DAGCombiner.cpp revision 0d8dae749c116a4168c3b4312f1bc0352d22c9db
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Nate Begeman and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// FIXME: Missing folds
14// sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into
15//  a sequence of multiplies, shifts, and adds.  This should be controlled by
16//  some kind of hint from the target that int div is expensive.
17// various folds of mulh[s,u] by constants such as -1, powers of 2, etc.
18//
19// FIXME: select C, pow2, pow2 -> something smart
20// FIXME: trunc(select X, Y, Z) -> select X, trunc(Y), trunc(Z)
21// FIXME: Dead stores -> nuke
22// FIXME: shr X, (and Y,31) -> shr X, Y   (TRICKY!)
23// FIXME: mul (x, const) -> shifts + adds
24// FIXME: undef values
25// FIXME: make truncate see through SIGN_EXTEND and AND
26// FIXME: divide by zero is currently left unfolded.  do we want to turn this
27//        into an undef?
28// FIXME: select ne (select cc, 1, 0), 0, true, false -> select cc, true, false
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "dagcombine"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Target/TargetLowering.h"
38#include <algorithm>
39#include <cmath>
40#include <iostream>
41using namespace llvm;
42
43namespace {
44  Statistic<> NodesCombined ("dagcombiner", "Number of dag nodes combined");
45
46  class DAGCombiner {
47    SelectionDAG &DAG;
48    TargetLowering &TLI;
49    bool AfterLegalize;
50
51    // Worklist of all of the nodes that need to be simplified.
52    std::vector<SDNode*> WorkList;
53
54    /// AddUsersToWorkList - When an instruction is simplified, add all users of
55    /// the instruction to the work lists because they might get more simplified
56    /// now.
57    ///
58    void AddUsersToWorkList(SDNode *N) {
59      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
60           UI != UE; ++UI)
61        WorkList.push_back(*UI);
62    }
63
64    /// removeFromWorkList - remove all instances of N from the worklist.
65    ///
66    void removeFromWorkList(SDNode *N) {
67      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
68                     WorkList.end());
69    }
70
71  public:
72    void AddToWorkList(SDNode *N) {
73      WorkList.push_back(N);
74    }
75
76    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
77      ++NodesCombined;
78      DEBUG(std::cerr << "\nReplacing "; N->dump();
79            std::cerr << "\nWith: "; To[0].Val->dump();
80            std::cerr << " and " << To.size()-1 << " other values\n");
81      std::vector<SDNode*> NowDead;
82      DAG.ReplaceAllUsesWith(N, To, &NowDead);
83
84      // Push the new nodes and any users onto the worklist
85      for (unsigned i = 0, e = To.size(); i != e; ++i) {
86        WorkList.push_back(To[i].Val);
87        AddUsersToWorkList(To[i].Val);
88      }
89
90      // Nodes can end up on the worklist more than once.  Make sure we do
91      // not process a node that has been replaced.
92      removeFromWorkList(N);
93      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
94        removeFromWorkList(NowDead[i]);
95
96      // Finally, since the node is now dead, remove it from the graph.
97      DAG.DeleteNode(N);
98      return SDOperand(N, 0);
99    }
100
101    SDOperand CombineTo(SDNode *N, SDOperand Res) {
102      std::vector<SDOperand> To;
103      To.push_back(Res);
104      return CombineTo(N, To);
105    }
106
107    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
108      std::vector<SDOperand> To;
109      To.push_back(Res0);
110      To.push_back(Res1);
111      return CombineTo(N, To);
112    }
113  private:
114
115    /// SimplifyDemandedBits - Check the specified integer node value to see if
116    /// it can be simplified or if things it uses can be simplified by bit
117    /// propagation.  If so, return true.
118    bool SimplifyDemandedBits(SDOperand Op) {
119      TargetLowering::TargetLoweringOpt TLO(DAG);
120      uint64_t KnownZero, KnownOne;
121      uint64_t Demanded = MVT::getIntVTBitMask(Op.getValueType());
122      if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
123        return false;
124
125      // Revisit the node.
126      WorkList.push_back(Op.Val);
127
128      // Replace the old value with the new one.
129      ++NodesCombined;
130      DEBUG(std::cerr << "\nReplacing "; TLO.Old.Val->dump();
131            std::cerr << "\nWith: "; TLO.New.Val->dump());
132
133      std::vector<SDNode*> NowDead;
134      DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, NowDead);
135
136      // Push the new node and any (possibly new) users onto the worklist.
137      WorkList.push_back(TLO.New.Val);
138      AddUsersToWorkList(TLO.New.Val);
139
140      // Nodes can end up on the worklist more than once.  Make sure we do
141      // not process a node that has been replaced.
142      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
143        removeFromWorkList(NowDead[i]);
144
145      // Finally, if the node is now dead, remove it from the graph.  The node
146      // may not be dead if the replacement process recursively simplified to
147      // something else needing this node.
148      if (TLO.Old.Val->use_empty()) {
149        removeFromWorkList(TLO.Old.Val);
150        DAG.DeleteNode(TLO.Old.Val);
151      }
152      return true;
153    }
154
155    /// visit - call the node-specific routine that knows how to fold each
156    /// particular type of node.
157    SDOperand visit(SDNode *N);
158
159    // Visitation implementation - Implement dag node combining for different
160    // node types.  The semantics are as follows:
161    // Return Value:
162    //   SDOperand.Val == 0   - No change was made
163    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
164    //   otherwise            - N should be replaced by the returned Operand.
165    //
166    SDOperand visitTokenFactor(SDNode *N);
167    SDOperand visitADD(SDNode *N);
168    SDOperand visitSUB(SDNode *N);
169    SDOperand visitMUL(SDNode *N);
170    SDOperand visitSDIV(SDNode *N);
171    SDOperand visitUDIV(SDNode *N);
172    SDOperand visitSREM(SDNode *N);
173    SDOperand visitUREM(SDNode *N);
174    SDOperand visitMULHU(SDNode *N);
175    SDOperand visitMULHS(SDNode *N);
176    SDOperand visitAND(SDNode *N);
177    SDOperand visitOR(SDNode *N);
178    SDOperand visitXOR(SDNode *N);
179    SDOperand visitVBinOp(SDNode *N, ISD::NodeType IntOp, ISD::NodeType FPOp);
180    SDOperand visitSHL(SDNode *N);
181    SDOperand visitSRA(SDNode *N);
182    SDOperand visitSRL(SDNode *N);
183    SDOperand visitCTLZ(SDNode *N);
184    SDOperand visitCTTZ(SDNode *N);
185    SDOperand visitCTPOP(SDNode *N);
186    SDOperand visitSELECT(SDNode *N);
187    SDOperand visitSELECT_CC(SDNode *N);
188    SDOperand visitSETCC(SDNode *N);
189    SDOperand visitSIGN_EXTEND(SDNode *N);
190    SDOperand visitZERO_EXTEND(SDNode *N);
191    SDOperand visitANY_EXTEND(SDNode *N);
192    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
193    SDOperand visitTRUNCATE(SDNode *N);
194    SDOperand visitBIT_CONVERT(SDNode *N);
195    SDOperand visitVBIT_CONVERT(SDNode *N);
196    SDOperand visitFADD(SDNode *N);
197    SDOperand visitFSUB(SDNode *N);
198    SDOperand visitFMUL(SDNode *N);
199    SDOperand visitFDIV(SDNode *N);
200    SDOperand visitFREM(SDNode *N);
201    SDOperand visitFCOPYSIGN(SDNode *N);
202    SDOperand visitSINT_TO_FP(SDNode *N);
203    SDOperand visitUINT_TO_FP(SDNode *N);
204    SDOperand visitFP_TO_SINT(SDNode *N);
205    SDOperand visitFP_TO_UINT(SDNode *N);
206    SDOperand visitFP_ROUND(SDNode *N);
207    SDOperand visitFP_ROUND_INREG(SDNode *N);
208    SDOperand visitFP_EXTEND(SDNode *N);
209    SDOperand visitFNEG(SDNode *N);
210    SDOperand visitFABS(SDNode *N);
211    SDOperand visitBRCOND(SDNode *N);
212    SDOperand visitBR_CC(SDNode *N);
213    SDOperand visitLOAD(SDNode *N);
214    SDOperand visitXEXTLOAD(SDNode *N);
215    SDOperand visitSTORE(SDNode *N);
216    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
217    SDOperand visitVINSERT_VECTOR_ELT(SDNode *N);
218    SDOperand visitVBUILD_VECTOR(SDNode *N);
219    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
220    SDOperand visitVVECTOR_SHUFFLE(SDNode *N);
221
222    SDOperand XformToShuffleWithZero(SDNode *N);
223    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
224
225    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
226    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
227    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
228    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
229                               SDOperand N3, ISD::CondCode CC);
230    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
231                            ISD::CondCode Cond, bool foldBooleans = true);
232    SDOperand ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *, MVT::ValueType);
233    SDOperand BuildSDIV(SDNode *N);
234    SDOperand BuildUDIV(SDNode *N);
235public:
236    DAGCombiner(SelectionDAG &D)
237      : DAG(D), TLI(D.getTargetLoweringInfo()), AfterLegalize(false) {}
238
239    /// Run - runs the dag combiner on all nodes in the work list
240    void Run(bool RunningAfterLegalize);
241  };
242}
243
244//===----------------------------------------------------------------------===//
245//  TargetLowering::DAGCombinerInfo implementation
246//===----------------------------------------------------------------------===//
247
248void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
249  ((DAGCombiner*)DC)->AddToWorkList(N);
250}
251
252SDOperand TargetLowering::DAGCombinerInfo::
253CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
254  return ((DAGCombiner*)DC)->CombineTo(N, To);
255}
256
257SDOperand TargetLowering::DAGCombinerInfo::
258CombineTo(SDNode *N, SDOperand Res) {
259  return ((DAGCombiner*)DC)->CombineTo(N, Res);
260}
261
262
263SDOperand TargetLowering::DAGCombinerInfo::
264CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
265  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
266}
267
268
269
270
271//===----------------------------------------------------------------------===//
272
273
274struct ms {
275  int64_t m;  // magic number
276  int64_t s;  // shift amount
277};
278
279struct mu {
280  uint64_t m; // magic number
281  int64_t a;  // add indicator
282  int64_t s;  // shift amount
283};
284
285/// magic - calculate the magic numbers required to codegen an integer sdiv as
286/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
287/// or -1.
288static ms magic32(int32_t d) {
289  int32_t p;
290  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
291  const uint32_t two31 = 0x80000000U;
292  struct ms mag;
293
294  ad = abs(d);
295  t = two31 + ((uint32_t)d >> 31);
296  anc = t - 1 - t%ad;   // absolute value of nc
297  p = 31;               // initialize p
298  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
299  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
300  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
301  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
302  do {
303    p = p + 1;
304    q1 = 2*q1;        // update q1 = 2p/abs(nc)
305    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
306    if (r1 >= anc) {  // must be unsigned comparison
307      q1 = q1 + 1;
308      r1 = r1 - anc;
309    }
310    q2 = 2*q2;        // update q2 = 2p/abs(d)
311    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
312    if (r2 >= ad) {   // must be unsigned comparison
313      q2 = q2 + 1;
314      r2 = r2 - ad;
315    }
316    delta = ad - r2;
317  } while (q1 < delta || (q1 == delta && r1 == 0));
318
319  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
320  if (d < 0) mag.m = -mag.m; // resulting magic number
321  mag.s = p - 32;            // resulting shift
322  return mag;
323}
324
325/// magicu - calculate the magic numbers required to codegen an integer udiv as
326/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
327static mu magicu32(uint32_t d) {
328  int32_t p;
329  uint32_t nc, delta, q1, r1, q2, r2;
330  struct mu magu;
331  magu.a = 0;               // initialize "add" indicator
332  nc = - 1 - (-d)%d;
333  p = 31;                   // initialize p
334  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
335  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
336  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
337  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
338  do {
339    p = p + 1;
340    if (r1 >= nc - r1 ) {
341      q1 = 2*q1 + 1;  // update q1
342      r1 = 2*r1 - nc; // update r1
343    }
344    else {
345      q1 = 2*q1; // update q1
346      r1 = 2*r1; // update r1
347    }
348    if (r2 + 1 >= d - r2) {
349      if (q2 >= 0x7FFFFFFF) magu.a = 1;
350      q2 = 2*q2 + 1;     // update q2
351      r2 = 2*r2 + 1 - d; // update r2
352    }
353    else {
354      if (q2 >= 0x80000000) magu.a = 1;
355      q2 = 2*q2;     // update q2
356      r2 = 2*r2 + 1; // update r2
357    }
358    delta = d - 1 - r2;
359  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
360  magu.m = q2 + 1; // resulting magic number
361  magu.s = p - 32;  // resulting shift
362  return magu;
363}
364
365/// magic - calculate the magic numbers required to codegen an integer sdiv as
366/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
367/// or -1.
368static ms magic64(int64_t d) {
369  int64_t p;
370  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
371  const uint64_t two63 = 9223372036854775808ULL; // 2^63
372  struct ms mag;
373
374  ad = d >= 0 ? d : -d;
375  t = two63 + ((uint64_t)d >> 63);
376  anc = t - 1 - t%ad;   // absolute value of nc
377  p = 63;               // initialize p
378  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
379  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
380  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
381  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
382  do {
383    p = p + 1;
384    q1 = 2*q1;        // update q1 = 2p/abs(nc)
385    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
386    if (r1 >= anc) {  // must be unsigned comparison
387      q1 = q1 + 1;
388      r1 = r1 - anc;
389    }
390    q2 = 2*q2;        // update q2 = 2p/abs(d)
391    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
392    if (r2 >= ad) {   // must be unsigned comparison
393      q2 = q2 + 1;
394      r2 = r2 - ad;
395    }
396    delta = ad - r2;
397  } while (q1 < delta || (q1 == delta && r1 == 0));
398
399  mag.m = q2 + 1;
400  if (d < 0) mag.m = -mag.m; // resulting magic number
401  mag.s = p - 64;            // resulting shift
402  return mag;
403}
404
405/// magicu - calculate the magic numbers required to codegen an integer udiv as
406/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
407static mu magicu64(uint64_t d)
408{
409  int64_t p;
410  uint64_t nc, delta, q1, r1, q2, r2;
411  struct mu magu;
412  magu.a = 0;               // initialize "add" indicator
413  nc = - 1 - (-d)%d;
414  p = 63;                   // initialize p
415  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
416  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
417  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
418  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
419  do {
420    p = p + 1;
421    if (r1 >= nc - r1 ) {
422      q1 = 2*q1 + 1;  // update q1
423      r1 = 2*r1 - nc; // update r1
424    }
425    else {
426      q1 = 2*q1; // update q1
427      r1 = 2*r1; // update r1
428    }
429    if (r2 + 1 >= d - r2) {
430      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
431      q2 = 2*q2 + 1;     // update q2
432      r2 = 2*r2 + 1 - d; // update r2
433    }
434    else {
435      if (q2 >= 0x8000000000000000ull) magu.a = 1;
436      q2 = 2*q2;     // update q2
437      r2 = 2*r2 + 1; // update r2
438    }
439    delta = d - 1 - r2;
440  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
441  magu.m = q2 + 1; // resulting magic number
442  magu.s = p - 64;  // resulting shift
443  return magu;
444}
445
446// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
447// that selects between the values 1 and 0, making it equivalent to a setcc.
448// Also, set the incoming LHS, RHS, and CC references to the appropriate
449// nodes based on the type of node we are checking.  This simplifies life a
450// bit for the callers.
451static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
452                              SDOperand &CC) {
453  if (N.getOpcode() == ISD::SETCC) {
454    LHS = N.getOperand(0);
455    RHS = N.getOperand(1);
456    CC  = N.getOperand(2);
457    return true;
458  }
459  if (N.getOpcode() == ISD::SELECT_CC &&
460      N.getOperand(2).getOpcode() == ISD::Constant &&
461      N.getOperand(3).getOpcode() == ISD::Constant &&
462      cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
463      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
464    LHS = N.getOperand(0);
465    RHS = N.getOperand(1);
466    CC  = N.getOperand(4);
467    return true;
468  }
469  return false;
470}
471
472// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
473// one use.  If this is true, it allows the users to invert the operation for
474// free when it is profitable to do so.
475static bool isOneUseSetCC(SDOperand N) {
476  SDOperand N0, N1, N2;
477  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
478    return true;
479  return false;
480}
481
482// FIXME: This should probably go in the ISD class rather than being duplicated
483// in several files.
484static bool isCommutativeBinOp(unsigned Opcode) {
485  switch (Opcode) {
486    case ISD::ADD:
487    case ISD::MUL:
488    case ISD::AND:
489    case ISD::OR:
490    case ISD::XOR: return true;
491    default: return false; // FIXME: Need commutative info for user ops!
492  }
493}
494
495SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
496  MVT::ValueType VT = N0.getValueType();
497  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
498  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
499  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
500    if (isa<ConstantSDNode>(N1)) {
501      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
502      AddToWorkList(OpNode.Val);
503      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
504    } else if (N0.hasOneUse()) {
505      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
506      AddToWorkList(OpNode.Val);
507      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
508    }
509  }
510  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
511  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
512  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
513    if (isa<ConstantSDNode>(N0)) {
514      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
515      AddToWorkList(OpNode.Val);
516      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
517    } else if (N1.hasOneUse()) {
518      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
519      AddToWorkList(OpNode.Val);
520      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
521    }
522  }
523  return SDOperand();
524}
525
526void DAGCombiner::Run(bool RunningAfterLegalize) {
527  // set the instance variable, so that the various visit routines may use it.
528  AfterLegalize = RunningAfterLegalize;
529
530  // Add all the dag nodes to the worklist.
531  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
532       E = DAG.allnodes_end(); I != E; ++I)
533    WorkList.push_back(I);
534
535  // Create a dummy node (which is not added to allnodes), that adds a reference
536  // to the root node, preventing it from being deleted, and tracking any
537  // changes of the root.
538  HandleSDNode Dummy(DAG.getRoot());
539
540
541  /// DagCombineInfo - Expose the DAG combiner to the target combiner impls.
542  TargetLowering::DAGCombinerInfo
543    DagCombineInfo(DAG, !RunningAfterLegalize, this);
544
545  // while the worklist isn't empty, inspect the node on the end of it and
546  // try and combine it.
547  while (!WorkList.empty()) {
548    SDNode *N = WorkList.back();
549    WorkList.pop_back();
550
551    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
552    // N is deleted from the DAG, since they too may now be dead or may have a
553    // reduced number of uses, allowing other xforms.
554    if (N->use_empty() && N != &Dummy) {
555      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
556        WorkList.push_back(N->getOperand(i).Val);
557
558      removeFromWorkList(N);
559      DAG.DeleteNode(N);
560      continue;
561    }
562
563    SDOperand RV = visit(N);
564
565    // If nothing happened, try a target-specific DAG combine.
566    if (RV.Val == 0) {
567      if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
568          TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode()))
569        RV = TLI.PerformDAGCombine(N, DagCombineInfo);
570    }
571
572    if (RV.Val) {
573      ++NodesCombined;
574      // If we get back the same node we passed in, rather than a new node or
575      // zero, we know that the node must have defined multiple values and
576      // CombineTo was used.  Since CombineTo takes care of the worklist
577      // mechanics for us, we have no work to do in this case.
578      if (RV.Val != N) {
579        DEBUG(std::cerr << "\nReplacing "; N->dump();
580              std::cerr << "\nWith: "; RV.Val->dump();
581              std::cerr << '\n');
582        std::vector<SDNode*> NowDead;
583        DAG.ReplaceAllUsesWith(N, std::vector<SDOperand>(1, RV), &NowDead);
584
585        // Push the new node and any users onto the worklist
586        WorkList.push_back(RV.Val);
587        AddUsersToWorkList(RV.Val);
588
589        // Nodes can end up on the worklist more than once.  Make sure we do
590        // not process a node that has been replaced.
591        removeFromWorkList(N);
592        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
593          removeFromWorkList(NowDead[i]);
594
595        // Finally, since the node is now dead, remove it from the graph.
596        DAG.DeleteNode(N);
597      }
598    }
599  }
600
601  // If the root changed (e.g. it was a dead load, update the root).
602  DAG.setRoot(Dummy.getValue());
603}
604
605SDOperand DAGCombiner::visit(SDNode *N) {
606  switch(N->getOpcode()) {
607  default: break;
608  case ISD::TokenFactor:        return visitTokenFactor(N);
609  case ISD::ADD:                return visitADD(N);
610  case ISD::SUB:                return visitSUB(N);
611  case ISD::MUL:                return visitMUL(N);
612  case ISD::SDIV:               return visitSDIV(N);
613  case ISD::UDIV:               return visitUDIV(N);
614  case ISD::SREM:               return visitSREM(N);
615  case ISD::UREM:               return visitUREM(N);
616  case ISD::MULHU:              return visitMULHU(N);
617  case ISD::MULHS:              return visitMULHS(N);
618  case ISD::AND:                return visitAND(N);
619  case ISD::OR:                 return visitOR(N);
620  case ISD::XOR:                return visitXOR(N);
621  case ISD::SHL:                return visitSHL(N);
622  case ISD::SRA:                return visitSRA(N);
623  case ISD::SRL:                return visitSRL(N);
624  case ISD::CTLZ:               return visitCTLZ(N);
625  case ISD::CTTZ:               return visitCTTZ(N);
626  case ISD::CTPOP:              return visitCTPOP(N);
627  case ISD::SELECT:             return visitSELECT(N);
628  case ISD::SELECT_CC:          return visitSELECT_CC(N);
629  case ISD::SETCC:              return visitSETCC(N);
630  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
631  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
632  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
633  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
634  case ISD::TRUNCATE:           return visitTRUNCATE(N);
635  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
636  case ISD::VBIT_CONVERT:       return visitVBIT_CONVERT(N);
637  case ISD::FADD:               return visitFADD(N);
638  case ISD::FSUB:               return visitFSUB(N);
639  case ISD::FMUL:               return visitFMUL(N);
640  case ISD::FDIV:               return visitFDIV(N);
641  case ISD::FREM:               return visitFREM(N);
642  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
643  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
644  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
645  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
646  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
647  case ISD::FP_ROUND:           return visitFP_ROUND(N);
648  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
649  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
650  case ISD::FNEG:               return visitFNEG(N);
651  case ISD::FABS:               return visitFABS(N);
652  case ISD::BRCOND:             return visitBRCOND(N);
653  case ISD::BR_CC:              return visitBR_CC(N);
654  case ISD::LOAD:               return visitLOAD(N);
655  case ISD::EXTLOAD:
656  case ISD::SEXTLOAD:
657  case ISD::ZEXTLOAD:           return visitXEXTLOAD(N);
658  case ISD::STORE:              return visitSTORE(N);
659  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
660  case ISD::VINSERT_VECTOR_ELT: return visitVINSERT_VECTOR_ELT(N);
661  case ISD::VBUILD_VECTOR:      return visitVBUILD_VECTOR(N);
662  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
663  case ISD::VVECTOR_SHUFFLE:    return visitVVECTOR_SHUFFLE(N);
664  case ISD::VADD:               return visitVBinOp(N, ISD::ADD , ISD::FADD);
665  case ISD::VSUB:               return visitVBinOp(N, ISD::SUB , ISD::FSUB);
666  case ISD::VMUL:               return visitVBinOp(N, ISD::MUL , ISD::FMUL);
667  case ISD::VSDIV:              return visitVBinOp(N, ISD::SDIV, ISD::FDIV);
668  case ISD::VUDIV:              return visitVBinOp(N, ISD::UDIV, ISD::UDIV);
669  case ISD::VAND:               return visitVBinOp(N, ISD::AND , ISD::AND);
670  case ISD::VOR:                return visitVBinOp(N, ISD::OR  , ISD::OR);
671  case ISD::VXOR:               return visitVBinOp(N, ISD::XOR , ISD::XOR);
672  }
673  return SDOperand();
674}
675
676SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
677  std::vector<SDOperand> Ops;
678  bool Changed = false;
679
680  // If the token factor has two operands and one is the entry token, replace
681  // the token factor with the other operand.
682  if (N->getNumOperands() == 2) {
683    if (N->getOperand(0).getOpcode() == ISD::EntryToken)
684      return N->getOperand(1);
685    if (N->getOperand(1).getOpcode() == ISD::EntryToken)
686      return N->getOperand(0);
687  }
688
689  // fold (tokenfactor (tokenfactor)) -> tokenfactor
690  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
691    SDOperand Op = N->getOperand(i);
692    if (Op.getOpcode() == ISD::TokenFactor && Op.hasOneUse()) {
693      AddToWorkList(Op.Val);  // Remove dead node.
694      Changed = true;
695      for (unsigned j = 0, e = Op.getNumOperands(); j != e; ++j)
696        Ops.push_back(Op.getOperand(j));
697    } else {
698      Ops.push_back(Op);
699    }
700  }
701  if (Changed)
702    return DAG.getNode(ISD::TokenFactor, MVT::Other, Ops);
703  return SDOperand();
704}
705
706SDOperand DAGCombiner::visitADD(SDNode *N) {
707  SDOperand N0 = N->getOperand(0);
708  SDOperand N1 = N->getOperand(1);
709  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
710  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
711  MVT::ValueType VT = N0.getValueType();
712
713  // fold (add c1, c2) -> c1+c2
714  if (N0C && N1C)
715    return DAG.getNode(ISD::ADD, VT, N0, N1);
716  // canonicalize constant to RHS
717  if (N0C && !N1C)
718    return DAG.getNode(ISD::ADD, VT, N1, N0);
719  // fold (add x, 0) -> x
720  if (N1C && N1C->isNullValue())
721    return N0;
722  // fold ((c1-A)+c2) -> (c1+c2)-A
723  if (N1C && N0.getOpcode() == ISD::SUB)
724    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
725      return DAG.getNode(ISD::SUB, VT,
726                         DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
727                         N0.getOperand(1));
728  // reassociate add
729  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
730  if (RADD.Val != 0)
731    return RADD;
732  // fold ((0-A) + B) -> B-A
733  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
734      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
735    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
736  // fold (A + (0-B)) -> A-B
737  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
738      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
739    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
740  // fold (A+(B-A)) -> B
741  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
742    return N1.getOperand(0);
743
744  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
745    return SDOperand(N, 0);
746
747  // fold (a+b) -> (a|b) iff a and b share no bits.
748  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
749    uint64_t LHSZero, LHSOne;
750    uint64_t RHSZero, RHSOne;
751    uint64_t Mask = MVT::getIntVTBitMask(VT);
752    TLI.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
753    if (LHSZero) {
754      TLI.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
755
756      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
757      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
758      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
759          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
760        return DAG.getNode(ISD::OR, VT, N0, N1);
761    }
762  }
763
764  return SDOperand();
765}
766
767SDOperand DAGCombiner::visitSUB(SDNode *N) {
768  SDOperand N0 = N->getOperand(0);
769  SDOperand N1 = N->getOperand(1);
770  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
771  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
772  MVT::ValueType VT = N0.getValueType();
773
774  // fold (sub x, x) -> 0
775  if (N0 == N1)
776    return DAG.getConstant(0, N->getValueType(0));
777  // fold (sub c1, c2) -> c1-c2
778  if (N0C && N1C)
779    return DAG.getNode(ISD::SUB, VT, N0, N1);
780  // fold (sub x, c) -> (add x, -c)
781  if (N1C)
782    return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
783  // fold (A+B)-A -> B
784  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
785    return N0.getOperand(1);
786  // fold (A+B)-B -> A
787  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
788    return N0.getOperand(0);
789  return SDOperand();
790}
791
792SDOperand DAGCombiner::visitMUL(SDNode *N) {
793  SDOperand N0 = N->getOperand(0);
794  SDOperand N1 = N->getOperand(1);
795  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
796  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
797  MVT::ValueType VT = N0.getValueType();
798
799  // fold (mul c1, c2) -> c1*c2
800  if (N0C && N1C)
801    return DAG.getNode(ISD::MUL, VT, N0, N1);
802  // canonicalize constant to RHS
803  if (N0C && !N1C)
804    return DAG.getNode(ISD::MUL, VT, N1, N0);
805  // fold (mul x, 0) -> 0
806  if (N1C && N1C->isNullValue())
807    return N1;
808  // fold (mul x, -1) -> 0-x
809  if (N1C && N1C->isAllOnesValue())
810    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
811  // fold (mul x, (1 << c)) -> x << c
812  if (N1C && isPowerOf2_64(N1C->getValue()))
813    return DAG.getNode(ISD::SHL, VT, N0,
814                       DAG.getConstant(Log2_64(N1C->getValue()),
815                                       TLI.getShiftAmountTy()));
816  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
817  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
818    // FIXME: If the input is something that is easily negated (e.g. a
819    // single-use add), we should put the negate there.
820    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
821                       DAG.getNode(ISD::SHL, VT, N0,
822                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
823                                            TLI.getShiftAmountTy())));
824  }
825
826  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
827  if (N1C && N0.getOpcode() == ISD::SHL &&
828      isa<ConstantSDNode>(N0.getOperand(1))) {
829    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
830    AddToWorkList(C3.Val);
831    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
832  }
833
834  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
835  // use.
836  {
837    SDOperand Sh(0,0), Y(0,0);
838    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
839    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
840        N0.Val->hasOneUse()) {
841      Sh = N0; Y = N1;
842    } else if (N1.getOpcode() == ISD::SHL &&
843               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
844      Sh = N1; Y = N0;
845    }
846    if (Sh.Val) {
847      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
848      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
849    }
850  }
851  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
852  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
853      isa<ConstantSDNode>(N0.getOperand(1))) {
854    return DAG.getNode(ISD::ADD, VT,
855                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
856                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
857  }
858
859  // reassociate mul
860  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
861  if (RMUL.Val != 0)
862    return RMUL;
863  return SDOperand();
864}
865
866SDOperand DAGCombiner::visitSDIV(SDNode *N) {
867  SDOperand N0 = N->getOperand(0);
868  SDOperand N1 = N->getOperand(1);
869  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
870  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
871  MVT::ValueType VT = N->getValueType(0);
872
873  // fold (sdiv c1, c2) -> c1/c2
874  if (N0C && N1C && !N1C->isNullValue())
875    return DAG.getNode(ISD::SDIV, VT, N0, N1);
876  // fold (sdiv X, 1) -> X
877  if (N1C && N1C->getSignExtended() == 1LL)
878    return N0;
879  // fold (sdiv X, -1) -> 0-X
880  if (N1C && N1C->isAllOnesValue())
881    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
882  // If we know the sign bits of both operands are zero, strength reduce to a
883  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
884  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
885  if (TLI.MaskedValueIsZero(N1, SignBit) &&
886      TLI.MaskedValueIsZero(N0, SignBit))
887    return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
888  // fold (sdiv X, pow2) -> simple ops after legalize
889  if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
890      (isPowerOf2_64(N1C->getSignExtended()) ||
891       isPowerOf2_64(-N1C->getSignExtended()))) {
892    // If dividing by powers of two is cheap, then don't perform the following
893    // fold.
894    if (TLI.isPow2DivCheap())
895      return SDOperand();
896    int64_t pow2 = N1C->getSignExtended();
897    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
898    unsigned lg2 = Log2_64(abs2);
899    // Splat the sign bit into the register
900    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
901                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
902                                                TLI.getShiftAmountTy()));
903    AddToWorkList(SGN.Val);
904    // Add (N0 < 0) ? abs2 - 1 : 0;
905    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
906                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
907                                                TLI.getShiftAmountTy()));
908    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
909    AddToWorkList(SRL.Val);
910    AddToWorkList(ADD.Val);    // Divide by pow2
911    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
912                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
913    // If we're dividing by a positive value, we're done.  Otherwise, we must
914    // negate the result.
915    if (pow2 > 0)
916      return SRA;
917    AddToWorkList(SRA.Val);
918    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
919  }
920  // if integer divide is expensive and we satisfy the requirements, emit an
921  // alternate sequence.
922  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
923      !TLI.isIntDivCheap()) {
924    SDOperand Op = BuildSDIV(N);
925    if (Op.Val) return Op;
926  }
927  return SDOperand();
928}
929
930SDOperand DAGCombiner::visitUDIV(SDNode *N) {
931  SDOperand N0 = N->getOperand(0);
932  SDOperand N1 = N->getOperand(1);
933  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
934  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
935  MVT::ValueType VT = N->getValueType(0);
936
937  // fold (udiv c1, c2) -> c1/c2
938  if (N0C && N1C && !N1C->isNullValue())
939    return DAG.getNode(ISD::UDIV, VT, N0, N1);
940  // fold (udiv x, (1 << c)) -> x >>u c
941  if (N1C && isPowerOf2_64(N1C->getValue()))
942    return DAG.getNode(ISD::SRL, VT, N0,
943                       DAG.getConstant(Log2_64(N1C->getValue()),
944                                       TLI.getShiftAmountTy()));
945  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
946  if (N1.getOpcode() == ISD::SHL) {
947    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
948      if (isPowerOf2_64(SHC->getValue())) {
949        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
950        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
951                                    DAG.getConstant(Log2_64(SHC->getValue()),
952                                                    ADDVT));
953        AddToWorkList(Add.Val);
954        return DAG.getNode(ISD::SRL, VT, N0, Add);
955      }
956    }
957  }
958  // fold (udiv x, c) -> alternate
959  if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
960    SDOperand Op = BuildUDIV(N);
961    if (Op.Val) return Op;
962  }
963  return SDOperand();
964}
965
966SDOperand DAGCombiner::visitSREM(SDNode *N) {
967  SDOperand N0 = N->getOperand(0);
968  SDOperand N1 = N->getOperand(1);
969  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
970  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
971  MVT::ValueType VT = N->getValueType(0);
972
973  // fold (srem c1, c2) -> c1%c2
974  if (N0C && N1C && !N1C->isNullValue())
975    return DAG.getNode(ISD::SREM, VT, N0, N1);
976  // If we know the sign bits of both operands are zero, strength reduce to a
977  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
978  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
979  if (TLI.MaskedValueIsZero(N1, SignBit) &&
980      TLI.MaskedValueIsZero(N0, SignBit))
981    return DAG.getNode(ISD::UREM, VT, N0, N1);
982  return SDOperand();
983}
984
985SDOperand DAGCombiner::visitUREM(SDNode *N) {
986  SDOperand N0 = N->getOperand(0);
987  SDOperand N1 = N->getOperand(1);
988  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
989  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
990  MVT::ValueType VT = N->getValueType(0);
991
992  // fold (urem c1, c2) -> c1%c2
993  if (N0C && N1C && !N1C->isNullValue())
994    return DAG.getNode(ISD::UREM, VT, N0, N1);
995  // fold (urem x, pow2) -> (and x, pow2-1)
996  if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
997    return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
998  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
999  if (N1.getOpcode() == ISD::SHL) {
1000    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1001      if (isPowerOf2_64(SHC->getValue())) {
1002        SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
1003        AddToWorkList(Add.Val);
1004        return DAG.getNode(ISD::AND, VT, N0, Add);
1005      }
1006    }
1007  }
1008  return SDOperand();
1009}
1010
1011SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1012  SDOperand N0 = N->getOperand(0);
1013  SDOperand N1 = N->getOperand(1);
1014  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1015
1016  // fold (mulhs x, 0) -> 0
1017  if (N1C && N1C->isNullValue())
1018    return N1;
1019  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1020  if (N1C && N1C->getValue() == 1)
1021    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1022                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1023                                       TLI.getShiftAmountTy()));
1024  return SDOperand();
1025}
1026
1027SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1028  SDOperand N0 = N->getOperand(0);
1029  SDOperand N1 = N->getOperand(1);
1030  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1031
1032  // fold (mulhu x, 0) -> 0
1033  if (N1C && N1C->isNullValue())
1034    return N1;
1035  // fold (mulhu x, 1) -> 0
1036  if (N1C && N1C->getValue() == 1)
1037    return DAG.getConstant(0, N0.getValueType());
1038  return SDOperand();
1039}
1040
1041/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1042/// two operands of the same opcode, try to simplify it.
1043SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1044  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1045  MVT::ValueType VT = N0.getValueType();
1046  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1047
1048  // For each of OP in AND/OR/XOR:
1049  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1050  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1051  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1052  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1053  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1054       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1055      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1056    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1057                                   N0.getOperand(0).getValueType(),
1058                                   N0.getOperand(0), N1.getOperand(0));
1059    AddToWorkList(ORNode.Val);
1060    return DAG.getNode(N0.getOpcode(), VT, ORNode);
1061  }
1062
1063  // For each of OP in SHL/SRL/SRA/AND...
1064  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1065  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
1066  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1067  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1068       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1069      N0.getOperand(1) == N1.getOperand(1)) {
1070    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1071                                   N0.getOperand(0).getValueType(),
1072                                   N0.getOperand(0), N1.getOperand(0));
1073    AddToWorkList(ORNode.Val);
1074    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1075  }
1076
1077  return SDOperand();
1078}
1079
1080SDOperand DAGCombiner::visitAND(SDNode *N) {
1081  SDOperand N0 = N->getOperand(0);
1082  SDOperand N1 = N->getOperand(1);
1083  SDOperand LL, LR, RL, RR, CC0, CC1;
1084  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1085  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1086  MVT::ValueType VT = N1.getValueType();
1087  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1088
1089  // fold (and c1, c2) -> c1&c2
1090  if (N0C && N1C)
1091    return DAG.getNode(ISD::AND, VT, N0, N1);
1092  // canonicalize constant to RHS
1093  if (N0C && !N1C)
1094    return DAG.getNode(ISD::AND, VT, N1, N0);
1095  // fold (and x, -1) -> x
1096  if (N1C && N1C->isAllOnesValue())
1097    return N0;
1098  // if (and x, c) is known to be zero, return 0
1099  if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1100    return DAG.getConstant(0, VT);
1101  // reassociate and
1102  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1103  if (RAND.Val != 0)
1104    return RAND;
1105  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1106  if (N1C && N0.getOpcode() == ISD::OR)
1107    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1108      if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
1109        return N1;
1110  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1111  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1112    unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType());
1113    if (TLI.MaskedValueIsZero(N0.getOperand(0),
1114                              ~N1C->getValue() & InMask)) {
1115      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1116                                   N0.getOperand(0));
1117
1118      // Replace uses of the AND with uses of the Zero extend node.
1119      CombineTo(N, Zext);
1120
1121      // We actually want to replace all uses of the any_extend with the
1122      // zero_extend, to avoid duplicating things.  This will later cause this
1123      // AND to be folded.
1124      CombineTo(N0.Val, Zext);
1125      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1126    }
1127  }
1128  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1129  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1130    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1131    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1132
1133    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1134        MVT::isInteger(LL.getValueType())) {
1135      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1136      if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
1137        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1138        AddToWorkList(ORNode.Val);
1139        return DAG.getSetCC(VT, ORNode, LR, Op1);
1140      }
1141      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1142      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1143        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1144        AddToWorkList(ANDNode.Val);
1145        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1146      }
1147      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1148      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1149        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1150        AddToWorkList(ORNode.Val);
1151        return DAG.getSetCC(VT, ORNode, LR, Op1);
1152      }
1153    }
1154    // canonicalize equivalent to ll == rl
1155    if (LL == RR && LR == RL) {
1156      Op1 = ISD::getSetCCSwappedOperands(Op1);
1157      std::swap(RL, RR);
1158    }
1159    if (LL == RL && LR == RR) {
1160      bool isInteger = MVT::isInteger(LL.getValueType());
1161      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1162      if (Result != ISD::SETCC_INVALID)
1163        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1164    }
1165  }
1166
1167  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
1168  if (N0.getOpcode() == N1.getOpcode()) {
1169    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1170    if (Tmp.Val) return Tmp;
1171  }
1172
1173  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1174  // fold (and (sra)) -> (and (srl)) when possible.
1175  if (!MVT::isVector(VT) &&
1176      SimplifyDemandedBits(SDOperand(N, 0)))
1177    return SDOperand(N, 0);
1178  // fold (zext_inreg (extload x)) -> (zextload x)
1179  if (N0.getOpcode() == ISD::EXTLOAD) {
1180    MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT();
1181    // If we zero all the possible extended bits, then we can turn this into
1182    // a zextload if we are running before legalize or the operation is legal.
1183    if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1184        (!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) {
1185      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0),
1186                                         N0.getOperand(1), N0.getOperand(2),
1187                                         EVT);
1188      AddToWorkList(N);
1189      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1190      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1191    }
1192  }
1193  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1194  if (N0.getOpcode() == ISD::SEXTLOAD && N0.hasOneUse()) {
1195    MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT();
1196    // If we zero all the possible extended bits, then we can turn this into
1197    // a zextload if we are running before legalize or the operation is legal.
1198    if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1199        (!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) {
1200      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0),
1201                                         N0.getOperand(1), N0.getOperand(2),
1202                                         EVT);
1203      AddToWorkList(N);
1204      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1205      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1206    }
1207  }
1208
1209  // fold (and (load x), 255) -> (zextload x, i8)
1210  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1211  if (N1C &&
1212      (N0.getOpcode() == ISD::LOAD || N0.getOpcode() == ISD::EXTLOAD ||
1213       N0.getOpcode() == ISD::ZEXTLOAD) &&
1214      N0.hasOneUse()) {
1215    MVT::ValueType EVT, LoadedVT;
1216    if (N1C->getValue() == 255)
1217      EVT = MVT::i8;
1218    else if (N1C->getValue() == 65535)
1219      EVT = MVT::i16;
1220    else if (N1C->getValue() == ~0U)
1221      EVT = MVT::i32;
1222    else
1223      EVT = MVT::Other;
1224
1225    LoadedVT = N0.getOpcode() == ISD::LOAD ? VT :
1226                           cast<VTSDNode>(N0.getOperand(3))->getVT();
1227    if (EVT != MVT::Other && LoadedVT > EVT &&
1228        (!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) {
1229      MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1230      // For big endian targets, we need to add an offset to the pointer to load
1231      // the correct bytes.  For little endian systems, we merely need to read
1232      // fewer bytes from the same pointer.
1233      unsigned PtrOff =
1234        (MVT::getSizeInBits(LoadedVT) - MVT::getSizeInBits(EVT)) / 8;
1235      SDOperand NewPtr = N0.getOperand(1);
1236      if (!TLI.isLittleEndian())
1237        NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1238                             DAG.getConstant(PtrOff, PtrType));
1239      AddToWorkList(NewPtr.Val);
1240      SDOperand Load =
1241        DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0), NewPtr,
1242                       N0.getOperand(2), EVT);
1243      AddToWorkList(N);
1244      CombineTo(N0.Val, Load, Load.getValue(1));
1245      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1246    }
1247  }
1248
1249  return SDOperand();
1250}
1251
1252SDOperand DAGCombiner::visitOR(SDNode *N) {
1253  SDOperand N0 = N->getOperand(0);
1254  SDOperand N1 = N->getOperand(1);
1255  SDOperand LL, LR, RL, RR, CC0, CC1;
1256  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1257  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1258  MVT::ValueType VT = N1.getValueType();
1259  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1260
1261  // fold (or c1, c2) -> c1|c2
1262  if (N0C && N1C)
1263    return DAG.getNode(ISD::OR, VT, N0, N1);
1264  // canonicalize constant to RHS
1265  if (N0C && !N1C)
1266    return DAG.getNode(ISD::OR, VT, N1, N0);
1267  // fold (or x, 0) -> x
1268  if (N1C && N1C->isNullValue())
1269    return N0;
1270  // fold (or x, -1) -> -1
1271  if (N1C && N1C->isAllOnesValue())
1272    return N1;
1273  // fold (or x, c) -> c iff (x & ~c) == 0
1274  if (N1C &&
1275      TLI.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
1276    return N1;
1277  // reassociate or
1278  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1279  if (ROR.Val != 0)
1280    return ROR;
1281  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1282  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1283             isa<ConstantSDNode>(N0.getOperand(1))) {
1284    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1285    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1286                                                 N1),
1287                       DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
1288  }
1289  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1290  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1291    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1292    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1293
1294    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1295        MVT::isInteger(LL.getValueType())) {
1296      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1297      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1298      if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1299          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1300        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1301        AddToWorkList(ORNode.Val);
1302        return DAG.getSetCC(VT, ORNode, LR, Op1);
1303      }
1304      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1305      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1306      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1307          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1308        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1309        AddToWorkList(ANDNode.Val);
1310        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1311      }
1312    }
1313    // canonicalize equivalent to ll == rl
1314    if (LL == RR && LR == RL) {
1315      Op1 = ISD::getSetCCSwappedOperands(Op1);
1316      std::swap(RL, RR);
1317    }
1318    if (LL == RL && LR == RR) {
1319      bool isInteger = MVT::isInteger(LL.getValueType());
1320      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1321      if (Result != ISD::SETCC_INVALID)
1322        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1323    }
1324  }
1325
1326  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
1327  if (N0.getOpcode() == N1.getOpcode()) {
1328    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1329    if (Tmp.Val) return Tmp;
1330  }
1331
1332  // canonicalize shl to left side in a shl/srl pair, to match rotate
1333  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
1334    std::swap(N0, N1);
1335  // check for rotl, rotr
1336  if (N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SRL &&
1337      N0.getOperand(0) == N1.getOperand(0) &&
1338      TLI.isOperationLegal(ISD::ROTL, VT) && TLI.isTypeLegal(VT)) {
1339    // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1340    if (N0.getOperand(1).getOpcode() == ISD::Constant &&
1341        N1.getOperand(1).getOpcode() == ISD::Constant) {
1342      uint64_t c1val = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1343      uint64_t c2val = cast<ConstantSDNode>(N1.getOperand(1))->getValue();
1344      if ((c1val + c2val) == OpSizeInBits)
1345        return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), N0.getOperand(1));
1346    }
1347    // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
1348    if (N1.getOperand(1).getOpcode() == ISD::SUB &&
1349        N0.getOperand(1) == N1.getOperand(1).getOperand(1))
1350      if (ConstantSDNode *SUBC =
1351          dyn_cast<ConstantSDNode>(N1.getOperand(1).getOperand(0)))
1352        if (SUBC->getValue() == OpSizeInBits)
1353          return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), N0.getOperand(1));
1354    // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
1355    if (N0.getOperand(1).getOpcode() == ISD::SUB &&
1356        N1.getOperand(1) == N0.getOperand(1).getOperand(1))
1357      if (ConstantSDNode *SUBC =
1358          dyn_cast<ConstantSDNode>(N0.getOperand(1).getOperand(0)))
1359        if (SUBC->getValue() == OpSizeInBits) {
1360          if (TLI.isOperationLegal(ISD::ROTR, VT) && TLI.isTypeLegal(VT))
1361            return DAG.getNode(ISD::ROTR, VT, N0.getOperand(0),
1362                               N1.getOperand(1));
1363          else
1364            return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0),
1365                               N0.getOperand(1));
1366        }
1367  }
1368  return SDOperand();
1369}
1370
1371SDOperand DAGCombiner::visitXOR(SDNode *N) {
1372  SDOperand N0 = N->getOperand(0);
1373  SDOperand N1 = N->getOperand(1);
1374  SDOperand LHS, RHS, CC;
1375  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1376  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1377  MVT::ValueType VT = N0.getValueType();
1378
1379  // fold (xor c1, c2) -> c1^c2
1380  if (N0C && N1C)
1381    return DAG.getNode(ISD::XOR, VT, N0, N1);
1382  // canonicalize constant to RHS
1383  if (N0C && !N1C)
1384    return DAG.getNode(ISD::XOR, VT, N1, N0);
1385  // fold (xor x, 0) -> x
1386  if (N1C && N1C->isNullValue())
1387    return N0;
1388  // reassociate xor
1389  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
1390  if (RXOR.Val != 0)
1391    return RXOR;
1392  // fold !(x cc y) -> (x !cc y)
1393  if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
1394    bool isInt = MVT::isInteger(LHS.getValueType());
1395    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
1396                                               isInt);
1397    if (N0.getOpcode() == ISD::SETCC)
1398      return DAG.getSetCC(VT, LHS, RHS, NotCC);
1399    if (N0.getOpcode() == ISD::SELECT_CC)
1400      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
1401    assert(0 && "Unhandled SetCC Equivalent!");
1402    abort();
1403  }
1404  // fold !(x or y) -> (!x and !y) iff x or y are setcc
1405  if (N1C && N1C->getValue() == 1 &&
1406      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
1407    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
1408    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
1409      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
1410      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
1411      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
1412      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
1413      return DAG.getNode(NewOpcode, VT, LHS, RHS);
1414    }
1415  }
1416  // fold !(x or y) -> (!x and !y) iff x or y are constants
1417  if (N1C && N1C->isAllOnesValue() &&
1418      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
1419    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
1420    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
1421      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
1422      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
1423      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
1424      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
1425      return DAG.getNode(NewOpcode, VT, LHS, RHS);
1426    }
1427  }
1428  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
1429  if (N1C && N0.getOpcode() == ISD::XOR) {
1430    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
1431    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
1432    if (N00C)
1433      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
1434                         DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
1435    if (N01C)
1436      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
1437                         DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
1438  }
1439  // fold (xor x, x) -> 0
1440  if (N0 == N1) {
1441    if (!MVT::isVector(VT)) {
1442      return DAG.getConstant(0, VT);
1443    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1444      // Produce a vector of zeros.
1445      SDOperand El = DAG.getConstant(0, MVT::getVectorBaseType(VT));
1446      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
1447      return DAG.getNode(ISD::BUILD_VECTOR, VT, Ops);
1448    }
1449  }
1450
1451  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
1452  if (N0.getOpcode() == N1.getOpcode()) {
1453    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1454    if (Tmp.Val) return Tmp;
1455  }
1456
1457  // Simplify the expression using non-local knowledge.
1458  if (!MVT::isVector(VT) &&
1459      SimplifyDemandedBits(SDOperand(N, 0)))
1460    return SDOperand(N, 0);
1461
1462  return SDOperand();
1463}
1464
1465SDOperand DAGCombiner::visitSHL(SDNode *N) {
1466  SDOperand N0 = N->getOperand(0);
1467  SDOperand N1 = N->getOperand(1);
1468  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1469  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1470  MVT::ValueType VT = N0.getValueType();
1471  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1472
1473  // fold (shl c1, c2) -> c1<<c2
1474  if (N0C && N1C)
1475    return DAG.getNode(ISD::SHL, VT, N0, N1);
1476  // fold (shl 0, x) -> 0
1477  if (N0C && N0C->isNullValue())
1478    return N0;
1479  // fold (shl x, c >= size(x)) -> undef
1480  if (N1C && N1C->getValue() >= OpSizeInBits)
1481    return DAG.getNode(ISD::UNDEF, VT);
1482  // fold (shl x, 0) -> x
1483  if (N1C && N1C->isNullValue())
1484    return N0;
1485  // if (shl x, c) is known to be zero, return 0
1486  if (TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1487    return DAG.getConstant(0, VT);
1488  if (SimplifyDemandedBits(SDOperand(N, 0)))
1489    return SDOperand(N, 0);
1490  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
1491  if (N1C && N0.getOpcode() == ISD::SHL &&
1492      N0.getOperand(1).getOpcode() == ISD::Constant) {
1493    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1494    uint64_t c2 = N1C->getValue();
1495    if (c1 + c2 > OpSizeInBits)
1496      return DAG.getConstant(0, VT);
1497    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
1498                       DAG.getConstant(c1 + c2, N1.getValueType()));
1499  }
1500  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
1501  //                               (srl (and x, -1 << c1), c1-c2)
1502  if (N1C && N0.getOpcode() == ISD::SRL &&
1503      N0.getOperand(1).getOpcode() == ISD::Constant) {
1504    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1505    uint64_t c2 = N1C->getValue();
1506    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
1507                                 DAG.getConstant(~0ULL << c1, VT));
1508    if (c2 > c1)
1509      return DAG.getNode(ISD::SHL, VT, Mask,
1510                         DAG.getConstant(c2-c1, N1.getValueType()));
1511    else
1512      return DAG.getNode(ISD::SRL, VT, Mask,
1513                         DAG.getConstant(c1-c2, N1.getValueType()));
1514  }
1515  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
1516  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
1517    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
1518                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
1519  // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1<<c2)
1520  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
1521      isa<ConstantSDNode>(N0.getOperand(1))) {
1522    return DAG.getNode(ISD::ADD, VT,
1523                       DAG.getNode(ISD::SHL, VT, N0.getOperand(0), N1),
1524                       DAG.getNode(ISD::SHL, VT, N0.getOperand(1), N1));
1525  }
1526  return SDOperand();
1527}
1528
1529SDOperand DAGCombiner::visitSRA(SDNode *N) {
1530  SDOperand N0 = N->getOperand(0);
1531  SDOperand N1 = N->getOperand(1);
1532  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1533  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1534  MVT::ValueType VT = N0.getValueType();
1535
1536  // fold (sra c1, c2) -> c1>>c2
1537  if (N0C && N1C)
1538    return DAG.getNode(ISD::SRA, VT, N0, N1);
1539  // fold (sra 0, x) -> 0
1540  if (N0C && N0C->isNullValue())
1541    return N0;
1542  // fold (sra -1, x) -> -1
1543  if (N0C && N0C->isAllOnesValue())
1544    return N0;
1545  // fold (sra x, c >= size(x)) -> undef
1546  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
1547    return DAG.getNode(ISD::UNDEF, VT);
1548  // fold (sra x, 0) -> x
1549  if (N1C && N1C->isNullValue())
1550    return N0;
1551  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
1552  // sext_inreg.
1553  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
1554    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
1555    MVT::ValueType EVT;
1556    switch (LowBits) {
1557    default: EVT = MVT::Other; break;
1558    case  1: EVT = MVT::i1;    break;
1559    case  8: EVT = MVT::i8;    break;
1560    case 16: EVT = MVT::i16;   break;
1561    case 32: EVT = MVT::i32;   break;
1562    }
1563    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
1564      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
1565                         DAG.getValueType(EVT));
1566  }
1567
1568  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
1569  if (N1C && N0.getOpcode() == ISD::SRA) {
1570    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1571      unsigned Sum = N1C->getValue() + C1->getValue();
1572      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
1573      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
1574                         DAG.getConstant(Sum, N1C->getValueType(0)));
1575    }
1576  }
1577
1578  // If the sign bit is known to be zero, switch this to a SRL.
1579  if (TLI.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT)))
1580    return DAG.getNode(ISD::SRL, VT, N0, N1);
1581  return SDOperand();
1582}
1583
1584SDOperand DAGCombiner::visitSRL(SDNode *N) {
1585  SDOperand N0 = N->getOperand(0);
1586  SDOperand N1 = N->getOperand(1);
1587  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1588  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1589  MVT::ValueType VT = N0.getValueType();
1590  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1591
1592  // fold (srl c1, c2) -> c1 >>u c2
1593  if (N0C && N1C)
1594    return DAG.getNode(ISD::SRL, VT, N0, N1);
1595  // fold (srl 0, x) -> 0
1596  if (N0C && N0C->isNullValue())
1597    return N0;
1598  // fold (srl x, c >= size(x)) -> undef
1599  if (N1C && N1C->getValue() >= OpSizeInBits)
1600    return DAG.getNode(ISD::UNDEF, VT);
1601  // fold (srl x, 0) -> x
1602  if (N1C && N1C->isNullValue())
1603    return N0;
1604  // if (srl x, c) is known to be zero, return 0
1605  if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
1606    return DAG.getConstant(0, VT);
1607  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
1608  if (N1C && N0.getOpcode() == ISD::SRL &&
1609      N0.getOperand(1).getOpcode() == ISD::Constant) {
1610    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1611    uint64_t c2 = N1C->getValue();
1612    if (c1 + c2 > OpSizeInBits)
1613      return DAG.getConstant(0, VT);
1614    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
1615                       DAG.getConstant(c1 + c2, N1.getValueType()));
1616  }
1617
1618  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
1619  if (N1C && N0.getOpcode() == ISD::CTLZ &&
1620      N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
1621    uint64_t KnownZero, KnownOne, Mask = MVT::getIntVTBitMask(VT);
1622    TLI.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
1623
1624    // If any of the input bits are KnownOne, then the input couldn't be all
1625    // zeros, thus the result of the srl will always be zero.
1626    if (KnownOne) return DAG.getConstant(0, VT);
1627
1628    // If all of the bits input the to ctlz node are known to be zero, then
1629    // the result of the ctlz is "32" and the result of the shift is one.
1630    uint64_t UnknownBits = ~KnownZero & Mask;
1631    if (UnknownBits == 0) return DAG.getConstant(1, VT);
1632
1633    // Otherwise, check to see if there is exactly one bit input to the ctlz.
1634    if ((UnknownBits & (UnknownBits-1)) == 0) {
1635      // Okay, we know that only that the single bit specified by UnknownBits
1636      // could be set on input to the CTLZ node.  If this bit is set, the SRL
1637      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
1638      // to an SRL,XOR pair, which is likely to simplify more.
1639      unsigned ShAmt = CountTrailingZeros_64(UnknownBits);
1640      SDOperand Op = N0.getOperand(0);
1641      if (ShAmt) {
1642        Op = DAG.getNode(ISD::SRL, VT, Op,
1643                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
1644        AddToWorkList(Op.Val);
1645      }
1646      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
1647    }
1648  }
1649
1650  return SDOperand();
1651}
1652
1653SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
1654  SDOperand N0 = N->getOperand(0);
1655  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1656  MVT::ValueType VT = N->getValueType(0);
1657
1658  // fold (ctlz c1) -> c2
1659  if (N0C)
1660    return DAG.getNode(ISD::CTLZ, VT, N0);
1661  return SDOperand();
1662}
1663
1664SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
1665  SDOperand N0 = N->getOperand(0);
1666  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1667  MVT::ValueType VT = N->getValueType(0);
1668
1669  // fold (cttz c1) -> c2
1670  if (N0C)
1671    return DAG.getNode(ISD::CTTZ, VT, N0);
1672  return SDOperand();
1673}
1674
1675SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
1676  SDOperand N0 = N->getOperand(0);
1677  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1678  MVT::ValueType VT = N->getValueType(0);
1679
1680  // fold (ctpop c1) -> c2
1681  if (N0C)
1682    return DAG.getNode(ISD::CTPOP, VT, N0);
1683  return SDOperand();
1684}
1685
1686SDOperand DAGCombiner::visitSELECT(SDNode *N) {
1687  SDOperand N0 = N->getOperand(0);
1688  SDOperand N1 = N->getOperand(1);
1689  SDOperand N2 = N->getOperand(2);
1690  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1691  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1692  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
1693  MVT::ValueType VT = N->getValueType(0);
1694
1695  // fold select C, X, X -> X
1696  if (N1 == N2)
1697    return N1;
1698  // fold select true, X, Y -> X
1699  if (N0C && !N0C->isNullValue())
1700    return N1;
1701  // fold select false, X, Y -> Y
1702  if (N0C && N0C->isNullValue())
1703    return N2;
1704  // fold select C, 1, X -> C | X
1705  if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
1706    return DAG.getNode(ISD::OR, VT, N0, N2);
1707  // fold select C, 0, X -> ~C & X
1708  // FIXME: this should check for C type == X type, not i1?
1709  if (MVT::i1 == VT && N1C && N1C->isNullValue()) {
1710    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
1711    AddToWorkList(XORNode.Val);
1712    return DAG.getNode(ISD::AND, VT, XORNode, N2);
1713  }
1714  // fold select C, X, 1 -> ~C | X
1715  if (MVT::i1 == VT && N2C && N2C->getValue() == 1) {
1716    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
1717    AddToWorkList(XORNode.Val);
1718    return DAG.getNode(ISD::OR, VT, XORNode, N1);
1719  }
1720  // fold select C, X, 0 -> C & X
1721  // FIXME: this should check for C type == X type, not i1?
1722  if (MVT::i1 == VT && N2C && N2C->isNullValue())
1723    return DAG.getNode(ISD::AND, VT, N0, N1);
1724  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
1725  if (MVT::i1 == VT && N0 == N1)
1726    return DAG.getNode(ISD::OR, VT, N0, N2);
1727  // fold X ? Y : X --> X ? Y : 0 --> X & Y
1728  if (MVT::i1 == VT && N0 == N2)
1729    return DAG.getNode(ISD::AND, VT, N0, N1);
1730  // If we can fold this based on the true/false value, do so.
1731  if (SimplifySelectOps(N, N1, N2))
1732    return SDOperand();
1733  // fold selects based on a setcc into other things, such as min/max/abs
1734  if (N0.getOpcode() == ISD::SETCC)
1735    // FIXME:
1736    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
1737    // having to say they don't support SELECT_CC on every type the DAG knows
1738    // about, since there is no way to mark an opcode illegal at all value types
1739    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
1740      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
1741                         N1, N2, N0.getOperand(2));
1742    else
1743      return SimplifySelect(N0, N1, N2);
1744  return SDOperand();
1745}
1746
1747SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
1748  SDOperand N0 = N->getOperand(0);
1749  SDOperand N1 = N->getOperand(1);
1750  SDOperand N2 = N->getOperand(2);
1751  SDOperand N3 = N->getOperand(3);
1752  SDOperand N4 = N->getOperand(4);
1753  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1754  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1755  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
1756  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
1757
1758  // Determine if the condition we're dealing with is constant
1759  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
1760  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
1761
1762  // fold select_cc lhs, rhs, x, x, cc -> x
1763  if (N2 == N3)
1764    return N2;
1765
1766  // If we can fold this based on the true/false value, do so.
1767  if (SimplifySelectOps(N, N2, N3))
1768    return SDOperand();
1769
1770  // fold select_cc into other things, such as min/max/abs
1771  return SimplifySelectCC(N0, N1, N2, N3, CC);
1772}
1773
1774SDOperand DAGCombiner::visitSETCC(SDNode *N) {
1775  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
1776                       cast<CondCodeSDNode>(N->getOperand(2))->get());
1777}
1778
1779SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
1780  SDOperand N0 = N->getOperand(0);
1781  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1782  MVT::ValueType VT = N->getValueType(0);
1783
1784  // fold (sext c1) -> c1
1785  if (N0C)
1786    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
1787  // fold (sext (sext x)) -> (sext x)
1788  if (N0.getOpcode() == ISD::SIGN_EXTEND)
1789    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
1790  // fold (sext (truncate x)) -> (sextinreg x) iff x size == sext size.
1791  if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT&&
1792      (!AfterLegalize ||
1793       TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, N0.getValueType())))
1794    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
1795                       DAG.getValueType(N0.getValueType()));
1796  // fold (sext (load x)) -> (sext (truncate (sextload x)))
1797  if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() &&
1798      (!AfterLegalize||TLI.isOperationLegal(ISD::SEXTLOAD, N0.getValueType()))){
1799    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0),
1800                                       N0.getOperand(1), N0.getOperand(2),
1801                                       N0.getValueType());
1802    CombineTo(N, ExtLoad);
1803    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
1804              ExtLoad.getValue(1));
1805    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1806  }
1807
1808  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
1809  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
1810  if ((N0.getOpcode() == ISD::SEXTLOAD || N0.getOpcode() == ISD::EXTLOAD) &&
1811      N0.hasOneUse()) {
1812    SDOperand ExtLoad = DAG.getNode(ISD::SEXTLOAD, VT, N0.getOperand(0),
1813                                    N0.getOperand(1), N0.getOperand(2),
1814                                    N0.getOperand(3));
1815    CombineTo(N, ExtLoad);
1816    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
1817              ExtLoad.getValue(1));
1818    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1819  }
1820
1821  return SDOperand();
1822}
1823
1824SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
1825  SDOperand N0 = N->getOperand(0);
1826  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1827  MVT::ValueType VT = N->getValueType(0);
1828
1829  // fold (zext c1) -> c1
1830  if (N0C)
1831    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1832  // fold (zext (zext x)) -> (zext x)
1833  if (N0.getOpcode() == ISD::ZERO_EXTEND)
1834    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
1835  // fold (zext (truncate x)) -> (zextinreg x) iff x size == zext size.
1836  if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT&&
1837      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, N0.getValueType())))
1838    return DAG.getZeroExtendInReg(N0.getOperand(0), N0.getValueType());
1839  // fold (zext (load x)) -> (zext (truncate (zextload x)))
1840  if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() &&
1841      (!AfterLegalize||TLI.isOperationLegal(ISD::ZEXTLOAD, N0.getValueType()))){
1842    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0),
1843                                       N0.getOperand(1), N0.getOperand(2),
1844                                       N0.getValueType());
1845    CombineTo(N, ExtLoad);
1846    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
1847              ExtLoad.getValue(1));
1848    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1849  }
1850
1851  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
1852  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
1853  if ((N0.getOpcode() == ISD::ZEXTLOAD || N0.getOpcode() == ISD::EXTLOAD) &&
1854      N0.hasOneUse()) {
1855    SDOperand ExtLoad = DAG.getNode(ISD::ZEXTLOAD, VT, N0.getOperand(0),
1856                                    N0.getOperand(1), N0.getOperand(2),
1857                                    N0.getOperand(3));
1858    CombineTo(N, ExtLoad);
1859    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
1860              ExtLoad.getValue(1));
1861    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1862  }
1863  return SDOperand();
1864}
1865
1866SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
1867  SDOperand N0 = N->getOperand(0);
1868  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1869  MVT::ValueType VT = N->getValueType(0);
1870
1871  // fold (aext c1) -> c1
1872  if (N0C)
1873    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
1874  // fold (aext (aext x)) -> (aext x)
1875  // fold (aext (zext x)) -> (zext x)
1876  // fold (aext (sext x)) -> (sext x)
1877  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
1878      N0.getOpcode() == ISD::ZERO_EXTEND ||
1879      N0.getOpcode() == ISD::SIGN_EXTEND)
1880    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
1881
1882  // fold (aext (truncate x)) -> x iff x size == zext size.
1883  if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT)
1884    return N0.getOperand(0);
1885  // fold (aext (load x)) -> (aext (truncate (extload x)))
1886  if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() &&
1887      (!AfterLegalize||TLI.isOperationLegal(ISD::EXTLOAD, N0.getValueType()))) {
1888    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, N0.getOperand(0),
1889                                       N0.getOperand(1), N0.getOperand(2),
1890                                       N0.getValueType());
1891    CombineTo(N, ExtLoad);
1892    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
1893              ExtLoad.getValue(1));
1894    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1895  }
1896
1897  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
1898  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
1899  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
1900  if ((N0.getOpcode() == ISD::ZEXTLOAD || N0.getOpcode() == ISD::EXTLOAD ||
1901       N0.getOpcode() == ISD::SEXTLOAD) &&
1902      N0.hasOneUse()) {
1903    SDOperand ExtLoad = DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0),
1904                                    N0.getOperand(1), N0.getOperand(2),
1905                                    N0.getOperand(3));
1906    CombineTo(N, ExtLoad);
1907    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
1908              ExtLoad.getValue(1));
1909    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1910  }
1911  return SDOperand();
1912}
1913
1914
1915SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
1916  SDOperand N0 = N->getOperand(0);
1917  SDOperand N1 = N->getOperand(1);
1918  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1919  MVT::ValueType VT = N->getValueType(0);
1920  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
1921  unsigned EVTBits = MVT::getSizeInBits(EVT);
1922
1923  // fold (sext_in_reg c1) -> c1
1924  if (N0C) {
1925    SDOperand Truncate = DAG.getConstant(N0C->getValue(), EVT);
1926    return DAG.getNode(ISD::SIGN_EXTEND, VT, Truncate);
1927  }
1928  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt1
1929  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1930      cast<VTSDNode>(N0.getOperand(1))->getVT() <= EVT) {
1931    return N0;
1932  }
1933  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
1934  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1935      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
1936    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
1937  }
1938  // fold (sext_in_reg (assert_sext x)) -> (assert_sext x)
1939  if (N0.getOpcode() == ISD::AssertSext &&
1940      cast<VTSDNode>(N0.getOperand(1))->getVT() <= EVT) {
1941    return N0;
1942  }
1943  // fold (sext_in_reg (sextload x)) -> (sextload x)
1944  if (N0.getOpcode() == ISD::SEXTLOAD &&
1945      cast<VTSDNode>(N0.getOperand(3))->getVT() <= EVT) {
1946    return N0;
1947  }
1948  // fold (sext_in_reg (setcc x)) -> setcc x iff (setcc x) == 0 or -1
1949  if (N0.getOpcode() == ISD::SETCC &&
1950      TLI.getSetCCResultContents() ==
1951        TargetLowering::ZeroOrNegativeOneSetCCResult)
1952    return N0;
1953  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is zero
1954  if (TLI.MaskedValueIsZero(N0, 1ULL << (EVTBits-1)))
1955    return DAG.getZeroExtendInReg(N0, EVT);
1956  // fold (sext_inreg (extload x)) -> (sextload x)
1957  if (N0.getOpcode() == ISD::EXTLOAD &&
1958      EVT == cast<VTSDNode>(N0.getOperand(3))->getVT() &&
1959      (!AfterLegalize || TLI.isOperationLegal(ISD::SEXTLOAD, EVT))) {
1960    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0),
1961                                       N0.getOperand(1), N0.getOperand(2),
1962                                       EVT);
1963    CombineTo(N, ExtLoad);
1964    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1965    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1966  }
1967  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
1968  if (N0.getOpcode() == ISD::ZEXTLOAD && N0.hasOneUse() &&
1969      EVT == cast<VTSDNode>(N0.getOperand(3))->getVT() &&
1970      (!AfterLegalize || TLI.isOperationLegal(ISD::SEXTLOAD, EVT))) {
1971    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0),
1972                                       N0.getOperand(1), N0.getOperand(2),
1973                                       EVT);
1974    CombineTo(N, ExtLoad);
1975    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1976    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1977  }
1978  return SDOperand();
1979}
1980
1981SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
1982  SDOperand N0 = N->getOperand(0);
1983  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1984  MVT::ValueType VT = N->getValueType(0);
1985
1986  // noop truncate
1987  if (N0.getValueType() == N->getValueType(0))
1988    return N0;
1989  // fold (truncate c1) -> c1
1990  if (N0C)
1991    return DAG.getNode(ISD::TRUNCATE, VT, N0);
1992  // fold (truncate (truncate x)) -> (truncate x)
1993  if (N0.getOpcode() == ISD::TRUNCATE)
1994    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
1995  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
1996  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND){
1997    if (N0.getValueType() < VT)
1998      // if the source is smaller than the dest, we still need an extend
1999      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2000    else if (N0.getValueType() > VT)
2001      // if the source is larger than the dest, than we just need the truncate
2002      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
2003    else
2004      // if the source and dest are the same type, we can drop both the extend
2005      // and the truncate
2006      return N0.getOperand(0);
2007  }
2008  // fold (truncate (load x)) -> (smaller load x)
2009  if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse()) {
2010    assert(MVT::getSizeInBits(N0.getValueType()) > MVT::getSizeInBits(VT) &&
2011           "Cannot truncate to larger type!");
2012    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
2013    // For big endian targets, we need to add an offset to the pointer to load
2014    // the correct bytes.  For little endian systems, we merely need to read
2015    // fewer bytes from the same pointer.
2016    uint64_t PtrOff =
2017      (MVT::getSizeInBits(N0.getValueType()) - MVT::getSizeInBits(VT)) / 8;
2018    SDOperand NewPtr = TLI.isLittleEndian() ? N0.getOperand(1) :
2019      DAG.getNode(ISD::ADD, PtrType, N0.getOperand(1),
2020                  DAG.getConstant(PtrOff, PtrType));
2021    AddToWorkList(NewPtr.Val);
2022    SDOperand Load = DAG.getLoad(VT, N0.getOperand(0), NewPtr,N0.getOperand(2));
2023    AddToWorkList(N);
2024    CombineTo(N0.Val, Load, Load.getValue(1));
2025    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2026  }
2027  return SDOperand();
2028}
2029
2030SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
2031  SDOperand N0 = N->getOperand(0);
2032  MVT::ValueType VT = N->getValueType(0);
2033
2034  // If the input is a constant, let getNode() fold it.
2035  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
2036    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
2037    if (Res.Val != N) return Res;
2038  }
2039
2040  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
2041    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
2042
2043  // fold (conv (load x)) -> (load (conv*)x)
2044  // FIXME: These xforms need to know that the resultant load doesn't need a
2045  // higher alignment than the original!
2046  if (0 && N0.getOpcode() == ISD::LOAD && N0.hasOneUse()) {
2047    SDOperand Load = DAG.getLoad(VT, N0.getOperand(0), N0.getOperand(1),
2048                                 N0.getOperand(2));
2049    AddToWorkList(N);
2050    CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
2051              Load.getValue(1));
2052    return Load;
2053  }
2054
2055  return SDOperand();
2056}
2057
2058SDOperand DAGCombiner::visitVBIT_CONVERT(SDNode *N) {
2059  SDOperand N0 = N->getOperand(0);
2060  MVT::ValueType VT = N->getValueType(0);
2061
2062  // If the input is a VBUILD_VECTOR with all constant elements, fold this now.
2063  // First check to see if this is all constant.
2064  if (N0.getOpcode() == ISD::VBUILD_VECTOR && N0.Val->hasOneUse() &&
2065      VT == MVT::Vector) {
2066    bool isSimple = true;
2067    for (unsigned i = 0, e = N0.getNumOperands()-2; i != e; ++i)
2068      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
2069          N0.getOperand(i).getOpcode() != ISD::Constant &&
2070          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
2071        isSimple = false;
2072        break;
2073      }
2074
2075    MVT::ValueType DestEltVT = cast<VTSDNode>(N->getOperand(2))->getVT();
2076    if (isSimple && !MVT::isVector(DestEltVT)) {
2077      return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(N0.Val, DestEltVT);
2078    }
2079  }
2080
2081  return SDOperand();
2082}
2083
2084/// ConstantFoldVBIT_CONVERTofVBUILD_VECTOR - We know that BV is a vbuild_vector
2085/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
2086/// destination element value type.
2087SDOperand DAGCombiner::
2088ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
2089  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
2090
2091  // If this is already the right type, we're done.
2092  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
2093
2094  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
2095  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
2096
2097  // If this is a conversion of N elements of one type to N elements of another
2098  // type, convert each element.  This handles FP<->INT cases.
2099  if (SrcBitSize == DstBitSize) {
2100    std::vector<SDOperand> Ops;
2101    for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i) {
2102      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
2103      AddToWorkList(Ops.back().Val);
2104    }
2105    Ops.push_back(*(BV->op_end()-2)); // Add num elements.
2106    Ops.push_back(DAG.getValueType(DstEltVT));
2107    return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
2108  }
2109
2110  // Otherwise, we're growing or shrinking the elements.  To avoid having to
2111  // handle annoying details of growing/shrinking FP values, we convert them to
2112  // int first.
2113  if (MVT::isFloatingPoint(SrcEltVT)) {
2114    // Convert the input float vector to a int vector where the elements are the
2115    // same sizes.
2116    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
2117    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
2118    BV = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, IntVT).Val;
2119    SrcEltVT = IntVT;
2120  }
2121
2122  // Now we know the input is an integer vector.  If the output is a FP type,
2123  // convert to integer first, then to FP of the right size.
2124  if (MVT::isFloatingPoint(DstEltVT)) {
2125    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
2126    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
2127    SDNode *Tmp = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, TmpVT).Val;
2128
2129    // Next, convert to FP elements of the same size.
2130    return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(Tmp, DstEltVT);
2131  }
2132
2133  // Okay, we know the src/dst types are both integers of differing types.
2134  // Handling growing first.
2135  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
2136  if (SrcBitSize < DstBitSize) {
2137    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
2138
2139    std::vector<SDOperand> Ops;
2140    for (unsigned i = 0, e = BV->getNumOperands()-2; i != e;
2141         i += NumInputsPerOutput) {
2142      bool isLE = TLI.isLittleEndian();
2143      uint64_t NewBits = 0;
2144      bool EltIsUndef = true;
2145      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
2146        // Shift the previously computed bits over.
2147        NewBits <<= SrcBitSize;
2148        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
2149        if (Op.getOpcode() == ISD::UNDEF) continue;
2150        EltIsUndef = false;
2151
2152        NewBits |= cast<ConstantSDNode>(Op)->getValue();
2153      }
2154
2155      if (EltIsUndef)
2156        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
2157      else
2158        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
2159    }
2160
2161    Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements.
2162    Ops.push_back(DAG.getValueType(DstEltVT));            // Add element size.
2163    return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
2164  }
2165
2166  // Finally, this must be the case where we are shrinking elements: each input
2167  // turns into multiple outputs.
2168  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
2169  std::vector<SDOperand> Ops;
2170  for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i) {
2171    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
2172      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
2173        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
2174      continue;
2175    }
2176    uint64_t OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getValue();
2177
2178    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
2179      unsigned ThisVal = OpVal & ((1ULL << DstBitSize)-1);
2180      OpVal >>= DstBitSize;
2181      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
2182    }
2183
2184    // For big endian targets, swap the order of the pieces of each element.
2185    if (!TLI.isLittleEndian())
2186      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
2187  }
2188  Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements.
2189  Ops.push_back(DAG.getValueType(DstEltVT));            // Add element size.
2190  return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
2191}
2192
2193
2194
2195SDOperand DAGCombiner::visitFADD(SDNode *N) {
2196  SDOperand N0 = N->getOperand(0);
2197  SDOperand N1 = N->getOperand(1);
2198  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2199  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2200  MVT::ValueType VT = N->getValueType(0);
2201
2202  // fold (fadd c1, c2) -> c1+c2
2203  if (N0CFP && N1CFP)
2204    return DAG.getNode(ISD::FADD, VT, N0, N1);
2205  // canonicalize constant to RHS
2206  if (N0CFP && !N1CFP)
2207    return DAG.getNode(ISD::FADD, VT, N1, N0);
2208  // fold (A + (-B)) -> A-B
2209  if (N1.getOpcode() == ISD::FNEG)
2210    return DAG.getNode(ISD::FSUB, VT, N0, N1.getOperand(0));
2211  // fold ((-A) + B) -> B-A
2212  if (N0.getOpcode() == ISD::FNEG)
2213    return DAG.getNode(ISD::FSUB, VT, N1, N0.getOperand(0));
2214  return SDOperand();
2215}
2216
2217SDOperand DAGCombiner::visitFSUB(SDNode *N) {
2218  SDOperand N0 = N->getOperand(0);
2219  SDOperand N1 = N->getOperand(1);
2220  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2221  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2222  MVT::ValueType VT = N->getValueType(0);
2223
2224  // fold (fsub c1, c2) -> c1-c2
2225  if (N0CFP && N1CFP)
2226    return DAG.getNode(ISD::FSUB, VT, N0, N1);
2227  // fold (A-(-B)) -> A+B
2228  if (N1.getOpcode() == ISD::FNEG)
2229    return DAG.getNode(ISD::FADD, VT, N0, N1.getOperand(0));
2230  return SDOperand();
2231}
2232
2233SDOperand DAGCombiner::visitFMUL(SDNode *N) {
2234  SDOperand N0 = N->getOperand(0);
2235  SDOperand N1 = N->getOperand(1);
2236  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2237  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2238  MVT::ValueType VT = N->getValueType(0);
2239
2240  // fold (fmul c1, c2) -> c1*c2
2241  if (N0CFP && N1CFP)
2242    return DAG.getNode(ISD::FMUL, VT, N0, N1);
2243  // canonicalize constant to RHS
2244  if (N0CFP && !N1CFP)
2245    return DAG.getNode(ISD::FMUL, VT, N1, N0);
2246  // fold (fmul X, 2.0) -> (fadd X, X)
2247  if (N1CFP && N1CFP->isExactlyValue(+2.0))
2248    return DAG.getNode(ISD::FADD, VT, N0, N0);
2249  return SDOperand();
2250}
2251
2252SDOperand DAGCombiner::visitFDIV(SDNode *N) {
2253  SDOperand N0 = N->getOperand(0);
2254  SDOperand N1 = N->getOperand(1);
2255  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2256  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2257  MVT::ValueType VT = N->getValueType(0);
2258
2259  // fold (fdiv c1, c2) -> c1/c2
2260  if (N0CFP && N1CFP)
2261    return DAG.getNode(ISD::FDIV, VT, N0, N1);
2262  return SDOperand();
2263}
2264
2265SDOperand DAGCombiner::visitFREM(SDNode *N) {
2266  SDOperand N0 = N->getOperand(0);
2267  SDOperand N1 = N->getOperand(1);
2268  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2269  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2270  MVT::ValueType VT = N->getValueType(0);
2271
2272  // fold (frem c1, c2) -> fmod(c1,c2)
2273  if (N0CFP && N1CFP)
2274    return DAG.getNode(ISD::FREM, VT, N0, N1);
2275  return SDOperand();
2276}
2277
2278SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
2279  SDOperand N0 = N->getOperand(0);
2280  SDOperand N1 = N->getOperand(1);
2281  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2282  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2283  MVT::ValueType VT = N->getValueType(0);
2284
2285  if (N0CFP && N1CFP)  // Constant fold
2286    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
2287
2288  if (N1CFP) {
2289    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
2290    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
2291    union {
2292      double d;
2293      int64_t i;
2294    } u;
2295    u.d = N1CFP->getValue();
2296    if (u.i >= 0)
2297      return DAG.getNode(ISD::FABS, VT, N0);
2298    else
2299      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
2300  }
2301
2302  // copysign(fabs(x), y) -> copysign(x, y)
2303  // copysign(fneg(x), y) -> copysign(x, y)
2304  // copysign(copysign(x,z), y) -> copysign(x, y)
2305  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
2306      N0.getOpcode() == ISD::FCOPYSIGN)
2307    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
2308
2309  // copysign(x, abs(y)) -> abs(x)
2310  if (N1.getOpcode() == ISD::FABS)
2311    return DAG.getNode(ISD::FABS, VT, N0);
2312
2313  // copysign(x, copysign(y,z)) -> copysign(x, z)
2314  if (N1.getOpcode() == ISD::FCOPYSIGN)
2315    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
2316
2317  // copysign(x, fp_extend(y)) -> copysign(x, y)
2318  // copysign(x, fp_round(y)) -> copysign(x, y)
2319  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
2320    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
2321
2322  return SDOperand();
2323}
2324
2325
2326
2327SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
2328  SDOperand N0 = N->getOperand(0);
2329  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2330  MVT::ValueType VT = N->getValueType(0);
2331
2332  // fold (sint_to_fp c1) -> c1fp
2333  if (N0C)
2334    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
2335  return SDOperand();
2336}
2337
2338SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
2339  SDOperand N0 = N->getOperand(0);
2340  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2341  MVT::ValueType VT = N->getValueType(0);
2342
2343  // fold (uint_to_fp c1) -> c1fp
2344  if (N0C)
2345    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
2346  return SDOperand();
2347}
2348
2349SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
2350  SDOperand N0 = N->getOperand(0);
2351  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2352  MVT::ValueType VT = N->getValueType(0);
2353
2354  // fold (fp_to_sint c1fp) -> c1
2355  if (N0CFP)
2356    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
2357  return SDOperand();
2358}
2359
2360SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
2361  SDOperand N0 = N->getOperand(0);
2362  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2363  MVT::ValueType VT = N->getValueType(0);
2364
2365  // fold (fp_to_uint c1fp) -> c1
2366  if (N0CFP)
2367    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
2368  return SDOperand();
2369}
2370
2371SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
2372  SDOperand N0 = N->getOperand(0);
2373  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2374  MVT::ValueType VT = N->getValueType(0);
2375
2376  // fold (fp_round c1fp) -> c1fp
2377  if (N0CFP)
2378    return DAG.getNode(ISD::FP_ROUND, VT, N0);
2379
2380  // fold (fp_round (fp_extend x)) -> x
2381  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
2382    return N0.getOperand(0);
2383
2384  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
2385  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
2386    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0));
2387    AddToWorkList(Tmp.Val);
2388    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
2389  }
2390
2391  return SDOperand();
2392}
2393
2394SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
2395  SDOperand N0 = N->getOperand(0);
2396  MVT::ValueType VT = N->getValueType(0);
2397  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2398  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2399
2400  // fold (fp_round_inreg c1fp) -> c1fp
2401  if (N0CFP) {
2402    SDOperand Round = DAG.getConstantFP(N0CFP->getValue(), EVT);
2403    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
2404  }
2405  return SDOperand();
2406}
2407
2408SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
2409  SDOperand N0 = N->getOperand(0);
2410  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2411  MVT::ValueType VT = N->getValueType(0);
2412
2413  // fold (fp_extend c1fp) -> c1fp
2414  if (N0CFP)
2415    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
2416  return SDOperand();
2417}
2418
2419SDOperand DAGCombiner::visitFNEG(SDNode *N) {
2420  SDOperand N0 = N->getOperand(0);
2421  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2422  MVT::ValueType VT = N->getValueType(0);
2423
2424  // fold (fneg c1) -> -c1
2425  if (N0CFP)
2426    return DAG.getNode(ISD::FNEG, VT, N0);
2427  // fold (fneg (sub x, y)) -> (sub y, x)
2428  if (N0.getOpcode() == ISD::SUB)
2429    return DAG.getNode(ISD::SUB, VT, N0.getOperand(1), N0.getOperand(0));
2430  // fold (fneg (fneg x)) -> x
2431  if (N0.getOpcode() == ISD::FNEG)
2432    return N0.getOperand(0);
2433  return SDOperand();
2434}
2435
2436SDOperand DAGCombiner::visitFABS(SDNode *N) {
2437  SDOperand N0 = N->getOperand(0);
2438  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2439  MVT::ValueType VT = N->getValueType(0);
2440
2441  // fold (fabs c1) -> fabs(c1)
2442  if (N0CFP)
2443    return DAG.getNode(ISD::FABS, VT, N0);
2444  // fold (fabs (fabs x)) -> (fabs x)
2445  if (N0.getOpcode() == ISD::FABS)
2446    return N->getOperand(0);
2447  // fold (fabs (fneg x)) -> (fabs x)
2448  // fold (fabs (fcopysign x, y)) -> (fabs x)
2449  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
2450    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
2451
2452  return SDOperand();
2453}
2454
2455SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
2456  SDOperand Chain = N->getOperand(0);
2457  SDOperand N1 = N->getOperand(1);
2458  SDOperand N2 = N->getOperand(2);
2459  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2460
2461  // never taken branch, fold to chain
2462  if (N1C && N1C->isNullValue())
2463    return Chain;
2464  // unconditional branch
2465  if (N1C && N1C->getValue() == 1)
2466    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
2467  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
2468  // on the target.
2469  if (N1.getOpcode() == ISD::SETCC &&
2470      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
2471    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
2472                       N1.getOperand(0), N1.getOperand(1), N2);
2473  }
2474  return SDOperand();
2475}
2476
2477// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
2478//
2479SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
2480  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
2481  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
2482
2483  // Use SimplifySetCC  to simplify SETCC's.
2484  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
2485  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
2486
2487  // fold br_cc true, dest -> br dest (unconditional branch)
2488  if (SCCC && SCCC->getValue())
2489    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
2490                       N->getOperand(4));
2491  // fold br_cc false, dest -> unconditional fall through
2492  if (SCCC && SCCC->isNullValue())
2493    return N->getOperand(0);
2494  // fold to a simpler setcc
2495  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
2496    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
2497                       Simp.getOperand(2), Simp.getOperand(0),
2498                       Simp.getOperand(1), N->getOperand(4));
2499  return SDOperand();
2500}
2501
2502SDOperand DAGCombiner::visitLOAD(SDNode *N) {
2503  SDOperand Chain    = N->getOperand(0);
2504  SDOperand Ptr      = N->getOperand(1);
2505  SDOperand SrcValue = N->getOperand(2);
2506
2507  // If there are no uses of the loaded value, change uses of the chain value
2508  // into uses of the chain input (i.e. delete the dead load).
2509  if (N->hasNUsesOfValue(0, 0))
2510    return CombineTo(N, DAG.getNode(ISD::UNDEF, N->getValueType(0)), Chain);
2511
2512  // If this load is directly stored, replace the load value with the stored
2513  // value.
2514  // TODO: Handle store large -> read small portion.
2515  // TODO: Handle TRUNCSTORE/EXTLOAD
2516  if (Chain.getOpcode() == ISD::STORE && Chain.getOperand(2) == Ptr &&
2517      Chain.getOperand(1).getValueType() == N->getValueType(0))
2518    return CombineTo(N, Chain.getOperand(1), Chain);
2519
2520  return SDOperand();
2521}
2522
2523/// visitXEXTLOAD - Handle EXTLOAD/ZEXTLOAD/SEXTLOAD.
2524SDOperand DAGCombiner::visitXEXTLOAD(SDNode *N) {
2525  SDOperand Chain    = N->getOperand(0);
2526  SDOperand Ptr      = N->getOperand(1);
2527  SDOperand SrcValue = N->getOperand(2);
2528  SDOperand EVT      = N->getOperand(3);
2529
2530  // If there are no uses of the loaded value, change uses of the chain value
2531  // into uses of the chain input (i.e. delete the dead load).
2532  if (N->hasNUsesOfValue(0, 0))
2533    return CombineTo(N, DAG.getNode(ISD::UNDEF, N->getValueType(0)), Chain);
2534
2535  return SDOperand();
2536}
2537
2538SDOperand DAGCombiner::visitSTORE(SDNode *N) {
2539  SDOperand Chain    = N->getOperand(0);
2540  SDOperand Value    = N->getOperand(1);
2541  SDOperand Ptr      = N->getOperand(2);
2542  SDOperand SrcValue = N->getOperand(3);
2543
2544  // If this is a store that kills a previous store, remove the previous store.
2545  if (Chain.getOpcode() == ISD::STORE && Chain.getOperand(2) == Ptr &&
2546      Chain.Val->hasOneUse() /* Avoid introducing DAG cycles */ &&
2547      // Make sure that these stores are the same value type:
2548      // FIXME: we really care that the second store is >= size of the first.
2549      Value.getValueType() == Chain.getOperand(1).getValueType()) {
2550    // Create a new store of Value that replaces both stores.
2551    SDNode *PrevStore = Chain.Val;
2552    if (PrevStore->getOperand(1) == Value) // Same value multiply stored.
2553      return Chain;
2554    SDOperand NewStore = DAG.getNode(ISD::STORE, MVT::Other,
2555                                     PrevStore->getOperand(0), Value, Ptr,
2556                                     SrcValue);
2557    CombineTo(N, NewStore);                 // Nuke this store.
2558    CombineTo(PrevStore, NewStore);  // Nuke the previous store.
2559    return SDOperand(N, 0);
2560  }
2561
2562  // If this is a store of a bit convert, store the input value.
2563  // FIXME: This needs to know that the resultant store does not need a
2564  // higher alignment than the original.
2565  if (0 && Value.getOpcode() == ISD::BIT_CONVERT)
2566    return DAG.getNode(ISD::STORE, MVT::Other, Chain, Value.getOperand(0),
2567                       Ptr, SrcValue);
2568
2569  return SDOperand();
2570}
2571
2572SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
2573  SDOperand InVec = N->getOperand(0);
2574  SDOperand InVal = N->getOperand(1);
2575  SDOperand EltNo = N->getOperand(2);
2576
2577  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
2578  // vector with the inserted element.
2579  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
2580    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
2581    std::vector<SDOperand> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
2582    if (Elt < Ops.size())
2583      Ops[Elt] = InVal;
2584    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(), Ops);
2585  }
2586
2587  return SDOperand();
2588}
2589
2590SDOperand DAGCombiner::visitVINSERT_VECTOR_ELT(SDNode *N) {
2591  SDOperand InVec = N->getOperand(0);
2592  SDOperand InVal = N->getOperand(1);
2593  SDOperand EltNo = N->getOperand(2);
2594  SDOperand NumElts = N->getOperand(3);
2595  SDOperand EltType = N->getOperand(4);
2596
2597  // If the invec is a VBUILD_VECTOR and if EltNo is a constant, build a new
2598  // vector with the inserted element.
2599  if (InVec.getOpcode() == ISD::VBUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
2600    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
2601    std::vector<SDOperand> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
2602    if (Elt < Ops.size()-2)
2603      Ops[Elt] = InVal;
2604    return DAG.getNode(ISD::VBUILD_VECTOR, InVec.getValueType(), Ops);
2605  }
2606
2607  return SDOperand();
2608}
2609
2610SDOperand DAGCombiner::visitVBUILD_VECTOR(SDNode *N) {
2611  unsigned NumInScalars = N->getNumOperands()-2;
2612  SDOperand NumElts = N->getOperand(NumInScalars);
2613  SDOperand EltType = N->getOperand(NumInScalars+1);
2614
2615  // Check to see if this is a VBUILD_VECTOR of a bunch of VEXTRACT_VECTOR_ELT
2616  // operations.  If so, and if the EXTRACT_ELT vector inputs come from at most
2617  // two distinct vectors, turn this into a shuffle node.
2618  SDOperand VecIn1, VecIn2;
2619  for (unsigned i = 0; i != NumInScalars; ++i) {
2620    // Ignore undef inputs.
2621    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
2622
2623    // If this input is something other than a VEXTRACT_VECTOR_ELT with a
2624    // constant index, bail out.
2625    if (N->getOperand(i).getOpcode() != ISD::VEXTRACT_VECTOR_ELT ||
2626        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
2627      VecIn1 = VecIn2 = SDOperand(0, 0);
2628      break;
2629    }
2630
2631    // If the input vector type disagrees with the result of the vbuild_vector,
2632    // we can't make a shuffle.
2633    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
2634    if (*(ExtractedFromVec.Val->op_end()-2) != NumElts ||
2635        *(ExtractedFromVec.Val->op_end()-1) != EltType) {
2636      VecIn1 = VecIn2 = SDOperand(0, 0);
2637      break;
2638    }
2639
2640    // Otherwise, remember this.  We allow up to two distinct input vectors.
2641    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
2642      continue;
2643
2644    if (VecIn1.Val == 0) {
2645      VecIn1 = ExtractedFromVec;
2646    } else if (VecIn2.Val == 0) {
2647      VecIn2 = ExtractedFromVec;
2648    } else {
2649      // Too many inputs.
2650      VecIn1 = VecIn2 = SDOperand(0, 0);
2651      break;
2652    }
2653  }
2654
2655  // If everything is good, we can make a shuffle operation.
2656  if (VecIn1.Val) {
2657    std::vector<SDOperand> BuildVecIndices;
2658    for (unsigned i = 0; i != NumInScalars; ++i) {
2659      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
2660        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
2661        continue;
2662      }
2663
2664      SDOperand Extract = N->getOperand(i);
2665
2666      // If extracting from the first vector, just use the index directly.
2667      if (Extract.getOperand(0) == VecIn1) {
2668        BuildVecIndices.push_back(Extract.getOperand(1));
2669        continue;
2670      }
2671
2672      // Otherwise, use InIdx + VecSize
2673      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
2674      BuildVecIndices.push_back(DAG.getConstant(Idx+NumInScalars, MVT::i32));
2675    }
2676
2677    // Add count and size info.
2678    BuildVecIndices.push_back(NumElts);
2679    BuildVecIndices.push_back(DAG.getValueType(MVT::i32));
2680
2681    // Return the new VVECTOR_SHUFFLE node.
2682    std::vector<SDOperand> Ops;
2683    Ops.push_back(VecIn1);
2684    if (VecIn2.Val) {
2685      Ops.push_back(VecIn2);
2686    } else {
2687       // Use an undef vbuild_vector as input for the second operand.
2688      std::vector<SDOperand> UnOps(NumInScalars,
2689                                   DAG.getNode(ISD::UNDEF,
2690                                           cast<VTSDNode>(EltType)->getVT()));
2691      UnOps.push_back(NumElts);
2692      UnOps.push_back(EltType);
2693      Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, UnOps));
2694      AddToWorkList(Ops.back().Val);
2695    }
2696    Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR,MVT::Vector, BuildVecIndices));
2697    Ops.push_back(NumElts);
2698    Ops.push_back(EltType);
2699    return DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector, Ops);
2700  }
2701
2702  return SDOperand();
2703}
2704
2705SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
2706  SDOperand ShufMask = N->getOperand(2);
2707  unsigned NumElts = ShufMask.getNumOperands();
2708
2709  // If the shuffle mask is an identity operation on the LHS, return the LHS.
2710  bool isIdentity = true;
2711  for (unsigned i = 0; i != NumElts; ++i) {
2712    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
2713        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
2714      isIdentity = false;
2715      break;
2716    }
2717  }
2718  if (isIdentity) return N->getOperand(0);
2719
2720  // If the shuffle mask is an identity operation on the RHS, return the RHS.
2721  isIdentity = true;
2722  for (unsigned i = 0; i != NumElts; ++i) {
2723    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
2724        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
2725      isIdentity = false;
2726      break;
2727    }
2728  }
2729  if (isIdentity) return N->getOperand(1);
2730
2731  // If the LHS and the RHS are the same node, turn the RHS into an undef.
2732  if (N->getOperand(0) == N->getOperand(1)) {
2733    if (N->getOperand(0).getOpcode() == ISD::UNDEF)
2734      return DAG.getNode(ISD::UNDEF, N->getValueType(0));
2735    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
2736    // first operand.
2737    std::vector<SDOperand> MappedOps;
2738    for (unsigned i = 0, e = ShufMask.getNumOperands(); i != e; ++i) {
2739      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
2740          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
2741        MappedOps.push_back(ShufMask.getOperand(i));
2742      } else {
2743        unsigned NewIdx =
2744           cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
2745        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
2746      }
2747    }
2748    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
2749                           MappedOps);
2750    AddToWorkList(ShufMask.Val);
2751    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
2752                       N->getOperand(0),
2753                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
2754                       ShufMask);
2755  }
2756
2757  return SDOperand();
2758}
2759
2760SDOperand DAGCombiner::visitVVECTOR_SHUFFLE(SDNode *N) {
2761  SDOperand ShufMask = N->getOperand(2);
2762  unsigned NumElts = ShufMask.getNumOperands()-2;
2763
2764  // If the shuffle mask is an identity operation on the LHS, return the LHS.
2765  bool isIdentity = true;
2766  for (unsigned i = 0; i != NumElts; ++i) {
2767    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
2768        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
2769      isIdentity = false;
2770      break;
2771    }
2772  }
2773  if (isIdentity) return N->getOperand(0);
2774
2775  // If the shuffle mask is an identity operation on the RHS, return the RHS.
2776  isIdentity = true;
2777  for (unsigned i = 0; i != NumElts; ++i) {
2778    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
2779        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
2780      isIdentity = false;
2781      break;
2782    }
2783  }
2784  if (isIdentity) return N->getOperand(1);
2785
2786  // If the LHS and the RHS are the same node, turn the RHS into an undef.
2787  if (N->getOperand(0) == N->getOperand(1)) {
2788    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
2789    // first operand.
2790    std::vector<SDOperand> MappedOps;
2791    for (unsigned i = 0; i != NumElts; ++i) {
2792      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
2793          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
2794        MappedOps.push_back(ShufMask.getOperand(i));
2795      } else {
2796        unsigned NewIdx =
2797          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
2798        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
2799      }
2800    }
2801    // Add the type/#elts values.
2802    MappedOps.push_back(ShufMask.getOperand(NumElts));
2803    MappedOps.push_back(ShufMask.getOperand(NumElts+1));
2804
2805    ShufMask = DAG.getNode(ISD::VBUILD_VECTOR, ShufMask.getValueType(),
2806                           MappedOps);
2807    AddToWorkList(ShufMask.Val);
2808
2809    // Build the undef vector.
2810    SDOperand UDVal = DAG.getNode(ISD::UNDEF, MappedOps[0].getValueType());
2811    for (unsigned i = 0; i != NumElts; ++i)
2812      MappedOps[i] = UDVal;
2813    MappedOps[NumElts  ] = *(N->getOperand(0).Val->op_end()-2);
2814    MappedOps[NumElts+1] = *(N->getOperand(0).Val->op_end()-1);
2815    UDVal = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, MappedOps);
2816
2817    return DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
2818                       N->getOperand(0), UDVal, ShufMask,
2819                       MappedOps[NumElts], MappedOps[NumElts+1]);
2820  }
2821
2822  return SDOperand();
2823}
2824
2825/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
2826/// a VAND to a vector_shuffle with the destination vector and a zero vector.
2827/// e.g. VAND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
2828///      vector_shuffle V, Zero, <0, 4, 2, 4>
2829SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
2830  SDOperand LHS = N->getOperand(0);
2831  SDOperand RHS = N->getOperand(1);
2832  if (N->getOpcode() == ISD::VAND) {
2833    SDOperand DstVecSize = *(LHS.Val->op_end()-2);
2834    SDOperand DstVecEVT  = *(LHS.Val->op_end()-1);
2835    if (RHS.getOpcode() == ISD::VBIT_CONVERT)
2836      RHS = RHS.getOperand(0);
2837    if (RHS.getOpcode() == ISD::VBUILD_VECTOR) {
2838      std::vector<SDOperand> IdxOps;
2839      unsigned NumOps = RHS.getNumOperands();
2840      unsigned NumElts = NumOps-2;
2841      MVT::ValueType EVT = cast<VTSDNode>(RHS.getOperand(NumOps-1))->getVT();
2842      for (unsigned i = 0; i != NumElts; ++i) {
2843        SDOperand Elt = RHS.getOperand(i);
2844        if (!isa<ConstantSDNode>(Elt))
2845          return SDOperand();
2846        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
2847          IdxOps.push_back(DAG.getConstant(i, EVT));
2848        else if (cast<ConstantSDNode>(Elt)->isNullValue())
2849          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
2850        else
2851          return SDOperand();
2852      }
2853
2854      // Let's see if the target supports this vector_shuffle.
2855      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
2856        return SDOperand();
2857
2858      // Return the new VVECTOR_SHUFFLE node.
2859      SDOperand NumEltsNode = DAG.getConstant(NumElts, MVT::i32);
2860      SDOperand EVTNode = DAG.getValueType(EVT);
2861      std::vector<SDOperand> Ops;
2862      LHS = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, LHS, NumEltsNode, EVTNode);
2863      Ops.push_back(LHS);
2864      AddToWorkList(LHS.Val);
2865      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
2866      ZeroOps.push_back(NumEltsNode);
2867      ZeroOps.push_back(EVTNode);
2868      Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, ZeroOps));
2869      IdxOps.push_back(NumEltsNode);
2870      IdxOps.push_back(EVTNode);
2871      Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, IdxOps));
2872      Ops.push_back(NumEltsNode);
2873      Ops.push_back(EVTNode);
2874      SDOperand Result = DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector, Ops);
2875      if (NumEltsNode != DstVecSize || EVTNode != DstVecEVT) {
2876        Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
2877                             DstVecSize, DstVecEVT);
2878      }
2879      return Result;
2880    }
2881  }
2882  return SDOperand();
2883}
2884
2885/// visitVBinOp - Visit a binary vector operation, like VADD.  IntOp indicates
2886/// the scalar operation of the vop if it is operating on an integer vector
2887/// (e.g. ADD) and FPOp indicates the FP version (e.g. FADD).
2888SDOperand DAGCombiner::visitVBinOp(SDNode *N, ISD::NodeType IntOp,
2889                                   ISD::NodeType FPOp) {
2890  MVT::ValueType EltType = cast<VTSDNode>(*(N->op_end()-1))->getVT();
2891  ISD::NodeType ScalarOp = MVT::isInteger(EltType) ? IntOp : FPOp;
2892  SDOperand LHS = N->getOperand(0);
2893  SDOperand RHS = N->getOperand(1);
2894  SDOperand Shuffle = XformToShuffleWithZero(N);
2895  if (Shuffle.Val) return Shuffle;
2896
2897  // If the LHS and RHS are VBUILD_VECTOR nodes, see if we can constant fold
2898  // this operation.
2899  if (LHS.getOpcode() == ISD::VBUILD_VECTOR &&
2900      RHS.getOpcode() == ISD::VBUILD_VECTOR) {
2901    std::vector<SDOperand> Ops;
2902    for (unsigned i = 0, e = LHS.getNumOperands()-2; i != e; ++i) {
2903      SDOperand LHSOp = LHS.getOperand(i);
2904      SDOperand RHSOp = RHS.getOperand(i);
2905      // If these two elements can't be folded, bail out.
2906      if ((LHSOp.getOpcode() != ISD::UNDEF &&
2907           LHSOp.getOpcode() != ISD::Constant &&
2908           LHSOp.getOpcode() != ISD::ConstantFP) ||
2909          (RHSOp.getOpcode() != ISD::UNDEF &&
2910           RHSOp.getOpcode() != ISD::Constant &&
2911           RHSOp.getOpcode() != ISD::ConstantFP))
2912        break;
2913      Ops.push_back(DAG.getNode(ScalarOp, EltType, LHSOp, RHSOp));
2914      AddToWorkList(Ops.back().Val);
2915      assert((Ops.back().getOpcode() == ISD::UNDEF ||
2916              Ops.back().getOpcode() == ISD::Constant ||
2917              Ops.back().getOpcode() == ISD::ConstantFP) &&
2918             "Scalar binop didn't fold!");
2919    }
2920
2921    if (Ops.size() == LHS.getNumOperands()-2) {
2922      Ops.push_back(*(LHS.Val->op_end()-2));
2923      Ops.push_back(*(LHS.Val->op_end()-1));
2924      return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
2925    }
2926  }
2927
2928  return SDOperand();
2929}
2930
2931SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
2932  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
2933
2934  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
2935                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
2936  // If we got a simplified select_cc node back from SimplifySelectCC, then
2937  // break it down into a new SETCC node, and a new SELECT node, and then return
2938  // the SELECT node, since we were called with a SELECT node.
2939  if (SCC.Val) {
2940    // Check to see if we got a select_cc back (to turn into setcc/select).
2941    // Otherwise, just return whatever node we got back, like fabs.
2942    if (SCC.getOpcode() == ISD::SELECT_CC) {
2943      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
2944                                    SCC.getOperand(0), SCC.getOperand(1),
2945                                    SCC.getOperand(4));
2946      AddToWorkList(SETCC.Val);
2947      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
2948                         SCC.getOperand(3), SETCC);
2949    }
2950    return SCC;
2951  }
2952  return SDOperand();
2953}
2954
2955/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
2956/// are the two values being selected between, see if we can simplify the
2957/// select.
2958///
2959bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
2960                                    SDOperand RHS) {
2961
2962  // If this is a select from two identical things, try to pull the operation
2963  // through the select.
2964  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
2965#if 0
2966    std::cerr << "SELECT: ["; LHS.Val->dump();
2967    std::cerr << "] ["; RHS.Val->dump();
2968    std::cerr << "]\n";
2969#endif
2970
2971    // If this is a load and the token chain is identical, replace the select
2972    // of two loads with a load through a select of the address to load from.
2973    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
2974    // constants have been dropped into the constant pool.
2975    if ((LHS.getOpcode() == ISD::LOAD ||
2976         LHS.getOpcode() == ISD::EXTLOAD ||
2977         LHS.getOpcode() == ISD::ZEXTLOAD ||
2978         LHS.getOpcode() == ISD::SEXTLOAD) &&
2979        // Token chains must be identical.
2980        LHS.getOperand(0) == RHS.getOperand(0) &&
2981        // If this is an EXTLOAD, the VT's must match.
2982        (LHS.getOpcode() == ISD::LOAD ||
2983         LHS.getOperand(3) == RHS.getOperand(3))) {
2984      // FIXME: this conflates two src values, discarding one.  This is not
2985      // the right thing to do, but nothing uses srcvalues now.  When they do,
2986      // turn SrcValue into a list of locations.
2987      SDOperand Addr;
2988      if (TheSelect->getOpcode() == ISD::SELECT)
2989        Addr = DAG.getNode(ISD::SELECT, LHS.getOperand(1).getValueType(),
2990                           TheSelect->getOperand(0), LHS.getOperand(1),
2991                           RHS.getOperand(1));
2992      else
2993        Addr = DAG.getNode(ISD::SELECT_CC, LHS.getOperand(1).getValueType(),
2994                           TheSelect->getOperand(0),
2995                           TheSelect->getOperand(1),
2996                           LHS.getOperand(1), RHS.getOperand(1),
2997                           TheSelect->getOperand(4));
2998
2999      SDOperand Load;
3000      if (LHS.getOpcode() == ISD::LOAD)
3001        Load = DAG.getLoad(TheSelect->getValueType(0), LHS.getOperand(0),
3002                           Addr, LHS.getOperand(2));
3003      else
3004        Load = DAG.getExtLoad(LHS.getOpcode(), TheSelect->getValueType(0),
3005                              LHS.getOperand(0), Addr, LHS.getOperand(2),
3006                              cast<VTSDNode>(LHS.getOperand(3))->getVT());
3007      // Users of the select now use the result of the load.
3008      CombineTo(TheSelect, Load);
3009
3010      // Users of the old loads now use the new load's chain.  We know the
3011      // old-load value is dead now.
3012      CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
3013      CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
3014      return true;
3015    }
3016  }
3017
3018  return false;
3019}
3020
3021SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
3022                                        SDOperand N2, SDOperand N3,
3023                                        ISD::CondCode CC) {
3024
3025  MVT::ValueType VT = N2.getValueType();
3026  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
3027  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
3028  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
3029  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
3030
3031  // Determine if the condition we're dealing with is constant
3032  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
3033  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
3034
3035  // fold select_cc true, x, y -> x
3036  if (SCCC && SCCC->getValue())
3037    return N2;
3038  // fold select_cc false, x, y -> y
3039  if (SCCC && SCCC->getValue() == 0)
3040    return N3;
3041
3042  // Check to see if we can simplify the select into an fabs node
3043  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
3044    // Allow either -0.0 or 0.0
3045    if (CFP->getValue() == 0.0) {
3046      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
3047      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
3048          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
3049          N2 == N3.getOperand(0))
3050        return DAG.getNode(ISD::FABS, VT, N0);
3051
3052      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
3053      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
3054          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
3055          N2.getOperand(0) == N3)
3056        return DAG.getNode(ISD::FABS, VT, N3);
3057    }
3058  }
3059
3060  // Check to see if we can perform the "gzip trick", transforming
3061  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
3062  if (N1C && N1C->isNullValue() && N3C && N3C->isNullValue() &&
3063      MVT::isInteger(N0.getValueType()) &&
3064      MVT::isInteger(N2.getValueType()) && CC == ISD::SETLT) {
3065    MVT::ValueType XType = N0.getValueType();
3066    MVT::ValueType AType = N2.getValueType();
3067    if (XType >= AType) {
3068      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
3069      // single-bit constant.
3070      if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
3071        unsigned ShCtV = Log2_64(N2C->getValue());
3072        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
3073        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
3074        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
3075        AddToWorkList(Shift.Val);
3076        if (XType > AType) {
3077          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
3078          AddToWorkList(Shift.Val);
3079        }
3080        return DAG.getNode(ISD::AND, AType, Shift, N2);
3081      }
3082      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
3083                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
3084                                                    TLI.getShiftAmountTy()));
3085      AddToWorkList(Shift.Val);
3086      if (XType > AType) {
3087        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
3088        AddToWorkList(Shift.Val);
3089      }
3090      return DAG.getNode(ISD::AND, AType, Shift, N2);
3091    }
3092  }
3093
3094  // fold select C, 16, 0 -> shl C, 4
3095  if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
3096      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
3097    // Get a SetCC of the condition
3098    // FIXME: Should probably make sure that setcc is legal if we ever have a
3099    // target where it isn't.
3100    SDOperand Temp, SCC;
3101    // cast from setcc result type to select result type
3102    if (AfterLegalize) {
3103      SCC  = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
3104      Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
3105    } else {
3106      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
3107      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
3108    }
3109    AddToWorkList(SCC.Val);
3110    AddToWorkList(Temp.Val);
3111    // shl setcc result by log2 n2c
3112    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
3113                       DAG.getConstant(Log2_64(N2C->getValue()),
3114                                       TLI.getShiftAmountTy()));
3115  }
3116
3117  // Check to see if this is the equivalent of setcc
3118  // FIXME: Turn all of these into setcc if setcc if setcc is legal
3119  // otherwise, go ahead with the folds.
3120  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
3121    MVT::ValueType XType = N0.getValueType();
3122    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
3123      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
3124      if (Res.getValueType() != VT)
3125        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
3126      return Res;
3127    }
3128
3129    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
3130    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
3131        TLI.isOperationLegal(ISD::CTLZ, XType)) {
3132      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
3133      return DAG.getNode(ISD::SRL, XType, Ctlz,
3134                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
3135                                         TLI.getShiftAmountTy()));
3136    }
3137    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
3138    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
3139      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
3140                                    N0);
3141      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
3142                                    DAG.getConstant(~0ULL, XType));
3143      return DAG.getNode(ISD::SRL, XType,
3144                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
3145                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
3146                                         TLI.getShiftAmountTy()));
3147    }
3148    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
3149    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
3150      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
3151                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
3152                                                   TLI.getShiftAmountTy()));
3153      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
3154    }
3155  }
3156
3157  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
3158  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
3159  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
3160      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) {
3161    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0))) {
3162      MVT::ValueType XType = N0.getValueType();
3163      if (SubC->isNullValue() && MVT::isInteger(XType)) {
3164        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
3165                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
3166                                                    TLI.getShiftAmountTy()));
3167        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
3168        AddToWorkList(Shift.Val);
3169        AddToWorkList(Add.Val);
3170        return DAG.getNode(ISD::XOR, XType, Add, Shift);
3171      }
3172    }
3173  }
3174
3175  return SDOperand();
3176}
3177
3178SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
3179                                     SDOperand N1, ISD::CondCode Cond,
3180                                     bool foldBooleans) {
3181  // These setcc operations always fold.
3182  switch (Cond) {
3183  default: break;
3184  case ISD::SETFALSE:
3185  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
3186  case ISD::SETTRUE:
3187  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
3188  }
3189
3190  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
3191    uint64_t C1 = N1C->getValue();
3192    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val)) {
3193      uint64_t C0 = N0C->getValue();
3194
3195      // Sign extend the operands if required
3196      if (ISD::isSignedIntSetCC(Cond)) {
3197        C0 = N0C->getSignExtended();
3198        C1 = N1C->getSignExtended();
3199      }
3200
3201      switch (Cond) {
3202      default: assert(0 && "Unknown integer setcc!");
3203      case ISD::SETEQ:  return DAG.getConstant(C0 == C1, VT);
3204      case ISD::SETNE:  return DAG.getConstant(C0 != C1, VT);
3205      case ISD::SETULT: return DAG.getConstant(C0 <  C1, VT);
3206      case ISD::SETUGT: return DAG.getConstant(C0 >  C1, VT);
3207      case ISD::SETULE: return DAG.getConstant(C0 <= C1, VT);
3208      case ISD::SETUGE: return DAG.getConstant(C0 >= C1, VT);
3209      case ISD::SETLT:  return DAG.getConstant((int64_t)C0 <  (int64_t)C1, VT);
3210      case ISD::SETGT:  return DAG.getConstant((int64_t)C0 >  (int64_t)C1, VT);
3211      case ISD::SETLE:  return DAG.getConstant((int64_t)C0 <= (int64_t)C1, VT);
3212      case ISD::SETGE:  return DAG.getConstant((int64_t)C0 >= (int64_t)C1, VT);
3213      }
3214    } else {
3215      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3216      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3217        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
3218
3219        // If the comparison constant has bits in the upper part, the
3220        // zero-extended value could never match.
3221        if (C1 & (~0ULL << InSize)) {
3222          unsigned VSize = MVT::getSizeInBits(N0.getValueType());
3223          switch (Cond) {
3224          case ISD::SETUGT:
3225          case ISD::SETUGE:
3226          case ISD::SETEQ: return DAG.getConstant(0, VT);
3227          case ISD::SETULT:
3228          case ISD::SETULE:
3229          case ISD::SETNE: return DAG.getConstant(1, VT);
3230          case ISD::SETGT:
3231          case ISD::SETGE:
3232            // True if the sign bit of C1 is set.
3233            return DAG.getConstant((C1 & (1ULL << VSize)) != 0, VT);
3234          case ISD::SETLT:
3235          case ISD::SETLE:
3236            // True if the sign bit of C1 isn't set.
3237            return DAG.getConstant((C1 & (1ULL << VSize)) == 0, VT);
3238          default:
3239            break;
3240          }
3241        }
3242
3243        // Otherwise, we can perform the comparison with the low bits.
3244        switch (Cond) {
3245        case ISD::SETEQ:
3246        case ISD::SETNE:
3247        case ISD::SETUGT:
3248        case ISD::SETUGE:
3249        case ISD::SETULT:
3250        case ISD::SETULE:
3251          return DAG.getSetCC(VT, N0.getOperand(0),
3252                          DAG.getConstant(C1, N0.getOperand(0).getValueType()),
3253                          Cond);
3254        default:
3255          break;   // todo, be more careful with signed comparisons
3256        }
3257      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3258                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3259        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3260        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
3261        MVT::ValueType ExtDstTy = N0.getValueType();
3262        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
3263
3264        // If the extended part has any inconsistent bits, it cannot ever
3265        // compare equal.  In other words, they have to be all ones or all
3266        // zeros.
3267        uint64_t ExtBits =
3268          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
3269        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
3270          return DAG.getConstant(Cond == ISD::SETNE, VT);
3271
3272        SDOperand ZextOp;
3273        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
3274        if (Op0Ty == ExtSrcTy) {
3275          ZextOp = N0.getOperand(0);
3276        } else {
3277          int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
3278          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
3279                               DAG.getConstant(Imm, Op0Ty));
3280        }
3281        AddToWorkList(ZextOp.Val);
3282        // Otherwise, make this a use of a zext.
3283        return DAG.getSetCC(VT, ZextOp,
3284                            DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
3285                                            ExtDstTy),
3286                            Cond);
3287      } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
3288                 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3289                 (N0.getOpcode() == ISD::XOR ||
3290                  (N0.getOpcode() == ISD::AND &&
3291                   N0.getOperand(0).getOpcode() == ISD::XOR &&
3292                   N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3293                 isa<ConstantSDNode>(N0.getOperand(1)) &&
3294                 cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
3295        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We can
3296        // only do this if the top bits are known zero.
3297        if (TLI.MaskedValueIsZero(N1,
3298                                  MVT::getIntVTBitMask(N0.getValueType())-1)) {
3299          // Okay, get the un-inverted input value.
3300          SDOperand Val;
3301          if (N0.getOpcode() == ISD::XOR)
3302            Val = N0.getOperand(0);
3303          else {
3304            assert(N0.getOpcode() == ISD::AND &&
3305                   N0.getOperand(0).getOpcode() == ISD::XOR);
3306            // ((X^1)&1)^1 -> X & 1
3307            Val = DAG.getNode(ISD::AND, N0.getValueType(),
3308                              N0.getOperand(0).getOperand(0), N0.getOperand(1));
3309          }
3310          return DAG.getSetCC(VT, Val, N1,
3311                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3312        }
3313      }
3314
3315      uint64_t MinVal, MaxVal;
3316      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
3317      if (ISD::isSignedIntSetCC(Cond)) {
3318        MinVal = 1ULL << (OperandBitSize-1);
3319        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
3320          MaxVal = ~0ULL >> (65-OperandBitSize);
3321        else
3322          MaxVal = 0;
3323      } else {
3324        MinVal = 0;
3325        MaxVal = ~0ULL >> (64-OperandBitSize);
3326      }
3327
3328      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3329      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3330        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
3331        --C1;                                          // X >= C0 --> X > (C0-1)
3332        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
3333                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
3334      }
3335
3336      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3337        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
3338        ++C1;                                          // X <= C0 --> X < (C0+1)
3339        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
3340                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
3341      }
3342
3343      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
3344        return DAG.getConstant(0, VT);      // X < MIN --> false
3345
3346      // Canonicalize setgt X, Min --> setne X, Min
3347      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
3348        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
3349      // Canonicalize setlt X, Max --> setne X, Max
3350      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
3351        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
3352
3353      // If we have setult X, 1, turn it into seteq X, 0
3354      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
3355        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
3356                        ISD::SETEQ);
3357      // If we have setugt X, Max-1, turn it into seteq X, Max
3358      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
3359        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
3360                        ISD::SETEQ);
3361
3362      // If we have "setcc X, C0", check to see if we can shrink the immediate
3363      // by changing cc.
3364
3365      // SETUGT X, SINTMAX  -> SETLT X, 0
3366      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
3367          C1 == (~0ULL >> (65-OperandBitSize)))
3368        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
3369                            ISD::SETLT);
3370
3371      // FIXME: Implement the rest of these.
3372
3373      // Fold bit comparisons when we can.
3374      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3375          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
3376        if (ConstantSDNode *AndRHS =
3377                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3378          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3379            // Perform the xform if the AND RHS is a single bit.
3380            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
3381              return DAG.getNode(ISD::SRL, VT, N0,
3382                             DAG.getConstant(Log2_64(AndRHS->getValue()),
3383                                                   TLI.getShiftAmountTy()));
3384            }
3385          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
3386            // (X & 8) == 8  -->  (X & 8) >> 3
3387            // Perform the xform if C1 is a single bit.
3388            if ((C1 & (C1-1)) == 0) {
3389              return DAG.getNode(ISD::SRL, VT, N0,
3390                             DAG.getConstant(Log2_64(C1),TLI.getShiftAmountTy()));
3391            }
3392          }
3393        }
3394    }
3395  } else if (isa<ConstantSDNode>(N0.Val)) {
3396      // Ensure that the constant occurs on the RHS.
3397    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
3398  }
3399
3400  if (ConstantFPSDNode *N0C = dyn_cast<ConstantFPSDNode>(N0.Val))
3401    if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
3402      double C0 = N0C->getValue(), C1 = N1C->getValue();
3403
3404      switch (Cond) {
3405      default: break; // FIXME: Implement the rest of these!
3406      case ISD::SETEQ:  return DAG.getConstant(C0 == C1, VT);
3407      case ISD::SETNE:  return DAG.getConstant(C0 != C1, VT);
3408      case ISD::SETLT:  return DAG.getConstant(C0 < C1, VT);
3409      case ISD::SETGT:  return DAG.getConstant(C0 > C1, VT);
3410      case ISD::SETLE:  return DAG.getConstant(C0 <= C1, VT);
3411      case ISD::SETGE:  return DAG.getConstant(C0 >= C1, VT);
3412      }
3413    } else {
3414      // Ensure that the constant occurs on the RHS.
3415      return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
3416    }
3417
3418  if (N0 == N1) {
3419    // We can always fold X == Y for integer setcc's.
3420    if (MVT::isInteger(N0.getValueType()))
3421      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
3422    unsigned UOF = ISD::getUnorderedFlavor(Cond);
3423    if (UOF == 2)   // FP operators that are undefined on NaNs.
3424      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
3425    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
3426      return DAG.getConstant(UOF, VT);
3427    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3428    // if it is not already.
3429    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3430    if (NewCond != Cond)
3431      return DAG.getSetCC(VT, N0, N1, NewCond);
3432  }
3433
3434  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3435      MVT::isInteger(N0.getValueType())) {
3436    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3437        N0.getOpcode() == ISD::XOR) {
3438      // Simplify (X+Y) == (X+Z) -->  Y == Z
3439      if (N0.getOpcode() == N1.getOpcode()) {
3440        if (N0.getOperand(0) == N1.getOperand(0))
3441          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
3442        if (N0.getOperand(1) == N1.getOperand(1))
3443          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
3444        if (isCommutativeBinOp(N0.getOpcode())) {
3445          // If X op Y == Y op X, try other combinations.
3446          if (N0.getOperand(0) == N1.getOperand(1))
3447            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
3448          if (N0.getOperand(1) == N1.getOperand(0))
3449            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
3450        }
3451      }
3452
3453      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3454        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3455          // Turn (X+C1) == C2 --> X == C2-C1
3456          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
3457            return DAG.getSetCC(VT, N0.getOperand(0),
3458                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
3459                                N0.getValueType()), Cond);
3460          }
3461
3462          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3463          if (N0.getOpcode() == ISD::XOR)
3464            // If we know that all of the inverted bits are zero, don't bother
3465            // performing the inversion.
3466            if (TLI.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
3467              return DAG.getSetCC(VT, N0.getOperand(0),
3468                              DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
3469                                              N0.getValueType()), Cond);
3470        }
3471
3472        // Turn (C1-X) == C2 --> X == C1-C2
3473        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3474          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
3475            return DAG.getSetCC(VT, N0.getOperand(1),
3476                             DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
3477                                             N0.getValueType()), Cond);
3478          }
3479        }
3480      }
3481
3482      // Simplify (X+Z) == X -->  Z == 0
3483      if (N0.getOperand(0) == N1)
3484        return DAG.getSetCC(VT, N0.getOperand(1),
3485                        DAG.getConstant(0, N0.getValueType()), Cond);
3486      if (N0.getOperand(1) == N1) {
3487        if (isCommutativeBinOp(N0.getOpcode()))
3488          return DAG.getSetCC(VT, N0.getOperand(0),
3489                          DAG.getConstant(0, N0.getValueType()), Cond);
3490        else {
3491          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
3492          // (Z-X) == X  --> Z == X<<1
3493          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
3494                                     N1,
3495                                     DAG.getConstant(1,TLI.getShiftAmountTy()));
3496          AddToWorkList(SH.Val);
3497          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
3498        }
3499      }
3500    }
3501
3502    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3503        N1.getOpcode() == ISD::XOR) {
3504      // Simplify  X == (X+Z) -->  Z == 0
3505      if (N1.getOperand(0) == N0) {
3506        return DAG.getSetCC(VT, N1.getOperand(1),
3507                        DAG.getConstant(0, N1.getValueType()), Cond);
3508      } else if (N1.getOperand(1) == N0) {
3509        if (isCommutativeBinOp(N1.getOpcode())) {
3510          return DAG.getSetCC(VT, N1.getOperand(0),
3511                          DAG.getConstant(0, N1.getValueType()), Cond);
3512        } else {
3513          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
3514          // X == (Z-X)  --> X<<1 == Z
3515          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
3516                                     DAG.getConstant(1,TLI.getShiftAmountTy()));
3517          AddToWorkList(SH.Val);
3518          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
3519        }
3520      }
3521    }
3522  }
3523
3524  // Fold away ALL boolean setcc's.
3525  SDOperand Temp;
3526  if (N0.getValueType() == MVT::i1 && foldBooleans) {
3527    switch (Cond) {
3528    default: assert(0 && "Unknown integer setcc!");
3529    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
3530      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
3531      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
3532      AddToWorkList(Temp.Val);
3533      break;
3534    case ISD::SETNE:  // X != Y   -->  (X^Y)
3535      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
3536      break;
3537    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
3538    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
3539      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
3540      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
3541      AddToWorkList(Temp.Val);
3542      break;
3543    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
3544    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
3545      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
3546      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
3547      AddToWorkList(Temp.Val);
3548      break;
3549    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
3550    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
3551      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
3552      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
3553      AddToWorkList(Temp.Val);
3554      break;
3555    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
3556    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
3557      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
3558      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
3559      break;
3560    }
3561    if (VT != MVT::i1) {
3562      AddToWorkList(N0.Val);
3563      // FIXME: If running after legalize, we probably can't do this.
3564      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
3565    }
3566    return N0;
3567  }
3568
3569  // Could not fold it.
3570  return SDOperand();
3571}
3572
3573/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3574/// return a DAG expression to select that will generate the same value by
3575/// multiplying by a magic number.  See:
3576/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3577SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
3578  MVT::ValueType VT = N->getValueType(0);
3579
3580  // Check to see if we can do this.
3581  if (!TLI.isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
3582    return SDOperand();       // BuildSDIV only operates on i32 or i64
3583  if (!TLI.isOperationLegal(ISD::MULHS, VT))
3584    return SDOperand();       // Make sure the target supports MULHS.
3585
3586  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
3587  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
3588
3589  // Multiply the numerator (operand 0) by the magic value
3590  SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
3591                            DAG.getConstant(magics.m, VT));
3592  // If d > 0 and m < 0, add the numerator
3593  if (d > 0 && magics.m < 0) {
3594    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
3595    AddToWorkList(Q.Val);
3596  }
3597  // If d < 0 and m > 0, subtract the numerator.
3598  if (d < 0 && magics.m > 0) {
3599    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
3600    AddToWorkList(Q.Val);
3601  }
3602  // Shift right algebraic if shift value is nonzero
3603  if (magics.s > 0) {
3604    Q = DAG.getNode(ISD::SRA, VT, Q,
3605                    DAG.getConstant(magics.s, TLI.getShiftAmountTy()));
3606    AddToWorkList(Q.Val);
3607  }
3608  // Extract the sign bit and add it to the quotient
3609  SDOperand T =
3610    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
3611                                                 TLI.getShiftAmountTy()));
3612  AddToWorkList(T.Val);
3613  return DAG.getNode(ISD::ADD, VT, Q, T);
3614}
3615
3616/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3617/// return a DAG expression to select that will generate the same value by
3618/// multiplying by a magic number.  See:
3619/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3620SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
3621  MVT::ValueType VT = N->getValueType(0);
3622
3623  // Check to see if we can do this.
3624  if (!TLI.isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
3625    return SDOperand();       // BuildUDIV only operates on i32 or i64
3626  if (!TLI.isOperationLegal(ISD::MULHU, VT))
3627    return SDOperand();       // Make sure the target supports MULHU.
3628
3629  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
3630  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
3631
3632  // Multiply the numerator (operand 0) by the magic value
3633  SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
3634                            DAG.getConstant(magics.m, VT));
3635  AddToWorkList(Q.Val);
3636
3637  if (magics.a == 0) {
3638    return DAG.getNode(ISD::SRL, VT, Q,
3639                       DAG.getConstant(magics.s, TLI.getShiftAmountTy()));
3640  } else {
3641    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
3642    AddToWorkList(NPQ.Val);
3643    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
3644                      DAG.getConstant(1, TLI.getShiftAmountTy()));
3645    AddToWorkList(NPQ.Val);
3646    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
3647    AddToWorkList(NPQ.Val);
3648    return DAG.getNode(ISD::SRL, VT, NPQ,
3649                       DAG.getConstant(magics.s-1, TLI.getShiftAmountTy()));
3650  }
3651}
3652
3653// SelectionDAG::Combine - This is the entry point for the file.
3654//
3655void SelectionDAG::Combine(bool RunningAfterLegalize) {
3656  /// run - This is the main entry point to this class.
3657  ///
3658  DAGCombiner(*this).Run(RunningAfterLegalize);
3659}
3660