1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Matthew W. S. Bell  <mentor@madwifi.org>
5 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
7 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23/*********************************\
24* Protocol Control Unit Functions *
25\*********************************/
26
27#include <asm/unaligned.h>
28
29#include "ath5k.h"
30#include "reg.h"
31#include "debug.h"
32
33/**
34 * DOC: Protocol Control Unit (PCU) functions
35 *
36 * Protocol control unit is responsible to maintain various protocol
37 * properties before a frame is send and after a frame is received to/from
38 * baseband. To be more specific, PCU handles:
39 *
40 * - Buffering of RX and TX frames (after QCU/DCUs)
41 *
42 * - Encrypting and decrypting (using the built-in engine)
43 *
44 * - Generating ACKs, RTS/CTS frames
45 *
46 * - Maintaining TSF
47 *
48 * - FCS
49 *
50 * - Updating beacon data (with TSF etc)
51 *
52 * - Generating virtual CCA
53 *
54 * - RX/Multicast filtering
55 *
56 * - BSSID filtering
57 *
58 * - Various statistics
59 *
60 * -Different operating modes: AP, STA, IBSS
61 *
62 * Note: Most of these functions can be tweaked/bypassed so you can do
63 * them on sw above for debugging or research. For more infos check out PCU
64 * registers on reg.h.
65 */
66
67/**
68 * DOC: ACK rates
69 *
70 * AR5212+ can use higher rates for ack transmission
71 * based on current tx rate instead of the base rate.
72 * It does this to better utilize channel usage.
73 * There is a mapping between G rates (that cover both
74 * CCK and OFDM) and ack rates that we use when setting
75 * rate -> duration table. This mapping is hw-based so
76 * don't change anything.
77 *
78 * To enable this functionality we must set
79 * ah->ah_ack_bitrate_high to true else base rate is
80 * used (1Mb for CCK, 6Mb for OFDM).
81 */
82static const unsigned int ack_rates_high[] =
83/* Tx	-> ACK	*/
84/* 1Mb	-> 1Mb	*/	{ 0,
85/* 2MB	-> 2Mb	*/	1,
86/* 5.5Mb -> 2Mb	*/	1,
87/* 11Mb	-> 2Mb	*/	1,
88/* 6Mb	-> 6Mb	*/	4,
89/* 9Mb	-> 6Mb	*/	4,
90/* 12Mb	-> 12Mb	*/	6,
91/* 18Mb	-> 12Mb	*/	6,
92/* 24Mb	-> 24Mb	*/	8,
93/* 36Mb	-> 24Mb	*/	8,
94/* 48Mb	-> 24Mb	*/	8,
95/* 54Mb	-> 24Mb	*/	8 };
96
97/*******************\
98* Helper functions *
99\*******************/
100
101/**
102 * ath5k_hw_get_frame_duration() - Get tx time of a frame
103 * @ah: The &struct ath5k_hw
104 * @len: Frame's length in bytes
105 * @rate: The @struct ieee80211_rate
106 * @shortpre: Indicate short preample
107 *
108 * Calculate tx duration of a frame given it's rate and length
109 * It extends ieee80211_generic_frame_duration for non standard
110 * bwmodes.
111 */
112int
113ath5k_hw_get_frame_duration(struct ath5k_hw *ah, enum ieee80211_band band,
114		int len, struct ieee80211_rate *rate, bool shortpre)
115{
116	int sifs, preamble, plcp_bits, sym_time;
117	int bitrate, bits, symbols, symbol_bits;
118	int dur;
119
120	/* Fallback */
121	if (!ah->ah_bwmode) {
122		__le16 raw_dur = ieee80211_generic_frame_duration(ah->hw,
123					NULL, band, len, rate);
124
125		/* subtract difference between long and short preamble */
126		dur = le16_to_cpu(raw_dur);
127		if (shortpre)
128			dur -= 96;
129
130		return dur;
131	}
132
133	bitrate = rate->bitrate;
134	preamble = AR5K_INIT_OFDM_PREAMPLE_TIME;
135	plcp_bits = AR5K_INIT_OFDM_PLCP_BITS;
136	sym_time = AR5K_INIT_OFDM_SYMBOL_TIME;
137
138	switch (ah->ah_bwmode) {
139	case AR5K_BWMODE_40MHZ:
140		sifs = AR5K_INIT_SIFS_TURBO;
141		preamble = AR5K_INIT_OFDM_PREAMBLE_TIME_MIN;
142		break;
143	case AR5K_BWMODE_10MHZ:
144		sifs = AR5K_INIT_SIFS_HALF_RATE;
145		preamble *= 2;
146		sym_time *= 2;
147		bitrate = DIV_ROUND_UP(bitrate, 2);
148		break;
149	case AR5K_BWMODE_5MHZ:
150		sifs = AR5K_INIT_SIFS_QUARTER_RATE;
151		preamble *= 4;
152		sym_time *= 4;
153		bitrate = DIV_ROUND_UP(bitrate, 4);
154		break;
155	default:
156		sifs = AR5K_INIT_SIFS_DEFAULT_BG;
157		break;
158	}
159
160	bits = plcp_bits + (len << 3);
161	/* Bit rate is in 100Kbits */
162	symbol_bits = bitrate * sym_time;
163	symbols = DIV_ROUND_UP(bits * 10, symbol_bits);
164
165	dur = sifs + preamble + (sym_time * symbols);
166
167	return dur;
168}
169
170/**
171 * ath5k_hw_get_default_slottime() - Get the default slot time for current mode
172 * @ah: The &struct ath5k_hw
173 */
174unsigned int
175ath5k_hw_get_default_slottime(struct ath5k_hw *ah)
176{
177	struct ieee80211_channel *channel = ah->ah_current_channel;
178	unsigned int slot_time;
179
180	switch (ah->ah_bwmode) {
181	case AR5K_BWMODE_40MHZ:
182		slot_time = AR5K_INIT_SLOT_TIME_TURBO;
183		break;
184	case AR5K_BWMODE_10MHZ:
185		slot_time = AR5K_INIT_SLOT_TIME_HALF_RATE;
186		break;
187	case AR5K_BWMODE_5MHZ:
188		slot_time = AR5K_INIT_SLOT_TIME_QUARTER_RATE;
189		break;
190	case AR5K_BWMODE_DEFAULT:
191	default:
192		slot_time = AR5K_INIT_SLOT_TIME_DEFAULT;
193		if ((channel->hw_value == AR5K_MODE_11B) && !ah->ah_short_slot)
194			slot_time = AR5K_INIT_SLOT_TIME_B;
195		break;
196	}
197
198	return slot_time;
199}
200
201/**
202 * ath5k_hw_get_default_sifs() - Get the default SIFS for current mode
203 * @ah: The &struct ath5k_hw
204 */
205unsigned int
206ath5k_hw_get_default_sifs(struct ath5k_hw *ah)
207{
208	struct ieee80211_channel *channel = ah->ah_current_channel;
209	unsigned int sifs;
210
211	switch (ah->ah_bwmode) {
212	case AR5K_BWMODE_40MHZ:
213		sifs = AR5K_INIT_SIFS_TURBO;
214		break;
215	case AR5K_BWMODE_10MHZ:
216		sifs = AR5K_INIT_SIFS_HALF_RATE;
217		break;
218	case AR5K_BWMODE_5MHZ:
219		sifs = AR5K_INIT_SIFS_QUARTER_RATE;
220		break;
221	case AR5K_BWMODE_DEFAULT:
222		sifs = AR5K_INIT_SIFS_DEFAULT_BG;
223	default:
224		if (channel->band == IEEE80211_BAND_5GHZ)
225			sifs = AR5K_INIT_SIFS_DEFAULT_A;
226		break;
227	}
228
229	return sifs;
230}
231
232/**
233 * ath5k_hw_update_mib_counters() - Update MIB counters (mac layer statistics)
234 * @ah: The &struct ath5k_hw
235 *
236 * Reads MIB counters from PCU and updates sw statistics. Is called after a
237 * MIB interrupt, because one of these counters might have reached their maximum
238 * and triggered the MIB interrupt, to let us read and clear the counter.
239 *
240 * NOTE: Is called in interrupt context!
241 */
242void
243ath5k_hw_update_mib_counters(struct ath5k_hw *ah)
244{
245	struct ath5k_statistics *stats = &ah->stats;
246
247	/* Read-And-Clear */
248	stats->ack_fail += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
249	stats->rts_fail += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
250	stats->rts_ok += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
251	stats->fcs_error += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
252	stats->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
253}
254
255
256/******************\
257* ACK/CTS Timeouts *
258\******************/
259
260/**
261 * ath5k_hw_write_rate_duration() - Fill rate code to duration table
262 * @ah: The &struct ath5k_hw
263 *
264 * Write the rate code to duration table upon hw reset. This is a helper for
265 * ath5k_hw_pcu_init(). It seems all this is doing is setting an ACK timeout on
266 * the hardware, based on current mode, for each rate. The rates which are
267 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
268 * different rate code so we write their value twice (one for long preamble
269 * and one for short).
270 *
271 * Note: Band doesn't matter here, if we set the values for OFDM it works
272 * on both a and g modes. So all we have to do is set values for all g rates
273 * that include all OFDM and CCK rates.
274 *
275 */
276static inline void
277ath5k_hw_write_rate_duration(struct ath5k_hw *ah)
278{
279	struct ieee80211_rate *rate;
280	unsigned int i;
281	/* 802.11g covers both OFDM and CCK */
282	u8 band = IEEE80211_BAND_2GHZ;
283
284	/* Write rate duration table */
285	for (i = 0; i < ah->sbands[band].n_bitrates; i++) {
286		u32 reg;
287		u16 tx_time;
288
289		if (ah->ah_ack_bitrate_high)
290			rate = &ah->sbands[band].bitrates[ack_rates_high[i]];
291		/* CCK -> 1Mb */
292		else if (i < 4)
293			rate = &ah->sbands[band].bitrates[0];
294		/* OFDM -> 6Mb */
295		else
296			rate = &ah->sbands[band].bitrates[4];
297
298		/* Set ACK timeout */
299		reg = AR5K_RATE_DUR(rate->hw_value);
300
301		/* An ACK frame consists of 10 bytes. If you add the FCS,
302		 * which ieee80211_generic_frame_duration() adds,
303		 * its 14 bytes. Note we use the control rate and not the
304		 * actual rate for this rate. See mac80211 tx.c
305		 * ieee80211_duration() for a brief description of
306		 * what rate we should choose to TX ACKs. */
307		tx_time = ath5k_hw_get_frame_duration(ah, band, 10,
308					rate, false);
309
310		ath5k_hw_reg_write(ah, tx_time, reg);
311
312		if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
313			continue;
314
315		tx_time = ath5k_hw_get_frame_duration(ah, band, 10, rate, true);
316		ath5k_hw_reg_write(ah, tx_time,
317			reg + (AR5K_SET_SHORT_PREAMBLE << 2));
318	}
319}
320
321/**
322 * ath5k_hw_set_ack_timeout() - Set ACK timeout on PCU
323 * @ah: The &struct ath5k_hw
324 * @timeout: Timeout in usec
325 */
326static int
327ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
328{
329	if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK))
330			<= timeout)
331		return -EINVAL;
332
333	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
334		ath5k_hw_htoclock(ah, timeout));
335
336	return 0;
337}
338
339/**
340 * ath5k_hw_set_cts_timeout() - Set CTS timeout on PCU
341 * @ah: The &struct ath5k_hw
342 * @timeout: Timeout in usec
343 */
344static int
345ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
346{
347	if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS))
348			<= timeout)
349		return -EINVAL;
350
351	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
352			ath5k_hw_htoclock(ah, timeout));
353
354	return 0;
355}
356
357
358/*******************\
359* RX filter Control *
360\*******************/
361
362/**
363 * ath5k_hw_set_lladdr() - Set station id
364 * @ah: The &struct ath5k_hw
365 * @mac: The card's mac address (array of octets)
366 *
367 * Set station id on hw using the provided mac address
368 */
369int
370ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
371{
372	struct ath_common *common = ath5k_hw_common(ah);
373	u32 low_id, high_id;
374	u32 pcu_reg;
375
376	/* Set new station ID */
377	memcpy(common->macaddr, mac, ETH_ALEN);
378
379	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
380
381	low_id = get_unaligned_le32(mac);
382	high_id = get_unaligned_le16(mac + 4);
383
384	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
385	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
386
387	return 0;
388}
389
390/**
391 * ath5k_hw_set_bssid() - Set current BSSID on hw
392 * @ah: The &struct ath5k_hw
393 *
394 * Sets the current BSSID and BSSID mask we have from the
395 * common struct into the hardware
396 */
397void
398ath5k_hw_set_bssid(struct ath5k_hw *ah)
399{
400	struct ath_common *common = ath5k_hw_common(ah);
401	u16 tim_offset = 0;
402
403	/*
404	 * Set BSSID mask on 5212
405	 */
406	if (ah->ah_version == AR5K_AR5212)
407		ath_hw_setbssidmask(common);
408
409	/*
410	 * Set BSSID
411	 */
412	ath5k_hw_reg_write(ah,
413			   get_unaligned_le32(common->curbssid),
414			   AR5K_BSS_ID0);
415	ath5k_hw_reg_write(ah,
416			   get_unaligned_le16(common->curbssid + 4) |
417			   ((common->curaid & 0x3fff) << AR5K_BSS_ID1_AID_S),
418			   AR5K_BSS_ID1);
419
420	if (common->curaid == 0) {
421		ath5k_hw_disable_pspoll(ah);
422		return;
423	}
424
425	AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
426			    tim_offset ? tim_offset + 4 : 0);
427
428	ath5k_hw_enable_pspoll(ah, NULL, 0);
429}
430
431/**
432 * ath5k_hw_set_bssid_mask() - Filter out bssids we listen
433 * @ah: The &struct ath5k_hw
434 * @mask: The BSSID mask to set (array of octets)
435 *
436 * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
437 * which bits of the interface's MAC address should be looked at when trying
438 * to decide which packets to ACK. In station mode and AP mode with a single
439 * BSS every bit matters since we lock to only one BSS. In AP mode with
440 * multiple BSSes (virtual interfaces) not every bit matters because hw must
441 * accept frames for all BSSes and so we tweak some bits of our mac address
442 * in order to have multiple BSSes.
443 *
444 * For more information check out ../hw.c of the common ath module.
445 */
446void
447ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
448{
449	struct ath_common *common = ath5k_hw_common(ah);
450
451	/* Cache bssid mask so that we can restore it
452	 * on reset */
453	memcpy(common->bssidmask, mask, ETH_ALEN);
454	if (ah->ah_version == AR5K_AR5212)
455		ath_hw_setbssidmask(common);
456}
457
458/**
459 * ath5k_hw_set_mcast_filter() - Set multicast filter
460 * @ah: The &struct ath5k_hw
461 * @filter0: Lower 32bits of muticast filter
462 * @filter1: Higher 16bits of multicast filter
463 */
464void
465ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
466{
467	ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
468	ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
469}
470
471/**
472 * ath5k_hw_get_rx_filter() - Get current rx filter
473 * @ah: The &struct ath5k_hw
474 *
475 * Returns the RX filter by reading rx filter and
476 * phy error filter registers. RX filter is used
477 * to set the allowed frame types that PCU will accept
478 * and pass to the driver. For a list of frame types
479 * check out reg.h.
480 */
481u32
482ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
483{
484	u32 data, filter = 0;
485
486	filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
487
488	/*Radar detection for 5212*/
489	if (ah->ah_version == AR5K_AR5212) {
490		data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
491
492		if (data & AR5K_PHY_ERR_FIL_RADAR)
493			filter |= AR5K_RX_FILTER_RADARERR;
494		if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
495			filter |= AR5K_RX_FILTER_PHYERR;
496	}
497
498	return filter;
499}
500
501/**
502 * ath5k_hw_set_rx_filter() - Set rx filter
503 * @ah: The &struct ath5k_hw
504 * @filter: RX filter mask (see reg.h)
505 *
506 * Sets RX filter register and also handles PHY error filter
507 * register on 5212 and newer chips so that we have proper PHY
508 * error reporting.
509 */
510void
511ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
512{
513	u32 data = 0;
514
515	/* Set PHY error filter register on 5212*/
516	if (ah->ah_version == AR5K_AR5212) {
517		if (filter & AR5K_RX_FILTER_RADARERR)
518			data |= AR5K_PHY_ERR_FIL_RADAR;
519		if (filter & AR5K_RX_FILTER_PHYERR)
520			data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
521	}
522
523	/*
524	 * The AR5210 uses promiscuous mode to detect radar activity
525	 */
526	if (ah->ah_version == AR5K_AR5210 &&
527			(filter & AR5K_RX_FILTER_RADARERR)) {
528		filter &= ~AR5K_RX_FILTER_RADARERR;
529		filter |= AR5K_RX_FILTER_PROM;
530	}
531
532	/*Zero length DMA (phy error reporting) */
533	if (data)
534		AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
535	else
536		AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
537
538	/*Write RX Filter register*/
539	ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
540
541	/*Write PHY error filter register on 5212*/
542	if (ah->ah_version == AR5K_AR5212)
543		ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
544
545}
546
547
548/****************\
549* Beacon control *
550\****************/
551
552#define ATH5K_MAX_TSF_READ 10
553
554/**
555 * ath5k_hw_get_tsf64() - Get the full 64bit TSF
556 * @ah: The &struct ath5k_hw
557 *
558 * Returns the current TSF
559 */
560u64
561ath5k_hw_get_tsf64(struct ath5k_hw *ah)
562{
563	u32 tsf_lower, tsf_upper1, tsf_upper2;
564	int i;
565	unsigned long flags;
566
567	/* This code is time critical - we don't want to be interrupted here */
568	local_irq_save(flags);
569
570	/*
571	 * While reading TSF upper and then lower part, the clock is still
572	 * counting (or jumping in case of IBSS merge) so we might get
573	 * inconsistent values. To avoid this, we read the upper part again
574	 * and check it has not been changed. We make the hypothesis that a
575	 * maximum of 3 changes can happens in a row (we use 10 as a safe
576	 * value).
577	 *
578	 * Impact on performance is pretty small, since in most cases, only
579	 * 3 register reads are needed.
580	 */
581
582	tsf_upper1 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
583	for (i = 0; i < ATH5K_MAX_TSF_READ; i++) {
584		tsf_lower = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
585		tsf_upper2 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
586		if (tsf_upper2 == tsf_upper1)
587			break;
588		tsf_upper1 = tsf_upper2;
589	}
590
591	local_irq_restore(flags);
592
593	WARN_ON(i == ATH5K_MAX_TSF_READ);
594
595	return ((u64)tsf_upper1 << 32) | tsf_lower;
596}
597
598#undef ATH5K_MAX_TSF_READ
599
600/**
601 * ath5k_hw_set_tsf64() - Set a new 64bit TSF
602 * @ah: The &struct ath5k_hw
603 * @tsf64: The new 64bit TSF
604 *
605 * Sets the new TSF
606 */
607void
608ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64)
609{
610	ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32);
611	ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32);
612}
613
614/**
615 * ath5k_hw_reset_tsf() - Force a TSF reset
616 * @ah: The &struct ath5k_hw
617 *
618 * Forces a TSF reset on PCU
619 */
620void
621ath5k_hw_reset_tsf(struct ath5k_hw *ah)
622{
623	u32 val;
624
625	val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;
626
627	/*
628	 * Each write to the RESET_TSF bit toggles a hardware internal
629	 * signal to reset TSF, but if left high it will cause a TSF reset
630	 * on the next chip reset as well.  Thus we always write the value
631	 * twice to clear the signal.
632	 */
633	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
634	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
635}
636
637/**
638 * ath5k_hw_init_beacon_timers() - Initialize beacon timers
639 * @ah: The &struct ath5k_hw
640 * @next_beacon: Next TBTT
641 * @interval: Current beacon interval
642 *
643 * This function is used to initialize beacon timers based on current
644 * operation mode and settings.
645 */
646void
647ath5k_hw_init_beacon_timers(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
648{
649	u32 timer1, timer2, timer3;
650
651	/*
652	 * Set the additional timers by mode
653	 */
654	switch (ah->opmode) {
655	case NL80211_IFTYPE_MONITOR:
656	case NL80211_IFTYPE_STATION:
657		/* In STA mode timer1 is used as next wakeup
658		 * timer and timer2 as next CFP duration start
659		 * timer. Both in 1/8TUs. */
660		/* TODO: PCF handling */
661		if (ah->ah_version == AR5K_AR5210) {
662			timer1 = 0xffffffff;
663			timer2 = 0xffffffff;
664		} else {
665			timer1 = 0x0000ffff;
666			timer2 = 0x0007ffff;
667		}
668		/* Mark associated AP as PCF incapable for now */
669		AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
670		break;
671	case NL80211_IFTYPE_ADHOC:
672		AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
673	default:
674		/* On non-STA modes timer1 is used as next DMA
675		 * beacon alert (DBA) timer and timer2 as next
676		 * software beacon alert. Both in 1/8TUs. */
677		timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
678		timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
679		break;
680	}
681
682	/* Timer3 marks the end of our ATIM window
683	 * a zero length window is not allowed because
684	 * we 'll get no beacons */
685	timer3 = next_beacon + 1;
686
687	/*
688	 * Set the beacon register and enable all timers.
689	 */
690	/* When in AP or Mesh Point mode zero timer0 to start TSF */
691	if (ah->opmode == NL80211_IFTYPE_AP ||
692	    ah->opmode == NL80211_IFTYPE_MESH_POINT)
693		ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
694
695	ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
696	ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
697	ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
698	ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
699
700	/* Force a TSF reset if requested and enable beacons */
701	if (interval & AR5K_BEACON_RESET_TSF)
702		ath5k_hw_reset_tsf(ah);
703
704	ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
705					AR5K_BEACON_ENABLE),
706						AR5K_BEACON);
707
708	/* Flush any pending BMISS interrupts on ISR by
709	 * performing a clear-on-write operation on PISR
710	 * register for the BMISS bit (writing a bit on
711	 * ISR toggles a reset for that bit and leaves
712	 * the remaining bits intact) */
713	if (ah->ah_version == AR5K_AR5210)
714		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
715	else
716		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);
717
718	/* TODO: Set enhanced sleep registers on AR5212
719	 * based on vif->bss_conf params, until then
720	 * disable power save reporting.*/
721	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);
722
723}
724
725/**
726 * ath5k_check_timer_win() - Check if timer B is timer A + window
727 * @a: timer a (before b)
728 * @b: timer b (after a)
729 * @window: difference between a and b
730 * @intval: timers are increased by this interval
731 *
732 * This helper function checks if timer B is timer A + window and covers
733 * cases where timer A or B might have already been updated or wrapped
734 * around (Timers are 16 bit).
735 *
736 * Returns true if O.K.
737 */
738static inline bool
739ath5k_check_timer_win(int a, int b, int window, int intval)
740{
741	/*
742	 * 1.) usually B should be A + window
743	 * 2.) A already updated, B not updated yet
744	 * 3.) A already updated and has wrapped around
745	 * 4.) B has wrapped around
746	 */
747	if ((b - a == window) ||				/* 1.) */
748	    (a - b == intval - window) ||			/* 2.) */
749	    ((a | 0x10000) - b == intval - window) ||		/* 3.) */
750	    ((b | 0x10000) - a == window))			/* 4.) */
751		return true; /* O.K. */
752	return false;
753}
754
755/**
756 * ath5k_hw_check_beacon_timers() - Check if the beacon timers are correct
757 * @ah: The &struct ath5k_hw
758 * @intval: beacon interval
759 *
760 * This is a workaround for IBSS mode
761 *
762 * The need for this function arises from the fact that we have 4 separate
763 * HW timer registers (TIMER0 - TIMER3), which are closely related to the
764 * next beacon target time (NBTT), and that the HW updates these timers
765 * separately based on the current TSF value. The hardware increments each
766 * timer by the beacon interval, when the local TSF converted to TU is equal
767 * to the value stored in the timer.
768 *
769 * The reception of a beacon with the same BSSID can update the local HW TSF
770 * at any time - this is something we can't avoid. If the TSF jumps to a
771 * time which is later than the time stored in a timer, this timer will not
772 * be updated until the TSF in TU wraps around at 16 bit (the size of the
773 * timers) and reaches the time which is stored in the timer.
774 *
775 * The problem is that these timers are closely related to TIMER0 (NBTT) and
776 * that they define a time "window". When the TSF jumps between two timers
777 * (e.g. ATIM and NBTT), the one in the past will be left behind (not
778 * updated), while the one in the future will be updated every beacon
779 * interval. This causes the window to get larger, until the TSF wraps
780 * around as described above and the timer which was left behind gets
781 * updated again. But - because the beacon interval is usually not an exact
782 * divisor of the size of the timers (16 bit), an unwanted "window" between
783 * these timers has developed!
784 *
785 * This is especially important with the ATIM window, because during
786 * the ATIM window only ATIM frames and no data frames are allowed to be
787 * sent, which creates transmission pauses after each beacon. This symptom
788 * has been described as "ramping ping" because ping times increase linearly
789 * for some time and then drop down again. A wrong window on the DMA beacon
790 * timer has the same effect, so we check for these two conditions.
791 *
792 * Returns true if O.K.
793 */
794bool
795ath5k_hw_check_beacon_timers(struct ath5k_hw *ah, int intval)
796{
797	unsigned int nbtt, atim, dma;
798
799	nbtt = ath5k_hw_reg_read(ah, AR5K_TIMER0);
800	atim = ath5k_hw_reg_read(ah, AR5K_TIMER3);
801	dma = ath5k_hw_reg_read(ah, AR5K_TIMER1) >> 3;
802
803	/* NOTE: SWBA is different. Having a wrong window there does not
804	 * stop us from sending data and this condition is caught by
805	 * other means (SWBA interrupt) */
806
807	if (ath5k_check_timer_win(nbtt, atim, 1, intval) &&
808	    ath5k_check_timer_win(dma, nbtt, AR5K_TUNE_DMA_BEACON_RESP,
809				  intval))
810		return true; /* O.K. */
811	return false;
812}
813
814/**
815 * ath5k_hw_set_coverage_class() - Set IEEE 802.11 coverage class
816 * @ah: The &struct ath5k_hw
817 * @coverage_class: IEEE 802.11 coverage class number
818 *
819 * Sets IFS intervals and ACK/CTS timeouts for given coverage class.
820 */
821void
822ath5k_hw_set_coverage_class(struct ath5k_hw *ah, u8 coverage_class)
823{
824	/* As defined by IEEE 802.11-2007 17.3.8.6 */
825	int slot_time = ath5k_hw_get_default_slottime(ah) + 3 * coverage_class;
826	int ack_timeout = ath5k_hw_get_default_sifs(ah) + slot_time;
827	int cts_timeout = ack_timeout;
828
829	ath5k_hw_set_ifs_intervals(ah, slot_time);
830	ath5k_hw_set_ack_timeout(ah, ack_timeout);
831	ath5k_hw_set_cts_timeout(ah, cts_timeout);
832
833	ah->ah_coverage_class = coverage_class;
834}
835
836/***************************\
837* Init/Start/Stop functions *
838\***************************/
839
840/**
841 * ath5k_hw_start_rx_pcu() - Start RX engine
842 * @ah: The &struct ath5k_hw
843 *
844 * Starts RX engine on PCU so that hw can process RXed frames
845 * (ACK etc).
846 *
847 * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
848 */
849void
850ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
851{
852	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
853}
854
855/**
856 * at5k_hw_stop_rx_pcu() - Stop RX engine
857 * @ah: The &struct ath5k_hw
858 *
859 * Stops RX engine on PCU
860 */
861void
862ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
863{
864	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
865}
866
867/**
868 * ath5k_hw_set_opmode() - Set PCU operating mode
869 * @ah: The &struct ath5k_hw
870 * @op_mode: One of enum nl80211_iftype
871 *
872 * Configure PCU for the various operating modes (AP/STA etc)
873 */
874int
875ath5k_hw_set_opmode(struct ath5k_hw *ah, enum nl80211_iftype op_mode)
876{
877	struct ath_common *common = ath5k_hw_common(ah);
878	u32 pcu_reg, beacon_reg, low_id, high_id;
879
880	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode %d\n", op_mode);
881
882	/* Preserve rest settings */
883	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
884	pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
885			| AR5K_STA_ID1_KEYSRCH_MODE
886			| (ah->ah_version == AR5K_AR5210 ?
887			(AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
888
889	beacon_reg = 0;
890
891	switch (op_mode) {
892	case NL80211_IFTYPE_ADHOC:
893		pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
894		beacon_reg |= AR5K_BCR_ADHOC;
895		if (ah->ah_version == AR5K_AR5210)
896			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
897		else
898			AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
899		break;
900
901	case NL80211_IFTYPE_AP:
902	case NL80211_IFTYPE_MESH_POINT:
903		pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
904		beacon_reg |= AR5K_BCR_AP;
905		if (ah->ah_version == AR5K_AR5210)
906			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
907		else
908			AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
909		break;
910
911	case NL80211_IFTYPE_STATION:
912		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
913			| (ah->ah_version == AR5K_AR5210 ?
914				AR5K_STA_ID1_PWR_SV : 0);
915	case NL80211_IFTYPE_MONITOR:
916		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
917			| (ah->ah_version == AR5K_AR5210 ?
918				AR5K_STA_ID1_NO_PSPOLL : 0);
919		break;
920
921	default:
922		return -EINVAL;
923	}
924
925	/*
926	 * Set PCU registers
927	 */
928	low_id = get_unaligned_le32(common->macaddr);
929	high_id = get_unaligned_le16(common->macaddr + 4);
930	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
931	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
932
933	/*
934	 * Set Beacon Control Register on 5210
935	 */
936	if (ah->ah_version == AR5K_AR5210)
937		ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
938
939	return 0;
940}
941
942/**
943 * ath5k_hw_pcu_init() - Initialize PCU
944 * @ah: The &struct ath5k_hw
945 * @op_mode: One of enum nl80211_iftype
946 * @mode: One of enum ath5k_driver_mode
947 *
948 * This function is used to initialize PCU by setting current
949 * operation mode and various other settings.
950 */
951void
952ath5k_hw_pcu_init(struct ath5k_hw *ah, enum nl80211_iftype op_mode)
953{
954	/* Set bssid and bssid mask */
955	ath5k_hw_set_bssid(ah);
956
957	/* Set PCU config */
958	ath5k_hw_set_opmode(ah, op_mode);
959
960	/* Write rate duration table only on AR5212 and if
961	 * virtual interface has already been brought up
962	 * XXX: rethink this after new mode changes to
963	 * mac80211 are integrated */
964	if (ah->ah_version == AR5K_AR5212 &&
965		ah->nvifs)
966		ath5k_hw_write_rate_duration(ah);
967
968	/* Set RSSI/BRSSI thresholds
969	 *
970	 * Note: If we decide to set this value
971	 * dynamically, have in mind that when AR5K_RSSI_THR
972	 * register is read it might return 0x40 if we haven't
973	 * wrote anything to it plus BMISS RSSI threshold is zeroed.
974	 * So doing a save/restore procedure here isn't the right
975	 * choice. Instead store it on ath5k_hw */
976	ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
977				AR5K_TUNE_BMISS_THRES <<
978				AR5K_RSSI_THR_BMISS_S),
979				AR5K_RSSI_THR);
980
981	/* MIC QoS support */
982	if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
983		ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
984		ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
985	}
986
987	/* QoS NOACK Policy */
988	if (ah->ah_version == AR5K_AR5212) {
989		ath5k_hw_reg_write(ah,
990			AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
991			AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET)  |
992			AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
993			AR5K_QOS_NOACK);
994	}
995
996	/* Restore slot time and ACK timeouts */
997	if (ah->ah_coverage_class > 0)
998		ath5k_hw_set_coverage_class(ah, ah->ah_coverage_class);
999
1000	/* Set ACK bitrate mode (see ack_rates_high) */
1001	if (ah->ah_version == AR5K_AR5212) {
1002		u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
1003		if (ah->ah_ack_bitrate_high)
1004			AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
1005		else
1006			AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
1007	}
1008	return;
1009}
1010