LegalizeDAG.cpp revision e178000ed3213e37bc897a3b29334cbb1c621c1a
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/Analysis/DebugInfo.h" 15#include "llvm/CodeGen/Analysis.h" 16#include "llvm/CodeGen/MachineFunction.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/CodeGen/SelectionDAG.h" 19#include "llvm/Target/TargetFrameLowering.h" 20#include "llvm/Target/TargetLowering.h" 21#include "llvm/Target/TargetData.h" 22#include "llvm/Target/TargetMachine.h" 23#include "llvm/CallingConv.h" 24#include "llvm/Constants.h" 25#include "llvm/DerivedTypes.h" 26#include "llvm/LLVMContext.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/MathExtras.h" 30#include "llvm/Support/raw_ostream.h" 31#include "llvm/ADT/DenseMap.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/ADT/SmallPtrSet.h" 34using namespace llvm; 35 36//===----------------------------------------------------------------------===// 37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 38/// hacks on it until the target machine can handle it. This involves 39/// eliminating value sizes the machine cannot handle (promoting small sizes to 40/// large sizes or splitting up large values into small values) as well as 41/// eliminating operations the machine cannot handle. 42/// 43/// This code also does a small amount of optimization and recognition of idioms 44/// as part of its processing. For example, if a target does not support a 45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 46/// will attempt merge setcc and brc instructions into brcc's. 47/// 48namespace { 49class SelectionDAGLegalize { 50 const TargetMachine &TM; 51 const TargetLowering &TLI; 52 SelectionDAG &DAG; 53 54 // Libcall insertion helpers. 55 56 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 57 /// legalized. We use this to ensure that calls are properly serialized 58 /// against each other, including inserted libcalls. 59 SDValue LastCALLSEQ_END; 60 61 /// IsLegalizingCall - This member is used *only* for purposes of providing 62 /// helpful assertions that a libcall isn't created while another call is 63 /// being legalized (which could lead to non-serialized call sequences). 64 bool IsLegalizingCall; 65 66 /// LegalizedNodes - For nodes that are of legal width, and that have more 67 /// than one use, this map indicates what regularized operand to use. This 68 /// allows us to avoid legalizing the same thing more than once. 69 DenseMap<SDValue, SDValue> LegalizedNodes; 70 71 void AddLegalizedOperand(SDValue From, SDValue To) { 72 LegalizedNodes.insert(std::make_pair(From, To)); 73 // If someone requests legalization of the new node, return itself. 74 if (From != To) 75 LegalizedNodes.insert(std::make_pair(To, To)); 76 77 // Transfer SDDbgValues. 78 DAG.TransferDbgValues(From, To); 79 } 80 81public: 82 explicit SelectionDAGLegalize(SelectionDAG &DAG); 83 84 void LegalizeDAG(); 85 86private: 87 /// LegalizeOp - Return a legal replacement for the given operation, with 88 /// all legal operands. 89 SDValue LegalizeOp(SDValue O); 90 91 SDValue OptimizeFloatStore(StoreSDNode *ST); 92 93 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable 94 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 95 /// is necessary to spill the vector being inserted into to memory, perform 96 /// the insert there, and then read the result back. 97 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, 98 SDValue Idx, DebugLoc dl); 99 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 100 SDValue Idx, DebugLoc dl); 101 102 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 103 /// performs the same shuffe in terms of order or result bytes, but on a type 104 /// whose vector element type is narrower than the original shuffle type. 105 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 106 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 107 SDValue N1, SDValue N2, 108 SmallVectorImpl<int> &Mask) const; 109 110 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 111 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 112 113 void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 114 DebugLoc dl); 115 116 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 117 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, 118 unsigned NumOps, bool isSigned, DebugLoc dl); 119 120 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 121 SDNode *Node, bool isSigned); 122 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 123 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 124 RTLIB::Libcall Call_PPCF128); 125 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 126 RTLIB::Libcall Call_I8, 127 RTLIB::Libcall Call_I16, 128 RTLIB::Libcall Call_I32, 129 RTLIB::Libcall Call_I64, 130 RTLIB::Libcall Call_I128); 131 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 132 133 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl); 134 SDValue ExpandBUILD_VECTOR(SDNode *Node); 135 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 136 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 137 SmallVectorImpl<SDValue> &Results); 138 SDValue ExpandFCOPYSIGN(SDNode *Node); 139 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, 140 DebugLoc dl); 141 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 142 DebugLoc dl); 143 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 144 DebugLoc dl); 145 146 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); 147 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); 148 149 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 150 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 151 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 152 153 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node); 154 155 void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results); 156 void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157}; 158} 159 160/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 161/// performs the same shuffe in terms of order or result bytes, but on a type 162/// whose vector element type is narrower than the original shuffle type. 163/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 164SDValue 165SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 166 SDValue N1, SDValue N2, 167 SmallVectorImpl<int> &Mask) const { 168 unsigned NumMaskElts = VT.getVectorNumElements(); 169 unsigned NumDestElts = NVT.getVectorNumElements(); 170 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 171 172 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 173 174 if (NumEltsGrowth == 1) 175 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); 176 177 SmallVector<int, 8> NewMask; 178 for (unsigned i = 0; i != NumMaskElts; ++i) { 179 int Idx = Mask[i]; 180 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 181 if (Idx < 0) 182 NewMask.push_back(-1); 183 else 184 NewMask.push_back(Idx * NumEltsGrowth + j); 185 } 186 } 187 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 188 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 189 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); 190} 191 192SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 193 : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()), 194 DAG(dag) { 195} 196 197void SelectionDAGLegalize::LegalizeDAG() { 198 LastCALLSEQ_END = DAG.getEntryNode(); 199 IsLegalizingCall = false; 200 201 // The legalize process is inherently a bottom-up recursive process (users 202 // legalize their uses before themselves). Given infinite stack space, we 203 // could just start legalizing on the root and traverse the whole graph. In 204 // practice however, this causes us to run out of stack space on large basic 205 // blocks. To avoid this problem, compute an ordering of the nodes where each 206 // node is only legalized after all of its operands are legalized. 207 DAG.AssignTopologicalOrder(); 208 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 209 E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I) 210 LegalizeOp(SDValue(I, 0)); 211 212 // Finally, it's possible the root changed. Get the new root. 213 SDValue OldRoot = DAG.getRoot(); 214 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 215 DAG.setRoot(LegalizedNodes[OldRoot]); 216 217 LegalizedNodes.clear(); 218 219 // Remove dead nodes now. 220 DAG.RemoveDeadNodes(); 221} 222 223 224/// FindCallEndFromCallStart - Given a chained node that is part of a call 225/// sequence, find the CALLSEQ_END node that terminates the call sequence. 226static SDNode *FindCallEndFromCallStart(SDNode *Node, int depth = 0) { 227 // Nested CALLSEQ_START/END constructs aren't yet legal, 228 // but we can DTRT and handle them correctly here. 229 if (Node->getOpcode() == ISD::CALLSEQ_START) 230 depth++; 231 else if (Node->getOpcode() == ISD::CALLSEQ_END) { 232 depth--; 233 if (depth == 0) 234 return Node; 235 } 236 if (Node->use_empty()) 237 return 0; // No CallSeqEnd 238 239 // The chain is usually at the end. 240 SDValue TheChain(Node, Node->getNumValues()-1); 241 if (TheChain.getValueType() != MVT::Other) { 242 // Sometimes it's at the beginning. 243 TheChain = SDValue(Node, 0); 244 if (TheChain.getValueType() != MVT::Other) { 245 // Otherwise, hunt for it. 246 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 247 if (Node->getValueType(i) == MVT::Other) { 248 TheChain = SDValue(Node, i); 249 break; 250 } 251 252 // Otherwise, we walked into a node without a chain. 253 if (TheChain.getValueType() != MVT::Other) 254 return 0; 255 } 256 } 257 258 for (SDNode::use_iterator UI = Node->use_begin(), 259 E = Node->use_end(); UI != E; ++UI) { 260 261 // Make sure to only follow users of our token chain. 262 SDNode *User = *UI; 263 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 264 if (User->getOperand(i) == TheChain) 265 if (SDNode *Result = FindCallEndFromCallStart(User, depth)) 266 return Result; 267 } 268 return 0; 269} 270 271/// FindCallStartFromCallEnd - Given a chained node that is part of a call 272/// sequence, find the CALLSEQ_START node that initiates the call sequence. 273static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 274 int nested = 0; 275 assert(Node && "Didn't find callseq_start for a call??"); 276 while (Node->getOpcode() != ISD::CALLSEQ_START || nested) { 277 Node = Node->getOperand(0).getNode(); 278 assert(Node->getOperand(0).getValueType() == MVT::Other && 279 "Node doesn't have a token chain argument!"); 280 switch (Node->getOpcode()) { 281 default: 282 break; 283 case ISD::CALLSEQ_START: 284 if (!nested) 285 return Node; 286 nested--; 287 break; 288 case ISD::CALLSEQ_END: 289 nested++; 290 break; 291 } 292 } 293 return 0; 294} 295 296/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 297/// see if any uses can reach Dest. If no dest operands can get to dest, 298/// legalize them, legalize ourself, and return false, otherwise, return true. 299/// 300/// Keep track of the nodes we fine that actually do lead to Dest in 301/// NodesLeadingTo. This avoids retraversing them exponential number of times. 302/// 303bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 304 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 305 if (N == Dest) return true; // N certainly leads to Dest :) 306 307 // If we've already processed this node and it does lead to Dest, there is no 308 // need to reprocess it. 309 if (NodesLeadingTo.count(N)) return true; 310 311 // If the first result of this node has been already legalized, then it cannot 312 // reach N. 313 if (LegalizedNodes.count(SDValue(N, 0))) return false; 314 315 // Okay, this node has not already been legalized. Check and legalize all 316 // operands. If none lead to Dest, then we can legalize this node. 317 bool OperandsLeadToDest = false; 318 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 319 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 320 LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, 321 NodesLeadingTo); 322 323 if (OperandsLeadToDest) { 324 NodesLeadingTo.insert(N); 325 return true; 326 } 327 328 // Okay, this node looks safe, legalize it and return false. 329 LegalizeOp(SDValue(N, 0)); 330 return false; 331} 332 333/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 334/// a load from the constant pool. 335static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 336 SelectionDAG &DAG, const TargetLowering &TLI) { 337 bool Extend = false; 338 DebugLoc dl = CFP->getDebugLoc(); 339 340 // If a FP immediate is precise when represented as a float and if the 341 // target can do an extending load from float to double, we put it into 342 // the constant pool as a float, even if it's is statically typed as a 343 // double. This shrinks FP constants and canonicalizes them for targets where 344 // an FP extending load is the same cost as a normal load (such as on the x87 345 // fp stack or PPC FP unit). 346 EVT VT = CFP->getValueType(0); 347 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 348 if (!UseCP) { 349 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 350 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), 351 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 352 } 353 354 EVT OrigVT = VT; 355 EVT SVT = VT; 356 while (SVT != MVT::f32) { 357 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 358 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) && 359 // Only do this if the target has a native EXTLOAD instruction from 360 // smaller type. 361 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && 362 TLI.ShouldShrinkFPConstant(OrigVT)) { 363 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 364 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 365 VT = SVT; 366 Extend = true; 367 } 368 } 369 370 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 371 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 372 if (Extend) 373 return DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT, 374 DAG.getEntryNode(), 375 CPIdx, MachinePointerInfo::getConstantPool(), 376 VT, false, false, Alignment); 377 return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, 378 MachinePointerInfo::getConstantPool(), false, false, 379 Alignment); 380} 381 382/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 383static 384SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 385 const TargetLowering &TLI) { 386 SDValue Chain = ST->getChain(); 387 SDValue Ptr = ST->getBasePtr(); 388 SDValue Val = ST->getValue(); 389 EVT VT = Val.getValueType(); 390 int Alignment = ST->getAlignment(); 391 DebugLoc dl = ST->getDebugLoc(); 392 if (ST->getMemoryVT().isFloatingPoint() || 393 ST->getMemoryVT().isVector()) { 394 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 395 if (TLI.isTypeLegal(intVT)) { 396 // Expand to a bitconvert of the value to the integer type of the 397 // same size, then a (misaligned) int store. 398 // FIXME: Does not handle truncating floating point stores! 399 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 400 return DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 401 ST->isVolatile(), ST->isNonTemporal(), Alignment); 402 } 403 // Do a (aligned) store to a stack slot, then copy from the stack slot 404 // to the final destination using (unaligned) integer loads and stores. 405 EVT StoredVT = ST->getMemoryVT(); 406 EVT RegVT = 407 TLI.getRegisterType(*DAG.getContext(), 408 EVT::getIntegerVT(*DAG.getContext(), 409 StoredVT.getSizeInBits())); 410 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 411 unsigned RegBytes = RegVT.getSizeInBits() / 8; 412 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 413 414 // Make sure the stack slot is also aligned for the register type. 415 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 416 417 // Perform the original store, only redirected to the stack slot. 418 SDValue Store = DAG.getTruncStore(Chain, dl, 419 Val, StackPtr, MachinePointerInfo(), 420 StoredVT, false, false, 0); 421 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 422 SmallVector<SDValue, 8> Stores; 423 unsigned Offset = 0; 424 425 // Do all but one copies using the full register width. 426 for (unsigned i = 1; i < NumRegs; i++) { 427 // Load one integer register's worth from the stack slot. 428 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, 429 MachinePointerInfo(), 430 false, false, 0); 431 // Store it to the final location. Remember the store. 432 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 433 ST->getPointerInfo().getWithOffset(Offset), 434 ST->isVolatile(), ST->isNonTemporal(), 435 MinAlign(ST->getAlignment(), Offset))); 436 // Increment the pointers. 437 Offset += RegBytes; 438 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 439 Increment); 440 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 441 } 442 443 // The last store may be partial. Do a truncating store. On big-endian 444 // machines this requires an extending load from the stack slot to ensure 445 // that the bits are in the right place. 446 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 447 8 * (StoredBytes - Offset)); 448 449 // Load from the stack slot. 450 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 451 MachinePointerInfo(), 452 MemVT, false, false, 0); 453 454 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 455 ST->getPointerInfo() 456 .getWithOffset(Offset), 457 MemVT, ST->isVolatile(), 458 ST->isNonTemporal(), 459 MinAlign(ST->getAlignment(), Offset))); 460 // The order of the stores doesn't matter - say it with a TokenFactor. 461 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 462 Stores.size()); 463 } 464 assert(ST->getMemoryVT().isInteger() && 465 !ST->getMemoryVT().isVector() && 466 "Unaligned store of unknown type."); 467 // Get the half-size VT 468 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 469 int NumBits = NewStoredVT.getSizeInBits(); 470 int IncrementSize = NumBits / 8; 471 472 // Divide the stored value in two parts. 473 SDValue ShiftAmount = DAG.getConstant(NumBits, 474 TLI.getShiftAmountTy(Val.getValueType())); 475 SDValue Lo = Val; 476 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 477 478 // Store the two parts 479 SDValue Store1, Store2; 480 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, 481 ST->getPointerInfo(), NewStoredVT, 482 ST->isVolatile(), ST->isNonTemporal(), Alignment); 483 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 484 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 485 Alignment = MinAlign(Alignment, IncrementSize); 486 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, 487 ST->getPointerInfo().getWithOffset(IncrementSize), 488 NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), 489 Alignment); 490 491 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 492} 493 494/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 495static 496SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 497 const TargetLowering &TLI) { 498 SDValue Chain = LD->getChain(); 499 SDValue Ptr = LD->getBasePtr(); 500 EVT VT = LD->getValueType(0); 501 EVT LoadedVT = LD->getMemoryVT(); 502 DebugLoc dl = LD->getDebugLoc(); 503 if (VT.isFloatingPoint() || VT.isVector()) { 504 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 505 if (TLI.isTypeLegal(intVT)) { 506 // Expand to a (misaligned) integer load of the same size, 507 // then bitconvert to floating point or vector. 508 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(), 509 LD->isVolatile(), 510 LD->isNonTemporal(), LD->getAlignment()); 511 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 512 if (VT.isFloatingPoint() && LoadedVT != VT) 513 Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result); 514 515 SDValue Ops[] = { Result, Chain }; 516 return DAG.getMergeValues(Ops, 2, dl); 517 } 518 519 // Copy the value to a (aligned) stack slot using (unaligned) integer 520 // loads and stores, then do a (aligned) load from the stack slot. 521 EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT); 522 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 523 unsigned RegBytes = RegVT.getSizeInBits() / 8; 524 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 525 526 // Make sure the stack slot is also aligned for the register type. 527 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 528 529 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 530 SmallVector<SDValue, 8> Stores; 531 SDValue StackPtr = StackBase; 532 unsigned Offset = 0; 533 534 // Do all but one copies using the full register width. 535 for (unsigned i = 1; i < NumRegs; i++) { 536 // Load one integer register's worth from the original location. 537 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, 538 LD->getPointerInfo().getWithOffset(Offset), 539 LD->isVolatile(), LD->isNonTemporal(), 540 MinAlign(LD->getAlignment(), Offset)); 541 // Follow the load with a store to the stack slot. Remember the store. 542 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 543 MachinePointerInfo(), false, false, 0)); 544 // Increment the pointers. 545 Offset += RegBytes; 546 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 547 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 548 Increment); 549 } 550 551 // The last copy may be partial. Do an extending load. 552 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 553 8 * (LoadedBytes - Offset)); 554 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 555 LD->getPointerInfo().getWithOffset(Offset), 556 MemVT, LD->isVolatile(), 557 LD->isNonTemporal(), 558 MinAlign(LD->getAlignment(), Offset)); 559 // Follow the load with a store to the stack slot. Remember the store. 560 // On big-endian machines this requires a truncating store to ensure 561 // that the bits end up in the right place. 562 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 563 MachinePointerInfo(), MemVT, 564 false, false, 0)); 565 566 // The order of the stores doesn't matter - say it with a TokenFactor. 567 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 568 Stores.size()); 569 570 // Finally, perform the original load only redirected to the stack slot. 571 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 572 MachinePointerInfo(), LoadedVT, false, false, 0); 573 574 // Callers expect a MERGE_VALUES node. 575 SDValue Ops[] = { Load, TF }; 576 return DAG.getMergeValues(Ops, 2, dl); 577 } 578 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 579 "Unaligned load of unsupported type."); 580 581 // Compute the new VT that is half the size of the old one. This is an 582 // integer MVT. 583 unsigned NumBits = LoadedVT.getSizeInBits(); 584 EVT NewLoadedVT; 585 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 586 NumBits >>= 1; 587 588 unsigned Alignment = LD->getAlignment(); 589 unsigned IncrementSize = NumBits / 8; 590 ISD::LoadExtType HiExtType = LD->getExtensionType(); 591 592 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 593 if (HiExtType == ISD::NON_EXTLOAD) 594 HiExtType = ISD::ZEXTLOAD; 595 596 // Load the value in two parts 597 SDValue Lo, Hi; 598 if (TLI.isLittleEndian()) { 599 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 600 NewLoadedVT, LD->isVolatile(), 601 LD->isNonTemporal(), Alignment); 602 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 603 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 604 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 605 LD->getPointerInfo().getWithOffset(IncrementSize), 606 NewLoadedVT, LD->isVolatile(), 607 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 608 } else { 609 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 610 NewLoadedVT, LD->isVolatile(), 611 LD->isNonTemporal(), Alignment); 612 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 613 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 614 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 615 LD->getPointerInfo().getWithOffset(IncrementSize), 616 NewLoadedVT, LD->isVolatile(), 617 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 618 } 619 620 // aggregate the two parts 621 SDValue ShiftAmount = DAG.getConstant(NumBits, 622 TLI.getShiftAmountTy(Hi.getValueType())); 623 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 624 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 625 626 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 627 Hi.getValue(1)); 628 629 SDValue Ops[] = { Result, TF }; 630 return DAG.getMergeValues(Ops, 2, dl); 631} 632 633/// PerformInsertVectorEltInMemory - Some target cannot handle a variable 634/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 635/// is necessary to spill the vector being inserted into to memory, perform 636/// the insert there, and then read the result back. 637SDValue SelectionDAGLegalize:: 638PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 639 DebugLoc dl) { 640 SDValue Tmp1 = Vec; 641 SDValue Tmp2 = Val; 642 SDValue Tmp3 = Idx; 643 644 // If the target doesn't support this, we have to spill the input vector 645 // to a temporary stack slot, update the element, then reload it. This is 646 // badness. We could also load the value into a vector register (either 647 // with a "move to register" or "extload into register" instruction, then 648 // permute it into place, if the idx is a constant and if the idx is 649 // supported by the target. 650 EVT VT = Tmp1.getValueType(); 651 EVT EltVT = VT.getVectorElementType(); 652 EVT IdxVT = Tmp3.getValueType(); 653 EVT PtrVT = TLI.getPointerTy(); 654 SDValue StackPtr = DAG.CreateStackTemporary(VT); 655 656 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 657 658 // Store the vector. 659 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, 660 MachinePointerInfo::getFixedStack(SPFI), 661 false, false, 0); 662 663 // Truncate or zero extend offset to target pointer type. 664 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 665 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); 666 // Add the offset to the index. 667 unsigned EltSize = EltVT.getSizeInBits()/8; 668 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 669 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); 670 // Store the scalar value. 671 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT, 672 false, false, 0); 673 // Load the updated vector. 674 return DAG.getLoad(VT, dl, Ch, StackPtr, 675 MachinePointerInfo::getFixedStack(SPFI), false, false, 0); 676} 677 678 679SDValue SelectionDAGLegalize:: 680ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) { 681 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 682 // SCALAR_TO_VECTOR requires that the type of the value being inserted 683 // match the element type of the vector being created, except for 684 // integers in which case the inserted value can be over width. 685 EVT EltVT = Vec.getValueType().getVectorElementType(); 686 if (Val.getValueType() == EltVT || 687 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 688 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 689 Vec.getValueType(), Val); 690 691 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 692 // We generate a shuffle of InVec and ScVec, so the shuffle mask 693 // should be 0,1,2,3,4,5... with the appropriate element replaced with 694 // elt 0 of the RHS. 695 SmallVector<int, 8> ShufOps; 696 for (unsigned i = 0; i != NumElts; ++i) 697 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 698 699 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, 700 &ShufOps[0]); 701 } 702 } 703 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 704} 705 706SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 707 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 708 // FIXME: We shouldn't do this for TargetConstantFP's. 709 // FIXME: move this to the DAG Combiner! Note that we can't regress due 710 // to phase ordering between legalized code and the dag combiner. This 711 // probably means that we need to integrate dag combiner and legalizer 712 // together. 713 // We generally can't do this one for long doubles. 714 SDValue Tmp1 = ST->getChain(); 715 SDValue Tmp2 = ST->getBasePtr(); 716 SDValue Tmp3; 717 unsigned Alignment = ST->getAlignment(); 718 bool isVolatile = ST->isVolatile(); 719 bool isNonTemporal = ST->isNonTemporal(); 720 DebugLoc dl = ST->getDebugLoc(); 721 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 722 if (CFP->getValueType(0) == MVT::f32 && 723 TLI.isTypeLegal(MVT::i32)) { 724 Tmp3 = DAG.getConstant(CFP->getValueAPF(). 725 bitcastToAPInt().zextOrTrunc(32), 726 MVT::i32); 727 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 728 isVolatile, isNonTemporal, Alignment); 729 } 730 731 if (CFP->getValueType(0) == MVT::f64) { 732 // If this target supports 64-bit registers, do a single 64-bit store. 733 if (TLI.isTypeLegal(MVT::i64)) { 734 Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 735 zextOrTrunc(64), MVT::i64); 736 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 737 isVolatile, isNonTemporal, Alignment); 738 } 739 740 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 741 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 742 // stores. If the target supports neither 32- nor 64-bits, this 743 // xform is certainly not worth it. 744 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); 745 SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32); 746 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); 747 if (TLI.isBigEndian()) std::swap(Lo, Hi); 748 749 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile, 750 isNonTemporal, Alignment); 751 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 752 DAG.getIntPtrConstant(4)); 753 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, 754 ST->getPointerInfo().getWithOffset(4), 755 isVolatile, isNonTemporal, MinAlign(Alignment, 4U)); 756 757 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 758 } 759 } 760 } 761 return SDValue(0, 0); 762} 763 764/// LegalizeOp - Return a legal replacement for the given operation, with 765/// all legal operands. 766SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) { 767 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 768 return Op; 769 770 SDNode *Node = Op.getNode(); 771 DebugLoc dl = Node->getDebugLoc(); 772 773 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 774 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 775 TargetLowering::TypeLegal && 776 "Unexpected illegal type!"); 777 778 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 779 assert((TLI.getTypeAction(*DAG.getContext(), 780 Node->getOperand(i).getValueType()) == 781 TargetLowering::TypeLegal || 782 Node->getOperand(i).getOpcode() == ISD::TargetConstant) && 783 "Unexpected illegal type!"); 784 785 // Note that LegalizeOp may be reentered even from single-use nodes, which 786 // means that we always must cache transformed nodes. 787 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 788 if (I != LegalizedNodes.end()) return I->second; 789 790 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 791 SDValue Result = Op; 792 bool isCustom = false; 793 794 // Figure out the correct action; the way to query this varies by opcode 795 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 796 bool SimpleFinishLegalizing = true; 797 switch (Node->getOpcode()) { 798 case ISD::INTRINSIC_W_CHAIN: 799 case ISD::INTRINSIC_WO_CHAIN: 800 case ISD::INTRINSIC_VOID: 801 case ISD::VAARG: 802 case ISD::STACKSAVE: 803 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 804 break; 805 case ISD::SINT_TO_FP: 806 case ISD::UINT_TO_FP: 807 case ISD::EXTRACT_VECTOR_ELT: 808 Action = TLI.getOperationAction(Node->getOpcode(), 809 Node->getOperand(0).getValueType()); 810 break; 811 case ISD::FP_ROUND_INREG: 812 case ISD::SIGN_EXTEND_INREG: { 813 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 814 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 815 break; 816 } 817 case ISD::ATOMIC_STORE: { 818 Action = TLI.getOperationAction(Node->getOpcode(), 819 Node->getOperand(2).getValueType()); 820 break; 821 } 822 case ISD::SELECT_CC: 823 case ISD::SETCC: 824 case ISD::BR_CC: { 825 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 826 Node->getOpcode() == ISD::SETCC ? 2 : 1; 827 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 828 EVT OpVT = Node->getOperand(CompareOperand).getValueType(); 829 ISD::CondCode CCCode = 830 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 831 Action = TLI.getCondCodeAction(CCCode, OpVT); 832 if (Action == TargetLowering::Legal) { 833 if (Node->getOpcode() == ISD::SELECT_CC) 834 Action = TLI.getOperationAction(Node->getOpcode(), 835 Node->getValueType(0)); 836 else 837 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 838 } 839 break; 840 } 841 case ISD::LOAD: 842 case ISD::STORE: 843 // FIXME: Model these properly. LOAD and STORE are complicated, and 844 // STORE expects the unlegalized operand in some cases. 845 SimpleFinishLegalizing = false; 846 break; 847 case ISD::CALLSEQ_START: 848 case ISD::CALLSEQ_END: 849 // FIXME: This shouldn't be necessary. These nodes have special properties 850 // dealing with the recursive nature of legalization. Removing this 851 // special case should be done as part of making LegalizeDAG non-recursive. 852 SimpleFinishLegalizing = false; 853 break; 854 case ISD::EXTRACT_ELEMENT: 855 case ISD::FLT_ROUNDS_: 856 case ISD::SADDO: 857 case ISD::SSUBO: 858 case ISD::UADDO: 859 case ISD::USUBO: 860 case ISD::SMULO: 861 case ISD::UMULO: 862 case ISD::FPOWI: 863 case ISD::MERGE_VALUES: 864 case ISD::EH_RETURN: 865 case ISD::FRAME_TO_ARGS_OFFSET: 866 case ISD::EH_SJLJ_SETJMP: 867 case ISD::EH_SJLJ_LONGJMP: 868 case ISD::EH_SJLJ_DISPATCHSETUP: 869 // These operations lie about being legal: when they claim to be legal, 870 // they should actually be expanded. 871 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 872 if (Action == TargetLowering::Legal) 873 Action = TargetLowering::Expand; 874 break; 875 case ISD::INIT_TRAMPOLINE: 876 case ISD::ADJUST_TRAMPOLINE: 877 case ISD::FRAMEADDR: 878 case ISD::RETURNADDR: 879 // These operations lie about being legal: when they claim to be legal, 880 // they should actually be custom-lowered. 881 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 882 if (Action == TargetLowering::Legal) 883 Action = TargetLowering::Custom; 884 break; 885 case ISD::BUILD_VECTOR: 886 // A weird case: legalization for BUILD_VECTOR never legalizes the 887 // operands! 888 // FIXME: This really sucks... changing it isn't semantically incorrect, 889 // but it massively pessimizes the code for floating-point BUILD_VECTORs 890 // because ConstantFP operands get legalized into constant pool loads 891 // before the BUILD_VECTOR code can see them. It doesn't usually bite, 892 // though, because BUILD_VECTORS usually get lowered into other nodes 893 // which get legalized properly. 894 SimpleFinishLegalizing = false; 895 break; 896 default: 897 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 898 Action = TargetLowering::Legal; 899 } else { 900 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 901 } 902 break; 903 } 904 905 if (SimpleFinishLegalizing) { 906 SmallVector<SDValue, 8> Ops, ResultVals; 907 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 908 Ops.push_back(LegalizeOp(Node->getOperand(i))); 909 switch (Node->getOpcode()) { 910 default: break; 911 case ISD::BR: 912 case ISD::BRIND: 913 case ISD::BR_JT: 914 case ISD::BR_CC: 915 case ISD::BRCOND: 916 // Branches tweak the chain to include LastCALLSEQ_END 917 Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0], 918 LastCALLSEQ_END); 919 Ops[0] = LegalizeOp(Ops[0]); 920 LastCALLSEQ_END = DAG.getEntryNode(); 921 break; 922 case ISD::SHL: 923 case ISD::SRL: 924 case ISD::SRA: 925 case ISD::ROTL: 926 case ISD::ROTR: 927 // Legalizing shifts/rotates requires adjusting the shift amount 928 // to the appropriate width. 929 if (!Ops[1].getValueType().isVector()) 930 Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(), 931 Ops[1])); 932 break; 933 case ISD::SRL_PARTS: 934 case ISD::SRA_PARTS: 935 case ISD::SHL_PARTS: 936 // Legalizing shifts/rotates requires adjusting the shift amount 937 // to the appropriate width. 938 if (!Ops[2].getValueType().isVector()) 939 Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(), 940 Ops[2])); 941 break; 942 } 943 944 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(), 945 Ops.size()), 0); 946 switch (Action) { 947 case TargetLowering::Legal: 948 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 949 ResultVals.push_back(Result.getValue(i)); 950 break; 951 case TargetLowering::Custom: 952 // FIXME: The handling for custom lowering with multiple results is 953 // a complete mess. 954 Tmp1 = TLI.LowerOperation(Result, DAG); 955 if (Tmp1.getNode()) { 956 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 957 if (e == 1) 958 ResultVals.push_back(Tmp1); 959 else 960 ResultVals.push_back(Tmp1.getValue(i)); 961 } 962 break; 963 } 964 965 // FALL THROUGH 966 case TargetLowering::Expand: 967 ExpandNode(Result.getNode(), ResultVals); 968 break; 969 case TargetLowering::Promote: 970 PromoteNode(Result.getNode(), ResultVals); 971 break; 972 } 973 if (!ResultVals.empty()) { 974 for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) { 975 if (ResultVals[i] != SDValue(Node, i)) 976 ResultVals[i] = LegalizeOp(ResultVals[i]); 977 AddLegalizedOperand(SDValue(Node, i), ResultVals[i]); 978 } 979 return ResultVals[Op.getResNo()]; 980 } 981 } 982 983 switch (Node->getOpcode()) { 984 default: 985#ifndef NDEBUG 986 dbgs() << "NODE: "; 987 Node->dump( &DAG); 988 dbgs() << "\n"; 989#endif 990 assert(0 && "Do not know how to legalize this operator!"); 991 992 case ISD::SRA: 993 case ISD::SRL: 994 case ISD::SHL: { 995 // Scalarize vector SRA/SRL/SHL. 996 EVT VT = Node->getValueType(0); 997 assert(VT.isVector() && "Unable to legalize non-vector shift"); 998 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 999 unsigned NumElem = VT.getVectorNumElements(); 1000 1001 SmallVector<SDValue, 8> Scalars; 1002 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 1003 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1004 VT.getScalarType(), 1005 Node->getOperand(0), DAG.getIntPtrConstant(Idx)); 1006 SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1007 VT.getScalarType(), 1008 Node->getOperand(1), DAG.getIntPtrConstant(Idx)); 1009 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 1010 VT.getScalarType(), Ex, Sh)); 1011 } 1012 Result = DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), 1013 &Scalars[0], Scalars.size()); 1014 break; 1015 } 1016 1017 case ISD::BUILD_VECTOR: 1018 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 1019 default: assert(0 && "This action is not supported yet!"); 1020 case TargetLowering::Custom: 1021 Tmp3 = TLI.LowerOperation(Result, DAG); 1022 if (Tmp3.getNode()) { 1023 Result = Tmp3; 1024 break; 1025 } 1026 // FALLTHROUGH 1027 case TargetLowering::Expand: 1028 Result = ExpandBUILD_VECTOR(Result.getNode()); 1029 break; 1030 } 1031 break; 1032 case ISD::CALLSEQ_START: { 1033 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1034 1035 // Recursively Legalize all of the inputs of the call end that do not lead 1036 // to this call start. This ensures that any libcalls that need be inserted 1037 // are inserted *before* the CALLSEQ_START. 1038 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1039 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1040 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node, 1041 NodesLeadingTo); 1042 } 1043 1044 // Now that we have legalized all of the inputs (which may have inserted 1045 // libcalls), create the new CALLSEQ_START node. 1046 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1047 1048 // Merge in the last call to ensure that this call starts after the last 1049 // call ended. 1050 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 1051 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1052 Tmp1, LastCALLSEQ_END); 1053 Tmp1 = LegalizeOp(Tmp1); 1054 } 1055 1056 // Do not try to legalize the target-specific arguments (#1+). 1057 if (Tmp1 != Node->getOperand(0)) { 1058 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1059 Ops[0] = Tmp1; 1060 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0], 1061 Ops.size()), Result.getResNo()); 1062 } 1063 1064 // Remember that the CALLSEQ_START is legalized. 1065 AddLegalizedOperand(Op.getValue(0), Result); 1066 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1067 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1068 1069 // Now that the callseq_start and all of the non-call nodes above this call 1070 // sequence have been legalized, legalize the call itself. During this 1071 // process, no libcalls can/will be inserted, guaranteeing that no calls 1072 // can overlap. 1073 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1074 // Note that we are selecting this call! 1075 LastCALLSEQ_END = SDValue(CallEnd, 0); 1076 IsLegalizingCall = true; 1077 1078 // Legalize the call, starting from the CALLSEQ_END. 1079 LegalizeOp(LastCALLSEQ_END); 1080 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1081 return Result; 1082 } 1083 case ISD::CALLSEQ_END: 1084 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1085 // will cause this node to be legalized as well as handling libcalls right. 1086 if (LastCALLSEQ_END.getNode() != Node) { 1087 LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0)); 1088 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 1089 assert(I != LegalizedNodes.end() && 1090 "Legalizing the call start should have legalized this node!"); 1091 return I->second; 1092 } 1093 1094 // Otherwise, the call start has been legalized and everything is going 1095 // according to plan. Just legalize ourselves normally here. 1096 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1097 // Do not try to legalize the target-specific arguments (#1+), except for 1098 // an optional flag input. 1099 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Glue){ 1100 if (Tmp1 != Node->getOperand(0)) { 1101 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1102 Ops[0] = Tmp1; 1103 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1104 &Ops[0], Ops.size()), 1105 Result.getResNo()); 1106 } 1107 } else { 1108 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1109 if (Tmp1 != Node->getOperand(0) || 1110 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1111 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1112 Ops[0] = Tmp1; 1113 Ops.back() = Tmp2; 1114 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1115 &Ops[0], Ops.size()), 1116 Result.getResNo()); 1117 } 1118 } 1119 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1120 // This finishes up call legalization. 1121 IsLegalizingCall = false; 1122 1123 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1124 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1125 if (Node->getNumValues() == 2) 1126 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1127 return Result.getValue(Op.getResNo()); 1128 case ISD::LOAD: { 1129 LoadSDNode *LD = cast<LoadSDNode>(Node); 1130 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 1131 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 1132 1133 ISD::LoadExtType ExtType = LD->getExtensionType(); 1134 if (ExtType == ISD::NON_EXTLOAD) { 1135 EVT VT = Node->getValueType(0); 1136 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1137 Tmp1, Tmp2, LD->getOffset()), 1138 Result.getResNo()); 1139 Tmp3 = Result.getValue(0); 1140 Tmp4 = Result.getValue(1); 1141 1142 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1143 default: assert(0 && "This action is not supported yet!"); 1144 case TargetLowering::Legal: 1145 // If this is an unaligned load and the target doesn't support it, 1146 // expand it. 1147 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 1148 Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1149 unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty); 1150 if (LD->getAlignment() < ABIAlignment){ 1151 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), 1152 DAG, TLI); 1153 Tmp3 = Result.getOperand(0); 1154 Tmp4 = Result.getOperand(1); 1155 Tmp3 = LegalizeOp(Tmp3); 1156 Tmp4 = LegalizeOp(Tmp4); 1157 } 1158 } 1159 break; 1160 case TargetLowering::Custom: 1161 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 1162 if (Tmp1.getNode()) { 1163 Tmp3 = LegalizeOp(Tmp1); 1164 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1165 } 1166 break; 1167 case TargetLowering::Promote: { 1168 // Only promote a load of vector type to another. 1169 assert(VT.isVector() && "Cannot promote this load!"); 1170 // Change base type to a different vector type. 1171 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 1172 1173 Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(), 1174 LD->isVolatile(), LD->isNonTemporal(), 1175 LD->getAlignment()); 1176 Tmp3 = LegalizeOp(DAG.getNode(ISD::BITCAST, dl, VT, Tmp1)); 1177 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1178 break; 1179 } 1180 } 1181 // Since loads produce two values, make sure to remember that we 1182 // legalized both of them. 1183 AddLegalizedOperand(SDValue(Node, 0), Tmp3); 1184 AddLegalizedOperand(SDValue(Node, 1), Tmp4); 1185 return Op.getResNo() ? Tmp4 : Tmp3; 1186 } 1187 1188 EVT SrcVT = LD->getMemoryVT(); 1189 unsigned SrcWidth = SrcVT.getSizeInBits(); 1190 unsigned Alignment = LD->getAlignment(); 1191 bool isVolatile = LD->isVolatile(); 1192 bool isNonTemporal = LD->isNonTemporal(); 1193 1194 if (SrcWidth != SrcVT.getStoreSizeInBits() && 1195 // Some targets pretend to have an i1 loading operation, and actually 1196 // load an i8. This trick is correct for ZEXTLOAD because the top 7 1197 // bits are guaranteed to be zero; it helps the optimizers understand 1198 // that these bits are zero. It is also useful for EXTLOAD, since it 1199 // tells the optimizers that those bits are undefined. It would be 1200 // nice to have an effective generic way of getting these benefits... 1201 // Until such a way is found, don't insist on promoting i1 here. 1202 (SrcVT != MVT::i1 || 1203 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 1204 // Promote to a byte-sized load if not loading an integral number of 1205 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 1206 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 1207 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 1208 SDValue Ch; 1209 1210 // The extra bits are guaranteed to be zero, since we stored them that 1211 // way. A zext load from NVT thus automatically gives zext from SrcVT. 1212 1213 ISD::LoadExtType NewExtType = 1214 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 1215 1216 Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 1217 Tmp1, Tmp2, LD->getPointerInfo(), 1218 NVT, isVolatile, isNonTemporal, Alignment); 1219 1220 Ch = Result.getValue(1); // The chain. 1221 1222 if (ExtType == ISD::SEXTLOAD) 1223 // Having the top bits zero doesn't help when sign extending. 1224 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 1225 Result.getValueType(), 1226 Result, DAG.getValueType(SrcVT)); 1227 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 1228 // All the top bits are guaranteed to be zero - inform the optimizers. 1229 Result = DAG.getNode(ISD::AssertZext, dl, 1230 Result.getValueType(), Result, 1231 DAG.getValueType(SrcVT)); 1232 1233 Tmp1 = LegalizeOp(Result); 1234 Tmp2 = LegalizeOp(Ch); 1235 } else if (SrcWidth & (SrcWidth - 1)) { 1236 // If not loading a power-of-2 number of bits, expand as two loads. 1237 assert(!SrcVT.isVector() && "Unsupported extload!"); 1238 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 1239 assert(RoundWidth < SrcWidth); 1240 unsigned ExtraWidth = SrcWidth - RoundWidth; 1241 assert(ExtraWidth < RoundWidth); 1242 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1243 "Load size not an integral number of bytes!"); 1244 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 1245 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 1246 SDValue Lo, Hi, Ch; 1247 unsigned IncrementSize; 1248 1249 if (TLI.isLittleEndian()) { 1250 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 1251 // Load the bottom RoundWidth bits. 1252 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), 1253 Tmp1, Tmp2, 1254 LD->getPointerInfo(), RoundVT, isVolatile, 1255 isNonTemporal, Alignment); 1256 1257 // Load the remaining ExtraWidth bits. 1258 IncrementSize = RoundWidth / 8; 1259 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1260 DAG.getIntPtrConstant(IncrementSize)); 1261 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 1262 LD->getPointerInfo().getWithOffset(IncrementSize), 1263 ExtraVT, isVolatile, isNonTemporal, 1264 MinAlign(Alignment, IncrementSize)); 1265 1266 // Build a factor node to remember that this load is independent of 1267 // the other one. 1268 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1269 Hi.getValue(1)); 1270 1271 // Move the top bits to the right place. 1272 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1273 DAG.getConstant(RoundWidth, 1274 TLI.getShiftAmountTy(Hi.getValueType()))); 1275 1276 // Join the hi and lo parts. 1277 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1278 } else { 1279 // Big endian - avoid unaligned loads. 1280 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 1281 // Load the top RoundWidth bits. 1282 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 1283 LD->getPointerInfo(), RoundVT, isVolatile, 1284 isNonTemporal, Alignment); 1285 1286 // Load the remaining ExtraWidth bits. 1287 IncrementSize = RoundWidth / 8; 1288 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1289 DAG.getIntPtrConstant(IncrementSize)); 1290 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, 1291 dl, Node->getValueType(0), Tmp1, Tmp2, 1292 LD->getPointerInfo().getWithOffset(IncrementSize), 1293 ExtraVT, isVolatile, isNonTemporal, 1294 MinAlign(Alignment, IncrementSize)); 1295 1296 // Build a factor node to remember that this load is independent of 1297 // the other one. 1298 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1299 Hi.getValue(1)); 1300 1301 // Move the top bits to the right place. 1302 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1303 DAG.getConstant(ExtraWidth, 1304 TLI.getShiftAmountTy(Hi.getValueType()))); 1305 1306 // Join the hi and lo parts. 1307 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1308 } 1309 1310 Tmp1 = LegalizeOp(Result); 1311 Tmp2 = LegalizeOp(Ch); 1312 } else { 1313 switch (TLI.getLoadExtAction(ExtType, SrcVT)) { 1314 default: assert(0 && "This action is not supported yet!"); 1315 case TargetLowering::Custom: 1316 isCustom = true; 1317 // FALLTHROUGH 1318 case TargetLowering::Legal: 1319 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1320 Tmp1, Tmp2, LD->getOffset()), 1321 Result.getResNo()); 1322 Tmp1 = Result.getValue(0); 1323 Tmp2 = Result.getValue(1); 1324 1325 if (isCustom) { 1326 Tmp3 = TLI.LowerOperation(Result, DAG); 1327 if (Tmp3.getNode()) { 1328 Tmp1 = LegalizeOp(Tmp3); 1329 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1330 } 1331 } else { 1332 // If this is an unaligned load and the target doesn't support it, 1333 // expand it. 1334 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 1335 Type *Ty = 1336 LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1337 unsigned ABIAlignment = 1338 TLI.getTargetData()->getABITypeAlignment(Ty); 1339 if (LD->getAlignment() < ABIAlignment){ 1340 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), 1341 DAG, TLI); 1342 Tmp1 = Result.getOperand(0); 1343 Tmp2 = Result.getOperand(1); 1344 Tmp1 = LegalizeOp(Tmp1); 1345 Tmp2 = LegalizeOp(Tmp2); 1346 } 1347 } 1348 } 1349 break; 1350 case TargetLowering::Expand: 1351 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) { 1352 SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, 1353 LD->getPointerInfo(), 1354 LD->isVolatile(), LD->isNonTemporal(), 1355 LD->getAlignment()); 1356 unsigned ExtendOp; 1357 switch (ExtType) { 1358 case ISD::EXTLOAD: 1359 ExtendOp = (SrcVT.isFloatingPoint() ? 1360 ISD::FP_EXTEND : ISD::ANY_EXTEND); 1361 break; 1362 case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break; 1363 case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break; 1364 default: llvm_unreachable("Unexpected extend load type!"); 1365 } 1366 Result = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 1367 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 1368 Tmp2 = LegalizeOp(Load.getValue(1)); 1369 break; 1370 } 1371 1372 // If this is a promoted vector load, and the vector element types are 1373 // legal, then scalarize it. 1374 if (ExtType == ISD::EXTLOAD && SrcVT.isVector() && 1375 TLI.isTypeLegal(Node->getValueType(0).getScalarType())) { 1376 SmallVector<SDValue, 8> LoadVals; 1377 SmallVector<SDValue, 8> LoadChains; 1378 unsigned NumElem = SrcVT.getVectorNumElements(); 1379 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 1380 1381 for (unsigned Idx=0; Idx<NumElem; Idx++) { 1382 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1383 DAG.getIntPtrConstant(Stride)); 1384 SDValue ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, 1385 Node->getValueType(0).getScalarType(), 1386 Tmp1, Tmp2, LD->getPointerInfo().getWithOffset(Idx * Stride), 1387 SrcVT.getScalarType(), 1388 LD->isVolatile(), LD->isNonTemporal(), 1389 LD->getAlignment()); 1390 1391 LoadVals.push_back(ScalarLoad.getValue(0)); 1392 LoadChains.push_back(ScalarLoad.getValue(1)); 1393 } 1394 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1395 &LoadChains[0], LoadChains.size()); 1396 SDValue ValRes = DAG.getNode(ISD::BUILD_VECTOR, dl, 1397 Node->getValueType(0), &LoadVals[0], LoadVals.size()); 1398 1399 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 1400 Tmp2 = LegalizeOp(Result.getValue(0)); // Relegalize new nodes. 1401 break; 1402 } 1403 1404 // If this is a promoted vector load, and the vector element types are 1405 // illegal, create the promoted vector from bitcasted segments. 1406 if (ExtType == ISD::EXTLOAD && SrcVT.isVector()) { 1407 EVT MemElemTy = Node->getValueType(0).getScalarType(); 1408 EVT SrcSclrTy = SrcVT.getScalarType(); 1409 unsigned SizeRatio = 1410 (MemElemTy.getSizeInBits() / SrcSclrTy.getSizeInBits()); 1411 1412 SmallVector<SDValue, 8> LoadVals; 1413 SmallVector<SDValue, 8> LoadChains; 1414 unsigned NumElem = SrcVT.getVectorNumElements(); 1415 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 1416 1417 for (unsigned Idx=0; Idx<NumElem; Idx++) { 1418 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1419 DAG.getIntPtrConstant(Stride)); 1420 SDValue ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, 1421 SrcVT.getScalarType(), 1422 Tmp1, Tmp2, LD->getPointerInfo().getWithOffset(Idx * Stride), 1423 SrcVT.getScalarType(), 1424 LD->isVolatile(), LD->isNonTemporal(), 1425 LD->getAlignment()); 1426 if (TLI.isBigEndian()) { 1427 // MSB (which is garbage, comes first) 1428 LoadVals.push_back(ScalarLoad.getValue(0)); 1429 for (unsigned i = 0; i<SizeRatio-1; ++i) 1430 LoadVals.push_back(DAG.getUNDEF(SrcVT.getScalarType())); 1431 } else { 1432 // LSB (which is data, comes first) 1433 for (unsigned i = 0; i<SizeRatio-1; ++i) 1434 LoadVals.push_back(DAG.getUNDEF(SrcVT.getScalarType())); 1435 LoadVals.push_back(ScalarLoad.getValue(0)); 1436 } 1437 LoadChains.push_back(ScalarLoad.getValue(1)); 1438 } 1439 1440 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1441 &LoadChains[0], LoadChains.size()); 1442 EVT TempWideVector = EVT::getVectorVT(*DAG.getContext(), 1443 SrcVT.getScalarType(), NumElem*SizeRatio); 1444 SDValue ValRes = DAG.getNode(ISD::BUILD_VECTOR, dl, 1445 TempWideVector, &LoadVals[0], LoadVals.size()); 1446 1447 // Cast to the correct type 1448 ValRes = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), ValRes); 1449 1450 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 1451 Tmp2 = LegalizeOp(Result.getValue(0)); // Relegalize new nodes. 1452 break; 1453 1454 } 1455 1456 // FIXME: This does not work for vectors on most targets. Sign- and 1457 // zero-extend operations are currently folded into extending loads, 1458 // whether they are legal or not, and then we end up here without any 1459 // support for legalizing them. 1460 assert(ExtType != ISD::EXTLOAD && 1461 "EXTLOAD should always be supported!"); 1462 // Turn the unsupported load into an EXTLOAD followed by an explicit 1463 // zero/sign extend inreg. 1464 Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), 1465 Tmp1, Tmp2, LD->getPointerInfo(), SrcVT, 1466 LD->isVolatile(), LD->isNonTemporal(), 1467 LD->getAlignment()); 1468 SDValue ValRes; 1469 if (ExtType == ISD::SEXTLOAD) 1470 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 1471 Result.getValueType(), 1472 Result, DAG.getValueType(SrcVT)); 1473 else 1474 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 1475 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 1476 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 1477 break; 1478 } 1479 } 1480 1481 // Since loads produce two values, make sure to remember that we legalized 1482 // both of them. 1483 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 1484 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 1485 return Op.getResNo() ? Tmp2 : Tmp1; 1486 } 1487 case ISD::STORE: { 1488 StoreSDNode *ST = cast<StoreSDNode>(Node); 1489 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 1490 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 1491 unsigned Alignment = ST->getAlignment(); 1492 bool isVolatile = ST->isVolatile(); 1493 bool isNonTemporal = ST->isNonTemporal(); 1494 1495 if (!ST->isTruncatingStore()) { 1496 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 1497 Result = SDValue(OptStore, 0); 1498 break; 1499 } 1500 1501 { 1502 Tmp3 = LegalizeOp(ST->getValue()); 1503 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1504 Tmp1, Tmp3, Tmp2, 1505 ST->getOffset()), 1506 Result.getResNo()); 1507 1508 EVT VT = Tmp3.getValueType(); 1509 switch (TLI.getOperationAction(ISD::STORE, VT)) { 1510 default: assert(0 && "This action is not supported yet!"); 1511 case TargetLowering::Legal: 1512 // If this is an unaligned store and the target doesn't support it, 1513 // expand it. 1514 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 1515 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1516 unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty); 1517 if (ST->getAlignment() < ABIAlignment) 1518 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), 1519 DAG, TLI); 1520 } 1521 break; 1522 case TargetLowering::Custom: 1523 Tmp1 = TLI.LowerOperation(Result, DAG); 1524 if (Tmp1.getNode()) Result = Tmp1; 1525 break; 1526 case TargetLowering::Promote: 1527 assert(VT.isVector() && "Unknown legal promote case!"); 1528 Tmp3 = DAG.getNode(ISD::BITCAST, dl, 1529 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 1530 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, 1531 ST->getPointerInfo(), isVolatile, 1532 isNonTemporal, Alignment); 1533 break; 1534 } 1535 break; 1536 } 1537 } else { 1538 Tmp3 = LegalizeOp(ST->getValue()); 1539 1540 EVT StVT = ST->getMemoryVT(); 1541 unsigned StWidth = StVT.getSizeInBits(); 1542 1543 if (StWidth != StVT.getStoreSizeInBits()) { 1544 // Promote to a byte-sized store with upper bits zero if not 1545 // storing an integral number of bytes. For example, promote 1546 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 1547 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 1548 StVT.getStoreSizeInBits()); 1549 Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT); 1550 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 1551 NVT, isVolatile, isNonTemporal, Alignment); 1552 } else if (StWidth & (StWidth - 1)) { 1553 // If not storing a power-of-2 number of bits, expand as two stores. 1554 assert(!StVT.isVector() && "Unsupported truncstore!"); 1555 unsigned RoundWidth = 1 << Log2_32(StWidth); 1556 assert(RoundWidth < StWidth); 1557 unsigned ExtraWidth = StWidth - RoundWidth; 1558 assert(ExtraWidth < RoundWidth); 1559 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1560 "Store size not an integral number of bytes!"); 1561 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 1562 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 1563 SDValue Lo, Hi; 1564 unsigned IncrementSize; 1565 1566 if (TLI.isLittleEndian()) { 1567 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 1568 // Store the bottom RoundWidth bits. 1569 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 1570 RoundVT, 1571 isVolatile, isNonTemporal, Alignment); 1572 1573 // Store the remaining ExtraWidth bits. 1574 IncrementSize = RoundWidth / 8; 1575 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1576 DAG.getIntPtrConstant(IncrementSize)); 1577 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 1578 DAG.getConstant(RoundWidth, 1579 TLI.getShiftAmountTy(Tmp3.getValueType()))); 1580 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, 1581 ST->getPointerInfo().getWithOffset(IncrementSize), 1582 ExtraVT, isVolatile, isNonTemporal, 1583 MinAlign(Alignment, IncrementSize)); 1584 } else { 1585 // Big endian - avoid unaligned stores. 1586 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 1587 // Store the top RoundWidth bits. 1588 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 1589 DAG.getConstant(ExtraWidth, 1590 TLI.getShiftAmountTy(Tmp3.getValueType()))); 1591 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(), 1592 RoundVT, isVolatile, isNonTemporal, Alignment); 1593 1594 // Store the remaining ExtraWidth bits. 1595 IncrementSize = RoundWidth / 8; 1596 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1597 DAG.getIntPtrConstant(IncrementSize)); 1598 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, 1599 ST->getPointerInfo().getWithOffset(IncrementSize), 1600 ExtraVT, isVolatile, isNonTemporal, 1601 MinAlign(Alignment, IncrementSize)); 1602 } 1603 1604 // The order of the stores doesn't matter. 1605 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 1606 } else { 1607 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 1608 Tmp2 != ST->getBasePtr()) 1609 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1610 Tmp1, Tmp3, Tmp2, 1611 ST->getOffset()), 1612 Result.getResNo()); 1613 1614 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 1615 default: assert(0 && "This action is not supported yet!"); 1616 case TargetLowering::Legal: 1617 // If this is an unaligned store and the target doesn't support it, 1618 // expand it. 1619 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 1620 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1621 unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty); 1622 if (ST->getAlignment() < ABIAlignment) 1623 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), 1624 DAG, TLI); 1625 } 1626 break; 1627 case TargetLowering::Custom: 1628 Result = TLI.LowerOperation(Result, DAG); 1629 break; 1630 case TargetLowering::Expand: 1631 1632 EVT WideScalarVT = Tmp3.getValueType().getScalarType(); 1633 EVT NarrowScalarVT = StVT.getScalarType(); 1634 1635 if (StVT.isVector()) { 1636 unsigned NumElem = StVT.getVectorNumElements(); 1637 // The type of the data we want to save 1638 EVT RegVT = Tmp3.getValueType(); 1639 EVT RegSclVT = RegVT.getScalarType(); 1640 // The type of data as saved in memory. 1641 EVT MemSclVT = StVT.getScalarType(); 1642 1643 bool RegScalarLegal = TLI.isTypeLegal(RegSclVT); 1644 bool MemScalarLegal = TLI.isTypeLegal(MemSclVT); 1645 1646 // We need to expand this store. If the register element type 1647 // is legal then we can scalarize the vector and use 1648 // truncating stores. 1649 if (RegScalarLegal) { 1650 // Cast floats into integers 1651 unsigned ScalarSize = MemSclVT.getSizeInBits(); 1652 EVT EltVT = EVT::getIntegerVT(*DAG.getContext(), ScalarSize); 1653 1654 // Round odd types to the next pow of two. 1655 if (!isPowerOf2_32(ScalarSize)) 1656 ScalarSize = NextPowerOf2(ScalarSize); 1657 1658 // Store Stride in bytes 1659 unsigned Stride = ScalarSize/8; 1660 // Extract each of the elements from the original vector 1661 // and save them into memory individually. 1662 SmallVector<SDValue, 8> Stores; 1663 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 1664 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1665 RegSclVT, Tmp3, DAG.getIntPtrConstant(Idx)); 1666 1667 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1668 DAG.getIntPtrConstant(Stride)); 1669 1670 // This scalar TruncStore may be illegal, but we lehalize it 1671 // later. 1672 SDValue Store = DAG.getTruncStore(Tmp1, dl, Ex, Tmp2, 1673 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT, 1674 isVolatile, isNonTemporal, Alignment); 1675 1676 Stores.push_back(Store); 1677 } 1678 1679 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1680 &Stores[0], Stores.size()); 1681 break; 1682 } 1683 1684 // The scalar register type is illegal. 1685 // For example saving <2 x i64> -> <2 x i32> on a x86. 1686 // In here we bitcast the value into a vector of smaller parts and 1687 // save it using smaller scalars. 1688 if (!RegScalarLegal && MemScalarLegal) { 1689 // Store Stride in bytes 1690 unsigned Stride = MemSclVT.getSizeInBits()/8; 1691 1692 unsigned SizeRatio = 1693 (RegSclVT.getSizeInBits() / MemSclVT.getSizeInBits()); 1694 1695 EVT CastValueVT = EVT::getVectorVT(*DAG.getContext(), 1696 MemSclVT, 1697 SizeRatio * NumElem); 1698 1699 // Cast the wide elem vector to wider vec with smaller elem type. 1700 // Example <2 x i64> -> <4 x i32> 1701 Tmp3 = DAG.getNode(ISD::BITCAST, dl, CastValueVT, Tmp3); 1702 1703 SmallVector<SDValue, 8> Stores; 1704 for (unsigned Idx=0; Idx < NumElem * SizeRatio; Idx++) { 1705 // Extract the Ith element. 1706 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1707 NarrowScalarVT, Tmp3, DAG.getIntPtrConstant(Idx)); 1708 // Bump pointer. 1709 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1710 DAG.getIntPtrConstant(Stride)); 1711 1712 // Store if, this element is: 1713 // - First element on big endian, or 1714 // - Last element on little endian 1715 if (( TLI.isBigEndian() && (Idx % SizeRatio == 0)) || 1716 ((!TLI.isBigEndian() && (Idx % SizeRatio == SizeRatio-1)))) { 1717 SDValue Store = DAG.getStore(Tmp1, dl, Ex, Tmp2, 1718 ST->getPointerInfo().getWithOffset(Idx*Stride), 1719 isVolatile, isNonTemporal, Alignment); 1720 Stores.push_back(Store); 1721 } 1722 } 1723 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1724 &Stores[0], Stores.size()); 1725 break; 1726 } 1727 1728 assert(false && "Unable to legalize the vector trunc store!"); 1729 }// is vector 1730 1731 1732 // TRUNCSTORE:i16 i32 -> STORE i16 1733 assert(TLI.isTypeLegal(StVT) && "Do not know how to expand this store!"); 1734 Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3); 1735 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 1736 isVolatile, isNonTemporal, Alignment); 1737 break; 1738 } 1739 } 1740 } 1741 break; 1742 } 1743 } 1744 assert(Result.getValueType() == Op.getValueType() && 1745 "Bad legalization!"); 1746 1747 // Make sure that the generated code is itself legal. 1748 if (Result != Op) 1749 Result = LegalizeOp(Result); 1750 1751 // Note that LegalizeOp may be reentered even from single-use nodes, which 1752 // means that we always must cache transformed nodes. 1753 AddLegalizedOperand(Op, Result); 1754 return Result; 1755} 1756 1757SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1758 SDValue Vec = Op.getOperand(0); 1759 SDValue Idx = Op.getOperand(1); 1760 DebugLoc dl = Op.getDebugLoc(); 1761 // Store the value to a temporary stack slot, then LOAD the returned part. 1762 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1763 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1764 MachinePointerInfo(), false, false, 0); 1765 1766 // Add the offset to the index. 1767 unsigned EltSize = 1768 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1769 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1770 DAG.getConstant(EltSize, Idx.getValueType())); 1771 1772 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1773 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1774 else 1775 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1776 1777 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); 1778 1779 if (Op.getValueType().isVector()) 1780 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(), 1781 false, false, 0); 1782 return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1783 MachinePointerInfo(), 1784 Vec.getValueType().getVectorElementType(), 1785 false, false, 0); 1786} 1787 1788SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1789 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1790 1791 SDValue Vec = Op.getOperand(0); 1792 SDValue Part = Op.getOperand(1); 1793 SDValue Idx = Op.getOperand(2); 1794 DebugLoc dl = Op.getDebugLoc(); 1795 1796 // Store the value to a temporary stack slot, then LOAD the returned part. 1797 1798 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1799 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1800 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1801 1802 // First store the whole vector. 1803 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo, 1804 false, false, 0); 1805 1806 // Then store the inserted part. 1807 1808 // Add the offset to the index. 1809 unsigned EltSize = 1810 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1811 1812 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1813 DAG.getConstant(EltSize, Idx.getValueType())); 1814 1815 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1816 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1817 else 1818 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1819 1820 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, 1821 StackPtr); 1822 1823 // Store the subvector. 1824 Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr, 1825 MachinePointerInfo(), false, false, 0); 1826 1827 // Finally, load the updated vector. 1828 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo, 1829 false, false, 0); 1830} 1831 1832SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1833 // We can't handle this case efficiently. Allocate a sufficiently 1834 // aligned object on the stack, store each element into it, then load 1835 // the result as a vector. 1836 // Create the stack frame object. 1837 EVT VT = Node->getValueType(0); 1838 EVT EltVT = VT.getVectorElementType(); 1839 DebugLoc dl = Node->getDebugLoc(); 1840 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1841 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1842 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1843 1844 // Emit a store of each element to the stack slot. 1845 SmallVector<SDValue, 8> Stores; 1846 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1847 // Store (in the right endianness) the elements to memory. 1848 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1849 // Ignore undef elements. 1850 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1851 1852 unsigned Offset = TypeByteSize*i; 1853 1854 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 1855 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1856 1857 // If the destination vector element type is narrower than the source 1858 // element type, only store the bits necessary. 1859 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1860 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1861 Node->getOperand(i), Idx, 1862 PtrInfo.getWithOffset(Offset), 1863 EltVT, false, false, 0)); 1864 } else 1865 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 1866 Node->getOperand(i), Idx, 1867 PtrInfo.getWithOffset(Offset), 1868 false, false, 0)); 1869 } 1870 1871 SDValue StoreChain; 1872 if (!Stores.empty()) // Not all undef elements? 1873 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1874 &Stores[0], Stores.size()); 1875 else 1876 StoreChain = DAG.getEntryNode(); 1877 1878 // Result is a load from the stack slot. 1879 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, 0); 1880} 1881 1882SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) { 1883 DebugLoc dl = Node->getDebugLoc(); 1884 SDValue Tmp1 = Node->getOperand(0); 1885 SDValue Tmp2 = Node->getOperand(1); 1886 1887 // Get the sign bit of the RHS. First obtain a value that has the same 1888 // sign as the sign bit, i.e. negative if and only if the sign bit is 1. 1889 SDValue SignBit; 1890 EVT FloatVT = Tmp2.getValueType(); 1891 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits()); 1892 if (TLI.isTypeLegal(IVT)) { 1893 // Convert to an integer with the same sign bit. 1894 SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2); 1895 } else { 1896 // Store the float to memory, then load the sign part out as an integer. 1897 MVT LoadTy = TLI.getPointerTy(); 1898 // First create a temporary that is aligned for both the load and store. 1899 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1900 // Then store the float to it. 1901 SDValue Ch = 1902 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(), 1903 false, false, 0); 1904 if (TLI.isBigEndian()) { 1905 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1906 // Load out a legal integer with the same sign bit as the float. 1907 SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(), 1908 false, false, 0); 1909 } else { // Little endian 1910 SDValue LoadPtr = StackPtr; 1911 // The float may be wider than the integer we are going to load. Advance 1912 // the pointer so that the loaded integer will contain the sign bit. 1913 unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits(); 1914 unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8; 1915 LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(), 1916 LoadPtr, DAG.getIntPtrConstant(ByteOffset)); 1917 // Load a legal integer containing the sign bit. 1918 SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(), 1919 false, false, 0); 1920 // Move the sign bit to the top bit of the loaded integer. 1921 unsigned BitShift = LoadTy.getSizeInBits() - 1922 (FloatVT.getSizeInBits() - 8 * ByteOffset); 1923 assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?"); 1924 if (BitShift) 1925 SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit, 1926 DAG.getConstant(BitShift, 1927 TLI.getShiftAmountTy(SignBit.getValueType()))); 1928 } 1929 } 1930 // Now get the sign bit proper, by seeing whether the value is negative. 1931 SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()), 1932 SignBit, DAG.getConstant(0, SignBit.getValueType()), 1933 ISD::SETLT); 1934 // Get the absolute value of the result. 1935 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); 1936 // Select between the nabs and abs value based on the sign bit of 1937 // the input. 1938 return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, 1939 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal), 1940 AbsVal); 1941} 1942 1943void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1944 SmallVectorImpl<SDValue> &Results) { 1945 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1946 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1947 " not tell us which reg is the stack pointer!"); 1948 DebugLoc dl = Node->getDebugLoc(); 1949 EVT VT = Node->getValueType(0); 1950 SDValue Tmp1 = SDValue(Node, 0); 1951 SDValue Tmp2 = SDValue(Node, 1); 1952 SDValue Tmp3 = Node->getOperand(2); 1953 SDValue Chain = Tmp1.getOperand(0); 1954 1955 // Chain the dynamic stack allocation so that it doesn't modify the stack 1956 // pointer when other instructions are using the stack. 1957 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); 1958 1959 SDValue Size = Tmp2.getOperand(1); 1960 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1961 Chain = SP.getValue(1); 1962 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1963 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 1964 if (Align > StackAlign) 1965 SP = DAG.getNode(ISD::AND, dl, VT, SP, 1966 DAG.getConstant(-(uint64_t)Align, VT)); 1967 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1968 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1969 1970 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), 1971 DAG.getIntPtrConstant(0, true), SDValue()); 1972 1973 Results.push_back(Tmp1); 1974 Results.push_back(Tmp2); 1975} 1976 1977/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and 1978/// condition code CC on the current target. This routine expands SETCC with 1979/// illegal condition code into AND / OR of multiple SETCC values. 1980void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, 1981 SDValue &LHS, SDValue &RHS, 1982 SDValue &CC, 1983 DebugLoc dl) { 1984 EVT OpVT = LHS.getValueType(); 1985 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1986 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1987 default: assert(0 && "Unknown condition code action!"); 1988 case TargetLowering::Legal: 1989 // Nothing to do. 1990 break; 1991 case TargetLowering::Expand: { 1992 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1993 unsigned Opc = 0; 1994 switch (CCCode) { 1995 default: assert(0 && "Don't know how to expand this condition!"); 1996 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break; 1997 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break; 1998 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1999 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break; 2000 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break; 2001 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break; 2002 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break; 2003 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 2004 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 2005 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 2006 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 2007 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 2008 // FIXME: Implement more expansions. 2009 } 2010 2011 SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 2012 SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 2013 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 2014 RHS = SDValue(); 2015 CC = SDValue(); 2016 break; 2017 } 2018 } 2019} 2020 2021/// EmitStackConvert - Emit a store/load combination to the stack. This stores 2022/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 2023/// a load from the stack slot to DestVT, extending it if needed. 2024/// The resultant code need not be legal. 2025SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, 2026 EVT SlotVT, 2027 EVT DestVT, 2028 DebugLoc dl) { 2029 // Create the stack frame object. 2030 unsigned SrcAlign = 2031 TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType(). 2032 getTypeForEVT(*DAG.getContext())); 2033 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 2034 2035 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 2036 int SPFI = StackPtrFI->getIndex(); 2037 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI); 2038 2039 unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); 2040 unsigned SlotSize = SlotVT.getSizeInBits(); 2041 unsigned DestSize = DestVT.getSizeInBits(); 2042 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 2043 unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType); 2044 2045 // Emit a store to the stack slot. Use a truncstore if the input value is 2046 // later than DestVT. 2047 SDValue Store; 2048 2049 if (SrcSize > SlotSize) 2050 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 2051 PtrInfo, SlotVT, false, false, SrcAlign); 2052 else { 2053 assert(SrcSize == SlotSize && "Invalid store"); 2054 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 2055 PtrInfo, false, false, SrcAlign); 2056 } 2057 2058 // Result is a load from the stack slot. 2059 if (SlotSize == DestSize) 2060 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, 2061 false, false, DestAlign); 2062 2063 assert(SlotSize < DestSize && "Unknown extension!"); 2064 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, 2065 PtrInfo, SlotVT, false, false, DestAlign); 2066} 2067 2068SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 2069 DebugLoc dl = Node->getDebugLoc(); 2070 // Create a vector sized/aligned stack slot, store the value to element #0, 2071 // then load the whole vector back out. 2072 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 2073 2074 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 2075 int SPFI = StackPtrFI->getIndex(); 2076 2077 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), 2078 StackPtr, 2079 MachinePointerInfo::getFixedStack(SPFI), 2080 Node->getValueType(0).getVectorElementType(), 2081 false, false, 0); 2082 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, 2083 MachinePointerInfo::getFixedStack(SPFI), 2084 false, false, 0); 2085} 2086 2087 2088/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 2089/// support the operation, but do support the resultant vector type. 2090SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 2091 unsigned NumElems = Node->getNumOperands(); 2092 SDValue Value1, Value2; 2093 DebugLoc dl = Node->getDebugLoc(); 2094 EVT VT = Node->getValueType(0); 2095 EVT OpVT = Node->getOperand(0).getValueType(); 2096 EVT EltVT = VT.getVectorElementType(); 2097 2098 // If the only non-undef value is the low element, turn this into a 2099 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 2100 bool isOnlyLowElement = true; 2101 bool MoreThanTwoValues = false; 2102 bool isConstant = true; 2103 for (unsigned i = 0; i < NumElems; ++i) { 2104 SDValue V = Node->getOperand(i); 2105 if (V.getOpcode() == ISD::UNDEF) 2106 continue; 2107 if (i > 0) 2108 isOnlyLowElement = false; 2109 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 2110 isConstant = false; 2111 2112 if (!Value1.getNode()) { 2113 Value1 = V; 2114 } else if (!Value2.getNode()) { 2115 if (V != Value1) 2116 Value2 = V; 2117 } else if (V != Value1 && V != Value2) { 2118 MoreThanTwoValues = true; 2119 } 2120 } 2121 2122 if (!Value1.getNode()) 2123 return DAG.getUNDEF(VT); 2124 2125 if (isOnlyLowElement) 2126 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 2127 2128 // If all elements are constants, create a load from the constant pool. 2129 if (isConstant) { 2130 std::vector<Constant*> CV; 2131 for (unsigned i = 0, e = NumElems; i != e; ++i) { 2132 if (ConstantFPSDNode *V = 2133 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 2134 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 2135 } else if (ConstantSDNode *V = 2136 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 2137 if (OpVT==EltVT) 2138 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 2139 else { 2140 // If OpVT and EltVT don't match, EltVT is not legal and the 2141 // element values have been promoted/truncated earlier. Undo this; 2142 // we don't want a v16i8 to become a v16i32 for example. 2143 const ConstantInt *CI = V->getConstantIntValue(); 2144 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 2145 CI->getZExtValue())); 2146 } 2147 } else { 2148 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 2149 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 2150 CV.push_back(UndefValue::get(OpNTy)); 2151 } 2152 } 2153 Constant *CP = ConstantVector::get(CV); 2154 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 2155 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2156 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 2157 MachinePointerInfo::getConstantPool(), 2158 false, false, Alignment); 2159 } 2160 2161 if (!MoreThanTwoValues) { 2162 SmallVector<int, 8> ShuffleVec(NumElems, -1); 2163 for (unsigned i = 0; i < NumElems; ++i) { 2164 SDValue V = Node->getOperand(i); 2165 if (V.getOpcode() == ISD::UNDEF) 2166 continue; 2167 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 2168 } 2169 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 2170 // Get the splatted value into the low element of a vector register. 2171 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 2172 SDValue Vec2; 2173 if (Value2.getNode()) 2174 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 2175 else 2176 Vec2 = DAG.getUNDEF(VT); 2177 2178 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2179 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); 2180 } 2181 } 2182 2183 // Otherwise, we can't handle this case efficiently. 2184 return ExpandVectorBuildThroughStack(Node); 2185} 2186 2187// ExpandLibCall - Expand a node into a call to a libcall. If the result value 2188// does not fit into a register, return the lo part and set the hi part to the 2189// by-reg argument. If it does fit into a single register, return the result 2190// and leave the Hi part unset. 2191SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2192 bool isSigned) { 2193 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 2194 // The input chain to this libcall is the entry node of the function. 2195 // Legalizing the call will automatically add the previous call to the 2196 // dependence. 2197 SDValue InChain = DAG.getEntryNode(); 2198 2199 TargetLowering::ArgListTy Args; 2200 TargetLowering::ArgListEntry Entry; 2201 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2202 EVT ArgVT = Node->getOperand(i).getValueType(); 2203 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2204 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 2205 Entry.isSExt = isSigned; 2206 Entry.isZExt = !isSigned; 2207 Args.push_back(Entry); 2208 } 2209 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2210 TLI.getPointerTy()); 2211 2212 // Splice the libcall in wherever FindInputOutputChains tells us to. 2213 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2214 2215 // isTailCall may be true since the callee does not reference caller stack 2216 // frame. Check if it's in the right position. 2217 bool isTailCall = isInTailCallPosition(DAG, Node, TLI); 2218 std::pair<SDValue, SDValue> CallInfo = 2219 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 2220 0, TLI.getLibcallCallingConv(LC), isTailCall, 2221 /*isReturnValueUsed=*/true, 2222 Callee, Args, DAG, Node->getDebugLoc()); 2223 2224 if (!CallInfo.second.getNode()) 2225 // It's a tailcall, return the chain (which is the DAG root). 2226 return DAG.getRoot(); 2227 2228 // Legalize the call sequence, starting with the chain. This will advance 2229 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 2230 // was added by LowerCallTo (guaranteeing proper serialization of calls). 2231 LegalizeOp(CallInfo.second); 2232 return CallInfo.first; 2233} 2234 2235/// ExpandLibCall - Generate a libcall taking the given operands as arguments 2236/// and returning a result of type RetVT. 2237SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, 2238 const SDValue *Ops, unsigned NumOps, 2239 bool isSigned, DebugLoc dl) { 2240 TargetLowering::ArgListTy Args; 2241 Args.reserve(NumOps); 2242 2243 TargetLowering::ArgListEntry Entry; 2244 for (unsigned i = 0; i != NumOps; ++i) { 2245 Entry.Node = Ops[i]; 2246 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 2247 Entry.isSExt = isSigned; 2248 Entry.isZExt = !isSigned; 2249 Args.push_back(Entry); 2250 } 2251 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2252 TLI.getPointerTy()); 2253 2254 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2255 std::pair<SDValue,SDValue> CallInfo = 2256 TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, 2257 false, 0, TLI.getLibcallCallingConv(LC), false, 2258 /*isReturnValueUsed=*/true, 2259 Callee, Args, DAG, dl); 2260 2261 // Legalize the call sequence, starting with the chain. This will advance 2262 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 2263 // was added by LowerCallTo (guaranteeing proper serialization of calls). 2264 LegalizeOp(CallInfo.second); 2265 2266 return CallInfo.first; 2267} 2268 2269// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to 2270// ExpandLibCall except that the first operand is the in-chain. 2271std::pair<SDValue, SDValue> 2272SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 2273 SDNode *Node, 2274 bool isSigned) { 2275 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 2276 SDValue InChain = Node->getOperand(0); 2277 2278 TargetLowering::ArgListTy Args; 2279 TargetLowering::ArgListEntry Entry; 2280 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 2281 EVT ArgVT = Node->getOperand(i).getValueType(); 2282 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2283 Entry.Node = Node->getOperand(i); 2284 Entry.Ty = ArgTy; 2285 Entry.isSExt = isSigned; 2286 Entry.isZExt = !isSigned; 2287 Args.push_back(Entry); 2288 } 2289 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2290 TLI.getPointerTy()); 2291 2292 // Splice the libcall in wherever FindInputOutputChains tells us to. 2293 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2294 std::pair<SDValue, SDValue> CallInfo = 2295 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 2296 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 2297 /*isReturnValueUsed=*/true, 2298 Callee, Args, DAG, Node->getDebugLoc()); 2299 2300 // Legalize the call sequence, starting with the chain. This will advance 2301 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 2302 // was added by LowerCallTo (guaranteeing proper serialization of calls). 2303 LegalizeOp(CallInfo.second); 2304 return CallInfo; 2305} 2306 2307SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2308 RTLIB::Libcall Call_F32, 2309 RTLIB::Libcall Call_F64, 2310 RTLIB::Libcall Call_F80, 2311 RTLIB::Libcall Call_PPCF128) { 2312 RTLIB::Libcall LC; 2313 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2314 default: assert(0 && "Unexpected request for libcall!"); 2315 case MVT::f32: LC = Call_F32; break; 2316 case MVT::f64: LC = Call_F64; break; 2317 case MVT::f80: LC = Call_F80; break; 2318 case MVT::ppcf128: LC = Call_PPCF128; break; 2319 } 2320 return ExpandLibCall(LC, Node, false); 2321} 2322 2323SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2324 RTLIB::Libcall Call_I8, 2325 RTLIB::Libcall Call_I16, 2326 RTLIB::Libcall Call_I32, 2327 RTLIB::Libcall Call_I64, 2328 RTLIB::Libcall Call_I128) { 2329 RTLIB::Libcall LC; 2330 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2331 default: assert(0 && "Unexpected request for libcall!"); 2332 case MVT::i8: LC = Call_I8; break; 2333 case MVT::i16: LC = Call_I16; break; 2334 case MVT::i32: LC = Call_I32; break; 2335 case MVT::i64: LC = Call_I64; break; 2336 case MVT::i128: LC = Call_I128; break; 2337 } 2338 return ExpandLibCall(LC, Node, isSigned); 2339} 2340 2341/// isDivRemLibcallAvailable - Return true if divmod libcall is available. 2342static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 2343 const TargetLowering &TLI) { 2344 RTLIB::Libcall LC; 2345 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2346 default: assert(0 && "Unexpected request for libcall!"); 2347 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2348 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2349 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2350 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2351 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2352 } 2353 2354 return TLI.getLibcallName(LC) != 0; 2355} 2356 2357/// UseDivRem - Only issue divrem libcall if both quotient and remainder are 2358/// needed. 2359static bool UseDivRem(SDNode *Node, bool isSigned, bool isDIV) { 2360 unsigned OtherOpcode = 0; 2361 if (isSigned) 2362 OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV; 2363 else 2364 OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV; 2365 2366 SDValue Op0 = Node->getOperand(0); 2367 SDValue Op1 = Node->getOperand(1); 2368 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2369 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2370 SDNode *User = *UI; 2371 if (User == Node) 2372 continue; 2373 if (User->getOpcode() == OtherOpcode && 2374 User->getOperand(0) == Op0 && 2375 User->getOperand(1) == Op1) 2376 return true; 2377 } 2378 return false; 2379} 2380 2381/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem 2382/// pairs. 2383void 2384SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2385 SmallVectorImpl<SDValue> &Results) { 2386 unsigned Opcode = Node->getOpcode(); 2387 bool isSigned = Opcode == ISD::SDIVREM; 2388 2389 RTLIB::Libcall LC; 2390 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2391 default: assert(0 && "Unexpected request for libcall!"); 2392 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2393 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2394 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2395 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2396 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2397 } 2398 2399 // The input chain to this libcall is the entry node of the function. 2400 // Legalizing the call will automatically add the previous call to the 2401 // dependence. 2402 SDValue InChain = DAG.getEntryNode(); 2403 2404 EVT RetVT = Node->getValueType(0); 2405 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2406 2407 TargetLowering::ArgListTy Args; 2408 TargetLowering::ArgListEntry Entry; 2409 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2410 EVT ArgVT = Node->getOperand(i).getValueType(); 2411 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2412 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 2413 Entry.isSExt = isSigned; 2414 Entry.isZExt = !isSigned; 2415 Args.push_back(Entry); 2416 } 2417 2418 // Also pass the return address of the remainder. 2419 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2420 Entry.Node = FIPtr; 2421 Entry.Ty = RetTy->getPointerTo(); 2422 Entry.isSExt = isSigned; 2423 Entry.isZExt = !isSigned; 2424 Args.push_back(Entry); 2425 2426 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2427 TLI.getPointerTy()); 2428 2429 // Splice the libcall in wherever FindInputOutputChains tells us to. 2430 DebugLoc dl = Node->getDebugLoc(); 2431 std::pair<SDValue, SDValue> CallInfo = 2432 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 2433 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 2434 /*isReturnValueUsed=*/true, Callee, Args, DAG, dl); 2435 2436 // Legalize the call sequence, starting with the chain. This will advance 2437 // the LastCALLSEQ to the legalized version of the CALLSEQ_END node that 2438 // was added by LowerCallTo (guaranteeing proper serialization of calls). 2439 LegalizeOp(CallInfo.second); 2440 2441 // Remainder is loaded back from the stack frame. 2442 SDValue Rem = DAG.getLoad(RetVT, dl, LastCALLSEQ_END, FIPtr, 2443 MachinePointerInfo(), false, false, 0); 2444 Results.push_back(CallInfo.first); 2445 Results.push_back(Rem); 2446} 2447 2448/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 2449/// INT_TO_FP operation of the specified operand when the target requests that 2450/// we expand it. At this point, we know that the result and operand types are 2451/// legal for the target. 2452SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 2453 SDValue Op0, 2454 EVT DestVT, 2455 DebugLoc dl) { 2456 if (Op0.getValueType() == MVT::i32) { 2457 // simple 32-bit [signed|unsigned] integer to float/double expansion 2458 2459 // Get the stack frame index of a 8 byte buffer. 2460 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2461 2462 // word offset constant for Hi/Lo address computation 2463 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 2464 // set up Hi and Lo (into buffer) address based on endian 2465 SDValue Hi = StackSlot; 2466 SDValue Lo = DAG.getNode(ISD::ADD, dl, 2467 TLI.getPointerTy(), StackSlot, WordOff); 2468 if (TLI.isLittleEndian()) 2469 std::swap(Hi, Lo); 2470 2471 // if signed map to unsigned space 2472 SDValue Op0Mapped; 2473 if (isSigned) { 2474 // constant used to invert sign bit (signed to unsigned mapping) 2475 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); 2476 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2477 } else { 2478 Op0Mapped = Op0; 2479 } 2480 // store the lo of the constructed double - based on integer input 2481 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, 2482 Op0Mapped, Lo, MachinePointerInfo(), 2483 false, false, 0); 2484 // initial hi portion of constructed double 2485 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 2486 // store the hi of the constructed double - biased exponent 2487 SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi, 2488 MachinePointerInfo(), 2489 false, false, 0); 2490 // load the constructed double 2491 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, 2492 MachinePointerInfo(), false, false, 0); 2493 // FP constant to bias correct the final result 2494 SDValue Bias = DAG.getConstantFP(isSigned ? 2495 BitsToDouble(0x4330000080000000ULL) : 2496 BitsToDouble(0x4330000000000000ULL), 2497 MVT::f64); 2498 // subtract the bias 2499 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2500 // final result 2501 SDValue Result; 2502 // handle final rounding 2503 if (DestVT == MVT::f64) { 2504 // do nothing 2505 Result = Sub; 2506 } else if (DestVT.bitsLT(MVT::f64)) { 2507 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 2508 DAG.getIntPtrConstant(0)); 2509 } else if (DestVT.bitsGT(MVT::f64)) { 2510 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 2511 } 2512 return Result; 2513 } 2514 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2515 // Code below here assumes !isSigned without checking again. 2516 2517 // Implementation of unsigned i64 to f64 following the algorithm in 2518 // __floatundidf in compiler_rt. This implementation has the advantage 2519 // of performing rounding correctly, both in the default rounding mode 2520 // and in all alternate rounding modes. 2521 // TODO: Generalize this for use with other types. 2522 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { 2523 SDValue TwoP52 = 2524 DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64); 2525 SDValue TwoP84PlusTwoP52 = 2526 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64); 2527 SDValue TwoP84 = 2528 DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64); 2529 2530 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); 2531 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, 2532 DAG.getConstant(32, MVT::i64)); 2533 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); 2534 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); 2535 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); 2536 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); 2537 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, 2538 TwoP84PlusTwoP52); 2539 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); 2540 } 2541 2542 // Implementation of unsigned i64 to f32. 2543 // TODO: Generalize this for use with other types. 2544 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { 2545 // For unsigned conversions, convert them to signed conversions using the 2546 // algorithm from the x86_64 __floatundidf in compiler_rt. 2547 if (!isSigned) { 2548 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); 2549 2550 SDValue ShiftConst = 2551 DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType())); 2552 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); 2553 SDValue AndConst = DAG.getConstant(1, MVT::i64); 2554 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); 2555 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); 2556 2557 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); 2558 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); 2559 2560 // TODO: This really should be implemented using a branch rather than a 2561 // select. We happen to get lucky and machinesink does the right 2562 // thing most of the time. This would be a good candidate for a 2563 //pseudo-op, or, even better, for whole-function isel. 2564 SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2565 Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT); 2566 return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast); 2567 } 2568 2569 // Otherwise, implement the fully general conversion. 2570 2571 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2572 DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64)); 2573 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, 2574 DAG.getConstant(UINT64_C(0x800), MVT::i64)); 2575 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2576 DAG.getConstant(UINT64_C(0x7ff), MVT::i64)); 2577 SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2578 And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE); 2579 SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0); 2580 SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2581 Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64), 2582 ISD::SETUGE); 2583 SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0); 2584 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType()); 2585 2586 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, 2587 DAG.getConstant(32, SHVT)); 2588 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); 2589 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); 2590 SDValue TwoP32 = 2591 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64); 2592 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); 2593 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); 2594 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); 2595 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); 2596 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, 2597 DAG.getIntPtrConstant(0)); 2598 } 2599 2600 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2601 2602 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), 2603 Op0, DAG.getConstant(0, Op0.getValueType()), 2604 ISD::SETLT); 2605 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 2606 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), 2607 SignSet, Four, Zero); 2608 2609 // If the sign bit of the integer is set, the large number will be treated 2610 // as a negative number. To counteract this, the dynamic code adds an 2611 // offset depending on the data type. 2612 uint64_t FF; 2613 switch (Op0.getValueType().getSimpleVT().SimpleTy) { 2614 default: assert(0 && "Unsupported integer type!"); 2615 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2616 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2617 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2618 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2619 } 2620 if (TLI.isLittleEndian()) FF <<= 32; 2621 Constant *FudgeFactor = ConstantInt::get( 2622 Type::getInt64Ty(*DAG.getContext()), FF); 2623 2624 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 2625 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2626 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); 2627 Alignment = std::min(Alignment, 4u); 2628 SDValue FudgeInReg; 2629 if (DestVT == MVT::f32) 2630 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2631 MachinePointerInfo::getConstantPool(), 2632 false, false, Alignment); 2633 else { 2634 FudgeInReg = 2635 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, 2636 DAG.getEntryNode(), CPIdx, 2637 MachinePointerInfo::getConstantPool(), 2638 MVT::f32, false, false, Alignment)); 2639 } 2640 2641 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2642} 2643 2644/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 2645/// *INT_TO_FP operation of the specified operand when the target requests that 2646/// we promote it. At this point, we know that the result and operand types are 2647/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2648/// operation that takes a larger input. 2649SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, 2650 EVT DestVT, 2651 bool isSigned, 2652 DebugLoc dl) { 2653 // First step, figure out the appropriate *INT_TO_FP operation to use. 2654 EVT NewInTy = LegalOp.getValueType(); 2655 2656 unsigned OpToUse = 0; 2657 2658 // Scan for the appropriate larger type to use. 2659 while (1) { 2660 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2661 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2662 2663 // If the target supports SINT_TO_FP of this type, use it. 2664 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2665 OpToUse = ISD::SINT_TO_FP; 2666 break; 2667 } 2668 if (isSigned) continue; 2669 2670 // If the target supports UINT_TO_FP of this type, use it. 2671 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2672 OpToUse = ISD::UINT_TO_FP; 2673 break; 2674 } 2675 2676 // Otherwise, try a larger type. 2677 } 2678 2679 // Okay, we found the operation and type to use. Zero extend our input to the 2680 // desired type then run the operation on it. 2681 return DAG.getNode(OpToUse, dl, DestVT, 2682 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2683 dl, NewInTy, LegalOp)); 2684} 2685 2686/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 2687/// FP_TO_*INT operation of the specified operand when the target requests that 2688/// we promote it. At this point, we know that the result and operand types are 2689/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2690/// operation that returns a larger result. 2691SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, 2692 EVT DestVT, 2693 bool isSigned, 2694 DebugLoc dl) { 2695 // First step, figure out the appropriate FP_TO*INT operation to use. 2696 EVT NewOutTy = DestVT; 2697 2698 unsigned OpToUse = 0; 2699 2700 // Scan for the appropriate larger type to use. 2701 while (1) { 2702 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2703 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2704 2705 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2706 OpToUse = ISD::FP_TO_SINT; 2707 break; 2708 } 2709 2710 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2711 OpToUse = ISD::FP_TO_UINT; 2712 break; 2713 } 2714 2715 // Otherwise, try a larger type. 2716 } 2717 2718 2719 // Okay, we found the operation and type to use. 2720 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2721 2722 // Truncate the result of the extended FP_TO_*INT operation to the desired 2723 // size. 2724 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2725} 2726 2727/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 2728/// 2729SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { 2730 EVT VT = Op.getValueType(); 2731 EVT SHVT = TLI.getShiftAmountTy(VT); 2732 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2733 switch (VT.getSimpleVT().SimpleTy) { 2734 default: assert(0 && "Unhandled Expand type in BSWAP!"); 2735 case MVT::i16: 2736 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2737 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2738 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2739 case MVT::i32: 2740 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2741 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2742 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2743 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2744 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 2745 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 2746 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2747 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2748 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2749 case MVT::i64: 2750 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2751 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2752 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2753 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2754 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2755 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2756 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2757 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2758 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 2759 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 2760 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 2761 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 2762 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 2763 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 2764 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2765 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2766 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2767 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2768 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2769 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2770 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2771 } 2772} 2773 2774/// SplatByte - Distribute ByteVal over NumBits bits. 2775// FIXME: Move this helper to a common place. 2776static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) { 2777 APInt Val = APInt(NumBits, ByteVal); 2778 unsigned Shift = 8; 2779 for (unsigned i = NumBits; i > 8; i >>= 1) { 2780 Val = (Val << Shift) | Val; 2781 Shift <<= 1; 2782 } 2783 return Val; 2784} 2785 2786/// ExpandBitCount - Expand the specified bitcount instruction into operations. 2787/// 2788SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 2789 DebugLoc dl) { 2790 switch (Opc) { 2791 default: assert(0 && "Cannot expand this yet!"); 2792 case ISD::CTPOP: { 2793 EVT VT = Op.getValueType(); 2794 EVT ShVT = TLI.getShiftAmountTy(VT); 2795 unsigned Len = VT.getSizeInBits(); 2796 2797 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && 2798 "CTPOP not implemented for this type."); 2799 2800 // This is the "best" algorithm from 2801 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 2802 2803 SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT); 2804 SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT); 2805 SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT); 2806 SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT); 2807 2808 // v = v - ((v >> 1) & 0x55555555...) 2809 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 2810 DAG.getNode(ISD::AND, dl, VT, 2811 DAG.getNode(ISD::SRL, dl, VT, Op, 2812 DAG.getConstant(1, ShVT)), 2813 Mask55)); 2814 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 2815 Op = DAG.getNode(ISD::ADD, dl, VT, 2816 DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 2817 DAG.getNode(ISD::AND, dl, VT, 2818 DAG.getNode(ISD::SRL, dl, VT, Op, 2819 DAG.getConstant(2, ShVT)), 2820 Mask33)); 2821 // v = (v + (v >> 4)) & 0x0F0F0F0F... 2822 Op = DAG.getNode(ISD::AND, dl, VT, 2823 DAG.getNode(ISD::ADD, dl, VT, Op, 2824 DAG.getNode(ISD::SRL, dl, VT, Op, 2825 DAG.getConstant(4, ShVT))), 2826 Mask0F); 2827 // v = (v * 0x01010101...) >> (Len - 8) 2828 Op = DAG.getNode(ISD::SRL, dl, VT, 2829 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 2830 DAG.getConstant(Len - 8, ShVT)); 2831 2832 return Op; 2833 } 2834 case ISD::CTLZ: { 2835 // for now, we do this: 2836 // x = x | (x >> 1); 2837 // x = x | (x >> 2); 2838 // ... 2839 // x = x | (x >>16); 2840 // x = x | (x >>32); // for 64-bit input 2841 // return popcount(~x); 2842 // 2843 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 2844 EVT VT = Op.getValueType(); 2845 EVT ShVT = TLI.getShiftAmountTy(VT); 2846 unsigned len = VT.getSizeInBits(); 2847 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 2848 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 2849 Op = DAG.getNode(ISD::OR, dl, VT, Op, 2850 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 2851 } 2852 Op = DAG.getNOT(dl, Op, VT); 2853 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 2854 } 2855 case ISD::CTTZ: { 2856 // for now, we use: { return popcount(~x & (x - 1)); } 2857 // unless the target has ctlz but not ctpop, in which case we use: 2858 // { return 32 - nlz(~x & (x-1)); } 2859 // see also http://www.hackersdelight.org/HDcode/ntz.cc 2860 EVT VT = Op.getValueType(); 2861 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 2862 DAG.getNOT(dl, Op, VT), 2863 DAG.getNode(ISD::SUB, dl, VT, Op, 2864 DAG.getConstant(1, VT))); 2865 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 2866 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 2867 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 2868 return DAG.getNode(ISD::SUB, dl, VT, 2869 DAG.getConstant(VT.getSizeInBits(), VT), 2870 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 2871 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 2872 } 2873 } 2874} 2875 2876std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) { 2877 unsigned Opc = Node->getOpcode(); 2878 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 2879 RTLIB::Libcall LC; 2880 2881 switch (Opc) { 2882 default: 2883 llvm_unreachable("Unhandled atomic intrinsic Expand!"); 2884 break; 2885 case ISD::ATOMIC_SWAP: 2886 switch (VT.SimpleTy) { 2887 default: llvm_unreachable("Unexpected value type for atomic!"); 2888 case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break; 2889 case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break; 2890 case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break; 2891 case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break; 2892 } 2893 break; 2894 case ISD::ATOMIC_CMP_SWAP: 2895 switch (VT.SimpleTy) { 2896 default: llvm_unreachable("Unexpected value type for atomic!"); 2897 case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break; 2898 case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break; 2899 case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break; 2900 case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break; 2901 } 2902 break; 2903 case ISD::ATOMIC_LOAD_ADD: 2904 switch (VT.SimpleTy) { 2905 default: llvm_unreachable("Unexpected value type for atomic!"); 2906 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break; 2907 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break; 2908 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break; 2909 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break; 2910 } 2911 break; 2912 case ISD::ATOMIC_LOAD_SUB: 2913 switch (VT.SimpleTy) { 2914 default: llvm_unreachable("Unexpected value type for atomic!"); 2915 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break; 2916 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break; 2917 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break; 2918 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break; 2919 } 2920 break; 2921 case ISD::ATOMIC_LOAD_AND: 2922 switch (VT.SimpleTy) { 2923 default: llvm_unreachable("Unexpected value type for atomic!"); 2924 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break; 2925 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break; 2926 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break; 2927 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break; 2928 } 2929 break; 2930 case ISD::ATOMIC_LOAD_OR: 2931 switch (VT.SimpleTy) { 2932 default: llvm_unreachable("Unexpected value type for atomic!"); 2933 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break; 2934 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break; 2935 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break; 2936 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break; 2937 } 2938 break; 2939 case ISD::ATOMIC_LOAD_XOR: 2940 switch (VT.SimpleTy) { 2941 default: llvm_unreachable("Unexpected value type for atomic!"); 2942 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break; 2943 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break; 2944 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break; 2945 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break; 2946 } 2947 break; 2948 case ISD::ATOMIC_LOAD_NAND: 2949 switch (VT.SimpleTy) { 2950 default: llvm_unreachable("Unexpected value type for atomic!"); 2951 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break; 2952 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break; 2953 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break; 2954 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break; 2955 } 2956 break; 2957 } 2958 2959 return ExpandChainLibCall(LC, Node, false); 2960} 2961 2962void SelectionDAGLegalize::ExpandNode(SDNode *Node, 2963 SmallVectorImpl<SDValue> &Results) { 2964 DebugLoc dl = Node->getDebugLoc(); 2965 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2966 switch (Node->getOpcode()) { 2967 case ISD::CTPOP: 2968 case ISD::CTLZ: 2969 case ISD::CTTZ: 2970 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); 2971 Results.push_back(Tmp1); 2972 break; 2973 case ISD::BSWAP: 2974 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2975 break; 2976 case ISD::FRAMEADDR: 2977 case ISD::RETURNADDR: 2978 case ISD::FRAME_TO_ARGS_OFFSET: 2979 Results.push_back(DAG.getConstant(0, Node->getValueType(0))); 2980 break; 2981 case ISD::FLT_ROUNDS_: 2982 Results.push_back(DAG.getConstant(1, Node->getValueType(0))); 2983 break; 2984 case ISD::EH_RETURN: 2985 case ISD::EH_LABEL: 2986 case ISD::PREFETCH: 2987 case ISD::VAEND: 2988 case ISD::EH_SJLJ_LONGJMP: 2989 case ISD::EH_SJLJ_DISPATCHSETUP: 2990 // If the target didn't expand these, there's nothing to do, so just 2991 // preserve the chain and be done. 2992 Results.push_back(Node->getOperand(0)); 2993 break; 2994 case ISD::EH_SJLJ_SETJMP: 2995 // If the target didn't expand this, just return 'zero' and preserve the 2996 // chain. 2997 Results.push_back(DAG.getConstant(0, MVT::i32)); 2998 Results.push_back(Node->getOperand(0)); 2999 break; 3000 case ISD::ATOMIC_FENCE: 3001 case ISD::MEMBARRIER: { 3002 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3003 // FIXME: handle "fence singlethread" more efficiently. 3004 TargetLowering::ArgListTy Args; 3005 std::pair<SDValue, SDValue> CallResult = 3006 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()), 3007 false, false, false, false, 0, CallingConv::C, 3008 /*isTailCall=*/false, 3009 /*isReturnValueUsed=*/true, 3010 DAG.getExternalSymbol("__sync_synchronize", 3011 TLI.getPointerTy()), 3012 Args, DAG, dl); 3013 Results.push_back(CallResult.second); 3014 break; 3015 } 3016 case ISD::ATOMIC_LOAD: { 3017 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 3018 SDValue Zero = DAG.getConstant(0, Node->getValueType(0)); 3019 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3020 cast<AtomicSDNode>(Node)->getMemoryVT(), 3021 Node->getOperand(0), 3022 Node->getOperand(1), Zero, Zero, 3023 cast<AtomicSDNode>(Node)->getMemOperand(), 3024 cast<AtomicSDNode>(Node)->getOrdering(), 3025 cast<AtomicSDNode>(Node)->getSynchScope()); 3026 Results.push_back(Swap.getValue(0)); 3027 Results.push_back(Swap.getValue(1)); 3028 break; 3029 } 3030 case ISD::ATOMIC_STORE: { 3031 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 3032 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 3033 cast<AtomicSDNode>(Node)->getMemoryVT(), 3034 Node->getOperand(0), 3035 Node->getOperand(1), Node->getOperand(2), 3036 cast<AtomicSDNode>(Node)->getMemOperand(), 3037 cast<AtomicSDNode>(Node)->getOrdering(), 3038 cast<AtomicSDNode>(Node)->getSynchScope()); 3039 Results.push_back(Swap.getValue(1)); 3040 break; 3041 } 3042 // By default, atomic intrinsics are marked Legal and lowered. Targets 3043 // which don't support them directly, however, may want libcalls, in which 3044 // case they mark them Expand, and we get here. 3045 case ISD::ATOMIC_SWAP: 3046 case ISD::ATOMIC_LOAD_ADD: 3047 case ISD::ATOMIC_LOAD_SUB: 3048 case ISD::ATOMIC_LOAD_AND: 3049 case ISD::ATOMIC_LOAD_OR: 3050 case ISD::ATOMIC_LOAD_XOR: 3051 case ISD::ATOMIC_LOAD_NAND: 3052 case ISD::ATOMIC_LOAD_MIN: 3053 case ISD::ATOMIC_LOAD_MAX: 3054 case ISD::ATOMIC_LOAD_UMIN: 3055 case ISD::ATOMIC_LOAD_UMAX: 3056 case ISD::ATOMIC_CMP_SWAP: { 3057 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node); 3058 Results.push_back(Tmp.first); 3059 Results.push_back(Tmp.second); 3060 break; 3061 } 3062 case ISD::DYNAMIC_STACKALLOC: 3063 ExpandDYNAMIC_STACKALLOC(Node, Results); 3064 break; 3065 case ISD::MERGE_VALUES: 3066 for (unsigned i = 0; i < Node->getNumValues(); i++) 3067 Results.push_back(Node->getOperand(i)); 3068 break; 3069 case ISD::UNDEF: { 3070 EVT VT = Node->getValueType(0); 3071 if (VT.isInteger()) 3072 Results.push_back(DAG.getConstant(0, VT)); 3073 else { 3074 assert(VT.isFloatingPoint() && "Unknown value type!"); 3075 Results.push_back(DAG.getConstantFP(0, VT)); 3076 } 3077 break; 3078 } 3079 case ISD::TRAP: { 3080 // If this operation is not supported, lower it to 'abort()' call 3081 TargetLowering::ArgListTy Args; 3082 std::pair<SDValue, SDValue> CallResult = 3083 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()), 3084 false, false, false, false, 0, CallingConv::C, 3085 /*isTailCall=*/false, 3086 /*isReturnValueUsed=*/true, 3087 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 3088 Args, DAG, dl); 3089 Results.push_back(CallResult.second); 3090 break; 3091 } 3092 case ISD::FP_ROUND: 3093 case ISD::BITCAST: 3094 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3095 Node->getValueType(0), dl); 3096 Results.push_back(Tmp1); 3097 break; 3098 case ISD::FP_EXTEND: 3099 Tmp1 = EmitStackConvert(Node->getOperand(0), 3100 Node->getOperand(0).getValueType(), 3101 Node->getValueType(0), dl); 3102 Results.push_back(Tmp1); 3103 break; 3104 case ISD::SIGN_EXTEND_INREG: { 3105 // NOTE: we could fall back on load/store here too for targets without 3106 // SAR. However, it is doubtful that any exist. 3107 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3108 EVT VT = Node->getValueType(0); 3109 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT); 3110 if (VT.isVector()) 3111 ShiftAmountTy = VT; 3112 unsigned BitsDiff = VT.getScalarType().getSizeInBits() - 3113 ExtraVT.getScalarType().getSizeInBits(); 3114 SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy); 3115 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 3116 Node->getOperand(0), ShiftCst); 3117 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 3118 Results.push_back(Tmp1); 3119 break; 3120 } 3121 case ISD::FP_ROUND_INREG: { 3122 // The only way we can lower this is to turn it into a TRUNCSTORE, 3123 // EXTLOAD pair, targeting a temporary location (a stack slot). 3124 3125 // NOTE: there is a choice here between constantly creating new stack 3126 // slots and always reusing the same one. We currently always create 3127 // new ones, as reuse may inhibit scheduling. 3128 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3129 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 3130 Node->getValueType(0), dl); 3131 Results.push_back(Tmp1); 3132 break; 3133 } 3134 case ISD::SINT_TO_FP: 3135 case ISD::UINT_TO_FP: 3136 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 3137 Node->getOperand(0), Node->getValueType(0), dl); 3138 Results.push_back(Tmp1); 3139 break; 3140 case ISD::FP_TO_UINT: { 3141 SDValue True, False; 3142 EVT VT = Node->getOperand(0).getValueType(); 3143 EVT NVT = Node->getValueType(0); 3144 APFloat apf(APInt::getNullValue(VT.getSizeInBits())); 3145 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 3146 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 3147 Tmp1 = DAG.getConstantFP(apf, VT); 3148 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), 3149 Node->getOperand(0), 3150 Tmp1, ISD::SETLT); 3151 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 3152 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 3153 DAG.getNode(ISD::FSUB, dl, VT, 3154 Node->getOperand(0), Tmp1)); 3155 False = DAG.getNode(ISD::XOR, dl, NVT, False, 3156 DAG.getConstant(x, NVT)); 3157 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False); 3158 Results.push_back(Tmp1); 3159 break; 3160 } 3161 case ISD::VAARG: { 3162 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3163 EVT VT = Node->getValueType(0); 3164 Tmp1 = Node->getOperand(0); 3165 Tmp2 = Node->getOperand(1); 3166 unsigned Align = Node->getConstantOperandVal(3); 3167 3168 SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, 3169 MachinePointerInfo(V), false, false, 0); 3170 SDValue VAList = VAListLoad; 3171 3172 if (Align > TLI.getMinStackArgumentAlignment()) { 3173 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 3174 3175 VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 3176 DAG.getConstant(Align - 1, 3177 TLI.getPointerTy())); 3178 3179 VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList, 3180 DAG.getConstant(-(int64_t)Align, 3181 TLI.getPointerTy())); 3182 } 3183 3184 // Increment the pointer, VAList, to the next vaarg 3185 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 3186 DAG.getConstant(TLI.getTargetData()-> 3187 getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())), 3188 TLI.getPointerTy())); 3189 // Store the incremented VAList to the legalized pointer 3190 Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, 3191 MachinePointerInfo(V), false, false, 0); 3192 // Load the actual argument out of the pointer VAList 3193 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(), 3194 false, false, 0)); 3195 Results.push_back(Results[0].getValue(1)); 3196 break; 3197 } 3198 case ISD::VACOPY: { 3199 // This defaults to loading a pointer from the input and storing it to the 3200 // output, returning the chain. 3201 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 3202 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 3203 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0), 3204 Node->getOperand(2), MachinePointerInfo(VS), 3205 false, false, 0); 3206 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 3207 MachinePointerInfo(VD), false, false, 0); 3208 Results.push_back(Tmp1); 3209 break; 3210 } 3211 case ISD::EXTRACT_VECTOR_ELT: 3212 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3213 // This must be an access of the only element. Return it. 3214 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3215 Node->getOperand(0)); 3216 else 3217 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3218 Results.push_back(Tmp1); 3219 break; 3220 case ISD::EXTRACT_SUBVECTOR: 3221 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3222 break; 3223 case ISD::INSERT_SUBVECTOR: 3224 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3225 break; 3226 case ISD::CONCAT_VECTORS: { 3227 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3228 break; 3229 } 3230 case ISD::SCALAR_TO_VECTOR: 3231 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3232 break; 3233 case ISD::INSERT_VECTOR_ELT: 3234 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3235 Node->getOperand(1), 3236 Node->getOperand(2), dl)); 3237 break; 3238 case ISD::VECTOR_SHUFFLE: { 3239 SmallVector<int, 8> Mask; 3240 cast<ShuffleVectorSDNode>(Node)->getMask(Mask); 3241 3242 EVT VT = Node->getValueType(0); 3243 EVT EltVT = VT.getVectorElementType(); 3244 if (!TLI.isTypeLegal(EltVT)) 3245 EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3246 unsigned NumElems = VT.getVectorNumElements(); 3247 SmallVector<SDValue, 8> Ops; 3248 for (unsigned i = 0; i != NumElems; ++i) { 3249 if (Mask[i] < 0) { 3250 Ops.push_back(DAG.getUNDEF(EltVT)); 3251 continue; 3252 } 3253 unsigned Idx = Mask[i]; 3254 if (Idx < NumElems) 3255 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 3256 Node->getOperand(0), 3257 DAG.getIntPtrConstant(Idx))); 3258 else 3259 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 3260 Node->getOperand(1), 3261 DAG.getIntPtrConstant(Idx - NumElems))); 3262 } 3263 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); 3264 Results.push_back(Tmp1); 3265 break; 3266 } 3267 case ISD::EXTRACT_ELEMENT: { 3268 EVT OpTy = Node->getOperand(0).getValueType(); 3269 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3270 // 1 -> Hi 3271 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3272 DAG.getConstant(OpTy.getSizeInBits()/2, 3273 TLI.getShiftAmountTy(Node->getOperand(0).getValueType()))); 3274 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3275 } else { 3276 // 0 -> Lo 3277 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3278 Node->getOperand(0)); 3279 } 3280 Results.push_back(Tmp1); 3281 break; 3282 } 3283 case ISD::STACKSAVE: 3284 // Expand to CopyFromReg if the target set 3285 // StackPointerRegisterToSaveRestore. 3286 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3287 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3288 Node->getValueType(0))); 3289 Results.push_back(Results[0].getValue(1)); 3290 } else { 3291 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3292 Results.push_back(Node->getOperand(0)); 3293 } 3294 break; 3295 case ISD::STACKRESTORE: 3296 // Expand to CopyToReg if the target set 3297 // StackPointerRegisterToSaveRestore. 3298 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3299 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3300 Node->getOperand(1))); 3301 } else { 3302 Results.push_back(Node->getOperand(0)); 3303 } 3304 break; 3305 case ISD::FCOPYSIGN: 3306 Results.push_back(ExpandFCOPYSIGN(Node)); 3307 break; 3308 case ISD::FNEG: 3309 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3310 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3311 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3312 Node->getOperand(0)); 3313 Results.push_back(Tmp1); 3314 break; 3315 case ISD::FABS: { 3316 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3317 EVT VT = Node->getValueType(0); 3318 Tmp1 = Node->getOperand(0); 3319 Tmp2 = DAG.getConstantFP(0.0, VT); 3320 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), 3321 Tmp1, Tmp2, ISD::SETUGT); 3322 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); 3323 Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); 3324 Results.push_back(Tmp1); 3325 break; 3326 } 3327 case ISD::FSQRT: 3328 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3329 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128)); 3330 break; 3331 case ISD::FSIN: 3332 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3333 RTLIB::SIN_F80, RTLIB::SIN_PPCF128)); 3334 break; 3335 case ISD::FCOS: 3336 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3337 RTLIB::COS_F80, RTLIB::COS_PPCF128)); 3338 break; 3339 case ISD::FLOG: 3340 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 3341 RTLIB::LOG_F80, RTLIB::LOG_PPCF128)); 3342 break; 3343 case ISD::FLOG2: 3344 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3345 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128)); 3346 break; 3347 case ISD::FLOG10: 3348 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3349 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128)); 3350 break; 3351 case ISD::FEXP: 3352 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 3353 RTLIB::EXP_F80, RTLIB::EXP_PPCF128)); 3354 break; 3355 case ISD::FEXP2: 3356 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3357 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128)); 3358 break; 3359 case ISD::FTRUNC: 3360 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3361 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128)); 3362 break; 3363 case ISD::FFLOOR: 3364 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3365 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128)); 3366 break; 3367 case ISD::FCEIL: 3368 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3369 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128)); 3370 break; 3371 case ISD::FRINT: 3372 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 3373 RTLIB::RINT_F80, RTLIB::RINT_PPCF128)); 3374 break; 3375 case ISD::FNEARBYINT: 3376 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 3377 RTLIB::NEARBYINT_F64, 3378 RTLIB::NEARBYINT_F80, 3379 RTLIB::NEARBYINT_PPCF128)); 3380 break; 3381 case ISD::FPOWI: 3382 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 3383 RTLIB::POWI_F80, RTLIB::POWI_PPCF128)); 3384 break; 3385 case ISD::FPOW: 3386 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 3387 RTLIB::POW_F80, RTLIB::POW_PPCF128)); 3388 break; 3389 case ISD::FDIV: 3390 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 3391 RTLIB::DIV_F80, RTLIB::DIV_PPCF128)); 3392 break; 3393 case ISD::FREM: 3394 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 3395 RTLIB::REM_F80, RTLIB::REM_PPCF128)); 3396 break; 3397 case ISD::FMA: 3398 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 3399 RTLIB::FMA_F80, RTLIB::FMA_PPCF128)); 3400 break; 3401 case ISD::FP16_TO_FP32: 3402 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 3403 break; 3404 case ISD::FP32_TO_FP16: 3405 Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false)); 3406 break; 3407 case ISD::ConstantFP: { 3408 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3409 // Check to see if this FP immediate is already legal. 3410 // If this is a legal constant, turn it into a TargetConstantFP node. 3411 if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 3412 Results.push_back(SDValue(Node, 0)); 3413 else 3414 Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI)); 3415 break; 3416 } 3417 case ISD::EHSELECTION: { 3418 unsigned Reg = TLI.getExceptionSelectorRegister(); 3419 assert(Reg && "Can't expand to unknown register!"); 3420 Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg, 3421 Node->getValueType(0))); 3422 Results.push_back(Results[0].getValue(1)); 3423 break; 3424 } 3425 case ISD::EXCEPTIONADDR: { 3426 unsigned Reg = TLI.getExceptionAddressRegister(); 3427 assert(Reg && "Can't expand to unknown register!"); 3428 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg, 3429 Node->getValueType(0))); 3430 Results.push_back(Results[0].getValue(1)); 3431 break; 3432 } 3433 case ISD::SUB: { 3434 EVT VT = Node->getValueType(0); 3435 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3436 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3437 "Don't know how to expand this subtraction!"); 3438 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3439 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); 3440 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT)); 3441 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3442 break; 3443 } 3444 case ISD::UREM: 3445 case ISD::SREM: { 3446 EVT VT = Node->getValueType(0); 3447 SDVTList VTs = DAG.getVTList(VT, VT); 3448 bool isSigned = Node->getOpcode() == ISD::SREM; 3449 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3450 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3451 Tmp2 = Node->getOperand(0); 3452 Tmp3 = Node->getOperand(1); 3453 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3454 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3455 UseDivRem(Node, isSigned, false))) { 3456 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3457 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3458 // X % Y -> X-X/Y*Y 3459 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3460 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3461 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3462 } else if (isSigned) 3463 Tmp1 = ExpandIntLibCall(Node, true, 3464 RTLIB::SREM_I8, 3465 RTLIB::SREM_I16, RTLIB::SREM_I32, 3466 RTLIB::SREM_I64, RTLIB::SREM_I128); 3467 else 3468 Tmp1 = ExpandIntLibCall(Node, false, 3469 RTLIB::UREM_I8, 3470 RTLIB::UREM_I16, RTLIB::UREM_I32, 3471 RTLIB::UREM_I64, RTLIB::UREM_I128); 3472 Results.push_back(Tmp1); 3473 break; 3474 } 3475 case ISD::UDIV: 3476 case ISD::SDIV: { 3477 bool isSigned = Node->getOpcode() == ISD::SDIV; 3478 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3479 EVT VT = Node->getValueType(0); 3480 SDVTList VTs = DAG.getVTList(VT, VT); 3481 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3482 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3483 UseDivRem(Node, isSigned, true))) 3484 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3485 Node->getOperand(1)); 3486 else if (isSigned) 3487 Tmp1 = ExpandIntLibCall(Node, true, 3488 RTLIB::SDIV_I8, 3489 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 3490 RTLIB::SDIV_I64, RTLIB::SDIV_I128); 3491 else 3492 Tmp1 = ExpandIntLibCall(Node, false, 3493 RTLIB::UDIV_I8, 3494 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 3495 RTLIB::UDIV_I64, RTLIB::UDIV_I128); 3496 Results.push_back(Tmp1); 3497 break; 3498 } 3499 case ISD::MULHU: 3500 case ISD::MULHS: { 3501 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : 3502 ISD::SMUL_LOHI; 3503 EVT VT = Node->getValueType(0); 3504 SDVTList VTs = DAG.getVTList(VT, VT); 3505 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && 3506 "If this wasn't legal, it shouldn't have been created!"); 3507 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3508 Node->getOperand(1)); 3509 Results.push_back(Tmp1.getValue(1)); 3510 break; 3511 } 3512 case ISD::SDIVREM: 3513 case ISD::UDIVREM: 3514 // Expand into divrem libcall 3515 ExpandDivRemLibCall(Node, Results); 3516 break; 3517 case ISD::MUL: { 3518 EVT VT = Node->getValueType(0); 3519 SDVTList VTs = DAG.getVTList(VT, VT); 3520 // See if multiply or divide can be lowered using two-result operations. 3521 // We just need the low half of the multiply; try both the signed 3522 // and unsigned forms. If the target supports both SMUL_LOHI and 3523 // UMUL_LOHI, form a preference by checking which forms of plain 3524 // MULH it supports. 3525 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3526 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3527 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3528 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3529 unsigned OpToUse = 0; 3530 if (HasSMUL_LOHI && !HasMULHS) { 3531 OpToUse = ISD::SMUL_LOHI; 3532 } else if (HasUMUL_LOHI && !HasMULHU) { 3533 OpToUse = ISD::UMUL_LOHI; 3534 } else if (HasSMUL_LOHI) { 3535 OpToUse = ISD::SMUL_LOHI; 3536 } else if (HasUMUL_LOHI) { 3537 OpToUse = ISD::UMUL_LOHI; 3538 } 3539 if (OpToUse) { 3540 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3541 Node->getOperand(1))); 3542 break; 3543 } 3544 Tmp1 = ExpandIntLibCall(Node, false, 3545 RTLIB::MUL_I8, 3546 RTLIB::MUL_I16, RTLIB::MUL_I32, 3547 RTLIB::MUL_I64, RTLIB::MUL_I128); 3548 Results.push_back(Tmp1); 3549 break; 3550 } 3551 case ISD::SADDO: 3552 case ISD::SSUBO: { 3553 SDValue LHS = Node->getOperand(0); 3554 SDValue RHS = Node->getOperand(1); 3555 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 3556 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3557 LHS, RHS); 3558 Results.push_back(Sum); 3559 EVT OType = Node->getValueType(1); 3560 3561 SDValue Zero = DAG.getConstant(0, LHS.getValueType()); 3562 3563 // LHSSign -> LHS >= 0 3564 // RHSSign -> RHS >= 0 3565 // SumSign -> Sum >= 0 3566 // 3567 // Add: 3568 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3569 // Sub: 3570 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3571 // 3572 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3573 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3574 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3575 Node->getOpcode() == ISD::SADDO ? 3576 ISD::SETEQ : ISD::SETNE); 3577 3578 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3579 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3580 3581 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3582 Results.push_back(Cmp); 3583 break; 3584 } 3585 case ISD::UADDO: 3586 case ISD::USUBO: { 3587 SDValue LHS = Node->getOperand(0); 3588 SDValue RHS = Node->getOperand(1); 3589 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 3590 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3591 LHS, RHS); 3592 Results.push_back(Sum); 3593 Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS, 3594 Node->getOpcode () == ISD::UADDO ? 3595 ISD::SETULT : ISD::SETUGT)); 3596 break; 3597 } 3598 case ISD::UMULO: 3599 case ISD::SMULO: { 3600 EVT VT = Node->getValueType(0); 3601 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 3602 SDValue LHS = Node->getOperand(0); 3603 SDValue RHS = Node->getOperand(1); 3604 SDValue BottomHalf; 3605 SDValue TopHalf; 3606 static const unsigned Ops[2][3] = 3607 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 3608 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 3609 bool isSigned = Node->getOpcode() == ISD::SMULO; 3610 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 3611 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 3612 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 3613 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 3614 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 3615 RHS); 3616 TopHalf = BottomHalf.getValue(1); 3617 } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), 3618 VT.getSizeInBits() * 2))) { 3619 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 3620 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 3621 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 3622 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3623 DAG.getIntPtrConstant(0)); 3624 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3625 DAG.getIntPtrConstant(1)); 3626 } else { 3627 // We can fall back to a libcall with an illegal type for the MUL if we 3628 // have a libcall big enough. 3629 // Also, we can fall back to a division in some cases, but that's a big 3630 // performance hit in the general case. 3631 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3632 if (WideVT == MVT::i16) 3633 LC = RTLIB::MUL_I16; 3634 else if (WideVT == MVT::i32) 3635 LC = RTLIB::MUL_I32; 3636 else if (WideVT == MVT::i64) 3637 LC = RTLIB::MUL_I64; 3638 else if (WideVT == MVT::i128) 3639 LC = RTLIB::MUL_I128; 3640 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 3641 3642 // The high part is obtained by SRA'ing all but one of the bits of low 3643 // part. 3644 unsigned LoSize = VT.getSizeInBits(); 3645 SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS, 3646 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3647 SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS, 3648 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3649 3650 // Here we're passing the 2 arguments explicitly as 4 arguments that are 3651 // pre-lowered to the correct types. This all depends upon WideVT not 3652 // being a legal type for the architecture and thus has to be split to 3653 // two arguments. 3654 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 3655 SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3656 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3657 DAG.getIntPtrConstant(0)); 3658 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3659 DAG.getIntPtrConstant(1)); 3660 } 3661 3662 if (isSigned) { 3663 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, 3664 TLI.getShiftAmountTy(BottomHalf.getValueType())); 3665 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 3666 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1, 3667 ISD::SETNE); 3668 } else { 3669 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, 3670 DAG.getConstant(0, VT), ISD::SETNE); 3671 } 3672 Results.push_back(BottomHalf); 3673 Results.push_back(TopHalf); 3674 break; 3675 } 3676 case ISD::BUILD_PAIR: { 3677 EVT PairTy = Node->getValueType(0); 3678 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3679 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3680 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, 3681 DAG.getConstant(PairTy.getSizeInBits()/2, 3682 TLI.getShiftAmountTy(PairTy))); 3683 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3684 break; 3685 } 3686 case ISD::SELECT: 3687 Tmp1 = Node->getOperand(0); 3688 Tmp2 = Node->getOperand(1); 3689 Tmp3 = Node->getOperand(2); 3690 if (Tmp1.getOpcode() == ISD::SETCC) { 3691 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3692 Tmp2, Tmp3, 3693 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3694 } else { 3695 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3696 DAG.getConstant(0, Tmp1.getValueType()), 3697 Tmp2, Tmp3, ISD::SETNE); 3698 } 3699 Results.push_back(Tmp1); 3700 break; 3701 case ISD::BR_JT: { 3702 SDValue Chain = Node->getOperand(0); 3703 SDValue Table = Node->getOperand(1); 3704 SDValue Index = Node->getOperand(2); 3705 3706 EVT PTy = TLI.getPointerTy(); 3707 3708 const TargetData &TD = *TLI.getTargetData(); 3709 unsigned EntrySize = 3710 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3711 3712 Index = DAG.getNode(ISD::MUL, dl, PTy, 3713 Index, DAG.getConstant(EntrySize, PTy)); 3714 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 3715 3716 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3717 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3718 MachinePointerInfo::getJumpTable(), MemVT, 3719 false, false, 0); 3720 Addr = LD; 3721 if (TM.getRelocationModel() == Reloc::PIC_) { 3722 // For PIC, the sequence is: 3723 // BRIND(load(Jumptable + index) + RelocBase) 3724 // RelocBase can be JumpTable, GOT or some sort of global base. 3725 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3726 TLI.getPICJumpTableRelocBase(Table, DAG)); 3727 } 3728 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 3729 Results.push_back(Tmp1); 3730 break; 3731 } 3732 case ISD::BRCOND: 3733 // Expand brcond's setcc into its constituent parts and create a BR_CC 3734 // Node. 3735 Tmp1 = Node->getOperand(0); 3736 Tmp2 = Node->getOperand(1); 3737 if (Tmp2.getOpcode() == ISD::SETCC) { 3738 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3739 Tmp1, Tmp2.getOperand(2), 3740 Tmp2.getOperand(0), Tmp2.getOperand(1), 3741 Node->getOperand(2)); 3742 } else { 3743 // We test only the i1 bit. Skip the AND if UNDEF. 3744 Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 : 3745 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3746 DAG.getConstant(1, Tmp2.getValueType())); 3747 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3748 DAG.getCondCode(ISD::SETNE), Tmp3, 3749 DAG.getConstant(0, Tmp3.getValueType()), 3750 Node->getOperand(2)); 3751 } 3752 Results.push_back(Tmp1); 3753 break; 3754 case ISD::SETCC: { 3755 Tmp1 = Node->getOperand(0); 3756 Tmp2 = Node->getOperand(1); 3757 Tmp3 = Node->getOperand(2); 3758 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); 3759 3760 // If we expanded the SETCC into an AND/OR, return the new node 3761 if (Tmp2.getNode() == 0) { 3762 Results.push_back(Tmp1); 3763 break; 3764 } 3765 3766 // Otherwise, SETCC for the given comparison type must be completely 3767 // illegal; expand it into a SELECT_CC. 3768 EVT VT = Node->getValueType(0); 3769 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3770 DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3); 3771 Results.push_back(Tmp1); 3772 break; 3773 } 3774 case ISD::SELECT_CC: { 3775 Tmp1 = Node->getOperand(0); // LHS 3776 Tmp2 = Node->getOperand(1); // RHS 3777 Tmp3 = Node->getOperand(2); // True 3778 Tmp4 = Node->getOperand(3); // False 3779 SDValue CC = Node->getOperand(4); 3780 3781 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()), 3782 Tmp1, Tmp2, CC, dl); 3783 3784 assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!"); 3785 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 3786 CC = DAG.getCondCode(ISD::SETNE); 3787 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, 3788 Tmp3, Tmp4, CC); 3789 Results.push_back(Tmp1); 3790 break; 3791 } 3792 case ISD::BR_CC: { 3793 Tmp1 = Node->getOperand(0); // Chain 3794 Tmp2 = Node->getOperand(2); // LHS 3795 Tmp3 = Node->getOperand(3); // RHS 3796 Tmp4 = Node->getOperand(1); // CC 3797 3798 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()), 3799 Tmp2, Tmp3, Tmp4, dl); 3800 LastCALLSEQ_END = DAG.getEntryNode(); 3801 3802 assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!"); 3803 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 3804 Tmp4 = DAG.getCondCode(ISD::SETNE); 3805 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, 3806 Tmp3, Node->getOperand(4)); 3807 Results.push_back(Tmp1); 3808 break; 3809 } 3810 case ISD::GLOBAL_OFFSET_TABLE: 3811 case ISD::GlobalAddress: 3812 case ISD::GlobalTLSAddress: 3813 case ISD::ExternalSymbol: 3814 case ISD::ConstantPool: 3815 case ISD::JumpTable: 3816 case ISD::INTRINSIC_W_CHAIN: 3817 case ISD::INTRINSIC_WO_CHAIN: 3818 case ISD::INTRINSIC_VOID: 3819 // FIXME: Custom lowering for these operations shouldn't return null! 3820 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 3821 Results.push_back(SDValue(Node, i)); 3822 break; 3823 } 3824} 3825void SelectionDAGLegalize::PromoteNode(SDNode *Node, 3826 SmallVectorImpl<SDValue> &Results) { 3827 EVT OVT = Node->getValueType(0); 3828 if (Node->getOpcode() == ISD::UINT_TO_FP || 3829 Node->getOpcode() == ISD::SINT_TO_FP || 3830 Node->getOpcode() == ISD::SETCC) { 3831 OVT = Node->getOperand(0).getValueType(); 3832 } 3833 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3834 DebugLoc dl = Node->getDebugLoc(); 3835 SDValue Tmp1, Tmp2, Tmp3; 3836 switch (Node->getOpcode()) { 3837 case ISD::CTTZ: 3838 case ISD::CTLZ: 3839 case ISD::CTPOP: 3840 // Zero extend the argument. 3841 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3842 // Perform the larger operation. 3843 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 3844 if (Node->getOpcode() == ISD::CTTZ) { 3845 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3846 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), 3847 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), 3848 ISD::SETEQ); 3849 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, 3850 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); 3851 } else if (Node->getOpcode() == ISD::CTLZ) { 3852 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3853 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 3854 DAG.getConstant(NVT.getSizeInBits() - 3855 OVT.getSizeInBits(), NVT)); 3856 } 3857 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 3858 break; 3859 case ISD::BSWAP: { 3860 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 3861 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3862 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 3863 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, 3864 DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT))); 3865 Results.push_back(Tmp1); 3866 break; 3867 } 3868 case ISD::FP_TO_UINT: 3869 case ISD::FP_TO_SINT: 3870 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 3871 Node->getOpcode() == ISD::FP_TO_SINT, dl); 3872 Results.push_back(Tmp1); 3873 break; 3874 case ISD::UINT_TO_FP: 3875 case ISD::SINT_TO_FP: 3876 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 3877 Node->getOpcode() == ISD::SINT_TO_FP, dl); 3878 Results.push_back(Tmp1); 3879 break; 3880 case ISD::AND: 3881 case ISD::OR: 3882 case ISD::XOR: { 3883 unsigned ExtOp, TruncOp; 3884 if (OVT.isVector()) { 3885 ExtOp = ISD::BITCAST; 3886 TruncOp = ISD::BITCAST; 3887 } else { 3888 assert(OVT.isInteger() && "Cannot promote logic operation"); 3889 ExtOp = ISD::ANY_EXTEND; 3890 TruncOp = ISD::TRUNCATE; 3891 } 3892 // Promote each of the values to the new type. 3893 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3894 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3895 // Perform the larger operation, then convert back 3896 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3897 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 3898 break; 3899 } 3900 case ISD::SELECT: { 3901 unsigned ExtOp, TruncOp; 3902 if (Node->getValueType(0).isVector()) { 3903 ExtOp = ISD::BITCAST; 3904 TruncOp = ISD::BITCAST; 3905 } else if (Node->getValueType(0).isInteger()) { 3906 ExtOp = ISD::ANY_EXTEND; 3907 TruncOp = ISD::TRUNCATE; 3908 } else { 3909 ExtOp = ISD::FP_EXTEND; 3910 TruncOp = ISD::FP_ROUND; 3911 } 3912 Tmp1 = Node->getOperand(0); 3913 // Promote each of the values to the new type. 3914 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3915 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 3916 // Perform the larger operation, then round down. 3917 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3); 3918 if (TruncOp != ISD::FP_ROUND) 3919 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 3920 else 3921 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 3922 DAG.getIntPtrConstant(0)); 3923 Results.push_back(Tmp1); 3924 break; 3925 } 3926 case ISD::VECTOR_SHUFFLE: { 3927 SmallVector<int, 8> Mask; 3928 cast<ShuffleVectorSDNode>(Node)->getMask(Mask); 3929 3930 // Cast the two input vectors. 3931 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 3932 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 3933 3934 // Convert the shuffle mask to the right # elements. 3935 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 3936 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 3937 Results.push_back(Tmp1); 3938 break; 3939 } 3940 case ISD::SETCC: { 3941 unsigned ExtOp = ISD::FP_EXTEND; 3942 if (NVT.isInteger()) { 3943 ISD::CondCode CCCode = 3944 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 3945 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3946 } 3947 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3948 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3949 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3950 Tmp1, Tmp2, Node->getOperand(2))); 3951 break; 3952 } 3953 } 3954} 3955 3956// SelectionDAG::Legalize - This is the entry point for the file. 3957// 3958void SelectionDAG::Legalize() { 3959 /// run - This is the main entry point to this class. 3960 /// 3961 SelectionDAGLegalize(*this).LegalizeDAG(); 3962} 3963