  MachineFunction &MF) const {
543    // Do nothing.
544  }
545
546  /// requiresRegisterScavenging - returns true if the target requires (and can
547  /// make use of) the register scavenger.
548  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
549    return false;
550  }
551
552  /// useFPForScavengingIndex - returns true if the target wants to use
553  /// frame pointer based accesses to spill to the scavenger emergency spill
554  /// slot.
555  virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
556    return true;
557  }
558
559  /// requiresFrameIndexScavenging - returns true if the target requires post
560  /// PEI scavenging of registers for materializing frame index constants.
561  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
562    return false;
563  }
564
565  /// requiresVirtualBaseRegisters - Returns true if the target wants the
566  /// LocalStackAllocation pass to be run and virtual base registers
567  /// used for more efficient stack access.
568  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
569    return false;
570  }
571
572  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
573  /// the stack frame of the given function for the specified register. e.g. On
574  /// x86, if the frame register is required, the first fixed stack object is
575  /// reserved as its spill slot. This tells PEI not to create a new stack frame
576  /// object for the given register. It should be called only after
577  /// processFunctionBeforeCalleeSavedScan().
578  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
579                                    int &FrameIdx) const {
580    return false;
581  }
582
583  /// needsStackRealignment - true if storage within the function requires the
584  /// stack pointer to be aligned more than the normal calling convention calls
585  /// for.
586  virtual bool needsStackRealignment(const MachineFunction &MF) const {
587    return false;
588  }
589
590  /// getFrameIndexInstrOffset - Get the offset from the referenced frame
591  /// index in the instruction, if there is one.
592  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
593                                           int Idx) const {
594    return 0;
595  }
596
597  /// needsFrameBaseReg - Returns true if the instruction's frame index
598  /// reference would be better served by a base register other than FP
599  /// or SP. Used by LocalStackFrameAllocation to determine which frame index
600  /// references it should create new base registers for.
601  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
602    return false;
603  }
604
605  /// materializeFrameBaseRegister - Insert defining instruction(s) for
606  /// BaseReg to be a pointer to FrameIdx before insertion point I.
607  virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
608                                            unsigned BaseReg, int FrameIdx,
609                                            int64_t Offset) const {
610    assert(0 && "materializeFrameBaseRegister does not exist on this target");
611  }
612
613  /// resolveFrameIndex - Resolve a frame index operand of an instruction
614  /// to reference the indicated base register plus offset instead.
615  virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
616                                 unsigned BaseReg, int64_t Offset) const {
617    assert(0 && "resolveFrameIndex does not exist on this target");
618  }
619
620  /// isFrameOffsetLegal - Determine whether a given offset immediate is
621  /// encodable to resolve a frame index.
622  virtual bool isFrameOffsetLegal(const MachineInstr *MI,
623                                  int64_t Offset) const {
624    assert(0 && "isFrameOffsetLegal does not exist on this target");
625    return false; // Must return a value in order to compile with VS 2005
626  }
627
628  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
629  /// code insertion to eliminate call frame setup and destroy pseudo
630  /// instructions (but only if the Target is using them).  It is responsible
631  /// for eliminating these instructions, replacing them with concrete
632  /// instructions.  This method need only be implemented if using call frame
633  /// setup/destroy pseudo instructions.
634  ///
635  virtual void
636  eliminateCallFramePseudoInstr(MachineFunction &MF,
637                                MachineBasicBlock &MBB,
638                                MachineBasicBlock::iterator MI) const {
639    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
640  }
641
642
643  /// saveScavengerRegister - Spill the register so it can be used by the
644  /// register scavenger. Return true if the register was spilled, false
645  /// otherwise. If this function does not spill the register, the scavenger
646  /// will instead spill it to the emergency spill slot.
647  ///
648  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
649                                     MachineBasicBlock::iterator I,
650                                     MachineBasicBlock::iterator &UseMI,
651                                     const TargetRegisterClass *RC,
652                                     unsigned Reg) const {
653    return false;
654  }
655
656  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
657  /// frame indices from instructions which may use them.  The instruction
658  /// referenced by the iterator contains an MO_FrameIndex operand which must be
659  /// eliminated by this method.  This method may modify or replace the
660  /// specified instruction, as long as it keeps the iterator pointing at the
661  /// finished product. SPAdj is the SP adjustment due to call frame setup
662  /// instruction.
663  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
664                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
665
666  //===--------------------------------------------------------------------===//
667  /// Debug information queries.
668
669  /// getFrameRegister - This method should return the register used as a base
670  /// for values allocated in the current stack frame.
671  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
672
673  /// getCompactUnwindRegNum - This function maps the register to the number for
674  /// compact unwind encoding. Return -1 if the register isn't valid.
675  virtual int getCompactUnwindRegNum(unsigned, bool) const {
676    return -1;
677  }
678};
679
680
681// This is useful when building IndexedMaps keyed on virtual registers
682struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
683  unsigned operator()(unsigned Reg) const {
684    return TargetRegisterInfo::virtReg2Index(Reg);
685  }
686};
687
688/// PrintReg - Helper class for printing registers on a raw_ostream.
689/// Prints virtual and physical registers with or without a TRI instance.
690///
691/// The format is:
692///   %noreg          - NoRegister
693///   %vreg5          - a virtual register.
694///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
695///   %EAX            - a physical register
696///   %physreg17      - a physical register when no TRI instance given.
697///
698/// Usage: OS << PrintReg(Reg, TRI) << '\n';
699///
700class PrintReg {
701  const TargetRegisterInfo *TRI;
702  unsigned Reg;
703  unsigned SubIdx;
704public:
705  PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0)
706    : TRI(tri), Reg(reg), SubIdx(subidx) {}
707  void print(raw_ostream&) const;
708};
709
710static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
711  PR.print(OS);
712  return OS;
713}
714
715} // End llvm namespace
716
717#endif
718