1//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for load, store and alloca.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Analysis/Loads.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Transforms/Utils/BasicBlockUtils.h"
19#include "llvm/Transforms/Utils/Local.h"
20#include "llvm/ADT/Statistic.h"
21using namespace llvm;
22
23STATISTIC(NumDeadStore, "Number of dead stores eliminated");
24
25Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
26  // Ensure that the alloca array size argument has type intptr_t, so that
27  // any casting is exposed early.
28  if (TD) {
29    Type *IntPtrTy = TD->getIntPtrType(AI.getContext());
30    if (AI.getArraySize()->getType() != IntPtrTy) {
31      Value *V = Builder->CreateIntCast(AI.getArraySize(),
32                                        IntPtrTy, false);
33      AI.setOperand(0, V);
34      return &AI;
35    }
36  }
37
38  // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
39  if (AI.isArrayAllocation()) {  // Check C != 1
40    if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
41      Type *NewTy =
42        ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
43      assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
44      AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
45      New->setAlignment(AI.getAlignment());
46
47      // Scan to the end of the allocation instructions, to skip over a block of
48      // allocas if possible...also skip interleaved debug info
49      //
50      BasicBlock::iterator It = New;
51      while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
52
53      // Now that I is pointing to the first non-allocation-inst in the block,
54      // insert our getelementptr instruction...
55      //
56      Value *NullIdx =Constant::getNullValue(Type::getInt32Ty(AI.getContext()));
57      Value *Idx[2];
58      Idx[0] = NullIdx;
59      Idx[1] = NullIdx;
60      Instruction *GEP =
61           GetElementPtrInst::CreateInBounds(New, Idx, New->getName()+".sub");
62      InsertNewInstBefore(GEP, *It);
63
64      // Now make everything use the getelementptr instead of the original
65      // allocation.
66      return ReplaceInstUsesWith(AI, GEP);
67    } else if (isa<UndefValue>(AI.getArraySize())) {
68      return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
69    }
70  }
71
72  if (TD && isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) {
73    // If alloca'ing a zero byte object, replace the alloca with a null pointer.
74    // Note that we only do this for alloca's, because malloc should allocate
75    // and return a unique pointer, even for a zero byte allocation.
76    if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
77      return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
78
79    // If the alignment is 0 (unspecified), assign it the preferred alignment.
80    if (AI.getAlignment() == 0)
81      AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
82  }
83
84  return 0;
85}
86
87
88/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
89static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
90                                        const TargetData *TD) {
91  User *CI = cast<User>(LI.getOperand(0));
92  Value *CastOp = CI->getOperand(0);
93
94  PointerType *DestTy = cast<PointerType>(CI->getType());
95  Type *DestPTy = DestTy->getElementType();
96  if (PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
97
98    // If the address spaces don't match, don't eliminate the cast.
99    if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
100      return 0;
101
102    Type *SrcPTy = SrcTy->getElementType();
103
104    if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
105         DestPTy->isVectorTy()) {
106      // If the source is an array, the code below will not succeed.  Check to
107      // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
108      // constants.
109      if (ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
110        if (Constant *CSrc = dyn_cast<Constant>(CastOp))
111          if (ASrcTy->getNumElements() != 0) {
112            Value *Idxs[2];
113            Idxs[0] = Constant::getNullValue(Type::getInt32Ty(LI.getContext()));
114            Idxs[1] = Idxs[0];
115            CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
116            SrcTy = cast<PointerType>(CastOp->getType());
117            SrcPTy = SrcTy->getElementType();
118          }
119
120      if (IC.getTargetData() &&
121          (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
122            SrcPTy->isVectorTy()) &&
123          // Do not allow turning this into a load of an integer, which is then
124          // casted to a pointer, this pessimizes pointer analysis a lot.
125          (SrcPTy->isPointerTy() == LI.getType()->isPointerTy()) &&
126          IC.getTargetData()->getTypeSizeInBits(SrcPTy) ==
127               IC.getTargetData()->getTypeSizeInBits(DestPTy)) {
128
129        // Okay, we are casting from one integer or pointer type to another of
130        // the same size.  Instead of casting the pointer before the load, cast
131        // the result of the loaded value.
132        LoadInst *NewLoad =
133          IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
134        NewLoad->setAlignment(LI.getAlignment());
135        NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
136        // Now cast the result of the load.
137        return new BitCastInst(NewLoad, LI.getType());
138      }
139    }
140  }
141  return 0;
142}
143
144Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
145  Value *Op = LI.getOperand(0);
146
147  // Attempt to improve the alignment.
148  if (TD) {
149    unsigned KnownAlign =
150      getOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()),TD);
151    unsigned LoadAlign = LI.getAlignment();
152    unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
153      TD->getABITypeAlignment(LI.getType());
154
155    if (KnownAlign > EffectiveLoadAlign)
156      LI.setAlignment(KnownAlign);
157    else if (LoadAlign == 0)
158      LI.setAlignment(EffectiveLoadAlign);
159  }
160
161  // load (cast X) --> cast (load X) iff safe.
162  if (isa<CastInst>(Op))
163    if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
164      return Res;
165
166  // None of the following transforms are legal for volatile/atomic loads.
167  // FIXME: Some of it is okay for atomic loads; needs refactoring.
168  if (!LI.isSimple()) return 0;
169
170  // Do really simple store-to-load forwarding and load CSE, to catch cases
171  // where there are several consecutive memory accesses to the same location,
172  // separated by a few arithmetic operations.
173  BasicBlock::iterator BBI = &LI;
174  if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
175    return ReplaceInstUsesWith(LI, AvailableVal);
176
177  // load(gep null, ...) -> unreachable
178  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
179    const Value *GEPI0 = GEPI->getOperand(0);
180    // TODO: Consider a target hook for valid address spaces for this xform.
181    if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
182      // Insert a new store to null instruction before the load to indicate
183      // that this code is not reachable.  We do this instead of inserting
184      // an unreachable instruction directly because we cannot modify the
185      // CFG.
186      new StoreInst(UndefValue::get(LI.getType()),
187                    Constant::getNullValue(Op->getType()), &LI);
188      return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
189    }
190  }
191
192  // load null/undef -> unreachable
193  // TODO: Consider a target hook for valid address spaces for this xform.
194  if (isa<UndefValue>(Op) ||
195      (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
196    // Insert a new store to null instruction before the load to indicate that
197    // this code is not reachable.  We do this instead of inserting an
198    // unreachable instruction directly because we cannot modify the CFG.
199    new StoreInst(UndefValue::get(LI.getType()),
200                  Constant::getNullValue(Op->getType()), &LI);
201    return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
202  }
203
204  // Instcombine load (constantexpr_cast global) -> cast (load global)
205  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
206    if (CE->isCast())
207      if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
208        return Res;
209
210  if (Op->hasOneUse()) {
211    // Change select and PHI nodes to select values instead of addresses: this
212    // helps alias analysis out a lot, allows many others simplifications, and
213    // exposes redundancy in the code.
214    //
215    // Note that we cannot do the transformation unless we know that the
216    // introduced loads cannot trap!  Something like this is valid as long as
217    // the condition is always false: load (select bool %C, int* null, int* %G),
218    // but it would not be valid if we transformed it to load from null
219    // unconditionally.
220    //
221    if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
222      // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
223      unsigned Align = LI.getAlignment();
224      if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, TD) &&
225          isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, TD)) {
226        LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
227                                           SI->getOperand(1)->getName()+".val");
228        LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
229                                           SI->getOperand(2)->getName()+".val");
230        V1->setAlignment(Align);
231        V2->setAlignment(Align);
232        return SelectInst::Create(SI->getCondition(), V1, V2);
233      }
234
235      // load (select (cond, null, P)) -> load P
236      if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
237        if (C->isNullValue()) {
238          LI.setOperand(0, SI->getOperand(2));
239          return &LI;
240        }
241
242      // load (select (cond, P, null)) -> load P
243      if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
244        if (C->isNullValue()) {
245          LI.setOperand(0, SI->getOperand(1));
246          return &LI;
247        }
248    }
249  }
250  return 0;
251}
252
253/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
254/// when possible.  This makes it generally easy to do alias analysis and/or
255/// SROA/mem2reg of the memory object.
256static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
257  User *CI = cast<User>(SI.getOperand(1));
258  Value *CastOp = CI->getOperand(0);
259
260  Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
261  PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
262  if (SrcTy == 0) return 0;
263
264  Type *SrcPTy = SrcTy->getElementType();
265
266  if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy())
267    return 0;
268
269  /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
270  /// to its first element.  This allows us to handle things like:
271  ///   store i32 xxx, (bitcast {foo*, float}* %P to i32*)
272  /// on 32-bit hosts.
273  SmallVector<Value*, 4> NewGEPIndices;
274
275  // If the source is an array, the code below will not succeed.  Check to
276  // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
277  // constants.
278  if (SrcPTy->isArrayTy() || SrcPTy->isStructTy()) {
279    // Index through pointer.
280    Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
281    NewGEPIndices.push_back(Zero);
282
283    while (1) {
284      if (StructType *STy = dyn_cast<StructType>(SrcPTy)) {
285        if (!STy->getNumElements()) /* Struct can be empty {} */
286          break;
287        NewGEPIndices.push_back(Zero);
288        SrcPTy = STy->getElementType(0);
289      } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
290        NewGEPIndices.push_back(Zero);
291        SrcPTy = ATy->getElementType();
292      } else {
293        break;
294      }
295    }
296
297    SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
298  }
299
300  if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy())
301    return 0;
302
303  // If the pointers point into different address spaces or if they point to
304  // values with different sizes, we can't do the transformation.
305  if (!IC.getTargetData() ||
306      SrcTy->getAddressSpace() !=
307        cast<PointerType>(CI->getType())->getAddressSpace() ||
308      IC.getTargetData()->getTypeSizeInBits(SrcPTy) !=
309      IC.getTargetData()->getTypeSizeInBits(DestPTy))
310    return 0;
311
312  // Okay, we are casting from one integer or pointer type to another of
313  // the same size.  Instead of casting the pointer before
314  // the store, cast the value to be stored.
315  Value *NewCast;
316  Value *SIOp0 = SI.getOperand(0);
317  Instruction::CastOps opcode = Instruction::BitCast;
318  Type* CastSrcTy = SIOp0->getType();
319  Type* CastDstTy = SrcPTy;
320  if (CastDstTy->isPointerTy()) {
321    if (CastSrcTy->isIntegerTy())
322      opcode = Instruction::IntToPtr;
323  } else if (CastDstTy->isIntegerTy()) {
324    if (SIOp0->getType()->isPointerTy())
325      opcode = Instruction::PtrToInt;
326  }
327
328  // SIOp0 is a pointer to aggregate and this is a store to the first field,
329  // emit a GEP to index into its first field.
330  if (!NewGEPIndices.empty())
331    CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices);
332
333  NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
334                                   SIOp0->getName()+".c");
335  SI.setOperand(0, NewCast);
336  SI.setOperand(1, CastOp);
337  return &SI;
338}
339
340/// equivalentAddressValues - Test if A and B will obviously have the same
341/// value. This includes recognizing that %t0 and %t1 will have the same
342/// value in code like this:
343///   %t0 = getelementptr \@a, 0, 3
344///   store i32 0, i32* %t0
345///   %t1 = getelementptr \@a, 0, 3
346///   %t2 = load i32* %t1
347///
348static bool equivalentAddressValues(Value *A, Value *B) {
349  // Test if the values are trivially equivalent.
350  if (A == B) return true;
351
352  // Test if the values come form identical arithmetic instructions.
353  // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
354  // its only used to compare two uses within the same basic block, which
355  // means that they'll always either have the same value or one of them
356  // will have an undefined value.
357  if (isa<BinaryOperator>(A) ||
358      isa<CastInst>(A) ||
359      isa<PHINode>(A) ||
360      isa<GetElementPtrInst>(A))
361    if (Instruction *BI = dyn_cast<Instruction>(B))
362      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
363        return true;
364
365  // Otherwise they may not be equivalent.
366  return false;
367}
368
369Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
370  Value *Val = SI.getOperand(0);
371  Value *Ptr = SI.getOperand(1);
372
373  // Attempt to improve the alignment.
374  if (TD) {
375    unsigned KnownAlign =
376      getOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()),
377                                 TD);
378    unsigned StoreAlign = SI.getAlignment();
379    unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
380      TD->getABITypeAlignment(Val->getType());
381
382    if (KnownAlign > EffectiveStoreAlign)
383      SI.setAlignment(KnownAlign);
384    else if (StoreAlign == 0)
385      SI.setAlignment(EffectiveStoreAlign);
386  }
387
388  // Don't hack volatile/atomic stores.
389  // FIXME: Some bits are legal for atomic stores; needs refactoring.
390  if (!SI.isSimple()) return 0;
391
392  // If the RHS is an alloca with a single use, zapify the store, making the
393  // alloca dead.
394  if (Ptr->hasOneUse()) {
395    if (isa<AllocaInst>(Ptr))
396      return EraseInstFromFunction(SI);
397    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
398      if (isa<AllocaInst>(GEP->getOperand(0))) {
399        if (GEP->getOperand(0)->hasOneUse())
400          return EraseInstFromFunction(SI);
401      }
402    }
403  }
404
405  // Do really simple DSE, to catch cases where there are several consecutive
406  // stores to the same location, separated by a few arithmetic operations. This
407  // situation often occurs with bitfield accesses.
408  BasicBlock::iterator BBI = &SI;
409  for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
410       --ScanInsts) {
411    --BBI;
412    // Don't count debug info directives, lest they affect codegen,
413    // and we skip pointer-to-pointer bitcasts, which are NOPs.
414    if (isa<DbgInfoIntrinsic>(BBI) ||
415        (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
416      ScanInsts++;
417      continue;
418    }
419
420    if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
421      // Prev store isn't volatile, and stores to the same location?
422      if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
423                                                        SI.getOperand(1))) {
424        ++NumDeadStore;
425        ++BBI;
426        EraseInstFromFunction(*PrevSI);
427        continue;
428      }
429      break;
430    }
431
432    // If this is a load, we have to stop.  However, if the loaded value is from
433    // the pointer we're loading and is producing the pointer we're storing,
434    // then *this* store is dead (X = load P; store X -> P).
435    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
436      if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
437          LI->isSimple())
438        return EraseInstFromFunction(SI);
439
440      // Otherwise, this is a load from some other location.  Stores before it
441      // may not be dead.
442      break;
443    }
444
445    // Don't skip over loads or things that can modify memory.
446    if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
447      break;
448  }
449
450  // store X, null    -> turns into 'unreachable' in SimplifyCFG
451  if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
452    if (!isa<UndefValue>(Val)) {
453      SI.setOperand(0, UndefValue::get(Val->getType()));
454      if (Instruction *U = dyn_cast<Instruction>(Val))
455        Worklist.Add(U);  // Dropped a use.
456    }
457    return 0;  // Do not modify these!
458  }
459
460  // store undef, Ptr -> noop
461  if (isa<UndefValue>(Val))
462    return EraseInstFromFunction(SI);
463
464  // If the pointer destination is a cast, see if we can fold the cast into the
465  // source instead.
466  if (isa<CastInst>(Ptr))
467    if (Instruction *Res = InstCombineStoreToCast(*this, SI))
468      return Res;
469  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
470    if (CE->isCast())
471      if (Instruction *Res = InstCombineStoreToCast(*this, SI))
472        return Res;
473
474
475  // If this store is the last instruction in the basic block (possibly
476  // excepting debug info instructions), and if the block ends with an
477  // unconditional branch, try to move it to the successor block.
478  BBI = &SI;
479  do {
480    ++BBI;
481  } while (isa<DbgInfoIntrinsic>(BBI) ||
482           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
483  if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
484    if (BI->isUnconditional())
485      if (SimplifyStoreAtEndOfBlock(SI))
486        return 0;  // xform done!
487
488  return 0;
489}
490
491/// SimplifyStoreAtEndOfBlock - Turn things like:
492///   if () { *P = v1; } else { *P = v2 }
493/// into a phi node with a store in the successor.
494///
495/// Simplify things like:
496///   *P = v1; if () { *P = v2; }
497/// into a phi node with a store in the successor.
498///
499bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
500  BasicBlock *StoreBB = SI.getParent();
501
502  // Check to see if the successor block has exactly two incoming edges.  If
503  // so, see if the other predecessor contains a store to the same location.
504  // if so, insert a PHI node (if needed) and move the stores down.
505  BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
506
507  // Determine whether Dest has exactly two predecessors and, if so, compute
508  // the other predecessor.
509  pred_iterator PI = pred_begin(DestBB);
510  BasicBlock *P = *PI;
511  BasicBlock *OtherBB = 0;
512
513  if (P != StoreBB)
514    OtherBB = P;
515
516  if (++PI == pred_end(DestBB))
517    return false;
518
519  P = *PI;
520  if (P != StoreBB) {
521    if (OtherBB)
522      return false;
523    OtherBB = P;
524  }
525  if (++PI != pred_end(DestBB))
526    return false;
527
528  // Bail out if all the relevant blocks aren't distinct (this can happen,
529  // for example, if SI is in an infinite loop)
530  if (StoreBB == DestBB || OtherBB == DestBB)
531    return false;
532
533  // Verify that the other block ends in a branch and is not otherwise empty.
534  BasicBlock::iterator BBI = OtherBB->getTerminator();
535  BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
536  if (!OtherBr || BBI == OtherBB->begin())
537    return false;
538
539  // If the other block ends in an unconditional branch, check for the 'if then
540  // else' case.  there is an instruction before the branch.
541  StoreInst *OtherStore = 0;
542  if (OtherBr->isUnconditional()) {
543    --BBI;
544    // Skip over debugging info.
545    while (isa<DbgInfoIntrinsic>(BBI) ||
546           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
547      if (BBI==OtherBB->begin())
548        return false;
549      --BBI;
550    }
551    // If this isn't a store, isn't a store to the same location, or is not the
552    // right kind of store, bail out.
553    OtherStore = dyn_cast<StoreInst>(BBI);
554    if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
555        !SI.isSameOperationAs(OtherStore))
556      return false;
557  } else {
558    // Otherwise, the other block ended with a conditional branch. If one of the
559    // destinations is StoreBB, then we have the if/then case.
560    if (OtherBr->getSuccessor(0) != StoreBB &&
561        OtherBr->getSuccessor(1) != StoreBB)
562      return false;
563
564    // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
565    // if/then triangle.  See if there is a store to the same ptr as SI that
566    // lives in OtherBB.
567    for (;; --BBI) {
568      // Check to see if we find the matching store.
569      if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
570        if (OtherStore->getOperand(1) != SI.getOperand(1) ||
571            !SI.isSameOperationAs(OtherStore))
572          return false;
573        break;
574      }
575      // If we find something that may be using or overwriting the stored
576      // value, or if we run out of instructions, we can't do the xform.
577      if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
578          BBI == OtherBB->begin())
579        return false;
580    }
581
582    // In order to eliminate the store in OtherBr, we have to
583    // make sure nothing reads or overwrites the stored value in
584    // StoreBB.
585    for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
586      // FIXME: This should really be AA driven.
587      if (I->mayReadFromMemory() || I->mayWriteToMemory())
588        return false;
589    }
590  }
591
592  // Insert a PHI node now if we need it.
593  Value *MergedVal = OtherStore->getOperand(0);
594  if (MergedVal != SI.getOperand(0)) {
595    PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
596    PN->addIncoming(SI.getOperand(0), SI.getParent());
597    PN->addIncoming(OtherStore->getOperand(0), OtherBB);
598    MergedVal = InsertNewInstBefore(PN, DestBB->front());
599  }
600
601  // Advance to a place where it is safe to insert the new store and
602  // insert it.
603  BBI = DestBB->getFirstInsertionPt();
604  StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
605                                   SI.isVolatile(),
606                                   SI.getAlignment(),
607                                   SI.getOrdering(),
608                                   SI.getSynchScope());
609  InsertNewInstBefore(NewSI, *BBI);
610  NewSI->setDebugLoc(OtherStore->getDebugLoc());
611
612  // Nuke the old stores.
613  EraseInstFromFunction(SI);
614  EraseInstFromFunction(*OtherStore);
615  return true;
616}
617