1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13// The code in this file for handling inlines through invoke
14// instructions preserves semantics only under some assumptions about
15// the behavior of unwinders which correspond to gcc-style libUnwind
16// exception personality functions.  Eventually the IR will be
17// improved to make this unnecessary, but until then, this code is
18// marked [LIBUNWIND].
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Transforms/Utils/Cloning.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Module.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Attributes.h"
30#include "llvm/Analysis/CallGraph.h"
31#include "llvm/Analysis/DebugInfo.h"
32#include "llvm/Analysis/InstructionSimplify.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/Local.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/IRBuilder.h"
39using namespace llvm;
40
41bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
42  return InlineFunction(CallSite(CI), IFI);
43}
44bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
45  return InlineFunction(CallSite(II), IFI);
46}
47
48// FIXME: New EH - Remove the functions marked [LIBUNWIND] when new EH is
49// turned on.
50
51/// [LIBUNWIND] Look for an llvm.eh.exception call in the given block.
52static EHExceptionInst *findExceptionInBlock(BasicBlock *bb) {
53  for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e; i++) {
54    EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i);
55    if (exn) return exn;
56  }
57
58  return 0;
59}
60
61/// [LIBUNWIND] Look for the 'best' llvm.eh.selector instruction for
62/// the given llvm.eh.exception call.
63static EHSelectorInst *findSelectorForException(EHExceptionInst *exn) {
64  BasicBlock *exnBlock = exn->getParent();
65
66  EHSelectorInst *outOfBlockSelector = 0;
67  for (Instruction::use_iterator
68         ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) {
69    EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui);
70    if (!sel) continue;
71
72    // Immediately accept an eh.selector in the same block as the
73    // excepton call.
74    if (sel->getParent() == exnBlock) return sel;
75
76    // Otherwise, use the first selector we see.
77    if (!outOfBlockSelector) outOfBlockSelector = sel;
78  }
79
80  return outOfBlockSelector;
81}
82
83/// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector
84/// in the given landing pad.  In principle, llvm.eh.exception is
85/// required to be in the landing pad; in practice, SplitCriticalEdge
86/// can break that invariant, and then inlining can break it further.
87/// There's a real need for a reliable solution here, but until that
88/// happens, we have some fragile workarounds here.
89static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) {
90  // Look for an exception call in the actual landing pad.
91  EHExceptionInst *exn = findExceptionInBlock(lpad);
92  if (exn) return findSelectorForException(exn);
93
94  // Okay, if that failed, look for one in an obvious successor.  If
95  // we find one, we'll fix the IR by moving things back to the
96  // landing pad.
97
98  bool dominates = true; // does the lpad dominate the exn call
99  BasicBlock *nonDominated = 0; // if not, the first non-dominated block
100  BasicBlock *lastDominated = 0; // and the block which branched to it
101
102  BasicBlock *exnBlock = lpad;
103
104  // We need to protect against lpads that lead into infinite loops.
105  SmallPtrSet<BasicBlock*,4> visited;
106  visited.insert(exnBlock);
107
108  do {
109    // We're not going to apply this hack to anything more complicated
110    // than a series of unconditional branches, so if the block
111    // doesn't terminate in an unconditional branch, just fail.  More
112    // complicated cases can arise when, say, sinking a call into a
113    // split unwind edge and then inlining it; but that can do almost
114    // *anything* to the CFG, including leaving the selector
115    // completely unreachable.  The only way to fix that properly is
116    // to (1) prohibit transforms which move the exception or selector
117    // values away from the landing pad, e.g. by producing them with
118    // instructions that are pinned to an edge like a phi, or
119    // producing them with not-really-instructions, and (2) making
120    // transforms which split edges deal with that.
121    BranchInst *branch = dyn_cast<BranchInst>(&exnBlock->back());
122    if (!branch || branch->isConditional()) return 0;
123
124    BasicBlock *successor = branch->getSuccessor(0);
125
126    // Fail if we found an infinite loop.
127    if (!visited.insert(successor)) return 0;
128
129    // If the successor isn't dominated by exnBlock:
130    if (!successor->getSinglePredecessor()) {
131      // We don't want to have to deal with threading the exception
132      // through multiple levels of phi, so give up if we've already
133      // followed a non-dominating edge.
134      if (!dominates) return 0;
135
136      // Otherwise, remember this as a non-dominating edge.
137      dominates = false;
138      nonDominated = successor;
139      lastDominated = exnBlock;
140    }
141
142    exnBlock = successor;
143
144    // Can we stop here?
145    exn = findExceptionInBlock(exnBlock);
146  } while (!exn);
147
148  // Look for a selector call for the exception we found.
149  EHSelectorInst *selector = findSelectorForException(exn);
150  if (!selector) return 0;
151
152  // The easy case is when the landing pad still dominates the
153  // exception call, in which case we can just move both calls back to
154  // the landing pad.
155  if (dominates) {
156    selector->moveBefore(lpad->getFirstNonPHI());
157    exn->moveBefore(selector);
158    return selector;
159  }
160
161  // Otherwise, we have to split at the first non-dominating block.
162  // The CFG looks basically like this:
163  //    lpad:
164  //      phis_0
165  //      insnsAndBranches_1
166  //      br label %nonDominated
167  //    nonDominated:
168  //      phis_2
169  //      insns_3
170  //      %exn = call i8* @llvm.eh.exception()
171  //      insnsAndBranches_4
172  //      %selector = call @llvm.eh.selector(i8* %exn, ...
173  // We need to turn this into:
174  //    lpad:
175  //      phis_0
176  //      %exn0 = call i8* @llvm.eh.exception()
177  //      %selector0 = call @llvm.eh.selector(i8* %exn0, ...
178  //      insnsAndBranches_1
179  //      br label %split // from lastDominated
180  //    nonDominated:
181  //      phis_2 (without edge from lastDominated)
182  //      %exn1 = call i8* @llvm.eh.exception()
183  //      %selector1 = call i8* @llvm.eh.selector(i8* %exn1, ...
184  //      br label %split
185  //    split:
186  //      phis_2 (edge from lastDominated, edge from split)
187  //      %exn = phi ...
188  //      %selector = phi ...
189  //      insns_3
190  //      insnsAndBranches_4
191
192  assert(nonDominated);
193  assert(lastDominated);
194
195  // First, make clones of the intrinsics to go in lpad.
196  EHExceptionInst *lpadExn = cast<EHExceptionInst>(exn->clone());
197  EHSelectorInst *lpadSelector = cast<EHSelectorInst>(selector->clone());
198  lpadSelector->setArgOperand(0, lpadExn);
199  lpadSelector->insertBefore(lpad->getFirstNonPHI());
200  lpadExn->insertBefore(lpadSelector);
201
202  // Split the non-dominated block.
203  BasicBlock *split =
204    nonDominated->splitBasicBlock(nonDominated->getFirstNonPHI(),
205                                  nonDominated->getName() + ".lpad-fix");
206
207  // Redirect the last dominated branch there.
208  cast<BranchInst>(lastDominated->back()).setSuccessor(0, split);
209
210  // Move the existing intrinsics to the end of the old block.
211  selector->moveBefore(&nonDominated->back());
212  exn->moveBefore(selector);
213
214  Instruction *splitIP = &split->front();
215
216  // For all the phis in nonDominated, make a new phi in split to join
217  // that phi with the edge from lastDominated.
218  for (BasicBlock::iterator
219         i = nonDominated->begin(), e = nonDominated->end(); i != e; ++i) {
220    PHINode *phi = dyn_cast<PHINode>(i);
221    if (!phi) break;
222
223    PHINode *splitPhi = PHINode::Create(phi->getType(), 2, phi->getName(),
224                                        splitIP);
225    phi->replaceAllUsesWith(splitPhi);
226    splitPhi->addIncoming(phi, nonDominated);
227    splitPhi->addIncoming(phi->removeIncomingValue(lastDominated),
228                          lastDominated);
229  }
230
231  // Make new phis for the exception and selector.
232  PHINode *exnPhi = PHINode::Create(exn->getType(), 2, "", splitIP);
233  exn->replaceAllUsesWith(exnPhi);
234  selector->setArgOperand(0, exn); // except for this use
235  exnPhi->addIncoming(exn, nonDominated);
236  exnPhi->addIncoming(lpadExn, lastDominated);
237
238  PHINode *selectorPhi = PHINode::Create(selector->getType(), 2, "", splitIP);
239  selector->replaceAllUsesWith(selectorPhi);
240  selectorPhi->addIncoming(selector, nonDominated);
241  selectorPhi->addIncoming(lpadSelector, lastDominated);
242
243  return lpadSelector;
244}
245
246namespace {
247  /// A class for recording information about inlining through an invoke.
248  class InvokeInliningInfo {
249    BasicBlock *OuterUnwindDest;
250    EHSelectorInst *OuterSelector;
251    BasicBlock *InnerUnwindDest;
252    PHINode *InnerExceptionPHI;
253    PHINode *InnerSelectorPHI;
254    SmallVector<Value*, 8> UnwindDestPHIValues;
255
256    // FIXME: New EH - These will replace the analogous ones above.
257    BasicBlock *OuterResumeDest; //< Destination of the invoke's unwind.
258    BasicBlock *InnerResumeDest; //< Destination for the callee's resume.
259    LandingPadInst *CallerLPad;  //< LandingPadInst associated with the invoke.
260    PHINode *InnerEHValuesPHI;   //< PHI for EH values from landingpad insts.
261
262  public:
263    InvokeInliningInfo(InvokeInst *II)
264      : OuterUnwindDest(II->getUnwindDest()), OuterSelector(0),
265        InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0),
266        OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
267        CallerLPad(0), InnerEHValuesPHI(0) {
268      // If there are PHI nodes in the unwind destination block, we need to keep
269      // track of which values came into them from the invoke before removing
270      // the edge from this block.
271      llvm::BasicBlock *InvokeBB = II->getParent();
272      BasicBlock::iterator I = OuterUnwindDest->begin();
273      for (; isa<PHINode>(I); ++I) {
274        // Save the value to use for this edge.
275        PHINode *PHI = cast<PHINode>(I);
276        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
277      }
278
279      // FIXME: With the new EH, this if/dyn_cast should be a 'cast'.
280      if (LandingPadInst *LPI = dyn_cast<LandingPadInst>(I)) {
281        CallerLPad = LPI;
282      }
283    }
284
285    /// The outer unwind destination is the target of unwind edges
286    /// introduced for calls within the inlined function.
287    BasicBlock *getOuterUnwindDest() const {
288      return OuterUnwindDest;
289    }
290
291    EHSelectorInst *getOuterSelector() {
292      if (!OuterSelector)
293        OuterSelector = findSelectorForLandingPad(OuterUnwindDest);
294      return OuterSelector;
295    }
296
297    BasicBlock *getInnerUnwindDest();
298
299    // FIXME: New EH - Rename when new EH is turned on.
300    BasicBlock *getInnerUnwindDestNewEH();
301
302    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
303
304    bool forwardEHResume(CallInst *call, BasicBlock *src);
305
306    /// forwardResume - Forward the 'resume' instruction to the caller's landing
307    /// pad block. When the landing pad block has only one predecessor, this is
308    /// a simple branch. When there is more than one predecessor, we need to
309    /// split the landing pad block after the landingpad instruction and jump
310    /// to there.
311    void forwardResume(ResumeInst *RI);
312
313    /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
314    /// destination block for the given basic block, using the values for the
315    /// original invoke's source block.
316    void addIncomingPHIValuesFor(BasicBlock *BB) const {
317      addIncomingPHIValuesForInto(BB, OuterUnwindDest);
318    }
319
320    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
321      BasicBlock::iterator I = dest->begin();
322      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
323        PHINode *phi = cast<PHINode>(I);
324        phi->addIncoming(UnwindDestPHIValues[i], src);
325      }
326    }
327  };
328}
329
330/// [LIBUNWIND] Get or create a target for the branch out of rewritten calls to
331/// llvm.eh.resume.
332BasicBlock *InvokeInliningInfo::getInnerUnwindDest() {
333  if (InnerUnwindDest) return InnerUnwindDest;
334
335  // Find and hoist the llvm.eh.exception and llvm.eh.selector calls
336  // in the outer landing pad to immediately following the phis.
337  EHSelectorInst *selector = getOuterSelector();
338  if (!selector) return 0;
339
340  // The call to llvm.eh.exception *must* be in the landing pad.
341  Instruction *exn = cast<Instruction>(selector->getArgOperand(0));
342  assert(exn->getParent() == OuterUnwindDest);
343
344  // TODO: recognize when we've already done this, so that we don't
345  // get a linear number of these when inlining calls into lots of
346  // invokes with the same landing pad.
347
348  // Do the hoisting.
349  Instruction *splitPoint = exn->getParent()->getFirstNonPHI();
350  assert(splitPoint != selector && "selector-on-exception dominance broken!");
351  if (splitPoint == exn) {
352    selector->removeFromParent();
353    selector->insertAfter(exn);
354    splitPoint = selector->getNextNode();
355  } else {
356    exn->moveBefore(splitPoint);
357    selector->moveBefore(splitPoint);
358  }
359
360  // Split the landing pad.
361  InnerUnwindDest = OuterUnwindDest->splitBasicBlock(splitPoint,
362                                        OuterUnwindDest->getName() + ".body");
363
364  // The number of incoming edges we expect to the inner landing pad.
365  const unsigned phiCapacity = 2;
366
367  // Create corresponding new phis for all the phis in the outer landing pad.
368  BasicBlock::iterator insertPoint = InnerUnwindDest->begin();
369  BasicBlock::iterator I = OuterUnwindDest->begin();
370  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
371    PHINode *outerPhi = cast<PHINode>(I);
372    PHINode *innerPhi = PHINode::Create(outerPhi->getType(), phiCapacity,
373                                        outerPhi->getName() + ".lpad-body",
374                                        insertPoint);
375    outerPhi->replaceAllUsesWith(innerPhi);
376    innerPhi->addIncoming(outerPhi, OuterUnwindDest);
377  }
378
379  // Create a phi for the exception value...
380  InnerExceptionPHI = PHINode::Create(exn->getType(), phiCapacity,
381                                      "exn.lpad-body", insertPoint);
382  exn->replaceAllUsesWith(InnerExceptionPHI);
383  selector->setArgOperand(0, exn); // restore this use
384  InnerExceptionPHI->addIncoming(exn, OuterUnwindDest);
385
386  // ...and the selector.
387  InnerSelectorPHI = PHINode::Create(selector->getType(), phiCapacity,
388                                     "selector.lpad-body", insertPoint);
389  selector->replaceAllUsesWith(InnerSelectorPHI);
390  InnerSelectorPHI->addIncoming(selector, OuterUnwindDest);
391
392  // All done.
393  return InnerUnwindDest;
394}
395
396/// [LIBUNWIND] Try to forward the given call, which logically occurs
397/// at the end of the given block, as a branch to the inner unwind
398/// block.  Returns true if the call was forwarded.
399bool InvokeInliningInfo::forwardEHResume(CallInst *call, BasicBlock *src) {
400  // First, check whether this is a call to the intrinsic.
401  Function *fn = dyn_cast<Function>(call->getCalledValue());
402  if (!fn || fn->getName() != "llvm.eh.resume")
403    return false;
404
405  // At this point, we need to return true on all paths, because
406  // otherwise we'll construct an invoke of the intrinsic, which is
407  // not well-formed.
408
409  // Try to find or make an inner unwind dest, which will fail if we
410  // can't find a selector call for the outer unwind dest.
411  BasicBlock *dest = getInnerUnwindDest();
412  bool hasSelector = (dest != 0);
413
414  // If we failed, just use the outer unwind dest, dropping the
415  // exception and selector on the floor.
416  if (!hasSelector)
417    dest = OuterUnwindDest;
418
419  // Make a branch.
420  BranchInst::Create(dest, src);
421
422  // Update the phis in the destination.  They were inserted in an
423  // order which makes this work.
424  addIncomingPHIValuesForInto(src, dest);
425
426  if (hasSelector) {
427    InnerExceptionPHI->addIncoming(call->getArgOperand(0), src);
428    InnerSelectorPHI->addIncoming(call->getArgOperand(1), src);
429  }
430
431  return true;
432}
433
434/// Get or create a target for the branch from ResumeInsts.
435BasicBlock *InvokeInliningInfo::getInnerUnwindDestNewEH() {
436  // FIXME: New EH - rename this function when new EH is turned on.
437  if (InnerResumeDest) return InnerResumeDest;
438
439  // Split the landing pad.
440  BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
441  InnerResumeDest =
442    OuterResumeDest->splitBasicBlock(SplitPoint,
443                                     OuterResumeDest->getName() + ".body");
444
445  // The number of incoming edges we expect to the inner landing pad.
446  const unsigned PHICapacity = 2;
447
448  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
449  BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
450  BasicBlock::iterator I = OuterResumeDest->begin();
451  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
452    PHINode *OuterPHI = cast<PHINode>(I);
453    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
454                                        OuterPHI->getName() + ".lpad-body",
455                                        InsertPoint);
456    OuterPHI->replaceAllUsesWith(InnerPHI);
457    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
458  }
459
460  // Create a PHI for the exception values.
461  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
462                                     "eh.lpad-body", InsertPoint);
463  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
464  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
465
466  // All done.
467  return InnerResumeDest;
468}
469
470/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
471/// block. When the landing pad block has only one predecessor, this is a simple
472/// branch. When there is more than one predecessor, we need to split the
473/// landing pad block after the landingpad instruction and jump to there.
474void InvokeInliningInfo::forwardResume(ResumeInst *RI) {
475  BasicBlock *Dest = getInnerUnwindDestNewEH();
476  BasicBlock *Src = RI->getParent();
477
478  BranchInst::Create(Dest, Src);
479
480  // Update the PHIs in the destination. They were inserted in an order which
481  // makes this work.
482  addIncomingPHIValuesForInto(Src, Dest);
483
484  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
485  RI->eraseFromParent();
486}
487
488/// [LIBUNWIND] Check whether this selector is "only cleanups":
489///   call i32 @llvm.eh.selector(blah, blah, i32 0)
490static bool isCleanupOnlySelector(EHSelectorInst *selector) {
491  if (selector->getNumArgOperands() != 3) return false;
492  ConstantInt *val = dyn_cast<ConstantInt>(selector->getArgOperand(2));
493  return (val && val->isZero());
494}
495
496/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
497/// an invoke, we have to turn all of the calls that can throw into
498/// invokes.  This function analyze BB to see if there are any calls, and if so,
499/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
500/// nodes in that block with the values specified in InvokeDestPHIValues.
501///
502/// Returns true to indicate that the next block should be skipped.
503static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
504                                                   InvokeInliningInfo &Invoke) {
505  LandingPadInst *LPI = Invoke.getLandingPadInst();
506
507  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
508    Instruction *I = BBI++;
509
510    if (LPI) // FIXME: New EH - This won't be NULL in the new EH.
511      if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
512        unsigned NumClauses = LPI->getNumClauses();
513        L->reserveClauses(NumClauses);
514        for (unsigned i = 0; i != NumClauses; ++i)
515          L->addClause(LPI->getClause(i));
516      }
517
518    // We only need to check for function calls: inlined invoke
519    // instructions require no special handling.
520    CallInst *CI = dyn_cast<CallInst>(I);
521    if (CI == 0) continue;
522
523    // LIBUNWIND: merge selector instructions.
524    if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) {
525      EHSelectorInst *Outer = Invoke.getOuterSelector();
526      if (!Outer) continue;
527
528      bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner);
529      bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer);
530
531      // If both selectors contain only cleanups, we don't need to do
532      // anything.  TODO: this is really just a very specific instance
533      // of a much more general optimization.
534      if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue;
535
536      // Otherwise, we just append the outer selector to the inner selector.
537      SmallVector<Value*, 16> NewSelector;
538      for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i)
539        NewSelector.push_back(Inner->getArgOperand(i));
540      for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i)
541        NewSelector.push_back(Outer->getArgOperand(i));
542
543      CallInst *NewInner =
544        IRBuilder<>(Inner).CreateCall(Inner->getCalledValue(), NewSelector);
545      // No need to copy attributes, calling convention, etc.
546      NewInner->takeName(Inner);
547      Inner->replaceAllUsesWith(NewInner);
548      Inner->eraseFromParent();
549      continue;
550    }
551
552    // If this call cannot unwind, don't convert it to an invoke.
553    if (CI->doesNotThrow())
554      continue;
555
556    // Convert this function call into an invoke instruction.
557    // First, split the basic block.
558    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
559
560    // Delete the unconditional branch inserted by splitBasicBlock
561    BB->getInstList().pop_back();
562
563    // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch
564    // directly to the new landing pad.
565    if (Invoke.forwardEHResume(CI, BB)) {
566      // TODO: 'Split' is now unreachable; clean it up.
567
568      // We want to leave the original call intact so that the call
569      // graph and other structures won't get misled.  We also have to
570      // avoid processing the next block, or we'll iterate here forever.
571      return true;
572    }
573
574    // Otherwise, create the new invoke instruction.
575    ImmutableCallSite CS(CI);
576    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
577    InvokeInst *II =
578      InvokeInst::Create(CI->getCalledValue(), Split,
579                         Invoke.getOuterUnwindDest(),
580                         InvokeArgs, CI->getName(), BB);
581    II->setCallingConv(CI->getCallingConv());
582    II->setAttributes(CI->getAttributes());
583
584    // Make sure that anything using the call now uses the invoke!  This also
585    // updates the CallGraph if present, because it uses a WeakVH.
586    CI->replaceAllUsesWith(II);
587
588    Split->getInstList().pop_front();  // Delete the original call
589
590    // Update any PHI nodes in the exceptional block to indicate that
591    // there is now a new entry in them.
592    Invoke.addIncomingPHIValuesFor(BB);
593    return false;
594  }
595
596  return false;
597}
598
599
600/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
601/// in the body of the inlined function into invokes and turn unwind
602/// instructions into branches to the invoke unwind dest.
603///
604/// II is the invoke instruction being inlined.  FirstNewBlock is the first
605/// block of the inlined code (the last block is the end of the function),
606/// and InlineCodeInfo is information about the code that got inlined.
607static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
608                                ClonedCodeInfo &InlinedCodeInfo) {
609  BasicBlock *InvokeDest = II->getUnwindDest();
610
611  Function *Caller = FirstNewBlock->getParent();
612
613  // The inlined code is currently at the end of the function, scan from the
614  // start of the inlined code to its end, checking for stuff we need to
615  // rewrite.  If the code doesn't have calls or unwinds, we know there is
616  // nothing to rewrite.
617  if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
618    // Now that everything is happy, we have one final detail.  The PHI nodes in
619    // the exception destination block still have entries due to the original
620    // invoke instruction.  Eliminate these entries (which might even delete the
621    // PHI node) now.
622    InvokeDest->removePredecessor(II->getParent());
623    return;
624  }
625
626  InvokeInliningInfo Invoke(II);
627
628  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
629    if (InlinedCodeInfo.ContainsCalls)
630      if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
631        // Honor a request to skip the next block.  We don't need to
632        // consider UnwindInsts in this case either.
633        ++BB;
634        continue;
635      }
636
637    if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
638      // An UnwindInst requires special handling when it gets inlined into an
639      // invoke site.  Once this happens, we know that the unwind would cause
640      // a control transfer to the invoke exception destination, so we can
641      // transform it into a direct branch to the exception destination.
642      BranchInst::Create(InvokeDest, UI);
643
644      // Delete the unwind instruction!
645      UI->eraseFromParent();
646
647      // Update any PHI nodes in the exceptional block to indicate that
648      // there is now a new entry in them.
649      Invoke.addIncomingPHIValuesFor(BB);
650    }
651
652    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
653      Invoke.forwardResume(RI);
654    }
655  }
656
657  // Now that everything is happy, we have one final detail.  The PHI nodes in
658  // the exception destination block still have entries due to the original
659  // invoke instruction.  Eliminate these entries (which might even delete the
660  // PHI node) now.
661  InvokeDest->removePredecessor(II->getParent());
662}
663
664/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
665/// into the caller, update the specified callgraph to reflect the changes we
666/// made.  Note that it's possible that not all code was copied over, so only
667/// some edges of the callgraph may remain.
668static void UpdateCallGraphAfterInlining(CallSite CS,
669                                         Function::iterator FirstNewBlock,
670                                         ValueToValueMapTy &VMap,
671                                         InlineFunctionInfo &IFI) {
672  CallGraph &CG = *IFI.CG;
673  const Function *Caller = CS.getInstruction()->getParent()->getParent();
674  const Function *Callee = CS.getCalledFunction();
675  CallGraphNode *CalleeNode = CG[Callee];
676  CallGraphNode *CallerNode = CG[Caller];
677
678  // Since we inlined some uninlined call sites in the callee into the caller,
679  // add edges from the caller to all of the callees of the callee.
680  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
681
682  // Consider the case where CalleeNode == CallerNode.
683  CallGraphNode::CalledFunctionsVector CallCache;
684  if (CalleeNode == CallerNode) {
685    CallCache.assign(I, E);
686    I = CallCache.begin();
687    E = CallCache.end();
688  }
689
690  for (; I != E; ++I) {
691    const Value *OrigCall = I->first;
692
693    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
694    // Only copy the edge if the call was inlined!
695    if (VMI == VMap.end() || VMI->second == 0)
696      continue;
697
698    // If the call was inlined, but then constant folded, there is no edge to
699    // add.  Check for this case.
700    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
701    if (NewCall == 0) continue;
702
703    // Remember that this call site got inlined for the client of
704    // InlineFunction.
705    IFI.InlinedCalls.push_back(NewCall);
706
707    // It's possible that inlining the callsite will cause it to go from an
708    // indirect to a direct call by resolving a function pointer.  If this
709    // happens, set the callee of the new call site to a more precise
710    // destination.  This can also happen if the call graph node of the caller
711    // was just unnecessarily imprecise.
712    if (I->second->getFunction() == 0)
713      if (Function *F = CallSite(NewCall).getCalledFunction()) {
714        // Indirect call site resolved to direct call.
715        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
716
717        continue;
718      }
719
720    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
721  }
722
723  // Update the call graph by deleting the edge from Callee to Caller.  We must
724  // do this after the loop above in case Caller and Callee are the same.
725  CallerNode->removeCallEdgeFor(CS);
726}
727
728/// HandleByValArgument - When inlining a call site that has a byval argument,
729/// we have to make the implicit memcpy explicit by adding it.
730static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
731                                  const Function *CalledFunc,
732                                  InlineFunctionInfo &IFI,
733                                  unsigned ByValAlignment) {
734  Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
735
736  // If the called function is readonly, then it could not mutate the caller's
737  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
738  // temporary.
739  if (CalledFunc->onlyReadsMemory()) {
740    // If the byval argument has a specified alignment that is greater than the
741    // passed in pointer, then we either have to round up the input pointer or
742    // give up on this transformation.
743    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
744      return Arg;
745
746    // If the pointer is already known to be sufficiently aligned, or if we can
747    // round it up to a larger alignment, then we don't need a temporary.
748    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
749                                   IFI.TD) >= ByValAlignment)
750      return Arg;
751
752    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
753    // for code quality, but rarely happens and is required for correctness.
754  }
755
756  LLVMContext &Context = Arg->getContext();
757
758  Type *VoidPtrTy = Type::getInt8PtrTy(Context);
759
760  // Create the alloca.  If we have TargetData, use nice alignment.
761  unsigned Align = 1;
762  if (IFI.TD)
763    Align = IFI.TD->getPrefTypeAlignment(AggTy);
764
765  // If the byval had an alignment specified, we *must* use at least that
766  // alignment, as it is required by the byval argument (and uses of the
767  // pointer inside the callee).
768  Align = std::max(Align, ByValAlignment);
769
770  Function *Caller = TheCall->getParent()->getParent();
771
772  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
773                                    &*Caller->begin()->begin());
774  // Emit a memcpy.
775  Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
776  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
777                                                 Intrinsic::memcpy,
778                                                 Tys);
779  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
780  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
781
782  Value *Size;
783  if (IFI.TD == 0)
784    Size = ConstantExpr::getSizeOf(AggTy);
785  else
786    Size = ConstantInt::get(Type::getInt64Ty(Context),
787                            IFI.TD->getTypeStoreSize(AggTy));
788
789  // Always generate a memcpy of alignment 1 here because we don't know
790  // the alignment of the src pointer.  Other optimizations can infer
791  // better alignment.
792  Value *CallArgs[] = {
793    DestCast, SrcCast, Size,
794    ConstantInt::get(Type::getInt32Ty(Context), 1),
795    ConstantInt::getFalse(Context) // isVolatile
796  };
797  IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
798
799  // Uses of the argument in the function should use our new alloca
800  // instead.
801  return NewAlloca;
802}
803
804// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
805// intrinsic.
806static bool isUsedByLifetimeMarker(Value *V) {
807  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
808       ++UI) {
809    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
810      switch (II->getIntrinsicID()) {
811      default: break;
812      case Intrinsic::lifetime_start:
813      case Intrinsic::lifetime_end:
814        return true;
815      }
816    }
817  }
818  return false;
819}
820
821// hasLifetimeMarkers - Check whether the given alloca already has
822// lifetime.start or lifetime.end intrinsics.
823static bool hasLifetimeMarkers(AllocaInst *AI) {
824  Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
825  if (AI->getType() == Int8PtrTy)
826    return isUsedByLifetimeMarker(AI);
827
828  // Do a scan to find all the casts to i8*.
829  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
830       ++I) {
831    if (I->getType() != Int8PtrTy) continue;
832    if (I->stripPointerCasts() != AI) continue;
833    if (isUsedByLifetimeMarker(*I))
834      return true;
835  }
836  return false;
837}
838
839/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively
840/// update InlinedAtEntry of a DebugLoc.
841static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
842                                    const DebugLoc &InlinedAtDL,
843                                    LLVMContext &Ctx) {
844  if (MDNode *IA = DL.getInlinedAt(Ctx)) {
845    DebugLoc NewInlinedAtDL
846      = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
847    return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
848                         NewInlinedAtDL.getAsMDNode(Ctx));
849  }
850
851  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
852                       InlinedAtDL.getAsMDNode(Ctx));
853}
854
855
856/// fixupLineNumbers - Update inlined instructions' line numbers to
857/// to encode location where these instructions are inlined.
858static void fixupLineNumbers(Function *Fn, Function::iterator FI,
859                              Instruction *TheCall) {
860  DebugLoc TheCallDL = TheCall->getDebugLoc();
861  if (TheCallDL.isUnknown())
862    return;
863
864  for (; FI != Fn->end(); ++FI) {
865    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
866         BI != BE; ++BI) {
867      DebugLoc DL = BI->getDebugLoc();
868      if (!DL.isUnknown()) {
869        BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
870        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
871          LLVMContext &Ctx = BI->getContext();
872          MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
873          DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
874                                                   InlinedAt, Ctx));
875        }
876      }
877    }
878  }
879}
880
881// InlineFunction - This function inlines the called function into the basic
882// block of the caller.  This returns false if it is not possible to inline this
883// call.  The program is still in a well defined state if this occurs though.
884//
885// Note that this only does one level of inlining.  For example, if the
886// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
887// exists in the instruction stream.  Similarly this will inline a recursive
888// function by one level.
889//
890bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
891  Instruction *TheCall = CS.getInstruction();
892  LLVMContext &Context = TheCall->getContext();
893  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
894         "Instruction not in function!");
895
896  // If IFI has any state in it, zap it before we fill it in.
897  IFI.reset();
898
899  const Function *CalledFunc = CS.getCalledFunction();
900  if (CalledFunc == 0 ||          // Can't inline external function or indirect
901      CalledFunc->isDeclaration() || // call, or call to a vararg function!
902      CalledFunc->getFunctionType()->isVarArg()) return false;
903
904  // If the call to the callee is not a tail call, we must clear the 'tail'
905  // flags on any calls that we inline.
906  bool MustClearTailCallFlags =
907    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
908
909  // If the call to the callee cannot throw, set the 'nounwind' flag on any
910  // calls that we inline.
911  bool MarkNoUnwind = CS.doesNotThrow();
912
913  BasicBlock *OrigBB = TheCall->getParent();
914  Function *Caller = OrigBB->getParent();
915
916  // GC poses two hazards to inlining, which only occur when the callee has GC:
917  //  1. If the caller has no GC, then the callee's GC must be propagated to the
918  //     caller.
919  //  2. If the caller has a differing GC, it is invalid to inline.
920  if (CalledFunc->hasGC()) {
921    if (!Caller->hasGC())
922      Caller->setGC(CalledFunc->getGC());
923    else if (CalledFunc->getGC() != Caller->getGC())
924      return false;
925  }
926
927  // Find the personality function used by the landing pads of the caller. If it
928  // exists, then check to see that it matches the personality function used in
929  // the callee.
930  for (Function::const_iterator
931         I = Caller->begin(), E = Caller->end(); I != E; ++I)
932    if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
933      const BasicBlock *BB = II->getUnwindDest();
934      // FIXME: This 'isa' here should become go away once the new EH system is
935      // in place.
936      if (!isa<LandingPadInst>(BB->getFirstNonPHI()))
937        continue;
938      const LandingPadInst *LP = cast<LandingPadInst>(BB->getFirstNonPHI());
939      const Value *CallerPersFn = LP->getPersonalityFn();
940
941      // If the personality functions match, then we can perform the
942      // inlining. Otherwise, we can't inline.
943      // TODO: This isn't 100% true. Some personality functions are proper
944      //       supersets of others and can be used in place of the other.
945      for (Function::const_iterator
946             I = CalledFunc->begin(), E = CalledFunc->end(); I != E; ++I)
947        if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
948          const BasicBlock *BB = II->getUnwindDest();
949          // FIXME: This 'if/dyn_cast' here should become a normal 'cast' once
950          // the new EH system is in place.
951          if (const LandingPadInst *LP =
952              dyn_cast<LandingPadInst>(BB->getFirstNonPHI()))
953            if (CallerPersFn != LP->getPersonalityFn())
954              return false;
955          break;
956        }
957
958      break;
959    }
960
961  // Get an iterator to the last basic block in the function, which will have
962  // the new function inlined after it.
963  //
964  Function::iterator LastBlock = &Caller->back();
965
966  // Make sure to capture all of the return instructions from the cloned
967  // function.
968  SmallVector<ReturnInst*, 8> Returns;
969  ClonedCodeInfo InlinedFunctionInfo;
970  Function::iterator FirstNewBlock;
971
972  { // Scope to destroy VMap after cloning.
973    ValueToValueMapTy VMap;
974
975    assert(CalledFunc->arg_size() == CS.arg_size() &&
976           "No varargs calls can be inlined!");
977
978    // Calculate the vector of arguments to pass into the function cloner, which
979    // matches up the formal to the actual argument values.
980    CallSite::arg_iterator AI = CS.arg_begin();
981    unsigned ArgNo = 0;
982    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
983         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
984      Value *ActualArg = *AI;
985
986      // When byval arguments actually inlined, we need to make the copy implied
987      // by them explicit.  However, we don't do this if the callee is readonly
988      // or readnone, because the copy would be unneeded: the callee doesn't
989      // modify the struct.
990      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) {
991        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
992                                        CalledFunc->getParamAlignment(ArgNo+1));
993
994        // Calls that we inline may use the new alloca, so we need to clear
995        // their 'tail' flags if HandleByValArgument introduced a new alloca and
996        // the callee has calls.
997        MustClearTailCallFlags |= ActualArg != *AI;
998      }
999
1000      VMap[I] = ActualArg;
1001    }
1002
1003    // We want the inliner to prune the code as it copies.  We would LOVE to
1004    // have no dead or constant instructions leftover after inlining occurs
1005    // (which can happen, e.g., because an argument was constant), but we'll be
1006    // happy with whatever the cloner can do.
1007    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1008                              /*ModuleLevelChanges=*/false, Returns, ".i",
1009                              &InlinedFunctionInfo, IFI.TD, TheCall);
1010
1011    // Remember the first block that is newly cloned over.
1012    FirstNewBlock = LastBlock; ++FirstNewBlock;
1013
1014    // Update the callgraph if requested.
1015    if (IFI.CG)
1016      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1017
1018    // Update inlined instructions' line number information.
1019    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
1020  }
1021
1022  // If there are any alloca instructions in the block that used to be the entry
1023  // block for the callee, move them to the entry block of the caller.  First
1024  // calculate which instruction they should be inserted before.  We insert the
1025  // instructions at the end of the current alloca list.
1026  //
1027  {
1028    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1029    for (BasicBlock::iterator I = FirstNewBlock->begin(),
1030         E = FirstNewBlock->end(); I != E; ) {
1031      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1032      if (AI == 0) continue;
1033
1034      // If the alloca is now dead, remove it.  This often occurs due to code
1035      // specialization.
1036      if (AI->use_empty()) {
1037        AI->eraseFromParent();
1038        continue;
1039      }
1040
1041      if (!isa<Constant>(AI->getArraySize()))
1042        continue;
1043
1044      // Keep track of the static allocas that we inline into the caller.
1045      IFI.StaticAllocas.push_back(AI);
1046
1047      // Scan for the block of allocas that we can move over, and move them
1048      // all at once.
1049      while (isa<AllocaInst>(I) &&
1050             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
1051        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1052        ++I;
1053      }
1054
1055      // Transfer all of the allocas over in a block.  Using splice means
1056      // that the instructions aren't removed from the symbol table, then
1057      // reinserted.
1058      Caller->getEntryBlock().getInstList().splice(InsertPoint,
1059                                                   FirstNewBlock->getInstList(),
1060                                                   AI, I);
1061    }
1062  }
1063
1064  // Leave lifetime markers for the static alloca's, scoping them to the
1065  // function we just inlined.
1066  if (!IFI.StaticAllocas.empty()) {
1067    IRBuilder<> builder(FirstNewBlock->begin());
1068    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1069      AllocaInst *AI = IFI.StaticAllocas[ai];
1070
1071      // If the alloca is already scoped to something smaller than the whole
1072      // function then there's no need to add redundant, less accurate markers.
1073      if (hasLifetimeMarkers(AI))
1074        continue;
1075
1076      builder.CreateLifetimeStart(AI);
1077      for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
1078        IRBuilder<> builder(Returns[ri]);
1079        builder.CreateLifetimeEnd(AI);
1080      }
1081    }
1082  }
1083
1084  // If the inlined code contained dynamic alloca instructions, wrap the inlined
1085  // code with llvm.stacksave/llvm.stackrestore intrinsics.
1086  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
1087    Module *M = Caller->getParent();
1088    // Get the two intrinsics we care about.
1089    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
1090    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
1091
1092    // Insert the llvm.stacksave.
1093    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
1094      .CreateCall(StackSave, "savedstack");
1095
1096    // Insert a call to llvm.stackrestore before any return instructions in the
1097    // inlined function.
1098    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1099      IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
1100    }
1101
1102    // Count the number of StackRestore calls we insert.
1103    unsigned NumStackRestores = Returns.size();
1104
1105    // If we are inlining an invoke instruction, insert restores before each
1106    // unwind.  These unwinds will be rewritten into branches later.
1107    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
1108      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
1109           BB != E; ++BB)
1110        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
1111          IRBuilder<>(UI).CreateCall(StackRestore, SavedPtr);
1112          ++NumStackRestores;
1113        }
1114    }
1115  }
1116
1117  // If we are inlining tail call instruction through a call site that isn't
1118  // marked 'tail', we must remove the tail marker for any calls in the inlined
1119  // code.  Also, calls inlined through a 'nounwind' call site should be marked
1120  // 'nounwind'.
1121  if (InlinedFunctionInfo.ContainsCalls &&
1122      (MustClearTailCallFlags || MarkNoUnwind)) {
1123    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
1124         BB != E; ++BB)
1125      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1126        if (CallInst *CI = dyn_cast<CallInst>(I)) {
1127          if (MustClearTailCallFlags)
1128            CI->setTailCall(false);
1129          if (MarkNoUnwind)
1130            CI->setDoesNotThrow();
1131        }
1132  }
1133
1134  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
1135  // instructions are unreachable.
1136  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
1137    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
1138         BB != E; ++BB) {
1139      TerminatorInst *Term = BB->getTerminator();
1140      if (isa<UnwindInst>(Term)) {
1141        new UnreachableInst(Context, Term);
1142        BB->getInstList().erase(Term);
1143      }
1144    }
1145
1146  // If we are inlining for an invoke instruction, we must make sure to rewrite
1147  // any inlined 'unwind' instructions into branches to the invoke exception
1148  // destination, and call instructions into invoke instructions.
1149  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
1150    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
1151
1152  // If we cloned in _exactly one_ basic block, and if that block ends in a
1153  // return instruction, we splice the body of the inlined callee directly into
1154  // the calling basic block.
1155  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
1156    // Move all of the instructions right before the call.
1157    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
1158                                 FirstNewBlock->begin(), FirstNewBlock->end());
1159    // Remove the cloned basic block.
1160    Caller->getBasicBlockList().pop_back();
1161
1162    // If the call site was an invoke instruction, add a branch to the normal
1163    // destination.
1164    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
1165      BranchInst::Create(II->getNormalDest(), TheCall);
1166
1167    // If the return instruction returned a value, replace uses of the call with
1168    // uses of the returned value.
1169    if (!TheCall->use_empty()) {
1170      ReturnInst *R = Returns[0];
1171      if (TheCall == R->getReturnValue())
1172        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1173      else
1174        TheCall->replaceAllUsesWith(R->getReturnValue());
1175    }
1176    // Since we are now done with the Call/Invoke, we can delete it.
1177    TheCall->eraseFromParent();
1178
1179    // Since we are now done with the return instruction, delete it also.
1180    Returns[0]->eraseFromParent();
1181
1182    // We are now done with the inlining.
1183    return true;
1184  }
1185
1186  // Otherwise, we have the normal case, of more than one block to inline or
1187  // multiple return sites.
1188
1189  // We want to clone the entire callee function into the hole between the
1190  // "starter" and "ender" blocks.  How we accomplish this depends on whether
1191  // this is an invoke instruction or a call instruction.
1192  BasicBlock *AfterCallBB;
1193  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1194
1195    // Add an unconditional branch to make this look like the CallInst case...
1196    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
1197
1198    // Split the basic block.  This guarantees that no PHI nodes will have to be
1199    // updated due to new incoming edges, and make the invoke case more
1200    // symmetric to the call case.
1201    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
1202                                          CalledFunc->getName()+".exit");
1203
1204  } else {  // It's a call
1205    // If this is a call instruction, we need to split the basic block that
1206    // the call lives in.
1207    //
1208    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
1209                                          CalledFunc->getName()+".exit");
1210  }
1211
1212  // Change the branch that used to go to AfterCallBB to branch to the first
1213  // basic block of the inlined function.
1214  //
1215  TerminatorInst *Br = OrigBB->getTerminator();
1216  assert(Br && Br->getOpcode() == Instruction::Br &&
1217         "splitBasicBlock broken!");
1218  Br->setOperand(0, FirstNewBlock);
1219
1220
1221  // Now that the function is correct, make it a little bit nicer.  In
1222  // particular, move the basic blocks inserted from the end of the function
1223  // into the space made by splitting the source basic block.
1224  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
1225                                     FirstNewBlock, Caller->end());
1226
1227  // Handle all of the return instructions that we just cloned in, and eliminate
1228  // any users of the original call/invoke instruction.
1229  Type *RTy = CalledFunc->getReturnType();
1230
1231  PHINode *PHI = 0;
1232  if (Returns.size() > 1) {
1233    // The PHI node should go at the front of the new basic block to merge all
1234    // possible incoming values.
1235    if (!TheCall->use_empty()) {
1236      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
1237                            AfterCallBB->begin());
1238      // Anything that used the result of the function call should now use the
1239      // PHI node as their operand.
1240      TheCall->replaceAllUsesWith(PHI);
1241    }
1242
1243    // Loop over all of the return instructions adding entries to the PHI node
1244    // as appropriate.
1245    if (PHI) {
1246      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1247        ReturnInst *RI = Returns[i];
1248        assert(RI->getReturnValue()->getType() == PHI->getType() &&
1249               "Ret value not consistent in function!");
1250        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
1251      }
1252    }
1253
1254
1255    // Add a branch to the merge points and remove return instructions.
1256    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1257      ReturnInst *RI = Returns[i];
1258      BranchInst::Create(AfterCallBB, RI);
1259      RI->eraseFromParent();
1260    }
1261  } else if (!Returns.empty()) {
1262    // Otherwise, if there is exactly one return value, just replace anything
1263    // using the return value of the call with the computed value.
1264    if (!TheCall->use_empty()) {
1265      if (TheCall == Returns[0]->getReturnValue())
1266        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1267      else
1268        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
1269    }
1270
1271    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
1272    BasicBlock *ReturnBB = Returns[0]->getParent();
1273    ReturnBB->replaceAllUsesWith(AfterCallBB);
1274
1275    // Splice the code from the return block into the block that it will return
1276    // to, which contains the code that was after the call.
1277    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
1278                                      ReturnBB->getInstList());
1279
1280    // Delete the return instruction now and empty ReturnBB now.
1281    Returns[0]->eraseFromParent();
1282    ReturnBB->eraseFromParent();
1283  } else if (!TheCall->use_empty()) {
1284    // No returns, but something is using the return value of the call.  Just
1285    // nuke the result.
1286    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1287  }
1288
1289  // Since we are now done with the Call/Invoke, we can delete it.
1290  TheCall->eraseFromParent();
1291
1292  // We should always be able to fold the entry block of the function into the
1293  // single predecessor of the block...
1294  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
1295  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
1296
1297  // Splice the code entry block into calling block, right before the
1298  // unconditional branch.
1299  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
1300  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
1301
1302  // Remove the unconditional branch.
1303  OrigBB->getInstList().erase(Br);
1304
1305  // Now we can remove the CalleeEntry block, which is now empty.
1306  Caller->getBasicBlockList().erase(CalleeEntry);
1307
1308  // If we inserted a phi node, check to see if it has a single value (e.g. all
1309  // the entries are the same or undef).  If so, remove the PHI so it doesn't
1310  // block other optimizations.
1311  if (PHI)
1312    if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
1313      PHI->replaceAllUsesWith(V);
1314      PHI->eraseFromParent();
1315    }
1316
1317  return true;
1318}
1319