1/*******************************************************************************
2
3  Intel PRO/1000 Linux driver
4  Copyright(c) 1999 - 2012 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
57 */
58
59#include "e1000.h"
60
61#define ICH_FLASH_GFPREG		0x0000
62#define ICH_FLASH_HSFSTS		0x0004
63#define ICH_FLASH_HSFCTL		0x0006
64#define ICH_FLASH_FADDR			0x0008
65#define ICH_FLASH_FDATA0		0x0010
66#define ICH_FLASH_PR0			0x0074
67
68#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
69#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
70#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
71#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
72#define ICH_FLASH_CYCLE_REPEAT_COUNT	10
73
74#define ICH_CYCLE_READ			0
75#define ICH_CYCLE_WRITE			2
76#define ICH_CYCLE_ERASE			3
77
78#define FLASH_GFPREG_BASE_MASK		0x1FFF
79#define FLASH_SECTOR_ADDR_SHIFT		12
80
81#define ICH_FLASH_SEG_SIZE_256		256
82#define ICH_FLASH_SEG_SIZE_4K		4096
83#define ICH_FLASH_SEG_SIZE_8K		8192
84#define ICH_FLASH_SEG_SIZE_64K		65536
85
86
87#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
88/* FW established a valid mode */
89#define E1000_ICH_FWSM_FW_VALID		0x00008000
90
91#define E1000_ICH_MNG_IAMT_MODE		0x2
92
93#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
94				 (ID_LED_DEF1_OFF2 <<  8) | \
95				 (ID_LED_DEF1_ON2  <<  4) | \
96				 (ID_LED_DEF1_DEF2))
97
98#define E1000_ICH_NVM_SIG_WORD		0x13
99#define E1000_ICH_NVM_SIG_MASK		0xC000
100#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
101#define E1000_ICH_NVM_SIG_VALUE         0x80
102
103#define E1000_ICH8_LAN_INIT_TIMEOUT	1500
104
105#define E1000_FEXTNVM_SW_CONFIG		1
106#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107
108#define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
109#define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
110#define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
111
112#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
113
114#define E1000_ICH_RAR_ENTRIES		7
115
116#define PHY_PAGE_SHIFT 5
117#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118			   ((reg) & MAX_PHY_REG_ADDRESS))
119#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
120#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
121
122#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
123#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
125
126#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
127
128#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
129
130/* SMBus Address Phy Register */
131#define HV_SMB_ADDR            PHY_REG(768, 26)
132#define HV_SMB_ADDR_MASK       0x007F
133#define HV_SMB_ADDR_PEC_EN     0x0200
134#define HV_SMB_ADDR_VALID      0x0080
135
136/* PHY Power Management Control */
137#define HV_PM_CTRL		PHY_REG(770, 17)
138
139/* PHY Low Power Idle Control */
140#define I82579_LPI_CTRL				PHY_REG(772, 20)
141#define I82579_LPI_CTRL_ENABLE_MASK		0x6000
142#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
143
144/* EMI Registers */
145#define I82579_EMI_ADDR         0x10
146#define I82579_EMI_DATA         0x11
147#define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
148#define I82579_MSE_THRESHOLD    0x084F	/* Mean Square Error Threshold */
149#define I82579_MSE_LINK_DOWN    0x2411	/* MSE count before dropping link */
150
151/* Strapping Option Register - RO */
152#define E1000_STRAP                     0x0000C
153#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
154#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
155
156/* OEM Bits Phy Register */
157#define HV_OEM_BITS            PHY_REG(768, 25)
158#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
159#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
160#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
161
162#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
163#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
164
165/* KMRN Mode Control */
166#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
167#define HV_KMRN_MDIO_SLOW      0x0400
168
169/* KMRN FIFO Control and Status */
170#define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
171#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
172#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
173
174/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
175/* Offset 04h HSFSTS */
176union ich8_hws_flash_status {
177	struct ich8_hsfsts {
178		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
179		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
180		u16 dael       :1; /* bit 2 Direct Access error Log */
181		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
182		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
183		u16 reserved1  :2; /* bit 13:6 Reserved */
184		u16 reserved2  :6; /* bit 13:6 Reserved */
185		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
186		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
187	} hsf_status;
188	u16 regval;
189};
190
191/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
192/* Offset 06h FLCTL */
193union ich8_hws_flash_ctrl {
194	struct ich8_hsflctl {
195		u16 flcgo      :1;   /* 0 Flash Cycle Go */
196		u16 flcycle    :2;   /* 2:1 Flash Cycle */
197		u16 reserved   :5;   /* 7:3 Reserved  */
198		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
199		u16 flockdn    :6;   /* 15:10 Reserved */
200	} hsf_ctrl;
201	u16 regval;
202};
203
204/* ICH Flash Region Access Permissions */
205union ich8_hws_flash_regacc {
206	struct ich8_flracc {
207		u32 grra      :8; /* 0:7 GbE region Read Access */
208		u32 grwa      :8; /* 8:15 GbE region Write Access */
209		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
210		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
211	} hsf_flregacc;
212	u16 regval;
213};
214
215/* ICH Flash Protected Region */
216union ich8_flash_protected_range {
217	struct ich8_pr {
218		u32 base:13;     /* 0:12 Protected Range Base */
219		u32 reserved1:2; /* 13:14 Reserved */
220		u32 rpe:1;       /* 15 Read Protection Enable */
221		u32 limit:13;    /* 16:28 Protected Range Limit */
222		u32 reserved2:2; /* 29:30 Reserved */
223		u32 wpe:1;       /* 31 Write Protection Enable */
224	} range;
225	u32 regval;
226};
227
228static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
229static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
230static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
231static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
232static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
233						u32 offset, u8 byte);
234static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
235					 u8 *data);
236static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
237					 u16 *data);
238static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
239					 u8 size, u16 *data);
240static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
241static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
242static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
243static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
244static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
245static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
246static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
247static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
248static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
249static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
250static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
251static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
252static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
253static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
254static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
255static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
256static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
257static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
258static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
259static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
260
261static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
262{
263	return readw(hw->flash_address + reg);
264}
265
266static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
267{
268	return readl(hw->flash_address + reg);
269}
270
271static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
272{
273	writew(val, hw->flash_address + reg);
274}
275
276static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
277{
278	writel(val, hw->flash_address + reg);
279}
280
281#define er16flash(reg)		__er16flash(hw, (reg))
282#define er32flash(reg)		__er32flash(hw, (reg))
283#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
284#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
285
286static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
287{
288	u32 ctrl;
289
290	ctrl = er32(CTRL);
291	ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
292	ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
293	ew32(CTRL, ctrl);
294	e1e_flush();
295	udelay(10);
296	ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
297	ew32(CTRL, ctrl);
298}
299
300/**
301 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
302 *  @hw: pointer to the HW structure
303 *
304 *  Initialize family-specific PHY parameters and function pointers.
305 **/
306static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
307{
308	struct e1000_phy_info *phy = &hw->phy;
309	s32 ret_val = 0;
310
311	phy->addr                     = 1;
312	phy->reset_delay_us           = 100;
313
314	phy->ops.set_page             = e1000_set_page_igp;
315	phy->ops.read_reg             = e1000_read_phy_reg_hv;
316	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
317	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
318	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
319	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
320	phy->ops.write_reg            = e1000_write_phy_reg_hv;
321	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
322	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
323	phy->ops.power_up             = e1000_power_up_phy_copper;
324	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
325	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
326
327	if (!hw->phy.ops.check_reset_block(hw)) {
328		u32 fwsm = er32(FWSM);
329
330		/*
331		 * The MAC-PHY interconnect may still be in SMBus mode after
332		 * Sx->S0.  If resetting the PHY is not blocked, toggle the
333		 * LANPHYPC Value bit to force the interconnect to PCIe mode.
334		 */
335		e1000_toggle_lanphypc_value_ich8lan(hw);
336		msleep(50);
337
338		/*
339		 * Gate automatic PHY configuration by hardware on
340		 * non-managed 82579
341		 */
342		if ((hw->mac.type == e1000_pch2lan) &&
343		    !(fwsm & E1000_ICH_FWSM_FW_VALID))
344			e1000_gate_hw_phy_config_ich8lan(hw, true);
345
346		/*
347		 * Reset the PHY before any access to it.  Doing so, ensures
348		 * that the PHY is in a known good state before we read/write
349		 * PHY registers.  The generic reset is sufficient here,
350		 * because we haven't determined the PHY type yet.
351		 */
352		ret_val = e1000e_phy_hw_reset_generic(hw);
353		if (ret_val)
354			return ret_val;
355
356		/* Ungate automatic PHY configuration on non-managed 82579 */
357		if ((hw->mac.type == e1000_pch2lan) &&
358		    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
359			usleep_range(10000, 20000);
360			e1000_gate_hw_phy_config_ich8lan(hw, false);
361		}
362	}
363
364	phy->id = e1000_phy_unknown;
365	switch (hw->mac.type) {
366	default:
367		ret_val = e1000e_get_phy_id(hw);
368		if (ret_val)
369			return ret_val;
370		if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
371			break;
372		/* fall-through */
373	case e1000_pch2lan:
374		/*
375		 * In case the PHY needs to be in mdio slow mode,
376		 * set slow mode and try to get the PHY id again.
377		 */
378		ret_val = e1000_set_mdio_slow_mode_hv(hw);
379		if (ret_val)
380			return ret_val;
381		ret_val = e1000e_get_phy_id(hw);
382		if (ret_val)
383			return ret_val;
384		break;
385	}
386	phy->type = e1000e_get_phy_type_from_id(phy->id);
387
388	switch (phy->type) {
389	case e1000_phy_82577:
390	case e1000_phy_82579:
391		phy->ops.check_polarity = e1000_check_polarity_82577;
392		phy->ops.force_speed_duplex =
393		    e1000_phy_force_speed_duplex_82577;
394		phy->ops.get_cable_length = e1000_get_cable_length_82577;
395		phy->ops.get_info = e1000_get_phy_info_82577;
396		phy->ops.commit = e1000e_phy_sw_reset;
397		break;
398	case e1000_phy_82578:
399		phy->ops.check_polarity = e1000_check_polarity_m88;
400		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
401		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
402		phy->ops.get_info = e1000e_get_phy_info_m88;
403		break;
404	default:
405		ret_val = -E1000_ERR_PHY;
406		break;
407	}
408
409	return ret_val;
410}
411
412/**
413 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
414 *  @hw: pointer to the HW structure
415 *
416 *  Initialize family-specific PHY parameters and function pointers.
417 **/
418static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
419{
420	struct e1000_phy_info *phy = &hw->phy;
421	s32 ret_val;
422	u16 i = 0;
423
424	phy->addr			= 1;
425	phy->reset_delay_us		= 100;
426
427	phy->ops.power_up               = e1000_power_up_phy_copper;
428	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
429
430	/*
431	 * We may need to do this twice - once for IGP and if that fails,
432	 * we'll set BM func pointers and try again
433	 */
434	ret_val = e1000e_determine_phy_address(hw);
435	if (ret_val) {
436		phy->ops.write_reg = e1000e_write_phy_reg_bm;
437		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
438		ret_val = e1000e_determine_phy_address(hw);
439		if (ret_val) {
440			e_dbg("Cannot determine PHY addr. Erroring out\n");
441			return ret_val;
442		}
443	}
444
445	phy->id = 0;
446	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
447	       (i++ < 100)) {
448		usleep_range(1000, 2000);
449		ret_val = e1000e_get_phy_id(hw);
450		if (ret_val)
451			return ret_val;
452	}
453
454	/* Verify phy id */
455	switch (phy->id) {
456	case IGP03E1000_E_PHY_ID:
457		phy->type = e1000_phy_igp_3;
458		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
459		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
460		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
461		phy->ops.get_info = e1000e_get_phy_info_igp;
462		phy->ops.check_polarity = e1000_check_polarity_igp;
463		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
464		break;
465	case IFE_E_PHY_ID:
466	case IFE_PLUS_E_PHY_ID:
467	case IFE_C_E_PHY_ID:
468		phy->type = e1000_phy_ife;
469		phy->autoneg_mask = E1000_ALL_NOT_GIG;
470		phy->ops.get_info = e1000_get_phy_info_ife;
471		phy->ops.check_polarity = e1000_check_polarity_ife;
472		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
473		break;
474	case BME1000_E_PHY_ID:
475		phy->type = e1000_phy_bm;
476		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
477		phy->ops.read_reg = e1000e_read_phy_reg_bm;
478		phy->ops.write_reg = e1000e_write_phy_reg_bm;
479		phy->ops.commit = e1000e_phy_sw_reset;
480		phy->ops.get_info = e1000e_get_phy_info_m88;
481		phy->ops.check_polarity = e1000_check_polarity_m88;
482		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
483		break;
484	default:
485		return -E1000_ERR_PHY;
486		break;
487	}
488
489	return 0;
490}
491
492/**
493 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
494 *  @hw: pointer to the HW structure
495 *
496 *  Initialize family-specific NVM parameters and function
497 *  pointers.
498 **/
499static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
500{
501	struct e1000_nvm_info *nvm = &hw->nvm;
502	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
503	u32 gfpreg, sector_base_addr, sector_end_addr;
504	u16 i;
505
506	/* Can't read flash registers if the register set isn't mapped. */
507	if (!hw->flash_address) {
508		e_dbg("ERROR: Flash registers not mapped\n");
509		return -E1000_ERR_CONFIG;
510	}
511
512	nvm->type = e1000_nvm_flash_sw;
513
514	gfpreg = er32flash(ICH_FLASH_GFPREG);
515
516	/*
517	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
518	 * Add 1 to sector_end_addr since this sector is included in
519	 * the overall size.
520	 */
521	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
522	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
523
524	/* flash_base_addr is byte-aligned */
525	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
526
527	/*
528	 * find total size of the NVM, then cut in half since the total
529	 * size represents two separate NVM banks.
530	 */
531	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
532				<< FLASH_SECTOR_ADDR_SHIFT;
533	nvm->flash_bank_size /= 2;
534	/* Adjust to word count */
535	nvm->flash_bank_size /= sizeof(u16);
536
537	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
538
539	/* Clear shadow ram */
540	for (i = 0; i < nvm->word_size; i++) {
541		dev_spec->shadow_ram[i].modified = false;
542		dev_spec->shadow_ram[i].value    = 0xFFFF;
543	}
544
545	return 0;
546}
547
548/**
549 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
550 *  @hw: pointer to the HW structure
551 *
552 *  Initialize family-specific MAC parameters and function
553 *  pointers.
554 **/
555static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
556{
557	struct e1000_mac_info *mac = &hw->mac;
558
559	/* Set media type function pointer */
560	hw->phy.media_type = e1000_media_type_copper;
561
562	/* Set mta register count */
563	mac->mta_reg_count = 32;
564	/* Set rar entry count */
565	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
566	if (mac->type == e1000_ich8lan)
567		mac->rar_entry_count--;
568	/* FWSM register */
569	mac->has_fwsm = true;
570	/* ARC subsystem not supported */
571	mac->arc_subsystem_valid = false;
572	/* Adaptive IFS supported */
573	mac->adaptive_ifs = true;
574
575	/* LED operations */
576	switch (mac->type) {
577	case e1000_ich8lan:
578	case e1000_ich9lan:
579	case e1000_ich10lan:
580		/* check management mode */
581		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
582		/* ID LED init */
583		mac->ops.id_led_init = e1000e_id_led_init_generic;
584		/* blink LED */
585		mac->ops.blink_led = e1000e_blink_led_generic;
586		/* setup LED */
587		mac->ops.setup_led = e1000e_setup_led_generic;
588		/* cleanup LED */
589		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
590		/* turn on/off LED */
591		mac->ops.led_on = e1000_led_on_ich8lan;
592		mac->ops.led_off = e1000_led_off_ich8lan;
593		break;
594	case e1000_pchlan:
595	case e1000_pch2lan:
596		/* check management mode */
597		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
598		/* ID LED init */
599		mac->ops.id_led_init = e1000_id_led_init_pchlan;
600		/* setup LED */
601		mac->ops.setup_led = e1000_setup_led_pchlan;
602		/* cleanup LED */
603		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
604		/* turn on/off LED */
605		mac->ops.led_on = e1000_led_on_pchlan;
606		mac->ops.led_off = e1000_led_off_pchlan;
607		break;
608	default:
609		break;
610	}
611
612	/* Enable PCS Lock-loss workaround for ICH8 */
613	if (mac->type == e1000_ich8lan)
614		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
615
616	/* Gate automatic PHY configuration by hardware on managed 82579 */
617	if ((mac->type == e1000_pch2lan) &&
618	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
619		e1000_gate_hw_phy_config_ich8lan(hw, true);
620
621	return 0;
622}
623
624/**
625 *  e1000_set_eee_pchlan - Enable/disable EEE support
626 *  @hw: pointer to the HW structure
627 *
628 *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
629 *  the LPI Control register will remain set only if/when link is up.
630 **/
631static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
632{
633	s32 ret_val = 0;
634	u16 phy_reg;
635
636	if (hw->phy.type != e1000_phy_82579)
637		return 0;
638
639	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
640	if (ret_val)
641		return ret_val;
642
643	if (hw->dev_spec.ich8lan.eee_disable)
644		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
645	else
646		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
647
648	return e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
649}
650
651/**
652 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
653 *  @hw: pointer to the HW structure
654 *
655 *  Checks to see of the link status of the hardware has changed.  If a
656 *  change in link status has been detected, then we read the PHY registers
657 *  to get the current speed/duplex if link exists.
658 **/
659static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
660{
661	struct e1000_mac_info *mac = &hw->mac;
662	s32 ret_val;
663	bool link;
664	u16 phy_reg;
665
666	/*
667	 * We only want to go out to the PHY registers to see if Auto-Neg
668	 * has completed and/or if our link status has changed.  The
669	 * get_link_status flag is set upon receiving a Link Status
670	 * Change or Rx Sequence Error interrupt.
671	 */
672	if (!mac->get_link_status)
673		return 0;
674
675	/*
676	 * First we want to see if the MII Status Register reports
677	 * link.  If so, then we want to get the current speed/duplex
678	 * of the PHY.
679	 */
680	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
681	if (ret_val)
682		return ret_val;
683
684	if (hw->mac.type == e1000_pchlan) {
685		ret_val = e1000_k1_gig_workaround_hv(hw, link);
686		if (ret_val)
687			return ret_val;
688	}
689
690	if (!link)
691		return 0; /* No link detected */
692
693	mac->get_link_status = false;
694
695	switch (hw->mac.type) {
696	case e1000_pch2lan:
697		ret_val = e1000_k1_workaround_lv(hw);
698		if (ret_val)
699			return ret_val;
700		/* fall-thru */
701	case e1000_pchlan:
702		if (hw->phy.type == e1000_phy_82578) {
703			ret_val = e1000_link_stall_workaround_hv(hw);
704			if (ret_val)
705				return ret_val;
706		}
707
708		/*
709		 * Workaround for PCHx parts in half-duplex:
710		 * Set the number of preambles removed from the packet
711		 * when it is passed from the PHY to the MAC to prevent
712		 * the MAC from misinterpreting the packet type.
713		 */
714		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
715		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
716
717		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
718			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
719
720		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
721		break;
722	default:
723		break;
724	}
725
726	/*
727	 * Check if there was DownShift, must be checked
728	 * immediately after link-up
729	 */
730	e1000e_check_downshift(hw);
731
732	/* Enable/Disable EEE after link up */
733	ret_val = e1000_set_eee_pchlan(hw);
734	if (ret_val)
735		return ret_val;
736
737	/*
738	 * If we are forcing speed/duplex, then we simply return since
739	 * we have already determined whether we have link or not.
740	 */
741	if (!mac->autoneg)
742		return -E1000_ERR_CONFIG;
743
744	/*
745	 * Auto-Neg is enabled.  Auto Speed Detection takes care
746	 * of MAC speed/duplex configuration.  So we only need to
747	 * configure Collision Distance in the MAC.
748	 */
749	mac->ops.config_collision_dist(hw);
750
751	/*
752	 * Configure Flow Control now that Auto-Neg has completed.
753	 * First, we need to restore the desired flow control
754	 * settings because we may have had to re-autoneg with a
755	 * different link partner.
756	 */
757	ret_val = e1000e_config_fc_after_link_up(hw);
758	if (ret_val)
759		e_dbg("Error configuring flow control\n");
760
761	return ret_val;
762}
763
764static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
765{
766	struct e1000_hw *hw = &adapter->hw;
767	s32 rc;
768
769	rc = e1000_init_mac_params_ich8lan(hw);
770	if (rc)
771		return rc;
772
773	rc = e1000_init_nvm_params_ich8lan(hw);
774	if (rc)
775		return rc;
776
777	switch (hw->mac.type) {
778	case e1000_ich8lan:
779	case e1000_ich9lan:
780	case e1000_ich10lan:
781		rc = e1000_init_phy_params_ich8lan(hw);
782		break;
783	case e1000_pchlan:
784	case e1000_pch2lan:
785		rc = e1000_init_phy_params_pchlan(hw);
786		break;
787	default:
788		break;
789	}
790	if (rc)
791		return rc;
792
793	/*
794	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
795	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
796	 */
797	if ((adapter->hw.phy.type == e1000_phy_ife) ||
798	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
799	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
800		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
801		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
802
803		hw->mac.ops.blink_led = NULL;
804	}
805
806	if ((adapter->hw.mac.type == e1000_ich8lan) &&
807	    (adapter->hw.phy.type != e1000_phy_ife))
808		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
809
810	/* Enable workaround for 82579 w/ ME enabled */
811	if ((adapter->hw.mac.type == e1000_pch2lan) &&
812	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
813		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
814
815	/* Disable EEE by default until IEEE802.3az spec is finalized */
816	if (adapter->flags2 & FLAG2_HAS_EEE)
817		adapter->hw.dev_spec.ich8lan.eee_disable = true;
818
819	return 0;
820}
821
822static DEFINE_MUTEX(nvm_mutex);
823
824/**
825 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
826 *  @hw: pointer to the HW structure
827 *
828 *  Acquires the mutex for performing NVM operations.
829 **/
830static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
831{
832	mutex_lock(&nvm_mutex);
833
834	return 0;
835}
836
837/**
838 *  e1000_release_nvm_ich8lan - Release NVM mutex
839 *  @hw: pointer to the HW structure
840 *
841 *  Releases the mutex used while performing NVM operations.
842 **/
843static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
844{
845	mutex_unlock(&nvm_mutex);
846}
847
848/**
849 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
850 *  @hw: pointer to the HW structure
851 *
852 *  Acquires the software control flag for performing PHY and select
853 *  MAC CSR accesses.
854 **/
855static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
856{
857	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
858	s32 ret_val = 0;
859
860	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
861			     &hw->adapter->state)) {
862		e_dbg("contention for Phy access\n");
863		return -E1000_ERR_PHY;
864	}
865
866	while (timeout) {
867		extcnf_ctrl = er32(EXTCNF_CTRL);
868		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
869			break;
870
871		mdelay(1);
872		timeout--;
873	}
874
875	if (!timeout) {
876		e_dbg("SW has already locked the resource.\n");
877		ret_val = -E1000_ERR_CONFIG;
878		goto out;
879	}
880
881	timeout = SW_FLAG_TIMEOUT;
882
883	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
884	ew32(EXTCNF_CTRL, extcnf_ctrl);
885
886	while (timeout) {
887		extcnf_ctrl = er32(EXTCNF_CTRL);
888		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
889			break;
890
891		mdelay(1);
892		timeout--;
893	}
894
895	if (!timeout) {
896		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
897		      er32(FWSM), extcnf_ctrl);
898		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
899		ew32(EXTCNF_CTRL, extcnf_ctrl);
900		ret_val = -E1000_ERR_CONFIG;
901		goto out;
902	}
903
904out:
905	if (ret_val)
906		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
907
908	return ret_val;
909}
910
911/**
912 *  e1000_release_swflag_ich8lan - Release software control flag
913 *  @hw: pointer to the HW structure
914 *
915 *  Releases the software control flag for performing PHY and select
916 *  MAC CSR accesses.
917 **/
918static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
919{
920	u32 extcnf_ctrl;
921
922	extcnf_ctrl = er32(EXTCNF_CTRL);
923
924	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
925		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
926		ew32(EXTCNF_CTRL, extcnf_ctrl);
927	} else {
928		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
929	}
930
931	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
932}
933
934/**
935 *  e1000_check_mng_mode_ich8lan - Checks management mode
936 *  @hw: pointer to the HW structure
937 *
938 *  This checks if the adapter has any manageability enabled.
939 *  This is a function pointer entry point only called by read/write
940 *  routines for the PHY and NVM parts.
941 **/
942static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
943{
944	u32 fwsm;
945
946	fwsm = er32(FWSM);
947	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
948	       ((fwsm & E1000_FWSM_MODE_MASK) ==
949		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
950}
951
952/**
953 *  e1000_check_mng_mode_pchlan - Checks management mode
954 *  @hw: pointer to the HW structure
955 *
956 *  This checks if the adapter has iAMT enabled.
957 *  This is a function pointer entry point only called by read/write
958 *  routines for the PHY and NVM parts.
959 **/
960static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
961{
962	u32 fwsm;
963
964	fwsm = er32(FWSM);
965	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
966	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
967}
968
969/**
970 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
971 *  @hw: pointer to the HW structure
972 *
973 *  Checks if firmware is blocking the reset of the PHY.
974 *  This is a function pointer entry point only called by
975 *  reset routines.
976 **/
977static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
978{
979	u32 fwsm;
980
981	fwsm = er32(FWSM);
982
983	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
984}
985
986/**
987 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
988 *  @hw: pointer to the HW structure
989 *
990 *  Assumes semaphore already acquired.
991 *
992 **/
993static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
994{
995	u16 phy_data;
996	u32 strap = er32(STRAP);
997	s32 ret_val = 0;
998
999	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1000
1001	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1002	if (ret_val)
1003		return ret_val;
1004
1005	phy_data &= ~HV_SMB_ADDR_MASK;
1006	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1007	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1008
1009	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1010}
1011
1012/**
1013 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1014 *  @hw:   pointer to the HW structure
1015 *
1016 *  SW should configure the LCD from the NVM extended configuration region
1017 *  as a workaround for certain parts.
1018 **/
1019static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1020{
1021	struct e1000_phy_info *phy = &hw->phy;
1022	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1023	s32 ret_val = 0;
1024	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1025
1026	/*
1027	 * Initialize the PHY from the NVM on ICH platforms.  This
1028	 * is needed due to an issue where the NVM configuration is
1029	 * not properly autoloaded after power transitions.
1030	 * Therefore, after each PHY reset, we will load the
1031	 * configuration data out of the NVM manually.
1032	 */
1033	switch (hw->mac.type) {
1034	case e1000_ich8lan:
1035		if (phy->type != e1000_phy_igp_3)
1036			return ret_val;
1037
1038		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1039		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1040			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1041			break;
1042		}
1043		/* Fall-thru */
1044	case e1000_pchlan:
1045	case e1000_pch2lan:
1046		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1047		break;
1048	default:
1049		return ret_val;
1050	}
1051
1052	ret_val = hw->phy.ops.acquire(hw);
1053	if (ret_val)
1054		return ret_val;
1055
1056	data = er32(FEXTNVM);
1057	if (!(data & sw_cfg_mask))
1058		goto release;
1059
1060	/*
1061	 * Make sure HW does not configure LCD from PHY
1062	 * extended configuration before SW configuration
1063	 */
1064	data = er32(EXTCNF_CTRL);
1065	if (!(hw->mac.type == e1000_pch2lan)) {
1066		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1067			goto release;
1068	}
1069
1070	cnf_size = er32(EXTCNF_SIZE);
1071	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1072	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1073	if (!cnf_size)
1074		goto release;
1075
1076	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1077	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1078
1079	if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1080	    (hw->mac.type == e1000_pchlan)) ||
1081	     (hw->mac.type == e1000_pch2lan)) {
1082		/*
1083		 * HW configures the SMBus address and LEDs when the
1084		 * OEM and LCD Write Enable bits are set in the NVM.
1085		 * When both NVM bits are cleared, SW will configure
1086		 * them instead.
1087		 */
1088		ret_val = e1000_write_smbus_addr(hw);
1089		if (ret_val)
1090			goto release;
1091
1092		data = er32(LEDCTL);
1093		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1094							(u16)data);
1095		if (ret_val)
1096			goto release;
1097	}
1098
1099	/* Configure LCD from extended configuration region. */
1100
1101	/* cnf_base_addr is in DWORD */
1102	word_addr = (u16)(cnf_base_addr << 1);
1103
1104	for (i = 0; i < cnf_size; i++) {
1105		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1106					 &reg_data);
1107		if (ret_val)
1108			goto release;
1109
1110		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1111					 1, &reg_addr);
1112		if (ret_val)
1113			goto release;
1114
1115		/* Save off the PHY page for future writes. */
1116		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1117			phy_page = reg_data;
1118			continue;
1119		}
1120
1121		reg_addr &= PHY_REG_MASK;
1122		reg_addr |= phy_page;
1123
1124		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1125						    reg_data);
1126		if (ret_val)
1127			goto release;
1128	}
1129
1130release:
1131	hw->phy.ops.release(hw);
1132	return ret_val;
1133}
1134
1135/**
1136 *  e1000_k1_gig_workaround_hv - K1 Si workaround
1137 *  @hw:   pointer to the HW structure
1138 *  @link: link up bool flag
1139 *
1140 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1141 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1142 *  If link is down, the function will restore the default K1 setting located
1143 *  in the NVM.
1144 **/
1145static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1146{
1147	s32 ret_val = 0;
1148	u16 status_reg = 0;
1149	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1150
1151	if (hw->mac.type != e1000_pchlan)
1152		return 0;
1153
1154	/* Wrap the whole flow with the sw flag */
1155	ret_val = hw->phy.ops.acquire(hw);
1156	if (ret_val)
1157		return ret_val;
1158
1159	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1160	if (link) {
1161		if (hw->phy.type == e1000_phy_82578) {
1162			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1163			                                          &status_reg);
1164			if (ret_val)
1165				goto release;
1166
1167			status_reg &= BM_CS_STATUS_LINK_UP |
1168			              BM_CS_STATUS_RESOLVED |
1169			              BM_CS_STATUS_SPEED_MASK;
1170
1171			if (status_reg == (BM_CS_STATUS_LINK_UP |
1172			                   BM_CS_STATUS_RESOLVED |
1173			                   BM_CS_STATUS_SPEED_1000))
1174				k1_enable = false;
1175		}
1176
1177		if (hw->phy.type == e1000_phy_82577) {
1178			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1179			                                          &status_reg);
1180			if (ret_val)
1181				goto release;
1182
1183			status_reg &= HV_M_STATUS_LINK_UP |
1184			              HV_M_STATUS_AUTONEG_COMPLETE |
1185			              HV_M_STATUS_SPEED_MASK;
1186
1187			if (status_reg == (HV_M_STATUS_LINK_UP |
1188			                   HV_M_STATUS_AUTONEG_COMPLETE |
1189			                   HV_M_STATUS_SPEED_1000))
1190				k1_enable = false;
1191		}
1192
1193		/* Link stall fix for link up */
1194		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1195		                                           0x0100);
1196		if (ret_val)
1197			goto release;
1198
1199	} else {
1200		/* Link stall fix for link down */
1201		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1202		                                           0x4100);
1203		if (ret_val)
1204			goto release;
1205	}
1206
1207	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1208
1209release:
1210	hw->phy.ops.release(hw);
1211
1212	return ret_val;
1213}
1214
1215/**
1216 *  e1000_configure_k1_ich8lan - Configure K1 power state
1217 *  @hw: pointer to the HW structure
1218 *  @enable: K1 state to configure
1219 *
1220 *  Configure the K1 power state based on the provided parameter.
1221 *  Assumes semaphore already acquired.
1222 *
1223 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1224 **/
1225s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1226{
1227	s32 ret_val = 0;
1228	u32 ctrl_reg = 0;
1229	u32 ctrl_ext = 0;
1230	u32 reg = 0;
1231	u16 kmrn_reg = 0;
1232
1233	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1234					      &kmrn_reg);
1235	if (ret_val)
1236		return ret_val;
1237
1238	if (k1_enable)
1239		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1240	else
1241		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1242
1243	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1244					       kmrn_reg);
1245	if (ret_val)
1246		return ret_val;
1247
1248	udelay(20);
1249	ctrl_ext = er32(CTRL_EXT);
1250	ctrl_reg = er32(CTRL);
1251
1252	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1253	reg |= E1000_CTRL_FRCSPD;
1254	ew32(CTRL, reg);
1255
1256	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1257	e1e_flush();
1258	udelay(20);
1259	ew32(CTRL, ctrl_reg);
1260	ew32(CTRL_EXT, ctrl_ext);
1261	e1e_flush();
1262	udelay(20);
1263
1264	return 0;
1265}
1266
1267/**
1268 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1269 *  @hw:       pointer to the HW structure
1270 *  @d0_state: boolean if entering d0 or d3 device state
1271 *
1272 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1273 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1274 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1275 **/
1276static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1277{
1278	s32 ret_val = 0;
1279	u32 mac_reg;
1280	u16 oem_reg;
1281
1282	if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1283		return ret_val;
1284
1285	ret_val = hw->phy.ops.acquire(hw);
1286	if (ret_val)
1287		return ret_val;
1288
1289	if (!(hw->mac.type == e1000_pch2lan)) {
1290		mac_reg = er32(EXTCNF_CTRL);
1291		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1292			goto release;
1293	}
1294
1295	mac_reg = er32(FEXTNVM);
1296	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1297		goto release;
1298
1299	mac_reg = er32(PHY_CTRL);
1300
1301	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1302	if (ret_val)
1303		goto release;
1304
1305	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1306
1307	if (d0_state) {
1308		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1309			oem_reg |= HV_OEM_BITS_GBE_DIS;
1310
1311		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1312			oem_reg |= HV_OEM_BITS_LPLU;
1313	} else {
1314		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1315			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1316			oem_reg |= HV_OEM_BITS_GBE_DIS;
1317
1318		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1319			       E1000_PHY_CTRL_NOND0A_LPLU))
1320			oem_reg |= HV_OEM_BITS_LPLU;
1321	}
1322
1323	/* Set Restart auto-neg to activate the bits */
1324	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1325	    !hw->phy.ops.check_reset_block(hw))
1326		oem_reg |= HV_OEM_BITS_RESTART_AN;
1327
1328	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1329
1330release:
1331	hw->phy.ops.release(hw);
1332
1333	return ret_val;
1334}
1335
1336
1337/**
1338 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1339 *  @hw:   pointer to the HW structure
1340 **/
1341static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1342{
1343	s32 ret_val;
1344	u16 data;
1345
1346	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1347	if (ret_val)
1348		return ret_val;
1349
1350	data |= HV_KMRN_MDIO_SLOW;
1351
1352	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1353
1354	return ret_val;
1355}
1356
1357/**
1358 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1359 *  done after every PHY reset.
1360 **/
1361static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1362{
1363	s32 ret_val = 0;
1364	u16 phy_data;
1365
1366	if (hw->mac.type != e1000_pchlan)
1367		return 0;
1368
1369	/* Set MDIO slow mode before any other MDIO access */
1370	if (hw->phy.type == e1000_phy_82577) {
1371		ret_val = e1000_set_mdio_slow_mode_hv(hw);
1372		if (ret_val)
1373			return ret_val;
1374	}
1375
1376	if (((hw->phy.type == e1000_phy_82577) &&
1377	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1378	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1379		/* Disable generation of early preamble */
1380		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1381		if (ret_val)
1382			return ret_val;
1383
1384		/* Preamble tuning for SSC */
1385		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1386		if (ret_val)
1387			return ret_val;
1388	}
1389
1390	if (hw->phy.type == e1000_phy_82578) {
1391		/*
1392		 * Return registers to default by doing a soft reset then
1393		 * writing 0x3140 to the control register.
1394		 */
1395		if (hw->phy.revision < 2) {
1396			e1000e_phy_sw_reset(hw);
1397			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1398		}
1399	}
1400
1401	/* Select page 0 */
1402	ret_val = hw->phy.ops.acquire(hw);
1403	if (ret_val)
1404		return ret_val;
1405
1406	hw->phy.addr = 1;
1407	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1408	hw->phy.ops.release(hw);
1409	if (ret_val)
1410		return ret_val;
1411
1412	/*
1413	 * Configure the K1 Si workaround during phy reset assuming there is
1414	 * link so that it disables K1 if link is in 1Gbps.
1415	 */
1416	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1417	if (ret_val)
1418		return ret_val;
1419
1420	/* Workaround for link disconnects on a busy hub in half duplex */
1421	ret_val = hw->phy.ops.acquire(hw);
1422	if (ret_val)
1423		return ret_val;
1424	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1425	if (ret_val)
1426		goto release;
1427	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
1428					       phy_data & 0x00FF);
1429release:
1430	hw->phy.ops.release(hw);
1431
1432	return ret_val;
1433}
1434
1435/**
1436 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1437 *  @hw:   pointer to the HW structure
1438 **/
1439void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1440{
1441	u32 mac_reg;
1442	u16 i, phy_reg = 0;
1443	s32 ret_val;
1444
1445	ret_val = hw->phy.ops.acquire(hw);
1446	if (ret_val)
1447		return;
1448	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1449	if (ret_val)
1450		goto release;
1451
1452	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1453	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1454		mac_reg = er32(RAL(i));
1455		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1456					   (u16)(mac_reg & 0xFFFF));
1457		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1458					   (u16)((mac_reg >> 16) & 0xFFFF));
1459
1460		mac_reg = er32(RAH(i));
1461		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1462					   (u16)(mac_reg & 0xFFFF));
1463		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1464					   (u16)((mac_reg & E1000_RAH_AV)
1465						 >> 16));
1466	}
1467
1468	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1469
1470release:
1471	hw->phy.ops.release(hw);
1472}
1473
1474/**
1475 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1476 *  with 82579 PHY
1477 *  @hw: pointer to the HW structure
1478 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1479 **/
1480s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1481{
1482	s32 ret_val = 0;
1483	u16 phy_reg, data;
1484	u32 mac_reg;
1485	u16 i;
1486
1487	if (hw->mac.type != e1000_pch2lan)
1488		return 0;
1489
1490	/* disable Rx path while enabling/disabling workaround */
1491	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1492	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1493	if (ret_val)
1494		return ret_val;
1495
1496	if (enable) {
1497		/*
1498		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1499		 * SHRAL/H) and initial CRC values to the MAC
1500		 */
1501		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1502			u8 mac_addr[ETH_ALEN] = {0};
1503			u32 addr_high, addr_low;
1504
1505			addr_high = er32(RAH(i));
1506			if (!(addr_high & E1000_RAH_AV))
1507				continue;
1508			addr_low = er32(RAL(i));
1509			mac_addr[0] = (addr_low & 0xFF);
1510			mac_addr[1] = ((addr_low >> 8) & 0xFF);
1511			mac_addr[2] = ((addr_low >> 16) & 0xFF);
1512			mac_addr[3] = ((addr_low >> 24) & 0xFF);
1513			mac_addr[4] = (addr_high & 0xFF);
1514			mac_addr[5] = ((addr_high >> 8) & 0xFF);
1515
1516			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1517		}
1518
1519		/* Write Rx addresses to the PHY */
1520		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1521
1522		/* Enable jumbo frame workaround in the MAC */
1523		mac_reg = er32(FFLT_DBG);
1524		mac_reg &= ~(1 << 14);
1525		mac_reg |= (7 << 15);
1526		ew32(FFLT_DBG, mac_reg);
1527
1528		mac_reg = er32(RCTL);
1529		mac_reg |= E1000_RCTL_SECRC;
1530		ew32(RCTL, mac_reg);
1531
1532		ret_val = e1000e_read_kmrn_reg(hw,
1533						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1534						&data);
1535		if (ret_val)
1536			return ret_val;
1537		ret_val = e1000e_write_kmrn_reg(hw,
1538						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1539						data | (1 << 0));
1540		if (ret_val)
1541			return ret_val;
1542		ret_val = e1000e_read_kmrn_reg(hw,
1543						E1000_KMRNCTRLSTA_HD_CTRL,
1544						&data);
1545		if (ret_val)
1546			return ret_val;
1547		data &= ~(0xF << 8);
1548		data |= (0xB << 8);
1549		ret_val = e1000e_write_kmrn_reg(hw,
1550						E1000_KMRNCTRLSTA_HD_CTRL,
1551						data);
1552		if (ret_val)
1553			return ret_val;
1554
1555		/* Enable jumbo frame workaround in the PHY */
1556		e1e_rphy(hw, PHY_REG(769, 23), &data);
1557		data &= ~(0x7F << 5);
1558		data |= (0x37 << 5);
1559		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1560		if (ret_val)
1561			return ret_val;
1562		e1e_rphy(hw, PHY_REG(769, 16), &data);
1563		data &= ~(1 << 13);
1564		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1565		if (ret_val)
1566			return ret_val;
1567		e1e_rphy(hw, PHY_REG(776, 20), &data);
1568		data &= ~(0x3FF << 2);
1569		data |= (0x1A << 2);
1570		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1571		if (ret_val)
1572			return ret_val;
1573		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1574		if (ret_val)
1575			return ret_val;
1576		e1e_rphy(hw, HV_PM_CTRL, &data);
1577		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1578		if (ret_val)
1579			return ret_val;
1580	} else {
1581		/* Write MAC register values back to h/w defaults */
1582		mac_reg = er32(FFLT_DBG);
1583		mac_reg &= ~(0xF << 14);
1584		ew32(FFLT_DBG, mac_reg);
1585
1586		mac_reg = er32(RCTL);
1587		mac_reg &= ~E1000_RCTL_SECRC;
1588		ew32(RCTL, mac_reg);
1589
1590		ret_val = e1000e_read_kmrn_reg(hw,
1591						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1592						&data);
1593		if (ret_val)
1594			return ret_val;
1595		ret_val = e1000e_write_kmrn_reg(hw,
1596						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1597						data & ~(1 << 0));
1598		if (ret_val)
1599			return ret_val;
1600		ret_val = e1000e_read_kmrn_reg(hw,
1601						E1000_KMRNCTRLSTA_HD_CTRL,
1602						&data);
1603		if (ret_val)
1604			return ret_val;
1605		data &= ~(0xF << 8);
1606		data |= (0xB << 8);
1607		ret_val = e1000e_write_kmrn_reg(hw,
1608						E1000_KMRNCTRLSTA_HD_CTRL,
1609						data);
1610		if (ret_val)
1611			return ret_val;
1612
1613		/* Write PHY register values back to h/w defaults */
1614		e1e_rphy(hw, PHY_REG(769, 23), &data);
1615		data &= ~(0x7F << 5);
1616		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1617		if (ret_val)
1618			return ret_val;
1619		e1e_rphy(hw, PHY_REG(769, 16), &data);
1620		data |= (1 << 13);
1621		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1622		if (ret_val)
1623			return ret_val;
1624		e1e_rphy(hw, PHY_REG(776, 20), &data);
1625		data &= ~(0x3FF << 2);
1626		data |= (0x8 << 2);
1627		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1628		if (ret_val)
1629			return ret_val;
1630		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1631		if (ret_val)
1632			return ret_val;
1633		e1e_rphy(hw, HV_PM_CTRL, &data);
1634		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1635		if (ret_val)
1636			return ret_val;
1637	}
1638
1639	/* re-enable Rx path after enabling/disabling workaround */
1640	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1641}
1642
1643/**
1644 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1645 *  done after every PHY reset.
1646 **/
1647static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1648{
1649	s32 ret_val = 0;
1650
1651	if (hw->mac.type != e1000_pch2lan)
1652		return 0;
1653
1654	/* Set MDIO slow mode before any other MDIO access */
1655	ret_val = e1000_set_mdio_slow_mode_hv(hw);
1656
1657	ret_val = hw->phy.ops.acquire(hw);
1658	if (ret_val)
1659		return ret_val;
1660	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1661					       I82579_MSE_THRESHOLD);
1662	if (ret_val)
1663		goto release;
1664	/* set MSE higher to enable link to stay up when noise is high */
1665	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0034);
1666	if (ret_val)
1667		goto release;
1668	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1669					       I82579_MSE_LINK_DOWN);
1670	if (ret_val)
1671		goto release;
1672	/* drop link after 5 times MSE threshold was reached */
1673	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0005);
1674release:
1675	hw->phy.ops.release(hw);
1676
1677	return ret_val;
1678}
1679
1680/**
1681 *  e1000_k1_gig_workaround_lv - K1 Si workaround
1682 *  @hw:   pointer to the HW structure
1683 *
1684 *  Workaround to set the K1 beacon duration for 82579 parts
1685 **/
1686static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1687{
1688	s32 ret_val = 0;
1689	u16 status_reg = 0;
1690	u32 mac_reg;
1691	u16 phy_reg;
1692
1693	if (hw->mac.type != e1000_pch2lan)
1694		return 0;
1695
1696	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
1697	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1698	if (ret_val)
1699		return ret_val;
1700
1701	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1702	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1703		mac_reg = er32(FEXTNVM4);
1704		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1705
1706		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1707		if (ret_val)
1708			return ret_val;
1709
1710		if (status_reg & HV_M_STATUS_SPEED_1000) {
1711			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1712			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1713		} else {
1714			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1715			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1716		}
1717		ew32(FEXTNVM4, mac_reg);
1718		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1719	}
1720
1721	return ret_val;
1722}
1723
1724/**
1725 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1726 *  @hw:   pointer to the HW structure
1727 *  @gate: boolean set to true to gate, false to ungate
1728 *
1729 *  Gate/ungate the automatic PHY configuration via hardware; perform
1730 *  the configuration via software instead.
1731 **/
1732static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1733{
1734	u32 extcnf_ctrl;
1735
1736	if (hw->mac.type != e1000_pch2lan)
1737		return;
1738
1739	extcnf_ctrl = er32(EXTCNF_CTRL);
1740
1741	if (gate)
1742		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1743	else
1744		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1745
1746	ew32(EXTCNF_CTRL, extcnf_ctrl);
1747}
1748
1749/**
1750 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1751 *  @hw: pointer to the HW structure
1752 *
1753 *  Check the appropriate indication the MAC has finished configuring the
1754 *  PHY after a software reset.
1755 **/
1756static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1757{
1758	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1759
1760	/* Wait for basic configuration completes before proceeding */
1761	do {
1762		data = er32(STATUS);
1763		data &= E1000_STATUS_LAN_INIT_DONE;
1764		udelay(100);
1765	} while ((!data) && --loop);
1766
1767	/*
1768	 * If basic configuration is incomplete before the above loop
1769	 * count reaches 0, loading the configuration from NVM will
1770	 * leave the PHY in a bad state possibly resulting in no link.
1771	 */
1772	if (loop == 0)
1773		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1774
1775	/* Clear the Init Done bit for the next init event */
1776	data = er32(STATUS);
1777	data &= ~E1000_STATUS_LAN_INIT_DONE;
1778	ew32(STATUS, data);
1779}
1780
1781/**
1782 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1783 *  @hw: pointer to the HW structure
1784 **/
1785static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1786{
1787	s32 ret_val = 0;
1788	u16 reg;
1789
1790	if (hw->phy.ops.check_reset_block(hw))
1791		return 0;
1792
1793	/* Allow time for h/w to get to quiescent state after reset */
1794	usleep_range(10000, 20000);
1795
1796	/* Perform any necessary post-reset workarounds */
1797	switch (hw->mac.type) {
1798	case e1000_pchlan:
1799		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1800		if (ret_val)
1801			return ret_val;
1802		break;
1803	case e1000_pch2lan:
1804		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1805		if (ret_val)
1806			return ret_val;
1807		break;
1808	default:
1809		break;
1810	}
1811
1812	/* Clear the host wakeup bit after lcd reset */
1813	if (hw->mac.type >= e1000_pchlan) {
1814		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
1815		reg &= ~BM_WUC_HOST_WU_BIT;
1816		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
1817	}
1818
1819	/* Configure the LCD with the extended configuration region in NVM */
1820	ret_val = e1000_sw_lcd_config_ich8lan(hw);
1821	if (ret_val)
1822		return ret_val;
1823
1824	/* Configure the LCD with the OEM bits in NVM */
1825	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1826
1827	if (hw->mac.type == e1000_pch2lan) {
1828		/* Ungate automatic PHY configuration on non-managed 82579 */
1829		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1830			usleep_range(10000, 20000);
1831			e1000_gate_hw_phy_config_ich8lan(hw, false);
1832		}
1833
1834		/* Set EEE LPI Update Timer to 200usec */
1835		ret_val = hw->phy.ops.acquire(hw);
1836		if (ret_val)
1837			return ret_val;
1838		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1839						       I82579_LPI_UPDATE_TIMER);
1840		if (!ret_val)
1841			ret_val = hw->phy.ops.write_reg_locked(hw,
1842							       I82579_EMI_DATA,
1843							       0x1387);
1844		hw->phy.ops.release(hw);
1845	}
1846
1847	return ret_val;
1848}
1849
1850/**
1851 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1852 *  @hw: pointer to the HW structure
1853 *
1854 *  Resets the PHY
1855 *  This is a function pointer entry point called by drivers
1856 *  or other shared routines.
1857 **/
1858static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1859{
1860	s32 ret_val = 0;
1861
1862	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
1863	if ((hw->mac.type == e1000_pch2lan) &&
1864	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1865		e1000_gate_hw_phy_config_ich8lan(hw, true);
1866
1867	ret_val = e1000e_phy_hw_reset_generic(hw);
1868	if (ret_val)
1869		return ret_val;
1870
1871	return e1000_post_phy_reset_ich8lan(hw);
1872}
1873
1874/**
1875 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1876 *  @hw: pointer to the HW structure
1877 *  @active: true to enable LPLU, false to disable
1878 *
1879 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1880 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1881 *  the phy speed. This function will manually set the LPLU bit and restart
1882 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1883 *  since it configures the same bit.
1884 **/
1885static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1886{
1887	s32 ret_val = 0;
1888	u16 oem_reg;
1889
1890	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1891	if (ret_val)
1892		return ret_val;
1893
1894	if (active)
1895		oem_reg |= HV_OEM_BITS_LPLU;
1896	else
1897		oem_reg &= ~HV_OEM_BITS_LPLU;
1898
1899	if (!hw->phy.ops.check_reset_block(hw))
1900		oem_reg |= HV_OEM_BITS_RESTART_AN;
1901
1902	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1903}
1904
1905/**
1906 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1907 *  @hw: pointer to the HW structure
1908 *  @active: true to enable LPLU, false to disable
1909 *
1910 *  Sets the LPLU D0 state according to the active flag.  When
1911 *  activating LPLU this function also disables smart speed
1912 *  and vice versa.  LPLU will not be activated unless the
1913 *  device autonegotiation advertisement meets standards of
1914 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1915 *  This is a function pointer entry point only called by
1916 *  PHY setup routines.
1917 **/
1918static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1919{
1920	struct e1000_phy_info *phy = &hw->phy;
1921	u32 phy_ctrl;
1922	s32 ret_val = 0;
1923	u16 data;
1924
1925	if (phy->type == e1000_phy_ife)
1926		return 0;
1927
1928	phy_ctrl = er32(PHY_CTRL);
1929
1930	if (active) {
1931		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1932		ew32(PHY_CTRL, phy_ctrl);
1933
1934		if (phy->type != e1000_phy_igp_3)
1935			return 0;
1936
1937		/*
1938		 * Call gig speed drop workaround on LPLU before accessing
1939		 * any PHY registers
1940		 */
1941		if (hw->mac.type == e1000_ich8lan)
1942			e1000e_gig_downshift_workaround_ich8lan(hw);
1943
1944		/* When LPLU is enabled, we should disable SmartSpeed */
1945		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1946		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1947		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1948		if (ret_val)
1949			return ret_val;
1950	} else {
1951		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1952		ew32(PHY_CTRL, phy_ctrl);
1953
1954		if (phy->type != e1000_phy_igp_3)
1955			return 0;
1956
1957		/*
1958		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1959		 * during Dx states where the power conservation is most
1960		 * important.  During driver activity we should enable
1961		 * SmartSpeed, so performance is maintained.
1962		 */
1963		if (phy->smart_speed == e1000_smart_speed_on) {
1964			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1965					   &data);
1966			if (ret_val)
1967				return ret_val;
1968
1969			data |= IGP01E1000_PSCFR_SMART_SPEED;
1970			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1971					   data);
1972			if (ret_val)
1973				return ret_val;
1974		} else if (phy->smart_speed == e1000_smart_speed_off) {
1975			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1976					   &data);
1977			if (ret_val)
1978				return ret_val;
1979
1980			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1981			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1982					   data);
1983			if (ret_val)
1984				return ret_val;
1985		}
1986	}
1987
1988	return 0;
1989}
1990
1991/**
1992 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1993 *  @hw: pointer to the HW structure
1994 *  @active: true to enable LPLU, false to disable
1995 *
1996 *  Sets the LPLU D3 state according to the active flag.  When
1997 *  activating LPLU this function also disables smart speed
1998 *  and vice versa.  LPLU will not be activated unless the
1999 *  device autonegotiation advertisement meets standards of
2000 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2001 *  This is a function pointer entry point only called by
2002 *  PHY setup routines.
2003 **/
2004static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2005{
2006	struct e1000_phy_info *phy = &hw->phy;
2007	u32 phy_ctrl;
2008	s32 ret_val = 0;
2009	u16 data;
2010
2011	phy_ctrl = er32(PHY_CTRL);
2012
2013	if (!active) {
2014		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2015		ew32(PHY_CTRL, phy_ctrl);
2016
2017		if (phy->type != e1000_phy_igp_3)
2018			return 0;
2019
2020		/*
2021		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2022		 * during Dx states where the power conservation is most
2023		 * important.  During driver activity we should enable
2024		 * SmartSpeed, so performance is maintained.
2025		 */
2026		if (phy->smart_speed == e1000_smart_speed_on) {
2027			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2028					   &data);
2029			if (ret_val)
2030				return ret_val;
2031
2032			data |= IGP01E1000_PSCFR_SMART_SPEED;
2033			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2034					   data);
2035			if (ret_val)
2036				return ret_val;
2037		} else if (phy->smart_speed == e1000_smart_speed_off) {
2038			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2039					   &data);
2040			if (ret_val)
2041				return ret_val;
2042
2043			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2044			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2045					   data);
2046			if (ret_val)
2047				return ret_val;
2048		}
2049	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2050		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2051		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2052		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2053		ew32(PHY_CTRL, phy_ctrl);
2054
2055		if (phy->type != e1000_phy_igp_3)
2056			return 0;
2057
2058		/*
2059		 * Call gig speed drop workaround on LPLU before accessing
2060		 * any PHY registers
2061		 */
2062		if (hw->mac.type == e1000_ich8lan)
2063			e1000e_gig_downshift_workaround_ich8lan(hw);
2064
2065		/* When LPLU is enabled, we should disable SmartSpeed */
2066		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2067		if (ret_val)
2068			return ret_val;
2069
2070		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2071		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2072	}
2073
2074	return ret_val;
2075}
2076
2077/**
2078 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2079 *  @hw: pointer to the HW structure
2080 *  @bank:  pointer to the variable that returns the active bank
2081 *
2082 *  Reads signature byte from the NVM using the flash access registers.
2083 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2084 **/
2085static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2086{
2087	u32 eecd;
2088	struct e1000_nvm_info *nvm = &hw->nvm;
2089	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2090	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2091	u8 sig_byte = 0;
2092	s32 ret_val;
2093
2094	switch (hw->mac.type) {
2095	case e1000_ich8lan:
2096	case e1000_ich9lan:
2097		eecd = er32(EECD);
2098		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2099		    E1000_EECD_SEC1VAL_VALID_MASK) {
2100			if (eecd & E1000_EECD_SEC1VAL)
2101				*bank = 1;
2102			else
2103				*bank = 0;
2104
2105			return 0;
2106		}
2107		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2108		/* fall-thru */
2109	default:
2110		/* set bank to 0 in case flash read fails */
2111		*bank = 0;
2112
2113		/* Check bank 0 */
2114		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2115		                                        &sig_byte);
2116		if (ret_val)
2117			return ret_val;
2118		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2119		    E1000_ICH_NVM_SIG_VALUE) {
2120			*bank = 0;
2121			return 0;
2122		}
2123
2124		/* Check bank 1 */
2125		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2126		                                        bank1_offset,
2127		                                        &sig_byte);
2128		if (ret_val)
2129			return ret_val;
2130		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2131		    E1000_ICH_NVM_SIG_VALUE) {
2132			*bank = 1;
2133			return 0;
2134		}
2135
2136		e_dbg("ERROR: No valid NVM bank present\n");
2137		return -E1000_ERR_NVM;
2138	}
2139}
2140
2141/**
2142 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2143 *  @hw: pointer to the HW structure
2144 *  @offset: The offset (in bytes) of the word(s) to read.
2145 *  @words: Size of data to read in words
2146 *  @data: Pointer to the word(s) to read at offset.
2147 *
2148 *  Reads a word(s) from the NVM using the flash access registers.
2149 **/
2150static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2151				  u16 *data)
2152{
2153	struct e1000_nvm_info *nvm = &hw->nvm;
2154	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2155	u32 act_offset;
2156	s32 ret_val = 0;
2157	u32 bank = 0;
2158	u16 i, word;
2159
2160	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2161	    (words == 0)) {
2162		e_dbg("nvm parameter(s) out of bounds\n");
2163		ret_val = -E1000_ERR_NVM;
2164		goto out;
2165	}
2166
2167	nvm->ops.acquire(hw);
2168
2169	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2170	if (ret_val) {
2171		e_dbg("Could not detect valid bank, assuming bank 0\n");
2172		bank = 0;
2173	}
2174
2175	act_offset = (bank) ? nvm->flash_bank_size : 0;
2176	act_offset += offset;
2177
2178	ret_val = 0;
2179	for (i = 0; i < words; i++) {
2180		if (dev_spec->shadow_ram[offset+i].modified) {
2181			data[i] = dev_spec->shadow_ram[offset+i].value;
2182		} else {
2183			ret_val = e1000_read_flash_word_ich8lan(hw,
2184								act_offset + i,
2185								&word);
2186			if (ret_val)
2187				break;
2188			data[i] = word;
2189		}
2190	}
2191
2192	nvm->ops.release(hw);
2193
2194out:
2195	if (ret_val)
2196		e_dbg("NVM read error: %d\n", ret_val);
2197
2198	return ret_val;
2199}
2200
2201/**
2202 *  e1000_flash_cycle_init_ich8lan - Initialize flash
2203 *  @hw: pointer to the HW structure
2204 *
2205 *  This function does initial flash setup so that a new read/write/erase cycle
2206 *  can be started.
2207 **/
2208static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2209{
2210	union ich8_hws_flash_status hsfsts;
2211	s32 ret_val = -E1000_ERR_NVM;
2212
2213	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2214
2215	/* Check if the flash descriptor is valid */
2216	if (hsfsts.hsf_status.fldesvalid == 0) {
2217		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2218		return -E1000_ERR_NVM;
2219	}
2220
2221	/* Clear FCERR and DAEL in hw status by writing 1 */
2222	hsfsts.hsf_status.flcerr = 1;
2223	hsfsts.hsf_status.dael = 1;
2224
2225	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2226
2227	/*
2228	 * Either we should have a hardware SPI cycle in progress
2229	 * bit to check against, in order to start a new cycle or
2230	 * FDONE bit should be changed in the hardware so that it
2231	 * is 1 after hardware reset, which can then be used as an
2232	 * indication whether a cycle is in progress or has been
2233	 * completed.
2234	 */
2235
2236	if (hsfsts.hsf_status.flcinprog == 0) {
2237		/*
2238		 * There is no cycle running at present,
2239		 * so we can start a cycle.
2240		 * Begin by setting Flash Cycle Done.
2241		 */
2242		hsfsts.hsf_status.flcdone = 1;
2243		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2244		ret_val = 0;
2245	} else {
2246		s32 i;
2247
2248		/*
2249		 * Otherwise poll for sometime so the current
2250		 * cycle has a chance to end before giving up.
2251		 */
2252		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2253			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2254			if (hsfsts.hsf_status.flcinprog == 0) {
2255				ret_val = 0;
2256				break;
2257			}
2258			udelay(1);
2259		}
2260		if (!ret_val) {
2261			/*
2262			 * Successful in waiting for previous cycle to timeout,
2263			 * now set the Flash Cycle Done.
2264			 */
2265			hsfsts.hsf_status.flcdone = 1;
2266			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2267		} else {
2268			e_dbg("Flash controller busy, cannot get access\n");
2269		}
2270	}
2271
2272	return ret_val;
2273}
2274
2275/**
2276 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2277 *  @hw: pointer to the HW structure
2278 *  @timeout: maximum time to wait for completion
2279 *
2280 *  This function starts a flash cycle and waits for its completion.
2281 **/
2282static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2283{
2284	union ich8_hws_flash_ctrl hsflctl;
2285	union ich8_hws_flash_status hsfsts;
2286	u32 i = 0;
2287
2288	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2289	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2290	hsflctl.hsf_ctrl.flcgo = 1;
2291	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2292
2293	/* wait till FDONE bit is set to 1 */
2294	do {
2295		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2296		if (hsfsts.hsf_status.flcdone == 1)
2297			break;
2298		udelay(1);
2299	} while (i++ < timeout);
2300
2301	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2302		return 0;
2303
2304	return -E1000_ERR_NVM;
2305}
2306
2307/**
2308 *  e1000_read_flash_word_ich8lan - Read word from flash
2309 *  @hw: pointer to the HW structure
2310 *  @offset: offset to data location
2311 *  @data: pointer to the location for storing the data
2312 *
2313 *  Reads the flash word at offset into data.  Offset is converted
2314 *  to bytes before read.
2315 **/
2316static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2317					 u16 *data)
2318{
2319	/* Must convert offset into bytes. */
2320	offset <<= 1;
2321
2322	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2323}
2324
2325/**
2326 *  e1000_read_flash_byte_ich8lan - Read byte from flash
2327 *  @hw: pointer to the HW structure
2328 *  @offset: The offset of the byte to read.
2329 *  @data: Pointer to a byte to store the value read.
2330 *
2331 *  Reads a single byte from the NVM using the flash access registers.
2332 **/
2333static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2334					 u8 *data)
2335{
2336	s32 ret_val;
2337	u16 word = 0;
2338
2339	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2340	if (ret_val)
2341		return ret_val;
2342
2343	*data = (u8)word;
2344
2345	return 0;
2346}
2347
2348/**
2349 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2350 *  @hw: pointer to the HW structure
2351 *  @offset: The offset (in bytes) of the byte or word to read.
2352 *  @size: Size of data to read, 1=byte 2=word
2353 *  @data: Pointer to the word to store the value read.
2354 *
2355 *  Reads a byte or word from the NVM using the flash access registers.
2356 **/
2357static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2358					 u8 size, u16 *data)
2359{
2360	union ich8_hws_flash_status hsfsts;
2361	union ich8_hws_flash_ctrl hsflctl;
2362	u32 flash_linear_addr;
2363	u32 flash_data = 0;
2364	s32 ret_val = -E1000_ERR_NVM;
2365	u8 count = 0;
2366
2367	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2368		return -E1000_ERR_NVM;
2369
2370	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2371			    hw->nvm.flash_base_addr;
2372
2373	do {
2374		udelay(1);
2375		/* Steps */
2376		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2377		if (ret_val)
2378			break;
2379
2380		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2381		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2382		hsflctl.hsf_ctrl.fldbcount = size - 1;
2383		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2384		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2385
2386		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2387
2388		ret_val = e1000_flash_cycle_ich8lan(hw,
2389						ICH_FLASH_READ_COMMAND_TIMEOUT);
2390
2391		/*
2392		 * Check if FCERR is set to 1, if set to 1, clear it
2393		 * and try the whole sequence a few more times, else
2394		 * read in (shift in) the Flash Data0, the order is
2395		 * least significant byte first msb to lsb
2396		 */
2397		if (!ret_val) {
2398			flash_data = er32flash(ICH_FLASH_FDATA0);
2399			if (size == 1)
2400				*data = (u8)(flash_data & 0x000000FF);
2401			else if (size == 2)
2402				*data = (u16)(flash_data & 0x0000FFFF);
2403			break;
2404		} else {
2405			/*
2406			 * If we've gotten here, then things are probably
2407			 * completely hosed, but if the error condition is
2408			 * detected, it won't hurt to give it another try...
2409			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2410			 */
2411			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2412			if (hsfsts.hsf_status.flcerr == 1) {
2413				/* Repeat for some time before giving up. */
2414				continue;
2415			} else if (hsfsts.hsf_status.flcdone == 0) {
2416				e_dbg("Timeout error - flash cycle did not complete.\n");
2417				break;
2418			}
2419		}
2420	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2421
2422	return ret_val;
2423}
2424
2425/**
2426 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2427 *  @hw: pointer to the HW structure
2428 *  @offset: The offset (in bytes) of the word(s) to write.
2429 *  @words: Size of data to write in words
2430 *  @data: Pointer to the word(s) to write at offset.
2431 *
2432 *  Writes a byte or word to the NVM using the flash access registers.
2433 **/
2434static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2435				   u16 *data)
2436{
2437	struct e1000_nvm_info *nvm = &hw->nvm;
2438	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2439	u16 i;
2440
2441	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2442	    (words == 0)) {
2443		e_dbg("nvm parameter(s) out of bounds\n");
2444		return -E1000_ERR_NVM;
2445	}
2446
2447	nvm->ops.acquire(hw);
2448
2449	for (i = 0; i < words; i++) {
2450		dev_spec->shadow_ram[offset+i].modified = true;
2451		dev_spec->shadow_ram[offset+i].value = data[i];
2452	}
2453
2454	nvm->ops.release(hw);
2455
2456	return 0;
2457}
2458
2459/**
2460 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2461 *  @hw: pointer to the HW structure
2462 *
2463 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2464 *  which writes the checksum to the shadow ram.  The changes in the shadow
2465 *  ram are then committed to the EEPROM by processing each bank at a time
2466 *  checking for the modified bit and writing only the pending changes.
2467 *  After a successful commit, the shadow ram is cleared and is ready for
2468 *  future writes.
2469 **/
2470static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2471{
2472	struct e1000_nvm_info *nvm = &hw->nvm;
2473	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2474	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2475	s32 ret_val;
2476	u16 data;
2477
2478	ret_val = e1000e_update_nvm_checksum_generic(hw);
2479	if (ret_val)
2480		goto out;
2481
2482	if (nvm->type != e1000_nvm_flash_sw)
2483		goto out;
2484
2485	nvm->ops.acquire(hw);
2486
2487	/*
2488	 * We're writing to the opposite bank so if we're on bank 1,
2489	 * write to bank 0 etc.  We also need to erase the segment that
2490	 * is going to be written
2491	 */
2492	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2493	if (ret_val) {
2494		e_dbg("Could not detect valid bank, assuming bank 0\n");
2495		bank = 0;
2496	}
2497
2498	if (bank == 0) {
2499		new_bank_offset = nvm->flash_bank_size;
2500		old_bank_offset = 0;
2501		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2502		if (ret_val)
2503			goto release;
2504	} else {
2505		old_bank_offset = nvm->flash_bank_size;
2506		new_bank_offset = 0;
2507		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2508		if (ret_val)
2509			goto release;
2510	}
2511
2512	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2513		/*
2514		 * Determine whether to write the value stored
2515		 * in the other NVM bank or a modified value stored
2516		 * in the shadow RAM
2517		 */
2518		if (dev_spec->shadow_ram[i].modified) {
2519			data = dev_spec->shadow_ram[i].value;
2520		} else {
2521			ret_val = e1000_read_flash_word_ich8lan(hw, i +
2522			                                        old_bank_offset,
2523			                                        &data);
2524			if (ret_val)
2525				break;
2526		}
2527
2528		/*
2529		 * If the word is 0x13, then make sure the signature bits
2530		 * (15:14) are 11b until the commit has completed.
2531		 * This will allow us to write 10b which indicates the
2532		 * signature is valid.  We want to do this after the write
2533		 * has completed so that we don't mark the segment valid
2534		 * while the write is still in progress
2535		 */
2536		if (i == E1000_ICH_NVM_SIG_WORD)
2537			data |= E1000_ICH_NVM_SIG_MASK;
2538
2539		/* Convert offset to bytes. */
2540		act_offset = (i + new_bank_offset) << 1;
2541
2542		udelay(100);
2543		/* Write the bytes to the new bank. */
2544		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2545							       act_offset,
2546							       (u8)data);
2547		if (ret_val)
2548			break;
2549
2550		udelay(100);
2551		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2552							  act_offset + 1,
2553							  (u8)(data >> 8));
2554		if (ret_val)
2555			break;
2556	}
2557
2558	/*
2559	 * Don't bother writing the segment valid bits if sector
2560	 * programming failed.
2561	 */
2562	if (ret_val) {
2563		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2564		e_dbg("Flash commit failed.\n");
2565		goto release;
2566	}
2567
2568	/*
2569	 * Finally validate the new segment by setting bit 15:14
2570	 * to 10b in word 0x13 , this can be done without an
2571	 * erase as well since these bits are 11 to start with
2572	 * and we need to change bit 14 to 0b
2573	 */
2574	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2575	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2576	if (ret_val)
2577		goto release;
2578
2579	data &= 0xBFFF;
2580	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2581						       act_offset * 2 + 1,
2582						       (u8)(data >> 8));
2583	if (ret_val)
2584		goto release;
2585
2586	/*
2587	 * And invalidate the previously valid segment by setting
2588	 * its signature word (0x13) high_byte to 0b. This can be
2589	 * done without an erase because flash erase sets all bits
2590	 * to 1's. We can write 1's to 0's without an erase
2591	 */
2592	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2593	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2594	if (ret_val)
2595		goto release;
2596
2597	/* Great!  Everything worked, we can now clear the cached entries. */
2598	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2599		dev_spec->shadow_ram[i].modified = false;
2600		dev_spec->shadow_ram[i].value = 0xFFFF;
2601	}
2602
2603release:
2604	nvm->ops.release(hw);
2605
2606	/*
2607	 * Reload the EEPROM, or else modifications will not appear
2608	 * until after the next adapter reset.
2609	 */
2610	if (!ret_val) {
2611		nvm->ops.reload(hw);
2612		usleep_range(10000, 20000);
2613	}
2614
2615out:
2616	if (ret_val)
2617		e_dbg("NVM update error: %d\n", ret_val);
2618
2619	return ret_val;
2620}
2621
2622/**
2623 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2624 *  @hw: pointer to the HW structure
2625 *
2626 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2627 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2628 *  calculated, in which case we need to calculate the checksum and set bit 6.
2629 **/
2630static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2631{
2632	s32 ret_val;
2633	u16 data;
2634
2635	/*
2636	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2637	 * needs to be fixed.  This bit is an indication that the NVM
2638	 * was prepared by OEM software and did not calculate the
2639	 * checksum...a likely scenario.
2640	 */
2641	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2642	if (ret_val)
2643		return ret_val;
2644
2645	if ((data & 0x40) == 0) {
2646		data |= 0x40;
2647		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2648		if (ret_val)
2649			return ret_val;
2650		ret_val = e1000e_update_nvm_checksum(hw);
2651		if (ret_val)
2652			return ret_val;
2653	}
2654
2655	return e1000e_validate_nvm_checksum_generic(hw);
2656}
2657
2658/**
2659 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2660 *  @hw: pointer to the HW structure
2661 *
2662 *  To prevent malicious write/erase of the NVM, set it to be read-only
2663 *  so that the hardware ignores all write/erase cycles of the NVM via
2664 *  the flash control registers.  The shadow-ram copy of the NVM will
2665 *  still be updated, however any updates to this copy will not stick
2666 *  across driver reloads.
2667 **/
2668void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2669{
2670	struct e1000_nvm_info *nvm = &hw->nvm;
2671	union ich8_flash_protected_range pr0;
2672	union ich8_hws_flash_status hsfsts;
2673	u32 gfpreg;
2674
2675	nvm->ops.acquire(hw);
2676
2677	gfpreg = er32flash(ICH_FLASH_GFPREG);
2678
2679	/* Write-protect GbE Sector of NVM */
2680	pr0.regval = er32flash(ICH_FLASH_PR0);
2681	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2682	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2683	pr0.range.wpe = true;
2684	ew32flash(ICH_FLASH_PR0, pr0.regval);
2685
2686	/*
2687	 * Lock down a subset of GbE Flash Control Registers, e.g.
2688	 * PR0 to prevent the write-protection from being lifted.
2689	 * Once FLOCKDN is set, the registers protected by it cannot
2690	 * be written until FLOCKDN is cleared by a hardware reset.
2691	 */
2692	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2693	hsfsts.hsf_status.flockdn = true;
2694	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2695
2696	nvm->ops.release(hw);
2697}
2698
2699/**
2700 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2701 *  @hw: pointer to the HW structure
2702 *  @offset: The offset (in bytes) of the byte/word to read.
2703 *  @size: Size of data to read, 1=byte 2=word
2704 *  @data: The byte(s) to write to the NVM.
2705 *
2706 *  Writes one/two bytes to the NVM using the flash access registers.
2707 **/
2708static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2709					  u8 size, u16 data)
2710{
2711	union ich8_hws_flash_status hsfsts;
2712	union ich8_hws_flash_ctrl hsflctl;
2713	u32 flash_linear_addr;
2714	u32 flash_data = 0;
2715	s32 ret_val;
2716	u8 count = 0;
2717
2718	if (size < 1 || size > 2 || data > size * 0xff ||
2719	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
2720		return -E1000_ERR_NVM;
2721
2722	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2723			    hw->nvm.flash_base_addr;
2724
2725	do {
2726		udelay(1);
2727		/* Steps */
2728		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2729		if (ret_val)
2730			break;
2731
2732		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2733		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2734		hsflctl.hsf_ctrl.fldbcount = size -1;
2735		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2736		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2737
2738		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2739
2740		if (size == 1)
2741			flash_data = (u32)data & 0x00FF;
2742		else
2743			flash_data = (u32)data;
2744
2745		ew32flash(ICH_FLASH_FDATA0, flash_data);
2746
2747		/*
2748		 * check if FCERR is set to 1 , if set to 1, clear it
2749		 * and try the whole sequence a few more times else done
2750		 */
2751		ret_val = e1000_flash_cycle_ich8lan(hw,
2752					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2753		if (!ret_val)
2754			break;
2755
2756		/*
2757		 * If we're here, then things are most likely
2758		 * completely hosed, but if the error condition
2759		 * is detected, it won't hurt to give it another
2760		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2761		 */
2762		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2763		if (hsfsts.hsf_status.flcerr == 1)
2764			/* Repeat for some time before giving up. */
2765			continue;
2766		if (hsfsts.hsf_status.flcdone == 0) {
2767			e_dbg("Timeout error - flash cycle did not complete.\n");
2768			break;
2769		}
2770	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2771
2772	return ret_val;
2773}
2774
2775/**
2776 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2777 *  @hw: pointer to the HW structure
2778 *  @offset: The index of the byte to read.
2779 *  @data: The byte to write to the NVM.
2780 *
2781 *  Writes a single byte to the NVM using the flash access registers.
2782 **/
2783static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2784					  u8 data)
2785{
2786	u16 word = (u16)data;
2787
2788	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2789}
2790
2791/**
2792 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2793 *  @hw: pointer to the HW structure
2794 *  @offset: The offset of the byte to write.
2795 *  @byte: The byte to write to the NVM.
2796 *
2797 *  Writes a single byte to the NVM using the flash access registers.
2798 *  Goes through a retry algorithm before giving up.
2799 **/
2800static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2801						u32 offset, u8 byte)
2802{
2803	s32 ret_val;
2804	u16 program_retries;
2805
2806	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2807	if (!ret_val)
2808		return ret_val;
2809
2810	for (program_retries = 0; program_retries < 100; program_retries++) {
2811		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2812		udelay(100);
2813		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2814		if (!ret_val)
2815			break;
2816	}
2817	if (program_retries == 100)
2818		return -E1000_ERR_NVM;
2819
2820	return 0;
2821}
2822
2823/**
2824 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2825 *  @hw: pointer to the HW structure
2826 *  @bank: 0 for first bank, 1 for second bank, etc.
2827 *
2828 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2829 *  bank N is 4096 * N + flash_reg_addr.
2830 **/
2831static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2832{
2833	struct e1000_nvm_info *nvm = &hw->nvm;
2834	union ich8_hws_flash_status hsfsts;
2835	union ich8_hws_flash_ctrl hsflctl;
2836	u32 flash_linear_addr;
2837	/* bank size is in 16bit words - adjust to bytes */
2838	u32 flash_bank_size = nvm->flash_bank_size * 2;
2839	s32 ret_val;
2840	s32 count = 0;
2841	s32 j, iteration, sector_size;
2842
2843	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2844
2845	/*
2846	 * Determine HW Sector size: Read BERASE bits of hw flash status
2847	 * register
2848	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2849	 *     consecutive sectors.  The start index for the nth Hw sector
2850	 *     can be calculated as = bank * 4096 + n * 256
2851	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2852	 *     The start index for the nth Hw sector can be calculated
2853	 *     as = bank * 4096
2854	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2855	 *     (ich9 only, otherwise error condition)
2856	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2857	 */
2858	switch (hsfsts.hsf_status.berasesz) {
2859	case 0:
2860		/* Hw sector size 256 */
2861		sector_size = ICH_FLASH_SEG_SIZE_256;
2862		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2863		break;
2864	case 1:
2865		sector_size = ICH_FLASH_SEG_SIZE_4K;
2866		iteration = 1;
2867		break;
2868	case 2:
2869		sector_size = ICH_FLASH_SEG_SIZE_8K;
2870		iteration = 1;
2871		break;
2872	case 3:
2873		sector_size = ICH_FLASH_SEG_SIZE_64K;
2874		iteration = 1;
2875		break;
2876	default:
2877		return -E1000_ERR_NVM;
2878	}
2879
2880	/* Start with the base address, then add the sector offset. */
2881	flash_linear_addr = hw->nvm.flash_base_addr;
2882	flash_linear_addr += (bank) ? flash_bank_size : 0;
2883
2884	for (j = 0; j < iteration ; j++) {
2885		do {
2886			/* Steps */
2887			ret_val = e1000_flash_cycle_init_ich8lan(hw);
2888			if (ret_val)
2889				return ret_val;
2890
2891			/*
2892			 * Write a value 11 (block Erase) in Flash
2893			 * Cycle field in hw flash control
2894			 */
2895			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2896			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2897			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2898
2899			/*
2900			 * Write the last 24 bits of an index within the
2901			 * block into Flash Linear address field in Flash
2902			 * Address.
2903			 */
2904			flash_linear_addr += (j * sector_size);
2905			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2906
2907			ret_val = e1000_flash_cycle_ich8lan(hw,
2908					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2909			if (!ret_val)
2910				break;
2911
2912			/*
2913			 * Check if FCERR is set to 1.  If 1,
2914			 * clear it and try the whole sequence
2915			 * a few more times else Done
2916			 */
2917			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2918			if (hsfsts.hsf_status.flcerr == 1)
2919				/* repeat for some time before giving up */
2920				continue;
2921			else if (hsfsts.hsf_status.flcdone == 0)
2922				return ret_val;
2923		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2924	}
2925
2926	return 0;
2927}
2928
2929/**
2930 *  e1000_valid_led_default_ich8lan - Set the default LED settings
2931 *  @hw: pointer to the HW structure
2932 *  @data: Pointer to the LED settings
2933 *
2934 *  Reads the LED default settings from the NVM to data.  If the NVM LED
2935 *  settings is all 0's or F's, set the LED default to a valid LED default
2936 *  setting.
2937 **/
2938static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2939{
2940	s32 ret_val;
2941
2942	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2943	if (ret_val) {
2944		e_dbg("NVM Read Error\n");
2945		return ret_val;
2946	}
2947
2948	if (*data == ID_LED_RESERVED_0000 ||
2949	    *data == ID_LED_RESERVED_FFFF)
2950		*data = ID_LED_DEFAULT_ICH8LAN;
2951
2952	return 0;
2953}
2954
2955/**
2956 *  e1000_id_led_init_pchlan - store LED configurations
2957 *  @hw: pointer to the HW structure
2958 *
2959 *  PCH does not control LEDs via the LEDCTL register, rather it uses
2960 *  the PHY LED configuration register.
2961 *
2962 *  PCH also does not have an "always on" or "always off" mode which
2963 *  complicates the ID feature.  Instead of using the "on" mode to indicate
2964 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
2965 *  use "link_up" mode.  The LEDs will still ID on request if there is no
2966 *  link based on logic in e1000_led_[on|off]_pchlan().
2967 **/
2968static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2969{
2970	struct e1000_mac_info *mac = &hw->mac;
2971	s32 ret_val;
2972	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2973	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2974	u16 data, i, temp, shift;
2975
2976	/* Get default ID LED modes */
2977	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2978	if (ret_val)
2979		return ret_val;
2980
2981	mac->ledctl_default = er32(LEDCTL);
2982	mac->ledctl_mode1 = mac->ledctl_default;
2983	mac->ledctl_mode2 = mac->ledctl_default;
2984
2985	for (i = 0; i < 4; i++) {
2986		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2987		shift = (i * 5);
2988		switch (temp) {
2989		case ID_LED_ON1_DEF2:
2990		case ID_LED_ON1_ON2:
2991		case ID_LED_ON1_OFF2:
2992			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2993			mac->ledctl_mode1 |= (ledctl_on << shift);
2994			break;
2995		case ID_LED_OFF1_DEF2:
2996		case ID_LED_OFF1_ON2:
2997		case ID_LED_OFF1_OFF2:
2998			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2999			mac->ledctl_mode1 |= (ledctl_off << shift);
3000			break;
3001		default:
3002			/* Do nothing */
3003			break;
3004		}
3005		switch (temp) {
3006		case ID_LED_DEF1_ON2:
3007		case ID_LED_ON1_ON2:
3008		case ID_LED_OFF1_ON2:
3009			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3010			mac->ledctl_mode2 |= (ledctl_on << shift);
3011			break;
3012		case ID_LED_DEF1_OFF2:
3013		case ID_LED_ON1_OFF2:
3014		case ID_LED_OFF1_OFF2:
3015			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3016			mac->ledctl_mode2 |= (ledctl_off << shift);
3017			break;
3018		default:
3019			/* Do nothing */
3020			break;
3021		}
3022	}
3023
3024	return 0;
3025}
3026
3027/**
3028 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3029 *  @hw: pointer to the HW structure
3030 *
3031 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3032 *  register, so the the bus width is hard coded.
3033 **/
3034static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3035{
3036	struct e1000_bus_info *bus = &hw->bus;
3037	s32 ret_val;
3038
3039	ret_val = e1000e_get_bus_info_pcie(hw);
3040
3041	/*
3042	 * ICH devices are "PCI Express"-ish.  They have
3043	 * a configuration space, but do not contain
3044	 * PCI Express Capability registers, so bus width
3045	 * must be hardcoded.
3046	 */
3047	if (bus->width == e1000_bus_width_unknown)
3048		bus->width = e1000_bus_width_pcie_x1;
3049
3050	return ret_val;
3051}
3052
3053/**
3054 *  e1000_reset_hw_ich8lan - Reset the hardware
3055 *  @hw: pointer to the HW structure
3056 *
3057 *  Does a full reset of the hardware which includes a reset of the PHY and
3058 *  MAC.
3059 **/
3060static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3061{
3062	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3063	u16 reg;
3064	u32 ctrl, kab;
3065	s32 ret_val;
3066
3067	/*
3068	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3069	 * on the last TLP read/write transaction when MAC is reset.
3070	 */
3071	ret_val = e1000e_disable_pcie_master(hw);
3072	if (ret_val)
3073		e_dbg("PCI-E Master disable polling has failed.\n");
3074
3075	e_dbg("Masking off all interrupts\n");
3076	ew32(IMC, 0xffffffff);
3077
3078	/*
3079	 * Disable the Transmit and Receive units.  Then delay to allow
3080	 * any pending transactions to complete before we hit the MAC
3081	 * with the global reset.
3082	 */
3083	ew32(RCTL, 0);
3084	ew32(TCTL, E1000_TCTL_PSP);
3085	e1e_flush();
3086
3087	usleep_range(10000, 20000);
3088
3089	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3090	if (hw->mac.type == e1000_ich8lan) {
3091		/* Set Tx and Rx buffer allocation to 8k apiece. */
3092		ew32(PBA, E1000_PBA_8K);
3093		/* Set Packet Buffer Size to 16k. */
3094		ew32(PBS, E1000_PBS_16K);
3095	}
3096
3097	if (hw->mac.type == e1000_pchlan) {
3098		/* Save the NVM K1 bit setting*/
3099		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3100		if (ret_val)
3101			return ret_val;
3102
3103		if (reg & E1000_NVM_K1_ENABLE)
3104			dev_spec->nvm_k1_enabled = true;
3105		else
3106			dev_spec->nvm_k1_enabled = false;
3107	}
3108
3109	ctrl = er32(CTRL);
3110
3111	if (!hw->phy.ops.check_reset_block(hw)) {
3112		/*
3113		 * Full-chip reset requires MAC and PHY reset at the same
3114		 * time to make sure the interface between MAC and the
3115		 * external PHY is reset.
3116		 */
3117		ctrl |= E1000_CTRL_PHY_RST;
3118
3119		/*
3120		 * Gate automatic PHY configuration by hardware on
3121		 * non-managed 82579
3122		 */
3123		if ((hw->mac.type == e1000_pch2lan) &&
3124		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3125			e1000_gate_hw_phy_config_ich8lan(hw, true);
3126	}
3127	ret_val = e1000_acquire_swflag_ich8lan(hw);
3128	e_dbg("Issuing a global reset to ich8lan\n");
3129	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3130	/* cannot issue a flush here because it hangs the hardware */
3131	msleep(20);
3132
3133	if (!ret_val)
3134		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3135
3136	if (ctrl & E1000_CTRL_PHY_RST) {
3137		ret_val = hw->phy.ops.get_cfg_done(hw);
3138		if (ret_val)
3139			return ret_val;
3140
3141		ret_val = e1000_post_phy_reset_ich8lan(hw);
3142		if (ret_val)
3143			return ret_val;
3144	}
3145
3146	/*
3147	 * For PCH, this write will make sure that any noise
3148	 * will be detected as a CRC error and be dropped rather than show up
3149	 * as a bad packet to the DMA engine.
3150	 */
3151	if (hw->mac.type == e1000_pchlan)
3152		ew32(CRC_OFFSET, 0x65656565);
3153
3154	ew32(IMC, 0xffffffff);
3155	er32(ICR);
3156
3157	kab = er32(KABGTXD);
3158	kab |= E1000_KABGTXD_BGSQLBIAS;
3159	ew32(KABGTXD, kab);
3160
3161	return 0;
3162}
3163
3164/**
3165 *  e1000_init_hw_ich8lan - Initialize the hardware
3166 *  @hw: pointer to the HW structure
3167 *
3168 *  Prepares the hardware for transmit and receive by doing the following:
3169 *   - initialize hardware bits
3170 *   - initialize LED identification
3171 *   - setup receive address registers
3172 *   - setup flow control
3173 *   - setup transmit descriptors
3174 *   - clear statistics
3175 **/
3176static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3177{
3178	struct e1000_mac_info *mac = &hw->mac;
3179	u32 ctrl_ext, txdctl, snoop;
3180	s32 ret_val;
3181	u16 i;
3182
3183	e1000_initialize_hw_bits_ich8lan(hw);
3184
3185	/* Initialize identification LED */
3186	ret_val = mac->ops.id_led_init(hw);
3187	if (ret_val)
3188		e_dbg("Error initializing identification LED\n");
3189		/* This is not fatal and we should not stop init due to this */
3190
3191	/* Setup the receive address. */
3192	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3193
3194	/* Zero out the Multicast HASH table */
3195	e_dbg("Zeroing the MTA\n");
3196	for (i = 0; i < mac->mta_reg_count; i++)
3197		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3198
3199	/*
3200	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3201	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3202	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3203	 */
3204	if (hw->phy.type == e1000_phy_82578) {
3205		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3206		i &= ~BM_WUC_HOST_WU_BIT;
3207		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3208		ret_val = e1000_phy_hw_reset_ich8lan(hw);
3209		if (ret_val)
3210			return ret_val;
3211	}
3212
3213	/* Setup link and flow control */
3214	ret_val = mac->ops.setup_link(hw);
3215
3216	/* Set the transmit descriptor write-back policy for both queues */
3217	txdctl = er32(TXDCTL(0));
3218	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3219		 E1000_TXDCTL_FULL_TX_DESC_WB;
3220	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3221		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3222	ew32(TXDCTL(0), txdctl);
3223	txdctl = er32(TXDCTL(1));
3224	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3225		 E1000_TXDCTL_FULL_TX_DESC_WB;
3226	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3227		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3228	ew32(TXDCTL(1), txdctl);
3229
3230	/*
3231	 * ICH8 has opposite polarity of no_snoop bits.
3232	 * By default, we should use snoop behavior.
3233	 */
3234	if (mac->type == e1000_ich8lan)
3235		snoop = PCIE_ICH8_SNOOP_ALL;
3236	else
3237		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3238	e1000e_set_pcie_no_snoop(hw, snoop);
3239
3240	ctrl_ext = er32(CTRL_EXT);
3241	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3242	ew32(CTRL_EXT, ctrl_ext);
3243
3244	/*
3245	 * Clear all of the statistics registers (clear on read).  It is
3246	 * important that we do this after we have tried to establish link
3247	 * because the symbol error count will increment wildly if there
3248	 * is no link.
3249	 */
3250	e1000_clear_hw_cntrs_ich8lan(hw);
3251
3252	return ret_val;
3253}
3254/**
3255 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3256 *  @hw: pointer to the HW structure
3257 *
3258 *  Sets/Clears required hardware bits necessary for correctly setting up the
3259 *  hardware for transmit and receive.
3260 **/
3261static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3262{
3263	u32 reg;
3264
3265	/* Extended Device Control */
3266	reg = er32(CTRL_EXT);
3267	reg |= (1 << 22);
3268	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
3269	if (hw->mac.type >= e1000_pchlan)
3270		reg |= E1000_CTRL_EXT_PHYPDEN;
3271	ew32(CTRL_EXT, reg);
3272
3273	/* Transmit Descriptor Control 0 */
3274	reg = er32(TXDCTL(0));
3275	reg |= (1 << 22);
3276	ew32(TXDCTL(0), reg);
3277
3278	/* Transmit Descriptor Control 1 */
3279	reg = er32(TXDCTL(1));
3280	reg |= (1 << 22);
3281	ew32(TXDCTL(1), reg);
3282
3283	/* Transmit Arbitration Control 0 */
3284	reg = er32(TARC(0));
3285	if (hw->mac.type == e1000_ich8lan)
3286		reg |= (1 << 28) | (1 << 29);
3287	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3288	ew32(TARC(0), reg);
3289
3290	/* Transmit Arbitration Control 1 */
3291	reg = er32(TARC(1));
3292	if (er32(TCTL) & E1000_TCTL_MULR)
3293		reg &= ~(1 << 28);
3294	else
3295		reg |= (1 << 28);
3296	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3297	ew32(TARC(1), reg);
3298
3299	/* Device Status */
3300	if (hw->mac.type == e1000_ich8lan) {
3301		reg = er32(STATUS);
3302		reg &= ~(1 << 31);
3303		ew32(STATUS, reg);
3304	}
3305
3306	/*
3307	 * work-around descriptor data corruption issue during nfs v2 udp
3308	 * traffic, just disable the nfs filtering capability
3309	 */
3310	reg = er32(RFCTL);
3311	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3312	ew32(RFCTL, reg);
3313}
3314
3315/**
3316 *  e1000_setup_link_ich8lan - Setup flow control and link settings
3317 *  @hw: pointer to the HW structure
3318 *
3319 *  Determines which flow control settings to use, then configures flow
3320 *  control.  Calls the appropriate media-specific link configuration
3321 *  function.  Assuming the adapter has a valid link partner, a valid link
3322 *  should be established.  Assumes the hardware has previously been reset
3323 *  and the transmitter and receiver are not enabled.
3324 **/
3325static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3326{
3327	s32 ret_val;
3328
3329	if (hw->phy.ops.check_reset_block(hw))
3330		return 0;
3331
3332	/*
3333	 * ICH parts do not have a word in the NVM to determine
3334	 * the default flow control setting, so we explicitly
3335	 * set it to full.
3336	 */
3337	if (hw->fc.requested_mode == e1000_fc_default) {
3338		/* Workaround h/w hang when Tx flow control enabled */
3339		if (hw->mac.type == e1000_pchlan)
3340			hw->fc.requested_mode = e1000_fc_rx_pause;
3341		else
3342			hw->fc.requested_mode = e1000_fc_full;
3343	}
3344
3345	/*
3346	 * Save off the requested flow control mode for use later.  Depending
3347	 * on the link partner's capabilities, we may or may not use this mode.
3348	 */
3349	hw->fc.current_mode = hw->fc.requested_mode;
3350
3351	e_dbg("After fix-ups FlowControl is now = %x\n",
3352		hw->fc.current_mode);
3353
3354	/* Continue to configure the copper link. */
3355	ret_val = hw->mac.ops.setup_physical_interface(hw);
3356	if (ret_val)
3357		return ret_val;
3358
3359	ew32(FCTTV, hw->fc.pause_time);
3360	if ((hw->phy.type == e1000_phy_82578) ||
3361	    (hw->phy.type == e1000_phy_82579) ||
3362	    (hw->phy.type == e1000_phy_82577)) {
3363		ew32(FCRTV_PCH, hw->fc.refresh_time);
3364
3365		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3366				   hw->fc.pause_time);
3367		if (ret_val)
3368			return ret_val;
3369	}
3370
3371	return e1000e_set_fc_watermarks(hw);
3372}
3373
3374/**
3375 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3376 *  @hw: pointer to the HW structure
3377 *
3378 *  Configures the kumeran interface to the PHY to wait the appropriate time
3379 *  when polling the PHY, then call the generic setup_copper_link to finish
3380 *  configuring the copper link.
3381 **/
3382static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3383{
3384	u32 ctrl;
3385	s32 ret_val;
3386	u16 reg_data;
3387
3388	ctrl = er32(CTRL);
3389	ctrl |= E1000_CTRL_SLU;
3390	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3391	ew32(CTRL, ctrl);
3392
3393	/*
3394	 * Set the mac to wait the maximum time between each iteration
3395	 * and increase the max iterations when polling the phy;
3396	 * this fixes erroneous timeouts at 10Mbps.
3397	 */
3398	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3399	if (ret_val)
3400		return ret_val;
3401	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3402	                               &reg_data);
3403	if (ret_val)
3404		return ret_val;
3405	reg_data |= 0x3F;
3406	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3407	                                reg_data);
3408	if (ret_val)
3409		return ret_val;
3410
3411	switch (hw->phy.type) {
3412	case e1000_phy_igp_3:
3413		ret_val = e1000e_copper_link_setup_igp(hw);
3414		if (ret_val)
3415			return ret_val;
3416		break;
3417	case e1000_phy_bm:
3418	case e1000_phy_82578:
3419		ret_val = e1000e_copper_link_setup_m88(hw);
3420		if (ret_val)
3421			return ret_val;
3422		break;
3423	case e1000_phy_82577:
3424	case e1000_phy_82579:
3425		ret_val = e1000_copper_link_setup_82577(hw);
3426		if (ret_val)
3427			return ret_val;
3428		break;
3429	case e1000_phy_ife:
3430		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3431		if (ret_val)
3432			return ret_val;
3433
3434		reg_data &= ~IFE_PMC_AUTO_MDIX;
3435
3436		switch (hw->phy.mdix) {
3437		case 1:
3438			reg_data &= ~IFE_PMC_FORCE_MDIX;
3439			break;
3440		case 2:
3441			reg_data |= IFE_PMC_FORCE_MDIX;
3442			break;
3443		case 0:
3444		default:
3445			reg_data |= IFE_PMC_AUTO_MDIX;
3446			break;
3447		}
3448		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3449		if (ret_val)
3450			return ret_val;
3451		break;
3452	default:
3453		break;
3454	}
3455
3456	return e1000e_setup_copper_link(hw);
3457}
3458
3459/**
3460 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3461 *  @hw: pointer to the HW structure
3462 *  @speed: pointer to store current link speed
3463 *  @duplex: pointer to store the current link duplex
3464 *
3465 *  Calls the generic get_speed_and_duplex to retrieve the current link
3466 *  information and then calls the Kumeran lock loss workaround for links at
3467 *  gigabit speeds.
3468 **/
3469static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3470					  u16 *duplex)
3471{
3472	s32 ret_val;
3473
3474	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3475	if (ret_val)
3476		return ret_val;
3477
3478	if ((hw->mac.type == e1000_ich8lan) &&
3479	    (hw->phy.type == e1000_phy_igp_3) &&
3480	    (*speed == SPEED_1000)) {
3481		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3482	}
3483
3484	return ret_val;
3485}
3486
3487/**
3488 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3489 *  @hw: pointer to the HW structure
3490 *
3491 *  Work-around for 82566 Kumeran PCS lock loss:
3492 *  On link status change (i.e. PCI reset, speed change) and link is up and
3493 *  speed is gigabit-
3494 *    0) if workaround is optionally disabled do nothing
3495 *    1) wait 1ms for Kumeran link to come up
3496 *    2) check Kumeran Diagnostic register PCS lock loss bit
3497 *    3) if not set the link is locked (all is good), otherwise...
3498 *    4) reset the PHY
3499 *    5) repeat up to 10 times
3500 *  Note: this is only called for IGP3 copper when speed is 1gb.
3501 **/
3502static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3503{
3504	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3505	u32 phy_ctrl;
3506	s32 ret_val;
3507	u16 i, data;
3508	bool link;
3509
3510	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3511		return 0;
3512
3513	/*
3514	 * Make sure link is up before proceeding.  If not just return.
3515	 * Attempting this while link is negotiating fouled up link
3516	 * stability
3517	 */
3518	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3519	if (!link)
3520		return 0;
3521
3522	for (i = 0; i < 10; i++) {
3523		/* read once to clear */
3524		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3525		if (ret_val)
3526			return ret_val;
3527		/* and again to get new status */
3528		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3529		if (ret_val)
3530			return ret_val;
3531
3532		/* check for PCS lock */
3533		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3534			return 0;
3535
3536		/* Issue PHY reset */
3537		e1000_phy_hw_reset(hw);
3538		mdelay(5);
3539	}
3540	/* Disable GigE link negotiation */
3541	phy_ctrl = er32(PHY_CTRL);
3542	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3543		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3544	ew32(PHY_CTRL, phy_ctrl);
3545
3546	/*
3547	 * Call gig speed drop workaround on Gig disable before accessing
3548	 * any PHY registers
3549	 */
3550	e1000e_gig_downshift_workaround_ich8lan(hw);
3551
3552	/* unable to acquire PCS lock */
3553	return -E1000_ERR_PHY;
3554}
3555
3556/**
3557 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3558 *  @hw: pointer to the HW structure
3559 *  @state: boolean value used to set the current Kumeran workaround state
3560 *
3561 *  If ICH8, set the current Kumeran workaround state (enabled - true
3562 *  /disabled - false).
3563 **/
3564void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3565						 bool state)
3566{
3567	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3568
3569	if (hw->mac.type != e1000_ich8lan) {
3570		e_dbg("Workaround applies to ICH8 only.\n");
3571		return;
3572	}
3573
3574	dev_spec->kmrn_lock_loss_workaround_enabled = state;
3575}
3576
3577/**
3578 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3579 *  @hw: pointer to the HW structure
3580 *
3581 *  Workaround for 82566 power-down on D3 entry:
3582 *    1) disable gigabit link
3583 *    2) write VR power-down enable
3584 *    3) read it back
3585 *  Continue if successful, else issue LCD reset and repeat
3586 **/
3587void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3588{
3589	u32 reg;
3590	u16 data;
3591	u8  retry = 0;
3592
3593	if (hw->phy.type != e1000_phy_igp_3)
3594		return;
3595
3596	/* Try the workaround twice (if needed) */
3597	do {
3598		/* Disable link */
3599		reg = er32(PHY_CTRL);
3600		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3601			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3602		ew32(PHY_CTRL, reg);
3603
3604		/*
3605		 * Call gig speed drop workaround on Gig disable before
3606		 * accessing any PHY registers
3607		 */
3608		if (hw->mac.type == e1000_ich8lan)
3609			e1000e_gig_downshift_workaround_ich8lan(hw);
3610
3611		/* Write VR power-down enable */
3612		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3613		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3614		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3615
3616		/* Read it back and test */
3617		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3618		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3619		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3620			break;
3621
3622		/* Issue PHY reset and repeat at most one more time */
3623		reg = er32(CTRL);
3624		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3625		retry++;
3626	} while (retry);
3627}
3628
3629/**
3630 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3631 *  @hw: pointer to the HW structure
3632 *
3633 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3634 *  LPLU, Gig disable, MDIC PHY reset):
3635 *    1) Set Kumeran Near-end loopback
3636 *    2) Clear Kumeran Near-end loopback
3637 *  Should only be called for ICH8[m] devices with any 1G Phy.
3638 **/
3639void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3640{
3641	s32 ret_val;
3642	u16 reg_data;
3643
3644	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3645		return;
3646
3647	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3648				      &reg_data);
3649	if (ret_val)
3650		return;
3651	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3652	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3653				       reg_data);
3654	if (ret_val)
3655		return;
3656	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3657	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3658				       reg_data);
3659}
3660
3661/**
3662 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3663 *  @hw: pointer to the HW structure
3664 *
3665 *  During S0 to Sx transition, it is possible the link remains at gig
3666 *  instead of negotiating to a lower speed.  Before going to Sx, set
3667 *  'Gig Disable' to force link speed negotiation to a lower speed based on
3668 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
3669 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
3670 *  needs to be written.
3671 **/
3672void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3673{
3674	u32 phy_ctrl;
3675	s32 ret_val;
3676
3677	phy_ctrl = er32(PHY_CTRL);
3678	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
3679	ew32(PHY_CTRL, phy_ctrl);
3680
3681	if (hw->mac.type == e1000_ich8lan)
3682		e1000e_gig_downshift_workaround_ich8lan(hw);
3683
3684	if (hw->mac.type >= e1000_pchlan) {
3685		e1000_oem_bits_config_ich8lan(hw, false);
3686
3687		/* Reset PHY to activate OEM bits on 82577/8 */
3688		if (hw->mac.type == e1000_pchlan)
3689			e1000e_phy_hw_reset_generic(hw);
3690
3691		ret_val = hw->phy.ops.acquire(hw);
3692		if (ret_val)
3693			return;
3694		e1000_write_smbus_addr(hw);
3695		hw->phy.ops.release(hw);
3696	}
3697}
3698
3699/**
3700 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3701 *  @hw: pointer to the HW structure
3702 *
3703 *  During Sx to S0 transitions on non-managed devices or managed devices
3704 *  on which PHY resets are not blocked, if the PHY registers cannot be
3705 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
3706 *  the PHY.
3707 **/
3708void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
3709{
3710	u16 phy_id1, phy_id2;
3711	s32 ret_val;
3712
3713	if ((hw->mac.type != e1000_pch2lan) ||
3714	    hw->phy.ops.check_reset_block(hw))
3715		return;
3716
3717	ret_val = hw->phy.ops.acquire(hw);
3718	if (ret_val) {
3719		e_dbg("Failed to acquire PHY semaphore in resume\n");
3720		return;
3721	}
3722
3723	/* Test access to the PHY registers by reading the ID regs */
3724	ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
3725	if (ret_val)
3726		goto release;
3727	ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
3728	if (ret_val)
3729		goto release;
3730
3731	if (hw->phy.id == ((u32)(phy_id1 << 16) |
3732			   (u32)(phy_id2 & PHY_REVISION_MASK)))
3733		goto release;
3734
3735	e1000_toggle_lanphypc_value_ich8lan(hw);
3736
3737	hw->phy.ops.release(hw);
3738	msleep(50);
3739	e1000_phy_hw_reset(hw);
3740	msleep(50);
3741	return;
3742
3743release:
3744	hw->phy.ops.release(hw);
3745}
3746
3747/**
3748 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3749 *  @hw: pointer to the HW structure
3750 *
3751 *  Return the LED back to the default configuration.
3752 **/
3753static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3754{
3755	if (hw->phy.type == e1000_phy_ife)
3756		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3757
3758	ew32(LEDCTL, hw->mac.ledctl_default);
3759	return 0;
3760}
3761
3762/**
3763 *  e1000_led_on_ich8lan - Turn LEDs on
3764 *  @hw: pointer to the HW structure
3765 *
3766 *  Turn on the LEDs.
3767 **/
3768static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3769{
3770	if (hw->phy.type == e1000_phy_ife)
3771		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3772				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3773
3774	ew32(LEDCTL, hw->mac.ledctl_mode2);
3775	return 0;
3776}
3777
3778/**
3779 *  e1000_led_off_ich8lan - Turn LEDs off
3780 *  @hw: pointer to the HW structure
3781 *
3782 *  Turn off the LEDs.
3783 **/
3784static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3785{
3786	if (hw->phy.type == e1000_phy_ife)
3787		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3788				(IFE_PSCL_PROBE_MODE |
3789				 IFE_PSCL_PROBE_LEDS_OFF));
3790
3791	ew32(LEDCTL, hw->mac.ledctl_mode1);
3792	return 0;
3793}
3794
3795/**
3796 *  e1000_setup_led_pchlan - Configures SW controllable LED
3797 *  @hw: pointer to the HW structure
3798 *
3799 *  This prepares the SW controllable LED for use.
3800 **/
3801static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3802{
3803	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3804}
3805
3806/**
3807 *  e1000_cleanup_led_pchlan - Restore the default LED operation
3808 *  @hw: pointer to the HW structure
3809 *
3810 *  Return the LED back to the default configuration.
3811 **/
3812static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3813{
3814	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3815}
3816
3817/**
3818 *  e1000_led_on_pchlan - Turn LEDs on
3819 *  @hw: pointer to the HW structure
3820 *
3821 *  Turn on the LEDs.
3822 **/
3823static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3824{
3825	u16 data = (u16)hw->mac.ledctl_mode2;
3826	u32 i, led;
3827
3828	/*
3829	 * If no link, then turn LED on by setting the invert bit
3830	 * for each LED that's mode is "link_up" in ledctl_mode2.
3831	 */
3832	if (!(er32(STATUS) & E1000_STATUS_LU)) {
3833		for (i = 0; i < 3; i++) {
3834			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3835			if ((led & E1000_PHY_LED0_MODE_MASK) !=
3836			    E1000_LEDCTL_MODE_LINK_UP)
3837				continue;
3838			if (led & E1000_PHY_LED0_IVRT)
3839				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3840			else
3841				data |= (E1000_PHY_LED0_IVRT << (i * 5));
3842		}
3843	}
3844
3845	return e1e_wphy(hw, HV_LED_CONFIG, data);
3846}
3847
3848/**
3849 *  e1000_led_off_pchlan - Turn LEDs off
3850 *  @hw: pointer to the HW structure
3851 *
3852 *  Turn off the LEDs.
3853 **/
3854static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3855{
3856	u16 data = (u16)hw->mac.ledctl_mode1;
3857	u32 i, led;
3858
3859	/*
3860	 * If no link, then turn LED off by clearing the invert bit
3861	 * for each LED that's mode is "link_up" in ledctl_mode1.
3862	 */
3863	if (!(er32(STATUS) & E1000_STATUS_LU)) {
3864		for (i = 0; i < 3; i++) {
3865			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3866			if ((led & E1000_PHY_LED0_MODE_MASK) !=
3867			    E1000_LEDCTL_MODE_LINK_UP)
3868				continue;
3869			if (led & E1000_PHY_LED0_IVRT)
3870				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3871			else
3872				data |= (E1000_PHY_LED0_IVRT << (i * 5));
3873		}
3874	}
3875
3876	return e1e_wphy(hw, HV_LED_CONFIG, data);
3877}
3878
3879/**
3880 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3881 *  @hw: pointer to the HW structure
3882 *
3883 *  Read appropriate register for the config done bit for completion status
3884 *  and configure the PHY through s/w for EEPROM-less parts.
3885 *
3886 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
3887 *  config done bit, so only an error is logged and continues.  If we were
3888 *  to return with error, EEPROM-less silicon would not be able to be reset
3889 *  or change link.
3890 **/
3891static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3892{
3893	s32 ret_val = 0;
3894	u32 bank = 0;
3895	u32 status;
3896
3897	e1000e_get_cfg_done(hw);
3898
3899	/* Wait for indication from h/w that it has completed basic config */
3900	if (hw->mac.type >= e1000_ich10lan) {
3901		e1000_lan_init_done_ich8lan(hw);
3902	} else {
3903		ret_val = e1000e_get_auto_rd_done(hw);
3904		if (ret_val) {
3905			/*
3906			 * When auto config read does not complete, do not
3907			 * return with an error. This can happen in situations
3908			 * where there is no eeprom and prevents getting link.
3909			 */
3910			e_dbg("Auto Read Done did not complete\n");
3911			ret_val = 0;
3912		}
3913	}
3914
3915	/* Clear PHY Reset Asserted bit */
3916	status = er32(STATUS);
3917	if (status & E1000_STATUS_PHYRA)
3918		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3919	else
3920		e_dbg("PHY Reset Asserted not set - needs delay\n");
3921
3922	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
3923	if (hw->mac.type <= e1000_ich9lan) {
3924		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3925		    (hw->phy.type == e1000_phy_igp_3)) {
3926			e1000e_phy_init_script_igp3(hw);
3927		}
3928	} else {
3929		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3930			/* Maybe we should do a basic PHY config */
3931			e_dbg("EEPROM not present\n");
3932			ret_val = -E1000_ERR_CONFIG;
3933		}
3934	}
3935
3936	return ret_val;
3937}
3938
3939/**
3940 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3941 * @hw: pointer to the HW structure
3942 *
3943 * In the case of a PHY power down to save power, or to turn off link during a
3944 * driver unload, or wake on lan is not enabled, remove the link.
3945 **/
3946static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3947{
3948	/* If the management interface is not enabled, then power down */
3949	if (!(hw->mac.ops.check_mng_mode(hw) ||
3950	      hw->phy.ops.check_reset_block(hw)))
3951		e1000_power_down_phy_copper(hw);
3952}
3953
3954/**
3955 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3956 *  @hw: pointer to the HW structure
3957 *
3958 *  Clears hardware counters specific to the silicon family and calls
3959 *  clear_hw_cntrs_generic to clear all general purpose counters.
3960 **/
3961static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3962{
3963	u16 phy_data;
3964	s32 ret_val;
3965
3966	e1000e_clear_hw_cntrs_base(hw);
3967
3968	er32(ALGNERRC);
3969	er32(RXERRC);
3970	er32(TNCRS);
3971	er32(CEXTERR);
3972	er32(TSCTC);
3973	er32(TSCTFC);
3974
3975	er32(MGTPRC);
3976	er32(MGTPDC);
3977	er32(MGTPTC);
3978
3979	er32(IAC);
3980	er32(ICRXOC);
3981
3982	/* Clear PHY statistics registers */
3983	if ((hw->phy.type == e1000_phy_82578) ||
3984	    (hw->phy.type == e1000_phy_82579) ||
3985	    (hw->phy.type == e1000_phy_82577)) {
3986		ret_val = hw->phy.ops.acquire(hw);
3987		if (ret_val)
3988			return;
3989		ret_val = hw->phy.ops.set_page(hw,
3990					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
3991		if (ret_val)
3992			goto release;
3993		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
3994		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
3995		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
3996		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
3997		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
3998		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
3999		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4000		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4001		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4002		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4003		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4004		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4005		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4006		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4007release:
4008		hw->phy.ops.release(hw);
4009	}
4010}
4011
4012static const struct e1000_mac_operations ich8_mac_ops = {
4013	/* check_mng_mode dependent on mac type */
4014	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4015	/* cleanup_led dependent on mac type */
4016	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4017	.get_bus_info		= e1000_get_bus_info_ich8lan,
4018	.set_lan_id		= e1000_set_lan_id_single_port,
4019	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4020	/* led_on dependent on mac type */
4021	/* led_off dependent on mac type */
4022	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4023	.reset_hw		= e1000_reset_hw_ich8lan,
4024	.init_hw		= e1000_init_hw_ich8lan,
4025	.setup_link		= e1000_setup_link_ich8lan,
4026	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4027	/* id_led_init dependent on mac type */
4028	.config_collision_dist	= e1000e_config_collision_dist_generic,
4029};
4030
4031static const struct e1000_phy_operations ich8_phy_ops = {
4032	.acquire		= e1000_acquire_swflag_ich8lan,
4033	.check_reset_block	= e1000_check_reset_block_ich8lan,
4034	.commit			= NULL,
4035	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4036	.get_cable_length	= e1000e_get_cable_length_igp_2,
4037	.read_reg		= e1000e_read_phy_reg_igp,
4038	.release		= e1000_release_swflag_ich8lan,
4039	.reset			= e1000_phy_hw_reset_ich8lan,
4040	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4041	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4042	.write_reg		= e1000e_write_phy_reg_igp,
4043};
4044
4045static const struct e1000_nvm_operations ich8_nvm_ops = {
4046	.acquire		= e1000_acquire_nvm_ich8lan,
4047	.read		 	= e1000_read_nvm_ich8lan,
4048	.release		= e1000_release_nvm_ich8lan,
4049	.reload			= e1000e_reload_nvm_generic,
4050	.update			= e1000_update_nvm_checksum_ich8lan,
4051	.valid_led_default	= e1000_valid_led_default_ich8lan,
4052	.validate		= e1000_validate_nvm_checksum_ich8lan,
4053	.write			= e1000_write_nvm_ich8lan,
4054};
4055
4056const struct e1000_info e1000_ich8_info = {
4057	.mac			= e1000_ich8lan,
4058	.flags			= FLAG_HAS_WOL
4059				  | FLAG_IS_ICH
4060				  | FLAG_HAS_CTRLEXT_ON_LOAD
4061				  | FLAG_HAS_AMT
4062				  | FLAG_HAS_FLASH
4063				  | FLAG_APME_IN_WUC,
4064	.pba			= 8,
4065	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
4066	.get_variants		= e1000_get_variants_ich8lan,
4067	.mac_ops		= &ich8_mac_ops,
4068	.phy_ops		= &ich8_phy_ops,
4069	.nvm_ops		= &ich8_nvm_ops,
4070};
4071
4072const struct e1000_info e1000_ich9_info = {
4073	.mac			= e1000_ich9lan,
4074	.flags			= FLAG_HAS_JUMBO_FRAMES
4075				  | FLAG_IS_ICH
4076				  | FLAG_HAS_WOL
4077				  | FLAG_HAS_CTRLEXT_ON_LOAD
4078				  | FLAG_HAS_AMT
4079				  | FLAG_HAS_FLASH
4080				  | FLAG_APME_IN_WUC,
4081	.pba			= 18,
4082	.max_hw_frame_size	= DEFAULT_JUMBO,
4083	.get_variants		= e1000_get_variants_ich8lan,
4084	.mac_ops		= &ich8_mac_ops,
4085	.phy_ops		= &ich8_phy_ops,
4086	.nvm_ops		= &ich8_nvm_ops,
4087};
4088
4089const struct e1000_info e1000_ich10_info = {
4090	.mac			= e1000_ich10lan,
4091	.flags			= FLAG_HAS_JUMBO_FRAMES
4092				  | FLAG_IS_ICH
4093				  | FLAG_HAS_WOL
4094				  | FLAG_HAS_CTRLEXT_ON_LOAD
4095				  | FLAG_HAS_AMT
4096				  | FLAG_HAS_FLASH
4097				  | FLAG_APME_IN_WUC,
4098	.pba			= 18,
4099	.max_hw_frame_size	= DEFAULT_JUMBO,
4100	.get_variants		= e1000_get_variants_ich8lan,
4101	.mac_ops		= &ich8_mac_ops,
4102	.phy_ops		= &ich8_phy_ops,
4103	.nvm_ops		= &ich8_nvm_ops,
4104};
4105
4106const struct e1000_info e1000_pch_info = {
4107	.mac			= e1000_pchlan,
4108	.flags			= FLAG_IS_ICH
4109				  | FLAG_HAS_WOL
4110				  | FLAG_HAS_CTRLEXT_ON_LOAD
4111				  | FLAG_HAS_AMT
4112				  | FLAG_HAS_FLASH
4113				  | FLAG_HAS_JUMBO_FRAMES
4114				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4115				  | FLAG_APME_IN_WUC,
4116	.flags2			= FLAG2_HAS_PHY_STATS,
4117	.pba			= 26,
4118	.max_hw_frame_size	= 4096,
4119	.get_variants		= e1000_get_variants_ich8lan,
4120	.mac_ops		= &ich8_mac_ops,
4121	.phy_ops		= &ich8_phy_ops,
4122	.nvm_ops		= &ich8_nvm_ops,
4123};
4124
4125const struct e1000_info e1000_pch2_info = {
4126	.mac			= e1000_pch2lan,
4127	.flags			= FLAG_IS_ICH
4128				  | FLAG_HAS_WOL
4129				  | FLAG_HAS_CTRLEXT_ON_LOAD
4130				  | FLAG_HAS_AMT
4131				  | FLAG_HAS_FLASH
4132				  | FLAG_HAS_JUMBO_FRAMES
4133				  | FLAG_APME_IN_WUC,
4134	.flags2			= FLAG2_HAS_PHY_STATS
4135				  | FLAG2_HAS_EEE,
4136	.pba			= 26,
4137	.max_hw_frame_size	= DEFAULT_JUMBO,
4138	.get_variants		= e1000_get_variants_ich8lan,
4139	.mac_ops		= &ich8_mac_ops,
4140	.phy_ops		= &ich8_phy_ops,
4141	.nvm_ops		= &ich8_nvm_ops,
4142};
4143