1//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tool implements a just-in-time compiler for LLVM, allowing direct
11// execution of LLVM bitcode in an efficient manner.
12//
13//===----------------------------------------------------------------------===//
14
15#include "JIT.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalVariable.h"
20#include "llvm/Instructions.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/CodeGen/JITCodeEmitter.h"
23#include "llvm/CodeGen/MachineCodeInfo.h"
24#include "llvm/ExecutionEngine/GenericValue.h"
25#include "llvm/ExecutionEngine/JITEventListener.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/Target/TargetJITInfo.h"
29#include "llvm/Support/Dwarf.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/ManagedStatic.h"
32#include "llvm/Support/MutexGuard.h"
33#include "llvm/Support/DynamicLibrary.h"
34#include "llvm/Config/config.h"
35
36using namespace llvm;
37
38#ifdef __APPLE__
39// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
40// of atexit). It passes the address of linker generated symbol __dso_handle
41// to the function.
42// This configuration change happened at version 5330.
43# include <AvailabilityMacros.h>
44# if defined(MAC_OS_X_VERSION_10_4) && \
45     ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
46      (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
47       __APPLE_CC__ >= 5330))
48#  ifndef HAVE___DSO_HANDLE
49#   define HAVE___DSO_HANDLE 1
50#  endif
51# endif
52#endif
53
54#if HAVE___DSO_HANDLE
55extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
56#endif
57
58namespace {
59
60static struct RegisterJIT {
61  RegisterJIT() { JIT::Register(); }
62} JITRegistrator;
63
64}
65
66extern "C" void LLVMLinkInJIT() {
67}
68
69// Determine whether we can register EH tables.
70#if (defined(__GNUC__) && !defined(__ARM_EABI__) && \
71     !defined(__USING_SJLJ_EXCEPTIONS__))
72#define HAVE_EHTABLE_SUPPORT 1
73#else
74#define HAVE_EHTABLE_SUPPORT 0
75#endif
76
77#if HAVE_EHTABLE_SUPPORT
78
79// libgcc defines the __register_frame function to dynamically register new
80// dwarf frames for exception handling. This functionality is not portable
81// across compilers and is only provided by GCC. We use the __register_frame
82// function here so that code generated by the JIT cooperates with the unwinding
83// runtime of libgcc. When JITting with exception handling enable, LLVM
84// generates dwarf frames and registers it to libgcc with __register_frame.
85//
86// The __register_frame function works with Linux.
87//
88// Unfortunately, this functionality seems to be in libgcc after the unwinding
89// library of libgcc for darwin was written. The code for darwin overwrites the
90// value updated by __register_frame with a value fetched with "keymgr".
91// "keymgr" is an obsolete functionality, which should be rewritten some day.
92// In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
93// need a workaround in LLVM which uses the "keymgr" to dynamically modify the
94// values of an opaque key, used by libgcc to find dwarf tables.
95
96extern "C" void __register_frame(void*);
97extern "C" void __deregister_frame(void*);
98
99#if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
100# define USE_KEYMGR 1
101#else
102# define USE_KEYMGR 0
103#endif
104
105#if USE_KEYMGR
106
107namespace {
108
109// LibgccObject - This is the structure defined in libgcc. There is no #include
110// provided for this structure, so we also define it here. libgcc calls it
111// "struct object". The structure is undocumented in libgcc.
112struct LibgccObject {
113  void *unused1;
114  void *unused2;
115  void *unused3;
116
117  /// frame - Pointer to the exception table.
118  void *frame;
119
120  /// encoding -  The encoding of the object?
121  union {
122    struct {
123      unsigned long sorted : 1;
124      unsigned long from_array : 1;
125      unsigned long mixed_encoding : 1;
126      unsigned long encoding : 8;
127      unsigned long count : 21;
128    } b;
129    size_t i;
130  } encoding;
131
132  /// fde_end - libgcc defines this field only if some macro is defined. We
133  /// include this field even if it may not there, to make libgcc happy.
134  char *fde_end;
135
136  /// next - At least we know it's a chained list!
137  struct LibgccObject *next;
138};
139
140// "kemgr" stuff. Apparently, all frame tables are stored there.
141extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
142extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
143#define KEYMGR_GCC3_DW2_OBJ_LIST        302     /* Dwarf2 object list  */
144
145/// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
146/// probably contains all dwarf tables that are loaded.
147struct LibgccObjectInfo {
148
149  /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
150  ///
151  struct LibgccObject* seenObjects;
152
153  /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
154  ///
155  struct LibgccObject* unseenObjects;
156
157  unsigned unused[2];
158};
159
160/// darwin_register_frame - Since __register_frame does not work with darwin's
161/// libgcc,we provide our own function, which "tricks" libgcc by modifying the
162/// "Dwarf2 object list" key.
163void DarwinRegisterFrame(void* FrameBegin) {
164  // Get the key.
165  LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
166    _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
167  assert(LOI && "This should be preallocated by the runtime");
168
169  // Allocate a new LibgccObject to represent this frame. Deallocation of this
170  // object may be impossible: since darwin code in libgcc was written after
171  // the ability to dynamically register frames, things may crash if we
172  // deallocate it.
173  struct LibgccObject* ob = (struct LibgccObject*)
174    malloc(sizeof(struct LibgccObject));
175
176  // Do like libgcc for the values of the field.
177  ob->unused1 = (void *)-1;
178  ob->unused2 = 0;
179  ob->unused3 = 0;
180  ob->frame = FrameBegin;
181  ob->encoding.i = 0;
182  ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
183
184  // Put the info on both places, as libgcc uses the first or the second
185  // field. Note that we rely on having two pointers here. If fde_end was a
186  // char, things would get complicated.
187  ob->fde_end = (char*)LOI->unseenObjects;
188  ob->next = LOI->unseenObjects;
189
190  // Update the key's unseenObjects list.
191  LOI->unseenObjects = ob;
192
193  // Finally update the "key". Apparently, libgcc requires it.
194  _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
195                                         LOI);
196
197}
198
199}
200#endif // __APPLE__
201#endif // HAVE_EHTABLE_SUPPORT
202
203/// createJIT - This is the factory method for creating a JIT for the current
204/// machine, it does not fall back to the interpreter.  This takes ownership
205/// of the module.
206ExecutionEngine *JIT::createJIT(Module *M,
207                                std::string *ErrorStr,
208                                JITMemoryManager *JMM,
209                                CodeGenOpt::Level OptLevel,
210                                bool GVsWithCode,
211                                TargetMachine *TM) {
212  // Try to register the program as a source of symbols to resolve against.
213  //
214  // FIXME: Don't do this here.
215  sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
216
217  // If the target supports JIT code generation, create the JIT.
218  if (TargetJITInfo *TJ = TM->getJITInfo()) {
219    return new JIT(M, *TM, *TJ, JMM, OptLevel, GVsWithCode);
220  } else {
221    if (ErrorStr)
222      *ErrorStr = "target does not support JIT code generation";
223    return 0;
224  }
225}
226
227namespace {
228/// This class supports the global getPointerToNamedFunction(), which allows
229/// bugpoint or gdb users to search for a function by name without any context.
230class JitPool {
231  SmallPtrSet<JIT*, 1> JITs;  // Optimize for process containing just 1 JIT.
232  mutable sys::Mutex Lock;
233public:
234  void Add(JIT *jit) {
235    MutexGuard guard(Lock);
236    JITs.insert(jit);
237  }
238  void Remove(JIT *jit) {
239    MutexGuard guard(Lock);
240    JITs.erase(jit);
241  }
242  void *getPointerToNamedFunction(const char *Name) const {
243    MutexGuard guard(Lock);
244    assert(JITs.size() != 0 && "No Jit registered");
245    //search function in every instance of JIT
246    for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(),
247           end = JITs.end();
248         Jit != end; ++Jit) {
249      if (Function *F = (*Jit)->FindFunctionNamed(Name))
250        return (*Jit)->getPointerToFunction(F);
251    }
252    // The function is not available : fallback on the first created (will
253    // search in symbol of the current program/library)
254    return (*JITs.begin())->getPointerToNamedFunction(Name);
255  }
256};
257ManagedStatic<JitPool> AllJits;
258}
259extern "C" {
260  // getPointerToNamedFunction - This function is used as a global wrapper to
261  // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
262  // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
263  // need to resolve function(s) that are being mis-codegenerated, so we need to
264  // resolve their addresses at runtime, and this is the way to do it.
265  void *getPointerToNamedFunction(const char *Name) {
266    return AllJits->getPointerToNamedFunction(Name);
267  }
268}
269
270JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
271         JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, bool GVsWithCode)
272  : ExecutionEngine(M), TM(tm), TJI(tji), AllocateGVsWithCode(GVsWithCode),
273    isAlreadyCodeGenerating(false) {
274  setTargetData(TM.getTargetData());
275
276  jitstate = new JITState(M);
277
278  // Initialize JCE
279  JCE = createEmitter(*this, JMM, TM);
280
281  // Register in global list of all JITs.
282  AllJits->Add(this);
283
284  // Add target data
285  MutexGuard locked(lock);
286  FunctionPassManager &PM = jitstate->getPM(locked);
287  PM.add(new TargetData(*TM.getTargetData()));
288
289  // Turn the machine code intermediate representation into bytes in memory that
290  // may be executed.
291  if (TM.addPassesToEmitMachineCode(PM, *JCE, OptLevel)) {
292    report_fatal_error("Target does not support machine code emission!");
293  }
294
295  // Register routine for informing unwinding runtime about new EH frames
296#if HAVE_EHTABLE_SUPPORT
297#if USE_KEYMGR
298  struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
299    _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
300
301  // The key is created on demand, and libgcc creates it the first time an
302  // exception occurs. Since we need the key to register frames, we create
303  // it now.
304  if (!LOI)
305    LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
306  _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
307  InstallExceptionTableRegister(DarwinRegisterFrame);
308  // Not sure about how to deregister on Darwin.
309#else
310  InstallExceptionTableRegister(__register_frame);
311  InstallExceptionTableDeregister(__deregister_frame);
312#endif // __APPLE__
313#endif // HAVE_EHTABLE_SUPPORT
314
315  // Initialize passes.
316  PM.doInitialization();
317}
318
319JIT::~JIT() {
320  // Unregister all exception tables registered by this JIT.
321  DeregisterAllTables();
322  // Cleanup.
323  AllJits->Remove(this);
324  delete jitstate;
325  delete JCE;
326  delete &TM;
327}
328
329/// addModule - Add a new Module to the JIT.  If we previously removed the last
330/// Module, we need re-initialize jitstate with a valid Module.
331void JIT::addModule(Module *M) {
332  MutexGuard locked(lock);
333
334  if (Modules.empty()) {
335    assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
336
337    jitstate = new JITState(M);
338
339    FunctionPassManager &PM = jitstate->getPM(locked);
340    PM.add(new TargetData(*TM.getTargetData()));
341
342    // Turn the machine code intermediate representation into bytes in memory
343    // that may be executed.
344    if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
345      report_fatal_error("Target does not support machine code emission!");
346    }
347
348    // Initialize passes.
349    PM.doInitialization();
350  }
351
352  ExecutionEngine::addModule(M);
353}
354
355/// removeModule - If we are removing the last Module, invalidate the jitstate
356/// since the PassManager it contains references a released Module.
357bool JIT::removeModule(Module *M) {
358  bool result = ExecutionEngine::removeModule(M);
359
360  MutexGuard locked(lock);
361
362  if (jitstate->getModule() == M) {
363    delete jitstate;
364    jitstate = 0;
365  }
366
367  if (!jitstate && !Modules.empty()) {
368    jitstate = new JITState(Modules[0]);
369
370    FunctionPassManager &PM = jitstate->getPM(locked);
371    PM.add(new TargetData(*TM.getTargetData()));
372
373    // Turn the machine code intermediate representation into bytes in memory
374    // that may be executed.
375    if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
376      report_fatal_error("Target does not support machine code emission!");
377    }
378
379    // Initialize passes.
380    PM.doInitialization();
381  }
382  return result;
383}
384
385/// run - Start execution with the specified function and arguments.
386///
387GenericValue JIT::runFunction(Function *F,
388                              const std::vector<GenericValue> &ArgValues) {
389  assert(F && "Function *F was null at entry to run()");
390
391  void *FPtr = getPointerToFunction(F);
392  assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
393  FunctionType *FTy = F->getFunctionType();
394  Type *RetTy = FTy->getReturnType();
395
396  assert((FTy->getNumParams() == ArgValues.size() ||
397          (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
398         "Wrong number of arguments passed into function!");
399  assert(FTy->getNumParams() == ArgValues.size() &&
400         "This doesn't support passing arguments through varargs (yet)!");
401
402  // Handle some common cases first.  These cases correspond to common `main'
403  // prototypes.
404  if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
405    switch (ArgValues.size()) {
406    case 3:
407      if (FTy->getParamType(0)->isIntegerTy(32) &&
408          FTy->getParamType(1)->isPointerTy() &&
409          FTy->getParamType(2)->isPointerTy()) {
410        int (*PF)(int, char **, const char **) =
411          (int(*)(int, char **, const char **))(intptr_t)FPtr;
412
413        // Call the function.
414        GenericValue rv;
415        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
416                                 (char **)GVTOP(ArgValues[1]),
417                                 (const char **)GVTOP(ArgValues[2])));
418        return rv;
419      }
420      break;
421    case 2:
422      if (FTy->getParamType(0)->isIntegerTy(32) &&
423          FTy->getParamType(1)->isPointerTy()) {
424        int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
425
426        // Call the function.
427        GenericValue rv;
428        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
429                                 (char **)GVTOP(ArgValues[1])));
430        return rv;
431      }
432      break;
433    case 1:
434      if (FTy->getNumParams() == 1 &&
435          FTy->getParamType(0)->isIntegerTy(32)) {
436        GenericValue rv;
437        int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
438        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
439        return rv;
440      }
441      break;
442    }
443  }
444
445  // Handle cases where no arguments are passed first.
446  if (ArgValues.empty()) {
447    GenericValue rv;
448    switch (RetTy->getTypeID()) {
449    default: llvm_unreachable("Unknown return type for function call!");
450    case Type::IntegerTyID: {
451      unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
452      if (BitWidth == 1)
453        rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
454      else if (BitWidth <= 8)
455        rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
456      else if (BitWidth <= 16)
457        rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
458      else if (BitWidth <= 32)
459        rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
460      else if (BitWidth <= 64)
461        rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
462      else
463        llvm_unreachable("Integer types > 64 bits not supported");
464      return rv;
465    }
466    case Type::VoidTyID:
467      rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
468      return rv;
469    case Type::FloatTyID:
470      rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
471      return rv;
472    case Type::DoubleTyID:
473      rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
474      return rv;
475    case Type::X86_FP80TyID:
476    case Type::FP128TyID:
477    case Type::PPC_FP128TyID:
478      llvm_unreachable("long double not supported yet");
479      return rv;
480    case Type::PointerTyID:
481      return PTOGV(((void*(*)())(intptr_t)FPtr)());
482    }
483  }
484
485  // Okay, this is not one of our quick and easy cases.  Because we don't have a
486  // full FFI, we have to codegen a nullary stub function that just calls the
487  // function we are interested in, passing in constants for all of the
488  // arguments.  Make this function and return.
489
490  // First, create the function.
491  FunctionType *STy=FunctionType::get(RetTy, false);
492  Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
493                                    F->getParent());
494
495  // Insert a basic block.
496  BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
497
498  // Convert all of the GenericValue arguments over to constants.  Note that we
499  // currently don't support varargs.
500  SmallVector<Value*, 8> Args;
501  for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
502    Constant *C = 0;
503    Type *ArgTy = FTy->getParamType(i);
504    const GenericValue &AV = ArgValues[i];
505    switch (ArgTy->getTypeID()) {
506    default: llvm_unreachable("Unknown argument type for function call!");
507    case Type::IntegerTyID:
508        C = ConstantInt::get(F->getContext(), AV.IntVal);
509        break;
510    case Type::FloatTyID:
511        C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
512        break;
513    case Type::DoubleTyID:
514        C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
515        break;
516    case Type::PPC_FP128TyID:
517    case Type::X86_FP80TyID:
518    case Type::FP128TyID:
519        C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal));
520        break;
521    case Type::PointerTyID:
522      void *ArgPtr = GVTOP(AV);
523      if (sizeof(void*) == 4)
524        C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
525                             (int)(intptr_t)ArgPtr);
526      else
527        C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
528                             (intptr_t)ArgPtr);
529      // Cast the integer to pointer
530      C = ConstantExpr::getIntToPtr(C, ArgTy);
531      break;
532    }
533    Args.push_back(C);
534  }
535
536  CallInst *TheCall = CallInst::Create(F, Args, "", StubBB);
537  TheCall->setCallingConv(F->getCallingConv());
538  TheCall->setTailCall();
539  if (!TheCall->getType()->isVoidTy())
540    // Return result of the call.
541    ReturnInst::Create(F->getContext(), TheCall, StubBB);
542  else
543    ReturnInst::Create(F->getContext(), StubBB);           // Just return void.
544
545  // Finally, call our nullary stub function.
546  GenericValue Result = runFunction(Stub, std::vector<GenericValue>());
547  // Erase it, since no other function can have a reference to it.
548  Stub->eraseFromParent();
549  // And return the result.
550  return Result;
551}
552
553void JIT::RegisterJITEventListener(JITEventListener *L) {
554  if (L == NULL)
555    return;
556  MutexGuard locked(lock);
557  EventListeners.push_back(L);
558}
559void JIT::UnregisterJITEventListener(JITEventListener *L) {
560  if (L == NULL)
561    return;
562  MutexGuard locked(lock);
563  std::vector<JITEventListener*>::reverse_iterator I=
564      std::find(EventListeners.rbegin(), EventListeners.rend(), L);
565  if (I != EventListeners.rend()) {
566    std::swap(*I, EventListeners.back());
567    EventListeners.pop_back();
568  }
569}
570void JIT::NotifyFunctionEmitted(
571    const Function &F,
572    void *Code, size_t Size,
573    const JITEvent_EmittedFunctionDetails &Details) {
574  MutexGuard locked(lock);
575  for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
576    EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
577  }
578}
579
580void JIT::NotifyFreeingMachineCode(void *OldPtr) {
581  MutexGuard locked(lock);
582  for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
583    EventListeners[I]->NotifyFreeingMachineCode(OldPtr);
584  }
585}
586
587/// runJITOnFunction - Run the FunctionPassManager full of
588/// just-in-time compilation passes on F, hopefully filling in
589/// GlobalAddress[F] with the address of F's machine code.
590///
591void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
592  MutexGuard locked(lock);
593
594  class MCIListener : public JITEventListener {
595    MachineCodeInfo *const MCI;
596   public:
597    MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
598    virtual void NotifyFunctionEmitted(const Function &,
599                                       void *Code, size_t Size,
600                                       const EmittedFunctionDetails &) {
601      MCI->setAddress(Code);
602      MCI->setSize(Size);
603    }
604  };
605  MCIListener MCIL(MCI);
606  if (MCI)
607    RegisterJITEventListener(&MCIL);
608
609  runJITOnFunctionUnlocked(F, locked);
610
611  if (MCI)
612    UnregisterJITEventListener(&MCIL);
613}
614
615void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
616  assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
617
618  jitTheFunction(F, locked);
619
620  // If the function referred to another function that had not yet been
621  // read from bitcode, and we are jitting non-lazily, emit it now.
622  while (!jitstate->getPendingFunctions(locked).empty()) {
623    Function *PF = jitstate->getPendingFunctions(locked).back();
624    jitstate->getPendingFunctions(locked).pop_back();
625
626    assert(!PF->hasAvailableExternallyLinkage() &&
627           "Externally-defined function should not be in pending list.");
628
629    jitTheFunction(PF, locked);
630
631    // Now that the function has been jitted, ask the JITEmitter to rewrite
632    // the stub with real address of the function.
633    updateFunctionStub(PF);
634  }
635}
636
637void JIT::jitTheFunction(Function *F, const MutexGuard &locked) {
638  isAlreadyCodeGenerating = true;
639  jitstate->getPM(locked).run(*F);
640  isAlreadyCodeGenerating = false;
641
642  // clear basic block addresses after this function is done
643  getBasicBlockAddressMap(locked).clear();
644}
645
646/// getPointerToFunction - This method is used to get the address of the
647/// specified function, compiling it if necessary.
648///
649void *JIT::getPointerToFunction(Function *F) {
650
651  if (void *Addr = getPointerToGlobalIfAvailable(F))
652    return Addr;   // Check if function already code gen'd
653
654  MutexGuard locked(lock);
655
656  // Now that this thread owns the lock, make sure we read in the function if it
657  // exists in this Module.
658  std::string ErrorMsg;
659  if (F->Materialize(&ErrorMsg)) {
660    report_fatal_error("Error reading function '" + F->getName()+
661                      "' from bitcode file: " + ErrorMsg);
662  }
663
664  // ... and check if another thread has already code gen'd the function.
665  if (void *Addr = getPointerToGlobalIfAvailable(F))
666    return Addr;
667
668  if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
669    bool AbortOnFailure = !F->hasExternalWeakLinkage();
670    void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
671    addGlobalMapping(F, Addr);
672    return Addr;
673  }
674
675  runJITOnFunctionUnlocked(F, locked);
676
677  void *Addr = getPointerToGlobalIfAvailable(F);
678  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
679  return Addr;
680}
681
682void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) {
683  MutexGuard locked(lock);
684
685  BasicBlockAddressMapTy::iterator I =
686    getBasicBlockAddressMap(locked).find(BB);
687  if (I == getBasicBlockAddressMap(locked).end()) {
688    getBasicBlockAddressMap(locked)[BB] = Addr;
689  } else {
690    // ignore repeats: some BBs can be split into few MBBs?
691  }
692}
693
694void JIT::clearPointerToBasicBlock(const BasicBlock *BB) {
695  MutexGuard locked(lock);
696  getBasicBlockAddressMap(locked).erase(BB);
697}
698
699void *JIT::getPointerToBasicBlock(BasicBlock *BB) {
700  // make sure it's function is compiled by JIT
701  (void)getPointerToFunction(BB->getParent());
702
703  // resolve basic block address
704  MutexGuard locked(lock);
705
706  BasicBlockAddressMapTy::iterator I =
707    getBasicBlockAddressMap(locked).find(BB);
708  if (I != getBasicBlockAddressMap(locked).end()) {
709    return I->second;
710  } else {
711    assert(0 && "JIT does not have BB address for address-of-label, was"
712           " it eliminated by optimizer?");
713    return 0;
714  }
715}
716
717/// getOrEmitGlobalVariable - Return the address of the specified global
718/// variable, possibly emitting it to memory if needed.  This is used by the
719/// Emitter.
720void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
721  MutexGuard locked(lock);
722
723  void *Ptr = getPointerToGlobalIfAvailable(GV);
724  if (Ptr) return Ptr;
725
726  // If the global is external, just remember the address.
727  if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) {
728#if HAVE___DSO_HANDLE
729    if (GV->getName() == "__dso_handle")
730      return (void*)&__dso_handle;
731#endif
732    Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
733    if (Ptr == 0) {
734      report_fatal_error("Could not resolve external global address: "
735                        +GV->getName());
736    }
737    addGlobalMapping(GV, Ptr);
738  } else {
739    // If the global hasn't been emitted to memory yet, allocate space and
740    // emit it into memory.
741    Ptr = getMemoryForGV(GV);
742    addGlobalMapping(GV, Ptr);
743    EmitGlobalVariable(GV);  // Initialize the variable.
744  }
745  return Ptr;
746}
747
748/// recompileAndRelinkFunction - This method is used to force a function
749/// which has already been compiled, to be compiled again, possibly
750/// after it has been modified. Then the entry to the old copy is overwritten
751/// with a branch to the new copy. If there was no old copy, this acts
752/// just like JIT::getPointerToFunction().
753///
754void *JIT::recompileAndRelinkFunction(Function *F) {
755  void *OldAddr = getPointerToGlobalIfAvailable(F);
756
757  // If it's not already compiled there is no reason to patch it up.
758  if (OldAddr == 0) { return getPointerToFunction(F); }
759
760  // Delete the old function mapping.
761  addGlobalMapping(F, 0);
762
763  // Recodegen the function
764  runJITOnFunction(F);
765
766  // Update state, forward the old function to the new function.
767  void *Addr = getPointerToGlobalIfAvailable(F);
768  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
769  TJI.replaceMachineCodeForFunction(OldAddr, Addr);
770  return Addr;
771}
772
773/// getMemoryForGV - This method abstracts memory allocation of global
774/// variable so that the JIT can allocate thread local variables depending
775/// on the target.
776///
777char* JIT::getMemoryForGV(const GlobalVariable* GV) {
778  char *Ptr;
779
780  // GlobalVariable's which are not "constant" will cause trouble in a server
781  // situation. It's returned in the same block of memory as code which may
782  // not be writable.
783  if (isGVCompilationDisabled() && !GV->isConstant()) {
784    report_fatal_error("Compilation of non-internal GlobalValue is disabled!");
785  }
786
787  // Some applications require globals and code to live together, so they may
788  // be allocated into the same buffer, but in general globals are allocated
789  // through the memory manager which puts them near the code but not in the
790  // same buffer.
791  Type *GlobalType = GV->getType()->getElementType();
792  size_t S = getTargetData()->getTypeAllocSize(GlobalType);
793  size_t A = getTargetData()->getPreferredAlignment(GV);
794  if (GV->isThreadLocal()) {
795    MutexGuard locked(lock);
796    Ptr = TJI.allocateThreadLocalMemory(S);
797  } else if (TJI.allocateSeparateGVMemory()) {
798    if (A <= 8) {
799      Ptr = (char*)malloc(S);
800    } else {
801      // Allocate S+A bytes of memory, then use an aligned pointer within that
802      // space.
803      Ptr = (char*)malloc(S+A);
804      unsigned MisAligned = ((intptr_t)Ptr & (A-1));
805      Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
806    }
807  } else if (AllocateGVsWithCode) {
808    Ptr = (char*)JCE->allocateSpace(S, A);
809  } else {
810    Ptr = (char*)JCE->allocateGlobal(S, A);
811  }
812  return Ptr;
813}
814
815void JIT::addPendingFunction(Function *F) {
816  MutexGuard locked(lock);
817  jitstate->getPendingFunctions(locked).push_back(F);
818}
819
820
821JITEventListener::~JITEventListener() {}
822