1//===-- APFloat.cpp - Implement APFloat class -----------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements a class to represent arbitrary precision floating 11// point values and provide a variety of arithmetic operations on them. 12// 13//===----------------------------------------------------------------------===// 14 15#include "llvm/ADT/APFloat.h" 16#include "llvm/ADT/APSInt.h" 17#include "llvm/ADT/StringRef.h" 18#include "llvm/ADT/FoldingSet.h" 19#include "llvm/Support/ErrorHandling.h" 20#include "llvm/Support/MathExtras.h" 21#include <limits.h> 22#include <cstring> 23 24using namespace llvm; 25 26#define convolve(lhs, rhs) ((lhs) * 4 + (rhs)) 27 28/* Assumed in hexadecimal significand parsing, and conversion to 29 hexadecimal strings. */ 30#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1] 31COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0); 32 33namespace llvm { 34 35 /* Represents floating point arithmetic semantics. */ 36 struct fltSemantics { 37 /* The largest E such that 2^E is representable; this matches the 38 definition of IEEE 754. */ 39 exponent_t maxExponent; 40 41 /* The smallest E such that 2^E is a normalized number; this 42 matches the definition of IEEE 754. */ 43 exponent_t minExponent; 44 45 /* Number of bits in the significand. This includes the integer 46 bit. */ 47 unsigned int precision; 48 49 /* True if arithmetic is supported. */ 50 unsigned int arithmeticOK; 51 }; 52 53 const fltSemantics APFloat::IEEEhalf = { 15, -14, 11, true }; 54 const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true }; 55 const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true }; 56 const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true }; 57 const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true }; 58 const fltSemantics APFloat::Bogus = { 0, 0, 0, true }; 59 60 // The PowerPC format consists of two doubles. It does not map cleanly 61 // onto the usual format above. For now only storage of constants of 62 // this type is supported, no arithmetic. 63 const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false }; 64 65 /* A tight upper bound on number of parts required to hold the value 66 pow(5, power) is 67 68 power * 815 / (351 * integerPartWidth) + 1 69 70 However, whilst the result may require only this many parts, 71 because we are multiplying two values to get it, the 72 multiplication may require an extra part with the excess part 73 being zero (consider the trivial case of 1 * 1, tcFullMultiply 74 requires two parts to hold the single-part result). So we add an 75 extra one to guarantee enough space whilst multiplying. */ 76 const unsigned int maxExponent = 16383; 77 const unsigned int maxPrecision = 113; 78 const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1; 79 const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815) 80 / (351 * integerPartWidth)); 81} 82 83/* A bunch of private, handy routines. */ 84 85static inline unsigned int 86partCountForBits(unsigned int bits) 87{ 88 return ((bits) + integerPartWidth - 1) / integerPartWidth; 89} 90 91/* Returns 0U-9U. Return values >= 10U are not digits. */ 92static inline unsigned int 93decDigitValue(unsigned int c) 94{ 95 return c - '0'; 96} 97 98static unsigned int 99hexDigitValue(unsigned int c) 100{ 101 unsigned int r; 102 103 r = c - '0'; 104 if (r <= 9) 105 return r; 106 107 r = c - 'A'; 108 if (r <= 5) 109 return r + 10; 110 111 r = c - 'a'; 112 if (r <= 5) 113 return r + 10; 114 115 return -1U; 116} 117 118static inline void 119assertArithmeticOK(const llvm::fltSemantics &semantics) { 120 assert(semantics.arithmeticOK && 121 "Compile-time arithmetic does not support these semantics"); 122} 123 124/* Return the value of a decimal exponent of the form 125 [+-]ddddddd. 126 127 If the exponent overflows, returns a large exponent with the 128 appropriate sign. */ 129static int 130readExponent(StringRef::iterator begin, StringRef::iterator end) 131{ 132 bool isNegative; 133 unsigned int absExponent; 134 const unsigned int overlargeExponent = 24000; /* FIXME. */ 135 StringRef::iterator p = begin; 136 137 assert(p != end && "Exponent has no digits"); 138 139 isNegative = (*p == '-'); 140 if (*p == '-' || *p == '+') { 141 p++; 142 assert(p != end && "Exponent has no digits"); 143 } 144 145 absExponent = decDigitValue(*p++); 146 assert(absExponent < 10U && "Invalid character in exponent"); 147 148 for (; p != end; ++p) { 149 unsigned int value; 150 151 value = decDigitValue(*p); 152 assert(value < 10U && "Invalid character in exponent"); 153 154 value += absExponent * 10; 155 if (absExponent >= overlargeExponent) { 156 absExponent = overlargeExponent; 157 p = end; /* outwit assert below */ 158 break; 159 } 160 absExponent = value; 161 } 162 163 assert(p == end && "Invalid exponent in exponent"); 164 165 if (isNegative) 166 return -(int) absExponent; 167 else 168 return (int) absExponent; 169} 170 171/* This is ugly and needs cleaning up, but I don't immediately see 172 how whilst remaining safe. */ 173static int 174totalExponent(StringRef::iterator p, StringRef::iterator end, 175 int exponentAdjustment) 176{ 177 int unsignedExponent; 178 bool negative, overflow; 179 int exponent = 0; 180 181 assert(p != end && "Exponent has no digits"); 182 183 negative = *p == '-'; 184 if (*p == '-' || *p == '+') { 185 p++; 186 assert(p != end && "Exponent has no digits"); 187 } 188 189 unsignedExponent = 0; 190 overflow = false; 191 for (; p != end; ++p) { 192 unsigned int value; 193 194 value = decDigitValue(*p); 195 assert(value < 10U && "Invalid character in exponent"); 196 197 unsignedExponent = unsignedExponent * 10 + value; 198 if (unsignedExponent > 32767) 199 overflow = true; 200 } 201 202 if (exponentAdjustment > 32767 || exponentAdjustment < -32768) 203 overflow = true; 204 205 if (!overflow) { 206 exponent = unsignedExponent; 207 if (negative) 208 exponent = -exponent; 209 exponent += exponentAdjustment; 210 if (exponent > 32767 || exponent < -32768) 211 overflow = true; 212 } 213 214 if (overflow) 215 exponent = negative ? -32768: 32767; 216 217 return exponent; 218} 219 220static StringRef::iterator 221skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end, 222 StringRef::iterator *dot) 223{ 224 StringRef::iterator p = begin; 225 *dot = end; 226 while (*p == '0' && p != end) 227 p++; 228 229 if (*p == '.') { 230 *dot = p++; 231 232 assert(end - begin != 1 && "Significand has no digits"); 233 234 while (*p == '0' && p != end) 235 p++; 236 } 237 238 return p; 239} 240 241/* Given a normal decimal floating point number of the form 242 243 dddd.dddd[eE][+-]ddd 244 245 where the decimal point and exponent are optional, fill out the 246 structure D. Exponent is appropriate if the significand is 247 treated as an integer, and normalizedExponent if the significand 248 is taken to have the decimal point after a single leading 249 non-zero digit. 250 251 If the value is zero, V->firstSigDigit points to a non-digit, and 252 the return exponent is zero. 253*/ 254struct decimalInfo { 255 const char *firstSigDigit; 256 const char *lastSigDigit; 257 int exponent; 258 int normalizedExponent; 259}; 260 261static void 262interpretDecimal(StringRef::iterator begin, StringRef::iterator end, 263 decimalInfo *D) 264{ 265 StringRef::iterator dot = end; 266 StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot); 267 268 D->firstSigDigit = p; 269 D->exponent = 0; 270 D->normalizedExponent = 0; 271 272 for (; p != end; ++p) { 273 if (*p == '.') { 274 assert(dot == end && "String contains multiple dots"); 275 dot = p++; 276 if (p == end) 277 break; 278 } 279 if (decDigitValue(*p) >= 10U) 280 break; 281 } 282 283 if (p != end) { 284 assert((*p == 'e' || *p == 'E') && "Invalid character in significand"); 285 assert(p != begin && "Significand has no digits"); 286 assert((dot == end || p - begin != 1) && "Significand has no digits"); 287 288 /* p points to the first non-digit in the string */ 289 D->exponent = readExponent(p + 1, end); 290 291 /* Implied decimal point? */ 292 if (dot == end) 293 dot = p; 294 } 295 296 /* If number is all zeroes accept any exponent. */ 297 if (p != D->firstSigDigit) { 298 /* Drop insignificant trailing zeroes. */ 299 if (p != begin) { 300 do 301 do 302 p--; 303 while (p != begin && *p == '0'); 304 while (p != begin && *p == '.'); 305 } 306 307 /* Adjust the exponents for any decimal point. */ 308 D->exponent += static_cast<exponent_t>((dot - p) - (dot > p)); 309 D->normalizedExponent = (D->exponent + 310 static_cast<exponent_t>((p - D->firstSigDigit) 311 - (dot > D->firstSigDigit && dot < p))); 312 } 313 314 D->lastSigDigit = p; 315} 316 317/* Return the trailing fraction of a hexadecimal number. 318 DIGITVALUE is the first hex digit of the fraction, P points to 319 the next digit. */ 320static lostFraction 321trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end, 322 unsigned int digitValue) 323{ 324 unsigned int hexDigit; 325 326 /* If the first trailing digit isn't 0 or 8 we can work out the 327 fraction immediately. */ 328 if (digitValue > 8) 329 return lfMoreThanHalf; 330 else if (digitValue < 8 && digitValue > 0) 331 return lfLessThanHalf; 332 333 /* Otherwise we need to find the first non-zero digit. */ 334 while (*p == '0') 335 p++; 336 337 assert(p != end && "Invalid trailing hexadecimal fraction!"); 338 339 hexDigit = hexDigitValue(*p); 340 341 /* If we ran off the end it is exactly zero or one-half, otherwise 342 a little more. */ 343 if (hexDigit == -1U) 344 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf; 345 else 346 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf; 347} 348 349/* Return the fraction lost were a bignum truncated losing the least 350 significant BITS bits. */ 351static lostFraction 352lostFractionThroughTruncation(const integerPart *parts, 353 unsigned int partCount, 354 unsigned int bits) 355{ 356 unsigned int lsb; 357 358 lsb = APInt::tcLSB(parts, partCount); 359 360 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */ 361 if (bits <= lsb) 362 return lfExactlyZero; 363 if (bits == lsb + 1) 364 return lfExactlyHalf; 365 if (bits <= partCount * integerPartWidth && 366 APInt::tcExtractBit(parts, bits - 1)) 367 return lfMoreThanHalf; 368 369 return lfLessThanHalf; 370} 371 372/* Shift DST right BITS bits noting lost fraction. */ 373static lostFraction 374shiftRight(integerPart *dst, unsigned int parts, unsigned int bits) 375{ 376 lostFraction lost_fraction; 377 378 lost_fraction = lostFractionThroughTruncation(dst, parts, bits); 379 380 APInt::tcShiftRight(dst, parts, bits); 381 382 return lost_fraction; 383} 384 385/* Combine the effect of two lost fractions. */ 386static lostFraction 387combineLostFractions(lostFraction moreSignificant, 388 lostFraction lessSignificant) 389{ 390 if (lessSignificant != lfExactlyZero) { 391 if (moreSignificant == lfExactlyZero) 392 moreSignificant = lfLessThanHalf; 393 else if (moreSignificant == lfExactlyHalf) 394 moreSignificant = lfMoreThanHalf; 395 } 396 397 return moreSignificant; 398} 399 400/* The error from the true value, in half-ulps, on multiplying two 401 floating point numbers, which differ from the value they 402 approximate by at most HUE1 and HUE2 half-ulps, is strictly less 403 than the returned value. 404 405 See "How to Read Floating Point Numbers Accurately" by William D 406 Clinger. */ 407static unsigned int 408HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2) 409{ 410 assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8)); 411 412 if (HUerr1 + HUerr2 == 0) 413 return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */ 414 else 415 return inexactMultiply + 2 * (HUerr1 + HUerr2); 416} 417 418/* The number of ulps from the boundary (zero, or half if ISNEAREST) 419 when the least significant BITS are truncated. BITS cannot be 420 zero. */ 421static integerPart 422ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest) 423{ 424 unsigned int count, partBits; 425 integerPart part, boundary; 426 427 assert(bits != 0); 428 429 bits--; 430 count = bits / integerPartWidth; 431 partBits = bits % integerPartWidth + 1; 432 433 part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits)); 434 435 if (isNearest) 436 boundary = (integerPart) 1 << (partBits - 1); 437 else 438 boundary = 0; 439 440 if (count == 0) { 441 if (part - boundary <= boundary - part) 442 return part - boundary; 443 else 444 return boundary - part; 445 } 446 447 if (part == boundary) { 448 while (--count) 449 if (parts[count]) 450 return ~(integerPart) 0; /* A lot. */ 451 452 return parts[0]; 453 } else if (part == boundary - 1) { 454 while (--count) 455 if (~parts[count]) 456 return ~(integerPart) 0; /* A lot. */ 457 458 return -parts[0]; 459 } 460 461 return ~(integerPart) 0; /* A lot. */ 462} 463 464/* Place pow(5, power) in DST, and return the number of parts used. 465 DST must be at least one part larger than size of the answer. */ 466static unsigned int 467powerOf5(integerPart *dst, unsigned int power) 468{ 469 static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, 470 15625, 78125 }; 471 integerPart pow5s[maxPowerOfFiveParts * 2 + 5]; 472 pow5s[0] = 78125 * 5; 473 474 unsigned int partsCount[16] = { 1 }; 475 integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5; 476 unsigned int result; 477 assert(power <= maxExponent); 478 479 p1 = dst; 480 p2 = scratch; 481 482 *p1 = firstEightPowers[power & 7]; 483 power >>= 3; 484 485 result = 1; 486 pow5 = pow5s; 487 488 for (unsigned int n = 0; power; power >>= 1, n++) { 489 unsigned int pc; 490 491 pc = partsCount[n]; 492 493 /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */ 494 if (pc == 0) { 495 pc = partsCount[n - 1]; 496 APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc); 497 pc *= 2; 498 if (pow5[pc - 1] == 0) 499 pc--; 500 partsCount[n] = pc; 501 } 502 503 if (power & 1) { 504 integerPart *tmp; 505 506 APInt::tcFullMultiply(p2, p1, pow5, result, pc); 507 result += pc; 508 if (p2[result - 1] == 0) 509 result--; 510 511 /* Now result is in p1 with partsCount parts and p2 is scratch 512 space. */ 513 tmp = p1, p1 = p2, p2 = tmp; 514 } 515 516 pow5 += pc; 517 } 518 519 if (p1 != dst) 520 APInt::tcAssign(dst, p1, result); 521 522 return result; 523} 524 525/* Zero at the end to avoid modular arithmetic when adding one; used 526 when rounding up during hexadecimal output. */ 527static const char hexDigitsLower[] = "0123456789abcdef0"; 528static const char hexDigitsUpper[] = "0123456789ABCDEF0"; 529static const char infinityL[] = "infinity"; 530static const char infinityU[] = "INFINITY"; 531static const char NaNL[] = "nan"; 532static const char NaNU[] = "NAN"; 533 534/* Write out an integerPart in hexadecimal, starting with the most 535 significant nibble. Write out exactly COUNT hexdigits, return 536 COUNT. */ 537static unsigned int 538partAsHex (char *dst, integerPart part, unsigned int count, 539 const char *hexDigitChars) 540{ 541 unsigned int result = count; 542 543 assert(count != 0 && count <= integerPartWidth / 4); 544 545 part >>= (integerPartWidth - 4 * count); 546 while (count--) { 547 dst[count] = hexDigitChars[part & 0xf]; 548 part >>= 4; 549 } 550 551 return result; 552} 553 554/* Write out an unsigned decimal integer. */ 555static char * 556writeUnsignedDecimal (char *dst, unsigned int n) 557{ 558 char buff[40], *p; 559 560 p = buff; 561 do 562 *p++ = '0' + n % 10; 563 while (n /= 10); 564 565 do 566 *dst++ = *--p; 567 while (p != buff); 568 569 return dst; 570} 571 572/* Write out a signed decimal integer. */ 573static char * 574writeSignedDecimal (char *dst, int value) 575{ 576 if (value < 0) { 577 *dst++ = '-'; 578 dst = writeUnsignedDecimal(dst, -(unsigned) value); 579 } else 580 dst = writeUnsignedDecimal(dst, value); 581 582 return dst; 583} 584 585/* Constructors. */ 586void 587APFloat::initialize(const fltSemantics *ourSemantics) 588{ 589 unsigned int count; 590 591 semantics = ourSemantics; 592 count = partCount(); 593 if (count > 1) 594 significand.parts = new integerPart[count]; 595} 596 597void 598APFloat::freeSignificand() 599{ 600 if (partCount() > 1) 601 delete [] significand.parts; 602} 603 604void 605APFloat::assign(const APFloat &rhs) 606{ 607 assert(semantics == rhs.semantics); 608 609 sign = rhs.sign; 610 category = rhs.category; 611 exponent = rhs.exponent; 612 sign2 = rhs.sign2; 613 exponent2 = rhs.exponent2; 614 if (category == fcNormal || category == fcNaN) 615 copySignificand(rhs); 616} 617 618void 619APFloat::copySignificand(const APFloat &rhs) 620{ 621 assert(category == fcNormal || category == fcNaN); 622 assert(rhs.partCount() >= partCount()); 623 624 APInt::tcAssign(significandParts(), rhs.significandParts(), 625 partCount()); 626} 627 628/* Make this number a NaN, with an arbitrary but deterministic value 629 for the significand. If double or longer, this is a signalling NaN, 630 which may not be ideal. If float, this is QNaN(0). */ 631void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) 632{ 633 category = fcNaN; 634 sign = Negative; 635 636 integerPart *significand = significandParts(); 637 unsigned numParts = partCount(); 638 639 // Set the significand bits to the fill. 640 if (!fill || fill->getNumWords() < numParts) 641 APInt::tcSet(significand, 0, numParts); 642 if (fill) { 643 APInt::tcAssign(significand, fill->getRawData(), 644 std::min(fill->getNumWords(), numParts)); 645 646 // Zero out the excess bits of the significand. 647 unsigned bitsToPreserve = semantics->precision - 1; 648 unsigned part = bitsToPreserve / 64; 649 bitsToPreserve %= 64; 650 significand[part] &= ((1ULL << bitsToPreserve) - 1); 651 for (part++; part != numParts; ++part) 652 significand[part] = 0; 653 } 654 655 unsigned QNaNBit = semantics->precision - 2; 656 657 if (SNaN) { 658 // We always have to clear the QNaN bit to make it an SNaN. 659 APInt::tcClearBit(significand, QNaNBit); 660 661 // If there are no bits set in the payload, we have to set 662 // *something* to make it a NaN instead of an infinity; 663 // conventionally, this is the next bit down from the QNaN bit. 664 if (APInt::tcIsZero(significand, numParts)) 665 APInt::tcSetBit(significand, QNaNBit - 1); 666 } else { 667 // We always have to set the QNaN bit to make it a QNaN. 668 APInt::tcSetBit(significand, QNaNBit); 669 } 670 671 // For x87 extended precision, we want to make a NaN, not a 672 // pseudo-NaN. Maybe we should expose the ability to make 673 // pseudo-NaNs? 674 if (semantics == &APFloat::x87DoubleExtended) 675 APInt::tcSetBit(significand, QNaNBit + 1); 676} 677 678APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative, 679 const APInt *fill) { 680 APFloat value(Sem, uninitialized); 681 value.makeNaN(SNaN, Negative, fill); 682 return value; 683} 684 685APFloat & 686APFloat::operator=(const APFloat &rhs) 687{ 688 if (this != &rhs) { 689 if (semantics != rhs.semantics) { 690 freeSignificand(); 691 initialize(rhs.semantics); 692 } 693 assign(rhs); 694 } 695 696 return *this; 697} 698 699bool 700APFloat::bitwiseIsEqual(const APFloat &rhs) const { 701 if (this == &rhs) 702 return true; 703 if (semantics != rhs.semantics || 704 category != rhs.category || 705 sign != rhs.sign) 706 return false; 707 if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble && 708 sign2 != rhs.sign2) 709 return false; 710 if (category==fcZero || category==fcInfinity) 711 return true; 712 else if (category==fcNormal && exponent!=rhs.exponent) 713 return false; 714 else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble && 715 exponent2!=rhs.exponent2) 716 return false; 717 else { 718 int i= partCount(); 719 const integerPart* p=significandParts(); 720 const integerPart* q=rhs.significandParts(); 721 for (; i>0; i--, p++, q++) { 722 if (*p != *q) 723 return false; 724 } 725 return true; 726 } 727} 728 729APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) 730 : exponent2(0), sign2(0) { 731 assertArithmeticOK(ourSemantics); 732 initialize(&ourSemantics); 733 sign = 0; 734 zeroSignificand(); 735 exponent = ourSemantics.precision - 1; 736 significandParts()[0] = value; 737 normalize(rmNearestTiesToEven, lfExactlyZero); 738} 739 740APFloat::APFloat(const fltSemantics &ourSemantics) : exponent2(0), sign2(0) { 741 assertArithmeticOK(ourSemantics); 742 initialize(&ourSemantics); 743 category = fcZero; 744 sign = false; 745} 746 747APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag) 748 : exponent2(0), sign2(0) { 749 assertArithmeticOK(ourSemantics); 750 // Allocates storage if necessary but does not initialize it. 751 initialize(&ourSemantics); 752} 753 754APFloat::APFloat(const fltSemantics &ourSemantics, 755 fltCategory ourCategory, bool negative) 756 : exponent2(0), sign2(0) { 757 assertArithmeticOK(ourSemantics); 758 initialize(&ourSemantics); 759 category = ourCategory; 760 sign = negative; 761 if (category == fcNormal) 762 category = fcZero; 763 else if (ourCategory == fcNaN) 764 makeNaN(); 765} 766 767APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text) 768 : exponent2(0), sign2(0) { 769 assertArithmeticOK(ourSemantics); 770 initialize(&ourSemantics); 771 convertFromString(text, rmNearestTiesToEven); 772} 773 774APFloat::APFloat(const APFloat &rhs) : exponent2(0), sign2(0) { 775 initialize(rhs.semantics); 776 assign(rhs); 777} 778 779APFloat::~APFloat() 780{ 781 freeSignificand(); 782} 783 784// Profile - This method 'profiles' an APFloat for use with FoldingSet. 785void APFloat::Profile(FoldingSetNodeID& ID) const { 786 ID.Add(bitcastToAPInt()); 787} 788 789unsigned int 790APFloat::partCount() const 791{ 792 return partCountForBits(semantics->precision + 1); 793} 794 795unsigned int 796APFloat::semanticsPrecision(const fltSemantics &semantics) 797{ 798 return semantics.precision; 799} 800 801const integerPart * 802APFloat::significandParts() const 803{ 804 return const_cast<APFloat *>(this)->significandParts(); 805} 806 807integerPart * 808APFloat::significandParts() 809{ 810 assert(category == fcNormal || category == fcNaN); 811 812 if (partCount() > 1) 813 return significand.parts; 814 else 815 return &significand.part; 816} 817 818void 819APFloat::zeroSignificand() 820{ 821 category = fcNormal; 822 APInt::tcSet(significandParts(), 0, partCount()); 823} 824 825/* Increment an fcNormal floating point number's significand. */ 826void 827APFloat::incrementSignificand() 828{ 829 integerPart carry; 830 831 carry = APInt::tcIncrement(significandParts(), partCount()); 832 833 /* Our callers should never cause us to overflow. */ 834 assert(carry == 0); 835 (void)carry; 836} 837 838/* Add the significand of the RHS. Returns the carry flag. */ 839integerPart 840APFloat::addSignificand(const APFloat &rhs) 841{ 842 integerPart *parts; 843 844 parts = significandParts(); 845 846 assert(semantics == rhs.semantics); 847 assert(exponent == rhs.exponent); 848 849 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount()); 850} 851 852/* Subtract the significand of the RHS with a borrow flag. Returns 853 the borrow flag. */ 854integerPart 855APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow) 856{ 857 integerPart *parts; 858 859 parts = significandParts(); 860 861 assert(semantics == rhs.semantics); 862 assert(exponent == rhs.exponent); 863 864 return APInt::tcSubtract(parts, rhs.significandParts(), borrow, 865 partCount()); 866} 867 868/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it 869 on to the full-precision result of the multiplication. Returns the 870 lost fraction. */ 871lostFraction 872APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend) 873{ 874 unsigned int omsb; // One, not zero, based MSB. 875 unsigned int partsCount, newPartsCount, precision; 876 integerPart *lhsSignificand; 877 integerPart scratch[4]; 878 integerPart *fullSignificand; 879 lostFraction lost_fraction; 880 bool ignored; 881 882 assert(semantics == rhs.semantics); 883 884 precision = semantics->precision; 885 newPartsCount = partCountForBits(precision * 2); 886 887 if (newPartsCount > 4) 888 fullSignificand = new integerPart[newPartsCount]; 889 else 890 fullSignificand = scratch; 891 892 lhsSignificand = significandParts(); 893 partsCount = partCount(); 894 895 APInt::tcFullMultiply(fullSignificand, lhsSignificand, 896 rhs.significandParts(), partsCount, partsCount); 897 898 lost_fraction = lfExactlyZero; 899 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; 900 exponent += rhs.exponent; 901 902 if (addend) { 903 Significand savedSignificand = significand; 904 const fltSemantics *savedSemantics = semantics; 905 fltSemantics extendedSemantics; 906 opStatus status; 907 unsigned int extendedPrecision; 908 909 /* Normalize our MSB. */ 910 extendedPrecision = precision + precision - 1; 911 if (omsb != extendedPrecision) { 912 APInt::tcShiftLeft(fullSignificand, newPartsCount, 913 extendedPrecision - omsb); 914 exponent -= extendedPrecision - omsb; 915 } 916 917 /* Create new semantics. */ 918 extendedSemantics = *semantics; 919 extendedSemantics.precision = extendedPrecision; 920 921 if (newPartsCount == 1) 922 significand.part = fullSignificand[0]; 923 else 924 significand.parts = fullSignificand; 925 semantics = &extendedSemantics; 926 927 APFloat extendedAddend(*addend); 928 status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored); 929 assert(status == opOK); 930 (void)status; 931 lost_fraction = addOrSubtractSignificand(extendedAddend, false); 932 933 /* Restore our state. */ 934 if (newPartsCount == 1) 935 fullSignificand[0] = significand.part; 936 significand = savedSignificand; 937 semantics = savedSemantics; 938 939 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; 940 } 941 942 exponent -= (precision - 1); 943 944 if (omsb > precision) { 945 unsigned int bits, significantParts; 946 lostFraction lf; 947 948 bits = omsb - precision; 949 significantParts = partCountForBits(omsb); 950 lf = shiftRight(fullSignificand, significantParts, bits); 951 lost_fraction = combineLostFractions(lf, lost_fraction); 952 exponent += bits; 953 } 954 955 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount); 956 957 if (newPartsCount > 4) 958 delete [] fullSignificand; 959 960 return lost_fraction; 961} 962 963/* Multiply the significands of LHS and RHS to DST. */ 964lostFraction 965APFloat::divideSignificand(const APFloat &rhs) 966{ 967 unsigned int bit, i, partsCount; 968 const integerPart *rhsSignificand; 969 integerPart *lhsSignificand, *dividend, *divisor; 970 integerPart scratch[4]; 971 lostFraction lost_fraction; 972 973 assert(semantics == rhs.semantics); 974 975 lhsSignificand = significandParts(); 976 rhsSignificand = rhs.significandParts(); 977 partsCount = partCount(); 978 979 if (partsCount > 2) 980 dividend = new integerPart[partsCount * 2]; 981 else 982 dividend = scratch; 983 984 divisor = dividend + partsCount; 985 986 /* Copy the dividend and divisor as they will be modified in-place. */ 987 for (i = 0; i < partsCount; i++) { 988 dividend[i] = lhsSignificand[i]; 989 divisor[i] = rhsSignificand[i]; 990 lhsSignificand[i] = 0; 991 } 992 993 exponent -= rhs.exponent; 994 995 unsigned int precision = semantics->precision; 996 997 /* Normalize the divisor. */ 998 bit = precision - APInt::tcMSB(divisor, partsCount) - 1; 999 if (bit) { 1000 exponent += bit; 1001 APInt::tcShiftLeft(divisor, partsCount, bit); 1002 } 1003 1004 /* Normalize the dividend. */ 1005 bit = precision - APInt::tcMSB(dividend, partsCount) - 1; 1006 if (bit) { 1007 exponent -= bit; 1008 APInt::tcShiftLeft(dividend, partsCount, bit); 1009 } 1010 1011 /* Ensure the dividend >= divisor initially for the loop below. 1012 Incidentally, this means that the division loop below is 1013 guaranteed to set the integer bit to one. */ 1014 if (APInt::tcCompare(dividend, divisor, partsCount) < 0) { 1015 exponent--; 1016 APInt::tcShiftLeft(dividend, partsCount, 1); 1017 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0); 1018 } 1019 1020 /* Long division. */ 1021 for (bit = precision; bit; bit -= 1) { 1022 if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) { 1023 APInt::tcSubtract(dividend, divisor, 0, partsCount); 1024 APInt::tcSetBit(lhsSignificand, bit - 1); 1025 } 1026 1027 APInt::tcShiftLeft(dividend, partsCount, 1); 1028 } 1029 1030 /* Figure out the lost fraction. */ 1031 int cmp = APInt::tcCompare(dividend, divisor, partsCount); 1032 1033 if (cmp > 0) 1034 lost_fraction = lfMoreThanHalf; 1035 else if (cmp == 0) 1036 lost_fraction = lfExactlyHalf; 1037 else if (APInt::tcIsZero(dividend, partsCount)) 1038 lost_fraction = lfExactlyZero; 1039 else 1040 lost_fraction = lfLessThanHalf; 1041 1042 if (partsCount > 2) 1043 delete [] dividend; 1044 1045 return lost_fraction; 1046} 1047 1048unsigned int 1049APFloat::significandMSB() const 1050{ 1051 return APInt::tcMSB(significandParts(), partCount()); 1052} 1053 1054unsigned int 1055APFloat::significandLSB() const 1056{ 1057 return APInt::tcLSB(significandParts(), partCount()); 1058} 1059 1060/* Note that a zero result is NOT normalized to fcZero. */ 1061lostFraction 1062APFloat::shiftSignificandRight(unsigned int bits) 1063{ 1064 /* Our exponent should not overflow. */ 1065 assert((exponent_t) (exponent + bits) >= exponent); 1066 1067 exponent += bits; 1068 1069 return shiftRight(significandParts(), partCount(), bits); 1070} 1071 1072/* Shift the significand left BITS bits, subtract BITS from its exponent. */ 1073void 1074APFloat::shiftSignificandLeft(unsigned int bits) 1075{ 1076 assert(bits < semantics->precision); 1077 1078 if (bits) { 1079 unsigned int partsCount = partCount(); 1080 1081 APInt::tcShiftLeft(significandParts(), partsCount, bits); 1082 exponent -= bits; 1083 1084 assert(!APInt::tcIsZero(significandParts(), partsCount)); 1085 } 1086} 1087 1088APFloat::cmpResult 1089APFloat::compareAbsoluteValue(const APFloat &rhs) const 1090{ 1091 int compare; 1092 1093 assert(semantics == rhs.semantics); 1094 assert(category == fcNormal); 1095 assert(rhs.category == fcNormal); 1096 1097 compare = exponent - rhs.exponent; 1098 1099 /* If exponents are equal, do an unsigned bignum comparison of the 1100 significands. */ 1101 if (compare == 0) 1102 compare = APInt::tcCompare(significandParts(), rhs.significandParts(), 1103 partCount()); 1104 1105 if (compare > 0) 1106 return cmpGreaterThan; 1107 else if (compare < 0) 1108 return cmpLessThan; 1109 else 1110 return cmpEqual; 1111} 1112 1113/* Handle overflow. Sign is preserved. We either become infinity or 1114 the largest finite number. */ 1115APFloat::opStatus 1116APFloat::handleOverflow(roundingMode rounding_mode) 1117{ 1118 /* Infinity? */ 1119 if (rounding_mode == rmNearestTiesToEven || 1120 rounding_mode == rmNearestTiesToAway || 1121 (rounding_mode == rmTowardPositive && !sign) || 1122 (rounding_mode == rmTowardNegative && sign)) { 1123 category = fcInfinity; 1124 return (opStatus) (opOverflow | opInexact); 1125 } 1126 1127 /* Otherwise we become the largest finite number. */ 1128 category = fcNormal; 1129 exponent = semantics->maxExponent; 1130 APInt::tcSetLeastSignificantBits(significandParts(), partCount(), 1131 semantics->precision); 1132 1133 return opInexact; 1134} 1135 1136/* Returns TRUE if, when truncating the current number, with BIT the 1137 new LSB, with the given lost fraction and rounding mode, the result 1138 would need to be rounded away from zero (i.e., by increasing the 1139 signficand). This routine must work for fcZero of both signs, and 1140 fcNormal numbers. */ 1141bool 1142APFloat::roundAwayFromZero(roundingMode rounding_mode, 1143 lostFraction lost_fraction, 1144 unsigned int bit) const 1145{ 1146 /* NaNs and infinities should not have lost fractions. */ 1147 assert(category == fcNormal || category == fcZero); 1148 1149 /* Current callers never pass this so we don't handle it. */ 1150 assert(lost_fraction != lfExactlyZero); 1151 1152 switch (rounding_mode) { 1153 default: 1154 llvm_unreachable(0); 1155 1156 case rmNearestTiesToAway: 1157 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf; 1158 1159 case rmNearestTiesToEven: 1160 if (lost_fraction == lfMoreThanHalf) 1161 return true; 1162 1163 /* Our zeroes don't have a significand to test. */ 1164 if (lost_fraction == lfExactlyHalf && category != fcZero) 1165 return APInt::tcExtractBit(significandParts(), bit); 1166 1167 return false; 1168 1169 case rmTowardZero: 1170 return false; 1171 1172 case rmTowardPositive: 1173 return sign == false; 1174 1175 case rmTowardNegative: 1176 return sign == true; 1177 } 1178} 1179 1180APFloat::opStatus 1181APFloat::normalize(roundingMode rounding_mode, 1182 lostFraction lost_fraction) 1183{ 1184 unsigned int omsb; /* One, not zero, based MSB. */ 1185 int exponentChange; 1186 1187 if (category != fcNormal) 1188 return opOK; 1189 1190 /* Before rounding normalize the exponent of fcNormal numbers. */ 1191 omsb = significandMSB() + 1; 1192 1193 if (omsb) { 1194 /* OMSB is numbered from 1. We want to place it in the integer 1195 bit numbered PRECISION if possible, with a compensating change in 1196 the exponent. */ 1197 exponentChange = omsb - semantics->precision; 1198 1199 /* If the resulting exponent is too high, overflow according to 1200 the rounding mode. */ 1201 if (exponent + exponentChange > semantics->maxExponent) 1202 return handleOverflow(rounding_mode); 1203 1204 /* Subnormal numbers have exponent minExponent, and their MSB 1205 is forced based on that. */ 1206 if (exponent + exponentChange < semantics->minExponent) 1207 exponentChange = semantics->minExponent - exponent; 1208 1209 /* Shifting left is easy as we don't lose precision. */ 1210 if (exponentChange < 0) { 1211 assert(lost_fraction == lfExactlyZero); 1212 1213 shiftSignificandLeft(-exponentChange); 1214 1215 return opOK; 1216 } 1217 1218 if (exponentChange > 0) { 1219 lostFraction lf; 1220 1221 /* Shift right and capture any new lost fraction. */ 1222 lf = shiftSignificandRight(exponentChange); 1223 1224 lost_fraction = combineLostFractions(lf, lost_fraction); 1225 1226 /* Keep OMSB up-to-date. */ 1227 if (omsb > (unsigned) exponentChange) 1228 omsb -= exponentChange; 1229 else 1230 omsb = 0; 1231 } 1232 } 1233 1234 /* Now round the number according to rounding_mode given the lost 1235 fraction. */ 1236 1237 /* As specified in IEEE 754, since we do not trap we do not report 1238 underflow for exact results. */ 1239 if (lost_fraction == lfExactlyZero) { 1240 /* Canonicalize zeroes. */ 1241 if (omsb == 0) 1242 category = fcZero; 1243 1244 return opOK; 1245 } 1246 1247 /* Increment the significand if we're rounding away from zero. */ 1248 if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) { 1249 if (omsb == 0) 1250 exponent = semantics->minExponent; 1251 1252 incrementSignificand(); 1253 omsb = significandMSB() + 1; 1254 1255 /* Did the significand increment overflow? */ 1256 if (omsb == (unsigned) semantics->precision + 1) { 1257 /* Renormalize by incrementing the exponent and shifting our 1258 significand right one. However if we already have the 1259 maximum exponent we overflow to infinity. */ 1260 if (exponent == semantics->maxExponent) { 1261 category = fcInfinity; 1262 1263 return (opStatus) (opOverflow | opInexact); 1264 } 1265 1266 shiftSignificandRight(1); 1267 1268 return opInexact; 1269 } 1270 } 1271 1272 /* The normal case - we were and are not denormal, and any 1273 significand increment above didn't overflow. */ 1274 if (omsb == semantics->precision) 1275 return opInexact; 1276 1277 /* We have a non-zero denormal. */ 1278 assert(omsb < semantics->precision); 1279 1280 /* Canonicalize zeroes. */ 1281 if (omsb == 0) 1282 category = fcZero; 1283 1284 /* The fcZero case is a denormal that underflowed to zero. */ 1285 return (opStatus) (opUnderflow | opInexact); 1286} 1287 1288APFloat::opStatus 1289APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract) 1290{ 1291 switch (convolve(category, rhs.category)) { 1292 default: 1293 llvm_unreachable(0); 1294 1295 case convolve(fcNaN, fcZero): 1296 case convolve(fcNaN, fcNormal): 1297 case convolve(fcNaN, fcInfinity): 1298 case convolve(fcNaN, fcNaN): 1299 case convolve(fcNormal, fcZero): 1300 case convolve(fcInfinity, fcNormal): 1301 case convolve(fcInfinity, fcZero): 1302 return opOK; 1303 1304 case convolve(fcZero, fcNaN): 1305 case convolve(fcNormal, fcNaN): 1306 case convolve(fcInfinity, fcNaN): 1307 category = fcNaN; 1308 copySignificand(rhs); 1309 return opOK; 1310 1311 case convolve(fcNormal, fcInfinity): 1312 case convolve(fcZero, fcInfinity): 1313 category = fcInfinity; 1314 sign = rhs.sign ^ subtract; 1315 return opOK; 1316 1317 case convolve(fcZero, fcNormal): 1318 assign(rhs); 1319 sign = rhs.sign ^ subtract; 1320 return opOK; 1321 1322 case convolve(fcZero, fcZero): 1323 /* Sign depends on rounding mode; handled by caller. */ 1324 return opOK; 1325 1326 case convolve(fcInfinity, fcInfinity): 1327 /* Differently signed infinities can only be validly 1328 subtracted. */ 1329 if (((sign ^ rhs.sign)!=0) != subtract) { 1330 makeNaN(); 1331 return opInvalidOp; 1332 } 1333 1334 return opOK; 1335 1336 case convolve(fcNormal, fcNormal): 1337 return opDivByZero; 1338 } 1339} 1340 1341/* Add or subtract two normal numbers. */ 1342lostFraction 1343APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract) 1344{ 1345 integerPart carry; 1346 lostFraction lost_fraction; 1347 int bits; 1348 1349 /* Determine if the operation on the absolute values is effectively 1350 an addition or subtraction. */ 1351 subtract ^= (sign ^ rhs.sign) ? true : false; 1352 1353 /* Are we bigger exponent-wise than the RHS? */ 1354 bits = exponent - rhs.exponent; 1355 1356 /* Subtraction is more subtle than one might naively expect. */ 1357 if (subtract) { 1358 APFloat temp_rhs(rhs); 1359 bool reverse; 1360 1361 if (bits == 0) { 1362 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan; 1363 lost_fraction = lfExactlyZero; 1364 } else if (bits > 0) { 1365 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1); 1366 shiftSignificandLeft(1); 1367 reverse = false; 1368 } else { 1369 lost_fraction = shiftSignificandRight(-bits - 1); 1370 temp_rhs.shiftSignificandLeft(1); 1371 reverse = true; 1372 } 1373 1374 if (reverse) { 1375 carry = temp_rhs.subtractSignificand 1376 (*this, lost_fraction != lfExactlyZero); 1377 copySignificand(temp_rhs); 1378 sign = !sign; 1379 } else { 1380 carry = subtractSignificand 1381 (temp_rhs, lost_fraction != lfExactlyZero); 1382 } 1383 1384 /* Invert the lost fraction - it was on the RHS and 1385 subtracted. */ 1386 if (lost_fraction == lfLessThanHalf) 1387 lost_fraction = lfMoreThanHalf; 1388 else if (lost_fraction == lfMoreThanHalf) 1389 lost_fraction = lfLessThanHalf; 1390 1391 /* The code above is intended to ensure that no borrow is 1392 necessary. */ 1393 assert(!carry); 1394 (void)carry; 1395 } else { 1396 if (bits > 0) { 1397 APFloat temp_rhs(rhs); 1398 1399 lost_fraction = temp_rhs.shiftSignificandRight(bits); 1400 carry = addSignificand(temp_rhs); 1401 } else { 1402 lost_fraction = shiftSignificandRight(-bits); 1403 carry = addSignificand(rhs); 1404 } 1405 1406 /* We have a guard bit; generating a carry cannot happen. */ 1407 assert(!carry); 1408 (void)carry; 1409 } 1410 1411 return lost_fraction; 1412} 1413 1414APFloat::opStatus 1415APFloat::multiplySpecials(const APFloat &rhs) 1416{ 1417 switch (convolve(category, rhs.category)) { 1418 default: 1419 llvm_unreachable(0); 1420 1421 case convolve(fcNaN, fcZero): 1422 case convolve(fcNaN, fcNormal): 1423 case convolve(fcNaN, fcInfinity): 1424 case convolve(fcNaN, fcNaN): 1425 return opOK; 1426 1427 case convolve(fcZero, fcNaN): 1428 case convolve(fcNormal, fcNaN): 1429 case convolve(fcInfinity, fcNaN): 1430 category = fcNaN; 1431 copySignificand(rhs); 1432 return opOK; 1433 1434 case convolve(fcNormal, fcInfinity): 1435 case convolve(fcInfinity, fcNormal): 1436 case convolve(fcInfinity, fcInfinity): 1437 category = fcInfinity; 1438 return opOK; 1439 1440 case convolve(fcZero, fcNormal): 1441 case convolve(fcNormal, fcZero): 1442 case convolve(fcZero, fcZero): 1443 category = fcZero; 1444 return opOK; 1445 1446 case convolve(fcZero, fcInfinity): 1447 case convolve(fcInfinity, fcZero): 1448 makeNaN(); 1449 return opInvalidOp; 1450 1451 case convolve(fcNormal, fcNormal): 1452 return opOK; 1453 } 1454} 1455 1456APFloat::opStatus 1457APFloat::divideSpecials(const APFloat &rhs) 1458{ 1459 switch (convolve(category, rhs.category)) { 1460 default: 1461 llvm_unreachable(0); 1462 1463 case convolve(fcNaN, fcZero): 1464 case convolve(fcNaN, fcNormal): 1465 case convolve(fcNaN, fcInfinity): 1466 case convolve(fcNaN, fcNaN): 1467 case convolve(fcInfinity, fcZero): 1468 case convolve(fcInfinity, fcNormal): 1469 case convolve(fcZero, fcInfinity): 1470 case convolve(fcZero, fcNormal): 1471 return opOK; 1472 1473 case convolve(fcZero, fcNaN): 1474 case convolve(fcNormal, fcNaN): 1475 case convolve(fcInfinity, fcNaN): 1476 category = fcNaN; 1477 copySignificand(rhs); 1478 return opOK; 1479 1480 case convolve(fcNormal, fcInfinity): 1481 category = fcZero; 1482 return opOK; 1483 1484 case convolve(fcNormal, fcZero): 1485 category = fcInfinity; 1486 return opDivByZero; 1487 1488 case convolve(fcInfinity, fcInfinity): 1489 case convolve(fcZero, fcZero): 1490 makeNaN(); 1491 return opInvalidOp; 1492 1493 case convolve(fcNormal, fcNormal): 1494 return opOK; 1495 } 1496} 1497 1498APFloat::opStatus 1499APFloat::modSpecials(const APFloat &rhs) 1500{ 1501 switch (convolve(category, rhs.category)) { 1502 default: 1503 llvm_unreachable(0); 1504 1505 case convolve(fcNaN, fcZero): 1506 case convolve(fcNaN, fcNormal): 1507 case convolve(fcNaN, fcInfinity): 1508 case convolve(fcNaN, fcNaN): 1509 case convolve(fcZero, fcInfinity): 1510 case convolve(fcZero, fcNormal): 1511 case convolve(fcNormal, fcInfinity): 1512 return opOK; 1513 1514 case convolve(fcZero, fcNaN): 1515 case convolve(fcNormal, fcNaN): 1516 case convolve(fcInfinity, fcNaN): 1517 category = fcNaN; 1518 copySignificand(rhs); 1519 return opOK; 1520 1521 case convolve(fcNormal, fcZero): 1522 case convolve(fcInfinity, fcZero): 1523 case convolve(fcInfinity, fcNormal): 1524 case convolve(fcInfinity, fcInfinity): 1525 case convolve(fcZero, fcZero): 1526 makeNaN(); 1527 return opInvalidOp; 1528 1529 case convolve(fcNormal, fcNormal): 1530 return opOK; 1531 } 1532} 1533 1534/* Change sign. */ 1535void 1536APFloat::changeSign() 1537{ 1538 /* Look mummy, this one's easy. */ 1539 sign = !sign; 1540} 1541 1542void 1543APFloat::clearSign() 1544{ 1545 /* So is this one. */ 1546 sign = 0; 1547} 1548 1549void 1550APFloat::copySign(const APFloat &rhs) 1551{ 1552 /* And this one. */ 1553 sign = rhs.sign; 1554} 1555 1556/* Normalized addition or subtraction. */ 1557APFloat::opStatus 1558APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode, 1559 bool subtract) 1560{ 1561 opStatus fs; 1562 1563 assertArithmeticOK(*semantics); 1564 1565 fs = addOrSubtractSpecials(rhs, subtract); 1566 1567 /* This return code means it was not a simple case. */ 1568 if (fs == opDivByZero) { 1569 lostFraction lost_fraction; 1570 1571 lost_fraction = addOrSubtractSignificand(rhs, subtract); 1572 fs = normalize(rounding_mode, lost_fraction); 1573 1574 /* Can only be zero if we lost no fraction. */ 1575 assert(category != fcZero || lost_fraction == lfExactlyZero); 1576 } 1577 1578 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a 1579 positive zero unless rounding to minus infinity, except that 1580 adding two like-signed zeroes gives that zero. */ 1581 if (category == fcZero) { 1582 if (rhs.category != fcZero || (sign == rhs.sign) == subtract) 1583 sign = (rounding_mode == rmTowardNegative); 1584 } 1585 1586 return fs; 1587} 1588 1589/* Normalized addition. */ 1590APFloat::opStatus 1591APFloat::add(const APFloat &rhs, roundingMode rounding_mode) 1592{ 1593 return addOrSubtract(rhs, rounding_mode, false); 1594} 1595 1596/* Normalized subtraction. */ 1597APFloat::opStatus 1598APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode) 1599{ 1600 return addOrSubtract(rhs, rounding_mode, true); 1601} 1602 1603/* Normalized multiply. */ 1604APFloat::opStatus 1605APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode) 1606{ 1607 opStatus fs; 1608 1609 assertArithmeticOK(*semantics); 1610 sign ^= rhs.sign; 1611 fs = multiplySpecials(rhs); 1612 1613 if (category == fcNormal) { 1614 lostFraction lost_fraction = multiplySignificand(rhs, 0); 1615 fs = normalize(rounding_mode, lost_fraction); 1616 if (lost_fraction != lfExactlyZero) 1617 fs = (opStatus) (fs | opInexact); 1618 } 1619 1620 return fs; 1621} 1622 1623/* Normalized divide. */ 1624APFloat::opStatus 1625APFloat::divide(const APFloat &rhs, roundingMode rounding_mode) 1626{ 1627 opStatus fs; 1628 1629 assertArithmeticOK(*semantics); 1630 sign ^= rhs.sign; 1631 fs = divideSpecials(rhs); 1632 1633 if (category == fcNormal) { 1634 lostFraction lost_fraction = divideSignificand(rhs); 1635 fs = normalize(rounding_mode, lost_fraction); 1636 if (lost_fraction != lfExactlyZero) 1637 fs = (opStatus) (fs | opInexact); 1638 } 1639 1640 return fs; 1641} 1642 1643/* Normalized remainder. This is not currently correct in all cases. */ 1644APFloat::opStatus 1645APFloat::remainder(const APFloat &rhs) 1646{ 1647 opStatus fs; 1648 APFloat V = *this; 1649 unsigned int origSign = sign; 1650 1651 assertArithmeticOK(*semantics); 1652 fs = V.divide(rhs, rmNearestTiesToEven); 1653 if (fs == opDivByZero) 1654 return fs; 1655 1656 int parts = partCount(); 1657 integerPart *x = new integerPart[parts]; 1658 bool ignored; 1659 fs = V.convertToInteger(x, parts * integerPartWidth, true, 1660 rmNearestTiesToEven, &ignored); 1661 if (fs==opInvalidOp) 1662 return fs; 1663 1664 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true, 1665 rmNearestTiesToEven); 1666 assert(fs==opOK); // should always work 1667 1668 fs = V.multiply(rhs, rmNearestTiesToEven); 1669 assert(fs==opOK || fs==opInexact); // should not overflow or underflow 1670 1671 fs = subtract(V, rmNearestTiesToEven); 1672 assert(fs==opOK || fs==opInexact); // likewise 1673 1674 if (isZero()) 1675 sign = origSign; // IEEE754 requires this 1676 delete[] x; 1677 return fs; 1678} 1679 1680/* Normalized llvm frem (C fmod). 1681 This is not currently correct in all cases. */ 1682APFloat::opStatus 1683APFloat::mod(const APFloat &rhs, roundingMode rounding_mode) 1684{ 1685 opStatus fs; 1686 assertArithmeticOK(*semantics); 1687 fs = modSpecials(rhs); 1688 1689 if (category == fcNormal && rhs.category == fcNormal) { 1690 APFloat V = *this; 1691 unsigned int origSign = sign; 1692 1693 fs = V.divide(rhs, rmNearestTiesToEven); 1694 if (fs == opDivByZero) 1695 return fs; 1696 1697 int parts = partCount(); 1698 integerPart *x = new integerPart[parts]; 1699 bool ignored; 1700 fs = V.convertToInteger(x, parts * integerPartWidth, true, 1701 rmTowardZero, &ignored); 1702 if (fs==opInvalidOp) 1703 return fs; 1704 1705 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true, 1706 rmNearestTiesToEven); 1707 assert(fs==opOK); // should always work 1708 1709 fs = V.multiply(rhs, rounding_mode); 1710 assert(fs==opOK || fs==opInexact); // should not overflow or underflow 1711 1712 fs = subtract(V, rounding_mode); 1713 assert(fs==opOK || fs==opInexact); // likewise 1714 1715 if (isZero()) 1716 sign = origSign; // IEEE754 requires this 1717 delete[] x; 1718 } 1719 return fs; 1720} 1721 1722/* Normalized fused-multiply-add. */ 1723APFloat::opStatus 1724APFloat::fusedMultiplyAdd(const APFloat &multiplicand, 1725 const APFloat &addend, 1726 roundingMode rounding_mode) 1727{ 1728 opStatus fs; 1729 1730 assertArithmeticOK(*semantics); 1731 1732 /* Post-multiplication sign, before addition. */ 1733 sign ^= multiplicand.sign; 1734 1735 /* If and only if all arguments are normal do we need to do an 1736 extended-precision calculation. */ 1737 if (category == fcNormal && 1738 multiplicand.category == fcNormal && 1739 addend.category == fcNormal) { 1740 lostFraction lost_fraction; 1741 1742 lost_fraction = multiplySignificand(multiplicand, &addend); 1743 fs = normalize(rounding_mode, lost_fraction); 1744 if (lost_fraction != lfExactlyZero) 1745 fs = (opStatus) (fs | opInexact); 1746 1747 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a 1748 positive zero unless rounding to minus infinity, except that 1749 adding two like-signed zeroes gives that zero. */ 1750 if (category == fcZero && sign != addend.sign) 1751 sign = (rounding_mode == rmTowardNegative); 1752 } else { 1753 fs = multiplySpecials(multiplicand); 1754 1755 /* FS can only be opOK or opInvalidOp. There is no more work 1756 to do in the latter case. The IEEE-754R standard says it is 1757 implementation-defined in this case whether, if ADDEND is a 1758 quiet NaN, we raise invalid op; this implementation does so. 1759 1760 If we need to do the addition we can do so with normal 1761 precision. */ 1762 if (fs == opOK) 1763 fs = addOrSubtract(addend, rounding_mode, false); 1764 } 1765 1766 return fs; 1767} 1768 1769/* Comparison requires normalized numbers. */ 1770APFloat::cmpResult 1771APFloat::compare(const APFloat &rhs) const 1772{ 1773 cmpResult result; 1774 1775 assertArithmeticOK(*semantics); 1776 assert(semantics == rhs.semantics); 1777 1778 switch (convolve(category, rhs.category)) { 1779 default: 1780 llvm_unreachable(0); 1781 1782 case convolve(fcNaN, fcZero): 1783 case convolve(fcNaN, fcNormal): 1784 case convolve(fcNaN, fcInfinity): 1785 case convolve(fcNaN, fcNaN): 1786 case convolve(fcZero, fcNaN): 1787 case convolve(fcNormal, fcNaN): 1788 case convolve(fcInfinity, fcNaN): 1789 return cmpUnordered; 1790 1791 case convolve(fcInfinity, fcNormal): 1792 case convolve(fcInfinity, fcZero): 1793 case convolve(fcNormal, fcZero): 1794 if (sign) 1795 return cmpLessThan; 1796 else 1797 return cmpGreaterThan; 1798 1799 case convolve(fcNormal, fcInfinity): 1800 case convolve(fcZero, fcInfinity): 1801 case convolve(fcZero, fcNormal): 1802 if (rhs.sign) 1803 return cmpGreaterThan; 1804 else 1805 return cmpLessThan; 1806 1807 case convolve(fcInfinity, fcInfinity): 1808 if (sign == rhs.sign) 1809 return cmpEqual; 1810 else if (sign) 1811 return cmpLessThan; 1812 else 1813 return cmpGreaterThan; 1814 1815 case convolve(fcZero, fcZero): 1816 return cmpEqual; 1817 1818 case convolve(fcNormal, fcNormal): 1819 break; 1820 } 1821 1822 /* Two normal numbers. Do they have the same sign? */ 1823 if (sign != rhs.sign) { 1824 if (sign) 1825 result = cmpLessThan; 1826 else 1827 result = cmpGreaterThan; 1828 } else { 1829 /* Compare absolute values; invert result if negative. */ 1830 result = compareAbsoluteValue(rhs); 1831 1832 if (sign) { 1833 if (result == cmpLessThan) 1834 result = cmpGreaterThan; 1835 else if (result == cmpGreaterThan) 1836 result = cmpLessThan; 1837 } 1838 } 1839 1840 return result; 1841} 1842 1843/// APFloat::convert - convert a value of one floating point type to another. 1844/// The return value corresponds to the IEEE754 exceptions. *losesInfo 1845/// records whether the transformation lost information, i.e. whether 1846/// converting the result back to the original type will produce the 1847/// original value (this is almost the same as return value==fsOK, but there 1848/// are edge cases where this is not so). 1849 1850APFloat::opStatus 1851APFloat::convert(const fltSemantics &toSemantics, 1852 roundingMode rounding_mode, bool *losesInfo) 1853{ 1854 lostFraction lostFraction; 1855 unsigned int newPartCount, oldPartCount; 1856 opStatus fs; 1857 1858 assertArithmeticOK(*semantics); 1859 assertArithmeticOK(toSemantics); 1860 lostFraction = lfExactlyZero; 1861 newPartCount = partCountForBits(toSemantics.precision + 1); 1862 oldPartCount = partCount(); 1863 1864 /* Handle storage complications. If our new form is wider, 1865 re-allocate our bit pattern into wider storage. If it is 1866 narrower, we ignore the excess parts, but if narrowing to a 1867 single part we need to free the old storage. 1868 Be careful not to reference significandParts for zeroes 1869 and infinities, since it aborts. */ 1870 if (newPartCount > oldPartCount) { 1871 integerPart *newParts; 1872 newParts = new integerPart[newPartCount]; 1873 APInt::tcSet(newParts, 0, newPartCount); 1874 if (category==fcNormal || category==fcNaN) 1875 APInt::tcAssign(newParts, significandParts(), oldPartCount); 1876 freeSignificand(); 1877 significand.parts = newParts; 1878 } else if (newPartCount < oldPartCount) { 1879 /* Capture any lost fraction through truncation of parts so we get 1880 correct rounding whilst normalizing. */ 1881 if (category==fcNormal) 1882 lostFraction = lostFractionThroughTruncation 1883 (significandParts(), oldPartCount, toSemantics.precision); 1884 if (newPartCount == 1) { 1885 integerPart newPart = 0; 1886 if (category==fcNormal || category==fcNaN) 1887 newPart = significandParts()[0]; 1888 freeSignificand(); 1889 significand.part = newPart; 1890 } 1891 } 1892 1893 if (category == fcNormal) { 1894 /* Re-interpret our bit-pattern. */ 1895 exponent += toSemantics.precision - semantics->precision; 1896 semantics = &toSemantics; 1897 fs = normalize(rounding_mode, lostFraction); 1898 *losesInfo = (fs != opOK); 1899 } else if (category == fcNaN) { 1900 int shift = toSemantics.precision - semantics->precision; 1901 // Do this now so significandParts gets the right answer 1902 const fltSemantics *oldSemantics = semantics; 1903 semantics = &toSemantics; 1904 *losesInfo = false; 1905 // No normalization here, just truncate 1906 if (shift>0) 1907 APInt::tcShiftLeft(significandParts(), newPartCount, shift); 1908 else if (shift < 0) { 1909 unsigned ushift = -shift; 1910 // Figure out if we are losing information. This happens 1911 // if are shifting out something other than 0s, or if the x87 long 1912 // double input did not have its integer bit set (pseudo-NaN), or if the 1913 // x87 long double input did not have its QNan bit set (because the x87 1914 // hardware sets this bit when converting a lower-precision NaN to 1915 // x87 long double). 1916 if (APInt::tcLSB(significandParts(), newPartCount) < ushift) 1917 *losesInfo = true; 1918 if (oldSemantics == &APFloat::x87DoubleExtended && 1919 (!(*significandParts() & 0x8000000000000000ULL) || 1920 !(*significandParts() & 0x4000000000000000ULL))) 1921 *losesInfo = true; 1922 APInt::tcShiftRight(significandParts(), newPartCount, ushift); 1923 } 1924 // gcc forces the Quiet bit on, which means (float)(double)(float_sNan) 1925 // does not give you back the same bits. This is dubious, and we 1926 // don't currently do it. You're really supposed to get 1927 // an invalid operation signal at runtime, but nobody does that. 1928 fs = opOK; 1929 } else { 1930 semantics = &toSemantics; 1931 fs = opOK; 1932 *losesInfo = false; 1933 } 1934 1935 return fs; 1936} 1937 1938/* Convert a floating point number to an integer according to the 1939 rounding mode. If the rounded integer value is out of range this 1940 returns an invalid operation exception and the contents of the 1941 destination parts are unspecified. If the rounded value is in 1942 range but the floating point number is not the exact integer, the C 1943 standard doesn't require an inexact exception to be raised. IEEE 1944 854 does require it so we do that. 1945 1946 Note that for conversions to integer type the C standard requires 1947 round-to-zero to always be used. */ 1948APFloat::opStatus 1949APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width, 1950 bool isSigned, 1951 roundingMode rounding_mode, 1952 bool *isExact) const 1953{ 1954 lostFraction lost_fraction; 1955 const integerPart *src; 1956 unsigned int dstPartsCount, truncatedBits; 1957 1958 assertArithmeticOK(*semantics); 1959 1960 *isExact = false; 1961 1962 /* Handle the three special cases first. */ 1963 if (category == fcInfinity || category == fcNaN) 1964 return opInvalidOp; 1965 1966 dstPartsCount = partCountForBits(width); 1967 1968 if (category == fcZero) { 1969 APInt::tcSet(parts, 0, dstPartsCount); 1970 // Negative zero can't be represented as an int. 1971 *isExact = !sign; 1972 return opOK; 1973 } 1974 1975 src = significandParts(); 1976 1977 /* Step 1: place our absolute value, with any fraction truncated, in 1978 the destination. */ 1979 if (exponent < 0) { 1980 /* Our absolute value is less than one; truncate everything. */ 1981 APInt::tcSet(parts, 0, dstPartsCount); 1982 /* For exponent -1 the integer bit represents .5, look at that. 1983 For smaller exponents leftmost truncated bit is 0. */ 1984 truncatedBits = semantics->precision -1U - exponent; 1985 } else { 1986 /* We want the most significant (exponent + 1) bits; the rest are 1987 truncated. */ 1988 unsigned int bits = exponent + 1U; 1989 1990 /* Hopelessly large in magnitude? */ 1991 if (bits > width) 1992 return opInvalidOp; 1993 1994 if (bits < semantics->precision) { 1995 /* We truncate (semantics->precision - bits) bits. */ 1996 truncatedBits = semantics->precision - bits; 1997 APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits); 1998 } else { 1999 /* We want at least as many bits as are available. */ 2000 APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0); 2001 APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision); 2002 truncatedBits = 0; 2003 } 2004 } 2005 2006 /* Step 2: work out any lost fraction, and increment the absolute 2007 value if we would round away from zero. */ 2008 if (truncatedBits) { 2009 lost_fraction = lostFractionThroughTruncation(src, partCount(), 2010 truncatedBits); 2011 if (lost_fraction != lfExactlyZero && 2012 roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) { 2013 if (APInt::tcIncrement(parts, dstPartsCount)) 2014 return opInvalidOp; /* Overflow. */ 2015 } 2016 } else { 2017 lost_fraction = lfExactlyZero; 2018 } 2019 2020 /* Step 3: check if we fit in the destination. */ 2021 unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1; 2022 2023 if (sign) { 2024 if (!isSigned) { 2025 /* Negative numbers cannot be represented as unsigned. */ 2026 if (omsb != 0) 2027 return opInvalidOp; 2028 } else { 2029 /* It takes omsb bits to represent the unsigned integer value. 2030 We lose a bit for the sign, but care is needed as the 2031 maximally negative integer is a special case. */ 2032 if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb) 2033 return opInvalidOp; 2034 2035 /* This case can happen because of rounding. */ 2036 if (omsb > width) 2037 return opInvalidOp; 2038 } 2039 2040 APInt::tcNegate (parts, dstPartsCount); 2041 } else { 2042 if (omsb >= width + !isSigned) 2043 return opInvalidOp; 2044 } 2045 2046 if (lost_fraction == lfExactlyZero) { 2047 *isExact = true; 2048 return opOK; 2049 } else 2050 return opInexact; 2051} 2052 2053/* Same as convertToSignExtendedInteger, except we provide 2054 deterministic values in case of an invalid operation exception, 2055 namely zero for NaNs and the minimal or maximal value respectively 2056 for underflow or overflow. 2057 The *isExact output tells whether the result is exact, in the sense 2058 that converting it back to the original floating point type produces 2059 the original value. This is almost equivalent to result==opOK, 2060 except for negative zeroes. 2061*/ 2062APFloat::opStatus 2063APFloat::convertToInteger(integerPart *parts, unsigned int width, 2064 bool isSigned, 2065 roundingMode rounding_mode, bool *isExact) const 2066{ 2067 opStatus fs; 2068 2069 fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode, 2070 isExact); 2071 2072 if (fs == opInvalidOp) { 2073 unsigned int bits, dstPartsCount; 2074 2075 dstPartsCount = partCountForBits(width); 2076 2077 if (category == fcNaN) 2078 bits = 0; 2079 else if (sign) 2080 bits = isSigned; 2081 else 2082 bits = width - isSigned; 2083 2084 APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits); 2085 if (sign && isSigned) 2086 APInt::tcShiftLeft(parts, dstPartsCount, width - 1); 2087 } 2088 2089 return fs; 2090} 2091 2092/* Same as convertToInteger(integerPart*, ...), except the result is returned in 2093 an APSInt, whose initial bit-width and signed-ness are used to determine the 2094 precision of the conversion. 2095 */ 2096APFloat::opStatus 2097APFloat::convertToInteger(APSInt &result, 2098 roundingMode rounding_mode, bool *isExact) const 2099{ 2100 unsigned bitWidth = result.getBitWidth(); 2101 SmallVector<uint64_t, 4> parts(result.getNumWords()); 2102 opStatus status = convertToInteger( 2103 parts.data(), bitWidth, result.isSigned(), rounding_mode, isExact); 2104 // Keeps the original signed-ness. 2105 result = APInt(bitWidth, parts); 2106 return status; 2107} 2108 2109/* Convert an unsigned integer SRC to a floating point number, 2110 rounding according to ROUNDING_MODE. The sign of the floating 2111 point number is not modified. */ 2112APFloat::opStatus 2113APFloat::convertFromUnsignedParts(const integerPart *src, 2114 unsigned int srcCount, 2115 roundingMode rounding_mode) 2116{ 2117 unsigned int omsb, precision, dstCount; 2118 integerPart *dst; 2119 lostFraction lost_fraction; 2120 2121 assertArithmeticOK(*semantics); 2122 category = fcNormal; 2123 omsb = APInt::tcMSB(src, srcCount) + 1; 2124 dst = significandParts(); 2125 dstCount = partCount(); 2126 precision = semantics->precision; 2127 2128 /* We want the most significant PRECISION bits of SRC. There may not 2129 be that many; extract what we can. */ 2130 if (precision <= omsb) { 2131 exponent = omsb - 1; 2132 lost_fraction = lostFractionThroughTruncation(src, srcCount, 2133 omsb - precision); 2134 APInt::tcExtract(dst, dstCount, src, precision, omsb - precision); 2135 } else { 2136 exponent = precision - 1; 2137 lost_fraction = lfExactlyZero; 2138 APInt::tcExtract(dst, dstCount, src, omsb, 0); 2139 } 2140 2141 return normalize(rounding_mode, lost_fraction); 2142} 2143 2144APFloat::opStatus 2145APFloat::convertFromAPInt(const APInt &Val, 2146 bool isSigned, 2147 roundingMode rounding_mode) 2148{ 2149 unsigned int partCount = Val.getNumWords(); 2150 APInt api = Val; 2151 2152 sign = false; 2153 if (isSigned && api.isNegative()) { 2154 sign = true; 2155 api = -api; 2156 } 2157 2158 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); 2159} 2160 2161/* Convert a two's complement integer SRC to a floating point number, 2162 rounding according to ROUNDING_MODE. ISSIGNED is true if the 2163 integer is signed, in which case it must be sign-extended. */ 2164APFloat::opStatus 2165APFloat::convertFromSignExtendedInteger(const integerPart *src, 2166 unsigned int srcCount, 2167 bool isSigned, 2168 roundingMode rounding_mode) 2169{ 2170 opStatus status; 2171 2172 assertArithmeticOK(*semantics); 2173 if (isSigned && 2174 APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) { 2175 integerPart *copy; 2176 2177 /* If we're signed and negative negate a copy. */ 2178 sign = true; 2179 copy = new integerPart[srcCount]; 2180 APInt::tcAssign(copy, src, srcCount); 2181 APInt::tcNegate(copy, srcCount); 2182 status = convertFromUnsignedParts(copy, srcCount, rounding_mode); 2183 delete [] copy; 2184 } else { 2185 sign = false; 2186 status = convertFromUnsignedParts(src, srcCount, rounding_mode); 2187 } 2188 2189 return status; 2190} 2191 2192/* FIXME: should this just take a const APInt reference? */ 2193APFloat::opStatus 2194APFloat::convertFromZeroExtendedInteger(const integerPart *parts, 2195 unsigned int width, bool isSigned, 2196 roundingMode rounding_mode) 2197{ 2198 unsigned int partCount = partCountForBits(width); 2199 APInt api = APInt(width, makeArrayRef(parts, partCount)); 2200 2201 sign = false; 2202 if (isSigned && APInt::tcExtractBit(parts, width - 1)) { 2203 sign = true; 2204 api = -api; 2205 } 2206 2207 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); 2208} 2209 2210APFloat::opStatus 2211APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode) 2212{ 2213 lostFraction lost_fraction = lfExactlyZero; 2214 integerPart *significand; 2215 unsigned int bitPos, partsCount; 2216 StringRef::iterator dot, firstSignificantDigit; 2217 2218 zeroSignificand(); 2219 exponent = 0; 2220 category = fcNormal; 2221 2222 significand = significandParts(); 2223 partsCount = partCount(); 2224 bitPos = partsCount * integerPartWidth; 2225 2226 /* Skip leading zeroes and any (hexa)decimal point. */ 2227 StringRef::iterator begin = s.begin(); 2228 StringRef::iterator end = s.end(); 2229 StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot); 2230 firstSignificantDigit = p; 2231 2232 for (; p != end;) { 2233 integerPart hex_value; 2234 2235 if (*p == '.') { 2236 assert(dot == end && "String contains multiple dots"); 2237 dot = p++; 2238 if (p == end) { 2239 break; 2240 } 2241 } 2242 2243 hex_value = hexDigitValue(*p); 2244 if (hex_value == -1U) { 2245 break; 2246 } 2247 2248 p++; 2249 2250 if (p == end) { 2251 break; 2252 } else { 2253 /* Store the number whilst 4-bit nibbles remain. */ 2254 if (bitPos) { 2255 bitPos -= 4; 2256 hex_value <<= bitPos % integerPartWidth; 2257 significand[bitPos / integerPartWidth] |= hex_value; 2258 } else { 2259 lost_fraction = trailingHexadecimalFraction(p, end, hex_value); 2260 while (p != end && hexDigitValue(*p) != -1U) 2261 p++; 2262 break; 2263 } 2264 } 2265 } 2266 2267 /* Hex floats require an exponent but not a hexadecimal point. */ 2268 assert(p != end && "Hex strings require an exponent"); 2269 assert((*p == 'p' || *p == 'P') && "Invalid character in significand"); 2270 assert(p != begin && "Significand has no digits"); 2271 assert((dot == end || p - begin != 1) && "Significand has no digits"); 2272 2273 /* Ignore the exponent if we are zero. */ 2274 if (p != firstSignificantDigit) { 2275 int expAdjustment; 2276 2277 /* Implicit hexadecimal point? */ 2278 if (dot == end) 2279 dot = p; 2280 2281 /* Calculate the exponent adjustment implicit in the number of 2282 significant digits. */ 2283 expAdjustment = static_cast<int>(dot - firstSignificantDigit); 2284 if (expAdjustment < 0) 2285 expAdjustment++; 2286 expAdjustment = expAdjustment * 4 - 1; 2287 2288 /* Adjust for writing the significand starting at the most 2289 significant nibble. */ 2290 expAdjustment += semantics->precision; 2291 expAdjustment -= partsCount * integerPartWidth; 2292 2293 /* Adjust for the given exponent. */ 2294 exponent = totalExponent(p + 1, end, expAdjustment); 2295 } 2296 2297 return normalize(rounding_mode, lost_fraction); 2298} 2299 2300APFloat::opStatus 2301APFloat::roundSignificandWithExponent(const integerPart *decSigParts, 2302 unsigned sigPartCount, int exp, 2303 roundingMode rounding_mode) 2304{ 2305 unsigned int parts, pow5PartCount; 2306 fltSemantics calcSemantics = { 32767, -32767, 0, true }; 2307 integerPart pow5Parts[maxPowerOfFiveParts]; 2308 bool isNearest; 2309 2310 isNearest = (rounding_mode == rmNearestTiesToEven || 2311 rounding_mode == rmNearestTiesToAway); 2312 2313 parts = partCountForBits(semantics->precision + 11); 2314 2315 /* Calculate pow(5, abs(exp)). */ 2316 pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp); 2317 2318 for (;; parts *= 2) { 2319 opStatus sigStatus, powStatus; 2320 unsigned int excessPrecision, truncatedBits; 2321 2322 calcSemantics.precision = parts * integerPartWidth - 1; 2323 excessPrecision = calcSemantics.precision - semantics->precision; 2324 truncatedBits = excessPrecision; 2325 2326 APFloat decSig(calcSemantics, fcZero, sign); 2327 APFloat pow5(calcSemantics, fcZero, false); 2328 2329 sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount, 2330 rmNearestTiesToEven); 2331 powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount, 2332 rmNearestTiesToEven); 2333 /* Add exp, as 10^n = 5^n * 2^n. */ 2334 decSig.exponent += exp; 2335 2336 lostFraction calcLostFraction; 2337 integerPart HUerr, HUdistance; 2338 unsigned int powHUerr; 2339 2340 if (exp >= 0) { 2341 /* multiplySignificand leaves the precision-th bit set to 1. */ 2342 calcLostFraction = decSig.multiplySignificand(pow5, NULL); 2343 powHUerr = powStatus != opOK; 2344 } else { 2345 calcLostFraction = decSig.divideSignificand(pow5); 2346 /* Denormal numbers have less precision. */ 2347 if (decSig.exponent < semantics->minExponent) { 2348 excessPrecision += (semantics->minExponent - decSig.exponent); 2349 truncatedBits = excessPrecision; 2350 if (excessPrecision > calcSemantics.precision) 2351 excessPrecision = calcSemantics.precision; 2352 } 2353 /* Extra half-ulp lost in reciprocal of exponent. */ 2354 powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2; 2355 } 2356 2357 /* Both multiplySignificand and divideSignificand return the 2358 result with the integer bit set. */ 2359 assert(APInt::tcExtractBit 2360 (decSig.significandParts(), calcSemantics.precision - 1) == 1); 2361 2362 HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK, 2363 powHUerr); 2364 HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(), 2365 excessPrecision, isNearest); 2366 2367 /* Are we guaranteed to round correctly if we truncate? */ 2368 if (HUdistance >= HUerr) { 2369 APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(), 2370 calcSemantics.precision - excessPrecision, 2371 excessPrecision); 2372 /* Take the exponent of decSig. If we tcExtract-ed less bits 2373 above we must adjust our exponent to compensate for the 2374 implicit right shift. */ 2375 exponent = (decSig.exponent + semantics->precision 2376 - (calcSemantics.precision - excessPrecision)); 2377 calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(), 2378 decSig.partCount(), 2379 truncatedBits); 2380 return normalize(rounding_mode, calcLostFraction); 2381 } 2382 } 2383} 2384 2385APFloat::opStatus 2386APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) 2387{ 2388 decimalInfo D; 2389 opStatus fs; 2390 2391 /* Scan the text. */ 2392 StringRef::iterator p = str.begin(); 2393 interpretDecimal(p, str.end(), &D); 2394 2395 /* Handle the quick cases. First the case of no significant digits, 2396 i.e. zero, and then exponents that are obviously too large or too 2397 small. Writing L for log 10 / log 2, a number d.ddddd*10^exp 2398 definitely overflows if 2399 2400 (exp - 1) * L >= maxExponent 2401 2402 and definitely underflows to zero where 2403 2404 (exp + 1) * L <= minExponent - precision 2405 2406 With integer arithmetic the tightest bounds for L are 2407 2408 93/28 < L < 196/59 [ numerator <= 256 ] 2409 42039/12655 < L < 28738/8651 [ numerator <= 65536 ] 2410 */ 2411 2412 if (decDigitValue(*D.firstSigDigit) >= 10U) { 2413 category = fcZero; 2414 fs = opOK; 2415 2416 /* Check whether the normalized exponent is high enough to overflow 2417 max during the log-rebasing in the max-exponent check below. */ 2418 } else if (D.normalizedExponent - 1 > INT_MAX / 42039) { 2419 fs = handleOverflow(rounding_mode); 2420 2421 /* If it wasn't, then it also wasn't high enough to overflow max 2422 during the log-rebasing in the min-exponent check. Check that it 2423 won't overflow min in either check, then perform the min-exponent 2424 check. */ 2425 } else if (D.normalizedExponent - 1 < INT_MIN / 42039 || 2426 (D.normalizedExponent + 1) * 28738 <= 2427 8651 * (semantics->minExponent - (int) semantics->precision)) { 2428 /* Underflow to zero and round. */ 2429 zeroSignificand(); 2430 fs = normalize(rounding_mode, lfLessThanHalf); 2431 2432 /* We can finally safely perform the max-exponent check. */ 2433 } else if ((D.normalizedExponent - 1) * 42039 2434 >= 12655 * semantics->maxExponent) { 2435 /* Overflow and round. */ 2436 fs = handleOverflow(rounding_mode); 2437 } else { 2438 integerPart *decSignificand; 2439 unsigned int partCount; 2440 2441 /* A tight upper bound on number of bits required to hold an 2442 N-digit decimal integer is N * 196 / 59. Allocate enough space 2443 to hold the full significand, and an extra part required by 2444 tcMultiplyPart. */ 2445 partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1; 2446 partCount = partCountForBits(1 + 196 * partCount / 59); 2447 decSignificand = new integerPart[partCount + 1]; 2448 partCount = 0; 2449 2450 /* Convert to binary efficiently - we do almost all multiplication 2451 in an integerPart. When this would overflow do we do a single 2452 bignum multiplication, and then revert again to multiplication 2453 in an integerPart. */ 2454 do { 2455 integerPart decValue, val, multiplier; 2456 2457 val = 0; 2458 multiplier = 1; 2459 2460 do { 2461 if (*p == '.') { 2462 p++; 2463 if (p == str.end()) { 2464 break; 2465 } 2466 } 2467 decValue = decDigitValue(*p++); 2468 assert(decValue < 10U && "Invalid character in significand"); 2469 multiplier *= 10; 2470 val = val * 10 + decValue; 2471 /* The maximum number that can be multiplied by ten with any 2472 digit added without overflowing an integerPart. */ 2473 } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10); 2474 2475 /* Multiply out the current part. */ 2476 APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val, 2477 partCount, partCount + 1, false); 2478 2479 /* If we used another part (likely but not guaranteed), increase 2480 the count. */ 2481 if (decSignificand[partCount]) 2482 partCount++; 2483 } while (p <= D.lastSigDigit); 2484 2485 category = fcNormal; 2486 fs = roundSignificandWithExponent(decSignificand, partCount, 2487 D.exponent, rounding_mode); 2488 2489 delete [] decSignificand; 2490 } 2491 2492 return fs; 2493} 2494 2495APFloat::opStatus 2496APFloat::convertFromString(StringRef str, roundingMode rounding_mode) 2497{ 2498 assertArithmeticOK(*semantics); 2499 assert(!str.empty() && "Invalid string length"); 2500 2501 /* Handle a leading minus sign. */ 2502 StringRef::iterator p = str.begin(); 2503 size_t slen = str.size(); 2504 sign = *p == '-' ? 1 : 0; 2505 if (*p == '-' || *p == '+') { 2506 p++; 2507 slen--; 2508 assert(slen && "String has no digits"); 2509 } 2510 2511 if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { 2512 assert(slen - 2 && "Invalid string"); 2513 return convertFromHexadecimalString(StringRef(p + 2, slen - 2), 2514 rounding_mode); 2515 } 2516 2517 return convertFromDecimalString(StringRef(p, slen), rounding_mode); 2518} 2519 2520/* Write out a hexadecimal representation of the floating point value 2521 to DST, which must be of sufficient size, in the C99 form 2522 [-]0xh.hhhhp[+-]d. Return the number of characters written, 2523 excluding the terminating NUL. 2524 2525 If UPPERCASE, the output is in upper case, otherwise in lower case. 2526 2527 HEXDIGITS digits appear altogether, rounding the value if 2528 necessary. If HEXDIGITS is 0, the minimal precision to display the 2529 number precisely is used instead. If nothing would appear after 2530 the decimal point it is suppressed. 2531 2532 The decimal exponent is always printed and has at least one digit. 2533 Zero values display an exponent of zero. Infinities and NaNs 2534 appear as "infinity" or "nan" respectively. 2535 2536 The above rules are as specified by C99. There is ambiguity about 2537 what the leading hexadecimal digit should be. This implementation 2538 uses whatever is necessary so that the exponent is displayed as 2539 stored. This implies the exponent will fall within the IEEE format 2540 range, and the leading hexadecimal digit will be 0 (for denormals), 2541 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with 2542 any other digits zero). 2543*/ 2544unsigned int 2545APFloat::convertToHexString(char *dst, unsigned int hexDigits, 2546 bool upperCase, roundingMode rounding_mode) const 2547{ 2548 char *p; 2549 2550 assertArithmeticOK(*semantics); 2551 2552 p = dst; 2553 if (sign) 2554 *dst++ = '-'; 2555 2556 switch (category) { 2557 case fcInfinity: 2558 memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1); 2559 dst += sizeof infinityL - 1; 2560 break; 2561 2562 case fcNaN: 2563 memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1); 2564 dst += sizeof NaNU - 1; 2565 break; 2566 2567 case fcZero: 2568 *dst++ = '0'; 2569 *dst++ = upperCase ? 'X': 'x'; 2570 *dst++ = '0'; 2571 if (hexDigits > 1) { 2572 *dst++ = '.'; 2573 memset (dst, '0', hexDigits - 1); 2574 dst += hexDigits - 1; 2575 } 2576 *dst++ = upperCase ? 'P': 'p'; 2577 *dst++ = '0'; 2578 break; 2579 2580 case fcNormal: 2581 dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode); 2582 break; 2583 } 2584 2585 *dst = 0; 2586 2587 return static_cast<unsigned int>(dst - p); 2588} 2589 2590/* Does the hard work of outputting the correctly rounded hexadecimal 2591 form of a normal floating point number with the specified number of 2592 hexadecimal digits. If HEXDIGITS is zero the minimum number of 2593 digits necessary to print the value precisely is output. */ 2594char * 2595APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits, 2596 bool upperCase, 2597 roundingMode rounding_mode) const 2598{ 2599 unsigned int count, valueBits, shift, partsCount, outputDigits; 2600 const char *hexDigitChars; 2601 const integerPart *significand; 2602 char *p; 2603 bool roundUp; 2604 2605 *dst++ = '0'; 2606 *dst++ = upperCase ? 'X': 'x'; 2607 2608 roundUp = false; 2609 hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower; 2610 2611 significand = significandParts(); 2612 partsCount = partCount(); 2613 2614 /* +3 because the first digit only uses the single integer bit, so 2615 we have 3 virtual zero most-significant-bits. */ 2616 valueBits = semantics->precision + 3; 2617 shift = integerPartWidth - valueBits % integerPartWidth; 2618 2619 /* The natural number of digits required ignoring trailing 2620 insignificant zeroes. */ 2621 outputDigits = (valueBits - significandLSB () + 3) / 4; 2622 2623 /* hexDigits of zero means use the required number for the 2624 precision. Otherwise, see if we are truncating. If we are, 2625 find out if we need to round away from zero. */ 2626 if (hexDigits) { 2627 if (hexDigits < outputDigits) { 2628 /* We are dropping non-zero bits, so need to check how to round. 2629 "bits" is the number of dropped bits. */ 2630 unsigned int bits; 2631 lostFraction fraction; 2632 2633 bits = valueBits - hexDigits * 4; 2634 fraction = lostFractionThroughTruncation (significand, partsCount, bits); 2635 roundUp = roundAwayFromZero(rounding_mode, fraction, bits); 2636 } 2637 outputDigits = hexDigits; 2638 } 2639 2640 /* Write the digits consecutively, and start writing in the location 2641 of the hexadecimal point. We move the most significant digit 2642 left and add the hexadecimal point later. */ 2643 p = ++dst; 2644 2645 count = (valueBits + integerPartWidth - 1) / integerPartWidth; 2646 2647 while (outputDigits && count) { 2648 integerPart part; 2649 2650 /* Put the most significant integerPartWidth bits in "part". */ 2651 if (--count == partsCount) 2652 part = 0; /* An imaginary higher zero part. */ 2653 else 2654 part = significand[count] << shift; 2655 2656 if (count && shift) 2657 part |= significand[count - 1] >> (integerPartWidth - shift); 2658 2659 /* Convert as much of "part" to hexdigits as we can. */ 2660 unsigned int curDigits = integerPartWidth / 4; 2661 2662 if (curDigits > outputDigits) 2663 curDigits = outputDigits; 2664 dst += partAsHex (dst, part, curDigits, hexDigitChars); 2665 outputDigits -= curDigits; 2666 } 2667 2668 if (roundUp) { 2669 char *q = dst; 2670 2671 /* Note that hexDigitChars has a trailing '0'. */ 2672 do { 2673 q--; 2674 *q = hexDigitChars[hexDigitValue (*q) + 1]; 2675 } while (*q == '0'); 2676 assert(q >= p); 2677 } else { 2678 /* Add trailing zeroes. */ 2679 memset (dst, '0', outputDigits); 2680 dst += outputDigits; 2681 } 2682 2683 /* Move the most significant digit to before the point, and if there 2684 is something after the decimal point add it. This must come 2685 after rounding above. */ 2686 p[-1] = p[0]; 2687 if (dst -1 == p) 2688 dst--; 2689 else 2690 p[0] = '.'; 2691 2692 /* Finally output the exponent. */ 2693 *dst++ = upperCase ? 'P': 'p'; 2694 2695 return writeSignedDecimal (dst, exponent); 2696} 2697 2698// For good performance it is desirable for different APFloats 2699// to produce different integers. 2700uint32_t 2701APFloat::getHashValue() const 2702{ 2703 if (category==fcZero) return sign<<8 | semantics->precision ; 2704 else if (category==fcInfinity) return sign<<9 | semantics->precision; 2705 else if (category==fcNaN) return 1<<10 | semantics->precision; 2706 else { 2707 uint32_t hash = sign<<11 | semantics->precision | exponent<<12; 2708 const integerPart* p = significandParts(); 2709 for (int i=partCount(); i>0; i--, p++) 2710 hash ^= ((uint32_t)*p) ^ (uint32_t)((*p)>>32); 2711 return hash; 2712 } 2713} 2714 2715// Conversion from APFloat to/from host float/double. It may eventually be 2716// possible to eliminate these and have everybody deal with APFloats, but that 2717// will take a while. This approach will not easily extend to long double. 2718// Current implementation requires integerPartWidth==64, which is correct at 2719// the moment but could be made more general. 2720 2721// Denormals have exponent minExponent in APFloat, but minExponent-1 in 2722// the actual IEEE respresentations. We compensate for that here. 2723 2724APInt 2725APFloat::convertF80LongDoubleAPFloatToAPInt() const 2726{ 2727 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended); 2728 assert(partCount()==2); 2729 2730 uint64_t myexponent, mysignificand; 2731 2732 if (category==fcNormal) { 2733 myexponent = exponent+16383; //bias 2734 mysignificand = significandParts()[0]; 2735 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL)) 2736 myexponent = 0; // denormal 2737 } else if (category==fcZero) { 2738 myexponent = 0; 2739 mysignificand = 0; 2740 } else if (category==fcInfinity) { 2741 myexponent = 0x7fff; 2742 mysignificand = 0x8000000000000000ULL; 2743 } else { 2744 assert(category == fcNaN && "Unknown category"); 2745 myexponent = 0x7fff; 2746 mysignificand = significandParts()[0]; 2747 } 2748 2749 uint64_t words[2]; 2750 words[0] = mysignificand; 2751 words[1] = ((uint64_t)(sign & 1) << 15) | 2752 (myexponent & 0x7fffLL); 2753 return APInt(80, words); 2754} 2755 2756APInt 2757APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const 2758{ 2759 assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble); 2760 assert(partCount()==2); 2761 2762 uint64_t myexponent, mysignificand, myexponent2, mysignificand2; 2763 2764 if (category==fcNormal) { 2765 myexponent = exponent + 1023; //bias 2766 myexponent2 = exponent2 + 1023; 2767 mysignificand = significandParts()[0]; 2768 mysignificand2 = significandParts()[1]; 2769 if (myexponent==1 && !(mysignificand & 0x10000000000000LL)) 2770 myexponent = 0; // denormal 2771 if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL)) 2772 myexponent2 = 0; // denormal 2773 } else if (category==fcZero) { 2774 myexponent = 0; 2775 mysignificand = 0; 2776 myexponent2 = 0; 2777 mysignificand2 = 0; 2778 } else if (category==fcInfinity) { 2779 myexponent = 0x7ff; 2780 myexponent2 = 0; 2781 mysignificand = 0; 2782 mysignificand2 = 0; 2783 } else { 2784 assert(category == fcNaN && "Unknown category"); 2785 myexponent = 0x7ff; 2786 mysignificand = significandParts()[0]; 2787 myexponent2 = exponent2; 2788 mysignificand2 = significandParts()[1]; 2789 } 2790 2791 uint64_t words[2]; 2792 words[0] = ((uint64_t)(sign & 1) << 63) | 2793 ((myexponent & 0x7ff) << 52) | 2794 (mysignificand & 0xfffffffffffffLL); 2795 words[1] = ((uint64_t)(sign2 & 1) << 63) | 2796 ((myexponent2 & 0x7ff) << 52) | 2797 (mysignificand2 & 0xfffffffffffffLL); 2798 return APInt(128, words); 2799} 2800 2801APInt 2802APFloat::convertQuadrupleAPFloatToAPInt() const 2803{ 2804 assert(semantics == (const llvm::fltSemantics*)&IEEEquad); 2805 assert(partCount()==2); 2806 2807 uint64_t myexponent, mysignificand, mysignificand2; 2808 2809 if (category==fcNormal) { 2810 myexponent = exponent+16383; //bias 2811 mysignificand = significandParts()[0]; 2812 mysignificand2 = significandParts()[1]; 2813 if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL)) 2814 myexponent = 0; // denormal 2815 } else if (category==fcZero) { 2816 myexponent = 0; 2817 mysignificand = mysignificand2 = 0; 2818 } else if (category==fcInfinity) { 2819 myexponent = 0x7fff; 2820 mysignificand = mysignificand2 = 0; 2821 } else { 2822 assert(category == fcNaN && "Unknown category!"); 2823 myexponent = 0x7fff; 2824 mysignificand = significandParts()[0]; 2825 mysignificand2 = significandParts()[1]; 2826 } 2827 2828 uint64_t words[2]; 2829 words[0] = mysignificand; 2830 words[1] = ((uint64_t)(sign & 1) << 63) | 2831 ((myexponent & 0x7fff) << 48) | 2832 (mysignificand2 & 0xffffffffffffLL); 2833 2834 return APInt(128, words); 2835} 2836 2837APInt 2838APFloat::convertDoubleAPFloatToAPInt() const 2839{ 2840 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble); 2841 assert(partCount()==1); 2842 2843 uint64_t myexponent, mysignificand; 2844 2845 if (category==fcNormal) { 2846 myexponent = exponent+1023; //bias 2847 mysignificand = *significandParts(); 2848 if (myexponent==1 && !(mysignificand & 0x10000000000000LL)) 2849 myexponent = 0; // denormal 2850 } else if (category==fcZero) { 2851 myexponent = 0; 2852 mysignificand = 0; 2853 } else if (category==fcInfinity) { 2854 myexponent = 0x7ff; 2855 mysignificand = 0; 2856 } else { 2857 assert(category == fcNaN && "Unknown category!"); 2858 myexponent = 0x7ff; 2859 mysignificand = *significandParts(); 2860 } 2861 2862 return APInt(64, ((((uint64_t)(sign & 1) << 63) | 2863 ((myexponent & 0x7ff) << 52) | 2864 (mysignificand & 0xfffffffffffffLL)))); 2865} 2866 2867APInt 2868APFloat::convertFloatAPFloatToAPInt() const 2869{ 2870 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle); 2871 assert(partCount()==1); 2872 2873 uint32_t myexponent, mysignificand; 2874 2875 if (category==fcNormal) { 2876 myexponent = exponent+127; //bias 2877 mysignificand = (uint32_t)*significandParts(); 2878 if (myexponent == 1 && !(mysignificand & 0x800000)) 2879 myexponent = 0; // denormal 2880 } else if (category==fcZero) { 2881 myexponent = 0; 2882 mysignificand = 0; 2883 } else if (category==fcInfinity) { 2884 myexponent = 0xff; 2885 mysignificand = 0; 2886 } else { 2887 assert(category == fcNaN && "Unknown category!"); 2888 myexponent = 0xff; 2889 mysignificand = (uint32_t)*significandParts(); 2890 } 2891 2892 return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) | 2893 (mysignificand & 0x7fffff))); 2894} 2895 2896APInt 2897APFloat::convertHalfAPFloatToAPInt() const 2898{ 2899 assert(semantics == (const llvm::fltSemantics*)&IEEEhalf); 2900 assert(partCount()==1); 2901 2902 uint32_t myexponent, mysignificand; 2903 2904 if (category==fcNormal) { 2905 myexponent = exponent+15; //bias 2906 mysignificand = (uint32_t)*significandParts(); 2907 if (myexponent == 1 && !(mysignificand & 0x400)) 2908 myexponent = 0; // denormal 2909 } else if (category==fcZero) { 2910 myexponent = 0; 2911 mysignificand = 0; 2912 } else if (category==fcInfinity) { 2913 myexponent = 0x1f; 2914 mysignificand = 0; 2915 } else { 2916 assert(category == fcNaN && "Unknown category!"); 2917 myexponent = 0x1f; 2918 mysignificand = (uint32_t)*significandParts(); 2919 } 2920 2921 return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) | 2922 (mysignificand & 0x3ff))); 2923} 2924 2925// This function creates an APInt that is just a bit map of the floating 2926// point constant as it would appear in memory. It is not a conversion, 2927// and treating the result as a normal integer is unlikely to be useful. 2928 2929APInt 2930APFloat::bitcastToAPInt() const 2931{ 2932 if (semantics == (const llvm::fltSemantics*)&IEEEhalf) 2933 return convertHalfAPFloatToAPInt(); 2934 2935 if (semantics == (const llvm::fltSemantics*)&IEEEsingle) 2936 return convertFloatAPFloatToAPInt(); 2937 2938 if (semantics == (const llvm::fltSemantics*)&IEEEdouble) 2939 return convertDoubleAPFloatToAPInt(); 2940 2941 if (semantics == (const llvm::fltSemantics*)&IEEEquad) 2942 return convertQuadrupleAPFloatToAPInt(); 2943 2944 if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble) 2945 return convertPPCDoubleDoubleAPFloatToAPInt(); 2946 2947 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended && 2948 "unknown format!"); 2949 return convertF80LongDoubleAPFloatToAPInt(); 2950} 2951 2952float 2953APFloat::convertToFloat() const 2954{ 2955 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle && 2956 "Float semantics are not IEEEsingle"); 2957 APInt api = bitcastToAPInt(); 2958 return api.bitsToFloat(); 2959} 2960 2961double 2962APFloat::convertToDouble() const 2963{ 2964 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble && 2965 "Float semantics are not IEEEdouble"); 2966 APInt api = bitcastToAPInt(); 2967 return api.bitsToDouble(); 2968} 2969 2970/// Integer bit is explicit in this format. Intel hardware (387 and later) 2971/// does not support these bit patterns: 2972/// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity") 2973/// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN") 2974/// exponent = 0, integer bit 1 ("pseudodenormal") 2975/// exponent!=0 nor all 1's, integer bit 0 ("unnormal") 2976/// At the moment, the first two are treated as NaNs, the second two as Normal. 2977void 2978APFloat::initFromF80LongDoubleAPInt(const APInt &api) 2979{ 2980 assert(api.getBitWidth()==80); 2981 uint64_t i1 = api.getRawData()[0]; 2982 uint64_t i2 = api.getRawData()[1]; 2983 uint64_t myexponent = (i2 & 0x7fff); 2984 uint64_t mysignificand = i1; 2985 2986 initialize(&APFloat::x87DoubleExtended); 2987 assert(partCount()==2); 2988 2989 sign = static_cast<unsigned int>(i2>>15); 2990 if (myexponent==0 && mysignificand==0) { 2991 // exponent, significand meaningless 2992 category = fcZero; 2993 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) { 2994 // exponent, significand meaningless 2995 category = fcInfinity; 2996 } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) { 2997 // exponent meaningless 2998 category = fcNaN; 2999 significandParts()[0] = mysignificand; 3000 significandParts()[1] = 0; 3001 } else { 3002 category = fcNormal; 3003 exponent = myexponent - 16383; 3004 significandParts()[0] = mysignificand; 3005 significandParts()[1] = 0; 3006 if (myexponent==0) // denormal 3007 exponent = -16382; 3008 } 3009} 3010 3011void 3012APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) 3013{ 3014 assert(api.getBitWidth()==128); 3015 uint64_t i1 = api.getRawData()[0]; 3016 uint64_t i2 = api.getRawData()[1]; 3017 uint64_t myexponent = (i1 >> 52) & 0x7ff; 3018 uint64_t mysignificand = i1 & 0xfffffffffffffLL; 3019 uint64_t myexponent2 = (i2 >> 52) & 0x7ff; 3020 uint64_t mysignificand2 = i2 & 0xfffffffffffffLL; 3021 3022 initialize(&APFloat::PPCDoubleDouble); 3023 assert(partCount()==2); 3024 3025 sign = static_cast<unsigned int>(i1>>63); 3026 sign2 = static_cast<unsigned int>(i2>>63); 3027 if (myexponent==0 && mysignificand==0) { 3028 // exponent, significand meaningless 3029 // exponent2 and significand2 are required to be 0; we don't check 3030 category = fcZero; 3031 } else if (myexponent==0x7ff && mysignificand==0) { 3032 // exponent, significand meaningless 3033 // exponent2 and significand2 are required to be 0; we don't check 3034 category = fcInfinity; 3035 } else if (myexponent==0x7ff && mysignificand!=0) { 3036 // exponent meaningless. So is the whole second word, but keep it 3037 // for determinism. 3038 category = fcNaN; 3039 exponent2 = myexponent2; 3040 significandParts()[0] = mysignificand; 3041 significandParts()[1] = mysignificand2; 3042 } else { 3043 category = fcNormal; 3044 // Note there is no category2; the second word is treated as if it is 3045 // fcNormal, although it might be something else considered by itself. 3046 exponent = myexponent - 1023; 3047 exponent2 = myexponent2 - 1023; 3048 significandParts()[0] = mysignificand; 3049 significandParts()[1] = mysignificand2; 3050 if (myexponent==0) // denormal 3051 exponent = -1022; 3052 else 3053 significandParts()[0] |= 0x10000000000000LL; // integer bit 3054 if (myexponent2==0) 3055 exponent2 = -1022; 3056 else 3057 significandParts()[1] |= 0x10000000000000LL; // integer bit 3058 } 3059} 3060 3061void 3062APFloat::initFromQuadrupleAPInt(const APInt &api) 3063{ 3064 assert(api.getBitWidth()==128); 3065 uint64_t i1 = api.getRawData()[0]; 3066 uint64_t i2 = api.getRawData()[1]; 3067 uint64_t myexponent = (i2 >> 48) & 0x7fff; 3068 uint64_t mysignificand = i1; 3069 uint64_t mysignificand2 = i2 & 0xffffffffffffLL; 3070 3071 initialize(&APFloat::IEEEquad); 3072 assert(partCount()==2); 3073 3074 sign = static_cast<unsigned int>(i2>>63); 3075 if (myexponent==0 && 3076 (mysignificand==0 && mysignificand2==0)) { 3077 // exponent, significand meaningless 3078 category = fcZero; 3079 } else if (myexponent==0x7fff && 3080 (mysignificand==0 && mysignificand2==0)) { 3081 // exponent, significand meaningless 3082 category = fcInfinity; 3083 } else if (myexponent==0x7fff && 3084 (mysignificand!=0 || mysignificand2 !=0)) { 3085 // exponent meaningless 3086 category = fcNaN; 3087 significandParts()[0] = mysignificand; 3088 significandParts()[1] = mysignificand2; 3089 } else { 3090 category = fcNormal; 3091 exponent = myexponent - 16383; 3092 significandParts()[0] = mysignificand; 3093 significandParts()[1] = mysignificand2; 3094 if (myexponent==0) // denormal 3095 exponent = -16382; 3096 else 3097 significandParts()[1] |= 0x1000000000000LL; // integer bit 3098 } 3099} 3100 3101void 3102APFloat::initFromDoubleAPInt(const APInt &api) 3103{ 3104 assert(api.getBitWidth()==64); 3105 uint64_t i = *api.getRawData(); 3106 uint64_t myexponent = (i >> 52) & 0x7ff; 3107 uint64_t mysignificand = i & 0xfffffffffffffLL; 3108 3109 initialize(&APFloat::IEEEdouble); 3110 assert(partCount()==1); 3111 3112 sign = static_cast<unsigned int>(i>>63); 3113 if (myexponent==0 && mysignificand==0) { 3114 // exponent, significand meaningless 3115 category = fcZero; 3116 } else if (myexponent==0x7ff && mysignificand==0) { 3117 // exponent, significand meaningless 3118 category = fcInfinity; 3119 } else if (myexponent==0x7ff && mysignificand!=0) { 3120 // exponent meaningless 3121 category = fcNaN; 3122 *significandParts() = mysignificand; 3123 } else { 3124 category = fcNormal; 3125 exponent = myexponent - 1023; 3126 *significandParts() = mysignificand; 3127 if (myexponent==0) // denormal 3128 exponent = -1022; 3129 else 3130 *significandParts() |= 0x10000000000000LL; // integer bit 3131 } 3132} 3133 3134void 3135APFloat::initFromFloatAPInt(const APInt & api) 3136{ 3137 assert(api.getBitWidth()==32); 3138 uint32_t i = (uint32_t)*api.getRawData(); 3139 uint32_t myexponent = (i >> 23) & 0xff; 3140 uint32_t mysignificand = i & 0x7fffff; 3141 3142 initialize(&APFloat::IEEEsingle); 3143 assert(partCount()==1); 3144 3145 sign = i >> 31; 3146 if (myexponent==0 && mysignificand==0) { 3147 // exponent, significand meaningless 3148 category = fcZero; 3149 } else if (myexponent==0xff && mysignificand==0) { 3150 // exponent, significand meaningless 3151 category = fcInfinity; 3152 } else if (myexponent==0xff && mysignificand!=0) { 3153 // sign, exponent, significand meaningless 3154 category = fcNaN; 3155 *significandParts() = mysignificand; 3156 } else { 3157 category = fcNormal; 3158 exponent = myexponent - 127; //bias 3159 *significandParts() = mysignificand; 3160 if (myexponent==0) // denormal 3161 exponent = -126; 3162 else 3163 *significandParts() |= 0x800000; // integer bit 3164 } 3165} 3166 3167void 3168APFloat::initFromHalfAPInt(const APInt & api) 3169{ 3170 assert(api.getBitWidth()==16); 3171 uint32_t i = (uint32_t)*api.getRawData(); 3172 uint32_t myexponent = (i >> 10) & 0x1f; 3173 uint32_t mysignificand = i & 0x3ff; 3174 3175 initialize(&APFloat::IEEEhalf); 3176 assert(partCount()==1); 3177 3178 sign = i >> 15; 3179 if (myexponent==0 && mysignificand==0) { 3180 // exponent, significand meaningless 3181 category = fcZero; 3182 } else if (myexponent==0x1f && mysignificand==0) { 3183 // exponent, significand meaningless 3184 category = fcInfinity; 3185 } else if (myexponent==0x1f && mysignificand!=0) { 3186 // sign, exponent, significand meaningless 3187 category = fcNaN; 3188 *significandParts() = mysignificand; 3189 } else { 3190 category = fcNormal; 3191 exponent = myexponent - 15; //bias 3192 *significandParts() = mysignificand; 3193 if (myexponent==0) // denormal 3194 exponent = -14; 3195 else 3196 *significandParts() |= 0x400; // integer bit 3197 } 3198} 3199 3200/// Treat api as containing the bits of a floating point number. Currently 3201/// we infer the floating point type from the size of the APInt. The 3202/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful 3203/// when the size is anything else). 3204void 3205APFloat::initFromAPInt(const APInt& api, bool isIEEE) 3206{ 3207 if (api.getBitWidth() == 16) 3208 return initFromHalfAPInt(api); 3209 else if (api.getBitWidth() == 32) 3210 return initFromFloatAPInt(api); 3211 else if (api.getBitWidth()==64) 3212 return initFromDoubleAPInt(api); 3213 else if (api.getBitWidth()==80) 3214 return initFromF80LongDoubleAPInt(api); 3215 else if (api.getBitWidth()==128) 3216 return (isIEEE ? 3217 initFromQuadrupleAPInt(api) : initFromPPCDoubleDoubleAPInt(api)); 3218 else 3219 llvm_unreachable(0); 3220} 3221 3222APFloat 3223APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE) 3224{ 3225 return APFloat(APInt::getAllOnesValue(BitWidth), isIEEE); 3226} 3227 3228APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) { 3229 APFloat Val(Sem, fcNormal, Negative); 3230 3231 // We want (in interchange format): 3232 // sign = {Negative} 3233 // exponent = 1..10 3234 // significand = 1..1 3235 3236 Val.exponent = Sem.maxExponent; // unbiased 3237 3238 // 1-initialize all bits.... 3239 Val.zeroSignificand(); 3240 integerPart *significand = Val.significandParts(); 3241 unsigned N = partCountForBits(Sem.precision); 3242 for (unsigned i = 0; i != N; ++i) 3243 significand[i] = ~((integerPart) 0); 3244 3245 // ...and then clear the top bits for internal consistency. 3246 if (Sem.precision % integerPartWidth != 0) 3247 significand[N-1] &= 3248 (((integerPart) 1) << (Sem.precision % integerPartWidth)) - 1; 3249 3250 return Val; 3251} 3252 3253APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) { 3254 APFloat Val(Sem, fcNormal, Negative); 3255 3256 // We want (in interchange format): 3257 // sign = {Negative} 3258 // exponent = 0..0 3259 // significand = 0..01 3260 3261 Val.exponent = Sem.minExponent; // unbiased 3262 Val.zeroSignificand(); 3263 Val.significandParts()[0] = 1; 3264 return Val; 3265} 3266 3267APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) { 3268 APFloat Val(Sem, fcNormal, Negative); 3269 3270 // We want (in interchange format): 3271 // sign = {Negative} 3272 // exponent = 0..0 3273 // significand = 10..0 3274 3275 Val.exponent = Sem.minExponent; 3276 Val.zeroSignificand(); 3277 Val.significandParts()[partCountForBits(Sem.precision)-1] |= 3278 (((integerPart) 1) << ((Sem.precision - 1) % integerPartWidth)); 3279 3280 return Val; 3281} 3282 3283APFloat::APFloat(const APInt& api, bool isIEEE) : exponent2(0), sign2(0) { 3284 initFromAPInt(api, isIEEE); 3285} 3286 3287APFloat::APFloat(float f) : exponent2(0), sign2(0) { 3288 initFromAPInt(APInt::floatToBits(f)); 3289} 3290 3291APFloat::APFloat(double d) : exponent2(0), sign2(0) { 3292 initFromAPInt(APInt::doubleToBits(d)); 3293} 3294 3295namespace { 3296 static void append(SmallVectorImpl<char> &Buffer, 3297 unsigned N, const char *Str) { 3298 unsigned Start = Buffer.size(); 3299 Buffer.set_size(Start + N); 3300 memcpy(&Buffer[Start], Str, N); 3301 } 3302 3303 template <unsigned N> 3304 void append(SmallVectorImpl<char> &Buffer, const char (&Str)[N]) { 3305 append(Buffer, N, Str); 3306 } 3307 3308 /// Removes data from the given significand until it is no more 3309 /// precise than is required for the desired precision. 3310 void AdjustToPrecision(APInt &significand, 3311 int &exp, unsigned FormatPrecision) { 3312 unsigned bits = significand.getActiveBits(); 3313 3314 // 196/59 is a very slight overestimate of lg_2(10). 3315 unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59; 3316 3317 if (bits <= bitsRequired) return; 3318 3319 unsigned tensRemovable = (bits - bitsRequired) * 59 / 196; 3320 if (!tensRemovable) return; 3321 3322 exp += tensRemovable; 3323 3324 APInt divisor(significand.getBitWidth(), 1); 3325 APInt powten(significand.getBitWidth(), 10); 3326 while (true) { 3327 if (tensRemovable & 1) 3328 divisor *= powten; 3329 tensRemovable >>= 1; 3330 if (!tensRemovable) break; 3331 powten *= powten; 3332 } 3333 3334 significand = significand.udiv(divisor); 3335 3336 // Truncate the significand down to its active bit count, but 3337 // don't try to drop below 32. 3338 unsigned newPrecision = std::max(32U, significand.getActiveBits()); 3339 significand = significand.trunc(newPrecision); 3340 } 3341 3342 3343 void AdjustToPrecision(SmallVectorImpl<char> &buffer, 3344 int &exp, unsigned FormatPrecision) { 3345 unsigned N = buffer.size(); 3346 if (N <= FormatPrecision) return; 3347 3348 // The most significant figures are the last ones in the buffer. 3349 unsigned FirstSignificant = N - FormatPrecision; 3350 3351 // Round. 3352 // FIXME: this probably shouldn't use 'round half up'. 3353 3354 // Rounding down is just a truncation, except we also want to drop 3355 // trailing zeros from the new result. 3356 if (buffer[FirstSignificant - 1] < '5') { 3357 while (buffer[FirstSignificant] == '0') 3358 FirstSignificant++; 3359 3360 exp += FirstSignificant; 3361 buffer.erase(&buffer[0], &buffer[FirstSignificant]); 3362 return; 3363 } 3364 3365 // Rounding up requires a decimal add-with-carry. If we continue 3366 // the carry, the newly-introduced zeros will just be truncated. 3367 for (unsigned I = FirstSignificant; I != N; ++I) { 3368 if (buffer[I] == '9') { 3369 FirstSignificant++; 3370 } else { 3371 buffer[I]++; 3372 break; 3373 } 3374 } 3375 3376 // If we carried through, we have exactly one digit of precision. 3377 if (FirstSignificant == N) { 3378 exp += FirstSignificant; 3379 buffer.clear(); 3380 buffer.push_back('1'); 3381 return; 3382 } 3383 3384 exp += FirstSignificant; 3385 buffer.erase(&buffer[0], &buffer[FirstSignificant]); 3386 } 3387} 3388 3389void APFloat::toString(SmallVectorImpl<char> &Str, 3390 unsigned FormatPrecision, 3391 unsigned FormatMaxPadding) const { 3392 switch (category) { 3393 case fcInfinity: 3394 if (isNegative()) 3395 return append(Str, "-Inf"); 3396 else 3397 return append(Str, "+Inf"); 3398 3399 case fcNaN: return append(Str, "NaN"); 3400 3401 case fcZero: 3402 if (isNegative()) 3403 Str.push_back('-'); 3404 3405 if (!FormatMaxPadding) 3406 append(Str, "0.0E+0"); 3407 else 3408 Str.push_back('0'); 3409 return; 3410 3411 case fcNormal: 3412 break; 3413 } 3414 3415 if (isNegative()) 3416 Str.push_back('-'); 3417 3418 // Decompose the number into an APInt and an exponent. 3419 int exp = exponent - ((int) semantics->precision - 1); 3420 APInt significand(semantics->precision, 3421 makeArrayRef(significandParts(), 3422 partCountForBits(semantics->precision))); 3423 3424 // Set FormatPrecision if zero. We want to do this before we 3425 // truncate trailing zeros, as those are part of the precision. 3426 if (!FormatPrecision) { 3427 // It's an interesting question whether to use the nominal 3428 // precision or the active precision here for denormals. 3429 3430 // FormatPrecision = ceil(significandBits / lg_2(10)) 3431 FormatPrecision = (semantics->precision * 59 + 195) / 196; 3432 } 3433 3434 // Ignore trailing binary zeros. 3435 int trailingZeros = significand.countTrailingZeros(); 3436 exp += trailingZeros; 3437 significand = significand.lshr(trailingZeros); 3438 3439 // Change the exponent from 2^e to 10^e. 3440 if (exp == 0) { 3441 // Nothing to do. 3442 } else if (exp > 0) { 3443 // Just shift left. 3444 significand = significand.zext(semantics->precision + exp); 3445 significand <<= exp; 3446 exp = 0; 3447 } else { /* exp < 0 */ 3448 int texp = -exp; 3449 3450 // We transform this using the identity: 3451 // (N)(2^-e) == (N)(5^e)(10^-e) 3452 // This means we have to multiply N (the significand) by 5^e. 3453 // To avoid overflow, we have to operate on numbers large 3454 // enough to store N * 5^e: 3455 // log2(N * 5^e) == log2(N) + e * log2(5) 3456 // <= semantics->precision + e * 137 / 59 3457 // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59) 3458 3459 unsigned precision = semantics->precision + (137 * texp + 136) / 59; 3460 3461 // Multiply significand by 5^e. 3462 // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8) 3463 significand = significand.zext(precision); 3464 APInt five_to_the_i(precision, 5); 3465 while (true) { 3466 if (texp & 1) significand *= five_to_the_i; 3467 3468 texp >>= 1; 3469 if (!texp) break; 3470 five_to_the_i *= five_to_the_i; 3471 } 3472 } 3473 3474 AdjustToPrecision(significand, exp, FormatPrecision); 3475 3476 llvm::SmallVector<char, 256> buffer; 3477 3478 // Fill the buffer. 3479 unsigned precision = significand.getBitWidth(); 3480 APInt ten(precision, 10); 3481 APInt digit(precision, 0); 3482 3483 bool inTrail = true; 3484 while (significand != 0) { 3485 // digit <- significand % 10 3486 // significand <- significand / 10 3487 APInt::udivrem(significand, ten, significand, digit); 3488 3489 unsigned d = digit.getZExtValue(); 3490 3491 // Drop trailing zeros. 3492 if (inTrail && !d) exp++; 3493 else { 3494 buffer.push_back((char) ('0' + d)); 3495 inTrail = false; 3496 } 3497 } 3498 3499 assert(!buffer.empty() && "no characters in buffer!"); 3500 3501 // Drop down to FormatPrecision. 3502 // TODO: don't do more precise calculations above than are required. 3503 AdjustToPrecision(buffer, exp, FormatPrecision); 3504 3505 unsigned NDigits = buffer.size(); 3506 3507 // Check whether we should use scientific notation. 3508 bool FormatScientific; 3509 if (!FormatMaxPadding) 3510 FormatScientific = true; 3511 else { 3512 if (exp >= 0) { 3513 // 765e3 --> 765000 3514 // ^^^ 3515 // But we shouldn't make the number look more precise than it is. 3516 FormatScientific = ((unsigned) exp > FormatMaxPadding || 3517 NDigits + (unsigned) exp > FormatPrecision); 3518 } else { 3519 // Power of the most significant digit. 3520 int MSD = exp + (int) (NDigits - 1); 3521 if (MSD >= 0) { 3522 // 765e-2 == 7.65 3523 FormatScientific = false; 3524 } else { 3525 // 765e-5 == 0.00765 3526 // ^ ^^ 3527 FormatScientific = ((unsigned) -MSD) > FormatMaxPadding; 3528 } 3529 } 3530 } 3531 3532 // Scientific formatting is pretty straightforward. 3533 if (FormatScientific) { 3534 exp += (NDigits - 1); 3535 3536 Str.push_back(buffer[NDigits-1]); 3537 Str.push_back('.'); 3538 if (NDigits == 1) 3539 Str.push_back('0'); 3540 else 3541 for (unsigned I = 1; I != NDigits; ++I) 3542 Str.push_back(buffer[NDigits-1-I]); 3543 Str.push_back('E'); 3544 3545 Str.push_back(exp >= 0 ? '+' : '-'); 3546 if (exp < 0) exp = -exp; 3547 SmallVector<char, 6> expbuf; 3548 do { 3549 expbuf.push_back((char) ('0' + (exp % 10))); 3550 exp /= 10; 3551 } while (exp); 3552 for (unsigned I = 0, E = expbuf.size(); I != E; ++I) 3553 Str.push_back(expbuf[E-1-I]); 3554 return; 3555 } 3556 3557 // Non-scientific, positive exponents. 3558 if (exp >= 0) { 3559 for (unsigned I = 0; I != NDigits; ++I) 3560 Str.push_back(buffer[NDigits-1-I]); 3561 for (unsigned I = 0; I != (unsigned) exp; ++I) 3562 Str.push_back('0'); 3563 return; 3564 } 3565 3566 // Non-scientific, negative exponents. 3567 3568 // The number of digits to the left of the decimal point. 3569 int NWholeDigits = exp + (int) NDigits; 3570 3571 unsigned I = 0; 3572 if (NWholeDigits > 0) { 3573 for (; I != (unsigned) NWholeDigits; ++I) 3574 Str.push_back(buffer[NDigits-I-1]); 3575 Str.push_back('.'); 3576 } else { 3577 unsigned NZeros = 1 + (unsigned) -NWholeDigits; 3578 3579 Str.push_back('0'); 3580 Str.push_back('.'); 3581 for (unsigned Z = 1; Z != NZeros; ++Z) 3582 Str.push_back('0'); 3583 } 3584 3585 for (; I != NDigits; ++I) 3586 Str.push_back(buffer[NDigits-I-1]); 3587} 3588 3589bool APFloat::getExactInverse(APFloat *inv) const { 3590 // We can only guarantee the existence of an exact inverse for IEEE floats. 3591 if (semantics != &IEEEhalf && semantics != &IEEEsingle && 3592 semantics != &IEEEdouble && semantics != &IEEEquad) 3593 return false; 3594 3595 // Special floats and denormals have no exact inverse. 3596 if (category != fcNormal) 3597 return false; 3598 3599 // Check that the number is a power of two by making sure that only the 3600 // integer bit is set in the significand. 3601 if (significandLSB() != semantics->precision - 1) 3602 return false; 3603 3604 // Get the inverse. 3605 APFloat reciprocal(*semantics, 1ULL); 3606 if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK) 3607 return false; 3608 3609 // Avoid multiplication with a denormal, it is not safe on all platforms and 3610 // may be slower than a normal division. 3611 if (reciprocal.significandMSB() + 1 < reciprocal.semantics->precision) 3612 return false; 3613 3614 assert(reciprocal.category == fcNormal && 3615 reciprocal.significandLSB() == reciprocal.semantics->precision - 1); 3616 3617 if (inv) 3618 *inv = reciprocal; 3619 3620 return true; 3621} 3622