DAGCombiner.cpp revision 08b1173971a51eb89d7d6ee0992c39170c86994a
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "dagcombine"
16#include "llvm/CodeGen/SelectionDAG.h"
17#include "llvm/CodeGen/MachineFunction.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetOptions.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/MathExtras.h"
31#include <algorithm>
32using namespace llvm;
33
34STATISTIC(NodesCombined   , "Number of dag nodes combined");
35STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
36STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
37
38namespace {
39#ifndef NDEBUG
40  static cl::opt<bool>
41    ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
42                    cl::desc("Pop up a window to show dags before the first "
43                             "dag combine pass"));
44  static cl::opt<bool>
45    ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
46                    cl::desc("Pop up a window to show dags before the second "
47                             "dag combine pass"));
48#else
49  static const bool ViewDAGCombine1 = false;
50  static const bool ViewDAGCombine2 = false;
51#endif
52
53  static cl::opt<bool>
54    CombinerAA("combiner-alias-analysis", cl::Hidden,
55               cl::desc("Turn on alias analysis during testing"));
56
57  static cl::opt<bool>
58    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
59               cl::desc("Include global information in alias analysis"));
60
61//------------------------------ DAGCombiner ---------------------------------//
62
63  class VISIBILITY_HIDDEN DAGCombiner {
64    SelectionDAG &DAG;
65    TargetLowering &TLI;
66    bool AfterLegalize;
67
68    // Worklist of all of the nodes that need to be simplified.
69    std::vector<SDNode*> WorkList;
70
71    // AA - Used for DAG load/store alias analysis.
72    AliasAnalysis &AA;
73
74    /// AddUsersToWorkList - When an instruction is simplified, add all users of
75    /// the instruction to the work lists because they might get more simplified
76    /// now.
77    ///
78    void AddUsersToWorkList(SDNode *N) {
79      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
80           UI != UE; ++UI)
81        AddToWorkList(*UI);
82    }
83
84    /// visit - call the node-specific routine that knows how to fold each
85    /// particular type of node.
86    SDOperand visit(SDNode *N);
87
88  public:
89    /// AddToWorkList - Add to the work list making sure it's instance is at the
90    /// the back (next to be processed.)
91    void AddToWorkList(SDNode *N) {
92      removeFromWorkList(N);
93      WorkList.push_back(N);
94    }
95
96    /// removeFromWorkList - remove all instances of N from the worklist.
97    ///
98    void removeFromWorkList(SDNode *N) {
99      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
100                     WorkList.end());
101    }
102
103    SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
104                        bool AddTo = true);
105
106    SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
107      return CombineTo(N, &Res, 1, AddTo);
108    }
109
110    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
111                        bool AddTo = true) {
112      SDOperand To[] = { Res0, Res1 };
113      return CombineTo(N, To, 2, AddTo);
114    }
115
116  private:
117
118    /// SimplifyDemandedBits - Check the specified integer node value to see if
119    /// it can be simplified or if things it uses can be simplified by bit
120    /// propagation.  If so, return true.
121    bool SimplifyDemandedBits(SDOperand Op) {
122      APInt Demanded = APInt::getAllOnesValue(Op.getValueSizeInBits());
123      return SimplifyDemandedBits(Op, Demanded);
124    }
125
126    bool SimplifyDemandedBits(SDOperand Op, const APInt &Demanded);
127
128    bool CombineToPreIndexedLoadStore(SDNode *N);
129    bool CombineToPostIndexedLoadStore(SDNode *N);
130
131
132    /// combine - call the node-specific routine that knows how to fold each
133    /// particular type of node. If that doesn't do anything, try the
134    /// target-specific DAG combines.
135    SDOperand combine(SDNode *N);
136
137    // Visitation implementation - Implement dag node combining for different
138    // node types.  The semantics are as follows:
139    // Return Value:
140    //   SDOperand.Val == 0   - No change was made
141    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
142    //   otherwise            - N should be replaced by the returned Operand.
143    //
144    SDOperand visitTokenFactor(SDNode *N);
145    SDOperand visitMERGE_VALUES(SDNode *N);
146    SDOperand visitADD(SDNode *N);
147    SDOperand visitSUB(SDNode *N);
148    SDOperand visitADDC(SDNode *N);
149    SDOperand visitADDE(SDNode *N);
150    SDOperand visitMUL(SDNode *N);
151    SDOperand visitSDIV(SDNode *N);
152    SDOperand visitUDIV(SDNode *N);
153    SDOperand visitSREM(SDNode *N);
154    SDOperand visitUREM(SDNode *N);
155    SDOperand visitMULHU(SDNode *N);
156    SDOperand visitMULHS(SDNode *N);
157    SDOperand visitSMUL_LOHI(SDNode *N);
158    SDOperand visitUMUL_LOHI(SDNode *N);
159    SDOperand visitSDIVREM(SDNode *N);
160    SDOperand visitUDIVREM(SDNode *N);
161    SDOperand visitAND(SDNode *N);
162    SDOperand visitOR(SDNode *N);
163    SDOperand visitXOR(SDNode *N);
164    SDOperand SimplifyVBinOp(SDNode *N);
165    SDOperand visitSHL(SDNode *N);
166    SDOperand visitSRA(SDNode *N);
167    SDOperand visitSRL(SDNode *N);
168    SDOperand visitCTLZ(SDNode *N);
169    SDOperand visitCTTZ(SDNode *N);
170    SDOperand visitCTPOP(SDNode *N);
171    SDOperand visitSELECT(SDNode *N);
172    SDOperand visitSELECT_CC(SDNode *N);
173    SDOperand visitSETCC(SDNode *N);
174    SDOperand visitSIGN_EXTEND(SDNode *N);
175    SDOperand visitZERO_EXTEND(SDNode *N);
176    SDOperand visitANY_EXTEND(SDNode *N);
177    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
178    SDOperand visitTRUNCATE(SDNode *N);
179    SDOperand visitBIT_CONVERT(SDNode *N);
180    SDOperand visitFADD(SDNode *N);
181    SDOperand visitFSUB(SDNode *N);
182    SDOperand visitFMUL(SDNode *N);
183    SDOperand visitFDIV(SDNode *N);
184    SDOperand visitFREM(SDNode *N);
185    SDOperand visitFCOPYSIGN(SDNode *N);
186    SDOperand visitSINT_TO_FP(SDNode *N);
187    SDOperand visitUINT_TO_FP(SDNode *N);
188    SDOperand visitFP_TO_SINT(SDNode *N);
189    SDOperand visitFP_TO_UINT(SDNode *N);
190    SDOperand visitFP_ROUND(SDNode *N);
191    SDOperand visitFP_ROUND_INREG(SDNode *N);
192    SDOperand visitFP_EXTEND(SDNode *N);
193    SDOperand visitFNEG(SDNode *N);
194    SDOperand visitFABS(SDNode *N);
195    SDOperand visitBRCOND(SDNode *N);
196    SDOperand visitBR_CC(SDNode *N);
197    SDOperand visitLOAD(SDNode *N);
198    SDOperand visitSTORE(SDNode *N);
199    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
200    SDOperand visitEXTRACT_VECTOR_ELT(SDNode *N);
201    SDOperand visitBUILD_VECTOR(SDNode *N);
202    SDOperand visitCONCAT_VECTORS(SDNode *N);
203    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
204
205    SDOperand XformToShuffleWithZero(SDNode *N);
206    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
207
208    SDOperand visitShiftByConstant(SDNode *N, unsigned Amt);
209
210    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
211    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
212    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
213    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
214                               SDOperand N3, ISD::CondCode CC,
215                               bool NotExtCompare = false);
216    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
217                            ISD::CondCode Cond, bool foldBooleans = true);
218    SDOperand SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
219                                         unsigned HiOp);
220    SDOperand ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT::ValueType);
221    SDOperand BuildSDIV(SDNode *N);
222    SDOperand BuildUDIV(SDNode *N);
223    SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
224    SDOperand ReduceLoadWidth(SDNode *N);
225
226    SDOperand GetDemandedBits(SDOperand V, const APInt &Mask);
227
228    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
229    /// looking for aliasing nodes and adding them to the Aliases vector.
230    void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
231                          SmallVector<SDOperand, 8> &Aliases);
232
233    /// isAlias - Return true if there is any possibility that the two addresses
234    /// overlap.
235    bool isAlias(SDOperand Ptr1, int64_t Size1,
236                 const Value *SrcValue1, int SrcValueOffset1,
237                 SDOperand Ptr2, int64_t Size2,
238                 const Value *SrcValue2, int SrcValueOffset2);
239
240    /// FindAliasInfo - Extracts the relevant alias information from the memory
241    /// node.  Returns true if the operand was a load.
242    bool FindAliasInfo(SDNode *N,
243                       SDOperand &Ptr, int64_t &Size,
244                       const Value *&SrcValue, int &SrcValueOffset);
245
246    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
247    /// looking for a better chain (aliasing node.)
248    SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
249
250public:
251    DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
252      : DAG(D),
253        TLI(D.getTargetLoweringInfo()),
254        AfterLegalize(false),
255        AA(A) {}
256
257    /// Run - runs the dag combiner on all nodes in the work list
258    void Run(bool RunningAfterLegalize);
259  };
260}
261
262
263namespace {
264/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
265/// nodes from the worklist.
266class VISIBILITY_HIDDEN WorkListRemover :
267  public SelectionDAG::DAGUpdateListener {
268  DAGCombiner &DC;
269public:
270  explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {}
271
272  virtual void NodeDeleted(SDNode *N) {
273    DC.removeFromWorkList(N);
274  }
275
276  virtual void NodeUpdated(SDNode *N) {
277    // Ignore updates.
278  }
279};
280}
281
282//===----------------------------------------------------------------------===//
283//  TargetLowering::DAGCombinerInfo implementation
284//===----------------------------------------------------------------------===//
285
286void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
287  ((DAGCombiner*)DC)->AddToWorkList(N);
288}
289
290SDOperand TargetLowering::DAGCombinerInfo::
291CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
292  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
293}
294
295SDOperand TargetLowering::DAGCombinerInfo::
296CombineTo(SDNode *N, SDOperand Res) {
297  return ((DAGCombiner*)DC)->CombineTo(N, Res);
298}
299
300
301SDOperand TargetLowering::DAGCombinerInfo::
302CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
303  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
304}
305
306
307//===----------------------------------------------------------------------===//
308// Helper Functions
309//===----------------------------------------------------------------------===//
310
311/// isNegatibleForFree - Return 1 if we can compute the negated form of the
312/// specified expression for the same cost as the expression itself, or 2 if we
313/// can compute the negated form more cheaply than the expression itself.
314static char isNegatibleForFree(SDOperand Op, bool AfterLegalize,
315                               unsigned Depth = 0) {
316  // No compile time optimizations on this type.
317  if (Op.getValueType() == MVT::ppcf128)
318    return 0;
319
320  // fneg is removable even if it has multiple uses.
321  if (Op.getOpcode() == ISD::FNEG) return 2;
322
323  // Don't allow anything with multiple uses.
324  if (!Op.hasOneUse()) return 0;
325
326  // Don't recurse exponentially.
327  if (Depth > 6) return 0;
328
329  switch (Op.getOpcode()) {
330  default: return false;
331  case ISD::ConstantFP:
332    // Don't invert constant FP values after legalize.  The negated constant
333    // isn't necessarily legal.
334    return AfterLegalize ? 0 : 1;
335  case ISD::FADD:
336    // FIXME: determine better conditions for this xform.
337    if (!UnsafeFPMath) return 0;
338
339    // -(A+B) -> -A - B
340    if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
341      return V;
342    // -(A+B) -> -B - A
343    return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1);
344  case ISD::FSUB:
345    // We can't turn -(A-B) into B-A when we honor signed zeros.
346    if (!UnsafeFPMath) return 0;
347
348    // -(A-B) -> B-A
349    return 1;
350
351  case ISD::FMUL:
352  case ISD::FDIV:
353    if (HonorSignDependentRoundingFPMath()) return 0;
354
355    // -(X*Y) -> (-X * Y) or (X*-Y)
356    if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
357      return V;
358
359    return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1);
360
361  case ISD::FP_EXTEND:
362  case ISD::FP_ROUND:
363  case ISD::FSIN:
364    return isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1);
365  }
366}
367
368/// GetNegatedExpression - If isNegatibleForFree returns true, this function
369/// returns the newly negated expression.
370static SDOperand GetNegatedExpression(SDOperand Op, SelectionDAG &DAG,
371                                      bool AfterLegalize, unsigned Depth = 0) {
372  // fneg is removable even if it has multiple uses.
373  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
374
375  // Don't allow anything with multiple uses.
376  assert(Op.hasOneUse() && "Unknown reuse!");
377
378  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
379  switch (Op.getOpcode()) {
380  default: assert(0 && "Unknown code");
381  case ISD::ConstantFP: {
382    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
383    V.changeSign();
384    return DAG.getConstantFP(V, Op.getValueType());
385  }
386  case ISD::FADD:
387    // FIXME: determine better conditions for this xform.
388    assert(UnsafeFPMath);
389
390    // -(A+B) -> -A - B
391    if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
392      return DAG.getNode(ISD::FSUB, Op.getValueType(),
393                         GetNegatedExpression(Op.getOperand(0), DAG,
394                                              AfterLegalize, Depth+1),
395                         Op.getOperand(1));
396    // -(A+B) -> -B - A
397    return DAG.getNode(ISD::FSUB, Op.getValueType(),
398                       GetNegatedExpression(Op.getOperand(1), DAG,
399                                            AfterLegalize, Depth+1),
400                       Op.getOperand(0));
401  case ISD::FSUB:
402    // We can't turn -(A-B) into B-A when we honor signed zeros.
403    assert(UnsafeFPMath);
404
405    // -(0-B) -> B
406    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
407      if (N0CFP->getValueAPF().isZero())
408        return Op.getOperand(1);
409
410    // -(A-B) -> B-A
411    return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1),
412                       Op.getOperand(0));
413
414  case ISD::FMUL:
415  case ISD::FDIV:
416    assert(!HonorSignDependentRoundingFPMath());
417
418    // -(X*Y) -> -X * Y
419    if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
420      return DAG.getNode(Op.getOpcode(), Op.getValueType(),
421                         GetNegatedExpression(Op.getOperand(0), DAG,
422                                              AfterLegalize, Depth+1),
423                         Op.getOperand(1));
424
425    // -(X*Y) -> X * -Y
426    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
427                       Op.getOperand(0),
428                       GetNegatedExpression(Op.getOperand(1), DAG,
429                                            AfterLegalize, Depth+1));
430
431  case ISD::FP_EXTEND:
432  case ISD::FSIN:
433    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
434                       GetNegatedExpression(Op.getOperand(0), DAG,
435                                            AfterLegalize, Depth+1));
436  case ISD::FP_ROUND:
437      return DAG.getNode(ISD::FP_ROUND, Op.getValueType(),
438                         GetNegatedExpression(Op.getOperand(0), DAG,
439                                              AfterLegalize, Depth+1),
440                         Op.getOperand(1));
441  }
442}
443
444
445// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
446// that selects between the values 1 and 0, making it equivalent to a setcc.
447// Also, set the incoming LHS, RHS, and CC references to the appropriate
448// nodes based on the type of node we are checking.  This simplifies life a
449// bit for the callers.
450static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
451                              SDOperand &CC) {
452  if (N.getOpcode() == ISD::SETCC) {
453    LHS = N.getOperand(0);
454    RHS = N.getOperand(1);
455    CC  = N.getOperand(2);
456    return true;
457  }
458  if (N.getOpcode() == ISD::SELECT_CC &&
459      N.getOperand(2).getOpcode() == ISD::Constant &&
460      N.getOperand(3).getOpcode() == ISD::Constant &&
461      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
462      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
463    LHS = N.getOperand(0);
464    RHS = N.getOperand(1);
465    CC  = N.getOperand(4);
466    return true;
467  }
468  return false;
469}
470
471// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
472// one use.  If this is true, it allows the users to invert the operation for
473// free when it is profitable to do so.
474static bool isOneUseSetCC(SDOperand N) {
475  SDOperand N0, N1, N2;
476  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
477    return true;
478  return false;
479}
480
481SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
482  MVT::ValueType VT = N0.getValueType();
483  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
484  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
485  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
486    if (isa<ConstantSDNode>(N1)) {
487      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
488      AddToWorkList(OpNode.Val);
489      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
490    } else if (N0.hasOneUse()) {
491      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
492      AddToWorkList(OpNode.Val);
493      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
494    }
495  }
496  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
497  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
498  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
499    if (isa<ConstantSDNode>(N0)) {
500      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
501      AddToWorkList(OpNode.Val);
502      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
503    } else if (N1.hasOneUse()) {
504      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
505      AddToWorkList(OpNode.Val);
506      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
507    }
508  }
509  return SDOperand();
510}
511
512SDOperand DAGCombiner::CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
513                                 bool AddTo) {
514  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
515  ++NodesCombined;
516  DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
517  DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
518  DOUT << " and " << NumTo-1 << " other values\n";
519  WorkListRemover DeadNodes(*this);
520  DAG.ReplaceAllUsesWith(N, To, &DeadNodes);
521
522  if (AddTo) {
523    // Push the new nodes and any users onto the worklist
524    for (unsigned i = 0, e = NumTo; i != e; ++i) {
525      AddToWorkList(To[i].Val);
526      AddUsersToWorkList(To[i].Val);
527    }
528  }
529
530  // Nodes can be reintroduced into the worklist.  Make sure we do not
531  // process a node that has been replaced.
532  removeFromWorkList(N);
533
534  // Finally, since the node is now dead, remove it from the graph.
535  DAG.DeleteNode(N);
536  return SDOperand(N, 0);
537}
538
539/// SimplifyDemandedBits - Check the specified integer node value to see if
540/// it can be simplified or if things it uses can be simplified by bit
541/// propagation.  If so, return true.
542bool DAGCombiner::SimplifyDemandedBits(SDOperand Op, const APInt &Demanded) {
543  TargetLowering::TargetLoweringOpt TLO(DAG, AfterLegalize);
544  APInt KnownZero, KnownOne;
545  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
546    return false;
547
548  // Revisit the node.
549  AddToWorkList(Op.Val);
550
551  // Replace the old value with the new one.
552  ++NodesCombined;
553  DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump(&DAG));
554  DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
555  DOUT << '\n';
556
557  // Replace all uses.  If any nodes become isomorphic to other nodes and
558  // are deleted, make sure to remove them from our worklist.
559  WorkListRemover DeadNodes(*this);
560  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
561
562  // Push the new node and any (possibly new) users onto the worklist.
563  AddToWorkList(TLO.New.Val);
564  AddUsersToWorkList(TLO.New.Val);
565
566  // Finally, if the node is now dead, remove it from the graph.  The node
567  // may not be dead if the replacement process recursively simplified to
568  // something else needing this node.
569  if (TLO.Old.Val->use_empty()) {
570    removeFromWorkList(TLO.Old.Val);
571
572    // If the operands of this node are only used by the node, they will now
573    // be dead.  Make sure to visit them first to delete dead nodes early.
574    for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i)
575      if (TLO.Old.Val->getOperand(i).Val->hasOneUse())
576        AddToWorkList(TLO.Old.Val->getOperand(i).Val);
577
578    DAG.DeleteNode(TLO.Old.Val);
579  }
580  return true;
581}
582
583//===----------------------------------------------------------------------===//
584//  Main DAG Combiner implementation
585//===----------------------------------------------------------------------===//
586
587void DAGCombiner::Run(bool RunningAfterLegalize) {
588  // set the instance variable, so that the various visit routines may use it.
589  AfterLegalize = RunningAfterLegalize;
590
591  // Add all the dag nodes to the worklist.
592  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
593       E = DAG.allnodes_end(); I != E; ++I)
594    WorkList.push_back(I);
595
596  // Create a dummy node (which is not added to allnodes), that adds a reference
597  // to the root node, preventing it from being deleted, and tracking any
598  // changes of the root.
599  HandleSDNode Dummy(DAG.getRoot());
600
601  // The root of the dag may dangle to deleted nodes until the dag combiner is
602  // done.  Set it to null to avoid confusion.
603  DAG.setRoot(SDOperand());
604
605  // while the worklist isn't empty, inspect the node on the end of it and
606  // try and combine it.
607  while (!WorkList.empty()) {
608    SDNode *N = WorkList.back();
609    WorkList.pop_back();
610
611    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
612    // N is deleted from the DAG, since they too may now be dead or may have a
613    // reduced number of uses, allowing other xforms.
614    if (N->use_empty() && N != &Dummy) {
615      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
616        AddToWorkList(N->getOperand(i).Val);
617
618      DAG.DeleteNode(N);
619      continue;
620    }
621
622    SDOperand RV = combine(N);
623
624    if (RV.Val == 0)
625      continue;
626
627    ++NodesCombined;
628
629    // If we get back the same node we passed in, rather than a new node or
630    // zero, we know that the node must have defined multiple values and
631    // CombineTo was used.  Since CombineTo takes care of the worklist
632    // mechanics for us, we have no work to do in this case.
633    if (RV.Val == N)
634      continue;
635
636    assert(N->getOpcode() != ISD::DELETED_NODE &&
637           RV.Val->getOpcode() != ISD::DELETED_NODE &&
638           "Node was deleted but visit returned new node!");
639
640    DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
641    DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
642    DOUT << '\n';
643    WorkListRemover DeadNodes(*this);
644    if (N->getNumValues() == RV.Val->getNumValues())
645      DAG.ReplaceAllUsesWith(N, RV.Val, &DeadNodes);
646    else {
647      assert(N->getValueType(0) == RV.getValueType() &&
648             N->getNumValues() == 1 && "Type mismatch");
649      SDOperand OpV = RV;
650      DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes);
651    }
652
653    // Push the new node and any users onto the worklist
654    AddToWorkList(RV.Val);
655    AddUsersToWorkList(RV.Val);
656
657    // Add any uses of the old node to the worklist in case this node is the
658    // last one that uses them.  They may become dead after this node is
659    // deleted.
660    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
661      AddToWorkList(N->getOperand(i).Val);
662
663    // Nodes can be reintroduced into the worklist.  Make sure we do not
664    // process a node that has been replaced.
665    removeFromWorkList(N);
666
667    // Finally, since the node is now dead, remove it from the graph.
668    DAG.DeleteNode(N);
669  }
670
671  // If the root changed (e.g. it was a dead load, update the root).
672  DAG.setRoot(Dummy.getValue());
673}
674
675SDOperand DAGCombiner::visit(SDNode *N) {
676  switch(N->getOpcode()) {
677  default: break;
678  case ISD::TokenFactor:        return visitTokenFactor(N);
679  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
680  case ISD::ADD:                return visitADD(N);
681  case ISD::SUB:                return visitSUB(N);
682  case ISD::ADDC:               return visitADDC(N);
683  case ISD::ADDE:               return visitADDE(N);
684  case ISD::MUL:                return visitMUL(N);
685  case ISD::SDIV:               return visitSDIV(N);
686  case ISD::UDIV:               return visitUDIV(N);
687  case ISD::SREM:               return visitSREM(N);
688  case ISD::UREM:               return visitUREM(N);
689  case ISD::MULHU:              return visitMULHU(N);
690  case ISD::MULHS:              return visitMULHS(N);
691  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
692  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
693  case ISD::SDIVREM:            return visitSDIVREM(N);
694  case ISD::UDIVREM:            return visitUDIVREM(N);
695  case ISD::AND:                return visitAND(N);
696  case ISD::OR:                 return visitOR(N);
697  case ISD::XOR:                return visitXOR(N);
698  case ISD::SHL:                return visitSHL(N);
699  case ISD::SRA:                return visitSRA(N);
700  case ISD::SRL:                return visitSRL(N);
701  case ISD::CTLZ:               return visitCTLZ(N);
702  case ISD::CTTZ:               return visitCTTZ(N);
703  case ISD::CTPOP:              return visitCTPOP(N);
704  case ISD::SELECT:             return visitSELECT(N);
705  case ISD::SELECT_CC:          return visitSELECT_CC(N);
706  case ISD::SETCC:              return visitSETCC(N);
707  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
708  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
709  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
710  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
711  case ISD::TRUNCATE:           return visitTRUNCATE(N);
712  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
713  case ISD::FADD:               return visitFADD(N);
714  case ISD::FSUB:               return visitFSUB(N);
715  case ISD::FMUL:               return visitFMUL(N);
716  case ISD::FDIV:               return visitFDIV(N);
717  case ISD::FREM:               return visitFREM(N);
718  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
719  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
720  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
721  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
722  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
723  case ISD::FP_ROUND:           return visitFP_ROUND(N);
724  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
725  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
726  case ISD::FNEG:               return visitFNEG(N);
727  case ISD::FABS:               return visitFABS(N);
728  case ISD::BRCOND:             return visitBRCOND(N);
729  case ISD::BR_CC:              return visitBR_CC(N);
730  case ISD::LOAD:               return visitLOAD(N);
731  case ISD::STORE:              return visitSTORE(N);
732  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
733  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
734  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
735  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
736  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
737  }
738  return SDOperand();
739}
740
741SDOperand DAGCombiner::combine(SDNode *N) {
742
743  SDOperand RV = visit(N);
744
745  // If nothing happened, try a target-specific DAG combine.
746  if (RV.Val == 0) {
747    assert(N->getOpcode() != ISD::DELETED_NODE &&
748           "Node was deleted but visit returned NULL!");
749
750    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
751        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
752
753      // Expose the DAG combiner to the target combiner impls.
754      TargetLowering::DAGCombinerInfo
755        DagCombineInfo(DAG, !AfterLegalize, false, this);
756
757      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
758    }
759  }
760
761  // If N is a commutative binary node, try commuting it to enable more
762  // sdisel CSE.
763  if (RV.Val == 0 &&
764      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
765      N->getNumValues() == 1) {
766    SDOperand N0 = N->getOperand(0);
767    SDOperand N1 = N->getOperand(1);
768    // Constant operands are canonicalized to RHS.
769    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
770      SDOperand Ops[] = { N1, N0 };
771      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
772                                            Ops, 2);
773      if (CSENode && CSENode->use_size() <= N->use_size())
774        return SDOperand(CSENode, 0);
775    }
776  }
777
778  return RV;
779}
780
781/// getInputChainForNode - Given a node, return its input chain if it has one,
782/// otherwise return a null sd operand.
783static SDOperand getInputChainForNode(SDNode *N) {
784  if (unsigned NumOps = N->getNumOperands()) {
785    if (N->getOperand(0).getValueType() == MVT::Other)
786      return N->getOperand(0);
787    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
788      return N->getOperand(NumOps-1);
789    for (unsigned i = 1; i < NumOps-1; ++i)
790      if (N->getOperand(i).getValueType() == MVT::Other)
791        return N->getOperand(i);
792  }
793  return SDOperand(0, 0);
794}
795
796SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
797  // If N has two operands, where one has an input chain equal to the other,
798  // the 'other' chain is redundant.
799  if (N->getNumOperands() == 2) {
800    if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
801      return N->getOperand(0);
802    if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
803      return N->getOperand(1);
804  }
805
806  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
807  SmallVector<SDOperand, 8> Ops;    // Ops for replacing token factor.
808  SmallPtrSet<SDNode*, 16> SeenOps;
809  bool Changed = false;             // If we should replace this token factor.
810
811  // Start out with this token factor.
812  TFs.push_back(N);
813
814  // Iterate through token factors.  The TFs grows when new token factors are
815  // encountered.
816  for (unsigned i = 0; i < TFs.size(); ++i) {
817    SDNode *TF = TFs[i];
818
819    // Check each of the operands.
820    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
821      SDOperand Op = TF->getOperand(i);
822
823      switch (Op.getOpcode()) {
824      case ISD::EntryToken:
825        // Entry tokens don't need to be added to the list. They are
826        // rededundant.
827        Changed = true;
828        break;
829
830      case ISD::TokenFactor:
831        if ((CombinerAA || Op.hasOneUse()) &&
832            std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
833          // Queue up for processing.
834          TFs.push_back(Op.Val);
835          // Clean up in case the token factor is removed.
836          AddToWorkList(Op.Val);
837          Changed = true;
838          break;
839        }
840        // Fall thru
841
842      default:
843        // Only add if it isn't already in the list.
844        if (SeenOps.insert(Op.Val))
845          Ops.push_back(Op);
846        else
847          Changed = true;
848        break;
849      }
850    }
851  }
852
853  SDOperand Result;
854
855  // If we've change things around then replace token factor.
856  if (Changed) {
857    if (Ops.empty()) {
858      // The entry token is the only possible outcome.
859      Result = DAG.getEntryNode();
860    } else {
861      // New and improved token factor.
862      Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
863    }
864
865    // Don't add users to work list.
866    return CombineTo(N, Result, false);
867  }
868
869  return Result;
870}
871
872/// MERGE_VALUES can always be eliminated.
873SDOperand DAGCombiner::visitMERGE_VALUES(SDNode *N) {
874  WorkListRemover DeadNodes(*this);
875  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
876    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, i), N->getOperand(i),
877                                  &DeadNodes);
878  removeFromWorkList(N);
879  DAG.DeleteNode(N);
880  return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
881}
882
883
884static
885SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
886  MVT::ValueType VT = N0.getValueType();
887  SDOperand N00 = N0.getOperand(0);
888  SDOperand N01 = N0.getOperand(1);
889  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
890  if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
891      isa<ConstantSDNode>(N00.getOperand(1))) {
892    N0 = DAG.getNode(ISD::ADD, VT,
893                     DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
894                     DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
895    return DAG.getNode(ISD::ADD, VT, N0, N1);
896  }
897  return SDOperand();
898}
899
900static
901SDOperand combineSelectAndUse(SDNode *N, SDOperand Slct, SDOperand OtherOp,
902                              SelectionDAG &DAG) {
903  MVT::ValueType VT = N->getValueType(0);
904  unsigned Opc = N->getOpcode();
905  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
906  SDOperand LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
907  SDOperand RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
908  ISD::CondCode CC = ISD::SETCC_INVALID;
909  if (isSlctCC)
910    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
911  else {
912    SDOperand CCOp = Slct.getOperand(0);
913    if (CCOp.getOpcode() == ISD::SETCC)
914      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
915  }
916
917  bool DoXform = false;
918  bool InvCC = false;
919  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
920          "Bad input!");
921  if (LHS.getOpcode() == ISD::Constant &&
922      cast<ConstantSDNode>(LHS)->isNullValue())
923    DoXform = true;
924  else if (CC != ISD::SETCC_INVALID &&
925           RHS.getOpcode() == ISD::Constant &&
926           cast<ConstantSDNode>(RHS)->isNullValue()) {
927    std::swap(LHS, RHS);
928    SDOperand Op0 = Slct.getOperand(0);
929    bool isInt = MVT::isInteger(isSlctCC ? Op0.getValueType()
930                                : Op0.getOperand(0).getValueType());
931    CC = ISD::getSetCCInverse(CC, isInt);
932    DoXform = true;
933    InvCC = true;
934  }
935
936  if (DoXform) {
937    SDOperand Result = DAG.getNode(Opc, VT, OtherOp, RHS);
938    if (isSlctCC)
939      return DAG.getSelectCC(OtherOp, Result,
940                             Slct.getOperand(0), Slct.getOperand(1), CC);
941    SDOperand CCOp = Slct.getOperand(0);
942    if (InvCC)
943      CCOp = DAG.getSetCC(CCOp.getValueType(), CCOp.getOperand(0),
944                          CCOp.getOperand(1), CC);
945    return DAG.getNode(ISD::SELECT, VT, CCOp, OtherOp, Result);
946  }
947  return SDOperand();
948}
949
950SDOperand DAGCombiner::visitADD(SDNode *N) {
951  SDOperand N0 = N->getOperand(0);
952  SDOperand N1 = N->getOperand(1);
953  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
954  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
955  MVT::ValueType VT = N0.getValueType();
956
957  // fold vector ops
958  if (MVT::isVector(VT)) {
959    SDOperand FoldedVOp = SimplifyVBinOp(N);
960    if (FoldedVOp.Val) return FoldedVOp;
961  }
962
963  // fold (add x, undef) -> undef
964  if (N0.getOpcode() == ISD::UNDEF)
965    return N0;
966  if (N1.getOpcode() == ISD::UNDEF)
967    return N1;
968  // fold (add c1, c2) -> c1+c2
969  if (N0C && N1C)
970    return DAG.getConstant(N0C->getAPIntValue() + N1C->getAPIntValue(), VT);
971  // canonicalize constant to RHS
972  if (N0C && !N1C)
973    return DAG.getNode(ISD::ADD, VT, N1, N0);
974  // fold (add x, 0) -> x
975  if (N1C && N1C->isNullValue())
976    return N0;
977  // fold ((c1-A)+c2) -> (c1+c2)-A
978  if (N1C && N0.getOpcode() == ISD::SUB)
979    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
980      return DAG.getNode(ISD::SUB, VT,
981                         DAG.getConstant(N1C->getAPIntValue()+
982                                         N0C->getAPIntValue(), VT),
983                         N0.getOperand(1));
984  // reassociate add
985  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
986  if (RADD.Val != 0)
987    return RADD;
988  // fold ((0-A) + B) -> B-A
989  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
990      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
991    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
992  // fold (A + (0-B)) -> A-B
993  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
994      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
995    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
996  // fold (A+(B-A)) -> B
997  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
998    return N1.getOperand(0);
999
1000  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
1001    return SDOperand(N, 0);
1002
1003  // fold (a+b) -> (a|b) iff a and b share no bits.
1004  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
1005    APInt LHSZero, LHSOne;
1006    APInt RHSZero, RHSOne;
1007    APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
1008    DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1009    if (LHSZero.getBoolValue()) {
1010      DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1011
1012      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1013      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1014      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1015          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1016        return DAG.getNode(ISD::OR, VT, N0, N1);
1017    }
1018  }
1019
1020  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1021  if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
1022    SDOperand Result = combineShlAddConstant(N0, N1, DAG);
1023    if (Result.Val) return Result;
1024  }
1025  if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
1026    SDOperand Result = combineShlAddConstant(N1, N0, DAG);
1027    if (Result.Val) return Result;
1028  }
1029
1030  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
1031  if (N0.getOpcode() == ISD::SELECT && N0.Val->hasOneUse()) {
1032    SDOperand Result = combineSelectAndUse(N, N0, N1, DAG);
1033    if (Result.Val) return Result;
1034  }
1035  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1036    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1037    if (Result.Val) return Result;
1038  }
1039
1040  return SDOperand();
1041}
1042
1043SDOperand DAGCombiner::visitADDC(SDNode *N) {
1044  SDOperand N0 = N->getOperand(0);
1045  SDOperand N1 = N->getOperand(1);
1046  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1047  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1048  MVT::ValueType VT = N0.getValueType();
1049
1050  // If the flag result is dead, turn this into an ADD.
1051  if (N->hasNUsesOfValue(0, 1))
1052    return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
1053                     DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1054
1055  // canonicalize constant to RHS.
1056  if (N0C && !N1C) {
1057    SDOperand Ops[] = { N1, N0 };
1058    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1059  }
1060
1061  // fold (addc x, 0) -> x + no carry out
1062  if (N1C && N1C->isNullValue())
1063    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1064
1065  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1066  APInt LHSZero, LHSOne;
1067  APInt RHSZero, RHSOne;
1068  APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
1069  DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1070  if (LHSZero.getBoolValue()) {
1071    DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1072
1073    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1074    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1075    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1076        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1077      return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
1078                       DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1079  }
1080
1081  return SDOperand();
1082}
1083
1084SDOperand DAGCombiner::visitADDE(SDNode *N) {
1085  SDOperand N0 = N->getOperand(0);
1086  SDOperand N1 = N->getOperand(1);
1087  SDOperand CarryIn = N->getOperand(2);
1088  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1089  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1090  //MVT::ValueType VT = N0.getValueType();
1091
1092  // canonicalize constant to RHS
1093  if (N0C && !N1C) {
1094    SDOperand Ops[] = { N1, N0, CarryIn };
1095    return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
1096  }
1097
1098  // fold (adde x, y, false) -> (addc x, y)
1099  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
1100    SDOperand Ops[] = { N1, N0 };
1101    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1102  }
1103
1104  return SDOperand();
1105}
1106
1107
1108
1109SDOperand DAGCombiner::visitSUB(SDNode *N) {
1110  SDOperand N0 = N->getOperand(0);
1111  SDOperand N1 = N->getOperand(1);
1112  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1113  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1114  MVT::ValueType VT = N0.getValueType();
1115
1116  // fold vector ops
1117  if (MVT::isVector(VT)) {
1118    SDOperand FoldedVOp = SimplifyVBinOp(N);
1119    if (FoldedVOp.Val) return FoldedVOp;
1120  }
1121
1122  // fold (sub x, x) -> 0
1123  if (N0 == N1)
1124    return DAG.getConstant(0, N->getValueType(0));
1125  // fold (sub c1, c2) -> c1-c2
1126  if (N0C && N1C)
1127    return DAG.getNode(ISD::SUB, VT, N0, N1);
1128  // fold (sub x, c) -> (add x, -c)
1129  if (N1C)
1130    return DAG.getNode(ISD::ADD, VT, N0,
1131                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1132  // fold (A+B)-A -> B
1133  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1134    return N0.getOperand(1);
1135  // fold (A+B)-B -> A
1136  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1137    return N0.getOperand(0);
1138  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1139  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1140    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1141    if (Result.Val) return Result;
1142  }
1143  // If either operand of a sub is undef, the result is undef
1144  if (N0.getOpcode() == ISD::UNDEF)
1145    return N0;
1146  if (N1.getOpcode() == ISD::UNDEF)
1147    return N1;
1148
1149  return SDOperand();
1150}
1151
1152SDOperand DAGCombiner::visitMUL(SDNode *N) {
1153  SDOperand N0 = N->getOperand(0);
1154  SDOperand N1 = N->getOperand(1);
1155  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1156  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1157  MVT::ValueType VT = N0.getValueType();
1158
1159  // fold vector ops
1160  if (MVT::isVector(VT)) {
1161    SDOperand FoldedVOp = SimplifyVBinOp(N);
1162    if (FoldedVOp.Val) return FoldedVOp;
1163  }
1164
1165  // fold (mul x, undef) -> 0
1166  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1167    return DAG.getConstant(0, VT);
1168  // fold (mul c1, c2) -> c1*c2
1169  if (N0C && N1C)
1170    return DAG.getNode(ISD::MUL, VT, N0, N1);
1171  // canonicalize constant to RHS
1172  if (N0C && !N1C)
1173    return DAG.getNode(ISD::MUL, VT, N1, N0);
1174  // fold (mul x, 0) -> 0
1175  if (N1C && N1C->isNullValue())
1176    return N1;
1177  // fold (mul x, -1) -> 0-x
1178  if (N1C && N1C->isAllOnesValue())
1179    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1180  // fold (mul x, (1 << c)) -> x << c
1181  if (N1C && N1C->getAPIntValue().isPowerOf2())
1182    return DAG.getNode(ISD::SHL, VT, N0,
1183                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1184                                       TLI.getShiftAmountTy()));
1185  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1186  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
1187    // FIXME: If the input is something that is easily negated (e.g. a
1188    // single-use add), we should put the negate there.
1189    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
1190                       DAG.getNode(ISD::SHL, VT, N0,
1191                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
1192                                            TLI.getShiftAmountTy())));
1193  }
1194
1195  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1196  if (N1C && N0.getOpcode() == ISD::SHL &&
1197      isa<ConstantSDNode>(N0.getOperand(1))) {
1198    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
1199    AddToWorkList(C3.Val);
1200    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
1201  }
1202
1203  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1204  // use.
1205  {
1206    SDOperand Sh(0,0), Y(0,0);
1207    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1208    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1209        N0.Val->hasOneUse()) {
1210      Sh = N0; Y = N1;
1211    } else if (N1.getOpcode() == ISD::SHL &&
1212               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
1213      Sh = N1; Y = N0;
1214    }
1215    if (Sh.Val) {
1216      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
1217      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
1218    }
1219  }
1220  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1221  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
1222      isa<ConstantSDNode>(N0.getOperand(1))) {
1223    return DAG.getNode(ISD::ADD, VT,
1224                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
1225                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
1226  }
1227
1228  // reassociate mul
1229  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
1230  if (RMUL.Val != 0)
1231    return RMUL;
1232
1233  return SDOperand();
1234}
1235
1236SDOperand DAGCombiner::visitSDIV(SDNode *N) {
1237  SDOperand N0 = N->getOperand(0);
1238  SDOperand N1 = N->getOperand(1);
1239  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1240  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1241  MVT::ValueType VT = N->getValueType(0);
1242
1243  // fold vector ops
1244  if (MVT::isVector(VT)) {
1245    SDOperand FoldedVOp = SimplifyVBinOp(N);
1246    if (FoldedVOp.Val) return FoldedVOp;
1247  }
1248
1249  // fold (sdiv c1, c2) -> c1/c2
1250  if (N0C && N1C && !N1C->isNullValue())
1251    return DAG.getNode(ISD::SDIV, VT, N0, N1);
1252  // fold (sdiv X, 1) -> X
1253  if (N1C && N1C->getSignExtended() == 1LL)
1254    return N0;
1255  // fold (sdiv X, -1) -> 0-X
1256  if (N1C && N1C->isAllOnesValue())
1257    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1258  // If we know the sign bits of both operands are zero, strength reduce to a
1259  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1260  if (!MVT::isVector(VT)) {
1261    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1262      return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
1263  }
1264  // fold (sdiv X, pow2) -> simple ops after legalize
1265  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap() &&
1266      (isPowerOf2_64(N1C->getSignExtended()) ||
1267       isPowerOf2_64(-N1C->getSignExtended()))) {
1268    // If dividing by powers of two is cheap, then don't perform the following
1269    // fold.
1270    if (TLI.isPow2DivCheap())
1271      return SDOperand();
1272    int64_t pow2 = N1C->getSignExtended();
1273    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1274    unsigned lg2 = Log2_64(abs2);
1275    // Splat the sign bit into the register
1276    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
1277                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
1278                                                TLI.getShiftAmountTy()));
1279    AddToWorkList(SGN.Val);
1280    // Add (N0 < 0) ? abs2 - 1 : 0;
1281    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
1282                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
1283                                                TLI.getShiftAmountTy()));
1284    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
1285    AddToWorkList(SRL.Val);
1286    AddToWorkList(ADD.Val);    // Divide by pow2
1287    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
1288                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
1289    // If we're dividing by a positive value, we're done.  Otherwise, we must
1290    // negate the result.
1291    if (pow2 > 0)
1292      return SRA;
1293    AddToWorkList(SRA.Val);
1294    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
1295  }
1296  // if integer divide is expensive and we satisfy the requirements, emit an
1297  // alternate sequence.
1298  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
1299      !TLI.isIntDivCheap()) {
1300    SDOperand Op = BuildSDIV(N);
1301    if (Op.Val) return Op;
1302  }
1303
1304  // undef / X -> 0
1305  if (N0.getOpcode() == ISD::UNDEF)
1306    return DAG.getConstant(0, VT);
1307  // X / undef -> undef
1308  if (N1.getOpcode() == ISD::UNDEF)
1309    return N1;
1310
1311  return SDOperand();
1312}
1313
1314SDOperand DAGCombiner::visitUDIV(SDNode *N) {
1315  SDOperand N0 = N->getOperand(0);
1316  SDOperand N1 = N->getOperand(1);
1317  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1318  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1319  MVT::ValueType VT = N->getValueType(0);
1320
1321  // fold vector ops
1322  if (MVT::isVector(VT)) {
1323    SDOperand FoldedVOp = SimplifyVBinOp(N);
1324    if (FoldedVOp.Val) return FoldedVOp;
1325  }
1326
1327  // fold (udiv c1, c2) -> c1/c2
1328  if (N0C && N1C && !N1C->isNullValue())
1329    return DAG.getNode(ISD::UDIV, VT, N0, N1);
1330  // fold (udiv x, (1 << c)) -> x >>u c
1331  if (N1C && N1C->getAPIntValue().isPowerOf2())
1332    return DAG.getNode(ISD::SRL, VT, N0,
1333                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1334                                       TLI.getShiftAmountTy()));
1335  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1336  if (N1.getOpcode() == ISD::SHL) {
1337    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1338      if (SHC->getAPIntValue().isPowerOf2()) {
1339        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
1340        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
1341                                    DAG.getConstant(SHC->getAPIntValue()
1342                                                                    .logBase2(),
1343                                                    ADDVT));
1344        AddToWorkList(Add.Val);
1345        return DAG.getNode(ISD::SRL, VT, N0, Add);
1346      }
1347    }
1348  }
1349  // fold (udiv x, c) -> alternate
1350  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1351    SDOperand Op = BuildUDIV(N);
1352    if (Op.Val) return Op;
1353  }
1354
1355  // undef / X -> 0
1356  if (N0.getOpcode() == ISD::UNDEF)
1357    return DAG.getConstant(0, VT);
1358  // X / undef -> undef
1359  if (N1.getOpcode() == ISD::UNDEF)
1360    return N1;
1361
1362  return SDOperand();
1363}
1364
1365SDOperand DAGCombiner::visitSREM(SDNode *N) {
1366  SDOperand N0 = N->getOperand(0);
1367  SDOperand N1 = N->getOperand(1);
1368  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1369  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1370  MVT::ValueType VT = N->getValueType(0);
1371
1372  // fold (srem c1, c2) -> c1%c2
1373  if (N0C && N1C && !N1C->isNullValue())
1374    return DAG.getNode(ISD::SREM, VT, N0, N1);
1375  // If we know the sign bits of both operands are zero, strength reduce to a
1376  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1377  if (!MVT::isVector(VT)) {
1378    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1379      return DAG.getNode(ISD::UREM, VT, N0, N1);
1380  }
1381
1382  // If X/C can be simplified by the division-by-constant logic, lower
1383  // X%C to the equivalent of X-X/C*C.
1384  if (N1C && !N1C->isNullValue()) {
1385    SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
1386    AddToWorkList(Div.Val);
1387    SDOperand OptimizedDiv = combine(Div.Val);
1388    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1389      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1390      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1391      AddToWorkList(Mul.Val);
1392      return Sub;
1393    }
1394  }
1395
1396  // undef % X -> 0
1397  if (N0.getOpcode() == ISD::UNDEF)
1398    return DAG.getConstant(0, VT);
1399  // X % undef -> undef
1400  if (N1.getOpcode() == ISD::UNDEF)
1401    return N1;
1402
1403  return SDOperand();
1404}
1405
1406SDOperand DAGCombiner::visitUREM(SDNode *N) {
1407  SDOperand N0 = N->getOperand(0);
1408  SDOperand N1 = N->getOperand(1);
1409  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1410  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1411  MVT::ValueType VT = N->getValueType(0);
1412
1413  // fold (urem c1, c2) -> c1%c2
1414  if (N0C && N1C && !N1C->isNullValue())
1415    return DAG.getNode(ISD::UREM, VT, N0, N1);
1416  // fold (urem x, pow2) -> (and x, pow2-1)
1417  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
1418    return DAG.getNode(ISD::AND, VT, N0,
1419                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
1420  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1421  if (N1.getOpcode() == ISD::SHL) {
1422    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1423      if (SHC->getAPIntValue().isPowerOf2()) {
1424        SDOperand Add =
1425          DAG.getNode(ISD::ADD, VT, N1,
1426                 DAG.getConstant(APInt::getAllOnesValue(MVT::getSizeInBits(VT)),
1427                                 VT));
1428        AddToWorkList(Add.Val);
1429        return DAG.getNode(ISD::AND, VT, N0, Add);
1430      }
1431    }
1432  }
1433
1434  // If X/C can be simplified by the division-by-constant logic, lower
1435  // X%C to the equivalent of X-X/C*C.
1436  if (N1C && !N1C->isNullValue()) {
1437    SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
1438    SDOperand OptimizedDiv = combine(Div.Val);
1439    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1440      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1441      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1442      AddToWorkList(Mul.Val);
1443      return Sub;
1444    }
1445  }
1446
1447  // undef % X -> 0
1448  if (N0.getOpcode() == ISD::UNDEF)
1449    return DAG.getConstant(0, VT);
1450  // X % undef -> undef
1451  if (N1.getOpcode() == ISD::UNDEF)
1452    return N1;
1453
1454  return SDOperand();
1455}
1456
1457SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1458  SDOperand N0 = N->getOperand(0);
1459  SDOperand N1 = N->getOperand(1);
1460  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1461  MVT::ValueType VT = N->getValueType(0);
1462
1463  // fold (mulhs x, 0) -> 0
1464  if (N1C && N1C->isNullValue())
1465    return N1;
1466  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1467  if (N1C && N1C->getAPIntValue() == 1)
1468    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1469                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1470                                       TLI.getShiftAmountTy()));
1471  // fold (mulhs x, undef) -> 0
1472  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1473    return DAG.getConstant(0, VT);
1474
1475  return SDOperand();
1476}
1477
1478SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1479  SDOperand N0 = N->getOperand(0);
1480  SDOperand N1 = N->getOperand(1);
1481  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1482  MVT::ValueType VT = N->getValueType(0);
1483
1484  // fold (mulhu x, 0) -> 0
1485  if (N1C && N1C->isNullValue())
1486    return N1;
1487  // fold (mulhu x, 1) -> 0
1488  if (N1C && N1C->getAPIntValue() == 1)
1489    return DAG.getConstant(0, N0.getValueType());
1490  // fold (mulhu x, undef) -> 0
1491  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1492    return DAG.getConstant(0, VT);
1493
1494  return SDOperand();
1495}
1496
1497/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1498/// compute two values. LoOp and HiOp give the opcodes for the two computations
1499/// that are being performed. Return true if a simplification was made.
1500///
1501SDOperand DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
1502                                                  unsigned HiOp) {
1503  // If the high half is not needed, just compute the low half.
1504  bool HiExists = N->hasAnyUseOfValue(1);
1505  if (!HiExists &&
1506      (!AfterLegalize ||
1507       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
1508    SDOperand Res = DAG.getNode(LoOp, N->getValueType(0), N->op_begin(),
1509                                N->getNumOperands());
1510    return CombineTo(N, Res, Res);
1511  }
1512
1513  // If the low half is not needed, just compute the high half.
1514  bool LoExists = N->hasAnyUseOfValue(0);
1515  if (!LoExists &&
1516      (!AfterLegalize ||
1517       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
1518    SDOperand Res = DAG.getNode(HiOp, N->getValueType(1), N->op_begin(),
1519                                N->getNumOperands());
1520    return CombineTo(N, Res, Res);
1521  }
1522
1523  // If both halves are used, return as it is.
1524  if (LoExists && HiExists)
1525    return SDOperand();
1526
1527  // If the two computed results can be simplified separately, separate them.
1528  if (LoExists) {
1529    SDOperand Lo = DAG.getNode(LoOp, N->getValueType(0),
1530                               N->op_begin(), N->getNumOperands());
1531    AddToWorkList(Lo.Val);
1532    SDOperand LoOpt = combine(Lo.Val);
1533    if (LoOpt.Val && LoOpt.Val != Lo.Val &&
1534        TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))
1535      return CombineTo(N, LoOpt, LoOpt);
1536  }
1537
1538  if (HiExists) {
1539    SDOperand Hi = DAG.getNode(HiOp, N->getValueType(1),
1540                               N->op_begin(), N->getNumOperands());
1541    AddToWorkList(Hi.Val);
1542    SDOperand HiOpt = combine(Hi.Val);
1543    if (HiOpt.Val && HiOpt != Hi &&
1544        TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))
1545      return CombineTo(N, HiOpt, HiOpt);
1546  }
1547  return SDOperand();
1548}
1549
1550SDOperand DAGCombiner::visitSMUL_LOHI(SDNode *N) {
1551  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
1552  if (Res.Val) return Res;
1553
1554  return SDOperand();
1555}
1556
1557SDOperand DAGCombiner::visitUMUL_LOHI(SDNode *N) {
1558  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
1559  if (Res.Val) return Res;
1560
1561  return SDOperand();
1562}
1563
1564SDOperand DAGCombiner::visitSDIVREM(SDNode *N) {
1565  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
1566  if (Res.Val) return Res;
1567
1568  return SDOperand();
1569}
1570
1571SDOperand DAGCombiner::visitUDIVREM(SDNode *N) {
1572  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
1573  if (Res.Val) return Res;
1574
1575  return SDOperand();
1576}
1577
1578/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1579/// two operands of the same opcode, try to simplify it.
1580SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1581  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1582  MVT::ValueType VT = N0.getValueType();
1583  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1584
1585  // For each of OP in AND/OR/XOR:
1586  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1587  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1588  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1589  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1590  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1591       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1592      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1593    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1594                                   N0.getOperand(0).getValueType(),
1595                                   N0.getOperand(0), N1.getOperand(0));
1596    AddToWorkList(ORNode.Val);
1597    return DAG.getNode(N0.getOpcode(), VT, ORNode);
1598  }
1599
1600  // For each of OP in SHL/SRL/SRA/AND...
1601  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1602  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
1603  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1604  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1605       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1606      N0.getOperand(1) == N1.getOperand(1)) {
1607    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1608                                   N0.getOperand(0).getValueType(),
1609                                   N0.getOperand(0), N1.getOperand(0));
1610    AddToWorkList(ORNode.Val);
1611    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1612  }
1613
1614  return SDOperand();
1615}
1616
1617SDOperand DAGCombiner::visitAND(SDNode *N) {
1618  SDOperand N0 = N->getOperand(0);
1619  SDOperand N1 = N->getOperand(1);
1620  SDOperand LL, LR, RL, RR, CC0, CC1;
1621  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1622  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1623  MVT::ValueType VT = N1.getValueType();
1624  unsigned BitWidth = MVT::getSizeInBits(VT);
1625
1626  // fold vector ops
1627  if (MVT::isVector(VT)) {
1628    SDOperand FoldedVOp = SimplifyVBinOp(N);
1629    if (FoldedVOp.Val) return FoldedVOp;
1630  }
1631
1632  // fold (and x, undef) -> 0
1633  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1634    return DAG.getConstant(0, VT);
1635  // fold (and c1, c2) -> c1&c2
1636  if (N0C && N1C)
1637    return DAG.getNode(ISD::AND, VT, N0, N1);
1638  // canonicalize constant to RHS
1639  if (N0C && !N1C)
1640    return DAG.getNode(ISD::AND, VT, N1, N0);
1641  // fold (and x, -1) -> x
1642  if (N1C && N1C->isAllOnesValue())
1643    return N0;
1644  // if (and x, c) is known to be zero, return 0
1645  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0),
1646                                   APInt::getAllOnesValue(BitWidth)))
1647    return DAG.getConstant(0, VT);
1648  // reassociate and
1649  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1650  if (RAND.Val != 0)
1651    return RAND;
1652  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1653  if (N1C && N0.getOpcode() == ISD::OR)
1654    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1655      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
1656        return N1;
1657  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1658  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1659    SDOperand N0Op0 = N0.getOperand(0);
1660    APInt Mask = ~N1C->getAPIntValue();
1661    Mask.trunc(N0Op0.getValueSizeInBits());
1662    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
1663      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1664                                   N0Op0);
1665
1666      // Replace uses of the AND with uses of the Zero extend node.
1667      CombineTo(N, Zext);
1668
1669      // We actually want to replace all uses of the any_extend with the
1670      // zero_extend, to avoid duplicating things.  This will later cause this
1671      // AND to be folded.
1672      CombineTo(N0.Val, Zext);
1673      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1674    }
1675  }
1676  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1677  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1678    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1679    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1680
1681    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1682        MVT::isInteger(LL.getValueType())) {
1683      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1684      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
1685        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1686        AddToWorkList(ORNode.Val);
1687        return DAG.getSetCC(VT, ORNode, LR, Op1);
1688      }
1689      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1690      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1691        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1692        AddToWorkList(ANDNode.Val);
1693        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1694      }
1695      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1696      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1697        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1698        AddToWorkList(ORNode.Val);
1699        return DAG.getSetCC(VT, ORNode, LR, Op1);
1700      }
1701    }
1702    // canonicalize equivalent to ll == rl
1703    if (LL == RR && LR == RL) {
1704      Op1 = ISD::getSetCCSwappedOperands(Op1);
1705      std::swap(RL, RR);
1706    }
1707    if (LL == RL && LR == RR) {
1708      bool isInteger = MVT::isInteger(LL.getValueType());
1709      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1710      if (Result != ISD::SETCC_INVALID)
1711        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1712    }
1713  }
1714
1715  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
1716  if (N0.getOpcode() == N1.getOpcode()) {
1717    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1718    if (Tmp.Val) return Tmp;
1719  }
1720
1721  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1722  // fold (and (sra)) -> (and (srl)) when possible.
1723  if (!MVT::isVector(VT) &&
1724      SimplifyDemandedBits(SDOperand(N, 0)))
1725    return SDOperand(N, 0);
1726  // fold (zext_inreg (extload x)) -> (zextload x)
1727  if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
1728    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1729    MVT::ValueType EVT = LN0->getMemoryVT();
1730    // If we zero all the possible extended bits, then we can turn this into
1731    // a zextload if we are running before legalize or the operation is legal.
1732    unsigned BitWidth = N1.getValueSizeInBits();
1733    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1734                                     BitWidth - MVT::getSizeInBits(EVT))) &&
1735        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1736      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1737                                         LN0->getBasePtr(), LN0->getSrcValue(),
1738                                         LN0->getSrcValueOffset(), EVT,
1739                                         LN0->isVolatile(),
1740                                         LN0->getAlignment());
1741      AddToWorkList(N);
1742      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1743      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1744    }
1745  }
1746  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1747  if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
1748      N0.hasOneUse()) {
1749    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1750    MVT::ValueType EVT = LN0->getMemoryVT();
1751    // If we zero all the possible extended bits, then we can turn this into
1752    // a zextload if we are running before legalize or the operation is legal.
1753    unsigned BitWidth = N1.getValueSizeInBits();
1754    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1755                                     BitWidth - MVT::getSizeInBits(EVT))) &&
1756        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1757      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1758                                         LN0->getBasePtr(), LN0->getSrcValue(),
1759                                         LN0->getSrcValueOffset(), EVT,
1760                                         LN0->isVolatile(),
1761                                         LN0->getAlignment());
1762      AddToWorkList(N);
1763      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1764      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1765    }
1766  }
1767
1768  // fold (and (load x), 255) -> (zextload x, i8)
1769  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1770  if (N1C && N0.getOpcode() == ISD::LOAD) {
1771    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1772    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1773        LN0->isUnindexed() && N0.hasOneUse()) {
1774      MVT::ValueType EVT, LoadedVT;
1775      if (N1C->getAPIntValue() == 255)
1776        EVT = MVT::i8;
1777      else if (N1C->getAPIntValue() == 65535)
1778        EVT = MVT::i16;
1779      else if (N1C->getAPIntValue() == ~0U)
1780        EVT = MVT::i32;
1781      else
1782        EVT = MVT::Other;
1783
1784      LoadedVT = LN0->getMemoryVT();
1785      if (EVT != MVT::Other && LoadedVT > EVT &&
1786          (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1787        MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1788        // For big endian targets, we need to add an offset to the pointer to
1789        // load the correct bytes.  For little endian systems, we merely need to
1790        // read fewer bytes from the same pointer.
1791        unsigned LVTStoreBytes = MVT::getStoreSizeInBits(LoadedVT)/8;
1792        unsigned EVTStoreBytes = MVT::getStoreSizeInBits(EVT)/8;
1793        unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
1794        unsigned Alignment = LN0->getAlignment();
1795        SDOperand NewPtr = LN0->getBasePtr();
1796        if (TLI.isBigEndian()) {
1797          NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1798                               DAG.getConstant(PtrOff, PtrType));
1799          Alignment = MinAlign(Alignment, PtrOff);
1800        }
1801        AddToWorkList(NewPtr.Val);
1802        SDOperand Load =
1803          DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
1804                         LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
1805                         LN0->isVolatile(), Alignment);
1806        AddToWorkList(N);
1807        CombineTo(N0.Val, Load, Load.getValue(1));
1808        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1809      }
1810    }
1811  }
1812
1813  return SDOperand();
1814}
1815
1816SDOperand DAGCombiner::visitOR(SDNode *N) {
1817  SDOperand N0 = N->getOperand(0);
1818  SDOperand N1 = N->getOperand(1);
1819  SDOperand LL, LR, RL, RR, CC0, CC1;
1820  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1821  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1822  MVT::ValueType VT = N1.getValueType();
1823
1824  // fold vector ops
1825  if (MVT::isVector(VT)) {
1826    SDOperand FoldedVOp = SimplifyVBinOp(N);
1827    if (FoldedVOp.Val) return FoldedVOp;
1828  }
1829
1830  // fold (or x, undef) -> -1
1831  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1832    return DAG.getConstant(~0ULL, VT);
1833  // fold (or c1, c2) -> c1|c2
1834  if (N0C && N1C)
1835    return DAG.getNode(ISD::OR, VT, N0, N1);
1836  // canonicalize constant to RHS
1837  if (N0C && !N1C)
1838    return DAG.getNode(ISD::OR, VT, N1, N0);
1839  // fold (or x, 0) -> x
1840  if (N1C && N1C->isNullValue())
1841    return N0;
1842  // fold (or x, -1) -> -1
1843  if (N1C && N1C->isAllOnesValue())
1844    return N1;
1845  // fold (or x, c) -> c iff (x & ~c) == 0
1846  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
1847    return N1;
1848  // reassociate or
1849  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1850  if (ROR.Val != 0)
1851    return ROR;
1852  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1853  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1854             isa<ConstantSDNode>(N0.getOperand(1))) {
1855    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1856    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1857                                                 N1),
1858                       DAG.getConstant(N1C->getAPIntValue() |
1859                                       C1->getAPIntValue(), VT));
1860  }
1861  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1862  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1863    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1864    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1865
1866    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1867        MVT::isInteger(LL.getValueType())) {
1868      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1869      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1870      if (cast<ConstantSDNode>(LR)->isNullValue() &&
1871          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1872        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1873        AddToWorkList(ORNode.Val);
1874        return DAG.getSetCC(VT, ORNode, LR, Op1);
1875      }
1876      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1877      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1878      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1879          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1880        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1881        AddToWorkList(ANDNode.Val);
1882        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1883      }
1884    }
1885    // canonicalize equivalent to ll == rl
1886    if (LL == RR && LR == RL) {
1887      Op1 = ISD::getSetCCSwappedOperands(Op1);
1888      std::swap(RL, RR);
1889    }
1890    if (LL == RL && LR == RR) {
1891      bool isInteger = MVT::isInteger(LL.getValueType());
1892      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1893      if (Result != ISD::SETCC_INVALID)
1894        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1895    }
1896  }
1897
1898  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
1899  if (N0.getOpcode() == N1.getOpcode()) {
1900    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1901    if (Tmp.Val) return Tmp;
1902  }
1903
1904  // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible.
1905  if (N0.getOpcode() == ISD::AND &&
1906      N1.getOpcode() == ISD::AND &&
1907      N0.getOperand(1).getOpcode() == ISD::Constant &&
1908      N1.getOperand(1).getOpcode() == ISD::Constant &&
1909      // Don't increase # computations.
1910      (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
1911    // We can only do this xform if we know that bits from X that are set in C2
1912    // but not in C1 are already zero.  Likewise for Y.
1913    const APInt &LHSMask =
1914      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1915    const APInt &RHSMask =
1916      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
1917
1918    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
1919        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
1920      SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
1921      return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
1922    }
1923  }
1924
1925
1926  // See if this is some rotate idiom.
1927  if (SDNode *Rot = MatchRotate(N0, N1))
1928    return SDOperand(Rot, 0);
1929
1930  return SDOperand();
1931}
1932
1933
1934/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
1935static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
1936  if (Op.getOpcode() == ISD::AND) {
1937    if (isa<ConstantSDNode>(Op.getOperand(1))) {
1938      Mask = Op.getOperand(1);
1939      Op = Op.getOperand(0);
1940    } else {
1941      return false;
1942    }
1943  }
1944
1945  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
1946    Shift = Op;
1947    return true;
1948  }
1949  return false;
1950}
1951
1952
1953// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
1954// idioms for rotate, and if the target supports rotation instructions, generate
1955// a rot[lr].
1956SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
1957  // Must be a legal type.  Expanded an promoted things won't work with rotates.
1958  MVT::ValueType VT = LHS.getValueType();
1959  if (!TLI.isTypeLegal(VT)) return 0;
1960
1961  // The target must have at least one rotate flavor.
1962  bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
1963  bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
1964  if (!HasROTL && !HasROTR) return 0;
1965
1966  // Match "(X shl/srl V1) & V2" where V2 may not be present.
1967  SDOperand LHSShift;   // The shift.
1968  SDOperand LHSMask;    // AND value if any.
1969  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
1970    return 0; // Not part of a rotate.
1971
1972  SDOperand RHSShift;   // The shift.
1973  SDOperand RHSMask;    // AND value if any.
1974  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
1975    return 0; // Not part of a rotate.
1976
1977  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
1978    return 0;   // Not shifting the same value.
1979
1980  if (LHSShift.getOpcode() == RHSShift.getOpcode())
1981    return 0;   // Shifts must disagree.
1982
1983  // Canonicalize shl to left side in a shl/srl pair.
1984  if (RHSShift.getOpcode() == ISD::SHL) {
1985    std::swap(LHS, RHS);
1986    std::swap(LHSShift, RHSShift);
1987    std::swap(LHSMask , RHSMask );
1988  }
1989
1990  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1991  SDOperand LHSShiftArg = LHSShift.getOperand(0);
1992  SDOperand LHSShiftAmt = LHSShift.getOperand(1);
1993  SDOperand RHSShiftAmt = RHSShift.getOperand(1);
1994
1995  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1996  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
1997  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
1998      RHSShiftAmt.getOpcode() == ISD::Constant) {
1999    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue();
2000    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue();
2001    if ((LShVal + RShVal) != OpSizeInBits)
2002      return 0;
2003
2004    SDOperand Rot;
2005    if (HasROTL)
2006      Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt);
2007    else
2008      Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt);
2009
2010    // If there is an AND of either shifted operand, apply it to the result.
2011    if (LHSMask.Val || RHSMask.Val) {
2012      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
2013
2014      if (LHSMask.Val) {
2015        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
2016        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
2017      }
2018      if (RHSMask.Val) {
2019        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
2020        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
2021      }
2022
2023      Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
2024    }
2025
2026    return Rot.Val;
2027  }
2028
2029  // If there is a mask here, and we have a variable shift, we can't be sure
2030  // that we're masking out the right stuff.
2031  if (LHSMask.Val || RHSMask.Val)
2032    return 0;
2033
2034  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
2035  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
2036  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
2037      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
2038    if (ConstantSDNode *SUBC =
2039          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
2040      if (SUBC->getAPIntValue() == OpSizeInBits) {
2041        if (HasROTL)
2042          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2043        else
2044          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2045      }
2046    }
2047  }
2048
2049  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2050  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2051  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
2052      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
2053    if (ConstantSDNode *SUBC =
2054          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
2055      if (SUBC->getAPIntValue() == OpSizeInBits) {
2056        if (HasROTL)
2057          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2058        else
2059          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2060      }
2061    }
2062  }
2063
2064  // Look for sign/zext/any-extended cases:
2065  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2066       || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2067       || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) &&
2068      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2069       || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2070       || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) {
2071    SDOperand LExtOp0 = LHSShiftAmt.getOperand(0);
2072    SDOperand RExtOp0 = RHSShiftAmt.getOperand(0);
2073    if (RExtOp0.getOpcode() == ISD::SUB &&
2074        RExtOp0.getOperand(1) == LExtOp0) {
2075      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2076      //   (rotr x, y)
2077      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2078      //   (rotl x, (sub 32, y))
2079      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
2080        if (SUBC->getAPIntValue() == OpSizeInBits) {
2081          if (HasROTL)
2082            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2083          else
2084            return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2085        }
2086      }
2087    } else if (LExtOp0.getOpcode() == ISD::SUB &&
2088               RExtOp0 == LExtOp0.getOperand(1)) {
2089      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2090      //   (rotl x, y)
2091      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2092      //   (rotr x, (sub 32, y))
2093      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
2094        if (SUBC->getAPIntValue() == OpSizeInBits) {
2095          if (HasROTL)
2096            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val;
2097          else
2098            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2099        }
2100      }
2101    }
2102  }
2103
2104  return 0;
2105}
2106
2107
2108SDOperand DAGCombiner::visitXOR(SDNode *N) {
2109  SDOperand N0 = N->getOperand(0);
2110  SDOperand N1 = N->getOperand(1);
2111  SDOperand LHS, RHS, CC;
2112  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2113  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2114  MVT::ValueType VT = N0.getValueType();
2115
2116  // fold vector ops
2117  if (MVT::isVector(VT)) {
2118    SDOperand FoldedVOp = SimplifyVBinOp(N);
2119    if (FoldedVOp.Val) return FoldedVOp;
2120  }
2121
2122  // fold (xor x, undef) -> undef
2123  if (N0.getOpcode() == ISD::UNDEF)
2124    return N0;
2125  if (N1.getOpcode() == ISD::UNDEF)
2126    return N1;
2127  // fold (xor c1, c2) -> c1^c2
2128  if (N0C && N1C)
2129    return DAG.getNode(ISD::XOR, VT, N0, N1);
2130  // canonicalize constant to RHS
2131  if (N0C && !N1C)
2132    return DAG.getNode(ISD::XOR, VT, N1, N0);
2133  // fold (xor x, 0) -> x
2134  if (N1C && N1C->isNullValue())
2135    return N0;
2136  // reassociate xor
2137  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
2138  if (RXOR.Val != 0)
2139    return RXOR;
2140  // fold !(x cc y) -> (x !cc y)
2141  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
2142    bool isInt = MVT::isInteger(LHS.getValueType());
2143    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2144                                               isInt);
2145    if (N0.getOpcode() == ISD::SETCC)
2146      return DAG.getSetCC(VT, LHS, RHS, NotCC);
2147    if (N0.getOpcode() == ISD::SELECT_CC)
2148      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
2149    assert(0 && "Unhandled SetCC Equivalent!");
2150    abort();
2151  }
2152  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2153  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
2154      N0.Val->hasOneUse() && isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
2155    SDOperand V = N0.getOperand(0);
2156    V = DAG.getNode(ISD::XOR, V.getValueType(), V,
2157                    DAG.getConstant(1, V.getValueType()));
2158    AddToWorkList(V.Val);
2159    return DAG.getNode(ISD::ZERO_EXTEND, VT, V);
2160  }
2161
2162  // fold !(x or y) -> (!x and !y) iff x or y are setcc
2163  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
2164      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2165    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2166    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
2167      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2168      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2169      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2170      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2171      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2172    }
2173  }
2174  // fold !(x or y) -> (!x and !y) iff x or y are constants
2175  if (N1C && N1C->isAllOnesValue() &&
2176      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2177    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2178    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
2179      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2180      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2181      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2182      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2183      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2184    }
2185  }
2186  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
2187  if (N1C && N0.getOpcode() == ISD::XOR) {
2188    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
2189    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2190    if (N00C)
2191      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
2192                         DAG.getConstant(N1C->getAPIntValue()^
2193                                         N00C->getAPIntValue(), VT));
2194    if (N01C)
2195      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
2196                         DAG.getConstant(N1C->getAPIntValue()^
2197                                         N01C->getAPIntValue(), VT));
2198  }
2199  // fold (xor x, x) -> 0
2200  if (N0 == N1) {
2201    if (!MVT::isVector(VT)) {
2202      return DAG.getConstant(0, VT);
2203    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
2204      // Produce a vector of zeros.
2205      SDOperand El = DAG.getConstant(0, MVT::getVectorElementType(VT));
2206      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
2207      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
2208    }
2209  }
2210
2211  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
2212  if (N0.getOpcode() == N1.getOpcode()) {
2213    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2214    if (Tmp.Val) return Tmp;
2215  }
2216
2217  // Simplify the expression using non-local knowledge.
2218  if (!MVT::isVector(VT) &&
2219      SimplifyDemandedBits(SDOperand(N, 0)))
2220    return SDOperand(N, 0);
2221
2222  return SDOperand();
2223}
2224
2225/// visitShiftByConstant - Handle transforms common to the three shifts, when
2226/// the shift amount is a constant.
2227SDOperand DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
2228  SDNode *LHS = N->getOperand(0).Val;
2229  if (!LHS->hasOneUse()) return SDOperand();
2230
2231  // We want to pull some binops through shifts, so that we have (and (shift))
2232  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
2233  // thing happens with address calculations, so it's important to canonicalize
2234  // it.
2235  bool HighBitSet = false;  // Can we transform this if the high bit is set?
2236
2237  switch (LHS->getOpcode()) {
2238  default: return SDOperand();
2239  case ISD::OR:
2240  case ISD::XOR:
2241    HighBitSet = false; // We can only transform sra if the high bit is clear.
2242    break;
2243  case ISD::AND:
2244    HighBitSet = true;  // We can only transform sra if the high bit is set.
2245    break;
2246  case ISD::ADD:
2247    if (N->getOpcode() != ISD::SHL)
2248      return SDOperand(); // only shl(add) not sr[al](add).
2249    HighBitSet = false; // We can only transform sra if the high bit is clear.
2250    break;
2251  }
2252
2253  // We require the RHS of the binop to be a constant as well.
2254  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
2255  if (!BinOpCst) return SDOperand();
2256
2257
2258  // FIXME: disable this for unless the input to the binop is a shift by a
2259  // constant.  If it is not a shift, it pessimizes some common cases like:
2260  //
2261  //void foo(int *X, int i) { X[i & 1235] = 1; }
2262  //int bar(int *X, int i) { return X[i & 255]; }
2263  SDNode *BinOpLHSVal = LHS->getOperand(0).Val;
2264  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
2265       BinOpLHSVal->getOpcode() != ISD::SRA &&
2266       BinOpLHSVal->getOpcode() != ISD::SRL) ||
2267      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
2268    return SDOperand();
2269
2270  MVT::ValueType VT = N->getValueType(0);
2271
2272  // If this is a signed shift right, and the high bit is modified
2273  // by the logical operation, do not perform the transformation.
2274  // The highBitSet boolean indicates the value of the high bit of
2275  // the constant which would cause it to be modified for this
2276  // operation.
2277  if (N->getOpcode() == ISD::SRA) {
2278    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
2279    if (BinOpRHSSignSet != HighBitSet)
2280      return SDOperand();
2281  }
2282
2283  // Fold the constants, shifting the binop RHS by the shift amount.
2284  SDOperand NewRHS = DAG.getNode(N->getOpcode(), N->getValueType(0),
2285                                 LHS->getOperand(1), N->getOperand(1));
2286
2287  // Create the new shift.
2288  SDOperand NewShift = DAG.getNode(N->getOpcode(), VT, LHS->getOperand(0),
2289                                   N->getOperand(1));
2290
2291  // Create the new binop.
2292  return DAG.getNode(LHS->getOpcode(), VT, NewShift, NewRHS);
2293}
2294
2295
2296SDOperand DAGCombiner::visitSHL(SDNode *N) {
2297  SDOperand N0 = N->getOperand(0);
2298  SDOperand N1 = N->getOperand(1);
2299  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2300  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2301  MVT::ValueType VT = N0.getValueType();
2302  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2303
2304  // fold (shl c1, c2) -> c1<<c2
2305  if (N0C && N1C)
2306    return DAG.getNode(ISD::SHL, VT, N0, N1);
2307  // fold (shl 0, x) -> 0
2308  if (N0C && N0C->isNullValue())
2309    return N0;
2310  // fold (shl x, c >= size(x)) -> undef
2311  if (N1C && N1C->getValue() >= OpSizeInBits)
2312    return DAG.getNode(ISD::UNDEF, VT);
2313  // fold (shl x, 0) -> x
2314  if (N1C && N1C->isNullValue())
2315    return N0;
2316  // if (shl x, c) is known to be zero, return 0
2317  if (DAG.MaskedValueIsZero(SDOperand(N, 0),
2318                            APInt::getAllOnesValue(MVT::getSizeInBits(VT))))
2319    return DAG.getConstant(0, VT);
2320  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2321    return SDOperand(N, 0);
2322  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
2323  if (N1C && N0.getOpcode() == ISD::SHL &&
2324      N0.getOperand(1).getOpcode() == ISD::Constant) {
2325    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2326    uint64_t c2 = N1C->getValue();
2327    if (c1 + c2 > OpSizeInBits)
2328      return DAG.getConstant(0, VT);
2329    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
2330                       DAG.getConstant(c1 + c2, N1.getValueType()));
2331  }
2332  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
2333  //                               (srl (and x, -1 << c1), c1-c2)
2334  if (N1C && N0.getOpcode() == ISD::SRL &&
2335      N0.getOperand(1).getOpcode() == ISD::Constant) {
2336    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2337    uint64_t c2 = N1C->getValue();
2338    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2339                                 DAG.getConstant(~0ULL << c1, VT));
2340    if (c2 > c1)
2341      return DAG.getNode(ISD::SHL, VT, Mask,
2342                         DAG.getConstant(c2-c1, N1.getValueType()));
2343    else
2344      return DAG.getNode(ISD::SRL, VT, Mask,
2345                         DAG.getConstant(c1-c2, N1.getValueType()));
2346  }
2347  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
2348  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
2349    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2350                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
2351
2352  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2353}
2354
2355SDOperand DAGCombiner::visitSRA(SDNode *N) {
2356  SDOperand N0 = N->getOperand(0);
2357  SDOperand N1 = N->getOperand(1);
2358  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2359  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2360  MVT::ValueType VT = N0.getValueType();
2361
2362  // fold (sra c1, c2) -> c1>>c2
2363  if (N0C && N1C)
2364    return DAG.getNode(ISD::SRA, VT, N0, N1);
2365  // fold (sra 0, x) -> 0
2366  if (N0C && N0C->isNullValue())
2367    return N0;
2368  // fold (sra -1, x) -> -1
2369  if (N0C && N0C->isAllOnesValue())
2370    return N0;
2371  // fold (sra x, c >= size(x)) -> undef
2372  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
2373    return DAG.getNode(ISD::UNDEF, VT);
2374  // fold (sra x, 0) -> x
2375  if (N1C && N1C->isNullValue())
2376    return N0;
2377  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2378  // sext_inreg.
2379  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
2380    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
2381    MVT::ValueType EVT;
2382    switch (LowBits) {
2383    default: EVT = MVT::Other; break;
2384    case  1: EVT = MVT::i1;    break;
2385    case  8: EVT = MVT::i8;    break;
2386    case 16: EVT = MVT::i16;   break;
2387    case 32: EVT = MVT::i32;   break;
2388    }
2389    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
2390      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
2391                         DAG.getValueType(EVT));
2392  }
2393
2394  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
2395  if (N1C && N0.getOpcode() == ISD::SRA) {
2396    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2397      unsigned Sum = N1C->getValue() + C1->getValue();
2398      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
2399      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
2400                         DAG.getConstant(Sum, N1C->getValueType(0)));
2401    }
2402  }
2403
2404  // fold sra (shl X, m), result_size - n
2405  // -> (sign_extend (trunc (shl X, result_size - n - m))) for
2406  // result_size - n != m.
2407  // If truncate is free for the target sext(shl) is likely to result in better
2408  // code.
2409  if (N0.getOpcode() == ISD::SHL) {
2410    // Get the two constanst of the shifts, CN0 = m, CN = n.
2411    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2412    if (N01C && N1C) {
2413      // Determine what the truncate's result bitsize and type would be.
2414      unsigned VTValSize = MVT::getSizeInBits(VT);
2415      MVT::ValueType TruncVT = MVT::getIntegerType(VTValSize - N1C->getValue());
2416      // Determine the residual right-shift amount.
2417      unsigned ShiftAmt = N1C->getValue() - N01C->getValue();
2418
2419      // If the shift is not a no-op (in which case this should be just a sign
2420      // extend already), the truncated to type is legal, sign_extend is legal
2421      // on that type, and the the truncate to that type is both legal and free,
2422      // perform the transform.
2423      if (ShiftAmt &&
2424          TLI.isTypeLegal(TruncVT) &&
2425          TLI.isOperationLegal(ISD::SIGN_EXTEND, TruncVT) &&
2426          TLI.isOperationLegal(ISD::TRUNCATE, VT) &&
2427          TLI.isTruncateFree(VT, TruncVT)) {
2428
2429          SDOperand Amt = DAG.getConstant(ShiftAmt, TLI.getShiftAmountTy());
2430          SDOperand Shift = DAG.getNode(ISD::SRL, VT, N0.getOperand(0), Amt);
2431          SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, TruncVT, Shift);
2432          return DAG.getNode(ISD::SIGN_EXTEND, N->getValueType(0), Trunc);
2433      }
2434    }
2435  }
2436
2437  // Simplify, based on bits shifted out of the LHS.
2438  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2439    return SDOperand(N, 0);
2440
2441
2442  // If the sign bit is known to be zero, switch this to a SRL.
2443  if (DAG.SignBitIsZero(N0))
2444    return DAG.getNode(ISD::SRL, VT, N0, N1);
2445
2446  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2447}
2448
2449SDOperand DAGCombiner::visitSRL(SDNode *N) {
2450  SDOperand N0 = N->getOperand(0);
2451  SDOperand N1 = N->getOperand(1);
2452  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2453  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2454  MVT::ValueType VT = N0.getValueType();
2455  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2456
2457  // fold (srl c1, c2) -> c1 >>u c2
2458  if (N0C && N1C)
2459    return DAG.getNode(ISD::SRL, VT, N0, N1);
2460  // fold (srl 0, x) -> 0
2461  if (N0C && N0C->isNullValue())
2462    return N0;
2463  // fold (srl x, c >= size(x)) -> undef
2464  if (N1C && N1C->getValue() >= OpSizeInBits)
2465    return DAG.getNode(ISD::UNDEF, VT);
2466  // fold (srl x, 0) -> x
2467  if (N1C && N1C->isNullValue())
2468    return N0;
2469  // if (srl x, c) is known to be zero, return 0
2470  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0),
2471                                   APInt::getAllOnesValue(OpSizeInBits)))
2472    return DAG.getConstant(0, VT);
2473
2474  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
2475  if (N1C && N0.getOpcode() == ISD::SRL &&
2476      N0.getOperand(1).getOpcode() == ISD::Constant) {
2477    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2478    uint64_t c2 = N1C->getValue();
2479    if (c1 + c2 > OpSizeInBits)
2480      return DAG.getConstant(0, VT);
2481    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
2482                       DAG.getConstant(c1 + c2, N1.getValueType()));
2483  }
2484
2485  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2486  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2487    // Shifting in all undef bits?
2488    MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
2489    if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
2490      return DAG.getNode(ISD::UNDEF, VT);
2491
2492    SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
2493    AddToWorkList(SmallShift.Val);
2494    return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
2495  }
2496
2497  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
2498  // bit, which is unmodified by sra.
2499  if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
2500    if (N0.getOpcode() == ISD::SRA)
2501      return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
2502  }
2503
2504  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
2505  if (N1C && N0.getOpcode() == ISD::CTLZ &&
2506      N1C->getAPIntValue() == Log2_32(MVT::getSizeInBits(VT))) {
2507    APInt KnownZero, KnownOne;
2508    APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
2509    DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
2510
2511    // If any of the input bits are KnownOne, then the input couldn't be all
2512    // zeros, thus the result of the srl will always be zero.
2513    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
2514
2515    // If all of the bits input the to ctlz node are known to be zero, then
2516    // the result of the ctlz is "32" and the result of the shift is one.
2517    APInt UnknownBits = ~KnownZero & Mask;
2518    if (UnknownBits == 0) return DAG.getConstant(1, VT);
2519
2520    // Otherwise, check to see if there is exactly one bit input to the ctlz.
2521    if ((UnknownBits & (UnknownBits-1)) == 0) {
2522      // Okay, we know that only that the single bit specified by UnknownBits
2523      // could be set on input to the CTLZ node.  If this bit is set, the SRL
2524      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
2525      // to an SRL,XOR pair, which is likely to simplify more.
2526      unsigned ShAmt = UnknownBits.countTrailingZeros();
2527      SDOperand Op = N0.getOperand(0);
2528      if (ShAmt) {
2529        Op = DAG.getNode(ISD::SRL, VT, Op,
2530                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
2531        AddToWorkList(Op.Val);
2532      }
2533      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
2534    }
2535  }
2536
2537  // fold operands of srl based on knowledge that the low bits are not
2538  // demanded.
2539  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2540    return SDOperand(N, 0);
2541
2542  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2543}
2544
2545SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
2546  SDOperand N0 = N->getOperand(0);
2547  MVT::ValueType VT = N->getValueType(0);
2548
2549  // fold (ctlz c1) -> c2
2550  if (isa<ConstantSDNode>(N0))
2551    return DAG.getNode(ISD::CTLZ, VT, N0);
2552  return SDOperand();
2553}
2554
2555SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
2556  SDOperand N0 = N->getOperand(0);
2557  MVT::ValueType VT = N->getValueType(0);
2558
2559  // fold (cttz c1) -> c2
2560  if (isa<ConstantSDNode>(N0))
2561    return DAG.getNode(ISD::CTTZ, VT, N0);
2562  return SDOperand();
2563}
2564
2565SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
2566  SDOperand N0 = N->getOperand(0);
2567  MVT::ValueType VT = N->getValueType(0);
2568
2569  // fold (ctpop c1) -> c2
2570  if (isa<ConstantSDNode>(N0))
2571    return DAG.getNode(ISD::CTPOP, VT, N0);
2572  return SDOperand();
2573}
2574
2575SDOperand DAGCombiner::visitSELECT(SDNode *N) {
2576  SDOperand N0 = N->getOperand(0);
2577  SDOperand N1 = N->getOperand(1);
2578  SDOperand N2 = N->getOperand(2);
2579  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2580  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2581  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2582  MVT::ValueType VT = N->getValueType(0);
2583  MVT::ValueType VT0 = N0.getValueType();
2584
2585  // fold select C, X, X -> X
2586  if (N1 == N2)
2587    return N1;
2588  // fold select true, X, Y -> X
2589  if (N0C && !N0C->isNullValue())
2590    return N1;
2591  // fold select false, X, Y -> Y
2592  if (N0C && N0C->isNullValue())
2593    return N2;
2594  // fold select C, 1, X -> C | X
2595  if (MVT::i1 == VT && N1C && N1C->getAPIntValue() == 1)
2596    return DAG.getNode(ISD::OR, VT, N0, N2);
2597  // fold select C, 0, 1 -> ~C
2598  if (MVT::isInteger(VT) && MVT::isInteger(VT0) &&
2599      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
2600    SDOperand XORNode = DAG.getNode(ISD::XOR, VT0, N0, DAG.getConstant(1, VT0));
2601    if (VT == VT0)
2602      return XORNode;
2603    AddToWorkList(XORNode.Val);
2604    if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(VT0))
2605      return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode);
2606    return DAG.getNode(ISD::TRUNCATE, VT, XORNode);
2607  }
2608  // fold select C, 0, X -> ~C & X
2609  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
2610    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2611    AddToWorkList(XORNode.Val);
2612    return DAG.getNode(ISD::AND, VT, XORNode, N2);
2613  }
2614  // fold select C, X, 1 -> ~C | X
2615  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
2616    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2617    AddToWorkList(XORNode.Val);
2618    return DAG.getNode(ISD::OR, VT, XORNode, N1);
2619  }
2620  // fold select C, X, 0 -> C & X
2621  // FIXME: this should check for C type == X type, not i1?
2622  if (MVT::i1 == VT && N2C && N2C->isNullValue())
2623    return DAG.getNode(ISD::AND, VT, N0, N1);
2624  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
2625  if (MVT::i1 == VT && N0 == N1)
2626    return DAG.getNode(ISD::OR, VT, N0, N2);
2627  // fold X ? Y : X --> X ? Y : 0 --> X & Y
2628  if (MVT::i1 == VT && N0 == N2)
2629    return DAG.getNode(ISD::AND, VT, N0, N1);
2630
2631  // If we can fold this based on the true/false value, do so.
2632  if (SimplifySelectOps(N, N1, N2))
2633    return SDOperand(N, 0);  // Don't revisit N.
2634
2635  // fold selects based on a setcc into other things, such as min/max/abs
2636  if (N0.getOpcode() == ISD::SETCC) {
2637    // FIXME:
2638    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2639    // having to say they don't support SELECT_CC on every type the DAG knows
2640    // about, since there is no way to mark an opcode illegal at all value types
2641    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
2642      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
2643                         N1, N2, N0.getOperand(2));
2644    else
2645      return SimplifySelect(N0, N1, N2);
2646  }
2647  return SDOperand();
2648}
2649
2650SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
2651  SDOperand N0 = N->getOperand(0);
2652  SDOperand N1 = N->getOperand(1);
2653  SDOperand N2 = N->getOperand(2);
2654  SDOperand N3 = N->getOperand(3);
2655  SDOperand N4 = N->getOperand(4);
2656  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2657
2658  // fold select_cc lhs, rhs, x, x, cc -> x
2659  if (N2 == N3)
2660    return N2;
2661
2662  // Determine if the condition we're dealing with is constant
2663  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultType(N0), N0, N1, CC, false);
2664  if (SCC.Val) AddToWorkList(SCC.Val);
2665
2666  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
2667    if (!SCCC->isNullValue())
2668      return N2;    // cond always true -> true val
2669    else
2670      return N3;    // cond always false -> false val
2671  }
2672
2673  // Fold to a simpler select_cc
2674  if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
2675    return DAG.getNode(ISD::SELECT_CC, N2.getValueType(),
2676                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2677                       SCC.getOperand(2));
2678
2679  // If we can fold this based on the true/false value, do so.
2680  if (SimplifySelectOps(N, N2, N3))
2681    return SDOperand(N, 0);  // Don't revisit N.
2682
2683  // fold select_cc into other things, such as min/max/abs
2684  return SimplifySelectCC(N0, N1, N2, N3, CC);
2685}
2686
2687SDOperand DAGCombiner::visitSETCC(SDNode *N) {
2688  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2689                       cast<CondCodeSDNode>(N->getOperand(2))->get());
2690}
2691
2692// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2693// "fold ({s|z}ext (load x)) -> ({s|z}ext (truncate ({s|z}extload x)))"
2694// transformation. Returns true if extension are possible and the above
2695// mentioned transformation is profitable.
2696static bool ExtendUsesToFormExtLoad(SDNode *N, SDOperand N0,
2697                                    unsigned ExtOpc,
2698                                    SmallVector<SDNode*, 4> &ExtendNodes,
2699                                    TargetLowering &TLI) {
2700  bool HasCopyToRegUses = false;
2701  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
2702  for (SDNode::use_iterator UI = N0.Val->use_begin(), UE = N0.Val->use_end();
2703       UI != UE; ++UI) {
2704    SDNode *User = *UI;
2705    if (User == N)
2706      continue;
2707    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2708    if (User->getOpcode() == ISD::SETCC) {
2709      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
2710      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
2711        // Sign bits will be lost after a zext.
2712        return false;
2713      bool Add = false;
2714      for (unsigned i = 0; i != 2; ++i) {
2715        SDOperand UseOp = User->getOperand(i);
2716        if (UseOp == N0)
2717          continue;
2718        if (!isa<ConstantSDNode>(UseOp))
2719          return false;
2720        Add = true;
2721      }
2722      if (Add)
2723        ExtendNodes.push_back(User);
2724    } else {
2725      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2726        SDOperand UseOp = User->getOperand(i);
2727        if (UseOp == N0) {
2728          // If truncate from extended type to original load type is free
2729          // on this target, then it's ok to extend a CopyToReg.
2730          if (isTruncFree && User->getOpcode() == ISD::CopyToReg)
2731            HasCopyToRegUses = true;
2732          else
2733            return false;
2734        }
2735      }
2736    }
2737  }
2738
2739  if (HasCopyToRegUses) {
2740    bool BothLiveOut = false;
2741    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
2742         UI != UE; ++UI) {
2743      SDNode *User = *UI;
2744      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2745        SDOperand UseOp = User->getOperand(i);
2746        if (UseOp.Val == N && UseOp.ResNo == 0) {
2747          BothLiveOut = true;
2748          break;
2749        }
2750      }
2751    }
2752    if (BothLiveOut)
2753      // Both unextended and extended values are live out. There had better be
2754      // good a reason for the transformation.
2755      return ExtendNodes.size();
2756  }
2757  return true;
2758}
2759
2760SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2761  SDOperand N0 = N->getOperand(0);
2762  MVT::ValueType VT = N->getValueType(0);
2763
2764  // fold (sext c1) -> c1
2765  if (isa<ConstantSDNode>(N0))
2766    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
2767
2768  // fold (sext (sext x)) -> (sext x)
2769  // fold (sext (aext x)) -> (sext x)
2770  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2771    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
2772
2773  // fold (sext (truncate (load x))) -> (sext (smaller load x))
2774  // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2775  if (N0.getOpcode() == ISD::TRUNCATE) {
2776    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2777    if (NarrowLoad.Val) {
2778      if (NarrowLoad.Val != N0.Val)
2779        CombineTo(N0.Val, NarrowLoad);
2780      return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad);
2781    }
2782  }
2783
2784  // See if the value being truncated is already sign extended.  If so, just
2785  // eliminate the trunc/sext pair.
2786  if (N0.getOpcode() == ISD::TRUNCATE) {
2787    SDOperand Op = N0.getOperand(0);
2788    unsigned OpBits   = MVT::getSizeInBits(Op.getValueType());
2789    unsigned MidBits  = MVT::getSizeInBits(N0.getValueType());
2790    unsigned DestBits = MVT::getSizeInBits(VT);
2791    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
2792
2793    if (OpBits == DestBits) {
2794      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
2795      // bits, it is already ready.
2796      if (NumSignBits > DestBits-MidBits)
2797        return Op;
2798    } else if (OpBits < DestBits) {
2799      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
2800      // bits, just sext from i32.
2801      if (NumSignBits > OpBits-MidBits)
2802        return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
2803    } else {
2804      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
2805      // bits, just truncate to i32.
2806      if (NumSignBits > OpBits-MidBits)
2807        return DAG.getNode(ISD::TRUNCATE, VT, Op);
2808    }
2809
2810    // fold (sext (truncate x)) -> (sextinreg x).
2811    if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2812                                               N0.getValueType())) {
2813      if (Op.getValueType() < VT)
2814        Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2815      else if (Op.getValueType() > VT)
2816        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2817      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
2818                         DAG.getValueType(N0.getValueType()));
2819    }
2820  }
2821
2822  // fold (sext (load x)) -> (sext (truncate (sextload x)))
2823  if (ISD::isNON_EXTLoad(N0.Val) &&
2824      (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
2825    bool DoXform = true;
2826    SmallVector<SDNode*, 4> SetCCs;
2827    if (!N0.hasOneUse())
2828      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
2829    if (DoXform) {
2830      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2831      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2832                                         LN0->getBasePtr(), LN0->getSrcValue(),
2833                                         LN0->getSrcValueOffset(),
2834                                         N0.getValueType(),
2835                                         LN0->isVolatile(),
2836                                         LN0->getAlignment());
2837      CombineTo(N, ExtLoad);
2838      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2839      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2840      // Extend SetCC uses if necessary.
2841      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2842        SDNode *SetCC = SetCCs[i];
2843        SmallVector<SDOperand, 4> Ops;
2844        for (unsigned j = 0; j != 2; ++j) {
2845          SDOperand SOp = SetCC->getOperand(j);
2846          if (SOp == Trunc)
2847            Ops.push_back(ExtLoad);
2848          else
2849            Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, VT, SOp));
2850          }
2851        Ops.push_back(SetCC->getOperand(2));
2852        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2853                                     &Ops[0], Ops.size()));
2854      }
2855      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2856    }
2857  }
2858
2859  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
2860  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
2861  if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2862      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2863    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2864    MVT::ValueType EVT = LN0->getMemoryVT();
2865    if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
2866      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2867                                         LN0->getBasePtr(), LN0->getSrcValue(),
2868                                         LN0->getSrcValueOffset(), EVT,
2869                                         LN0->isVolatile(),
2870                                         LN0->getAlignment());
2871      CombineTo(N, ExtLoad);
2872      CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2873                ExtLoad.getValue(1));
2874      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2875    }
2876  }
2877
2878  // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
2879  if (N0.getOpcode() == ISD::SETCC) {
2880    SDOperand SCC =
2881      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2882                       DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
2883                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2884    if (SCC.Val) return SCC;
2885  }
2886
2887  return SDOperand();
2888}
2889
2890SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
2891  SDOperand N0 = N->getOperand(0);
2892  MVT::ValueType VT = N->getValueType(0);
2893
2894  // fold (zext c1) -> c1
2895  if (isa<ConstantSDNode>(N0))
2896    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
2897  // fold (zext (zext x)) -> (zext x)
2898  // fold (zext (aext x)) -> (zext x)
2899  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2900    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
2901
2902  // fold (zext (truncate (load x))) -> (zext (smaller load x))
2903  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
2904  if (N0.getOpcode() == ISD::TRUNCATE) {
2905    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2906    if (NarrowLoad.Val) {
2907      if (NarrowLoad.Val != N0.Val)
2908        CombineTo(N0.Val, NarrowLoad);
2909      return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad);
2910    }
2911  }
2912
2913  // fold (zext (truncate x)) -> (and x, mask)
2914  if (N0.getOpcode() == ISD::TRUNCATE &&
2915      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
2916    SDOperand Op = N0.getOperand(0);
2917    if (Op.getValueType() < VT) {
2918      Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2919    } else if (Op.getValueType() > VT) {
2920      Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2921    }
2922    return DAG.getZeroExtendInReg(Op, N0.getValueType());
2923  }
2924
2925  // fold (zext (and (trunc x), cst)) -> (and x, cst).
2926  if (N0.getOpcode() == ISD::AND &&
2927      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2928      N0.getOperand(1).getOpcode() == ISD::Constant) {
2929    SDOperand X = N0.getOperand(0).getOperand(0);
2930    if (X.getValueType() < VT) {
2931      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2932    } else if (X.getValueType() > VT) {
2933      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2934    }
2935    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2936    Mask.zext(MVT::getSizeInBits(VT));
2937    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2938  }
2939
2940  // fold (zext (load x)) -> (zext (truncate (zextload x)))
2941  if (ISD::isNON_EXTLoad(N0.Val) &&
2942      (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
2943    bool DoXform = true;
2944    SmallVector<SDNode*, 4> SetCCs;
2945    if (!N0.hasOneUse())
2946      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
2947    if (DoXform) {
2948      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2949      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2950                                         LN0->getBasePtr(), LN0->getSrcValue(),
2951                                         LN0->getSrcValueOffset(),
2952                                         N0.getValueType(),
2953                                         LN0->isVolatile(),
2954                                         LN0->getAlignment());
2955      CombineTo(N, ExtLoad);
2956      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2957      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2958      // Extend SetCC uses if necessary.
2959      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2960        SDNode *SetCC = SetCCs[i];
2961        SmallVector<SDOperand, 4> Ops;
2962        for (unsigned j = 0; j != 2; ++j) {
2963          SDOperand SOp = SetCC->getOperand(j);
2964          if (SOp == Trunc)
2965            Ops.push_back(ExtLoad);
2966          else
2967            Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND, VT, SOp));
2968          }
2969        Ops.push_back(SetCC->getOperand(2));
2970        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2971                                     &Ops[0], Ops.size()));
2972      }
2973      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2974    }
2975  }
2976
2977  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
2978  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
2979  if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2980      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2981    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2982    MVT::ValueType EVT = LN0->getMemoryVT();
2983    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2984                                       LN0->getBasePtr(), LN0->getSrcValue(),
2985                                       LN0->getSrcValueOffset(), EVT,
2986                                       LN0->isVolatile(),
2987                                       LN0->getAlignment());
2988    CombineTo(N, ExtLoad);
2989    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2990              ExtLoad.getValue(1));
2991    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2992  }
2993
2994  // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2995  if (N0.getOpcode() == ISD::SETCC) {
2996    SDOperand SCC =
2997      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2998                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2999                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3000    if (SCC.Val) return SCC;
3001  }
3002
3003  return SDOperand();
3004}
3005
3006SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
3007  SDOperand N0 = N->getOperand(0);
3008  MVT::ValueType VT = N->getValueType(0);
3009
3010  // fold (aext c1) -> c1
3011  if (isa<ConstantSDNode>(N0))
3012    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
3013  // fold (aext (aext x)) -> (aext x)
3014  // fold (aext (zext x)) -> (zext x)
3015  // fold (aext (sext x)) -> (sext x)
3016  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
3017      N0.getOpcode() == ISD::ZERO_EXTEND ||
3018      N0.getOpcode() == ISD::SIGN_EXTEND)
3019    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
3020
3021  // fold (aext (truncate (load x))) -> (aext (smaller load x))
3022  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
3023  if (N0.getOpcode() == ISD::TRUNCATE) {
3024    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
3025    if (NarrowLoad.Val) {
3026      if (NarrowLoad.Val != N0.Val)
3027        CombineTo(N0.Val, NarrowLoad);
3028      return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad);
3029    }
3030  }
3031
3032  // fold (aext (truncate x))
3033  if (N0.getOpcode() == ISD::TRUNCATE) {
3034    SDOperand TruncOp = N0.getOperand(0);
3035    if (TruncOp.getValueType() == VT)
3036      return TruncOp; // x iff x size == zext size.
3037    if (TruncOp.getValueType() > VT)
3038      return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
3039    return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
3040  }
3041
3042  // fold (aext (and (trunc x), cst)) -> (and x, cst).
3043  if (N0.getOpcode() == ISD::AND &&
3044      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
3045      N0.getOperand(1).getOpcode() == ISD::Constant) {
3046    SDOperand X = N0.getOperand(0).getOperand(0);
3047    if (X.getValueType() < VT) {
3048      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
3049    } else if (X.getValueType() > VT) {
3050      X = DAG.getNode(ISD::TRUNCATE, VT, X);
3051    }
3052    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3053    Mask.zext(MVT::getSizeInBits(VT));
3054    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
3055  }
3056
3057  // fold (aext (load x)) -> (aext (truncate (extload x)))
3058  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3059      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3060    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3061    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3062                                       LN0->getBasePtr(), LN0->getSrcValue(),
3063                                       LN0->getSrcValueOffset(),
3064                                       N0.getValueType(),
3065                                       LN0->isVolatile(),
3066                                       LN0->getAlignment());
3067    CombineTo(N, ExtLoad);
3068    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
3069              ExtLoad.getValue(1));
3070    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3071  }
3072
3073  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
3074  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
3075  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
3076  if (N0.getOpcode() == ISD::LOAD &&
3077      !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3078      N0.hasOneUse()) {
3079    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3080    MVT::ValueType EVT = LN0->getMemoryVT();
3081    SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
3082                                       LN0->getChain(), LN0->getBasePtr(),
3083                                       LN0->getSrcValue(),
3084                                       LN0->getSrcValueOffset(), EVT,
3085                                       LN0->isVolatile(),
3086                                       LN0->getAlignment());
3087    CombineTo(N, ExtLoad);
3088    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
3089              ExtLoad.getValue(1));
3090    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3091  }
3092
3093  // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3094  if (N0.getOpcode() == ISD::SETCC) {
3095    SDOperand SCC =
3096      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
3097                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
3098                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3099    if (SCC.Val)
3100      return SCC;
3101  }
3102
3103  return SDOperand();
3104}
3105
3106/// GetDemandedBits - See if the specified operand can be simplified with the
3107/// knowledge that only the bits specified by Mask are used.  If so, return the
3108/// simpler operand, otherwise return a null SDOperand.
3109SDOperand DAGCombiner::GetDemandedBits(SDOperand V, const APInt &Mask) {
3110  switch (V.getOpcode()) {
3111  default: break;
3112  case ISD::OR:
3113  case ISD::XOR:
3114    // If the LHS or RHS don't contribute bits to the or, drop them.
3115    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
3116      return V.getOperand(1);
3117    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
3118      return V.getOperand(0);
3119    break;
3120  case ISD::SRL:
3121    // Only look at single-use SRLs.
3122    if (!V.Val->hasOneUse())
3123      break;
3124    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3125      // See if we can recursively simplify the LHS.
3126      unsigned Amt = RHSC->getValue();
3127      APInt NewMask = Mask << Amt;
3128      SDOperand SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
3129      if (SimplifyLHS.Val) {
3130        return DAG.getNode(ISD::SRL, V.getValueType(),
3131                           SimplifyLHS, V.getOperand(1));
3132      }
3133    }
3134  }
3135  return SDOperand();
3136}
3137
3138/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3139/// bits and then truncated to a narrower type and where N is a multiple
3140/// of number of bits of the narrower type, transform it to a narrower load
3141/// from address + N / num of bits of new type. If the result is to be
3142/// extended, also fold the extension to form a extending load.
3143SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
3144  unsigned Opc = N->getOpcode();
3145  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3146  SDOperand N0 = N->getOperand(0);
3147  MVT::ValueType VT = N->getValueType(0);
3148  MVT::ValueType EVT = N->getValueType(0);
3149
3150  // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3151  // extended to VT.
3152  if (Opc == ISD::SIGN_EXTEND_INREG) {
3153    ExtType = ISD::SEXTLOAD;
3154    EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3155    if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))
3156      return SDOperand();
3157  }
3158
3159  unsigned EVTBits = MVT::getSizeInBits(EVT);
3160  unsigned ShAmt = 0;
3161  bool CombineSRL =  false;
3162  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
3163    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3164      ShAmt = N01->getValue();
3165      // Is the shift amount a multiple of size of VT?
3166      if ((ShAmt & (EVTBits-1)) == 0) {
3167        N0 = N0.getOperand(0);
3168        if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits)
3169          return SDOperand();
3170        CombineSRL = true;
3171      }
3172    }
3173  }
3174
3175  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3176      // Do not allow folding to i1 here.  i1 is implicitly stored in memory in
3177      // zero extended form: by shrinking the load, we lose track of the fact
3178      // that it is already zero extended.
3179      // FIXME: This should be reevaluated.
3180      VT != MVT::i1) {
3181    assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits &&
3182           "Cannot truncate to larger type!");
3183    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3184    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
3185    // For big endian targets, we need to adjust the offset to the pointer to
3186    // load the correct bytes.
3187    if (TLI.isBigEndian()) {
3188      unsigned LVTStoreBits = MVT::getStoreSizeInBits(N0.getValueType());
3189      unsigned EVTStoreBits = MVT::getStoreSizeInBits(EVT);
3190      ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
3191    }
3192    uint64_t PtrOff =  ShAmt / 8;
3193    unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
3194    SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
3195                                   DAG.getConstant(PtrOff, PtrType));
3196    AddToWorkList(NewPtr.Val);
3197    SDOperand Load = (ExtType == ISD::NON_EXTLOAD)
3198      ? DAG.getLoad(VT, LN0->getChain(), NewPtr,
3199                    LN0->getSrcValue(), LN0->getSrcValueOffset(),
3200                    LN0->isVolatile(), NewAlign)
3201      : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr,
3202                       LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
3203                       LN0->isVolatile(), NewAlign);
3204    AddToWorkList(N);
3205    if (CombineSRL) {
3206      WorkListRemover DeadNodes(*this);
3207      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1),
3208                                    &DeadNodes);
3209      CombineTo(N->getOperand(0).Val, Load);
3210    } else
3211      CombineTo(N0.Val, Load, Load.getValue(1));
3212    if (ShAmt) {
3213      if (Opc == ISD::SIGN_EXTEND_INREG)
3214        return DAG.getNode(Opc, VT, Load, N->getOperand(1));
3215      else
3216        return DAG.getNode(Opc, VT, Load);
3217    }
3218    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3219  }
3220
3221  return SDOperand();
3222}
3223
3224
3225SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
3226  SDOperand N0 = N->getOperand(0);
3227  SDOperand N1 = N->getOperand(1);
3228  MVT::ValueType VT = N->getValueType(0);
3229  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
3230  unsigned VTBits = MVT::getSizeInBits(VT);
3231  unsigned EVTBits = MVT::getSizeInBits(EVT);
3232
3233  // fold (sext_in_reg c1) -> c1
3234  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
3235    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
3236
3237  // If the input is already sign extended, just drop the extension.
3238  if (DAG.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
3239    return N0;
3240
3241  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3242  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3243      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
3244    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
3245  }
3246
3247  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3248  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
3249    return DAG.getZeroExtendInReg(N0, EVT);
3250
3251  // fold operands of sext_in_reg based on knowledge that the top bits are not
3252  // demanded.
3253  if (SimplifyDemandedBits(SDOperand(N, 0)))
3254    return SDOperand(N, 0);
3255
3256  // fold (sext_in_reg (load x)) -> (smaller sextload x)
3257  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3258  SDOperand NarrowLoad = ReduceLoadWidth(N);
3259  if (NarrowLoad.Val)
3260    return NarrowLoad;
3261
3262  // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
3263  // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
3264  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3265  if (N0.getOpcode() == ISD::SRL) {
3266    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
3267      if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
3268        // We can turn this into an SRA iff the input to the SRL is already sign
3269        // extended enough.
3270        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
3271        if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
3272          return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
3273      }
3274  }
3275
3276  // fold (sext_inreg (extload x)) -> (sextload x)
3277  if (ISD::isEXTLoad(N0.Val) &&
3278      ISD::isUNINDEXEDLoad(N0.Val) &&
3279      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3280      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3281    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3282    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3283                                       LN0->getBasePtr(), LN0->getSrcValue(),
3284                                       LN0->getSrcValueOffset(), EVT,
3285                                       LN0->isVolatile(),
3286                                       LN0->getAlignment());
3287    CombineTo(N, ExtLoad);
3288    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3289    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3290  }
3291  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3292  if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3293      N0.hasOneUse() &&
3294      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3295      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3296    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3297    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3298                                       LN0->getBasePtr(), LN0->getSrcValue(),
3299                                       LN0->getSrcValueOffset(), EVT,
3300                                       LN0->isVolatile(),
3301                                       LN0->getAlignment());
3302    CombineTo(N, ExtLoad);
3303    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3304    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3305  }
3306  return SDOperand();
3307}
3308
3309SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
3310  SDOperand N0 = N->getOperand(0);
3311  MVT::ValueType VT = N->getValueType(0);
3312
3313  // noop truncate
3314  if (N0.getValueType() == N->getValueType(0))
3315    return N0;
3316  // fold (truncate c1) -> c1
3317  if (isa<ConstantSDNode>(N0))
3318    return DAG.getNode(ISD::TRUNCATE, VT, N0);
3319  // fold (truncate (truncate x)) -> (truncate x)
3320  if (N0.getOpcode() == ISD::TRUNCATE)
3321    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3322  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3323  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
3324      N0.getOpcode() == ISD::ANY_EXTEND) {
3325    if (N0.getOperand(0).getValueType() < VT)
3326      // if the source is smaller than the dest, we still need an extend
3327      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
3328    else if (N0.getOperand(0).getValueType() > VT)
3329      // if the source is larger than the dest, than we just need the truncate
3330      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3331    else
3332      // if the source and dest are the same type, we can drop both the extend
3333      // and the truncate
3334      return N0.getOperand(0);
3335  }
3336
3337  // See if we can simplify the input to this truncate through knowledge that
3338  // only the low bits are being used.  For example "trunc (or (shl x, 8), y)"
3339  // -> trunc y
3340  SDOperand Shorter =
3341    GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
3342                                             MVT::getSizeInBits(VT)));
3343  if (Shorter.Val)
3344    return DAG.getNode(ISD::TRUNCATE, VT, Shorter);
3345
3346  // fold (truncate (load x)) -> (smaller load x)
3347  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3348  return ReduceLoadWidth(N);
3349}
3350
3351SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
3352  SDOperand N0 = N->getOperand(0);
3353  MVT::ValueType VT = N->getValueType(0);
3354
3355  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3356  // Only do this before legalize, since afterward the target may be depending
3357  // on the bitconvert.
3358  // First check to see if this is all constant.
3359  if (!AfterLegalize &&
3360      N0.getOpcode() == ISD::BUILD_VECTOR && N0.Val->hasOneUse() &&
3361      MVT::isVector(VT)) {
3362    bool isSimple = true;
3363    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
3364      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
3365          N0.getOperand(i).getOpcode() != ISD::Constant &&
3366          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
3367        isSimple = false;
3368        break;
3369      }
3370
3371    MVT::ValueType DestEltVT = MVT::getVectorElementType(N->getValueType(0));
3372    assert(!MVT::isVector(DestEltVT) &&
3373           "Element type of vector ValueType must not be vector!");
3374    if (isSimple) {
3375      return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.Val, DestEltVT);
3376    }
3377  }
3378
3379  // If the input is a constant, let getNode() fold it.
3380  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
3381    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3382    if (Res.Val != N) return Res;
3383  }
3384
3385  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
3386    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3387
3388  // fold (conv (load x)) -> (load (conv*)x)
3389  // If the resultant load doesn't need a higher alignment than the original!
3390  if (ISD::isNormalLoad(N0.Val) && N0.hasOneUse() &&
3391      TLI.isOperationLegal(ISD::LOAD, VT)) {
3392    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3393    unsigned Align = TLI.getTargetMachine().getTargetData()->
3394      getABITypeAlignment(MVT::getTypeForValueType(VT));
3395    unsigned OrigAlign = LN0->getAlignment();
3396    if (Align <= OrigAlign) {
3397      SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
3398                                   LN0->getSrcValue(), LN0->getSrcValueOffset(),
3399                                   LN0->isVolatile(), Align);
3400      AddToWorkList(N);
3401      CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
3402                Load.getValue(1));
3403      return Load;
3404    }
3405  }
3406
3407  // Fold bitconvert(fneg(x)) -> xor(bitconvert(x), signbit)
3408  // Fold bitconvert(fabs(x)) -> and(bitconvert(x), ~signbit)
3409  // This often reduces constant pool loads.
3410  if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) &&
3411      N0.Val->hasOneUse() && MVT::isInteger(VT) && !MVT::isVector(VT)) {
3412    SDOperand NewConv = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3413    AddToWorkList(NewConv.Val);
3414
3415    APInt SignBit = APInt::getSignBit(MVT::getSizeInBits(VT));
3416    if (N0.getOpcode() == ISD::FNEG)
3417      return DAG.getNode(ISD::XOR, VT, NewConv, DAG.getConstant(SignBit, VT));
3418    assert(N0.getOpcode() == ISD::FABS);
3419    return DAG.getNode(ISD::AND, VT, NewConv, DAG.getConstant(~SignBit, VT));
3420  }
3421
3422  // Fold bitconvert(fcopysign(cst, x)) -> bitconvert(x)&sign | cst&~sign'
3423  // Note that we don't handle copysign(x,cst) because this can always be folded
3424  // to an fneg or fabs.
3425  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse() &&
3426      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
3427      MVT::isInteger(VT) && !MVT::isVector(VT)) {
3428    unsigned OrigXWidth = MVT::getSizeInBits(N0.getOperand(1).getValueType());
3429    SDOperand X = DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerType(OrigXWidth),
3430                              N0.getOperand(1));
3431    AddToWorkList(X.Val);
3432
3433    // If X has a different width than the result/lhs, sext it or truncate it.
3434    unsigned VTWidth = MVT::getSizeInBits(VT);
3435    if (OrigXWidth < VTWidth) {
3436      X = DAG.getNode(ISD::SIGN_EXTEND, VT, X);
3437      AddToWorkList(X.Val);
3438    } else if (OrigXWidth > VTWidth) {
3439      // To get the sign bit in the right place, we have to shift it right
3440      // before truncating.
3441      X = DAG.getNode(ISD::SRL, X.getValueType(), X,
3442                      DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
3443      AddToWorkList(X.Val);
3444      X = DAG.getNode(ISD::TRUNCATE, VT, X);
3445      AddToWorkList(X.Val);
3446    }
3447
3448    APInt SignBit = APInt::getSignBit(MVT::getSizeInBits(VT));
3449    X = DAG.getNode(ISD::AND, VT, X, DAG.getConstant(SignBit, VT));
3450    AddToWorkList(X.Val);
3451
3452    SDOperand Cst = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3453    Cst = DAG.getNode(ISD::AND, VT, Cst, DAG.getConstant(~SignBit, VT));
3454    AddToWorkList(Cst.Val);
3455
3456    return DAG.getNode(ISD::OR, VT, X, Cst);
3457  }
3458
3459  return SDOperand();
3460}
3461
3462/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3463/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
3464/// destination element value type.
3465SDOperand DAGCombiner::
3466ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
3467  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
3468
3469  // If this is already the right type, we're done.
3470  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
3471
3472  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
3473  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
3474
3475  // If this is a conversion of N elements of one type to N elements of another
3476  // type, convert each element.  This handles FP<->INT cases.
3477  if (SrcBitSize == DstBitSize) {
3478    SmallVector<SDOperand, 8> Ops;
3479    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3480      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
3481      AddToWorkList(Ops.back().Val);
3482    }
3483    MVT::ValueType VT =
3484      MVT::getVectorType(DstEltVT,
3485                         MVT::getVectorNumElements(BV->getValueType(0)));
3486    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3487  }
3488
3489  // Otherwise, we're growing or shrinking the elements.  To avoid having to
3490  // handle annoying details of growing/shrinking FP values, we convert them to
3491  // int first.
3492  if (MVT::isFloatingPoint(SrcEltVT)) {
3493    // Convert the input float vector to a int vector where the elements are the
3494    // same sizes.
3495    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
3496    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3497    BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).Val;
3498    SrcEltVT = IntVT;
3499  }
3500
3501  // Now we know the input is an integer vector.  If the output is a FP type,
3502  // convert to integer first, then to FP of the right size.
3503  if (MVT::isFloatingPoint(DstEltVT)) {
3504    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
3505    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3506    SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).Val;
3507
3508    // Next, convert to FP elements of the same size.
3509    return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
3510  }
3511
3512  // Okay, we know the src/dst types are both integers of differing types.
3513  // Handling growing first.
3514  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
3515  if (SrcBitSize < DstBitSize) {
3516    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
3517
3518    SmallVector<SDOperand, 8> Ops;
3519    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
3520         i += NumInputsPerOutput) {
3521      bool isLE = TLI.isLittleEndian();
3522      APInt NewBits = APInt(DstBitSize, 0);
3523      bool EltIsUndef = true;
3524      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
3525        // Shift the previously computed bits over.
3526        NewBits <<= SrcBitSize;
3527        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
3528        if (Op.getOpcode() == ISD::UNDEF) continue;
3529        EltIsUndef = false;
3530
3531        NewBits |=
3532          APInt(cast<ConstantSDNode>(Op)->getAPIntValue()).zext(DstBitSize);
3533      }
3534
3535      if (EltIsUndef)
3536        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3537      else
3538        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
3539    }
3540
3541    MVT::ValueType VT = MVT::getVectorType(DstEltVT, Ops.size());
3542    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3543  }
3544
3545  // Finally, this must be the case where we are shrinking elements: each input
3546  // turns into multiple outputs.
3547  bool isS2V = ISD::isScalarToVector(BV);
3548  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
3549  MVT::ValueType VT = MVT::getVectorType(DstEltVT,
3550                                     NumOutputsPerInput * BV->getNumOperands());
3551  SmallVector<SDOperand, 8> Ops;
3552  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3553    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
3554      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
3555        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3556      continue;
3557    }
3558    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getAPIntValue();
3559    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
3560      APInt ThisVal = APInt(OpVal).trunc(DstBitSize);
3561      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
3562      if (isS2V && i == 0 && j == 0 && APInt(ThisVal).zext(SrcBitSize) == OpVal)
3563        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
3564        return DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Ops[0]);
3565      OpVal = OpVal.lshr(DstBitSize);
3566    }
3567
3568    // For big endian targets, swap the order of the pieces of each element.
3569    if (TLI.isBigEndian())
3570      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
3571  }
3572  return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3573}
3574
3575
3576
3577SDOperand DAGCombiner::visitFADD(SDNode *N) {
3578  SDOperand N0 = N->getOperand(0);
3579  SDOperand N1 = N->getOperand(1);
3580  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3581  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3582  MVT::ValueType VT = N->getValueType(0);
3583
3584  // fold vector ops
3585  if (MVT::isVector(VT)) {
3586    SDOperand FoldedVOp = SimplifyVBinOp(N);
3587    if (FoldedVOp.Val) return FoldedVOp;
3588  }
3589
3590  // fold (fadd c1, c2) -> c1+c2
3591  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3592    return DAG.getNode(ISD::FADD, VT, N0, N1);
3593  // canonicalize constant to RHS
3594  if (N0CFP && !N1CFP)
3595    return DAG.getNode(ISD::FADD, VT, N1, N0);
3596  // fold (A + (-B)) -> A-B
3597  if (isNegatibleForFree(N1, AfterLegalize) == 2)
3598    return DAG.getNode(ISD::FSUB, VT, N0,
3599                       GetNegatedExpression(N1, DAG, AfterLegalize));
3600  // fold ((-A) + B) -> B-A
3601  if (isNegatibleForFree(N0, AfterLegalize) == 2)
3602    return DAG.getNode(ISD::FSUB, VT, N1,
3603                       GetNegatedExpression(N0, DAG, AfterLegalize));
3604
3605  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3606  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
3607      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3608    return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
3609                       DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
3610
3611  return SDOperand();
3612}
3613
3614SDOperand DAGCombiner::visitFSUB(SDNode *N) {
3615  SDOperand N0 = N->getOperand(0);
3616  SDOperand N1 = N->getOperand(1);
3617  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3618  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3619  MVT::ValueType VT = N->getValueType(0);
3620
3621  // fold vector ops
3622  if (MVT::isVector(VT)) {
3623    SDOperand FoldedVOp = SimplifyVBinOp(N);
3624    if (FoldedVOp.Val) return FoldedVOp;
3625  }
3626
3627  // fold (fsub c1, c2) -> c1-c2
3628  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3629    return DAG.getNode(ISD::FSUB, VT, N0, N1);
3630  // fold (0-B) -> -B
3631  if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
3632    if (isNegatibleForFree(N1, AfterLegalize))
3633      return GetNegatedExpression(N1, DAG, AfterLegalize);
3634    return DAG.getNode(ISD::FNEG, VT, N1);
3635  }
3636  // fold (A-(-B)) -> A+B
3637  if (isNegatibleForFree(N1, AfterLegalize))
3638    return DAG.getNode(ISD::FADD, VT, N0,
3639                       GetNegatedExpression(N1, DAG, AfterLegalize));
3640
3641  return SDOperand();
3642}
3643
3644SDOperand DAGCombiner::visitFMUL(SDNode *N) {
3645  SDOperand N0 = N->getOperand(0);
3646  SDOperand N1 = N->getOperand(1);
3647  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3648  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3649  MVT::ValueType VT = N->getValueType(0);
3650
3651  // fold vector ops
3652  if (MVT::isVector(VT)) {
3653    SDOperand FoldedVOp = SimplifyVBinOp(N);
3654    if (FoldedVOp.Val) return FoldedVOp;
3655  }
3656
3657  // fold (fmul c1, c2) -> c1*c2
3658  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3659    return DAG.getNode(ISD::FMUL, VT, N0, N1);
3660  // canonicalize constant to RHS
3661  if (N0CFP && !N1CFP)
3662    return DAG.getNode(ISD::FMUL, VT, N1, N0);
3663  // fold (fmul X, 2.0) -> (fadd X, X)
3664  if (N1CFP && N1CFP->isExactlyValue(+2.0))
3665    return DAG.getNode(ISD::FADD, VT, N0, N0);
3666  // fold (fmul X, -1.0) -> (fneg X)
3667  if (N1CFP && N1CFP->isExactlyValue(-1.0))
3668    return DAG.getNode(ISD::FNEG, VT, N0);
3669
3670  // -X * -Y -> X*Y
3671  if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) {
3672    if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) {
3673      // Both can be negated for free, check to see if at least one is cheaper
3674      // negated.
3675      if (LHSNeg == 2 || RHSNeg == 2)
3676        return DAG.getNode(ISD::FMUL, VT,
3677                           GetNegatedExpression(N0, DAG, AfterLegalize),
3678                           GetNegatedExpression(N1, DAG, AfterLegalize));
3679    }
3680  }
3681
3682  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
3683  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
3684      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3685    return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
3686                       DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
3687
3688  return SDOperand();
3689}
3690
3691SDOperand DAGCombiner::visitFDIV(SDNode *N) {
3692  SDOperand N0 = N->getOperand(0);
3693  SDOperand N1 = N->getOperand(1);
3694  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3695  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3696  MVT::ValueType VT = N->getValueType(0);
3697
3698  // fold vector ops
3699  if (MVT::isVector(VT)) {
3700    SDOperand FoldedVOp = SimplifyVBinOp(N);
3701    if (FoldedVOp.Val) return FoldedVOp;
3702  }
3703
3704  // fold (fdiv c1, c2) -> c1/c2
3705  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3706    return DAG.getNode(ISD::FDIV, VT, N0, N1);
3707
3708
3709  // -X / -Y -> X*Y
3710  if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) {
3711    if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) {
3712      // Both can be negated for free, check to see if at least one is cheaper
3713      // negated.
3714      if (LHSNeg == 2 || RHSNeg == 2)
3715        return DAG.getNode(ISD::FDIV, VT,
3716                           GetNegatedExpression(N0, DAG, AfterLegalize),
3717                           GetNegatedExpression(N1, DAG, AfterLegalize));
3718    }
3719  }
3720
3721  return SDOperand();
3722}
3723
3724SDOperand DAGCombiner::visitFREM(SDNode *N) {
3725  SDOperand N0 = N->getOperand(0);
3726  SDOperand N1 = N->getOperand(1);
3727  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3728  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3729  MVT::ValueType VT = N->getValueType(0);
3730
3731  // fold (frem c1, c2) -> fmod(c1,c2)
3732  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3733    return DAG.getNode(ISD::FREM, VT, N0, N1);
3734
3735  return SDOperand();
3736}
3737
3738SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
3739  SDOperand N0 = N->getOperand(0);
3740  SDOperand N1 = N->getOperand(1);
3741  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3742  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3743  MVT::ValueType VT = N->getValueType(0);
3744
3745  if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold
3746    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
3747
3748  if (N1CFP) {
3749    const APFloat& V = N1CFP->getValueAPF();
3750    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
3751    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
3752    if (!V.isNegative())
3753      return DAG.getNode(ISD::FABS, VT, N0);
3754    else
3755      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
3756  }
3757
3758  // copysign(fabs(x), y) -> copysign(x, y)
3759  // copysign(fneg(x), y) -> copysign(x, y)
3760  // copysign(copysign(x,z), y) -> copysign(x, y)
3761  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
3762      N0.getOpcode() == ISD::FCOPYSIGN)
3763    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
3764
3765  // copysign(x, abs(y)) -> abs(x)
3766  if (N1.getOpcode() == ISD::FABS)
3767    return DAG.getNode(ISD::FABS, VT, N0);
3768
3769  // copysign(x, copysign(y,z)) -> copysign(x, z)
3770  if (N1.getOpcode() == ISD::FCOPYSIGN)
3771    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
3772
3773  // copysign(x, fp_extend(y)) -> copysign(x, y)
3774  // copysign(x, fp_round(y)) -> copysign(x, y)
3775  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
3776    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
3777
3778  return SDOperand();
3779}
3780
3781
3782
3783SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
3784  SDOperand N0 = N->getOperand(0);
3785  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3786  MVT::ValueType VT = N->getValueType(0);
3787
3788  // fold (sint_to_fp c1) -> c1fp
3789  if (N0C && N0.getValueType() != MVT::ppcf128)
3790    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
3791  return SDOperand();
3792}
3793
3794SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
3795  SDOperand N0 = N->getOperand(0);
3796  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3797  MVT::ValueType VT = N->getValueType(0);
3798
3799  // fold (uint_to_fp c1) -> c1fp
3800  if (N0C && N0.getValueType() != MVT::ppcf128)
3801    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
3802  return SDOperand();
3803}
3804
3805SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
3806  SDOperand N0 = N->getOperand(0);
3807  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3808  MVT::ValueType VT = N->getValueType(0);
3809
3810  // fold (fp_to_sint c1fp) -> c1
3811  if (N0CFP)
3812    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
3813  return SDOperand();
3814}
3815
3816SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
3817  SDOperand N0 = N->getOperand(0);
3818  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3819  MVT::ValueType VT = N->getValueType(0);
3820
3821  // fold (fp_to_uint c1fp) -> c1
3822  if (N0CFP && VT != MVT::ppcf128)
3823    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
3824  return SDOperand();
3825}
3826
3827SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
3828  SDOperand N0 = N->getOperand(0);
3829  SDOperand N1 = N->getOperand(1);
3830  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3831  MVT::ValueType VT = N->getValueType(0);
3832
3833  // fold (fp_round c1fp) -> c1fp
3834  if (N0CFP && N0.getValueType() != MVT::ppcf128)
3835    return DAG.getNode(ISD::FP_ROUND, VT, N0, N1);
3836
3837  // fold (fp_round (fp_extend x)) -> x
3838  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
3839    return N0.getOperand(0);
3840
3841  // fold (fp_round (fp_round x)) -> (fp_round x)
3842  if (N0.getOpcode() == ISD::FP_ROUND) {
3843    // This is a value preserving truncation if both round's are.
3844    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
3845                   N0.Val->getConstantOperandVal(1) == 1;
3846    return DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0),
3847                       DAG.getIntPtrConstant(IsTrunc));
3848  }
3849
3850  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
3851  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
3852    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0), N1);
3853    AddToWorkList(Tmp.Val);
3854    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
3855  }
3856
3857  return SDOperand();
3858}
3859
3860SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
3861  SDOperand N0 = N->getOperand(0);
3862  MVT::ValueType VT = N->getValueType(0);
3863  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3864  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3865
3866  // fold (fp_round_inreg c1fp) -> c1fp
3867  if (N0CFP) {
3868    SDOperand Round = DAG.getConstantFP(N0CFP->getValueAPF(), EVT);
3869    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
3870  }
3871  return SDOperand();
3872}
3873
3874SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
3875  SDOperand N0 = N->getOperand(0);
3876  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3877  MVT::ValueType VT = N->getValueType(0);
3878
3879  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
3880  if (N->hasOneUse() && (*N->use_begin())->getOpcode() == ISD::FP_ROUND)
3881    return SDOperand();
3882
3883  // fold (fp_extend c1fp) -> c1fp
3884  if (N0CFP && VT != MVT::ppcf128)
3885    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
3886
3887  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
3888  // value of X.
3889  if (N0.getOpcode() == ISD::FP_ROUND && N0.Val->getConstantOperandVal(1) == 1){
3890    SDOperand In = N0.getOperand(0);
3891    if (In.getValueType() == VT) return In;
3892    if (VT < In.getValueType())
3893      return DAG.getNode(ISD::FP_ROUND, VT, In, N0.getOperand(1));
3894    return DAG.getNode(ISD::FP_EXTEND, VT, In);
3895  }
3896
3897  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
3898  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3899      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3900    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3901    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3902                                       LN0->getBasePtr(), LN0->getSrcValue(),
3903                                       LN0->getSrcValueOffset(),
3904                                       N0.getValueType(),
3905                                       LN0->isVolatile(),
3906                                       LN0->getAlignment());
3907    CombineTo(N, ExtLoad);
3908    CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad,
3909                                  DAG.getIntPtrConstant(1)),
3910              ExtLoad.getValue(1));
3911    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3912  }
3913
3914
3915  return SDOperand();
3916}
3917
3918SDOperand DAGCombiner::visitFNEG(SDNode *N) {
3919  SDOperand N0 = N->getOperand(0);
3920
3921  if (isNegatibleForFree(N0, AfterLegalize))
3922    return GetNegatedExpression(N0, DAG, AfterLegalize);
3923
3924  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
3925  // constant pool values.
3926  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
3927      MVT::isInteger(N0.getOperand(0).getValueType()) &&
3928      !MVT::isVector(N0.getOperand(0).getValueType())) {
3929    SDOperand Int = N0.getOperand(0);
3930    MVT::ValueType IntVT = Int.getValueType();
3931    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
3932      Int = DAG.getNode(ISD::XOR, IntVT, Int,
3933                        DAG.getConstant(MVT::getIntVTSignBit(IntVT), IntVT));
3934      AddToWorkList(Int.Val);
3935      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
3936    }
3937  }
3938
3939  return SDOperand();
3940}
3941
3942SDOperand DAGCombiner::visitFABS(SDNode *N) {
3943  SDOperand N0 = N->getOperand(0);
3944  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3945  MVT::ValueType VT = N->getValueType(0);
3946
3947  // fold (fabs c1) -> fabs(c1)
3948  if (N0CFP && VT != MVT::ppcf128)
3949    return DAG.getNode(ISD::FABS, VT, N0);
3950  // fold (fabs (fabs x)) -> (fabs x)
3951  if (N0.getOpcode() == ISD::FABS)
3952    return N->getOperand(0);
3953  // fold (fabs (fneg x)) -> (fabs x)
3954  // fold (fabs (fcopysign x, y)) -> (fabs x)
3955  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
3956    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
3957
3958  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
3959  // constant pool values.
3960  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
3961      MVT::isInteger(N0.getOperand(0).getValueType()) &&
3962      !MVT::isVector(N0.getOperand(0).getValueType())) {
3963    SDOperand Int = N0.getOperand(0);
3964    MVT::ValueType IntVT = Int.getValueType();
3965    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
3966      Int = DAG.getNode(ISD::AND, IntVT, Int,
3967                        DAG.getConstant(~MVT::getIntVTSignBit(IntVT), IntVT));
3968      AddToWorkList(Int.Val);
3969      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
3970    }
3971  }
3972
3973  return SDOperand();
3974}
3975
3976SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
3977  SDOperand Chain = N->getOperand(0);
3978  SDOperand N1 = N->getOperand(1);
3979  SDOperand N2 = N->getOperand(2);
3980  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3981
3982  // never taken branch, fold to chain
3983  if (N1C && N1C->isNullValue())
3984    return Chain;
3985  // unconditional branch
3986  if (N1C && N1C->getAPIntValue() == 1)
3987    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
3988  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
3989  // on the target.
3990  if (N1.getOpcode() == ISD::SETCC &&
3991      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
3992    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
3993                       N1.getOperand(0), N1.getOperand(1), N2);
3994  }
3995  return SDOperand();
3996}
3997
3998// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
3999//
4000SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
4001  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
4002  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
4003
4004  // Use SimplifySetCC  to simplify SETCC's.
4005  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
4006  if (Simp.Val) AddToWorkList(Simp.Val);
4007
4008  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
4009
4010  // fold br_cc true, dest -> br dest (unconditional branch)
4011  if (SCCC && !SCCC->isNullValue())
4012    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
4013                       N->getOperand(4));
4014  // fold br_cc false, dest -> unconditional fall through
4015  if (SCCC && SCCC->isNullValue())
4016    return N->getOperand(0);
4017
4018  // fold to a simpler setcc
4019  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
4020    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
4021                       Simp.getOperand(2), Simp.getOperand(0),
4022                       Simp.getOperand(1), N->getOperand(4));
4023  return SDOperand();
4024}
4025
4026
4027/// CombineToPreIndexedLoadStore - Try turning a load / store and a
4028/// pre-indexed load / store when the base pointer is a add or subtract
4029/// and it has other uses besides the load / store. After the
4030/// transformation, the new indexed load / store has effectively folded
4031/// the add / subtract in and all of its other uses are redirected to the
4032/// new load / store.
4033bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
4034  if (!AfterLegalize)
4035    return false;
4036
4037  bool isLoad = true;
4038  SDOperand Ptr;
4039  MVT::ValueType VT;
4040  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
4041    if (LD->isIndexed())
4042      return false;
4043    VT = LD->getMemoryVT();
4044    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
4045        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
4046      return false;
4047    Ptr = LD->getBasePtr();
4048  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
4049    if (ST->isIndexed())
4050      return false;
4051    VT = ST->getMemoryVT();
4052    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
4053        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
4054      return false;
4055    Ptr = ST->getBasePtr();
4056    isLoad = false;
4057  } else
4058    return false;
4059
4060  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
4061  // out.  There is no reason to make this a preinc/predec.
4062  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
4063      Ptr.Val->hasOneUse())
4064    return false;
4065
4066  // Ask the target to do addressing mode selection.
4067  SDOperand BasePtr;
4068  SDOperand Offset;
4069  ISD::MemIndexedMode AM = ISD::UNINDEXED;
4070  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
4071    return false;
4072  // Don't create a indexed load / store with zero offset.
4073  if (isa<ConstantSDNode>(Offset) &&
4074      cast<ConstantSDNode>(Offset)->isNullValue())
4075    return false;
4076
4077  // Try turning it into a pre-indexed load / store except when:
4078  // 1) The new base ptr is a frame index.
4079  // 2) If N is a store and the new base ptr is either the same as or is a
4080  //    predecessor of the value being stored.
4081  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
4082  //    that would create a cycle.
4083  // 4) All uses are load / store ops that use it as old base ptr.
4084
4085  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
4086  // (plus the implicit offset) to a register to preinc anyway.
4087  if (isa<FrameIndexSDNode>(BasePtr))
4088    return false;
4089
4090  // Check #2.
4091  if (!isLoad) {
4092    SDOperand Val = cast<StoreSDNode>(N)->getValue();
4093    if (Val == BasePtr || BasePtr.Val->isPredecessorOf(Val.Val))
4094      return false;
4095  }
4096
4097  // Now check for #3 and #4.
4098  bool RealUse = false;
4099  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
4100         E = Ptr.Val->use_end(); I != E; ++I) {
4101    SDNode *Use = *I;
4102    if (Use == N)
4103      continue;
4104    if (Use->isPredecessorOf(N))
4105      return false;
4106
4107    if (!((Use->getOpcode() == ISD::LOAD &&
4108           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
4109          (Use->getOpcode() == ISD::STORE &&
4110           cast<StoreSDNode>(Use)->getBasePtr() == Ptr)))
4111      RealUse = true;
4112  }
4113  if (!RealUse)
4114    return false;
4115
4116  SDOperand Result;
4117  if (isLoad)
4118    Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
4119  else
4120    Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4121  ++PreIndexedNodes;
4122  ++NodesCombined;
4123  DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
4124  DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4125  DOUT << '\n';
4126  WorkListRemover DeadNodes(*this);
4127  if (isLoad) {
4128    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4129                                  &DeadNodes);
4130    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4131                                  &DeadNodes);
4132  } else {
4133    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4134                                  &DeadNodes);
4135  }
4136
4137  // Finally, since the node is now dead, remove it from the graph.
4138  DAG.DeleteNode(N);
4139
4140  // Replace the uses of Ptr with uses of the updated base value.
4141  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
4142                                &DeadNodes);
4143  removeFromWorkList(Ptr.Val);
4144  DAG.DeleteNode(Ptr.Val);
4145
4146  return true;
4147}
4148
4149/// CombineToPostIndexedLoadStore - Try combine a load / store with a
4150/// add / sub of the base pointer node into a post-indexed load / store.
4151/// The transformation folded the add / subtract into the new indexed
4152/// load / store effectively and all of its uses are redirected to the
4153/// new load / store.
4154bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
4155  if (!AfterLegalize)
4156    return false;
4157
4158  bool isLoad = true;
4159  SDOperand Ptr;
4160  MVT::ValueType VT;
4161  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
4162    if (LD->isIndexed())
4163      return false;
4164    VT = LD->getMemoryVT();
4165    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
4166        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
4167      return false;
4168    Ptr = LD->getBasePtr();
4169  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
4170    if (ST->isIndexed())
4171      return false;
4172    VT = ST->getMemoryVT();
4173    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
4174        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
4175      return false;
4176    Ptr = ST->getBasePtr();
4177    isLoad = false;
4178  } else
4179    return false;
4180
4181  if (Ptr.Val->hasOneUse())
4182    return false;
4183
4184  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
4185         E = Ptr.Val->use_end(); I != E; ++I) {
4186    SDNode *Op = *I;
4187    if (Op == N ||
4188        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
4189      continue;
4190
4191    SDOperand BasePtr;
4192    SDOperand Offset;
4193    ISD::MemIndexedMode AM = ISD::UNINDEXED;
4194    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
4195      if (Ptr == Offset)
4196        std::swap(BasePtr, Offset);
4197      if (Ptr != BasePtr)
4198        continue;
4199      // Don't create a indexed load / store with zero offset.
4200      if (isa<ConstantSDNode>(Offset) &&
4201          cast<ConstantSDNode>(Offset)->isNullValue())
4202        continue;
4203
4204      // Try turning it into a post-indexed load / store except when
4205      // 1) All uses are load / store ops that use it as base ptr.
4206      // 2) Op must be independent of N, i.e. Op is neither a predecessor
4207      //    nor a successor of N. Otherwise, if Op is folded that would
4208      //    create a cycle.
4209
4210      // Check for #1.
4211      bool TryNext = false;
4212      for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
4213             EE = BasePtr.Val->use_end(); II != EE; ++II) {
4214        SDNode *Use = *II;
4215        if (Use == Ptr.Val)
4216          continue;
4217
4218        // If all the uses are load / store addresses, then don't do the
4219        // transformation.
4220        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
4221          bool RealUse = false;
4222          for (SDNode::use_iterator III = Use->use_begin(),
4223                 EEE = Use->use_end(); III != EEE; ++III) {
4224            SDNode *UseUse = *III;
4225            if (!((UseUse->getOpcode() == ISD::LOAD &&
4226                   cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
4227                  (UseUse->getOpcode() == ISD::STORE &&
4228                   cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use)))
4229              RealUse = true;
4230          }
4231
4232          if (!RealUse) {
4233            TryNext = true;
4234            break;
4235          }
4236        }
4237      }
4238      if (TryNext)
4239        continue;
4240
4241      // Check for #2
4242      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
4243        SDOperand Result = isLoad
4244          ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
4245          : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4246        ++PostIndexedNodes;
4247        ++NodesCombined;
4248        DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
4249        DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4250        DOUT << '\n';
4251        WorkListRemover DeadNodes(*this);
4252        if (isLoad) {
4253          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4254                                        &DeadNodes);
4255          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4256                                        &DeadNodes);
4257        } else {
4258          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4259                                        &DeadNodes);
4260        }
4261
4262        // Finally, since the node is now dead, remove it from the graph.
4263        DAG.DeleteNode(N);
4264
4265        // Replace the uses of Use with uses of the updated base value.
4266        DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
4267                                      Result.getValue(isLoad ? 1 : 0),
4268                                      &DeadNodes);
4269        removeFromWorkList(Op);
4270        DAG.DeleteNode(Op);
4271        return true;
4272      }
4273    }
4274  }
4275  return false;
4276}
4277
4278/// InferAlignment - If we can infer some alignment information from this
4279/// pointer, return it.
4280static unsigned InferAlignment(SDOperand Ptr, SelectionDAG &DAG) {
4281  // If this is a direct reference to a stack slot, use information about the
4282  // stack slot's alignment.
4283  int FrameIdx = 1 << 31;
4284  int64_t FrameOffset = 0;
4285  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
4286    FrameIdx = FI->getIndex();
4287  } else if (Ptr.getOpcode() == ISD::ADD &&
4288             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
4289             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4290    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4291    FrameOffset = Ptr.getConstantOperandVal(1);
4292  }
4293
4294  if (FrameIdx != (1 << 31)) {
4295    // FIXME: Handle FI+CST.
4296    const MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo();
4297    if (MFI.isFixedObjectIndex(FrameIdx)) {
4298      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx);
4299
4300      // The alignment of the frame index can be determined from its offset from
4301      // the incoming frame position.  If the frame object is at offset 32 and
4302      // the stack is guaranteed to be 16-byte aligned, then we know that the
4303      // object is 16-byte aligned.
4304      unsigned StackAlign = DAG.getTarget().getFrameInfo()->getStackAlignment();
4305      unsigned Align = MinAlign(ObjectOffset, StackAlign);
4306
4307      // Finally, the frame object itself may have a known alignment.  Factor
4308      // the alignment + offset into a new alignment.  For example, if we know
4309      // the  FI is 8 byte aligned, but the pointer is 4 off, we really have a
4310      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
4311      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
4312      unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
4313                                      FrameOffset);
4314      return std::max(Align, FIInfoAlign);
4315    }
4316  }
4317
4318  return 0;
4319}
4320
4321SDOperand DAGCombiner::visitLOAD(SDNode *N) {
4322  LoadSDNode *LD  = cast<LoadSDNode>(N);
4323  SDOperand Chain = LD->getChain();
4324  SDOperand Ptr   = LD->getBasePtr();
4325
4326  // Try to infer better alignment information than the load already has.
4327  if (LD->isUnindexed()) {
4328    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4329      if (Align > LD->getAlignment())
4330        return DAG.getExtLoad(LD->getExtensionType(), LD->getValueType(0),
4331                              Chain, Ptr, LD->getSrcValue(),
4332                              LD->getSrcValueOffset(), LD->getMemoryVT(),
4333                              LD->isVolatile(), Align);
4334    }
4335  }
4336
4337
4338  // If load is not volatile and there are no uses of the loaded value (and
4339  // the updated indexed value in case of indexed loads), change uses of the
4340  // chain value into uses of the chain input (i.e. delete the dead load).
4341  if (!LD->isVolatile()) {
4342    if (N->getValueType(1) == MVT::Other) {
4343      // Unindexed loads.
4344      if (N->hasNUsesOfValue(0, 0)) {
4345        // It's not safe to use the two value CombineTo variant here. e.g.
4346        // v1, chain2 = load chain1, loc
4347        // v2, chain3 = load chain2, loc
4348        // v3         = add v2, c
4349        // Now we replace use of chain2 with chain1.  This makes the second load
4350        // isomorphic to the one we are deleting, and thus makes this load live.
4351        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4352        DOUT << "\nWith chain: "; DEBUG(Chain.Val->dump(&DAG));
4353        DOUT << "\n";
4354        WorkListRemover DeadNodes(*this);
4355        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Chain, &DeadNodes);
4356        if (N->use_empty()) {
4357          removeFromWorkList(N);
4358          DAG.DeleteNode(N);
4359        }
4360        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4361      }
4362    } else {
4363      // Indexed loads.
4364      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
4365      if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
4366        SDOperand Undef = DAG.getNode(ISD::UNDEF, N->getValueType(0));
4367        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4368        DOUT << "\nWith: "; DEBUG(Undef.Val->dump(&DAG));
4369        DOUT << " and 2 other values\n";
4370        WorkListRemover DeadNodes(*this);
4371        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Undef, &DeadNodes);
4372        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1),
4373                                    DAG.getNode(ISD::UNDEF, N->getValueType(1)),
4374                                      &DeadNodes);
4375        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 2), Chain, &DeadNodes);
4376        removeFromWorkList(N);
4377        DAG.DeleteNode(N);
4378        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4379      }
4380    }
4381  }
4382
4383  // If this load is directly stored, replace the load value with the stored
4384  // value.
4385  // TODO: Handle store large -> read small portion.
4386  // TODO: Handle TRUNCSTORE/LOADEXT
4387  if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4388    if (ISD::isNON_TRUNCStore(Chain.Val)) {
4389      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
4390      if (PrevST->getBasePtr() == Ptr &&
4391          PrevST->getValue().getValueType() == N->getValueType(0))
4392      return CombineTo(N, Chain.getOperand(1), Chain);
4393    }
4394  }
4395
4396  if (CombinerAA) {
4397    // Walk up chain skipping non-aliasing memory nodes.
4398    SDOperand BetterChain = FindBetterChain(N, Chain);
4399
4400    // If there is a better chain.
4401    if (Chain != BetterChain) {
4402      SDOperand ReplLoad;
4403
4404      // Replace the chain to void dependency.
4405      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4406        ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
4407                               LD->getSrcValue(), LD->getSrcValueOffset(),
4408                               LD->isVolatile(), LD->getAlignment());
4409      } else {
4410        ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
4411                                  LD->getValueType(0),
4412                                  BetterChain, Ptr, LD->getSrcValue(),
4413                                  LD->getSrcValueOffset(),
4414                                  LD->getMemoryVT(),
4415                                  LD->isVolatile(),
4416                                  LD->getAlignment());
4417      }
4418
4419      // Create token factor to keep old chain connected.
4420      SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
4421                                    Chain, ReplLoad.getValue(1));
4422
4423      // Replace uses with load result and token factor. Don't add users
4424      // to work list.
4425      return CombineTo(N, ReplLoad.getValue(0), Token, false);
4426    }
4427  }
4428
4429  // Try transforming N to an indexed load.
4430  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4431    return SDOperand(N, 0);
4432
4433  return SDOperand();
4434}
4435
4436
4437SDOperand DAGCombiner::visitSTORE(SDNode *N) {
4438  StoreSDNode *ST  = cast<StoreSDNode>(N);
4439  SDOperand Chain = ST->getChain();
4440  SDOperand Value = ST->getValue();
4441  SDOperand Ptr   = ST->getBasePtr();
4442
4443  // Try to infer better alignment information than the store already has.
4444  if (ST->isUnindexed()) {
4445    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4446      if (Align > ST->getAlignment())
4447        return DAG.getTruncStore(Chain, Value, Ptr, ST->getSrcValue(),
4448                                 ST->getSrcValueOffset(), ST->getMemoryVT(),
4449                                 ST->isVolatile(), Align);
4450    }
4451  }
4452
4453  // If this is a store of a bit convert, store the input value if the
4454  // resultant store does not need a higher alignment than the original.
4455  if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
4456      ST->isUnindexed()) {
4457    unsigned Align = ST->getAlignment();
4458    MVT::ValueType SVT = Value.getOperand(0).getValueType();
4459    unsigned OrigAlign = TLI.getTargetMachine().getTargetData()->
4460      getABITypeAlignment(MVT::getTypeForValueType(SVT));
4461    if (Align <= OrigAlign && TLI.isOperationLegal(ISD::STORE, SVT))
4462      return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4463                          ST->getSrcValueOffset(), ST->isVolatile(), Align);
4464  }
4465
4466  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
4467  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
4468    if (Value.getOpcode() != ISD::TargetConstantFP) {
4469      SDOperand Tmp;
4470      switch (CFP->getValueType(0)) {
4471      default: assert(0 && "Unknown FP type");
4472      case MVT::f80:    // We don't do this for these yet.
4473      case MVT::f128:
4474      case MVT::ppcf128:
4475        break;
4476      case MVT::f32:
4477        if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
4478          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
4479                              convertToAPInt().getZExtValue(), MVT::i32);
4480          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4481                              ST->getSrcValueOffset(), ST->isVolatile(),
4482                              ST->getAlignment());
4483        }
4484        break;
4485      case MVT::f64:
4486        if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
4487          Tmp = DAG.getConstant(CFP->getValueAPF().convertToAPInt().
4488                                  getZExtValue(), MVT::i64);
4489          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4490                              ST->getSrcValueOffset(), ST->isVolatile(),
4491                              ST->getAlignment());
4492        } else if (TLI.isTypeLegal(MVT::i32)) {
4493          // Many FP stores are not made apparent until after legalize, e.g. for
4494          // argument passing.  Since this is so common, custom legalize the
4495          // 64-bit integer store into two 32-bit stores.
4496          uint64_t Val = CFP->getValueAPF().convertToAPInt().getZExtValue();
4497          SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
4498          SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
4499          if (TLI.isBigEndian()) std::swap(Lo, Hi);
4500
4501          int SVOffset = ST->getSrcValueOffset();
4502          unsigned Alignment = ST->getAlignment();
4503          bool isVolatile = ST->isVolatile();
4504
4505          SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
4506                                       ST->getSrcValueOffset(),
4507                                       isVolatile, ST->getAlignment());
4508          Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
4509                            DAG.getConstant(4, Ptr.getValueType()));
4510          SVOffset += 4;
4511          Alignment = MinAlign(Alignment, 4U);
4512          SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
4513                                       SVOffset, isVolatile, Alignment);
4514          return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
4515        }
4516        break;
4517      }
4518    }
4519  }
4520
4521  if (CombinerAA) {
4522    // Walk up chain skipping non-aliasing memory nodes.
4523    SDOperand BetterChain = FindBetterChain(N, Chain);
4524
4525    // If there is a better chain.
4526    if (Chain != BetterChain) {
4527      // Replace the chain to avoid dependency.
4528      SDOperand ReplStore;
4529      if (ST->isTruncatingStore()) {
4530        ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
4531                                      ST->getSrcValue(),ST->getSrcValueOffset(),
4532                                      ST->getMemoryVT(),
4533                                      ST->isVolatile(), ST->getAlignment());
4534      } else {
4535        ReplStore = DAG.getStore(BetterChain, Value, Ptr,
4536                                 ST->getSrcValue(), ST->getSrcValueOffset(),
4537                                 ST->isVolatile(), ST->getAlignment());
4538      }
4539
4540      // Create token to keep both nodes around.
4541      SDOperand Token =
4542        DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
4543
4544      // Don't add users to work list.
4545      return CombineTo(N, Token, false);
4546    }
4547  }
4548
4549  // Try transforming N to an indexed store.
4550  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4551    return SDOperand(N, 0);
4552
4553  // FIXME: is there such a thing as a truncating indexed store?
4554  if (ST->isTruncatingStore() && ST->isUnindexed() &&
4555      MVT::isInteger(Value.getValueType())) {
4556    // See if we can simplify the input to this truncstore with knowledge that
4557    // only the low bits are being used.  For example:
4558    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
4559    SDOperand Shorter =
4560      GetDemandedBits(Value,
4561                 APInt::getLowBitsSet(Value.getValueSizeInBits(),
4562                                      MVT::getSizeInBits(ST->getMemoryVT())));
4563    AddToWorkList(Value.Val);
4564    if (Shorter.Val)
4565      return DAG.getTruncStore(Chain, Shorter, Ptr, ST->getSrcValue(),
4566                               ST->getSrcValueOffset(), ST->getMemoryVT(),
4567                               ST->isVolatile(), ST->getAlignment());
4568
4569    // Otherwise, see if we can simplify the operation with
4570    // SimplifyDemandedBits, which only works if the value has a single use.
4571    if (SimplifyDemandedBits(Value,
4572                             APInt::getLowBitsSet(
4573                               Value.getValueSizeInBits(),
4574                               MVT::getSizeInBits(ST->getMemoryVT()))))
4575      return SDOperand(N, 0);
4576  }
4577
4578  // If this is a load followed by a store to the same location, then the store
4579  // is dead/noop.
4580  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
4581    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
4582        ST->isUnindexed() && !ST->isVolatile() &&
4583        // There can't be any side effects between the load and store, such as
4584        // a call or store.
4585        Chain.reachesChainWithoutSideEffects(SDOperand(Ld, 1))) {
4586      // The store is dead, remove it.
4587      return Chain;
4588    }
4589  }
4590
4591  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
4592  // truncating store.  We can do this even if this is already a truncstore.
4593  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
4594      && TLI.isTypeLegal(Value.getOperand(0).getValueType()) &&
4595      Value.Val->hasOneUse() && ST->isUnindexed() &&
4596      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
4597                            ST->getMemoryVT())) {
4598    return DAG.getTruncStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4599                             ST->getSrcValueOffset(), ST->getMemoryVT(),
4600                             ST->isVolatile(), ST->getAlignment());
4601  }
4602
4603  return SDOperand();
4604}
4605
4606SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
4607  SDOperand InVec = N->getOperand(0);
4608  SDOperand InVal = N->getOperand(1);
4609  SDOperand EltNo = N->getOperand(2);
4610
4611  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
4612  // vector with the inserted element.
4613  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
4614    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4615    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
4616    if (Elt < Ops.size())
4617      Ops[Elt] = InVal;
4618    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
4619                       &Ops[0], Ops.size());
4620  }
4621
4622  return SDOperand();
4623}
4624
4625SDOperand DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
4626  SDOperand InVec = N->getOperand(0);
4627  SDOperand EltNo = N->getOperand(1);
4628
4629  // (vextract (v4f32 s2v (f32 load $addr)), 0) -> (f32 load $addr)
4630  // (vextract (v4i32 bc (v4f32 s2v (f32 load $addr))), 0) -> (i32 load $addr)
4631  if (isa<ConstantSDNode>(EltNo)) {
4632    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4633    bool NewLoad = false;
4634    if (Elt == 0) {
4635      MVT::ValueType VT = InVec.getValueType();
4636      MVT::ValueType EVT = MVT::getVectorElementType(VT);
4637      MVT::ValueType LVT = EVT;
4638      unsigned NumElts = MVT::getVectorNumElements(VT);
4639      if (InVec.getOpcode() == ISD::BIT_CONVERT) {
4640        MVT::ValueType BCVT = InVec.getOperand(0).getValueType();
4641        if (!MVT::isVector(BCVT) ||
4642            NumElts != MVT::getVectorNumElements(BCVT))
4643          return SDOperand();
4644        InVec = InVec.getOperand(0);
4645        EVT = MVT::getVectorElementType(BCVT);
4646        NewLoad = true;
4647      }
4648      if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4649          InVec.getOperand(0).getValueType() == EVT &&
4650          ISD::isNormalLoad(InVec.getOperand(0).Val) &&
4651          InVec.getOperand(0).hasOneUse()) {
4652        LoadSDNode *LN0 = cast<LoadSDNode>(InVec.getOperand(0));
4653        unsigned Align = LN0->getAlignment();
4654        if (NewLoad) {
4655          // Check the resultant load doesn't need a higher alignment than the
4656          // original load.
4657          unsigned NewAlign = TLI.getTargetMachine().getTargetData()->
4658            getABITypeAlignment(MVT::getTypeForValueType(LVT));
4659          if (!TLI.isOperationLegal(ISD::LOAD, LVT) || NewAlign > Align)
4660            return SDOperand();
4661          Align = NewAlign;
4662        }
4663
4664        return DAG.getLoad(LVT, LN0->getChain(), LN0->getBasePtr(),
4665                           LN0->getSrcValue(), LN0->getSrcValueOffset(),
4666                           LN0->isVolatile(), Align);
4667      }
4668    }
4669  }
4670  return SDOperand();
4671}
4672
4673
4674SDOperand DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
4675  unsigned NumInScalars = N->getNumOperands();
4676  MVT::ValueType VT = N->getValueType(0);
4677  unsigned NumElts = MVT::getVectorNumElements(VT);
4678  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4679
4680  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
4681  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
4682  // at most two distinct vectors, turn this into a shuffle node.
4683  SDOperand VecIn1, VecIn2;
4684  for (unsigned i = 0; i != NumInScalars; ++i) {
4685    // Ignore undef inputs.
4686    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
4687
4688    // If this input is something other than a EXTRACT_VECTOR_ELT with a
4689    // constant index, bail out.
4690    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4691        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
4692      VecIn1 = VecIn2 = SDOperand(0, 0);
4693      break;
4694    }
4695
4696    // If the input vector type disagrees with the result of the build_vector,
4697    // we can't make a shuffle.
4698    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
4699    if (ExtractedFromVec.getValueType() != VT) {
4700      VecIn1 = VecIn2 = SDOperand(0, 0);
4701      break;
4702    }
4703
4704    // Otherwise, remember this.  We allow up to two distinct input vectors.
4705    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
4706      continue;
4707
4708    if (VecIn1.Val == 0) {
4709      VecIn1 = ExtractedFromVec;
4710    } else if (VecIn2.Val == 0) {
4711      VecIn2 = ExtractedFromVec;
4712    } else {
4713      // Too many inputs.
4714      VecIn1 = VecIn2 = SDOperand(0, 0);
4715      break;
4716    }
4717  }
4718
4719  // If everything is good, we can make a shuffle operation.
4720  if (VecIn1.Val) {
4721    SmallVector<SDOperand, 8> BuildVecIndices;
4722    for (unsigned i = 0; i != NumInScalars; ++i) {
4723      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
4724        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
4725        continue;
4726      }
4727
4728      SDOperand Extract = N->getOperand(i);
4729
4730      // If extracting from the first vector, just use the index directly.
4731      if (Extract.getOperand(0) == VecIn1) {
4732        BuildVecIndices.push_back(Extract.getOperand(1));
4733        continue;
4734      }
4735
4736      // Otherwise, use InIdx + VecSize
4737      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
4738      BuildVecIndices.push_back(DAG.getIntPtrConstant(Idx+NumInScalars));
4739    }
4740
4741    // Add count and size info.
4742    MVT::ValueType BuildVecVT = MVT::getVectorType(TLI.getPointerTy(), NumElts);
4743
4744    // Return the new VECTOR_SHUFFLE node.
4745    SDOperand Ops[5];
4746    Ops[0] = VecIn1;
4747    if (VecIn2.Val) {
4748      Ops[1] = VecIn2;
4749    } else {
4750      // Use an undef build_vector as input for the second operand.
4751      std::vector<SDOperand> UnOps(NumInScalars,
4752                                   DAG.getNode(ISD::UNDEF,
4753                                               EltType));
4754      Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, VT,
4755                           &UnOps[0], UnOps.size());
4756      AddToWorkList(Ops[1].Val);
4757    }
4758    Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, BuildVecVT,
4759                         &BuildVecIndices[0], BuildVecIndices.size());
4760    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Ops, 3);
4761  }
4762
4763  return SDOperand();
4764}
4765
4766SDOperand DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
4767  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
4768  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
4769  // inputs come from at most two distinct vectors, turn this into a shuffle
4770  // node.
4771
4772  // If we only have one input vector, we don't need to do any concatenation.
4773  if (N->getNumOperands() == 1) {
4774    return N->getOperand(0);
4775  }
4776
4777  return SDOperand();
4778}
4779
4780SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
4781  SDOperand ShufMask = N->getOperand(2);
4782  unsigned NumElts = ShufMask.getNumOperands();
4783
4784  // If the shuffle mask is an identity operation on the LHS, return the LHS.
4785  bool isIdentity = true;
4786  for (unsigned i = 0; i != NumElts; ++i) {
4787    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4788        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
4789      isIdentity = false;
4790      break;
4791    }
4792  }
4793  if (isIdentity) return N->getOperand(0);
4794
4795  // If the shuffle mask is an identity operation on the RHS, return the RHS.
4796  isIdentity = true;
4797  for (unsigned i = 0; i != NumElts; ++i) {
4798    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4799        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
4800      isIdentity = false;
4801      break;
4802    }
4803  }
4804  if (isIdentity) return N->getOperand(1);
4805
4806  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
4807  // needed at all.
4808  bool isUnary = true;
4809  bool isSplat = true;
4810  int VecNum = -1;
4811  unsigned BaseIdx = 0;
4812  for (unsigned i = 0; i != NumElts; ++i)
4813    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
4814      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
4815      int V = (Idx < NumElts) ? 0 : 1;
4816      if (VecNum == -1) {
4817        VecNum = V;
4818        BaseIdx = Idx;
4819      } else {
4820        if (BaseIdx != Idx)
4821          isSplat = false;
4822        if (VecNum != V) {
4823          isUnary = false;
4824          break;
4825        }
4826      }
4827    }
4828
4829  SDOperand N0 = N->getOperand(0);
4830  SDOperand N1 = N->getOperand(1);
4831  // Normalize unary shuffle so the RHS is undef.
4832  if (isUnary && VecNum == 1)
4833    std::swap(N0, N1);
4834
4835  // If it is a splat, check if the argument vector is a build_vector with
4836  // all scalar elements the same.
4837  if (isSplat) {
4838    SDNode *V = N0.Val;
4839
4840    // If this is a bit convert that changes the element type of the vector but
4841    // not the number of vector elements, look through it.  Be careful not to
4842    // look though conversions that change things like v4f32 to v2f64.
4843    if (V->getOpcode() == ISD::BIT_CONVERT) {
4844      SDOperand ConvInput = V->getOperand(0);
4845      if (MVT::getVectorNumElements(ConvInput.getValueType()) == NumElts)
4846        V = ConvInput.Val;
4847    }
4848
4849    if (V->getOpcode() == ISD::BUILD_VECTOR) {
4850      unsigned NumElems = V->getNumOperands();
4851      if (NumElems > BaseIdx) {
4852        SDOperand Base;
4853        bool AllSame = true;
4854        for (unsigned i = 0; i != NumElems; ++i) {
4855          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
4856            Base = V->getOperand(i);
4857            break;
4858          }
4859        }
4860        // Splat of <u, u, u, u>, return <u, u, u, u>
4861        if (!Base.Val)
4862          return N0;
4863        for (unsigned i = 0; i != NumElems; ++i) {
4864          if (V->getOperand(i) != Base) {
4865            AllSame = false;
4866            break;
4867          }
4868        }
4869        // Splat of <x, x, x, x>, return <x, x, x, x>
4870        if (AllSame)
4871          return N0;
4872      }
4873    }
4874  }
4875
4876  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
4877  // into an undef.
4878  if (isUnary || N0 == N1) {
4879    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
4880    // first operand.
4881    SmallVector<SDOperand, 8> MappedOps;
4882    for (unsigned i = 0; i != NumElts; ++i) {
4883      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
4884          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
4885        MappedOps.push_back(ShufMask.getOperand(i));
4886      } else {
4887        unsigned NewIdx =
4888          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
4889        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
4890      }
4891    }
4892    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
4893                           &MappedOps[0], MappedOps.size());
4894    AddToWorkList(ShufMask.Val);
4895    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
4896                       N0,
4897                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
4898                       ShufMask);
4899  }
4900
4901  return SDOperand();
4902}
4903
4904/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
4905/// an AND to a vector_shuffle with the destination vector and a zero vector.
4906/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
4907///      vector_shuffle V, Zero, <0, 4, 2, 4>
4908SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
4909  SDOperand LHS = N->getOperand(0);
4910  SDOperand RHS = N->getOperand(1);
4911  if (N->getOpcode() == ISD::AND) {
4912    if (RHS.getOpcode() == ISD::BIT_CONVERT)
4913      RHS = RHS.getOperand(0);
4914    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
4915      std::vector<SDOperand> IdxOps;
4916      unsigned NumOps = RHS.getNumOperands();
4917      unsigned NumElts = NumOps;
4918      MVT::ValueType EVT = MVT::getVectorElementType(RHS.getValueType());
4919      for (unsigned i = 0; i != NumElts; ++i) {
4920        SDOperand Elt = RHS.getOperand(i);
4921        if (!isa<ConstantSDNode>(Elt))
4922          return SDOperand();
4923        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
4924          IdxOps.push_back(DAG.getConstant(i, EVT));
4925        else if (cast<ConstantSDNode>(Elt)->isNullValue())
4926          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
4927        else
4928          return SDOperand();
4929      }
4930
4931      // Let's see if the target supports this vector_shuffle.
4932      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
4933        return SDOperand();
4934
4935      // Return the new VECTOR_SHUFFLE node.
4936      MVT::ValueType VT = MVT::getVectorType(EVT, NumElts);
4937      std::vector<SDOperand> Ops;
4938      LHS = DAG.getNode(ISD::BIT_CONVERT, VT, LHS);
4939      Ops.push_back(LHS);
4940      AddToWorkList(LHS.Val);
4941      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
4942      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4943                                &ZeroOps[0], ZeroOps.size()));
4944      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4945                                &IdxOps[0], IdxOps.size()));
4946      SDOperand Result = DAG.getNode(ISD::VECTOR_SHUFFLE, VT,
4947                                     &Ops[0], Ops.size());
4948      if (VT != LHS.getValueType()) {
4949        Result = DAG.getNode(ISD::BIT_CONVERT, LHS.getValueType(), Result);
4950      }
4951      return Result;
4952    }
4953  }
4954  return SDOperand();
4955}
4956
4957/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
4958SDOperand DAGCombiner::SimplifyVBinOp(SDNode *N) {
4959  // After legalize, the target may be depending on adds and other
4960  // binary ops to provide legal ways to construct constants or other
4961  // things. Simplifying them may result in a loss of legality.
4962  if (AfterLegalize) return SDOperand();
4963
4964  MVT::ValueType VT = N->getValueType(0);
4965  assert(MVT::isVector(VT) && "SimplifyVBinOp only works on vectors!");
4966
4967  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4968  SDOperand LHS = N->getOperand(0);
4969  SDOperand RHS = N->getOperand(1);
4970  SDOperand Shuffle = XformToShuffleWithZero(N);
4971  if (Shuffle.Val) return Shuffle;
4972
4973  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
4974  // this operation.
4975  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
4976      RHS.getOpcode() == ISD::BUILD_VECTOR) {
4977    SmallVector<SDOperand, 8> Ops;
4978    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
4979      SDOperand LHSOp = LHS.getOperand(i);
4980      SDOperand RHSOp = RHS.getOperand(i);
4981      // If these two elements can't be folded, bail out.
4982      if ((LHSOp.getOpcode() != ISD::UNDEF &&
4983           LHSOp.getOpcode() != ISD::Constant &&
4984           LHSOp.getOpcode() != ISD::ConstantFP) ||
4985          (RHSOp.getOpcode() != ISD::UNDEF &&
4986           RHSOp.getOpcode() != ISD::Constant &&
4987           RHSOp.getOpcode() != ISD::ConstantFP))
4988        break;
4989      // Can't fold divide by zero.
4990      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
4991          N->getOpcode() == ISD::FDIV) {
4992        if ((RHSOp.getOpcode() == ISD::Constant &&
4993             cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
4994            (RHSOp.getOpcode() == ISD::ConstantFP &&
4995             cast<ConstantFPSDNode>(RHSOp.Val)->getValueAPF().isZero()))
4996          break;
4997      }
4998      Ops.push_back(DAG.getNode(N->getOpcode(), EltType, LHSOp, RHSOp));
4999      AddToWorkList(Ops.back().Val);
5000      assert((Ops.back().getOpcode() == ISD::UNDEF ||
5001              Ops.back().getOpcode() == ISD::Constant ||
5002              Ops.back().getOpcode() == ISD::ConstantFP) &&
5003             "Scalar binop didn't fold!");
5004    }
5005
5006    if (Ops.size() == LHS.getNumOperands()) {
5007      MVT::ValueType VT = LHS.getValueType();
5008      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
5009    }
5010  }
5011
5012  return SDOperand();
5013}
5014
5015SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
5016  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
5017
5018  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
5019                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
5020  // If we got a simplified select_cc node back from SimplifySelectCC, then
5021  // break it down into a new SETCC node, and a new SELECT node, and then return
5022  // the SELECT node, since we were called with a SELECT node.
5023  if (SCC.Val) {
5024    // Check to see if we got a select_cc back (to turn into setcc/select).
5025    // Otherwise, just return whatever node we got back, like fabs.
5026    if (SCC.getOpcode() == ISD::SELECT_CC) {
5027      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
5028                                    SCC.getOperand(0), SCC.getOperand(1),
5029                                    SCC.getOperand(4));
5030      AddToWorkList(SETCC.Val);
5031      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
5032                         SCC.getOperand(3), SETCC);
5033    }
5034    return SCC;
5035  }
5036  return SDOperand();
5037}
5038
5039/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
5040/// are the two values being selected between, see if we can simplify the
5041/// select.  Callers of this should assume that TheSelect is deleted if this
5042/// returns true.  As such, they should return the appropriate thing (e.g. the
5043/// node) back to the top-level of the DAG combiner loop to avoid it being
5044/// looked at.
5045///
5046bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
5047                                    SDOperand RHS) {
5048
5049  // If this is a select from two identical things, try to pull the operation
5050  // through the select.
5051  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
5052    // If this is a load and the token chain is identical, replace the select
5053    // of two loads with a load through a select of the address to load from.
5054    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
5055    // constants have been dropped into the constant pool.
5056    if (LHS.getOpcode() == ISD::LOAD &&
5057        // Token chains must be identical.
5058        LHS.getOperand(0) == RHS.getOperand(0)) {
5059      LoadSDNode *LLD = cast<LoadSDNode>(LHS);
5060      LoadSDNode *RLD = cast<LoadSDNode>(RHS);
5061
5062      // If this is an EXTLOAD, the VT's must match.
5063      if (LLD->getMemoryVT() == RLD->getMemoryVT()) {
5064        // FIXME: this conflates two src values, discarding one.  This is not
5065        // the right thing to do, but nothing uses srcvalues now.  When they do,
5066        // turn SrcValue into a list of locations.
5067        SDOperand Addr;
5068        if (TheSelect->getOpcode() == ISD::SELECT) {
5069          // Check that the condition doesn't reach either load.  If so, folding
5070          // this will induce a cycle into the DAG.
5071          if (!LLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5072              !RLD->isPredecessorOf(TheSelect->getOperand(0).Val)) {
5073            Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
5074                               TheSelect->getOperand(0), LLD->getBasePtr(),
5075                               RLD->getBasePtr());
5076          }
5077        } else {
5078          // Check that the condition doesn't reach either load.  If so, folding
5079          // this will induce a cycle into the DAG.
5080          if (!LLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5081              !RLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5082              !LLD->isPredecessorOf(TheSelect->getOperand(1).Val) &&
5083              !RLD->isPredecessorOf(TheSelect->getOperand(1).Val)) {
5084            Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
5085                             TheSelect->getOperand(0),
5086                             TheSelect->getOperand(1),
5087                             LLD->getBasePtr(), RLD->getBasePtr(),
5088                             TheSelect->getOperand(4));
5089          }
5090        }
5091
5092        if (Addr.Val) {
5093          SDOperand Load;
5094          if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
5095            Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
5096                               Addr,LLD->getSrcValue(),
5097                               LLD->getSrcValueOffset(),
5098                               LLD->isVolatile(),
5099                               LLD->getAlignment());
5100          else {
5101            Load = DAG.getExtLoad(LLD->getExtensionType(),
5102                                  TheSelect->getValueType(0),
5103                                  LLD->getChain(), Addr, LLD->getSrcValue(),
5104                                  LLD->getSrcValueOffset(),
5105                                  LLD->getMemoryVT(),
5106                                  LLD->isVolatile(),
5107                                  LLD->getAlignment());
5108          }
5109          // Users of the select now use the result of the load.
5110          CombineTo(TheSelect, Load);
5111
5112          // Users of the old loads now use the new load's chain.  We know the
5113          // old-load value is dead now.
5114          CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
5115          CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
5116          return true;
5117        }
5118      }
5119    }
5120  }
5121
5122  return false;
5123}
5124
5125SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
5126                                        SDOperand N2, SDOperand N3,
5127                                        ISD::CondCode CC, bool NotExtCompare) {
5128
5129  MVT::ValueType VT = N2.getValueType();
5130  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
5131  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
5132  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
5133
5134  // Determine if the condition we're dealing with is constant
5135  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultType(N0), N0, N1, CC, false);
5136  if (SCC.Val) AddToWorkList(SCC.Val);
5137  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
5138
5139  // fold select_cc true, x, y -> x
5140  if (SCCC && !SCCC->isNullValue())
5141    return N2;
5142  // fold select_cc false, x, y -> y
5143  if (SCCC && SCCC->isNullValue())
5144    return N3;
5145
5146  // Check to see if we can simplify the select into an fabs node
5147  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
5148    // Allow either -0.0 or 0.0
5149    if (CFP->getValueAPF().isZero()) {
5150      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
5151      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
5152          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
5153          N2 == N3.getOperand(0))
5154        return DAG.getNode(ISD::FABS, VT, N0);
5155
5156      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
5157      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
5158          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
5159          N2.getOperand(0) == N3)
5160        return DAG.getNode(ISD::FABS, VT, N3);
5161    }
5162  }
5163
5164  // Check to see if we can perform the "gzip trick", transforming
5165  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
5166  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
5167      MVT::isInteger(N0.getValueType()) &&
5168      MVT::isInteger(N2.getValueType()) &&
5169      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
5170       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
5171    MVT::ValueType XType = N0.getValueType();
5172    MVT::ValueType AType = N2.getValueType();
5173    if (XType >= AType) {
5174      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
5175      // single-bit constant.
5176      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
5177        unsigned ShCtV = N2C->getAPIntValue().logBase2();
5178        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
5179        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
5180        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
5181        AddToWorkList(Shift.Val);
5182        if (XType > AType) {
5183          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5184          AddToWorkList(Shift.Val);
5185        }
5186        return DAG.getNode(ISD::AND, AType, Shift, N2);
5187      }
5188      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5189                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5190                                                    TLI.getShiftAmountTy()));
5191      AddToWorkList(Shift.Val);
5192      if (XType > AType) {
5193        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5194        AddToWorkList(Shift.Val);
5195      }
5196      return DAG.getNode(ISD::AND, AType, Shift, N2);
5197    }
5198  }
5199
5200  // fold select C, 16, 0 -> shl C, 4
5201  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
5202      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
5203
5204    // If the caller doesn't want us to simplify this into a zext of a compare,
5205    // don't do it.
5206    if (NotExtCompare && N2C->getAPIntValue() == 1)
5207      return SDOperand();
5208
5209    // Get a SetCC of the condition
5210    // FIXME: Should probably make sure that setcc is legal if we ever have a
5211    // target where it isn't.
5212    SDOperand Temp, SCC;
5213    // cast from setcc result type to select result type
5214    if (AfterLegalize) {
5215      SCC  = DAG.getSetCC(TLI.getSetCCResultType(N0), N0, N1, CC);
5216      if (N2.getValueType() < SCC.getValueType())
5217        Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
5218      else
5219        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5220    } else {
5221      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
5222      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5223    }
5224    AddToWorkList(SCC.Val);
5225    AddToWorkList(Temp.Val);
5226
5227    if (N2C->getAPIntValue() == 1)
5228      return Temp;
5229    // shl setcc result by log2 n2c
5230    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
5231                       DAG.getConstant(N2C->getAPIntValue().logBase2(),
5232                                       TLI.getShiftAmountTy()));
5233  }
5234
5235  // Check to see if this is the equivalent of setcc
5236  // FIXME: Turn all of these into setcc if setcc if setcc is legal
5237  // otherwise, go ahead with the folds.
5238  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
5239    MVT::ValueType XType = N0.getValueType();
5240    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(N0))) {
5241      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultType(N0), N0, N1, CC);
5242      if (Res.getValueType() != VT)
5243        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
5244      return Res;
5245    }
5246
5247    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
5248    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
5249        TLI.isOperationLegal(ISD::CTLZ, XType)) {
5250      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
5251      return DAG.getNode(ISD::SRL, XType, Ctlz,
5252                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
5253                                         TLI.getShiftAmountTy()));
5254    }
5255    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
5256    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
5257      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
5258                                    N0);
5259      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
5260                                    DAG.getConstant(~0ULL, XType));
5261      return DAG.getNode(ISD::SRL, XType,
5262                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
5263                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
5264                                         TLI.getShiftAmountTy()));
5265    }
5266    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
5267    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
5268      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
5269                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
5270                                                   TLI.getShiftAmountTy()));
5271      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
5272    }
5273  }
5274
5275  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
5276  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5277  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
5278      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
5279      N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) {
5280    MVT::ValueType XType = N0.getValueType();
5281    SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5282                                  DAG.getConstant(MVT::getSizeInBits(XType)-1,
5283                                                  TLI.getShiftAmountTy()));
5284    SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5285    AddToWorkList(Shift.Val);
5286    AddToWorkList(Add.Val);
5287    return DAG.getNode(ISD::XOR, XType, Add, Shift);
5288  }
5289  // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
5290  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5291  if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
5292      N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
5293    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
5294      MVT::ValueType XType = N0.getValueType();
5295      if (SubC->isNullValue() && MVT::isInteger(XType)) {
5296        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5297                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5298                                                      TLI.getShiftAmountTy()));
5299        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5300        AddToWorkList(Shift.Val);
5301        AddToWorkList(Add.Val);
5302        return DAG.getNode(ISD::XOR, XType, Add, Shift);
5303      }
5304    }
5305  }
5306
5307  return SDOperand();
5308}
5309
5310/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
5311SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
5312                                     SDOperand N1, ISD::CondCode Cond,
5313                                     bool foldBooleans) {
5314  TargetLowering::DAGCombinerInfo
5315    DagCombineInfo(DAG, !AfterLegalize, false, this);
5316  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
5317}
5318
5319/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
5320/// return a DAG expression to select that will generate the same value by
5321/// multiplying by a magic number.  See:
5322/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5323SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
5324  std::vector<SDNode*> Built;
5325  SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
5326
5327  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5328       ii != ee; ++ii)
5329    AddToWorkList(*ii);
5330  return S;
5331}
5332
5333/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
5334/// return a DAG expression to select that will generate the same value by
5335/// multiplying by a magic number.  See:
5336/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5337SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
5338  std::vector<SDNode*> Built;
5339  SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
5340
5341  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5342       ii != ee; ++ii)
5343    AddToWorkList(*ii);
5344  return S;
5345}
5346
5347/// FindBaseOffset - Return true if base is known not to alias with anything
5348/// but itself.  Provides base object and offset as results.
5349static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
5350  // Assume it is a primitive operation.
5351  Base = Ptr; Offset = 0;
5352
5353  // If it's an adding a simple constant then integrate the offset.
5354  if (Base.getOpcode() == ISD::ADD) {
5355    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
5356      Base = Base.getOperand(0);
5357      Offset += C->getValue();
5358    }
5359  }
5360
5361  // If it's any of the following then it can't alias with anything but itself.
5362  return isa<FrameIndexSDNode>(Base) ||
5363         isa<ConstantPoolSDNode>(Base) ||
5364         isa<GlobalAddressSDNode>(Base);
5365}
5366
5367/// isAlias - Return true if there is any possibility that the two addresses
5368/// overlap.
5369bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
5370                          const Value *SrcValue1, int SrcValueOffset1,
5371                          SDOperand Ptr2, int64_t Size2,
5372                          const Value *SrcValue2, int SrcValueOffset2)
5373{
5374  // If they are the same then they must be aliases.
5375  if (Ptr1 == Ptr2) return true;
5376
5377  // Gather base node and offset information.
5378  SDOperand Base1, Base2;
5379  int64_t Offset1, Offset2;
5380  bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
5381  bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
5382
5383  // If they have a same base address then...
5384  if (Base1 == Base2) {
5385    // Check to see if the addresses overlap.
5386    return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
5387  }
5388
5389  // If we know both bases then they can't alias.
5390  if (KnownBase1 && KnownBase2) return false;
5391
5392  if (CombinerGlobalAA) {
5393    // Use alias analysis information.
5394    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
5395    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
5396    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
5397    AliasAnalysis::AliasResult AAResult =
5398                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
5399    if (AAResult == AliasAnalysis::NoAlias)
5400      return false;
5401  }
5402
5403  // Otherwise we have to assume they alias.
5404  return true;
5405}
5406
5407/// FindAliasInfo - Extracts the relevant alias information from the memory
5408/// node.  Returns true if the operand was a load.
5409bool DAGCombiner::FindAliasInfo(SDNode *N,
5410                        SDOperand &Ptr, int64_t &Size,
5411                        const Value *&SrcValue, int &SrcValueOffset) {
5412  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5413    Ptr = LD->getBasePtr();
5414    Size = MVT::getSizeInBits(LD->getMemoryVT()) >> 3;
5415    SrcValue = LD->getSrcValue();
5416    SrcValueOffset = LD->getSrcValueOffset();
5417    return true;
5418  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5419    Ptr = ST->getBasePtr();
5420    Size = MVT::getSizeInBits(ST->getMemoryVT()) >> 3;
5421    SrcValue = ST->getSrcValue();
5422    SrcValueOffset = ST->getSrcValueOffset();
5423  } else {
5424    assert(0 && "FindAliasInfo expected a memory operand");
5425  }
5426
5427  return false;
5428}
5429
5430/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
5431/// looking for aliasing nodes and adding them to the Aliases vector.
5432void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
5433                                   SmallVector<SDOperand, 8> &Aliases) {
5434  SmallVector<SDOperand, 8> Chains;     // List of chains to visit.
5435  std::set<SDNode *> Visited;           // Visited node set.
5436
5437  // Get alias information for node.
5438  SDOperand Ptr;
5439  int64_t Size;
5440  const Value *SrcValue;
5441  int SrcValueOffset;
5442  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
5443
5444  // Starting off.
5445  Chains.push_back(OriginalChain);
5446
5447  // Look at each chain and determine if it is an alias.  If so, add it to the
5448  // aliases list.  If not, then continue up the chain looking for the next
5449  // candidate.
5450  while (!Chains.empty()) {
5451    SDOperand Chain = Chains.back();
5452    Chains.pop_back();
5453
5454     // Don't bother if we've been before.
5455    if (Visited.find(Chain.Val) != Visited.end()) continue;
5456    Visited.insert(Chain.Val);
5457
5458    switch (Chain.getOpcode()) {
5459    case ISD::EntryToken:
5460      // Entry token is ideal chain operand, but handled in FindBetterChain.
5461      break;
5462
5463    case ISD::LOAD:
5464    case ISD::STORE: {
5465      // Get alias information for Chain.
5466      SDOperand OpPtr;
5467      int64_t OpSize;
5468      const Value *OpSrcValue;
5469      int OpSrcValueOffset;
5470      bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
5471                                    OpSrcValue, OpSrcValueOffset);
5472
5473      // If chain is alias then stop here.
5474      if (!(IsLoad && IsOpLoad) &&
5475          isAlias(Ptr, Size, SrcValue, SrcValueOffset,
5476                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
5477        Aliases.push_back(Chain);
5478      } else {
5479        // Look further up the chain.
5480        Chains.push_back(Chain.getOperand(0));
5481        // Clean up old chain.
5482        AddToWorkList(Chain.Val);
5483      }
5484      break;
5485    }
5486
5487    case ISD::TokenFactor:
5488      // We have to check each of the operands of the token factor, so we queue
5489      // then up.  Adding the  operands to the queue (stack) in reverse order
5490      // maintains the original order and increases the likelihood that getNode
5491      // will find a matching token factor (CSE.)
5492      for (unsigned n = Chain.getNumOperands(); n;)
5493        Chains.push_back(Chain.getOperand(--n));
5494      // Eliminate the token factor if we can.
5495      AddToWorkList(Chain.Val);
5496      break;
5497
5498    default:
5499      // For all other instructions we will just have to take what we can get.
5500      Aliases.push_back(Chain);
5501      break;
5502    }
5503  }
5504}
5505
5506/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
5507/// for a better chain (aliasing node.)
5508SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
5509  SmallVector<SDOperand, 8> Aliases;  // Ops for replacing token factor.
5510
5511  // Accumulate all the aliases to this node.
5512  GatherAllAliases(N, OldChain, Aliases);
5513
5514  if (Aliases.size() == 0) {
5515    // If no operands then chain to entry token.
5516    return DAG.getEntryNode();
5517  } else if (Aliases.size() == 1) {
5518    // If a single operand then chain to it.  We don't need to revisit it.
5519    return Aliases[0];
5520  }
5521
5522  // Construct a custom tailored token factor.
5523  SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
5524                                   &Aliases[0], Aliases.size());
5525
5526  // Make sure the old chain gets cleaned up.
5527  if (NewChain != OldChain) AddToWorkList(OldChain.Val);
5528
5529  return NewChain;
5530}
5531
5532// SelectionDAG::Combine - This is the entry point for the file.
5533//
5534void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
5535  if (!RunningAfterLegalize && ViewDAGCombine1)
5536    viewGraph();
5537  if (RunningAfterLegalize && ViewDAGCombine2)
5538    viewGraph();
5539  /// run - This is the main entry point to this class.
5540  ///
5541  DAGCombiner(*this, AA).Run(RunningAfterLegalize);
5542}
5543