1/*
2 *  arch/arm/include/asm/io.h
3 *
4 *  Copyright (C) 1996-2000 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Modifications:
11 *  16-Sep-1996	RMK	Inlined the inx/outx functions & optimised for both
12 *			constant addresses and variable addresses.
13 *  04-Dec-1997	RMK	Moved a lot of this stuff to the new architecture
14 *			specific IO header files.
15 *  27-Mar-1999	PJB	Second parameter of memcpy_toio is const..
16 *  04-Apr-1999	PJB	Added check_signature.
17 *  12-Dec-1999	RMK	More cleanups
18 *  18-Jun-2000 RMK	Removed virt_to_* and friends definitions
19 *  05-Oct-2004 BJD     Moved memory string functions to use void __iomem
20 */
21#ifndef __ASM_ARM_IO_H
22#define __ASM_ARM_IO_H
23
24#ifdef __KERNEL__
25
26#include <linux/types.h>
27#include <linux/blk_types.h>
28#include <asm/byteorder.h>
29#include <asm/memory.h>
30#include <asm-generic/pci_iomap.h>
31#include <xen/xen.h>
32
33/*
34 * ISA I/O bus memory addresses are 1:1 with the physical address.
35 */
36#define isa_virt_to_bus virt_to_phys
37#define isa_page_to_bus page_to_phys
38#define isa_bus_to_virt phys_to_virt
39
40/*
41 * Atomic MMIO-wide IO modify
42 */
43extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set);
44extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set);
45
46/*
47 * Generic IO read/write.  These perform native-endian accesses.  Note
48 * that some architectures will want to re-define __raw_{read,write}w.
49 */
50extern void __raw_writesb(void __iomem *addr, const void *data, int bytelen);
51extern void __raw_writesw(void __iomem *addr, const void *data, int wordlen);
52extern void __raw_writesl(void __iomem *addr, const void *data, int longlen);
53
54extern void __raw_readsb(const void __iomem *addr, void *data, int bytelen);
55extern void __raw_readsw(const void __iomem *addr, void *data, int wordlen);
56extern void __raw_readsl(const void __iomem *addr, void *data, int longlen);
57
58#if __LINUX_ARM_ARCH__ < 6
59/*
60 * Half-word accesses are problematic with RiscPC due to limitations of
61 * the bus. Rather than special-case the machine, just let the compiler
62 * generate the access for CPUs prior to ARMv6.
63 */
64#define __raw_readw(a)         (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
65#define __raw_writew(v,a)      ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v)))
66#else
67/*
68 * When running under a hypervisor, we want to avoid I/O accesses with
69 * writeback addressing modes as these incur a significant performance
70 * overhead (the address generation must be emulated in software).
71 */
72static inline void __raw_writew(u16 val, volatile void __iomem *addr)
73{
74	asm volatile("strh %1, %0"
75		     : "+Q" (*(volatile u16 __force *)addr)
76		     : "r" (val));
77}
78
79static inline u16 __raw_readw(const volatile void __iomem *addr)
80{
81	u16 val;
82	asm volatile("ldrh %1, %0"
83		     : "+Q" (*(volatile u16 __force *)addr),
84		       "=r" (val));
85	return val;
86}
87#endif
88
89static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
90{
91	asm volatile("strb %1, %0"
92		     : "+Qo" (*(volatile u8 __force *)addr)
93		     : "r" (val));
94}
95
96static inline void __raw_writel(u32 val, volatile void __iomem *addr)
97{
98	asm volatile("str %1, %0"
99		     : "+Qo" (*(volatile u32 __force *)addr)
100		     : "r" (val));
101}
102
103static inline u8 __raw_readb(const volatile void __iomem *addr)
104{
105	u8 val;
106	asm volatile("ldrb %1, %0"
107		     : "+Qo" (*(volatile u8 __force *)addr),
108		       "=r" (val));
109	return val;
110}
111
112static inline u32 __raw_readl(const volatile void __iomem *addr)
113{
114	u32 val;
115	asm volatile("ldr %1, %0"
116		     : "+Qo" (*(volatile u32 __force *)addr),
117		       "=r" (val));
118	return val;
119}
120
121/*
122 * Architecture ioremap implementation.
123 */
124#define MT_DEVICE		0
125#define MT_DEVICE_NONSHARED	1
126#define MT_DEVICE_CACHED	2
127#define MT_DEVICE_WC		3
128/*
129 * types 4 onwards can be found in asm/mach/map.h and are undefined
130 * for ioremap
131 */
132
133/*
134 * __arm_ioremap takes CPU physical address.
135 * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page
136 * The _caller variety takes a __builtin_return_address(0) value for
137 * /proc/vmalloc to use - and should only be used in non-inline functions.
138 */
139extern void __iomem *__arm_ioremap_pfn_caller(unsigned long, unsigned long,
140	size_t, unsigned int, void *);
141extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int,
142	void *);
143
144extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int);
145extern void __iomem *__arm_ioremap(phys_addr_t, size_t, unsigned int);
146extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached);
147extern void __iounmap(volatile void __iomem *addr);
148extern void __arm_iounmap(volatile void __iomem *addr);
149
150extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
151	unsigned int, void *);
152extern void (*arch_iounmap)(volatile void __iomem *);
153
154/*
155 * Bad read/write accesses...
156 */
157extern void __readwrite_bug(const char *fn);
158
159/*
160 * A typesafe __io() helper
161 */
162static inline void __iomem *__typesafe_io(unsigned long addr)
163{
164	return (void __iomem *)addr;
165}
166
167#define IOMEM(x)	((void __force __iomem *)(x))
168
169/* IO barriers */
170#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
171#include <asm/barrier.h>
172#define __iormb()		rmb()
173#define __iowmb()		wmb()
174#else
175#define __iormb()		do { } while (0)
176#define __iowmb()		do { } while (0)
177#endif
178
179/* PCI fixed i/o mapping */
180#define PCI_IO_VIRT_BASE	0xfee00000
181#define PCI_IOBASE		((void __iomem *)PCI_IO_VIRT_BASE)
182
183#if defined(CONFIG_PCI)
184void pci_ioremap_set_mem_type(int mem_type);
185#else
186static inline void pci_ioremap_set_mem_type(int mem_type) {}
187#endif
188
189extern int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr);
190
191/*
192 * Now, pick up the machine-defined IO definitions
193 */
194#ifdef CONFIG_NEED_MACH_IO_H
195#include <mach/io.h>
196#elif defined(CONFIG_PCI)
197#define IO_SPACE_LIMIT	((resource_size_t)0xfffff)
198#define __io(a)		__typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT))
199#else
200#define __io(a)		__typesafe_io((a) & IO_SPACE_LIMIT)
201#endif
202
203/*
204 * This is the limit of PC card/PCI/ISA IO space, which is by default
205 * 64K if we have PC card, PCI or ISA support.  Otherwise, default to
206 * zero to prevent ISA/PCI drivers claiming IO space (and potentially
207 * oopsing.)
208 *
209 * Only set this larger if you really need inb() et.al. to operate over
210 * a larger address space.  Note that SOC_COMMON ioremaps each sockets
211 * IO space area, and so inb() et.al. must be defined to operate as per
212 * readb() et.al. on such platforms.
213 */
214#ifndef IO_SPACE_LIMIT
215#if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE)
216#define IO_SPACE_LIMIT ((resource_size_t)0xffffffff)
217#elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD)
218#define IO_SPACE_LIMIT ((resource_size_t)0xffff)
219#else
220#define IO_SPACE_LIMIT ((resource_size_t)0)
221#endif
222#endif
223
224/*
225 *  IO port access primitives
226 *  -------------------------
227 *
228 * The ARM doesn't have special IO access instructions; all IO is memory
229 * mapped.  Note that these are defined to perform little endian accesses
230 * only.  Their primary purpose is to access PCI and ISA peripherals.
231 *
232 * Note that for a big endian machine, this implies that the following
233 * big endian mode connectivity is in place, as described by numerous
234 * ARM documents:
235 *
236 *    PCI:  D0-D7   D8-D15 D16-D23 D24-D31
237 *    ARM: D24-D31 D16-D23  D8-D15  D0-D7
238 *
239 * The machine specific io.h include defines __io to translate an "IO"
240 * address to a memory address.
241 *
242 * Note that we prevent GCC re-ordering or caching values in expressions
243 * by introducing sequence points into the in*() definitions.  Note that
244 * __raw_* do not guarantee this behaviour.
245 *
246 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
247 */
248#ifdef __io
249#define outb(v,p)	({ __iowmb(); __raw_writeb(v,__io(p)); })
250#define outw(v,p)	({ __iowmb(); __raw_writew((__force __u16) \
251					cpu_to_le16(v),__io(p)); })
252#define outl(v,p)	({ __iowmb(); __raw_writel((__force __u32) \
253					cpu_to_le32(v),__io(p)); })
254
255#define inb(p)	({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; })
256#define inw(p)	({ __u16 __v = le16_to_cpu((__force __le16) \
257			__raw_readw(__io(p))); __iormb(); __v; })
258#define inl(p)	({ __u32 __v = le32_to_cpu((__force __le32) \
259			__raw_readl(__io(p))); __iormb(); __v; })
260
261#define outsb(p,d,l)		__raw_writesb(__io(p),d,l)
262#define outsw(p,d,l)		__raw_writesw(__io(p),d,l)
263#define outsl(p,d,l)		__raw_writesl(__io(p),d,l)
264
265#define insb(p,d,l)		__raw_readsb(__io(p),d,l)
266#define insw(p,d,l)		__raw_readsw(__io(p),d,l)
267#define insl(p,d,l)		__raw_readsl(__io(p),d,l)
268#endif
269
270#define outb_p(val,port)	outb((val),(port))
271#define outw_p(val,port)	outw((val),(port))
272#define outl_p(val,port)	outl((val),(port))
273#define inb_p(port)		inb((port))
274#define inw_p(port)		inw((port))
275#define inl_p(port)		inl((port))
276
277#define outsb_p(port,from,len)	outsb(port,from,len)
278#define outsw_p(port,from,len)	outsw(port,from,len)
279#define outsl_p(port,from,len)	outsl(port,from,len)
280#define insb_p(port,to,len)	insb(port,to,len)
281#define insw_p(port,to,len)	insw(port,to,len)
282#define insl_p(port,to,len)	insl(port,to,len)
283
284/*
285 * String version of IO memory access ops:
286 */
287extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t);
288extern void _memcpy_toio(volatile void __iomem *, const void *, size_t);
289extern void _memset_io(volatile void __iomem *, int, size_t);
290
291#define mmiowb()
292
293/*
294 *  Memory access primitives
295 *  ------------------------
296 *
297 * These perform PCI memory accesses via an ioremap region.  They don't
298 * take an address as such, but a cookie.
299 *
300 * Again, this are defined to perform little endian accesses.  See the
301 * IO port primitives for more information.
302 */
303#ifndef readl
304#define readb_relaxed(c) ({ u8  __r = __raw_readb(c); __r; })
305#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
306					__raw_readw(c)); __r; })
307#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
308					__raw_readl(c)); __r; })
309
310#define writeb_relaxed(v,c)	__raw_writeb(v,c)
311#define writew_relaxed(v,c)	__raw_writew((__force u16) cpu_to_le16(v),c)
312#define writel_relaxed(v,c)	__raw_writel((__force u32) cpu_to_le32(v),c)
313
314#define readb(c)		({ u8  __v = readb_relaxed(c); __iormb(); __v; })
315#define readw(c)		({ u16 __v = readw_relaxed(c); __iormb(); __v; })
316#define readl(c)		({ u32 __v = readl_relaxed(c); __iormb(); __v; })
317
318#define writeb(v,c)		({ __iowmb(); writeb_relaxed(v,c); })
319#define writew(v,c)		({ __iowmb(); writew_relaxed(v,c); })
320#define writel(v,c)		({ __iowmb(); writel_relaxed(v,c); })
321
322#define readsb(p,d,l)		__raw_readsb(p,d,l)
323#define readsw(p,d,l)		__raw_readsw(p,d,l)
324#define readsl(p,d,l)		__raw_readsl(p,d,l)
325
326#define writesb(p,d,l)		__raw_writesb(p,d,l)
327#define writesw(p,d,l)		__raw_writesw(p,d,l)
328#define writesl(p,d,l)		__raw_writesl(p,d,l)
329
330#define memset_io(c,v,l)	_memset_io(c,(v),(l))
331#define memcpy_fromio(a,c,l)	_memcpy_fromio((a),c,(l))
332#define memcpy_toio(c,a,l)	_memcpy_toio(c,(a),(l))
333
334#endif	/* readl */
335
336/*
337 * ioremap and friends.
338 *
339 * ioremap takes a PCI memory address, as specified in
340 * Documentation/io-mapping.txt.
341 *
342 */
343#define ioremap(cookie,size)		__arm_ioremap((cookie), (size), MT_DEVICE)
344#define ioremap_nocache(cookie,size)	__arm_ioremap((cookie), (size), MT_DEVICE)
345#define ioremap_cache(cookie,size)	__arm_ioremap((cookie), (size), MT_DEVICE_CACHED)
346#define ioremap_wc(cookie,size)		__arm_ioremap((cookie), (size), MT_DEVICE_WC)
347#define iounmap				__arm_iounmap
348
349/*
350 * io{read,write}{8,16,32} macros
351 */
352#ifndef ioread8
353#define ioread8(p)	({ unsigned int __v = __raw_readb(p); __iormb(); __v; })
354#define ioread16(p)	({ unsigned int __v = le16_to_cpu((__force __le16)__raw_readw(p)); __iormb(); __v; })
355#define ioread32(p)	({ unsigned int __v = le32_to_cpu((__force __le32)__raw_readl(p)); __iormb(); __v; })
356
357#define ioread16be(p)	({ unsigned int __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; })
358#define ioread32be(p)	({ unsigned int __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; })
359
360#define iowrite8(v,p)	({ __iowmb(); __raw_writeb(v, p); })
361#define iowrite16(v,p)	({ __iowmb(); __raw_writew((__force __u16)cpu_to_le16(v), p); })
362#define iowrite32(v,p)	({ __iowmb(); __raw_writel((__force __u32)cpu_to_le32(v), p); })
363
364#define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
365#define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })
366
367#define ioread8_rep(p,d,c)	__raw_readsb(p,d,c)
368#define ioread16_rep(p,d,c)	__raw_readsw(p,d,c)
369#define ioread32_rep(p,d,c)	__raw_readsl(p,d,c)
370
371#define iowrite8_rep(p,s,c)	__raw_writesb(p,s,c)
372#define iowrite16_rep(p,s,c)	__raw_writesw(p,s,c)
373#define iowrite32_rep(p,s,c)	__raw_writesl(p,s,c)
374
375extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
376extern void ioport_unmap(void __iomem *addr);
377#endif
378
379struct pci_dev;
380
381extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
382
383/*
384 * can the hardware map this into one segment or not, given no other
385 * constraints.
386 */
387#define BIOVEC_MERGEABLE(vec1, vec2)	\
388	((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2)))
389
390struct bio_vec;
391extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1,
392				      const struct bio_vec *vec2);
393#define BIOVEC_PHYS_MERGEABLE(vec1, vec2)				\
394	(__BIOVEC_PHYS_MERGEABLE(vec1, vec2) &&				\
395	 (!xen_domain() || xen_biovec_phys_mergeable(vec1, vec2)))
396
397#ifdef CONFIG_MMU
398#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
399extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
400extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
401extern int devmem_is_allowed(unsigned long pfn);
402#endif
403
404/*
405 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
406 * access
407 */
408#define xlate_dev_mem_ptr(p)	__va(p)
409
410/*
411 * Convert a virtual cached pointer to an uncached pointer
412 */
413#define xlate_dev_kmem_ptr(p)	p
414
415/*
416 * Register ISA memory and port locations for glibc iopl/inb/outb
417 * emulation.
418 */
419extern void register_isa_ports(unsigned int mmio, unsigned int io,
420			       unsigned int io_shift);
421
422#endif	/* __KERNEL__ */
423#endif	/* __ASM_ARM_IO_H */
424