DAGCombiner.cpp revision 21e8a955ef3481976b562d7f10db967f6def3d2d
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "dagcombine"
16#include "llvm/CodeGen/SelectionDAG.h"
17#include "llvm/CodeGen/MachineFunction.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetOptions.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/MathExtras.h"
31#include <algorithm>
32using namespace llvm;
33
34STATISTIC(NodesCombined   , "Number of dag nodes combined");
35STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
36STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
37
38namespace {
39#ifndef NDEBUG
40  static cl::opt<bool>
41    ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
42                    cl::desc("Pop up a window to show dags before the first "
43                             "dag combine pass"));
44  static cl::opt<bool>
45    ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
46                    cl::desc("Pop up a window to show dags before the second "
47                             "dag combine pass"));
48#else
49  static const bool ViewDAGCombine1 = false;
50  static const bool ViewDAGCombine2 = false;
51#endif
52
53  static cl::opt<bool>
54    CombinerAA("combiner-alias-analysis", cl::Hidden,
55               cl::desc("Turn on alias analysis during testing"));
56
57  static cl::opt<bool>
58    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
59               cl::desc("Include global information in alias analysis"));
60
61//------------------------------ DAGCombiner ---------------------------------//
62
63  class VISIBILITY_HIDDEN DAGCombiner {
64    SelectionDAG &DAG;
65    TargetLowering &TLI;
66    bool AfterLegalize;
67
68    // Worklist of all of the nodes that need to be simplified.
69    std::vector<SDNode*> WorkList;
70
71    // AA - Used for DAG load/store alias analysis.
72    AliasAnalysis &AA;
73
74    /// AddUsersToWorkList - When an instruction is simplified, add all users of
75    /// the instruction to the work lists because they might get more simplified
76    /// now.
77    ///
78    void AddUsersToWorkList(SDNode *N) {
79      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
80           UI != UE; ++UI)
81        AddToWorkList(*UI);
82    }
83
84    /// visit - call the node-specific routine that knows how to fold each
85    /// particular type of node.
86    SDOperand visit(SDNode *N);
87
88  public:
89    /// AddToWorkList - Add to the work list making sure it's instance is at the
90    /// the back (next to be processed.)
91    void AddToWorkList(SDNode *N) {
92      removeFromWorkList(N);
93      WorkList.push_back(N);
94    }
95
96    /// removeFromWorkList - remove all instances of N from the worklist.
97    ///
98    void removeFromWorkList(SDNode *N) {
99      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
100                     WorkList.end());
101    }
102
103    SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
104                        bool AddTo = true);
105
106    SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
107      return CombineTo(N, &Res, 1, AddTo);
108    }
109
110    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
111                        bool AddTo = true) {
112      SDOperand To[] = { Res0, Res1 };
113      return CombineTo(N, To, 2, AddTo);
114    }
115
116  private:
117
118    /// SimplifyDemandedBits - Check the specified integer node value to see if
119    /// it can be simplified or if things it uses can be simplified by bit
120    /// propagation.  If so, return true.
121    bool SimplifyDemandedBits(SDOperand Op) {
122      APInt Demanded = APInt::getAllOnesValue(Op.getValueSizeInBits());
123      return SimplifyDemandedBits(Op, Demanded);
124    }
125
126    bool SimplifyDemandedBits(SDOperand Op, const APInt &Demanded);
127
128    bool CombineToPreIndexedLoadStore(SDNode *N);
129    bool CombineToPostIndexedLoadStore(SDNode *N);
130
131
132    /// combine - call the node-specific routine that knows how to fold each
133    /// particular type of node. If that doesn't do anything, try the
134    /// target-specific DAG combines.
135    SDOperand combine(SDNode *N);
136
137    // Visitation implementation - Implement dag node combining for different
138    // node types.  The semantics are as follows:
139    // Return Value:
140    //   SDOperand.Val == 0   - No change was made
141    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
142    //   otherwise            - N should be replaced by the returned Operand.
143    //
144    SDOperand visitTokenFactor(SDNode *N);
145    SDOperand visitMERGE_VALUES(SDNode *N);
146    SDOperand visitADD(SDNode *N);
147    SDOperand visitSUB(SDNode *N);
148    SDOperand visitADDC(SDNode *N);
149    SDOperand visitADDE(SDNode *N);
150    SDOperand visitMUL(SDNode *N);
151    SDOperand visitSDIV(SDNode *N);
152    SDOperand visitUDIV(SDNode *N);
153    SDOperand visitSREM(SDNode *N);
154    SDOperand visitUREM(SDNode *N);
155    SDOperand visitMULHU(SDNode *N);
156    SDOperand visitMULHS(SDNode *N);
157    SDOperand visitSMUL_LOHI(SDNode *N);
158    SDOperand visitUMUL_LOHI(SDNode *N);
159    SDOperand visitSDIVREM(SDNode *N);
160    SDOperand visitUDIVREM(SDNode *N);
161    SDOperand visitAND(SDNode *N);
162    SDOperand visitOR(SDNode *N);
163    SDOperand visitXOR(SDNode *N);
164    SDOperand SimplifyVBinOp(SDNode *N);
165    SDOperand visitSHL(SDNode *N);
166    SDOperand visitSRA(SDNode *N);
167    SDOperand visitSRL(SDNode *N);
168    SDOperand visitCTLZ(SDNode *N);
169    SDOperand visitCTTZ(SDNode *N);
170    SDOperand visitCTPOP(SDNode *N);
171    SDOperand visitSELECT(SDNode *N);
172    SDOperand visitSELECT_CC(SDNode *N);
173    SDOperand visitSETCC(SDNode *N);
174    SDOperand visitSIGN_EXTEND(SDNode *N);
175    SDOperand visitZERO_EXTEND(SDNode *N);
176    SDOperand visitANY_EXTEND(SDNode *N);
177    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
178    SDOperand visitTRUNCATE(SDNode *N);
179    SDOperand visitBIT_CONVERT(SDNode *N);
180    SDOperand visitFADD(SDNode *N);
181    SDOperand visitFSUB(SDNode *N);
182    SDOperand visitFMUL(SDNode *N);
183    SDOperand visitFDIV(SDNode *N);
184    SDOperand visitFREM(SDNode *N);
185    SDOperand visitFCOPYSIGN(SDNode *N);
186    SDOperand visitSINT_TO_FP(SDNode *N);
187    SDOperand visitUINT_TO_FP(SDNode *N);
188    SDOperand visitFP_TO_SINT(SDNode *N);
189    SDOperand visitFP_TO_UINT(SDNode *N);
190    SDOperand visitFP_ROUND(SDNode *N);
191    SDOperand visitFP_ROUND_INREG(SDNode *N);
192    SDOperand visitFP_EXTEND(SDNode *N);
193    SDOperand visitFNEG(SDNode *N);
194    SDOperand visitFABS(SDNode *N);
195    SDOperand visitBRCOND(SDNode *N);
196    SDOperand visitBR_CC(SDNode *N);
197    SDOperand visitLOAD(SDNode *N);
198    SDOperand visitSTORE(SDNode *N);
199    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
200    SDOperand visitEXTRACT_VECTOR_ELT(SDNode *N);
201    SDOperand visitBUILD_VECTOR(SDNode *N);
202    SDOperand visitCONCAT_VECTORS(SDNode *N);
203    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
204
205    SDOperand XformToShuffleWithZero(SDNode *N);
206    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
207
208    SDOperand visitShiftByConstant(SDNode *N, unsigned Amt);
209
210    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
211    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
212    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
213    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
214                               SDOperand N3, ISD::CondCode CC,
215                               bool NotExtCompare = false);
216    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
217                            ISD::CondCode Cond, bool foldBooleans = true);
218    SDOperand SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
219                                         unsigned HiOp);
220    SDOperand ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT::ValueType);
221    SDOperand BuildSDIV(SDNode *N);
222    SDOperand BuildUDIV(SDNode *N);
223    SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
224    SDOperand ReduceLoadWidth(SDNode *N);
225
226    SDOperand GetDemandedBits(SDOperand V, const APInt &Mask);
227
228    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
229    /// looking for aliasing nodes and adding them to the Aliases vector.
230    void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
231                          SmallVector<SDOperand, 8> &Aliases);
232
233    /// isAlias - Return true if there is any possibility that the two addresses
234    /// overlap.
235    bool isAlias(SDOperand Ptr1, int64_t Size1,
236                 const Value *SrcValue1, int SrcValueOffset1,
237                 SDOperand Ptr2, int64_t Size2,
238                 const Value *SrcValue2, int SrcValueOffset2);
239
240    /// FindAliasInfo - Extracts the relevant alias information from the memory
241    /// node.  Returns true if the operand was a load.
242    bool FindAliasInfo(SDNode *N,
243                       SDOperand &Ptr, int64_t &Size,
244                       const Value *&SrcValue, int &SrcValueOffset);
245
246    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
247    /// looking for a better chain (aliasing node.)
248    SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
249
250public:
251    DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
252      : DAG(D),
253        TLI(D.getTargetLoweringInfo()),
254        AfterLegalize(false),
255        AA(A) {}
256
257    /// Run - runs the dag combiner on all nodes in the work list
258    void Run(bool RunningAfterLegalize);
259  };
260}
261
262
263namespace {
264/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
265/// nodes from the worklist.
266class VISIBILITY_HIDDEN WorkListRemover :
267  public SelectionDAG::DAGUpdateListener {
268  DAGCombiner &DC;
269public:
270  explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {}
271
272  virtual void NodeDeleted(SDNode *N) {
273    DC.removeFromWorkList(N);
274  }
275
276  virtual void NodeUpdated(SDNode *N) {
277    // Ignore updates.
278  }
279};
280}
281
282//===----------------------------------------------------------------------===//
283//  TargetLowering::DAGCombinerInfo implementation
284//===----------------------------------------------------------------------===//
285
286void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
287  ((DAGCombiner*)DC)->AddToWorkList(N);
288}
289
290SDOperand TargetLowering::DAGCombinerInfo::
291CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
292  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
293}
294
295SDOperand TargetLowering::DAGCombinerInfo::
296CombineTo(SDNode *N, SDOperand Res) {
297  return ((DAGCombiner*)DC)->CombineTo(N, Res);
298}
299
300
301SDOperand TargetLowering::DAGCombinerInfo::
302CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
303  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
304}
305
306
307//===----------------------------------------------------------------------===//
308// Helper Functions
309//===----------------------------------------------------------------------===//
310
311/// isNegatibleForFree - Return 1 if we can compute the negated form of the
312/// specified expression for the same cost as the expression itself, or 2 if we
313/// can compute the negated form more cheaply than the expression itself.
314static char isNegatibleForFree(SDOperand Op, bool AfterLegalize,
315                               unsigned Depth = 0) {
316  // No compile time optimizations on this type.
317  if (Op.getValueType() == MVT::ppcf128)
318    return 0;
319
320  // fneg is removable even if it has multiple uses.
321  if (Op.getOpcode() == ISD::FNEG) return 2;
322
323  // Don't allow anything with multiple uses.
324  if (!Op.hasOneUse()) return 0;
325
326  // Don't recurse exponentially.
327  if (Depth > 6) return 0;
328
329  switch (Op.getOpcode()) {
330  default: return false;
331  case ISD::ConstantFP:
332    // Don't invert constant FP values after legalize.  The negated constant
333    // isn't necessarily legal.
334    return AfterLegalize ? 0 : 1;
335  case ISD::FADD:
336    // FIXME: determine better conditions for this xform.
337    if (!UnsafeFPMath) return 0;
338
339    // -(A+B) -> -A - B
340    if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
341      return V;
342    // -(A+B) -> -B - A
343    return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1);
344  case ISD::FSUB:
345    // We can't turn -(A-B) into B-A when we honor signed zeros.
346    if (!UnsafeFPMath) return 0;
347
348    // -(A-B) -> B-A
349    return 1;
350
351  case ISD::FMUL:
352  case ISD::FDIV:
353    if (HonorSignDependentRoundingFPMath()) return 0;
354
355    // -(X*Y) -> (-X * Y) or (X*-Y)
356    if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
357      return V;
358
359    return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1);
360
361  case ISD::FP_EXTEND:
362  case ISD::FP_ROUND:
363  case ISD::FSIN:
364    return isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1);
365  }
366}
367
368/// GetNegatedExpression - If isNegatibleForFree returns true, this function
369/// returns the newly negated expression.
370static SDOperand GetNegatedExpression(SDOperand Op, SelectionDAG &DAG,
371                                      bool AfterLegalize, unsigned Depth = 0) {
372  // fneg is removable even if it has multiple uses.
373  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
374
375  // Don't allow anything with multiple uses.
376  assert(Op.hasOneUse() && "Unknown reuse!");
377
378  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
379  switch (Op.getOpcode()) {
380  default: assert(0 && "Unknown code");
381  case ISD::ConstantFP: {
382    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
383    V.changeSign();
384    return DAG.getConstantFP(V, Op.getValueType());
385  }
386  case ISD::FADD:
387    // FIXME: determine better conditions for this xform.
388    assert(UnsafeFPMath);
389
390    // -(A+B) -> -A - B
391    if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
392      return DAG.getNode(ISD::FSUB, Op.getValueType(),
393                         GetNegatedExpression(Op.getOperand(0), DAG,
394                                              AfterLegalize, Depth+1),
395                         Op.getOperand(1));
396    // -(A+B) -> -B - A
397    return DAG.getNode(ISD::FSUB, Op.getValueType(),
398                       GetNegatedExpression(Op.getOperand(1), DAG,
399                                            AfterLegalize, Depth+1),
400                       Op.getOperand(0));
401  case ISD::FSUB:
402    // We can't turn -(A-B) into B-A when we honor signed zeros.
403    assert(UnsafeFPMath);
404
405    // -(0-B) -> B
406    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
407      if (N0CFP->getValueAPF().isZero())
408        return Op.getOperand(1);
409
410    // -(A-B) -> B-A
411    return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1),
412                       Op.getOperand(0));
413
414  case ISD::FMUL:
415  case ISD::FDIV:
416    assert(!HonorSignDependentRoundingFPMath());
417
418    // -(X*Y) -> -X * Y
419    if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
420      return DAG.getNode(Op.getOpcode(), Op.getValueType(),
421                         GetNegatedExpression(Op.getOperand(0), DAG,
422                                              AfterLegalize, Depth+1),
423                         Op.getOperand(1));
424
425    // -(X*Y) -> X * -Y
426    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
427                       Op.getOperand(0),
428                       GetNegatedExpression(Op.getOperand(1), DAG,
429                                            AfterLegalize, Depth+1));
430
431  case ISD::FP_EXTEND:
432  case ISD::FSIN:
433    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
434                       GetNegatedExpression(Op.getOperand(0), DAG,
435                                            AfterLegalize, Depth+1));
436  case ISD::FP_ROUND:
437      return DAG.getNode(ISD::FP_ROUND, Op.getValueType(),
438                         GetNegatedExpression(Op.getOperand(0), DAG,
439                                              AfterLegalize, Depth+1),
440                         Op.getOperand(1));
441  }
442}
443
444
445// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
446// that selects between the values 1 and 0, making it equivalent to a setcc.
447// Also, set the incoming LHS, RHS, and CC references to the appropriate
448// nodes based on the type of node we are checking.  This simplifies life a
449// bit for the callers.
450static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
451                              SDOperand &CC) {
452  if (N.getOpcode() == ISD::SETCC) {
453    LHS = N.getOperand(0);
454    RHS = N.getOperand(1);
455    CC  = N.getOperand(2);
456    return true;
457  }
458  if (N.getOpcode() == ISD::SELECT_CC &&
459      N.getOperand(2).getOpcode() == ISD::Constant &&
460      N.getOperand(3).getOpcode() == ISD::Constant &&
461      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
462      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
463    LHS = N.getOperand(0);
464    RHS = N.getOperand(1);
465    CC  = N.getOperand(4);
466    return true;
467  }
468  return false;
469}
470
471// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
472// one use.  If this is true, it allows the users to invert the operation for
473// free when it is profitable to do so.
474static bool isOneUseSetCC(SDOperand N) {
475  SDOperand N0, N1, N2;
476  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
477    return true;
478  return false;
479}
480
481SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
482  MVT::ValueType VT = N0.getValueType();
483  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
484  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
485  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
486    if (isa<ConstantSDNode>(N1)) {
487      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
488      AddToWorkList(OpNode.Val);
489      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
490    } else if (N0.hasOneUse()) {
491      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
492      AddToWorkList(OpNode.Val);
493      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
494    }
495  }
496  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
497  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
498  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
499    if (isa<ConstantSDNode>(N0)) {
500      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
501      AddToWorkList(OpNode.Val);
502      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
503    } else if (N1.hasOneUse()) {
504      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
505      AddToWorkList(OpNode.Val);
506      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
507    }
508  }
509  return SDOperand();
510}
511
512SDOperand DAGCombiner::CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
513                                 bool AddTo) {
514  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
515  ++NodesCombined;
516  DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
517  DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
518  DOUT << " and " << NumTo-1 << " other values\n";
519  WorkListRemover DeadNodes(*this);
520  DAG.ReplaceAllUsesWith(N, To, &DeadNodes);
521
522  if (AddTo) {
523    // Push the new nodes and any users onto the worklist
524    for (unsigned i = 0, e = NumTo; i != e; ++i) {
525      AddToWorkList(To[i].Val);
526      AddUsersToWorkList(To[i].Val);
527    }
528  }
529
530  // Nodes can be reintroduced into the worklist.  Make sure we do not
531  // process a node that has been replaced.
532  removeFromWorkList(N);
533
534  // Finally, since the node is now dead, remove it from the graph.
535  DAG.DeleteNode(N);
536  return SDOperand(N, 0);
537}
538
539/// SimplifyDemandedBits - Check the specified integer node value to see if
540/// it can be simplified or if things it uses can be simplified by bit
541/// propagation.  If so, return true.
542bool DAGCombiner::SimplifyDemandedBits(SDOperand Op, const APInt &Demanded) {
543  TargetLowering::TargetLoweringOpt TLO(DAG, AfterLegalize);
544  APInt KnownZero, KnownOne;
545  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
546    return false;
547
548  // Revisit the node.
549  AddToWorkList(Op.Val);
550
551  // Replace the old value with the new one.
552  ++NodesCombined;
553  DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump(&DAG));
554  DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
555  DOUT << '\n';
556
557  // Replace all uses.  If any nodes become isomorphic to other nodes and
558  // are deleted, make sure to remove them from our worklist.
559  WorkListRemover DeadNodes(*this);
560  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
561
562  // Push the new node and any (possibly new) users onto the worklist.
563  AddToWorkList(TLO.New.Val);
564  AddUsersToWorkList(TLO.New.Val);
565
566  // Finally, if the node is now dead, remove it from the graph.  The node
567  // may not be dead if the replacement process recursively simplified to
568  // something else needing this node.
569  if (TLO.Old.Val->use_empty()) {
570    removeFromWorkList(TLO.Old.Val);
571
572    // If the operands of this node are only used by the node, they will now
573    // be dead.  Make sure to visit them first to delete dead nodes early.
574    for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i)
575      if (TLO.Old.Val->getOperand(i).Val->hasOneUse())
576        AddToWorkList(TLO.Old.Val->getOperand(i).Val);
577
578    DAG.DeleteNode(TLO.Old.Val);
579  }
580  return true;
581}
582
583//===----------------------------------------------------------------------===//
584//  Main DAG Combiner implementation
585//===----------------------------------------------------------------------===//
586
587void DAGCombiner::Run(bool RunningAfterLegalize) {
588  // set the instance variable, so that the various visit routines may use it.
589  AfterLegalize = RunningAfterLegalize;
590
591  // Add all the dag nodes to the worklist.
592  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
593       E = DAG.allnodes_end(); I != E; ++I)
594    WorkList.push_back(I);
595
596  // Create a dummy node (which is not added to allnodes), that adds a reference
597  // to the root node, preventing it from being deleted, and tracking any
598  // changes of the root.
599  HandleSDNode Dummy(DAG.getRoot());
600
601  // The root of the dag may dangle to deleted nodes until the dag combiner is
602  // done.  Set it to null to avoid confusion.
603  DAG.setRoot(SDOperand());
604
605  // while the worklist isn't empty, inspect the node on the end of it and
606  // try and combine it.
607  while (!WorkList.empty()) {
608    SDNode *N = WorkList.back();
609    WorkList.pop_back();
610
611    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
612    // N is deleted from the DAG, since they too may now be dead or may have a
613    // reduced number of uses, allowing other xforms.
614    if (N->use_empty() && N != &Dummy) {
615      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
616        AddToWorkList(N->getOperand(i).Val);
617
618      DAG.DeleteNode(N);
619      continue;
620    }
621
622    SDOperand RV = combine(N);
623
624    if (RV.Val == 0)
625      continue;
626
627    ++NodesCombined;
628
629    // If we get back the same node we passed in, rather than a new node or
630    // zero, we know that the node must have defined multiple values and
631    // CombineTo was used.  Since CombineTo takes care of the worklist
632    // mechanics for us, we have no work to do in this case.
633    if (RV.Val == N)
634      continue;
635
636    assert(N->getOpcode() != ISD::DELETED_NODE &&
637           RV.Val->getOpcode() != ISD::DELETED_NODE &&
638           "Node was deleted but visit returned new node!");
639
640    DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
641    DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
642    DOUT << '\n';
643    WorkListRemover DeadNodes(*this);
644    if (N->getNumValues() == RV.Val->getNumValues())
645      DAG.ReplaceAllUsesWith(N, RV.Val, &DeadNodes);
646    else {
647      assert(N->getValueType(0) == RV.getValueType() &&
648             N->getNumValues() == 1 && "Type mismatch");
649      SDOperand OpV = RV;
650      DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes);
651    }
652
653    // Push the new node and any users onto the worklist
654    AddToWorkList(RV.Val);
655    AddUsersToWorkList(RV.Val);
656
657    // Add any uses of the old node to the worklist in case this node is the
658    // last one that uses them.  They may become dead after this node is
659    // deleted.
660    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
661      AddToWorkList(N->getOperand(i).Val);
662
663    // Nodes can be reintroduced into the worklist.  Make sure we do not
664    // process a node that has been replaced.
665    removeFromWorkList(N);
666
667    // Finally, since the node is now dead, remove it from the graph.
668    DAG.DeleteNode(N);
669  }
670
671  // If the root changed (e.g. it was a dead load, update the root).
672  DAG.setRoot(Dummy.getValue());
673}
674
675SDOperand DAGCombiner::visit(SDNode *N) {
676  switch(N->getOpcode()) {
677  default: break;
678  case ISD::TokenFactor:        return visitTokenFactor(N);
679  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
680  case ISD::ADD:                return visitADD(N);
681  case ISD::SUB:                return visitSUB(N);
682  case ISD::ADDC:               return visitADDC(N);
683  case ISD::ADDE:               return visitADDE(N);
684  case ISD::MUL:                return visitMUL(N);
685  case ISD::SDIV:               return visitSDIV(N);
686  case ISD::UDIV:               return visitUDIV(N);
687  case ISD::SREM:               return visitSREM(N);
688  case ISD::UREM:               return visitUREM(N);
689  case ISD::MULHU:              return visitMULHU(N);
690  case ISD::MULHS:              return visitMULHS(N);
691  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
692  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
693  case ISD::SDIVREM:            return visitSDIVREM(N);
694  case ISD::UDIVREM:            return visitUDIVREM(N);
695  case ISD::AND:                return visitAND(N);
696  case ISD::OR:                 return visitOR(N);
697  case ISD::XOR:                return visitXOR(N);
698  case ISD::SHL:                return visitSHL(N);
699  case ISD::SRA:                return visitSRA(N);
700  case ISD::SRL:                return visitSRL(N);
701  case ISD::CTLZ:               return visitCTLZ(N);
702  case ISD::CTTZ:               return visitCTTZ(N);
703  case ISD::CTPOP:              return visitCTPOP(N);
704  case ISD::SELECT:             return visitSELECT(N);
705  case ISD::SELECT_CC:          return visitSELECT_CC(N);
706  case ISD::SETCC:              return visitSETCC(N);
707  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
708  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
709  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
710  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
711  case ISD::TRUNCATE:           return visitTRUNCATE(N);
712  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
713  case ISD::FADD:               return visitFADD(N);
714  case ISD::FSUB:               return visitFSUB(N);
715  case ISD::FMUL:               return visitFMUL(N);
716  case ISD::FDIV:               return visitFDIV(N);
717  case ISD::FREM:               return visitFREM(N);
718  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
719  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
720  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
721  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
722  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
723  case ISD::FP_ROUND:           return visitFP_ROUND(N);
724  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
725  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
726  case ISD::FNEG:               return visitFNEG(N);
727  case ISD::FABS:               return visitFABS(N);
728  case ISD::BRCOND:             return visitBRCOND(N);
729  case ISD::BR_CC:              return visitBR_CC(N);
730  case ISD::LOAD:               return visitLOAD(N);
731  case ISD::STORE:              return visitSTORE(N);
732  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
733  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
734  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
735  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
736  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
737  }
738  return SDOperand();
739}
740
741SDOperand DAGCombiner::combine(SDNode *N) {
742
743  SDOperand RV = visit(N);
744
745  // If nothing happened, try a target-specific DAG combine.
746  if (RV.Val == 0) {
747    assert(N->getOpcode() != ISD::DELETED_NODE &&
748           "Node was deleted but visit returned NULL!");
749
750    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
751        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
752
753      // Expose the DAG combiner to the target combiner impls.
754      TargetLowering::DAGCombinerInfo
755        DagCombineInfo(DAG, !AfterLegalize, false, this);
756
757      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
758    }
759  }
760
761  return RV;
762}
763
764/// getInputChainForNode - Given a node, return its input chain if it has one,
765/// otherwise return a null sd operand.
766static SDOperand getInputChainForNode(SDNode *N) {
767  if (unsigned NumOps = N->getNumOperands()) {
768    if (N->getOperand(0).getValueType() == MVT::Other)
769      return N->getOperand(0);
770    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
771      return N->getOperand(NumOps-1);
772    for (unsigned i = 1; i < NumOps-1; ++i)
773      if (N->getOperand(i).getValueType() == MVT::Other)
774        return N->getOperand(i);
775  }
776  return SDOperand(0, 0);
777}
778
779SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
780  // If N has two operands, where one has an input chain equal to the other,
781  // the 'other' chain is redundant.
782  if (N->getNumOperands() == 2) {
783    if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
784      return N->getOperand(0);
785    if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
786      return N->getOperand(1);
787  }
788
789  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
790  SmallVector<SDOperand, 8> Ops;    // Ops for replacing token factor.
791  SmallPtrSet<SDNode*, 16> SeenOps;
792  bool Changed = false;             // If we should replace this token factor.
793
794  // Start out with this token factor.
795  TFs.push_back(N);
796
797  // Iterate through token factors.  The TFs grows when new token factors are
798  // encountered.
799  for (unsigned i = 0; i < TFs.size(); ++i) {
800    SDNode *TF = TFs[i];
801
802    // Check each of the operands.
803    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
804      SDOperand Op = TF->getOperand(i);
805
806      switch (Op.getOpcode()) {
807      case ISD::EntryToken:
808        // Entry tokens don't need to be added to the list. They are
809        // rededundant.
810        Changed = true;
811        break;
812
813      case ISD::TokenFactor:
814        if ((CombinerAA || Op.hasOneUse()) &&
815            std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
816          // Queue up for processing.
817          TFs.push_back(Op.Val);
818          // Clean up in case the token factor is removed.
819          AddToWorkList(Op.Val);
820          Changed = true;
821          break;
822        }
823        // Fall thru
824
825      default:
826        // Only add if it isn't already in the list.
827        if (SeenOps.insert(Op.Val))
828          Ops.push_back(Op);
829        else
830          Changed = true;
831        break;
832      }
833    }
834  }
835
836  SDOperand Result;
837
838  // If we've change things around then replace token factor.
839  if (Changed) {
840    if (Ops.empty()) {
841      // The entry token is the only possible outcome.
842      Result = DAG.getEntryNode();
843    } else {
844      // New and improved token factor.
845      Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
846    }
847
848    // Don't add users to work list.
849    return CombineTo(N, Result, false);
850  }
851
852  return Result;
853}
854
855/// MERGE_VALUES can always be eliminated.
856SDOperand DAGCombiner::visitMERGE_VALUES(SDNode *N) {
857  WorkListRemover DeadNodes(*this);
858  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
859    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, i), N->getOperand(i),
860                                  &DeadNodes);
861  removeFromWorkList(N);
862  DAG.DeleteNode(N);
863  return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
864}
865
866
867static
868SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
869  MVT::ValueType VT = N0.getValueType();
870  SDOperand N00 = N0.getOperand(0);
871  SDOperand N01 = N0.getOperand(1);
872  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
873  if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
874      isa<ConstantSDNode>(N00.getOperand(1))) {
875    N0 = DAG.getNode(ISD::ADD, VT,
876                     DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
877                     DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
878    return DAG.getNode(ISD::ADD, VT, N0, N1);
879  }
880  return SDOperand();
881}
882
883static
884SDOperand combineSelectAndUse(SDNode *N, SDOperand Slct, SDOperand OtherOp,
885                              SelectionDAG &DAG) {
886  MVT::ValueType VT = N->getValueType(0);
887  unsigned Opc = N->getOpcode();
888  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
889  SDOperand LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
890  SDOperand RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
891  ISD::CondCode CC = ISD::SETCC_INVALID;
892  if (isSlctCC)
893    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
894  else {
895    SDOperand CCOp = Slct.getOperand(0);
896    if (CCOp.getOpcode() == ISD::SETCC)
897      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
898  }
899
900  bool DoXform = false;
901  bool InvCC = false;
902  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
903          "Bad input!");
904  if (LHS.getOpcode() == ISD::Constant &&
905      cast<ConstantSDNode>(LHS)->isNullValue())
906    DoXform = true;
907  else if (CC != ISD::SETCC_INVALID &&
908           RHS.getOpcode() == ISD::Constant &&
909           cast<ConstantSDNode>(RHS)->isNullValue()) {
910    std::swap(LHS, RHS);
911    SDOperand Op0 = Slct.getOperand(0);
912    bool isInt = MVT::isInteger(isSlctCC ? Op0.getValueType()
913                                : Op0.getOperand(0).getValueType());
914    CC = ISD::getSetCCInverse(CC, isInt);
915    DoXform = true;
916    InvCC = true;
917  }
918
919  if (DoXform) {
920    SDOperand Result = DAG.getNode(Opc, VT, OtherOp, RHS);
921    if (isSlctCC)
922      return DAG.getSelectCC(OtherOp, Result,
923                             Slct.getOperand(0), Slct.getOperand(1), CC);
924    SDOperand CCOp = Slct.getOperand(0);
925    if (InvCC)
926      CCOp = DAG.getSetCC(CCOp.getValueType(), CCOp.getOperand(0),
927                          CCOp.getOperand(1), CC);
928    return DAG.getNode(ISD::SELECT, VT, CCOp, OtherOp, Result);
929  }
930  return SDOperand();
931}
932
933SDOperand DAGCombiner::visitADD(SDNode *N) {
934  SDOperand N0 = N->getOperand(0);
935  SDOperand N1 = N->getOperand(1);
936  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
937  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
938  MVT::ValueType VT = N0.getValueType();
939
940  // fold vector ops
941  if (MVT::isVector(VT)) {
942    SDOperand FoldedVOp = SimplifyVBinOp(N);
943    if (FoldedVOp.Val) return FoldedVOp;
944  }
945
946  // fold (add x, undef) -> undef
947  if (N0.getOpcode() == ISD::UNDEF)
948    return N0;
949  if (N1.getOpcode() == ISD::UNDEF)
950    return N1;
951  // fold (add c1, c2) -> c1+c2
952  if (N0C && N1C)
953    return DAG.getConstant(N0C->getAPIntValue() + N1C->getAPIntValue(), VT);
954  // canonicalize constant to RHS
955  if (N0C && !N1C)
956    return DAG.getNode(ISD::ADD, VT, N1, N0);
957  // fold (add x, 0) -> x
958  if (N1C && N1C->isNullValue())
959    return N0;
960  // fold ((c1-A)+c2) -> (c1+c2)-A
961  if (N1C && N0.getOpcode() == ISD::SUB)
962    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
963      return DAG.getNode(ISD::SUB, VT,
964                         DAG.getConstant(N1C->getAPIntValue()+
965                                         N0C->getAPIntValue(), VT),
966                         N0.getOperand(1));
967  // reassociate add
968  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
969  if (RADD.Val != 0)
970    return RADD;
971  // fold ((0-A) + B) -> B-A
972  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
973      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
974    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
975  // fold (A + (0-B)) -> A-B
976  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
977      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
978    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
979  // fold (A+(B-A)) -> B
980  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
981    return N1.getOperand(0);
982
983  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
984    return SDOperand(N, 0);
985
986  // fold (a+b) -> (a|b) iff a and b share no bits.
987  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
988    APInt LHSZero, LHSOne;
989    APInt RHSZero, RHSOne;
990    APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
991    DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
992    if (LHSZero.getBoolValue()) {
993      DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
994
995      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
996      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
997      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
998          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
999        return DAG.getNode(ISD::OR, VT, N0, N1);
1000    }
1001  }
1002
1003  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1004  if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
1005    SDOperand Result = combineShlAddConstant(N0, N1, DAG);
1006    if (Result.Val) return Result;
1007  }
1008  if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
1009    SDOperand Result = combineShlAddConstant(N1, N0, DAG);
1010    if (Result.Val) return Result;
1011  }
1012
1013  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
1014  if (N0.getOpcode() == ISD::SELECT && N0.Val->hasOneUse()) {
1015    SDOperand Result = combineSelectAndUse(N, N0, N1, DAG);
1016    if (Result.Val) return Result;
1017  }
1018  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1019    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1020    if (Result.Val) return Result;
1021  }
1022
1023  return SDOperand();
1024}
1025
1026SDOperand DAGCombiner::visitADDC(SDNode *N) {
1027  SDOperand N0 = N->getOperand(0);
1028  SDOperand N1 = N->getOperand(1);
1029  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1030  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1031  MVT::ValueType VT = N0.getValueType();
1032
1033  // If the flag result is dead, turn this into an ADD.
1034  if (N->hasNUsesOfValue(0, 1))
1035    return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
1036                     DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1037
1038  // canonicalize constant to RHS.
1039  if (N0C && !N1C) {
1040    SDOperand Ops[] = { N1, N0 };
1041    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1042  }
1043
1044  // fold (addc x, 0) -> x + no carry out
1045  if (N1C && N1C->isNullValue())
1046    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1047
1048  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1049  APInt LHSZero, LHSOne;
1050  APInt RHSZero, RHSOne;
1051  APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
1052  DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1053  if (LHSZero.getBoolValue()) {
1054    DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1055
1056    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1057    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1058    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1059        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1060      return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
1061                       DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1062  }
1063
1064  return SDOperand();
1065}
1066
1067SDOperand DAGCombiner::visitADDE(SDNode *N) {
1068  SDOperand N0 = N->getOperand(0);
1069  SDOperand N1 = N->getOperand(1);
1070  SDOperand CarryIn = N->getOperand(2);
1071  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1072  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1073  //MVT::ValueType VT = N0.getValueType();
1074
1075  // canonicalize constant to RHS
1076  if (N0C && !N1C) {
1077    SDOperand Ops[] = { N1, N0, CarryIn };
1078    return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
1079  }
1080
1081  // fold (adde x, y, false) -> (addc x, y)
1082  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
1083    SDOperand Ops[] = { N1, N0 };
1084    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1085  }
1086
1087  return SDOperand();
1088}
1089
1090
1091
1092SDOperand DAGCombiner::visitSUB(SDNode *N) {
1093  SDOperand N0 = N->getOperand(0);
1094  SDOperand N1 = N->getOperand(1);
1095  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1096  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1097  MVT::ValueType VT = N0.getValueType();
1098
1099  // fold vector ops
1100  if (MVT::isVector(VT)) {
1101    SDOperand FoldedVOp = SimplifyVBinOp(N);
1102    if (FoldedVOp.Val) return FoldedVOp;
1103  }
1104
1105  // fold (sub x, x) -> 0
1106  if (N0 == N1)
1107    return DAG.getConstant(0, N->getValueType(0));
1108  // fold (sub c1, c2) -> c1-c2
1109  if (N0C && N1C)
1110    return DAG.getNode(ISD::SUB, VT, N0, N1);
1111  // fold (sub x, c) -> (add x, -c)
1112  if (N1C)
1113    return DAG.getNode(ISD::ADD, VT, N0,
1114                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1115  // fold (A+B)-A -> B
1116  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1117    return N0.getOperand(1);
1118  // fold (A+B)-B -> A
1119  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1120    return N0.getOperand(0);
1121  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1122  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1123    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1124    if (Result.Val) return Result;
1125  }
1126  // If either operand of a sub is undef, the result is undef
1127  if (N0.getOpcode() == ISD::UNDEF)
1128    return N0;
1129  if (N1.getOpcode() == ISD::UNDEF)
1130    return N1;
1131
1132  return SDOperand();
1133}
1134
1135SDOperand DAGCombiner::visitMUL(SDNode *N) {
1136  SDOperand N0 = N->getOperand(0);
1137  SDOperand N1 = N->getOperand(1);
1138  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1139  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1140  MVT::ValueType VT = N0.getValueType();
1141
1142  // fold vector ops
1143  if (MVT::isVector(VT)) {
1144    SDOperand FoldedVOp = SimplifyVBinOp(N);
1145    if (FoldedVOp.Val) return FoldedVOp;
1146  }
1147
1148  // fold (mul x, undef) -> 0
1149  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1150    return DAG.getConstant(0, VT);
1151  // fold (mul c1, c2) -> c1*c2
1152  if (N0C && N1C)
1153    return DAG.getNode(ISD::MUL, VT, N0, N1);
1154  // canonicalize constant to RHS
1155  if (N0C && !N1C)
1156    return DAG.getNode(ISD::MUL, VT, N1, N0);
1157  // fold (mul x, 0) -> 0
1158  if (N1C && N1C->isNullValue())
1159    return N1;
1160  // fold (mul x, -1) -> 0-x
1161  if (N1C && N1C->isAllOnesValue())
1162    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1163  // fold (mul x, (1 << c)) -> x << c
1164  if (N1C && N1C->getAPIntValue().isPowerOf2())
1165    return DAG.getNode(ISD::SHL, VT, N0,
1166                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1167                                       TLI.getShiftAmountTy()));
1168  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1169  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
1170    // FIXME: If the input is something that is easily negated (e.g. a
1171    // single-use add), we should put the negate there.
1172    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
1173                       DAG.getNode(ISD::SHL, VT, N0,
1174                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
1175                                            TLI.getShiftAmountTy())));
1176  }
1177
1178  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1179  if (N1C && N0.getOpcode() == ISD::SHL &&
1180      isa<ConstantSDNode>(N0.getOperand(1))) {
1181    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
1182    AddToWorkList(C3.Val);
1183    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
1184  }
1185
1186  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1187  // use.
1188  {
1189    SDOperand Sh(0,0), Y(0,0);
1190    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1191    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1192        N0.Val->hasOneUse()) {
1193      Sh = N0; Y = N1;
1194    } else if (N1.getOpcode() == ISD::SHL &&
1195               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
1196      Sh = N1; Y = N0;
1197    }
1198    if (Sh.Val) {
1199      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
1200      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
1201    }
1202  }
1203  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1204  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
1205      isa<ConstantSDNode>(N0.getOperand(1))) {
1206    return DAG.getNode(ISD::ADD, VT,
1207                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
1208                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
1209  }
1210
1211  // reassociate mul
1212  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
1213  if (RMUL.Val != 0)
1214    return RMUL;
1215
1216  return SDOperand();
1217}
1218
1219SDOperand DAGCombiner::visitSDIV(SDNode *N) {
1220  SDOperand N0 = N->getOperand(0);
1221  SDOperand N1 = N->getOperand(1);
1222  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1223  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1224  MVT::ValueType VT = N->getValueType(0);
1225
1226  // fold vector ops
1227  if (MVT::isVector(VT)) {
1228    SDOperand FoldedVOp = SimplifyVBinOp(N);
1229    if (FoldedVOp.Val) return FoldedVOp;
1230  }
1231
1232  // fold (sdiv c1, c2) -> c1/c2
1233  if (N0C && N1C && !N1C->isNullValue())
1234    return DAG.getNode(ISD::SDIV, VT, N0, N1);
1235  // fold (sdiv X, 1) -> X
1236  if (N1C && N1C->getSignExtended() == 1LL)
1237    return N0;
1238  // fold (sdiv X, -1) -> 0-X
1239  if (N1C && N1C->isAllOnesValue())
1240    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1241  // If we know the sign bits of both operands are zero, strength reduce to a
1242  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1243  if (!MVT::isVector(VT)) {
1244    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1245      return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
1246  }
1247  // fold (sdiv X, pow2) -> simple ops after legalize
1248  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap() &&
1249      (isPowerOf2_64(N1C->getSignExtended()) ||
1250       isPowerOf2_64(-N1C->getSignExtended()))) {
1251    // If dividing by powers of two is cheap, then don't perform the following
1252    // fold.
1253    if (TLI.isPow2DivCheap())
1254      return SDOperand();
1255    int64_t pow2 = N1C->getSignExtended();
1256    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1257    unsigned lg2 = Log2_64(abs2);
1258    // Splat the sign bit into the register
1259    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
1260                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
1261                                                TLI.getShiftAmountTy()));
1262    AddToWorkList(SGN.Val);
1263    // Add (N0 < 0) ? abs2 - 1 : 0;
1264    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
1265                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
1266                                                TLI.getShiftAmountTy()));
1267    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
1268    AddToWorkList(SRL.Val);
1269    AddToWorkList(ADD.Val);    // Divide by pow2
1270    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
1271                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
1272    // If we're dividing by a positive value, we're done.  Otherwise, we must
1273    // negate the result.
1274    if (pow2 > 0)
1275      return SRA;
1276    AddToWorkList(SRA.Val);
1277    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
1278  }
1279  // if integer divide is expensive and we satisfy the requirements, emit an
1280  // alternate sequence.
1281  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
1282      !TLI.isIntDivCheap()) {
1283    SDOperand Op = BuildSDIV(N);
1284    if (Op.Val) return Op;
1285  }
1286
1287  // undef / X -> 0
1288  if (N0.getOpcode() == ISD::UNDEF)
1289    return DAG.getConstant(0, VT);
1290  // X / undef -> undef
1291  if (N1.getOpcode() == ISD::UNDEF)
1292    return N1;
1293
1294  return SDOperand();
1295}
1296
1297SDOperand DAGCombiner::visitUDIV(SDNode *N) {
1298  SDOperand N0 = N->getOperand(0);
1299  SDOperand N1 = N->getOperand(1);
1300  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1301  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1302  MVT::ValueType VT = N->getValueType(0);
1303
1304  // fold vector ops
1305  if (MVT::isVector(VT)) {
1306    SDOperand FoldedVOp = SimplifyVBinOp(N);
1307    if (FoldedVOp.Val) return FoldedVOp;
1308  }
1309
1310  // fold (udiv c1, c2) -> c1/c2
1311  if (N0C && N1C && !N1C->isNullValue())
1312    return DAG.getNode(ISD::UDIV, VT, N0, N1);
1313  // fold (udiv x, (1 << c)) -> x >>u c
1314  if (N1C && N1C->getAPIntValue().isPowerOf2())
1315    return DAG.getNode(ISD::SRL, VT, N0,
1316                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1317                                       TLI.getShiftAmountTy()));
1318  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1319  if (N1.getOpcode() == ISD::SHL) {
1320    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1321      if (SHC->getAPIntValue().isPowerOf2()) {
1322        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
1323        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
1324                                    DAG.getConstant(SHC->getAPIntValue()
1325                                                                    .logBase2(),
1326                                                    ADDVT));
1327        AddToWorkList(Add.Val);
1328        return DAG.getNode(ISD::SRL, VT, N0, Add);
1329      }
1330    }
1331  }
1332  // fold (udiv x, c) -> alternate
1333  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1334    SDOperand Op = BuildUDIV(N);
1335    if (Op.Val) return Op;
1336  }
1337
1338  // undef / X -> 0
1339  if (N0.getOpcode() == ISD::UNDEF)
1340    return DAG.getConstant(0, VT);
1341  // X / undef -> undef
1342  if (N1.getOpcode() == ISD::UNDEF)
1343    return N1;
1344
1345  return SDOperand();
1346}
1347
1348SDOperand DAGCombiner::visitSREM(SDNode *N) {
1349  SDOperand N0 = N->getOperand(0);
1350  SDOperand N1 = N->getOperand(1);
1351  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1352  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1353  MVT::ValueType VT = N->getValueType(0);
1354
1355  // fold (srem c1, c2) -> c1%c2
1356  if (N0C && N1C && !N1C->isNullValue())
1357    return DAG.getNode(ISD::SREM, VT, N0, N1);
1358  // If we know the sign bits of both operands are zero, strength reduce to a
1359  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1360  if (!MVT::isVector(VT)) {
1361    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1362      return DAG.getNode(ISD::UREM, VT, N0, N1);
1363  }
1364
1365  // If X/C can be simplified by the division-by-constant logic, lower
1366  // X%C to the equivalent of X-X/C*C.
1367  if (N1C && !N1C->isNullValue()) {
1368    SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
1369    AddToWorkList(Div.Val);
1370    SDOperand OptimizedDiv = combine(Div.Val);
1371    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1372      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1373      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1374      AddToWorkList(Mul.Val);
1375      return Sub;
1376    }
1377  }
1378
1379  // undef % X -> 0
1380  if (N0.getOpcode() == ISD::UNDEF)
1381    return DAG.getConstant(0, VT);
1382  // X % undef -> undef
1383  if (N1.getOpcode() == ISD::UNDEF)
1384    return N1;
1385
1386  return SDOperand();
1387}
1388
1389SDOperand DAGCombiner::visitUREM(SDNode *N) {
1390  SDOperand N0 = N->getOperand(0);
1391  SDOperand N1 = N->getOperand(1);
1392  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1393  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1394  MVT::ValueType VT = N->getValueType(0);
1395
1396  // fold (urem c1, c2) -> c1%c2
1397  if (N0C && N1C && !N1C->isNullValue())
1398    return DAG.getNode(ISD::UREM, VT, N0, N1);
1399  // fold (urem x, pow2) -> (and x, pow2-1)
1400  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
1401    return DAG.getNode(ISD::AND, VT, N0,
1402                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
1403  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1404  if (N1.getOpcode() == ISD::SHL) {
1405    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1406      if (SHC->getAPIntValue().isPowerOf2()) {
1407        SDOperand Add =
1408          DAG.getNode(ISD::ADD, VT, N1,
1409                 DAG.getConstant(APInt::getAllOnesValue(MVT::getSizeInBits(VT)),
1410                                 VT));
1411        AddToWorkList(Add.Val);
1412        return DAG.getNode(ISD::AND, VT, N0, Add);
1413      }
1414    }
1415  }
1416
1417  // If X/C can be simplified by the division-by-constant logic, lower
1418  // X%C to the equivalent of X-X/C*C.
1419  if (N1C && !N1C->isNullValue()) {
1420    SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
1421    SDOperand OptimizedDiv = combine(Div.Val);
1422    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1423      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1424      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1425      AddToWorkList(Mul.Val);
1426      return Sub;
1427    }
1428  }
1429
1430  // undef % X -> 0
1431  if (N0.getOpcode() == ISD::UNDEF)
1432    return DAG.getConstant(0, VT);
1433  // X % undef -> undef
1434  if (N1.getOpcode() == ISD::UNDEF)
1435    return N1;
1436
1437  return SDOperand();
1438}
1439
1440SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1441  SDOperand N0 = N->getOperand(0);
1442  SDOperand N1 = N->getOperand(1);
1443  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1444  MVT::ValueType VT = N->getValueType(0);
1445
1446  // fold (mulhs x, 0) -> 0
1447  if (N1C && N1C->isNullValue())
1448    return N1;
1449  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1450  if (N1C && N1C->getAPIntValue() == 1)
1451    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1452                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1453                                       TLI.getShiftAmountTy()));
1454  // fold (mulhs x, undef) -> 0
1455  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1456    return DAG.getConstant(0, VT);
1457
1458  return SDOperand();
1459}
1460
1461SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1462  SDOperand N0 = N->getOperand(0);
1463  SDOperand N1 = N->getOperand(1);
1464  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1465  MVT::ValueType VT = N->getValueType(0);
1466
1467  // fold (mulhu x, 0) -> 0
1468  if (N1C && N1C->isNullValue())
1469    return N1;
1470  // fold (mulhu x, 1) -> 0
1471  if (N1C && N1C->getAPIntValue() == 1)
1472    return DAG.getConstant(0, N0.getValueType());
1473  // fold (mulhu x, undef) -> 0
1474  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1475    return DAG.getConstant(0, VT);
1476
1477  return SDOperand();
1478}
1479
1480/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1481/// compute two values. LoOp and HiOp give the opcodes for the two computations
1482/// that are being performed. Return true if a simplification was made.
1483///
1484SDOperand DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
1485                                                  unsigned HiOp) {
1486  // If the high half is not needed, just compute the low half.
1487  bool HiExists = N->hasAnyUseOfValue(1);
1488  if (!HiExists &&
1489      (!AfterLegalize ||
1490       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
1491    SDOperand Res = DAG.getNode(LoOp, N->getValueType(0), N->op_begin(),
1492                                N->getNumOperands());
1493    return CombineTo(N, Res, Res);
1494  }
1495
1496  // If the low half is not needed, just compute the high half.
1497  bool LoExists = N->hasAnyUseOfValue(0);
1498  if (!LoExists &&
1499      (!AfterLegalize ||
1500       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
1501    SDOperand Res = DAG.getNode(HiOp, N->getValueType(1), N->op_begin(),
1502                                N->getNumOperands());
1503    return CombineTo(N, Res, Res);
1504  }
1505
1506  // If both halves are used, return as it is.
1507  if (LoExists && HiExists)
1508    return SDOperand();
1509
1510  // If the two computed results can be simplified separately, separate them.
1511  if (LoExists) {
1512    SDOperand Lo = DAG.getNode(LoOp, N->getValueType(0),
1513                               N->op_begin(), N->getNumOperands());
1514    AddToWorkList(Lo.Val);
1515    SDOperand LoOpt = combine(Lo.Val);
1516    if (LoOpt.Val && LoOpt.Val != Lo.Val &&
1517        TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))
1518      return CombineTo(N, LoOpt, LoOpt);
1519  }
1520
1521  if (HiExists) {
1522    SDOperand Hi = DAG.getNode(HiOp, N->getValueType(1),
1523                               N->op_begin(), N->getNumOperands());
1524    AddToWorkList(Hi.Val);
1525    SDOperand HiOpt = combine(Hi.Val);
1526    if (HiOpt.Val && HiOpt != Hi &&
1527        TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))
1528      return CombineTo(N, HiOpt, HiOpt);
1529  }
1530  return SDOperand();
1531}
1532
1533SDOperand DAGCombiner::visitSMUL_LOHI(SDNode *N) {
1534  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
1535  if (Res.Val) return Res;
1536
1537  return SDOperand();
1538}
1539
1540SDOperand DAGCombiner::visitUMUL_LOHI(SDNode *N) {
1541  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
1542  if (Res.Val) return Res;
1543
1544  return SDOperand();
1545}
1546
1547SDOperand DAGCombiner::visitSDIVREM(SDNode *N) {
1548  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
1549  if (Res.Val) return Res;
1550
1551  return SDOperand();
1552}
1553
1554SDOperand DAGCombiner::visitUDIVREM(SDNode *N) {
1555  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
1556  if (Res.Val) return Res;
1557
1558  return SDOperand();
1559}
1560
1561/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1562/// two operands of the same opcode, try to simplify it.
1563SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1564  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1565  MVT::ValueType VT = N0.getValueType();
1566  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1567
1568  // For each of OP in AND/OR/XOR:
1569  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1570  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1571  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1572  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1573  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1574       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1575      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1576    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1577                                   N0.getOperand(0).getValueType(),
1578                                   N0.getOperand(0), N1.getOperand(0));
1579    AddToWorkList(ORNode.Val);
1580    return DAG.getNode(N0.getOpcode(), VT, ORNode);
1581  }
1582
1583  // For each of OP in SHL/SRL/SRA/AND...
1584  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1585  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
1586  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1587  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1588       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1589      N0.getOperand(1) == N1.getOperand(1)) {
1590    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1591                                   N0.getOperand(0).getValueType(),
1592                                   N0.getOperand(0), N1.getOperand(0));
1593    AddToWorkList(ORNode.Val);
1594    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1595  }
1596
1597  return SDOperand();
1598}
1599
1600SDOperand DAGCombiner::visitAND(SDNode *N) {
1601  SDOperand N0 = N->getOperand(0);
1602  SDOperand N1 = N->getOperand(1);
1603  SDOperand LL, LR, RL, RR, CC0, CC1;
1604  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1605  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1606  MVT::ValueType VT = N1.getValueType();
1607  unsigned BitWidth = MVT::getSizeInBits(VT);
1608
1609  // fold vector ops
1610  if (MVT::isVector(VT)) {
1611    SDOperand FoldedVOp = SimplifyVBinOp(N);
1612    if (FoldedVOp.Val) return FoldedVOp;
1613  }
1614
1615  // fold (and x, undef) -> 0
1616  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1617    return DAG.getConstant(0, VT);
1618  // fold (and c1, c2) -> c1&c2
1619  if (N0C && N1C)
1620    return DAG.getNode(ISD::AND, VT, N0, N1);
1621  // canonicalize constant to RHS
1622  if (N0C && !N1C)
1623    return DAG.getNode(ISD::AND, VT, N1, N0);
1624  // fold (and x, -1) -> x
1625  if (N1C && N1C->isAllOnesValue())
1626    return N0;
1627  // if (and x, c) is known to be zero, return 0
1628  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0),
1629                                   APInt::getAllOnesValue(BitWidth)))
1630    return DAG.getConstant(0, VT);
1631  // reassociate and
1632  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1633  if (RAND.Val != 0)
1634    return RAND;
1635  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1636  if (N1C && N0.getOpcode() == ISD::OR)
1637    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1638      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
1639        return N1;
1640  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1641  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1642    SDOperand N0Op0 = N0.getOperand(0);
1643    APInt Mask = ~N1C->getAPIntValue();
1644    Mask.trunc(N0Op0.getValueSizeInBits());
1645    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
1646      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1647                                   N0Op0);
1648
1649      // Replace uses of the AND with uses of the Zero extend node.
1650      CombineTo(N, Zext);
1651
1652      // We actually want to replace all uses of the any_extend with the
1653      // zero_extend, to avoid duplicating things.  This will later cause this
1654      // AND to be folded.
1655      CombineTo(N0.Val, Zext);
1656      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1657    }
1658  }
1659  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1660  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1661    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1662    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1663
1664    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1665        MVT::isInteger(LL.getValueType())) {
1666      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1667      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
1668        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1669        AddToWorkList(ORNode.Val);
1670        return DAG.getSetCC(VT, ORNode, LR, Op1);
1671      }
1672      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1673      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1674        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1675        AddToWorkList(ANDNode.Val);
1676        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1677      }
1678      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1679      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1680        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1681        AddToWorkList(ORNode.Val);
1682        return DAG.getSetCC(VT, ORNode, LR, Op1);
1683      }
1684    }
1685    // canonicalize equivalent to ll == rl
1686    if (LL == RR && LR == RL) {
1687      Op1 = ISD::getSetCCSwappedOperands(Op1);
1688      std::swap(RL, RR);
1689    }
1690    if (LL == RL && LR == RR) {
1691      bool isInteger = MVT::isInteger(LL.getValueType());
1692      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1693      if (Result != ISD::SETCC_INVALID)
1694        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1695    }
1696  }
1697
1698  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
1699  if (N0.getOpcode() == N1.getOpcode()) {
1700    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1701    if (Tmp.Val) return Tmp;
1702  }
1703
1704  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1705  // fold (and (sra)) -> (and (srl)) when possible.
1706  if (!MVT::isVector(VT) &&
1707      SimplifyDemandedBits(SDOperand(N, 0)))
1708    return SDOperand(N, 0);
1709  // fold (zext_inreg (extload x)) -> (zextload x)
1710  if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
1711    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1712    MVT::ValueType EVT = LN0->getMemoryVT();
1713    // If we zero all the possible extended bits, then we can turn this into
1714    // a zextload if we are running before legalize or the operation is legal.
1715    unsigned BitWidth = N1.getValueSizeInBits();
1716    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1717                                     BitWidth - MVT::getSizeInBits(EVT))) &&
1718        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1719      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1720                                         LN0->getBasePtr(), LN0->getSrcValue(),
1721                                         LN0->getSrcValueOffset(), EVT,
1722                                         LN0->isVolatile(),
1723                                         LN0->getAlignment());
1724      AddToWorkList(N);
1725      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1726      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1727    }
1728  }
1729  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1730  if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
1731      N0.hasOneUse()) {
1732    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1733    MVT::ValueType EVT = LN0->getMemoryVT();
1734    // If we zero all the possible extended bits, then we can turn this into
1735    // a zextload if we are running before legalize or the operation is legal.
1736    unsigned BitWidth = N1.getValueSizeInBits();
1737    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1738                                     BitWidth - MVT::getSizeInBits(EVT))) &&
1739        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1740      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1741                                         LN0->getBasePtr(), LN0->getSrcValue(),
1742                                         LN0->getSrcValueOffset(), EVT,
1743                                         LN0->isVolatile(),
1744                                         LN0->getAlignment());
1745      AddToWorkList(N);
1746      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1747      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1748    }
1749  }
1750
1751  // fold (and (load x), 255) -> (zextload x, i8)
1752  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1753  if (N1C && N0.getOpcode() == ISD::LOAD) {
1754    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1755    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1756        LN0->isUnindexed() && N0.hasOneUse()) {
1757      MVT::ValueType EVT, LoadedVT;
1758      if (N1C->getAPIntValue() == 255)
1759        EVT = MVT::i8;
1760      else if (N1C->getAPIntValue() == 65535)
1761        EVT = MVT::i16;
1762      else if (N1C->getAPIntValue() == ~0U)
1763        EVT = MVT::i32;
1764      else
1765        EVT = MVT::Other;
1766
1767      LoadedVT = LN0->getMemoryVT();
1768      if (EVT != MVT::Other && LoadedVT > EVT &&
1769          (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1770        MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1771        // For big endian targets, we need to add an offset to the pointer to
1772        // load the correct bytes.  For little endian systems, we merely need to
1773        // read fewer bytes from the same pointer.
1774        unsigned LVTStoreBytes = MVT::getStoreSizeInBits(LoadedVT)/8;
1775        unsigned EVTStoreBytes = MVT::getStoreSizeInBits(EVT)/8;
1776        unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
1777        unsigned Alignment = LN0->getAlignment();
1778        SDOperand NewPtr = LN0->getBasePtr();
1779        if (TLI.isBigEndian()) {
1780          NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1781                               DAG.getConstant(PtrOff, PtrType));
1782          Alignment = MinAlign(Alignment, PtrOff);
1783        }
1784        AddToWorkList(NewPtr.Val);
1785        SDOperand Load =
1786          DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
1787                         LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
1788                         LN0->isVolatile(), Alignment);
1789        AddToWorkList(N);
1790        CombineTo(N0.Val, Load, Load.getValue(1));
1791        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1792      }
1793    }
1794  }
1795
1796  return SDOperand();
1797}
1798
1799SDOperand DAGCombiner::visitOR(SDNode *N) {
1800  SDOperand N0 = N->getOperand(0);
1801  SDOperand N1 = N->getOperand(1);
1802  SDOperand LL, LR, RL, RR, CC0, CC1;
1803  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1804  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1805  MVT::ValueType VT = N1.getValueType();
1806
1807  // fold vector ops
1808  if (MVT::isVector(VT)) {
1809    SDOperand FoldedVOp = SimplifyVBinOp(N);
1810    if (FoldedVOp.Val) return FoldedVOp;
1811  }
1812
1813  // fold (or x, undef) -> -1
1814  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1815    return DAG.getConstant(~0ULL, VT);
1816  // fold (or c1, c2) -> c1|c2
1817  if (N0C && N1C)
1818    return DAG.getNode(ISD::OR, VT, N0, N1);
1819  // canonicalize constant to RHS
1820  if (N0C && !N1C)
1821    return DAG.getNode(ISD::OR, VT, N1, N0);
1822  // fold (or x, 0) -> x
1823  if (N1C && N1C->isNullValue())
1824    return N0;
1825  // fold (or x, -1) -> -1
1826  if (N1C && N1C->isAllOnesValue())
1827    return N1;
1828  // fold (or x, c) -> c iff (x & ~c) == 0
1829  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
1830    return N1;
1831  // reassociate or
1832  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1833  if (ROR.Val != 0)
1834    return ROR;
1835  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1836  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1837             isa<ConstantSDNode>(N0.getOperand(1))) {
1838    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1839    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1840                                                 N1),
1841                       DAG.getConstant(N1C->getAPIntValue() |
1842                                       C1->getAPIntValue(), VT));
1843  }
1844  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1845  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1846    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1847    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1848
1849    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1850        MVT::isInteger(LL.getValueType())) {
1851      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1852      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1853      if (cast<ConstantSDNode>(LR)->isNullValue() &&
1854          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1855        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1856        AddToWorkList(ORNode.Val);
1857        return DAG.getSetCC(VT, ORNode, LR, Op1);
1858      }
1859      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1860      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1861      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1862          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1863        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1864        AddToWorkList(ANDNode.Val);
1865        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1866      }
1867    }
1868    // canonicalize equivalent to ll == rl
1869    if (LL == RR && LR == RL) {
1870      Op1 = ISD::getSetCCSwappedOperands(Op1);
1871      std::swap(RL, RR);
1872    }
1873    if (LL == RL && LR == RR) {
1874      bool isInteger = MVT::isInteger(LL.getValueType());
1875      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1876      if (Result != ISD::SETCC_INVALID)
1877        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1878    }
1879  }
1880
1881  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
1882  if (N0.getOpcode() == N1.getOpcode()) {
1883    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1884    if (Tmp.Val) return Tmp;
1885  }
1886
1887  // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible.
1888  if (N0.getOpcode() == ISD::AND &&
1889      N1.getOpcode() == ISD::AND &&
1890      N0.getOperand(1).getOpcode() == ISD::Constant &&
1891      N1.getOperand(1).getOpcode() == ISD::Constant &&
1892      // Don't increase # computations.
1893      (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
1894    // We can only do this xform if we know that bits from X that are set in C2
1895    // but not in C1 are already zero.  Likewise for Y.
1896    const APInt &LHSMask =
1897      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1898    const APInt &RHSMask =
1899      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
1900
1901    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
1902        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
1903      SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
1904      return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
1905    }
1906  }
1907
1908
1909  // See if this is some rotate idiom.
1910  if (SDNode *Rot = MatchRotate(N0, N1))
1911    return SDOperand(Rot, 0);
1912
1913  return SDOperand();
1914}
1915
1916
1917/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
1918static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
1919  if (Op.getOpcode() == ISD::AND) {
1920    if (isa<ConstantSDNode>(Op.getOperand(1))) {
1921      Mask = Op.getOperand(1);
1922      Op = Op.getOperand(0);
1923    } else {
1924      return false;
1925    }
1926  }
1927
1928  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
1929    Shift = Op;
1930    return true;
1931  }
1932  return false;
1933}
1934
1935
1936// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
1937// idioms for rotate, and if the target supports rotation instructions, generate
1938// a rot[lr].
1939SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
1940  // Must be a legal type.  Expanded an promoted things won't work with rotates.
1941  MVT::ValueType VT = LHS.getValueType();
1942  if (!TLI.isTypeLegal(VT)) return 0;
1943
1944  // The target must have at least one rotate flavor.
1945  bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
1946  bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
1947  if (!HasROTL && !HasROTR) return 0;
1948
1949  // Match "(X shl/srl V1) & V2" where V2 may not be present.
1950  SDOperand LHSShift;   // The shift.
1951  SDOperand LHSMask;    // AND value if any.
1952  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
1953    return 0; // Not part of a rotate.
1954
1955  SDOperand RHSShift;   // The shift.
1956  SDOperand RHSMask;    // AND value if any.
1957  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
1958    return 0; // Not part of a rotate.
1959
1960  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
1961    return 0;   // Not shifting the same value.
1962
1963  if (LHSShift.getOpcode() == RHSShift.getOpcode())
1964    return 0;   // Shifts must disagree.
1965
1966  // Canonicalize shl to left side in a shl/srl pair.
1967  if (RHSShift.getOpcode() == ISD::SHL) {
1968    std::swap(LHS, RHS);
1969    std::swap(LHSShift, RHSShift);
1970    std::swap(LHSMask , RHSMask );
1971  }
1972
1973  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1974  SDOperand LHSShiftArg = LHSShift.getOperand(0);
1975  SDOperand LHSShiftAmt = LHSShift.getOperand(1);
1976  SDOperand RHSShiftAmt = RHSShift.getOperand(1);
1977
1978  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1979  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
1980  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
1981      RHSShiftAmt.getOpcode() == ISD::Constant) {
1982    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue();
1983    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue();
1984    if ((LShVal + RShVal) != OpSizeInBits)
1985      return 0;
1986
1987    SDOperand Rot;
1988    if (HasROTL)
1989      Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt);
1990    else
1991      Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt);
1992
1993    // If there is an AND of either shifted operand, apply it to the result.
1994    if (LHSMask.Val || RHSMask.Val) {
1995      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
1996
1997      if (LHSMask.Val) {
1998        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
1999        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
2000      }
2001      if (RHSMask.Val) {
2002        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
2003        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
2004      }
2005
2006      Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
2007    }
2008
2009    return Rot.Val;
2010  }
2011
2012  // If there is a mask here, and we have a variable shift, we can't be sure
2013  // that we're masking out the right stuff.
2014  if (LHSMask.Val || RHSMask.Val)
2015    return 0;
2016
2017  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
2018  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
2019  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
2020      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
2021    if (ConstantSDNode *SUBC =
2022          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
2023      if (SUBC->getAPIntValue() == OpSizeInBits) {
2024        if (HasROTL)
2025          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2026        else
2027          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2028      }
2029    }
2030  }
2031
2032  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2033  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2034  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
2035      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
2036    if (ConstantSDNode *SUBC =
2037          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
2038      if (SUBC->getAPIntValue() == OpSizeInBits) {
2039        if (HasROTL)
2040          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2041        else
2042          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2043      }
2044    }
2045  }
2046
2047  // Look for sign/zext/any-extended cases:
2048  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2049       || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2050       || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) &&
2051      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2052       || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2053       || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) {
2054    SDOperand LExtOp0 = LHSShiftAmt.getOperand(0);
2055    SDOperand RExtOp0 = RHSShiftAmt.getOperand(0);
2056    if (RExtOp0.getOpcode() == ISD::SUB &&
2057        RExtOp0.getOperand(1) == LExtOp0) {
2058      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2059      //   (rotr x, y)
2060      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2061      //   (rotl x, (sub 32, y))
2062      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
2063        if (SUBC->getAPIntValue() == OpSizeInBits) {
2064          if (HasROTL)
2065            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2066          else
2067            return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2068        }
2069      }
2070    } else if (LExtOp0.getOpcode() == ISD::SUB &&
2071               RExtOp0 == LExtOp0.getOperand(1)) {
2072      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2073      //   (rotl x, y)
2074      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2075      //   (rotr x, (sub 32, y))
2076      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
2077        if (SUBC->getAPIntValue() == OpSizeInBits) {
2078          if (HasROTL)
2079            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val;
2080          else
2081            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2082        }
2083      }
2084    }
2085  }
2086
2087  return 0;
2088}
2089
2090
2091SDOperand DAGCombiner::visitXOR(SDNode *N) {
2092  SDOperand N0 = N->getOperand(0);
2093  SDOperand N1 = N->getOperand(1);
2094  SDOperand LHS, RHS, CC;
2095  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2096  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2097  MVT::ValueType VT = N0.getValueType();
2098
2099  // fold vector ops
2100  if (MVT::isVector(VT)) {
2101    SDOperand FoldedVOp = SimplifyVBinOp(N);
2102    if (FoldedVOp.Val) return FoldedVOp;
2103  }
2104
2105  // fold (xor x, undef) -> undef
2106  if (N0.getOpcode() == ISD::UNDEF)
2107    return N0;
2108  if (N1.getOpcode() == ISD::UNDEF)
2109    return N1;
2110  // fold (xor c1, c2) -> c1^c2
2111  if (N0C && N1C)
2112    return DAG.getNode(ISD::XOR, VT, N0, N1);
2113  // canonicalize constant to RHS
2114  if (N0C && !N1C)
2115    return DAG.getNode(ISD::XOR, VT, N1, N0);
2116  // fold (xor x, 0) -> x
2117  if (N1C && N1C->isNullValue())
2118    return N0;
2119  // reassociate xor
2120  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
2121  if (RXOR.Val != 0)
2122    return RXOR;
2123  // fold !(x cc y) -> (x !cc y)
2124  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
2125    bool isInt = MVT::isInteger(LHS.getValueType());
2126    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2127                                               isInt);
2128    if (N0.getOpcode() == ISD::SETCC)
2129      return DAG.getSetCC(VT, LHS, RHS, NotCC);
2130    if (N0.getOpcode() == ISD::SELECT_CC)
2131      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
2132    assert(0 && "Unhandled SetCC Equivalent!");
2133    abort();
2134  }
2135  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2136  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
2137      N0.Val->hasOneUse() && isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
2138    SDOperand V = N0.getOperand(0);
2139    V = DAG.getNode(ISD::XOR, V.getValueType(), V,
2140                    DAG.getConstant(1, V.getValueType()));
2141    AddToWorkList(V.Val);
2142    return DAG.getNode(ISD::ZERO_EXTEND, VT, V);
2143  }
2144
2145  // fold !(x or y) -> (!x and !y) iff x or y are setcc
2146  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
2147      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2148    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2149    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
2150      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2151      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2152      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2153      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2154      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2155    }
2156  }
2157  // fold !(x or y) -> (!x and !y) iff x or y are constants
2158  if (N1C && N1C->isAllOnesValue() &&
2159      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2160    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2161    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
2162      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2163      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2164      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2165      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2166      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2167    }
2168  }
2169  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
2170  if (N1C && N0.getOpcode() == ISD::XOR) {
2171    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
2172    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2173    if (N00C)
2174      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
2175                         DAG.getConstant(N1C->getAPIntValue()^
2176                                         N00C->getAPIntValue(), VT));
2177    if (N01C)
2178      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
2179                         DAG.getConstant(N1C->getAPIntValue()^
2180                                         N01C->getAPIntValue(), VT));
2181  }
2182  // fold (xor x, x) -> 0
2183  if (N0 == N1) {
2184    if (!MVT::isVector(VT)) {
2185      return DAG.getConstant(0, VT);
2186    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
2187      // Produce a vector of zeros.
2188      SDOperand El = DAG.getConstant(0, MVT::getVectorElementType(VT));
2189      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
2190      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
2191    }
2192  }
2193
2194  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
2195  if (N0.getOpcode() == N1.getOpcode()) {
2196    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2197    if (Tmp.Val) return Tmp;
2198  }
2199
2200  // Simplify the expression using non-local knowledge.
2201  if (!MVT::isVector(VT) &&
2202      SimplifyDemandedBits(SDOperand(N, 0)))
2203    return SDOperand(N, 0);
2204
2205  return SDOperand();
2206}
2207
2208/// visitShiftByConstant - Handle transforms common to the three shifts, when
2209/// the shift amount is a constant.
2210SDOperand DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
2211  SDNode *LHS = N->getOperand(0).Val;
2212  if (!LHS->hasOneUse()) return SDOperand();
2213
2214  // We want to pull some binops through shifts, so that we have (and (shift))
2215  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
2216  // thing happens with address calculations, so it's important to canonicalize
2217  // it.
2218  bool HighBitSet = false;  // Can we transform this if the high bit is set?
2219
2220  switch (LHS->getOpcode()) {
2221  default: return SDOperand();
2222  case ISD::OR:
2223  case ISD::XOR:
2224    HighBitSet = false; // We can only transform sra if the high bit is clear.
2225    break;
2226  case ISD::AND:
2227    HighBitSet = true;  // We can only transform sra if the high bit is set.
2228    break;
2229  case ISD::ADD:
2230    if (N->getOpcode() != ISD::SHL)
2231      return SDOperand(); // only shl(add) not sr[al](add).
2232    HighBitSet = false; // We can only transform sra if the high bit is clear.
2233    break;
2234  }
2235
2236  // We require the RHS of the binop to be a constant as well.
2237  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
2238  if (!BinOpCst) return SDOperand();
2239
2240
2241  // FIXME: disable this for unless the input to the binop is a shift by a
2242  // constant.  If it is not a shift, it pessimizes some common cases like:
2243  //
2244  //void foo(int *X, int i) { X[i & 1235] = 1; }
2245  //int bar(int *X, int i) { return X[i & 255]; }
2246  SDNode *BinOpLHSVal = LHS->getOperand(0).Val;
2247  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
2248       BinOpLHSVal->getOpcode() != ISD::SRA &&
2249       BinOpLHSVal->getOpcode() != ISD::SRL) ||
2250      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
2251    return SDOperand();
2252
2253  MVT::ValueType VT = N->getValueType(0);
2254
2255  // If this is a signed shift right, and the high bit is modified
2256  // by the logical operation, do not perform the transformation.
2257  // The highBitSet boolean indicates the value of the high bit of
2258  // the constant which would cause it to be modified for this
2259  // operation.
2260  if (N->getOpcode() == ISD::SRA) {
2261    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
2262    if (BinOpRHSSignSet != HighBitSet)
2263      return SDOperand();
2264  }
2265
2266  // Fold the constants, shifting the binop RHS by the shift amount.
2267  SDOperand NewRHS = DAG.getNode(N->getOpcode(), N->getValueType(0),
2268                                 LHS->getOperand(1), N->getOperand(1));
2269
2270  // Create the new shift.
2271  SDOperand NewShift = DAG.getNode(N->getOpcode(), VT, LHS->getOperand(0),
2272                                   N->getOperand(1));
2273
2274  // Create the new binop.
2275  return DAG.getNode(LHS->getOpcode(), VT, NewShift, NewRHS);
2276}
2277
2278
2279SDOperand DAGCombiner::visitSHL(SDNode *N) {
2280  SDOperand N0 = N->getOperand(0);
2281  SDOperand N1 = N->getOperand(1);
2282  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2283  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2284  MVT::ValueType VT = N0.getValueType();
2285  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2286
2287  // fold (shl c1, c2) -> c1<<c2
2288  if (N0C && N1C)
2289    return DAG.getNode(ISD::SHL, VT, N0, N1);
2290  // fold (shl 0, x) -> 0
2291  if (N0C && N0C->isNullValue())
2292    return N0;
2293  // fold (shl x, c >= size(x)) -> undef
2294  if (N1C && N1C->getValue() >= OpSizeInBits)
2295    return DAG.getNode(ISD::UNDEF, VT);
2296  // fold (shl x, 0) -> x
2297  if (N1C && N1C->isNullValue())
2298    return N0;
2299  // if (shl x, c) is known to be zero, return 0
2300  if (DAG.MaskedValueIsZero(SDOperand(N, 0),
2301                            APInt::getAllOnesValue(MVT::getSizeInBits(VT))))
2302    return DAG.getConstant(0, VT);
2303  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2304    return SDOperand(N, 0);
2305  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
2306  if (N1C && N0.getOpcode() == ISD::SHL &&
2307      N0.getOperand(1).getOpcode() == ISD::Constant) {
2308    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2309    uint64_t c2 = N1C->getValue();
2310    if (c1 + c2 > OpSizeInBits)
2311      return DAG.getConstant(0, VT);
2312    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
2313                       DAG.getConstant(c1 + c2, N1.getValueType()));
2314  }
2315  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
2316  //                               (srl (and x, -1 << c1), c1-c2)
2317  if (N1C && N0.getOpcode() == ISD::SRL &&
2318      N0.getOperand(1).getOpcode() == ISD::Constant) {
2319    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2320    uint64_t c2 = N1C->getValue();
2321    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2322                                 DAG.getConstant(~0ULL << c1, VT));
2323    if (c2 > c1)
2324      return DAG.getNode(ISD::SHL, VT, Mask,
2325                         DAG.getConstant(c2-c1, N1.getValueType()));
2326    else
2327      return DAG.getNode(ISD::SRL, VT, Mask,
2328                         DAG.getConstant(c1-c2, N1.getValueType()));
2329  }
2330  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
2331  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
2332    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2333                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
2334
2335  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2336}
2337
2338SDOperand DAGCombiner::visitSRA(SDNode *N) {
2339  SDOperand N0 = N->getOperand(0);
2340  SDOperand N1 = N->getOperand(1);
2341  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2342  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2343  MVT::ValueType VT = N0.getValueType();
2344
2345  // fold (sra c1, c2) -> c1>>c2
2346  if (N0C && N1C)
2347    return DAG.getNode(ISD::SRA, VT, N0, N1);
2348  // fold (sra 0, x) -> 0
2349  if (N0C && N0C->isNullValue())
2350    return N0;
2351  // fold (sra -1, x) -> -1
2352  if (N0C && N0C->isAllOnesValue())
2353    return N0;
2354  // fold (sra x, c >= size(x)) -> undef
2355  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
2356    return DAG.getNode(ISD::UNDEF, VT);
2357  // fold (sra x, 0) -> x
2358  if (N1C && N1C->isNullValue())
2359    return N0;
2360  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2361  // sext_inreg.
2362  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
2363    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
2364    MVT::ValueType EVT;
2365    switch (LowBits) {
2366    default: EVT = MVT::Other; break;
2367    case  1: EVT = MVT::i1;    break;
2368    case  8: EVT = MVT::i8;    break;
2369    case 16: EVT = MVT::i16;   break;
2370    case 32: EVT = MVT::i32;   break;
2371    }
2372    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
2373      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
2374                         DAG.getValueType(EVT));
2375  }
2376
2377  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
2378  if (N1C && N0.getOpcode() == ISD::SRA) {
2379    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2380      unsigned Sum = N1C->getValue() + C1->getValue();
2381      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
2382      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
2383                         DAG.getConstant(Sum, N1C->getValueType(0)));
2384    }
2385  }
2386
2387  // fold sra (shl X, m), result_size - n
2388  // -> (sign_extend (trunc (shl X, result_size - n - m))) for
2389  // result_size - n != m.
2390  // If truncate is free for the target sext(shl) is likely to result in better
2391  // code.
2392  if (N0.getOpcode() == ISD::SHL) {
2393    // Get the two constanst of the shifts, CN0 = m, CN = n.
2394    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2395    if (N01C && N1C) {
2396      // Determine what the truncate's result bitsize and type would be.
2397      unsigned VTValSize = MVT::getSizeInBits(VT);
2398      MVT::ValueType TruncVT = MVT::getIntegerType(VTValSize - N1C->getValue());
2399      // Determine the residual right-shift amount.
2400      unsigned ShiftAmt = N1C->getValue() - N01C->getValue();
2401
2402      // If the shift is not a no-op (in which case this should be just a sign
2403      // extend already), the truncated to type is legal, sign_extend is legal
2404      // on that type, and the the truncate to that type is both legal and free,
2405      // perform the transform.
2406      if (ShiftAmt &&
2407          TLI.isTypeLegal(TruncVT) &&
2408          TLI.isOperationLegal(ISD::SIGN_EXTEND, TruncVT) &&
2409          TLI.isOperationLegal(ISD::TRUNCATE, VT) &&
2410          TLI.isTruncateFree(VT, TruncVT)) {
2411
2412          SDOperand Amt = DAG.getConstant(ShiftAmt, TLI.getShiftAmountTy());
2413          SDOperand Shift = DAG.getNode(ISD::SRL, VT, N0.getOperand(0), Amt);
2414          SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, TruncVT, Shift);
2415          return DAG.getNode(ISD::SIGN_EXTEND, N->getValueType(0), Trunc);
2416      }
2417    }
2418  }
2419
2420  // Simplify, based on bits shifted out of the LHS.
2421  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2422    return SDOperand(N, 0);
2423
2424
2425  // If the sign bit is known to be zero, switch this to a SRL.
2426  if (DAG.SignBitIsZero(N0))
2427    return DAG.getNode(ISD::SRL, VT, N0, N1);
2428
2429  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2430}
2431
2432SDOperand DAGCombiner::visitSRL(SDNode *N) {
2433  SDOperand N0 = N->getOperand(0);
2434  SDOperand N1 = N->getOperand(1);
2435  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2436  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2437  MVT::ValueType VT = N0.getValueType();
2438  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2439
2440  // fold (srl c1, c2) -> c1 >>u c2
2441  if (N0C && N1C)
2442    return DAG.getNode(ISD::SRL, VT, N0, N1);
2443  // fold (srl 0, x) -> 0
2444  if (N0C && N0C->isNullValue())
2445    return N0;
2446  // fold (srl x, c >= size(x)) -> undef
2447  if (N1C && N1C->getValue() >= OpSizeInBits)
2448    return DAG.getNode(ISD::UNDEF, VT);
2449  // fold (srl x, 0) -> x
2450  if (N1C && N1C->isNullValue())
2451    return N0;
2452  // if (srl x, c) is known to be zero, return 0
2453  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0),
2454                                   APInt::getAllOnesValue(OpSizeInBits)))
2455    return DAG.getConstant(0, VT);
2456
2457  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
2458  if (N1C && N0.getOpcode() == ISD::SRL &&
2459      N0.getOperand(1).getOpcode() == ISD::Constant) {
2460    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2461    uint64_t c2 = N1C->getValue();
2462    if (c1 + c2 > OpSizeInBits)
2463      return DAG.getConstant(0, VT);
2464    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
2465                       DAG.getConstant(c1 + c2, N1.getValueType()));
2466  }
2467
2468  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2469  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2470    // Shifting in all undef bits?
2471    MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
2472    if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
2473      return DAG.getNode(ISD::UNDEF, VT);
2474
2475    SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
2476    AddToWorkList(SmallShift.Val);
2477    return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
2478  }
2479
2480  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
2481  // bit, which is unmodified by sra.
2482  if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
2483    if (N0.getOpcode() == ISD::SRA)
2484      return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
2485  }
2486
2487  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
2488  if (N1C && N0.getOpcode() == ISD::CTLZ &&
2489      N1C->getAPIntValue() == Log2_32(MVT::getSizeInBits(VT))) {
2490    APInt KnownZero, KnownOne;
2491    APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
2492    DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
2493
2494    // If any of the input bits are KnownOne, then the input couldn't be all
2495    // zeros, thus the result of the srl will always be zero.
2496    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
2497
2498    // If all of the bits input the to ctlz node are known to be zero, then
2499    // the result of the ctlz is "32" and the result of the shift is one.
2500    APInt UnknownBits = ~KnownZero & Mask;
2501    if (UnknownBits == 0) return DAG.getConstant(1, VT);
2502
2503    // Otherwise, check to see if there is exactly one bit input to the ctlz.
2504    if ((UnknownBits & (UnknownBits-1)) == 0) {
2505      // Okay, we know that only that the single bit specified by UnknownBits
2506      // could be set on input to the CTLZ node.  If this bit is set, the SRL
2507      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
2508      // to an SRL,XOR pair, which is likely to simplify more.
2509      unsigned ShAmt = UnknownBits.countTrailingZeros();
2510      SDOperand Op = N0.getOperand(0);
2511      if (ShAmt) {
2512        Op = DAG.getNode(ISD::SRL, VT, Op,
2513                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
2514        AddToWorkList(Op.Val);
2515      }
2516      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
2517    }
2518  }
2519
2520  // fold operands of srl based on knowledge that the low bits are not
2521  // demanded.
2522  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2523    return SDOperand(N, 0);
2524
2525  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2526}
2527
2528SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
2529  SDOperand N0 = N->getOperand(0);
2530  MVT::ValueType VT = N->getValueType(0);
2531
2532  // fold (ctlz c1) -> c2
2533  if (isa<ConstantSDNode>(N0))
2534    return DAG.getNode(ISD::CTLZ, VT, N0);
2535  return SDOperand();
2536}
2537
2538SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
2539  SDOperand N0 = N->getOperand(0);
2540  MVT::ValueType VT = N->getValueType(0);
2541
2542  // fold (cttz c1) -> c2
2543  if (isa<ConstantSDNode>(N0))
2544    return DAG.getNode(ISD::CTTZ, VT, N0);
2545  return SDOperand();
2546}
2547
2548SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
2549  SDOperand N0 = N->getOperand(0);
2550  MVT::ValueType VT = N->getValueType(0);
2551
2552  // fold (ctpop c1) -> c2
2553  if (isa<ConstantSDNode>(N0))
2554    return DAG.getNode(ISD::CTPOP, VT, N0);
2555  return SDOperand();
2556}
2557
2558SDOperand DAGCombiner::visitSELECT(SDNode *N) {
2559  SDOperand N0 = N->getOperand(0);
2560  SDOperand N1 = N->getOperand(1);
2561  SDOperand N2 = N->getOperand(2);
2562  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2563  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2564  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2565  MVT::ValueType VT = N->getValueType(0);
2566  MVT::ValueType VT0 = N0.getValueType();
2567
2568  // fold select C, X, X -> X
2569  if (N1 == N2)
2570    return N1;
2571  // fold select true, X, Y -> X
2572  if (N0C && !N0C->isNullValue())
2573    return N1;
2574  // fold select false, X, Y -> Y
2575  if (N0C && N0C->isNullValue())
2576    return N2;
2577  // fold select C, 1, X -> C | X
2578  if (MVT::i1 == VT && N1C && N1C->getAPIntValue() == 1)
2579    return DAG.getNode(ISD::OR, VT, N0, N2);
2580  // fold select C, 0, 1 -> ~C
2581  if (MVT::isInteger(VT) && MVT::isInteger(VT0) &&
2582      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
2583    SDOperand XORNode = DAG.getNode(ISD::XOR, VT0, N0, DAG.getConstant(1, VT0));
2584    if (VT == VT0)
2585      return XORNode;
2586    AddToWorkList(XORNode.Val);
2587    if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(VT0))
2588      return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode);
2589    return DAG.getNode(ISD::TRUNCATE, VT, XORNode);
2590  }
2591  // fold select C, 0, X -> ~C & X
2592  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
2593    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2594    AddToWorkList(XORNode.Val);
2595    return DAG.getNode(ISD::AND, VT, XORNode, N2);
2596  }
2597  // fold select C, X, 1 -> ~C | X
2598  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
2599    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2600    AddToWorkList(XORNode.Val);
2601    return DAG.getNode(ISD::OR, VT, XORNode, N1);
2602  }
2603  // fold select C, X, 0 -> C & X
2604  // FIXME: this should check for C type == X type, not i1?
2605  if (MVT::i1 == VT && N2C && N2C->isNullValue())
2606    return DAG.getNode(ISD::AND, VT, N0, N1);
2607  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
2608  if (MVT::i1 == VT && N0 == N1)
2609    return DAG.getNode(ISD::OR, VT, N0, N2);
2610  // fold X ? Y : X --> X ? Y : 0 --> X & Y
2611  if (MVT::i1 == VT && N0 == N2)
2612    return DAG.getNode(ISD::AND, VT, N0, N1);
2613
2614  // If we can fold this based on the true/false value, do so.
2615  if (SimplifySelectOps(N, N1, N2))
2616    return SDOperand(N, 0);  // Don't revisit N.
2617
2618  // fold selects based on a setcc into other things, such as min/max/abs
2619  if (N0.getOpcode() == ISD::SETCC) {
2620    // FIXME:
2621    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2622    // having to say they don't support SELECT_CC on every type the DAG knows
2623    // about, since there is no way to mark an opcode illegal at all value types
2624    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
2625      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
2626                         N1, N2, N0.getOperand(2));
2627    else
2628      return SimplifySelect(N0, N1, N2);
2629  }
2630  return SDOperand();
2631}
2632
2633SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
2634  SDOperand N0 = N->getOperand(0);
2635  SDOperand N1 = N->getOperand(1);
2636  SDOperand N2 = N->getOperand(2);
2637  SDOperand N3 = N->getOperand(3);
2638  SDOperand N4 = N->getOperand(4);
2639  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2640
2641  // fold select_cc lhs, rhs, x, x, cc -> x
2642  if (N2 == N3)
2643    return N2;
2644
2645  // Determine if the condition we're dealing with is constant
2646  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultType(N0), N0, N1, CC, false);
2647  if (SCC.Val) AddToWorkList(SCC.Val);
2648
2649  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
2650    if (!SCCC->isNullValue())
2651      return N2;    // cond always true -> true val
2652    else
2653      return N3;    // cond always false -> false val
2654  }
2655
2656  // Fold to a simpler select_cc
2657  if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
2658    return DAG.getNode(ISD::SELECT_CC, N2.getValueType(),
2659                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2660                       SCC.getOperand(2));
2661
2662  // If we can fold this based on the true/false value, do so.
2663  if (SimplifySelectOps(N, N2, N3))
2664    return SDOperand(N, 0);  // Don't revisit N.
2665
2666  // fold select_cc into other things, such as min/max/abs
2667  return SimplifySelectCC(N0, N1, N2, N3, CC);
2668}
2669
2670SDOperand DAGCombiner::visitSETCC(SDNode *N) {
2671  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2672                       cast<CondCodeSDNode>(N->getOperand(2))->get());
2673}
2674
2675// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2676// "fold ({s|z}ext (load x)) -> ({s|z}ext (truncate ({s|z}extload x)))"
2677// transformation. Returns true if extension are possible and the above
2678// mentioned transformation is profitable.
2679static bool ExtendUsesToFormExtLoad(SDNode *N, SDOperand N0,
2680                                    unsigned ExtOpc,
2681                                    SmallVector<SDNode*, 4> &ExtendNodes,
2682                                    TargetLowering &TLI) {
2683  bool HasCopyToRegUses = false;
2684  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
2685  for (SDNode::use_iterator UI = N0.Val->use_begin(), UE = N0.Val->use_end();
2686       UI != UE; ++UI) {
2687    SDNode *User = *UI;
2688    if (User == N)
2689      continue;
2690    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2691    if (User->getOpcode() == ISD::SETCC) {
2692      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
2693      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
2694        // Sign bits will be lost after a zext.
2695        return false;
2696      bool Add = false;
2697      for (unsigned i = 0; i != 2; ++i) {
2698        SDOperand UseOp = User->getOperand(i);
2699        if (UseOp == N0)
2700          continue;
2701        if (!isa<ConstantSDNode>(UseOp))
2702          return false;
2703        Add = true;
2704      }
2705      if (Add)
2706        ExtendNodes.push_back(User);
2707    } else {
2708      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2709        SDOperand UseOp = User->getOperand(i);
2710        if (UseOp == N0) {
2711          // If truncate from extended type to original load type is free
2712          // on this target, then it's ok to extend a CopyToReg.
2713          if (isTruncFree && User->getOpcode() == ISD::CopyToReg)
2714            HasCopyToRegUses = true;
2715          else
2716            return false;
2717        }
2718      }
2719    }
2720  }
2721
2722  if (HasCopyToRegUses) {
2723    bool BothLiveOut = false;
2724    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
2725         UI != UE; ++UI) {
2726      SDNode *User = *UI;
2727      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2728        SDOperand UseOp = User->getOperand(i);
2729        if (UseOp.Val == N && UseOp.ResNo == 0) {
2730          BothLiveOut = true;
2731          break;
2732        }
2733      }
2734    }
2735    if (BothLiveOut)
2736      // Both unextended and extended values are live out. There had better be
2737      // good a reason for the transformation.
2738      return ExtendNodes.size();
2739  }
2740  return true;
2741}
2742
2743SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2744  SDOperand N0 = N->getOperand(0);
2745  MVT::ValueType VT = N->getValueType(0);
2746
2747  // fold (sext c1) -> c1
2748  if (isa<ConstantSDNode>(N0))
2749    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
2750
2751  // fold (sext (sext x)) -> (sext x)
2752  // fold (sext (aext x)) -> (sext x)
2753  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2754    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
2755
2756  // fold (sext (truncate (load x))) -> (sext (smaller load x))
2757  // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2758  if (N0.getOpcode() == ISD::TRUNCATE) {
2759    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2760    if (NarrowLoad.Val) {
2761      if (NarrowLoad.Val != N0.Val)
2762        CombineTo(N0.Val, NarrowLoad);
2763      return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad);
2764    }
2765  }
2766
2767  // See if the value being truncated is already sign extended.  If so, just
2768  // eliminate the trunc/sext pair.
2769  if (N0.getOpcode() == ISD::TRUNCATE) {
2770    SDOperand Op = N0.getOperand(0);
2771    unsigned OpBits   = MVT::getSizeInBits(Op.getValueType());
2772    unsigned MidBits  = MVT::getSizeInBits(N0.getValueType());
2773    unsigned DestBits = MVT::getSizeInBits(VT);
2774    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
2775
2776    if (OpBits == DestBits) {
2777      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
2778      // bits, it is already ready.
2779      if (NumSignBits > DestBits-MidBits)
2780        return Op;
2781    } else if (OpBits < DestBits) {
2782      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
2783      // bits, just sext from i32.
2784      if (NumSignBits > OpBits-MidBits)
2785        return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
2786    } else {
2787      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
2788      // bits, just truncate to i32.
2789      if (NumSignBits > OpBits-MidBits)
2790        return DAG.getNode(ISD::TRUNCATE, VT, Op);
2791    }
2792
2793    // fold (sext (truncate x)) -> (sextinreg x).
2794    if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2795                                               N0.getValueType())) {
2796      if (Op.getValueType() < VT)
2797        Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2798      else if (Op.getValueType() > VT)
2799        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2800      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
2801                         DAG.getValueType(N0.getValueType()));
2802    }
2803  }
2804
2805  // fold (sext (load x)) -> (sext (truncate (sextload x)))
2806  if (ISD::isNON_EXTLoad(N0.Val) &&
2807      (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
2808    bool DoXform = true;
2809    SmallVector<SDNode*, 4> SetCCs;
2810    if (!N0.hasOneUse())
2811      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
2812    if (DoXform) {
2813      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2814      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2815                                         LN0->getBasePtr(), LN0->getSrcValue(),
2816                                         LN0->getSrcValueOffset(),
2817                                         N0.getValueType(),
2818                                         LN0->isVolatile(),
2819                                         LN0->getAlignment());
2820      CombineTo(N, ExtLoad);
2821      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2822      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2823      // Extend SetCC uses if necessary.
2824      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2825        SDNode *SetCC = SetCCs[i];
2826        SmallVector<SDOperand, 4> Ops;
2827        for (unsigned j = 0; j != 2; ++j) {
2828          SDOperand SOp = SetCC->getOperand(j);
2829          if (SOp == Trunc)
2830            Ops.push_back(ExtLoad);
2831          else
2832            Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, VT, SOp));
2833          }
2834        Ops.push_back(SetCC->getOperand(2));
2835        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2836                                     &Ops[0], Ops.size()));
2837      }
2838      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2839    }
2840  }
2841
2842  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
2843  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
2844  if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2845      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2846    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2847    MVT::ValueType EVT = LN0->getMemoryVT();
2848    if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
2849      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2850                                         LN0->getBasePtr(), LN0->getSrcValue(),
2851                                         LN0->getSrcValueOffset(), EVT,
2852                                         LN0->isVolatile(),
2853                                         LN0->getAlignment());
2854      CombineTo(N, ExtLoad);
2855      CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2856                ExtLoad.getValue(1));
2857      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2858    }
2859  }
2860
2861  // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
2862  if (N0.getOpcode() == ISD::SETCC) {
2863    SDOperand SCC =
2864      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2865                       DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
2866                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2867    if (SCC.Val) return SCC;
2868  }
2869
2870  return SDOperand();
2871}
2872
2873SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
2874  SDOperand N0 = N->getOperand(0);
2875  MVT::ValueType VT = N->getValueType(0);
2876
2877  // fold (zext c1) -> c1
2878  if (isa<ConstantSDNode>(N0))
2879    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
2880  // fold (zext (zext x)) -> (zext x)
2881  // fold (zext (aext x)) -> (zext x)
2882  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2883    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
2884
2885  // fold (zext (truncate (load x))) -> (zext (smaller load x))
2886  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
2887  if (N0.getOpcode() == ISD::TRUNCATE) {
2888    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2889    if (NarrowLoad.Val) {
2890      if (NarrowLoad.Val != N0.Val)
2891        CombineTo(N0.Val, NarrowLoad);
2892      return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad);
2893    }
2894  }
2895
2896  // fold (zext (truncate x)) -> (and x, mask)
2897  if (N0.getOpcode() == ISD::TRUNCATE &&
2898      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
2899    SDOperand Op = N0.getOperand(0);
2900    if (Op.getValueType() < VT) {
2901      Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2902    } else if (Op.getValueType() > VT) {
2903      Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2904    }
2905    return DAG.getZeroExtendInReg(Op, N0.getValueType());
2906  }
2907
2908  // fold (zext (and (trunc x), cst)) -> (and x, cst).
2909  if (N0.getOpcode() == ISD::AND &&
2910      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2911      N0.getOperand(1).getOpcode() == ISD::Constant) {
2912    SDOperand X = N0.getOperand(0).getOperand(0);
2913    if (X.getValueType() < VT) {
2914      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2915    } else if (X.getValueType() > VT) {
2916      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2917    }
2918    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2919    Mask.zext(MVT::getSizeInBits(VT));
2920    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2921  }
2922
2923  // fold (zext (load x)) -> (zext (truncate (zextload x)))
2924  if (ISD::isNON_EXTLoad(N0.Val) &&
2925      (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
2926    bool DoXform = true;
2927    SmallVector<SDNode*, 4> SetCCs;
2928    if (!N0.hasOneUse())
2929      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
2930    if (DoXform) {
2931      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2932      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2933                                         LN0->getBasePtr(), LN0->getSrcValue(),
2934                                         LN0->getSrcValueOffset(),
2935                                         N0.getValueType(),
2936                                         LN0->isVolatile(),
2937                                         LN0->getAlignment());
2938      CombineTo(N, ExtLoad);
2939      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2940      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2941      // Extend SetCC uses if necessary.
2942      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2943        SDNode *SetCC = SetCCs[i];
2944        SmallVector<SDOperand, 4> Ops;
2945        for (unsigned j = 0; j != 2; ++j) {
2946          SDOperand SOp = SetCC->getOperand(j);
2947          if (SOp == Trunc)
2948            Ops.push_back(ExtLoad);
2949          else
2950            Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND, VT, SOp));
2951          }
2952        Ops.push_back(SetCC->getOperand(2));
2953        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2954                                     &Ops[0], Ops.size()));
2955      }
2956      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2957    }
2958  }
2959
2960  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
2961  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
2962  if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2963      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2964    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2965    MVT::ValueType EVT = LN0->getMemoryVT();
2966    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2967                                       LN0->getBasePtr(), LN0->getSrcValue(),
2968                                       LN0->getSrcValueOffset(), EVT,
2969                                       LN0->isVolatile(),
2970                                       LN0->getAlignment());
2971    CombineTo(N, ExtLoad);
2972    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2973              ExtLoad.getValue(1));
2974    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2975  }
2976
2977  // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2978  if (N0.getOpcode() == ISD::SETCC) {
2979    SDOperand SCC =
2980      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2981                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2982                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2983    if (SCC.Val) return SCC;
2984  }
2985
2986  return SDOperand();
2987}
2988
2989SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
2990  SDOperand N0 = N->getOperand(0);
2991  MVT::ValueType VT = N->getValueType(0);
2992
2993  // fold (aext c1) -> c1
2994  if (isa<ConstantSDNode>(N0))
2995    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
2996  // fold (aext (aext x)) -> (aext x)
2997  // fold (aext (zext x)) -> (zext x)
2998  // fold (aext (sext x)) -> (sext x)
2999  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
3000      N0.getOpcode() == ISD::ZERO_EXTEND ||
3001      N0.getOpcode() == ISD::SIGN_EXTEND)
3002    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
3003
3004  // fold (aext (truncate (load x))) -> (aext (smaller load x))
3005  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
3006  if (N0.getOpcode() == ISD::TRUNCATE) {
3007    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
3008    if (NarrowLoad.Val) {
3009      if (NarrowLoad.Val != N0.Val)
3010        CombineTo(N0.Val, NarrowLoad);
3011      return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad);
3012    }
3013  }
3014
3015  // fold (aext (truncate x))
3016  if (N0.getOpcode() == ISD::TRUNCATE) {
3017    SDOperand TruncOp = N0.getOperand(0);
3018    if (TruncOp.getValueType() == VT)
3019      return TruncOp; // x iff x size == zext size.
3020    if (TruncOp.getValueType() > VT)
3021      return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
3022    return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
3023  }
3024
3025  // fold (aext (and (trunc x), cst)) -> (and x, cst).
3026  if (N0.getOpcode() == ISD::AND &&
3027      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
3028      N0.getOperand(1).getOpcode() == ISD::Constant) {
3029    SDOperand X = N0.getOperand(0).getOperand(0);
3030    if (X.getValueType() < VT) {
3031      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
3032    } else if (X.getValueType() > VT) {
3033      X = DAG.getNode(ISD::TRUNCATE, VT, X);
3034    }
3035    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3036    Mask.zext(MVT::getSizeInBits(VT));
3037    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
3038  }
3039
3040  // fold (aext (load x)) -> (aext (truncate (extload x)))
3041  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3042      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3043    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3044    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3045                                       LN0->getBasePtr(), LN0->getSrcValue(),
3046                                       LN0->getSrcValueOffset(),
3047                                       N0.getValueType(),
3048                                       LN0->isVolatile(),
3049                                       LN0->getAlignment());
3050    CombineTo(N, ExtLoad);
3051    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
3052              ExtLoad.getValue(1));
3053    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3054  }
3055
3056  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
3057  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
3058  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
3059  if (N0.getOpcode() == ISD::LOAD &&
3060      !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3061      N0.hasOneUse()) {
3062    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3063    MVT::ValueType EVT = LN0->getMemoryVT();
3064    SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
3065                                       LN0->getChain(), LN0->getBasePtr(),
3066                                       LN0->getSrcValue(),
3067                                       LN0->getSrcValueOffset(), EVT,
3068                                       LN0->isVolatile(),
3069                                       LN0->getAlignment());
3070    CombineTo(N, ExtLoad);
3071    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
3072              ExtLoad.getValue(1));
3073    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3074  }
3075
3076  // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3077  if (N0.getOpcode() == ISD::SETCC) {
3078    SDOperand SCC =
3079      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
3080                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
3081                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3082    if (SCC.Val)
3083      return SCC;
3084  }
3085
3086  return SDOperand();
3087}
3088
3089/// GetDemandedBits - See if the specified operand can be simplified with the
3090/// knowledge that only the bits specified by Mask are used.  If so, return the
3091/// simpler operand, otherwise return a null SDOperand.
3092SDOperand DAGCombiner::GetDemandedBits(SDOperand V, const APInt &Mask) {
3093  switch (V.getOpcode()) {
3094  default: break;
3095  case ISD::OR:
3096  case ISD::XOR:
3097    // If the LHS or RHS don't contribute bits to the or, drop them.
3098    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
3099      return V.getOperand(1);
3100    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
3101      return V.getOperand(0);
3102    break;
3103  case ISD::SRL:
3104    // Only look at single-use SRLs.
3105    if (!V.Val->hasOneUse())
3106      break;
3107    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3108      // See if we can recursively simplify the LHS.
3109      unsigned Amt = RHSC->getValue();
3110      APInt NewMask = Mask << Amt;
3111      SDOperand SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
3112      if (SimplifyLHS.Val) {
3113        return DAG.getNode(ISD::SRL, V.getValueType(),
3114                           SimplifyLHS, V.getOperand(1));
3115      }
3116    }
3117  }
3118  return SDOperand();
3119}
3120
3121/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3122/// bits and then truncated to a narrower type and where N is a multiple
3123/// of number of bits of the narrower type, transform it to a narrower load
3124/// from address + N / num of bits of new type. If the result is to be
3125/// extended, also fold the extension to form a extending load.
3126SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
3127  unsigned Opc = N->getOpcode();
3128  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3129  SDOperand N0 = N->getOperand(0);
3130  MVT::ValueType VT = N->getValueType(0);
3131  MVT::ValueType EVT = N->getValueType(0);
3132
3133  // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3134  // extended to VT.
3135  if (Opc == ISD::SIGN_EXTEND_INREG) {
3136    ExtType = ISD::SEXTLOAD;
3137    EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3138    if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))
3139      return SDOperand();
3140  }
3141
3142  unsigned EVTBits = MVT::getSizeInBits(EVT);
3143  unsigned ShAmt = 0;
3144  bool CombineSRL =  false;
3145  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
3146    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3147      ShAmt = N01->getValue();
3148      // Is the shift amount a multiple of size of VT?
3149      if ((ShAmt & (EVTBits-1)) == 0) {
3150        N0 = N0.getOperand(0);
3151        if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits)
3152          return SDOperand();
3153        CombineSRL = true;
3154      }
3155    }
3156  }
3157
3158  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3159      // Do not allow folding to i1 here.  i1 is implicitly stored in memory in
3160      // zero extended form: by shrinking the load, we lose track of the fact
3161      // that it is already zero extended.
3162      // FIXME: This should be reevaluated.
3163      VT != MVT::i1) {
3164    assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits &&
3165           "Cannot truncate to larger type!");
3166    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3167    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
3168    // For big endian targets, we need to adjust the offset to the pointer to
3169    // load the correct bytes.
3170    if (TLI.isBigEndian()) {
3171      unsigned LVTStoreBits = MVT::getStoreSizeInBits(N0.getValueType());
3172      unsigned EVTStoreBits = MVT::getStoreSizeInBits(EVT);
3173      ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
3174    }
3175    uint64_t PtrOff =  ShAmt / 8;
3176    unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
3177    SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
3178                                   DAG.getConstant(PtrOff, PtrType));
3179    AddToWorkList(NewPtr.Val);
3180    SDOperand Load = (ExtType == ISD::NON_EXTLOAD)
3181      ? DAG.getLoad(VT, LN0->getChain(), NewPtr,
3182                    LN0->getSrcValue(), LN0->getSrcValueOffset(),
3183                    LN0->isVolatile(), NewAlign)
3184      : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr,
3185                       LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
3186                       LN0->isVolatile(), NewAlign);
3187    AddToWorkList(N);
3188    if (CombineSRL) {
3189      WorkListRemover DeadNodes(*this);
3190      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1),
3191                                    &DeadNodes);
3192      CombineTo(N->getOperand(0).Val, Load);
3193    } else
3194      CombineTo(N0.Val, Load, Load.getValue(1));
3195    if (ShAmt) {
3196      if (Opc == ISD::SIGN_EXTEND_INREG)
3197        return DAG.getNode(Opc, VT, Load, N->getOperand(1));
3198      else
3199        return DAG.getNode(Opc, VT, Load);
3200    }
3201    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3202  }
3203
3204  return SDOperand();
3205}
3206
3207
3208SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
3209  SDOperand N0 = N->getOperand(0);
3210  SDOperand N1 = N->getOperand(1);
3211  MVT::ValueType VT = N->getValueType(0);
3212  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
3213  unsigned VTBits = MVT::getSizeInBits(VT);
3214  unsigned EVTBits = MVT::getSizeInBits(EVT);
3215
3216  // fold (sext_in_reg c1) -> c1
3217  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
3218    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
3219
3220  // If the input is already sign extended, just drop the extension.
3221  if (DAG.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
3222    return N0;
3223
3224  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3225  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3226      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
3227    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
3228  }
3229
3230  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3231  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
3232    return DAG.getZeroExtendInReg(N0, EVT);
3233
3234  // fold operands of sext_in_reg based on knowledge that the top bits are not
3235  // demanded.
3236  if (SimplifyDemandedBits(SDOperand(N, 0)))
3237    return SDOperand(N, 0);
3238
3239  // fold (sext_in_reg (load x)) -> (smaller sextload x)
3240  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3241  SDOperand NarrowLoad = ReduceLoadWidth(N);
3242  if (NarrowLoad.Val)
3243    return NarrowLoad;
3244
3245  // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
3246  // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
3247  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3248  if (N0.getOpcode() == ISD::SRL) {
3249    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
3250      if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
3251        // We can turn this into an SRA iff the input to the SRL is already sign
3252        // extended enough.
3253        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
3254        if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
3255          return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
3256      }
3257  }
3258
3259  // fold (sext_inreg (extload x)) -> (sextload x)
3260  if (ISD::isEXTLoad(N0.Val) &&
3261      ISD::isUNINDEXEDLoad(N0.Val) &&
3262      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3263      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3264    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3265    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3266                                       LN0->getBasePtr(), LN0->getSrcValue(),
3267                                       LN0->getSrcValueOffset(), EVT,
3268                                       LN0->isVolatile(),
3269                                       LN0->getAlignment());
3270    CombineTo(N, ExtLoad);
3271    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3272    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3273  }
3274  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3275  if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3276      N0.hasOneUse() &&
3277      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3278      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3279    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3280    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3281                                       LN0->getBasePtr(), LN0->getSrcValue(),
3282                                       LN0->getSrcValueOffset(), EVT,
3283                                       LN0->isVolatile(),
3284                                       LN0->getAlignment());
3285    CombineTo(N, ExtLoad);
3286    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3287    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3288  }
3289  return SDOperand();
3290}
3291
3292SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
3293  SDOperand N0 = N->getOperand(0);
3294  MVT::ValueType VT = N->getValueType(0);
3295
3296  // noop truncate
3297  if (N0.getValueType() == N->getValueType(0))
3298    return N0;
3299  // fold (truncate c1) -> c1
3300  if (isa<ConstantSDNode>(N0))
3301    return DAG.getNode(ISD::TRUNCATE, VT, N0);
3302  // fold (truncate (truncate x)) -> (truncate x)
3303  if (N0.getOpcode() == ISD::TRUNCATE)
3304    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3305  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3306  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
3307      N0.getOpcode() == ISD::ANY_EXTEND) {
3308    if (N0.getOperand(0).getValueType() < VT)
3309      // if the source is smaller than the dest, we still need an extend
3310      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
3311    else if (N0.getOperand(0).getValueType() > VT)
3312      // if the source is larger than the dest, than we just need the truncate
3313      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3314    else
3315      // if the source and dest are the same type, we can drop both the extend
3316      // and the truncate
3317      return N0.getOperand(0);
3318  }
3319
3320  // See if we can simplify the input to this truncate through knowledge that
3321  // only the low bits are being used.  For example "trunc (or (shl x, 8), y)"
3322  // -> trunc y
3323  SDOperand Shorter =
3324    GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
3325                                             MVT::getSizeInBits(VT)));
3326  if (Shorter.Val)
3327    return DAG.getNode(ISD::TRUNCATE, VT, Shorter);
3328
3329  // fold (truncate (load x)) -> (smaller load x)
3330  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3331  return ReduceLoadWidth(N);
3332}
3333
3334SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
3335  SDOperand N0 = N->getOperand(0);
3336  MVT::ValueType VT = N->getValueType(0);
3337
3338  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3339  // Only do this before legalize, since afterward the target may be depending
3340  // on the bitconvert.
3341  // First check to see if this is all constant.
3342  if (!AfterLegalize &&
3343      N0.getOpcode() == ISD::BUILD_VECTOR && N0.Val->hasOneUse() &&
3344      MVT::isVector(VT)) {
3345    bool isSimple = true;
3346    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
3347      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
3348          N0.getOperand(i).getOpcode() != ISD::Constant &&
3349          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
3350        isSimple = false;
3351        break;
3352      }
3353
3354    MVT::ValueType DestEltVT = MVT::getVectorElementType(N->getValueType(0));
3355    assert(!MVT::isVector(DestEltVT) &&
3356           "Element type of vector ValueType must not be vector!");
3357    if (isSimple) {
3358      return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.Val, DestEltVT);
3359    }
3360  }
3361
3362  // If the input is a constant, let getNode() fold it.
3363  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
3364    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3365    if (Res.Val != N) return Res;
3366  }
3367
3368  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
3369    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3370
3371  // fold (conv (load x)) -> (load (conv*)x)
3372  // If the resultant load doesn't need a higher alignment than the original!
3373  if (ISD::isNormalLoad(N0.Val) && N0.hasOneUse() &&
3374      TLI.isOperationLegal(ISD::LOAD, VT)) {
3375    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3376    unsigned Align = TLI.getTargetMachine().getTargetData()->
3377      getABITypeAlignment(MVT::getTypeForValueType(VT));
3378    unsigned OrigAlign = LN0->getAlignment();
3379    if (Align <= OrigAlign) {
3380      SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
3381                                   LN0->getSrcValue(), LN0->getSrcValueOffset(),
3382                                   LN0->isVolatile(), Align);
3383      AddToWorkList(N);
3384      CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
3385                Load.getValue(1));
3386      return Load;
3387    }
3388  }
3389
3390  // Fold bitconvert(fneg(x)) -> xor(bitconvert(x), signbit)
3391  // Fold bitconvert(fabs(x)) -> and(bitconvert(x), ~signbit)
3392  // This often reduces constant pool loads.
3393  if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) &&
3394      N0.Val->hasOneUse() && MVT::isInteger(VT) && !MVT::isVector(VT)) {
3395    SDOperand NewConv = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3396    AddToWorkList(NewConv.Val);
3397
3398    APInt SignBit = APInt::getSignBit(MVT::getSizeInBits(VT));
3399    if (N0.getOpcode() == ISD::FNEG)
3400      return DAG.getNode(ISD::XOR, VT, NewConv, DAG.getConstant(SignBit, VT));
3401    assert(N0.getOpcode() == ISD::FABS);
3402    return DAG.getNode(ISD::AND, VT, NewConv, DAG.getConstant(~SignBit, VT));
3403  }
3404
3405  // Fold bitconvert(fcopysign(cst, x)) -> bitconvert(x)&sign | cst&~sign'
3406  // Note that we don't handle copysign(x,cst) because this can always be folded
3407  // to an fneg or fabs.
3408  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse() &&
3409      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
3410      MVT::isInteger(VT) && !MVT::isVector(VT)) {
3411    unsigned OrigXWidth = MVT::getSizeInBits(N0.getOperand(1).getValueType());
3412    SDOperand X = DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerType(OrigXWidth),
3413                              N0.getOperand(1));
3414    AddToWorkList(X.Val);
3415
3416    // If X has a different width than the result/lhs, sext it or truncate it.
3417    unsigned VTWidth = MVT::getSizeInBits(VT);
3418    if (OrigXWidth < VTWidth) {
3419      X = DAG.getNode(ISD::SIGN_EXTEND, VT, X);
3420      AddToWorkList(X.Val);
3421    } else if (OrigXWidth > VTWidth) {
3422      // To get the sign bit in the right place, we have to shift it right
3423      // before truncating.
3424      X = DAG.getNode(ISD::SRL, X.getValueType(), X,
3425                      DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
3426      AddToWorkList(X.Val);
3427      X = DAG.getNode(ISD::TRUNCATE, VT, X);
3428      AddToWorkList(X.Val);
3429    }
3430
3431    APInt SignBit = APInt::getSignBit(MVT::getSizeInBits(VT));
3432    X = DAG.getNode(ISD::AND, VT, X, DAG.getConstant(SignBit, VT));
3433    AddToWorkList(X.Val);
3434
3435    SDOperand Cst = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3436    Cst = DAG.getNode(ISD::AND, VT, Cst, DAG.getConstant(~SignBit, VT));
3437    AddToWorkList(Cst.Val);
3438
3439    return DAG.getNode(ISD::OR, VT, X, Cst);
3440  }
3441
3442  return SDOperand();
3443}
3444
3445/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3446/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
3447/// destination element value type.
3448SDOperand DAGCombiner::
3449ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
3450  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
3451
3452  // If this is already the right type, we're done.
3453  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
3454
3455  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
3456  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
3457
3458  // If this is a conversion of N elements of one type to N elements of another
3459  // type, convert each element.  This handles FP<->INT cases.
3460  if (SrcBitSize == DstBitSize) {
3461    SmallVector<SDOperand, 8> Ops;
3462    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3463      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
3464      AddToWorkList(Ops.back().Val);
3465    }
3466    MVT::ValueType VT =
3467      MVT::getVectorType(DstEltVT,
3468                         MVT::getVectorNumElements(BV->getValueType(0)));
3469    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3470  }
3471
3472  // Otherwise, we're growing or shrinking the elements.  To avoid having to
3473  // handle annoying details of growing/shrinking FP values, we convert them to
3474  // int first.
3475  if (MVT::isFloatingPoint(SrcEltVT)) {
3476    // Convert the input float vector to a int vector where the elements are the
3477    // same sizes.
3478    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
3479    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3480    BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).Val;
3481    SrcEltVT = IntVT;
3482  }
3483
3484  // Now we know the input is an integer vector.  If the output is a FP type,
3485  // convert to integer first, then to FP of the right size.
3486  if (MVT::isFloatingPoint(DstEltVT)) {
3487    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
3488    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3489    SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).Val;
3490
3491    // Next, convert to FP elements of the same size.
3492    return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
3493  }
3494
3495  // Okay, we know the src/dst types are both integers of differing types.
3496  // Handling growing first.
3497  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
3498  if (SrcBitSize < DstBitSize) {
3499    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
3500
3501    SmallVector<SDOperand, 8> Ops;
3502    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
3503         i += NumInputsPerOutput) {
3504      bool isLE = TLI.isLittleEndian();
3505      APInt NewBits = APInt(DstBitSize, 0);
3506      bool EltIsUndef = true;
3507      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
3508        // Shift the previously computed bits over.
3509        NewBits <<= SrcBitSize;
3510        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
3511        if (Op.getOpcode() == ISD::UNDEF) continue;
3512        EltIsUndef = false;
3513
3514        NewBits |=
3515          APInt(cast<ConstantSDNode>(Op)->getAPIntValue()).zext(DstBitSize);
3516      }
3517
3518      if (EltIsUndef)
3519        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3520      else
3521        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
3522    }
3523
3524    MVT::ValueType VT = MVT::getVectorType(DstEltVT, Ops.size());
3525    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3526  }
3527
3528  // Finally, this must be the case where we are shrinking elements: each input
3529  // turns into multiple outputs.
3530  bool isS2V = ISD::isScalarToVector(BV);
3531  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
3532  MVT::ValueType VT = MVT::getVectorType(DstEltVT,
3533                                     NumOutputsPerInput * BV->getNumOperands());
3534  SmallVector<SDOperand, 8> Ops;
3535  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3536    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
3537      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
3538        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3539      continue;
3540    }
3541    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getAPIntValue();
3542    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
3543      APInt ThisVal = APInt(OpVal).trunc(DstBitSize);
3544      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
3545      if (isS2V && i == 0 && j == 0 && APInt(ThisVal).zext(SrcBitSize) == OpVal)
3546        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
3547        return DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Ops[0]);
3548      OpVal = OpVal.lshr(DstBitSize);
3549    }
3550
3551    // For big endian targets, swap the order of the pieces of each element.
3552    if (TLI.isBigEndian())
3553      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
3554  }
3555  return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3556}
3557
3558
3559
3560SDOperand DAGCombiner::visitFADD(SDNode *N) {
3561  SDOperand N0 = N->getOperand(0);
3562  SDOperand N1 = N->getOperand(1);
3563  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3564  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3565  MVT::ValueType VT = N->getValueType(0);
3566
3567  // fold vector ops
3568  if (MVT::isVector(VT)) {
3569    SDOperand FoldedVOp = SimplifyVBinOp(N);
3570    if (FoldedVOp.Val) return FoldedVOp;
3571  }
3572
3573  // fold (fadd c1, c2) -> c1+c2
3574  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3575    return DAG.getNode(ISD::FADD, VT, N0, N1);
3576  // canonicalize constant to RHS
3577  if (N0CFP && !N1CFP)
3578    return DAG.getNode(ISD::FADD, VT, N1, N0);
3579  // fold (A + (-B)) -> A-B
3580  if (isNegatibleForFree(N1, AfterLegalize) == 2)
3581    return DAG.getNode(ISD::FSUB, VT, N0,
3582                       GetNegatedExpression(N1, DAG, AfterLegalize));
3583  // fold ((-A) + B) -> B-A
3584  if (isNegatibleForFree(N0, AfterLegalize) == 2)
3585    return DAG.getNode(ISD::FSUB, VT, N1,
3586                       GetNegatedExpression(N0, DAG, AfterLegalize));
3587
3588  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3589  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
3590      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3591    return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
3592                       DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
3593
3594  return SDOperand();
3595}
3596
3597SDOperand DAGCombiner::visitFSUB(SDNode *N) {
3598  SDOperand N0 = N->getOperand(0);
3599  SDOperand N1 = N->getOperand(1);
3600  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3601  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3602  MVT::ValueType VT = N->getValueType(0);
3603
3604  // fold vector ops
3605  if (MVT::isVector(VT)) {
3606    SDOperand FoldedVOp = SimplifyVBinOp(N);
3607    if (FoldedVOp.Val) return FoldedVOp;
3608  }
3609
3610  // fold (fsub c1, c2) -> c1-c2
3611  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3612    return DAG.getNode(ISD::FSUB, VT, N0, N1);
3613  // fold (0-B) -> -B
3614  if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
3615    if (isNegatibleForFree(N1, AfterLegalize))
3616      return GetNegatedExpression(N1, DAG, AfterLegalize);
3617    return DAG.getNode(ISD::FNEG, VT, N1);
3618  }
3619  // fold (A-(-B)) -> A+B
3620  if (isNegatibleForFree(N1, AfterLegalize))
3621    return DAG.getNode(ISD::FADD, VT, N0,
3622                       GetNegatedExpression(N1, DAG, AfterLegalize));
3623
3624  return SDOperand();
3625}
3626
3627SDOperand DAGCombiner::visitFMUL(SDNode *N) {
3628  SDOperand N0 = N->getOperand(0);
3629  SDOperand N1 = N->getOperand(1);
3630  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3631  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3632  MVT::ValueType VT = N->getValueType(0);
3633
3634  // fold vector ops
3635  if (MVT::isVector(VT)) {
3636    SDOperand FoldedVOp = SimplifyVBinOp(N);
3637    if (FoldedVOp.Val) return FoldedVOp;
3638  }
3639
3640  // fold (fmul c1, c2) -> c1*c2
3641  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3642    return DAG.getNode(ISD::FMUL, VT, N0, N1);
3643  // canonicalize constant to RHS
3644  if (N0CFP && !N1CFP)
3645    return DAG.getNode(ISD::FMUL, VT, N1, N0);
3646  // fold (fmul X, 2.0) -> (fadd X, X)
3647  if (N1CFP && N1CFP->isExactlyValue(+2.0))
3648    return DAG.getNode(ISD::FADD, VT, N0, N0);
3649  // fold (fmul X, -1.0) -> (fneg X)
3650  if (N1CFP && N1CFP->isExactlyValue(-1.0))
3651    return DAG.getNode(ISD::FNEG, VT, N0);
3652
3653  // -X * -Y -> X*Y
3654  if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) {
3655    if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) {
3656      // Both can be negated for free, check to see if at least one is cheaper
3657      // negated.
3658      if (LHSNeg == 2 || RHSNeg == 2)
3659        return DAG.getNode(ISD::FMUL, VT,
3660                           GetNegatedExpression(N0, DAG, AfterLegalize),
3661                           GetNegatedExpression(N1, DAG, AfterLegalize));
3662    }
3663  }
3664
3665  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
3666  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
3667      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3668    return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
3669                       DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
3670
3671  return SDOperand();
3672}
3673
3674SDOperand DAGCombiner::visitFDIV(SDNode *N) {
3675  SDOperand N0 = N->getOperand(0);
3676  SDOperand N1 = N->getOperand(1);
3677  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3678  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3679  MVT::ValueType VT = N->getValueType(0);
3680
3681  // fold vector ops
3682  if (MVT::isVector(VT)) {
3683    SDOperand FoldedVOp = SimplifyVBinOp(N);
3684    if (FoldedVOp.Val) return FoldedVOp;
3685  }
3686
3687  // fold (fdiv c1, c2) -> c1/c2
3688  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3689    return DAG.getNode(ISD::FDIV, VT, N0, N1);
3690
3691
3692  // -X / -Y -> X*Y
3693  if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) {
3694    if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) {
3695      // Both can be negated for free, check to see if at least one is cheaper
3696      // negated.
3697      if (LHSNeg == 2 || RHSNeg == 2)
3698        return DAG.getNode(ISD::FDIV, VT,
3699                           GetNegatedExpression(N0, DAG, AfterLegalize),
3700                           GetNegatedExpression(N1, DAG, AfterLegalize));
3701    }
3702  }
3703
3704  return SDOperand();
3705}
3706
3707SDOperand DAGCombiner::visitFREM(SDNode *N) {
3708  SDOperand N0 = N->getOperand(0);
3709  SDOperand N1 = N->getOperand(1);
3710  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3711  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3712  MVT::ValueType VT = N->getValueType(0);
3713
3714  // fold (frem c1, c2) -> fmod(c1,c2)
3715  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3716    return DAG.getNode(ISD::FREM, VT, N0, N1);
3717
3718  return SDOperand();
3719}
3720
3721SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
3722  SDOperand N0 = N->getOperand(0);
3723  SDOperand N1 = N->getOperand(1);
3724  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3725  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3726  MVT::ValueType VT = N->getValueType(0);
3727
3728  if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold
3729    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
3730
3731  if (N1CFP) {
3732    const APFloat& V = N1CFP->getValueAPF();
3733    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
3734    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
3735    if (!V.isNegative())
3736      return DAG.getNode(ISD::FABS, VT, N0);
3737    else
3738      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
3739  }
3740
3741  // copysign(fabs(x), y) -> copysign(x, y)
3742  // copysign(fneg(x), y) -> copysign(x, y)
3743  // copysign(copysign(x,z), y) -> copysign(x, y)
3744  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
3745      N0.getOpcode() == ISD::FCOPYSIGN)
3746    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
3747
3748  // copysign(x, abs(y)) -> abs(x)
3749  if (N1.getOpcode() == ISD::FABS)
3750    return DAG.getNode(ISD::FABS, VT, N0);
3751
3752  // copysign(x, copysign(y,z)) -> copysign(x, z)
3753  if (N1.getOpcode() == ISD::FCOPYSIGN)
3754    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
3755
3756  // copysign(x, fp_extend(y)) -> copysign(x, y)
3757  // copysign(x, fp_round(y)) -> copysign(x, y)
3758  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
3759    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
3760
3761  return SDOperand();
3762}
3763
3764
3765
3766SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
3767  SDOperand N0 = N->getOperand(0);
3768  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3769  MVT::ValueType VT = N->getValueType(0);
3770
3771  // fold (sint_to_fp c1) -> c1fp
3772  if (N0C && N0.getValueType() != MVT::ppcf128)
3773    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
3774  return SDOperand();
3775}
3776
3777SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
3778  SDOperand N0 = N->getOperand(0);
3779  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3780  MVT::ValueType VT = N->getValueType(0);
3781
3782  // fold (uint_to_fp c1) -> c1fp
3783  if (N0C && N0.getValueType() != MVT::ppcf128)
3784    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
3785  return SDOperand();
3786}
3787
3788SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
3789  SDOperand N0 = N->getOperand(0);
3790  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3791  MVT::ValueType VT = N->getValueType(0);
3792
3793  // fold (fp_to_sint c1fp) -> c1
3794  if (N0CFP)
3795    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
3796  return SDOperand();
3797}
3798
3799SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
3800  SDOperand N0 = N->getOperand(0);
3801  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3802  MVT::ValueType VT = N->getValueType(0);
3803
3804  // fold (fp_to_uint c1fp) -> c1
3805  if (N0CFP && VT != MVT::ppcf128)
3806    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
3807  return SDOperand();
3808}
3809
3810SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
3811  SDOperand N0 = N->getOperand(0);
3812  SDOperand N1 = N->getOperand(1);
3813  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3814  MVT::ValueType VT = N->getValueType(0);
3815
3816  // fold (fp_round c1fp) -> c1fp
3817  if (N0CFP && N0.getValueType() != MVT::ppcf128)
3818    return DAG.getNode(ISD::FP_ROUND, VT, N0, N1);
3819
3820  // fold (fp_round (fp_extend x)) -> x
3821  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
3822    return N0.getOperand(0);
3823
3824  // fold (fp_round (fp_round x)) -> (fp_round x)
3825  if (N0.getOpcode() == ISD::FP_ROUND) {
3826    // This is a value preserving truncation if both round's are.
3827    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
3828                   N0.Val->getConstantOperandVal(1) == 1;
3829    return DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0),
3830                       DAG.getIntPtrConstant(IsTrunc));
3831  }
3832
3833  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
3834  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
3835    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0), N1);
3836    AddToWorkList(Tmp.Val);
3837    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
3838  }
3839
3840  return SDOperand();
3841}
3842
3843SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
3844  SDOperand N0 = N->getOperand(0);
3845  MVT::ValueType VT = N->getValueType(0);
3846  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3847  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3848
3849  // fold (fp_round_inreg c1fp) -> c1fp
3850  if (N0CFP) {
3851    SDOperand Round = DAG.getConstantFP(N0CFP->getValueAPF(), EVT);
3852    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
3853  }
3854  return SDOperand();
3855}
3856
3857SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
3858  SDOperand N0 = N->getOperand(0);
3859  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3860  MVT::ValueType VT = N->getValueType(0);
3861
3862  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
3863  if (N->hasOneUse() && (*N->use_begin())->getOpcode() == ISD::FP_ROUND)
3864    return SDOperand();
3865
3866  // fold (fp_extend c1fp) -> c1fp
3867  if (N0CFP && VT != MVT::ppcf128)
3868    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
3869
3870  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
3871  // value of X.
3872  if (N0.getOpcode() == ISD::FP_ROUND && N0.Val->getConstantOperandVal(1) == 1){
3873    SDOperand In = N0.getOperand(0);
3874    if (In.getValueType() == VT) return In;
3875    if (VT < In.getValueType())
3876      return DAG.getNode(ISD::FP_ROUND, VT, In, N0.getOperand(1));
3877    return DAG.getNode(ISD::FP_EXTEND, VT, In);
3878  }
3879
3880  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
3881  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3882      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3883    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3884    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3885                                       LN0->getBasePtr(), LN0->getSrcValue(),
3886                                       LN0->getSrcValueOffset(),
3887                                       N0.getValueType(),
3888                                       LN0->isVolatile(),
3889                                       LN0->getAlignment());
3890    CombineTo(N, ExtLoad);
3891    CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad,
3892                                  DAG.getIntPtrConstant(1)),
3893              ExtLoad.getValue(1));
3894    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3895  }
3896
3897
3898  return SDOperand();
3899}
3900
3901SDOperand DAGCombiner::visitFNEG(SDNode *N) {
3902  SDOperand N0 = N->getOperand(0);
3903
3904  if (isNegatibleForFree(N0, AfterLegalize))
3905    return GetNegatedExpression(N0, DAG, AfterLegalize);
3906
3907  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
3908  // constant pool values.
3909  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
3910      MVT::isInteger(N0.getOperand(0).getValueType()) &&
3911      !MVT::isVector(N0.getOperand(0).getValueType())) {
3912    SDOperand Int = N0.getOperand(0);
3913    MVT::ValueType IntVT = Int.getValueType();
3914    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
3915      Int = DAG.getNode(ISD::XOR, IntVT, Int,
3916                        DAG.getConstant(MVT::getIntVTSignBit(IntVT), IntVT));
3917      AddToWorkList(Int.Val);
3918      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
3919    }
3920  }
3921
3922  return SDOperand();
3923}
3924
3925SDOperand DAGCombiner::visitFABS(SDNode *N) {
3926  SDOperand N0 = N->getOperand(0);
3927  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3928  MVT::ValueType VT = N->getValueType(0);
3929
3930  // fold (fabs c1) -> fabs(c1)
3931  if (N0CFP && VT != MVT::ppcf128)
3932    return DAG.getNode(ISD::FABS, VT, N0);
3933  // fold (fabs (fabs x)) -> (fabs x)
3934  if (N0.getOpcode() == ISD::FABS)
3935    return N->getOperand(0);
3936  // fold (fabs (fneg x)) -> (fabs x)
3937  // fold (fabs (fcopysign x, y)) -> (fabs x)
3938  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
3939    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
3940
3941  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
3942  // constant pool values.
3943  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
3944      MVT::isInteger(N0.getOperand(0).getValueType()) &&
3945      !MVT::isVector(N0.getOperand(0).getValueType())) {
3946    SDOperand Int = N0.getOperand(0);
3947    MVT::ValueType IntVT = Int.getValueType();
3948    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
3949      Int = DAG.getNode(ISD::AND, IntVT, Int,
3950                        DAG.getConstant(~MVT::getIntVTSignBit(IntVT), IntVT));
3951      AddToWorkList(Int.Val);
3952      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
3953    }
3954  }
3955
3956  return SDOperand();
3957}
3958
3959SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
3960  SDOperand Chain = N->getOperand(0);
3961  SDOperand N1 = N->getOperand(1);
3962  SDOperand N2 = N->getOperand(2);
3963  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3964
3965  // never taken branch, fold to chain
3966  if (N1C && N1C->isNullValue())
3967    return Chain;
3968  // unconditional branch
3969  if (N1C && N1C->getAPIntValue() == 1)
3970    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
3971  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
3972  // on the target.
3973  if (N1.getOpcode() == ISD::SETCC &&
3974      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
3975    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
3976                       N1.getOperand(0), N1.getOperand(1), N2);
3977  }
3978  return SDOperand();
3979}
3980
3981// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
3982//
3983SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
3984  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
3985  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
3986
3987  // Use SimplifySetCC  to simplify SETCC's.
3988  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
3989  if (Simp.Val) AddToWorkList(Simp.Val);
3990
3991  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
3992
3993  // fold br_cc true, dest -> br dest (unconditional branch)
3994  if (SCCC && !SCCC->isNullValue())
3995    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
3996                       N->getOperand(4));
3997  // fold br_cc false, dest -> unconditional fall through
3998  if (SCCC && SCCC->isNullValue())
3999    return N->getOperand(0);
4000
4001  // fold to a simpler setcc
4002  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
4003    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
4004                       Simp.getOperand(2), Simp.getOperand(0),
4005                       Simp.getOperand(1), N->getOperand(4));
4006  return SDOperand();
4007}
4008
4009
4010/// CombineToPreIndexedLoadStore - Try turning a load / store and a
4011/// pre-indexed load / store when the base pointer is a add or subtract
4012/// and it has other uses besides the load / store. After the
4013/// transformation, the new indexed load / store has effectively folded
4014/// the add / subtract in and all of its other uses are redirected to the
4015/// new load / store.
4016bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
4017  if (!AfterLegalize)
4018    return false;
4019
4020  bool isLoad = true;
4021  SDOperand Ptr;
4022  MVT::ValueType VT;
4023  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
4024    if (LD->isIndexed())
4025      return false;
4026    VT = LD->getMemoryVT();
4027    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
4028        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
4029      return false;
4030    Ptr = LD->getBasePtr();
4031  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
4032    if (ST->isIndexed())
4033      return false;
4034    VT = ST->getMemoryVT();
4035    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
4036        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
4037      return false;
4038    Ptr = ST->getBasePtr();
4039    isLoad = false;
4040  } else
4041    return false;
4042
4043  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
4044  // out.  There is no reason to make this a preinc/predec.
4045  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
4046      Ptr.Val->hasOneUse())
4047    return false;
4048
4049  // Ask the target to do addressing mode selection.
4050  SDOperand BasePtr;
4051  SDOperand Offset;
4052  ISD::MemIndexedMode AM = ISD::UNINDEXED;
4053  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
4054    return false;
4055  // Don't create a indexed load / store with zero offset.
4056  if (isa<ConstantSDNode>(Offset) &&
4057      cast<ConstantSDNode>(Offset)->isNullValue())
4058    return false;
4059
4060  // Try turning it into a pre-indexed load / store except when:
4061  // 1) The new base ptr is a frame index.
4062  // 2) If N is a store and the new base ptr is either the same as or is a
4063  //    predecessor of the value being stored.
4064  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
4065  //    that would create a cycle.
4066  // 4) All uses are load / store ops that use it as old base ptr.
4067
4068  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
4069  // (plus the implicit offset) to a register to preinc anyway.
4070  if (isa<FrameIndexSDNode>(BasePtr))
4071    return false;
4072
4073  // Check #2.
4074  if (!isLoad) {
4075    SDOperand Val = cast<StoreSDNode>(N)->getValue();
4076    if (Val == BasePtr || BasePtr.Val->isPredecessorOf(Val.Val))
4077      return false;
4078  }
4079
4080  // Now check for #3 and #4.
4081  bool RealUse = false;
4082  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
4083         E = Ptr.Val->use_end(); I != E; ++I) {
4084    SDNode *Use = *I;
4085    if (Use == N)
4086      continue;
4087    if (Use->isPredecessorOf(N))
4088      return false;
4089
4090    if (!((Use->getOpcode() == ISD::LOAD &&
4091           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
4092          (Use->getOpcode() == ISD::STORE &&
4093           cast<StoreSDNode>(Use)->getBasePtr() == Ptr)))
4094      RealUse = true;
4095  }
4096  if (!RealUse)
4097    return false;
4098
4099  SDOperand Result;
4100  if (isLoad)
4101    Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
4102  else
4103    Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4104  ++PreIndexedNodes;
4105  ++NodesCombined;
4106  DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
4107  DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4108  DOUT << '\n';
4109  WorkListRemover DeadNodes(*this);
4110  if (isLoad) {
4111    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4112                                  &DeadNodes);
4113    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4114                                  &DeadNodes);
4115  } else {
4116    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4117                                  &DeadNodes);
4118  }
4119
4120  // Finally, since the node is now dead, remove it from the graph.
4121  DAG.DeleteNode(N);
4122
4123  // Replace the uses of Ptr with uses of the updated base value.
4124  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
4125                                &DeadNodes);
4126  removeFromWorkList(Ptr.Val);
4127  DAG.DeleteNode(Ptr.Val);
4128
4129  return true;
4130}
4131
4132/// CombineToPostIndexedLoadStore - Try combine a load / store with a
4133/// add / sub of the base pointer node into a post-indexed load / store.
4134/// The transformation folded the add / subtract into the new indexed
4135/// load / store effectively and all of its uses are redirected to the
4136/// new load / store.
4137bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
4138  if (!AfterLegalize)
4139    return false;
4140
4141  bool isLoad = true;
4142  SDOperand Ptr;
4143  MVT::ValueType VT;
4144  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
4145    if (LD->isIndexed())
4146      return false;
4147    VT = LD->getMemoryVT();
4148    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
4149        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
4150      return false;
4151    Ptr = LD->getBasePtr();
4152  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
4153    if (ST->isIndexed())
4154      return false;
4155    VT = ST->getMemoryVT();
4156    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
4157        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
4158      return false;
4159    Ptr = ST->getBasePtr();
4160    isLoad = false;
4161  } else
4162    return false;
4163
4164  if (Ptr.Val->hasOneUse())
4165    return false;
4166
4167  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
4168         E = Ptr.Val->use_end(); I != E; ++I) {
4169    SDNode *Op = *I;
4170    if (Op == N ||
4171        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
4172      continue;
4173
4174    SDOperand BasePtr;
4175    SDOperand Offset;
4176    ISD::MemIndexedMode AM = ISD::UNINDEXED;
4177    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
4178      if (Ptr == Offset)
4179        std::swap(BasePtr, Offset);
4180      if (Ptr != BasePtr)
4181        continue;
4182      // Don't create a indexed load / store with zero offset.
4183      if (isa<ConstantSDNode>(Offset) &&
4184          cast<ConstantSDNode>(Offset)->isNullValue())
4185        continue;
4186
4187      // Try turning it into a post-indexed load / store except when
4188      // 1) All uses are load / store ops that use it as base ptr.
4189      // 2) Op must be independent of N, i.e. Op is neither a predecessor
4190      //    nor a successor of N. Otherwise, if Op is folded that would
4191      //    create a cycle.
4192
4193      // Check for #1.
4194      bool TryNext = false;
4195      for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
4196             EE = BasePtr.Val->use_end(); II != EE; ++II) {
4197        SDNode *Use = *II;
4198        if (Use == Ptr.Val)
4199          continue;
4200
4201        // If all the uses are load / store addresses, then don't do the
4202        // transformation.
4203        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
4204          bool RealUse = false;
4205          for (SDNode::use_iterator III = Use->use_begin(),
4206                 EEE = Use->use_end(); III != EEE; ++III) {
4207            SDNode *UseUse = *III;
4208            if (!((UseUse->getOpcode() == ISD::LOAD &&
4209                   cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
4210                  (UseUse->getOpcode() == ISD::STORE &&
4211                   cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use)))
4212              RealUse = true;
4213          }
4214
4215          if (!RealUse) {
4216            TryNext = true;
4217            break;
4218          }
4219        }
4220      }
4221      if (TryNext)
4222        continue;
4223
4224      // Check for #2
4225      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
4226        SDOperand Result = isLoad
4227          ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
4228          : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4229        ++PostIndexedNodes;
4230        ++NodesCombined;
4231        DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
4232        DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4233        DOUT << '\n';
4234        WorkListRemover DeadNodes(*this);
4235        if (isLoad) {
4236          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4237                                        &DeadNodes);
4238          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4239                                        &DeadNodes);
4240        } else {
4241          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4242                                        &DeadNodes);
4243        }
4244
4245        // Finally, since the node is now dead, remove it from the graph.
4246        DAG.DeleteNode(N);
4247
4248        // Replace the uses of Use with uses of the updated base value.
4249        DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
4250                                      Result.getValue(isLoad ? 1 : 0),
4251                                      &DeadNodes);
4252        removeFromWorkList(Op);
4253        DAG.DeleteNode(Op);
4254        return true;
4255      }
4256    }
4257  }
4258  return false;
4259}
4260
4261/// InferAlignment - If we can infer some alignment information from this
4262/// pointer, return it.
4263static unsigned InferAlignment(SDOperand Ptr, SelectionDAG &DAG) {
4264  // If this is a direct reference to a stack slot, use information about the
4265  // stack slot's alignment.
4266  int FrameIdx = 1 << 31;
4267  int64_t FrameOffset = 0;
4268  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
4269    FrameIdx = FI->getIndex();
4270  } else if (Ptr.getOpcode() == ISD::ADD &&
4271             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
4272             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4273    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4274    FrameOffset = Ptr.getConstantOperandVal(1);
4275  }
4276
4277  if (FrameIdx != (1 << 31)) {
4278    // FIXME: Handle FI+CST.
4279    const MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo();
4280    if (MFI.isFixedObjectIndex(FrameIdx)) {
4281      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx);
4282
4283      // The alignment of the frame index can be determined from its offset from
4284      // the incoming frame position.  If the frame object is at offset 32 and
4285      // the stack is guaranteed to be 16-byte aligned, then we know that the
4286      // object is 16-byte aligned.
4287      unsigned StackAlign = DAG.getTarget().getFrameInfo()->getStackAlignment();
4288      unsigned Align = MinAlign(ObjectOffset, StackAlign);
4289
4290      // Finally, the frame object itself may have a known alignment.  Factor
4291      // the alignment + offset into a new alignment.  For example, if we know
4292      // the  FI is 8 byte aligned, but the pointer is 4 off, we really have a
4293      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
4294      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
4295      unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
4296                                      FrameOffset);
4297      return std::max(Align, FIInfoAlign);
4298    }
4299  }
4300
4301  return 0;
4302}
4303
4304SDOperand DAGCombiner::visitLOAD(SDNode *N) {
4305  LoadSDNode *LD  = cast<LoadSDNode>(N);
4306  SDOperand Chain = LD->getChain();
4307  SDOperand Ptr   = LD->getBasePtr();
4308
4309  // Try to infer better alignment information than the load already has.
4310  if (LD->isUnindexed()) {
4311    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4312      if (Align > LD->getAlignment())
4313        return DAG.getExtLoad(LD->getExtensionType(), LD->getValueType(0),
4314                              Chain, Ptr, LD->getSrcValue(),
4315                              LD->getSrcValueOffset(), LD->getMemoryVT(),
4316                              LD->isVolatile(), Align);
4317    }
4318  }
4319
4320
4321  // If load is not volatile and there are no uses of the loaded value (and
4322  // the updated indexed value in case of indexed loads), change uses of the
4323  // chain value into uses of the chain input (i.e. delete the dead load).
4324  if (!LD->isVolatile()) {
4325    if (N->getValueType(1) == MVT::Other) {
4326      // Unindexed loads.
4327      if (N->hasNUsesOfValue(0, 0)) {
4328        // It's not safe to use the two value CombineTo variant here. e.g.
4329        // v1, chain2 = load chain1, loc
4330        // v2, chain3 = load chain2, loc
4331        // v3         = add v2, c
4332        // Now we replace use of chain2 with chain1.  This makes the second load
4333        // isomorphic to the one we are deleting, and thus makes this load live.
4334        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4335        DOUT << "\nWith chain: "; DEBUG(Chain.Val->dump(&DAG));
4336        DOUT << "\n";
4337        WorkListRemover DeadNodes(*this);
4338        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Chain, &DeadNodes);
4339        if (N->use_empty()) {
4340          removeFromWorkList(N);
4341          DAG.DeleteNode(N);
4342        }
4343        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4344      }
4345    } else {
4346      // Indexed loads.
4347      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
4348      if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
4349        SDOperand Undef = DAG.getNode(ISD::UNDEF, N->getValueType(0));
4350        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4351        DOUT << "\nWith: "; DEBUG(Undef.Val->dump(&DAG));
4352        DOUT << " and 2 other values\n";
4353        WorkListRemover DeadNodes(*this);
4354        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Undef, &DeadNodes);
4355        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1),
4356                                    DAG.getNode(ISD::UNDEF, N->getValueType(1)),
4357                                      &DeadNodes);
4358        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 2), Chain, &DeadNodes);
4359        removeFromWorkList(N);
4360        DAG.DeleteNode(N);
4361        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4362      }
4363    }
4364  }
4365
4366  // If this load is directly stored, replace the load value with the stored
4367  // value.
4368  // TODO: Handle store large -> read small portion.
4369  // TODO: Handle TRUNCSTORE/LOADEXT
4370  if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4371    if (ISD::isNON_TRUNCStore(Chain.Val)) {
4372      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
4373      if (PrevST->getBasePtr() == Ptr &&
4374          PrevST->getValue().getValueType() == N->getValueType(0))
4375      return CombineTo(N, Chain.getOperand(1), Chain);
4376    }
4377  }
4378
4379  if (CombinerAA) {
4380    // Walk up chain skipping non-aliasing memory nodes.
4381    SDOperand BetterChain = FindBetterChain(N, Chain);
4382
4383    // If there is a better chain.
4384    if (Chain != BetterChain) {
4385      SDOperand ReplLoad;
4386
4387      // Replace the chain to void dependency.
4388      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4389        ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
4390                               LD->getSrcValue(), LD->getSrcValueOffset(),
4391                               LD->isVolatile(), LD->getAlignment());
4392      } else {
4393        ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
4394                                  LD->getValueType(0),
4395                                  BetterChain, Ptr, LD->getSrcValue(),
4396                                  LD->getSrcValueOffset(),
4397                                  LD->getMemoryVT(),
4398                                  LD->isVolatile(),
4399                                  LD->getAlignment());
4400      }
4401
4402      // Create token factor to keep old chain connected.
4403      SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
4404                                    Chain, ReplLoad.getValue(1));
4405
4406      // Replace uses with load result and token factor. Don't add users
4407      // to work list.
4408      return CombineTo(N, ReplLoad.getValue(0), Token, false);
4409    }
4410  }
4411
4412  // Try transforming N to an indexed load.
4413  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4414    return SDOperand(N, 0);
4415
4416  return SDOperand();
4417}
4418
4419
4420SDOperand DAGCombiner::visitSTORE(SDNode *N) {
4421  StoreSDNode *ST  = cast<StoreSDNode>(N);
4422  SDOperand Chain = ST->getChain();
4423  SDOperand Value = ST->getValue();
4424  SDOperand Ptr   = ST->getBasePtr();
4425
4426  // Try to infer better alignment information than the store already has.
4427  if (ST->isUnindexed()) {
4428    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4429      if (Align > ST->getAlignment())
4430        return DAG.getTruncStore(Chain, Value, Ptr, ST->getSrcValue(),
4431                                 ST->getSrcValueOffset(), ST->getMemoryVT(),
4432                                 ST->isVolatile(), Align);
4433    }
4434  }
4435
4436  // If this is a store of a bit convert, store the input value if the
4437  // resultant store does not need a higher alignment than the original.
4438  if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
4439      ST->isUnindexed()) {
4440    unsigned Align = ST->getAlignment();
4441    MVT::ValueType SVT = Value.getOperand(0).getValueType();
4442    unsigned OrigAlign = TLI.getTargetMachine().getTargetData()->
4443      getABITypeAlignment(MVT::getTypeForValueType(SVT));
4444    if (Align <= OrigAlign && TLI.isOperationLegal(ISD::STORE, SVT))
4445      return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4446                          ST->getSrcValueOffset(), ST->isVolatile(), Align);
4447  }
4448
4449  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
4450  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
4451    if (Value.getOpcode() != ISD::TargetConstantFP) {
4452      SDOperand Tmp;
4453      switch (CFP->getValueType(0)) {
4454      default: assert(0 && "Unknown FP type");
4455      case MVT::f80:    // We don't do this for these yet.
4456      case MVT::f128:
4457      case MVT::ppcf128:
4458        break;
4459      case MVT::f32:
4460        if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
4461          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
4462                              convertToAPInt().getZExtValue(), MVT::i32);
4463          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4464                              ST->getSrcValueOffset(), ST->isVolatile(),
4465                              ST->getAlignment());
4466        }
4467        break;
4468      case MVT::f64:
4469        if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
4470          Tmp = DAG.getConstant(CFP->getValueAPF().convertToAPInt().
4471                                  getZExtValue(), MVT::i64);
4472          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4473                              ST->getSrcValueOffset(), ST->isVolatile(),
4474                              ST->getAlignment());
4475        } else if (TLI.isTypeLegal(MVT::i32)) {
4476          // Many FP stores are not made apparent until after legalize, e.g. for
4477          // argument passing.  Since this is so common, custom legalize the
4478          // 64-bit integer store into two 32-bit stores.
4479          uint64_t Val = CFP->getValueAPF().convertToAPInt().getZExtValue();
4480          SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
4481          SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
4482          if (TLI.isBigEndian()) std::swap(Lo, Hi);
4483
4484          int SVOffset = ST->getSrcValueOffset();
4485          unsigned Alignment = ST->getAlignment();
4486          bool isVolatile = ST->isVolatile();
4487
4488          SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
4489                                       ST->getSrcValueOffset(),
4490                                       isVolatile, ST->getAlignment());
4491          Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
4492                            DAG.getConstant(4, Ptr.getValueType()));
4493          SVOffset += 4;
4494          Alignment = MinAlign(Alignment, 4U);
4495          SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
4496                                       SVOffset, isVolatile, Alignment);
4497          return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
4498        }
4499        break;
4500      }
4501    }
4502  }
4503
4504  if (CombinerAA) {
4505    // Walk up chain skipping non-aliasing memory nodes.
4506    SDOperand BetterChain = FindBetterChain(N, Chain);
4507
4508    // If there is a better chain.
4509    if (Chain != BetterChain) {
4510      // Replace the chain to avoid dependency.
4511      SDOperand ReplStore;
4512      if (ST->isTruncatingStore()) {
4513        ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
4514                                      ST->getSrcValue(),ST->getSrcValueOffset(),
4515                                      ST->getMemoryVT(),
4516                                      ST->isVolatile(), ST->getAlignment());
4517      } else {
4518        ReplStore = DAG.getStore(BetterChain, Value, Ptr,
4519                                 ST->getSrcValue(), ST->getSrcValueOffset(),
4520                                 ST->isVolatile(), ST->getAlignment());
4521      }
4522
4523      // Create token to keep both nodes around.
4524      SDOperand Token =
4525        DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
4526
4527      // Don't add users to work list.
4528      return CombineTo(N, Token, false);
4529    }
4530  }
4531
4532  // Try transforming N to an indexed store.
4533  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4534    return SDOperand(N, 0);
4535
4536  // FIXME: is there such a thing as a truncating indexed store?
4537  if (ST->isTruncatingStore() && ST->isUnindexed() &&
4538      MVT::isInteger(Value.getValueType())) {
4539    // See if we can simplify the input to this truncstore with knowledge that
4540    // only the low bits are being used.  For example:
4541    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
4542    SDOperand Shorter =
4543      GetDemandedBits(Value,
4544                 APInt::getLowBitsSet(Value.getValueSizeInBits(),
4545                                      MVT::getSizeInBits(ST->getMemoryVT())));
4546    AddToWorkList(Value.Val);
4547    if (Shorter.Val)
4548      return DAG.getTruncStore(Chain, Shorter, Ptr, ST->getSrcValue(),
4549                               ST->getSrcValueOffset(), ST->getMemoryVT(),
4550                               ST->isVolatile(), ST->getAlignment());
4551
4552    // Otherwise, see if we can simplify the operation with
4553    // SimplifyDemandedBits, which only works if the value has a single use.
4554    if (SimplifyDemandedBits(Value,
4555                             APInt::getLowBitsSet(
4556                               Value.getValueSizeInBits(),
4557                               MVT::getSizeInBits(ST->getMemoryVT()))))
4558      return SDOperand(N, 0);
4559  }
4560
4561  // If this is a load followed by a store to the same location, then the store
4562  // is dead/noop.
4563  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
4564    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
4565        ST->isUnindexed() && !ST->isVolatile() &&
4566        // There can't be any side effects between the load and store, such as
4567        // a call or store.
4568        Chain.reachesChainWithoutSideEffects(SDOperand(Ld, 1))) {
4569      // The store is dead, remove it.
4570      return Chain;
4571    }
4572  }
4573
4574  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
4575  // truncating store.  We can do this even if this is already a truncstore.
4576  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
4577      && TLI.isTypeLegal(Value.getOperand(0).getValueType()) &&
4578      Value.Val->hasOneUse() && ST->isUnindexed() &&
4579      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
4580                            ST->getMemoryVT())) {
4581    return DAG.getTruncStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4582                             ST->getSrcValueOffset(), ST->getMemoryVT(),
4583                             ST->isVolatile(), ST->getAlignment());
4584  }
4585
4586  return SDOperand();
4587}
4588
4589SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
4590  SDOperand InVec = N->getOperand(0);
4591  SDOperand InVal = N->getOperand(1);
4592  SDOperand EltNo = N->getOperand(2);
4593
4594  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
4595  // vector with the inserted element.
4596  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
4597    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4598    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
4599    if (Elt < Ops.size())
4600      Ops[Elt] = InVal;
4601    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
4602                       &Ops[0], Ops.size());
4603  }
4604
4605  return SDOperand();
4606}
4607
4608SDOperand DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
4609  SDOperand InVec = N->getOperand(0);
4610  SDOperand EltNo = N->getOperand(1);
4611
4612  // (vextract (v4f32 s2v (f32 load $addr)), 0) -> (f32 load $addr)
4613  // (vextract (v4i32 bc (v4f32 s2v (f32 load $addr))), 0) -> (i32 load $addr)
4614  if (isa<ConstantSDNode>(EltNo)) {
4615    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4616    bool NewLoad = false;
4617    if (Elt == 0) {
4618      MVT::ValueType VT = InVec.getValueType();
4619      MVT::ValueType EVT = MVT::getVectorElementType(VT);
4620      MVT::ValueType LVT = EVT;
4621      unsigned NumElts = MVT::getVectorNumElements(VT);
4622      if (InVec.getOpcode() == ISD::BIT_CONVERT) {
4623        MVT::ValueType BCVT = InVec.getOperand(0).getValueType();
4624        if (!MVT::isVector(BCVT) ||
4625            NumElts != MVT::getVectorNumElements(BCVT))
4626          return SDOperand();
4627        InVec = InVec.getOperand(0);
4628        EVT = MVT::getVectorElementType(BCVT);
4629        NewLoad = true;
4630      }
4631      if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4632          InVec.getOperand(0).getValueType() == EVT &&
4633          ISD::isNormalLoad(InVec.getOperand(0).Val) &&
4634          InVec.getOperand(0).hasOneUse()) {
4635        LoadSDNode *LN0 = cast<LoadSDNode>(InVec.getOperand(0));
4636        unsigned Align = LN0->getAlignment();
4637        if (NewLoad) {
4638          // Check the resultant load doesn't need a higher alignment than the
4639          // original load.
4640          unsigned NewAlign = TLI.getTargetMachine().getTargetData()->
4641            getABITypeAlignment(MVT::getTypeForValueType(LVT));
4642          if (!TLI.isOperationLegal(ISD::LOAD, LVT) || NewAlign > Align)
4643            return SDOperand();
4644          Align = NewAlign;
4645        }
4646
4647        return DAG.getLoad(LVT, LN0->getChain(), LN0->getBasePtr(),
4648                           LN0->getSrcValue(), LN0->getSrcValueOffset(),
4649                           LN0->isVolatile(), Align);
4650      }
4651    }
4652  }
4653  return SDOperand();
4654}
4655
4656
4657SDOperand DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
4658  unsigned NumInScalars = N->getNumOperands();
4659  MVT::ValueType VT = N->getValueType(0);
4660  unsigned NumElts = MVT::getVectorNumElements(VT);
4661  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4662
4663  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
4664  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
4665  // at most two distinct vectors, turn this into a shuffle node.
4666  SDOperand VecIn1, VecIn2;
4667  for (unsigned i = 0; i != NumInScalars; ++i) {
4668    // Ignore undef inputs.
4669    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
4670
4671    // If this input is something other than a EXTRACT_VECTOR_ELT with a
4672    // constant index, bail out.
4673    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4674        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
4675      VecIn1 = VecIn2 = SDOperand(0, 0);
4676      break;
4677    }
4678
4679    // If the input vector type disagrees with the result of the build_vector,
4680    // we can't make a shuffle.
4681    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
4682    if (ExtractedFromVec.getValueType() != VT) {
4683      VecIn1 = VecIn2 = SDOperand(0, 0);
4684      break;
4685    }
4686
4687    // Otherwise, remember this.  We allow up to two distinct input vectors.
4688    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
4689      continue;
4690
4691    if (VecIn1.Val == 0) {
4692      VecIn1 = ExtractedFromVec;
4693    } else if (VecIn2.Val == 0) {
4694      VecIn2 = ExtractedFromVec;
4695    } else {
4696      // Too many inputs.
4697      VecIn1 = VecIn2 = SDOperand(0, 0);
4698      break;
4699    }
4700  }
4701
4702  // If everything is good, we can make a shuffle operation.
4703  if (VecIn1.Val) {
4704    SmallVector<SDOperand, 8> BuildVecIndices;
4705    for (unsigned i = 0; i != NumInScalars; ++i) {
4706      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
4707        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
4708        continue;
4709      }
4710
4711      SDOperand Extract = N->getOperand(i);
4712
4713      // If extracting from the first vector, just use the index directly.
4714      if (Extract.getOperand(0) == VecIn1) {
4715        BuildVecIndices.push_back(Extract.getOperand(1));
4716        continue;
4717      }
4718
4719      // Otherwise, use InIdx + VecSize
4720      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
4721      BuildVecIndices.push_back(DAG.getIntPtrConstant(Idx+NumInScalars));
4722    }
4723
4724    // Add count and size info.
4725    MVT::ValueType BuildVecVT = MVT::getVectorType(TLI.getPointerTy(), NumElts);
4726
4727    // Return the new VECTOR_SHUFFLE node.
4728    SDOperand Ops[5];
4729    Ops[0] = VecIn1;
4730    if (VecIn2.Val) {
4731      Ops[1] = VecIn2;
4732    } else {
4733      // Use an undef build_vector as input for the second operand.
4734      std::vector<SDOperand> UnOps(NumInScalars,
4735                                   DAG.getNode(ISD::UNDEF,
4736                                               EltType));
4737      Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, VT,
4738                           &UnOps[0], UnOps.size());
4739      AddToWorkList(Ops[1].Val);
4740    }
4741    Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, BuildVecVT,
4742                         &BuildVecIndices[0], BuildVecIndices.size());
4743    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Ops, 3);
4744  }
4745
4746  return SDOperand();
4747}
4748
4749SDOperand DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
4750  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
4751  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
4752  // inputs come from at most two distinct vectors, turn this into a shuffle
4753  // node.
4754
4755  // If we only have one input vector, we don't need to do any concatenation.
4756  if (N->getNumOperands() == 1) {
4757    return N->getOperand(0);
4758  }
4759
4760  return SDOperand();
4761}
4762
4763SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
4764  SDOperand ShufMask = N->getOperand(2);
4765  unsigned NumElts = ShufMask.getNumOperands();
4766
4767  // If the shuffle mask is an identity operation on the LHS, return the LHS.
4768  bool isIdentity = true;
4769  for (unsigned i = 0; i != NumElts; ++i) {
4770    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4771        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
4772      isIdentity = false;
4773      break;
4774    }
4775  }
4776  if (isIdentity) return N->getOperand(0);
4777
4778  // If the shuffle mask is an identity operation on the RHS, return the RHS.
4779  isIdentity = true;
4780  for (unsigned i = 0; i != NumElts; ++i) {
4781    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4782        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
4783      isIdentity = false;
4784      break;
4785    }
4786  }
4787  if (isIdentity) return N->getOperand(1);
4788
4789  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
4790  // needed at all.
4791  bool isUnary = true;
4792  bool isSplat = true;
4793  int VecNum = -1;
4794  unsigned BaseIdx = 0;
4795  for (unsigned i = 0; i != NumElts; ++i)
4796    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
4797      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
4798      int V = (Idx < NumElts) ? 0 : 1;
4799      if (VecNum == -1) {
4800        VecNum = V;
4801        BaseIdx = Idx;
4802      } else {
4803        if (BaseIdx != Idx)
4804          isSplat = false;
4805        if (VecNum != V) {
4806          isUnary = false;
4807          break;
4808        }
4809      }
4810    }
4811
4812  SDOperand N0 = N->getOperand(0);
4813  SDOperand N1 = N->getOperand(1);
4814  // Normalize unary shuffle so the RHS is undef.
4815  if (isUnary && VecNum == 1)
4816    std::swap(N0, N1);
4817
4818  // If it is a splat, check if the argument vector is a build_vector with
4819  // all scalar elements the same.
4820  if (isSplat) {
4821    SDNode *V = N0.Val;
4822
4823    // If this is a bit convert that changes the element type of the vector but
4824    // not the number of vector elements, look through it.  Be careful not to
4825    // look though conversions that change things like v4f32 to v2f64.
4826    if (V->getOpcode() == ISD::BIT_CONVERT) {
4827      SDOperand ConvInput = V->getOperand(0);
4828      if (MVT::getVectorNumElements(ConvInput.getValueType()) == NumElts)
4829        V = ConvInput.Val;
4830    }
4831
4832    if (V->getOpcode() == ISD::BUILD_VECTOR) {
4833      unsigned NumElems = V->getNumOperands();
4834      if (NumElems > BaseIdx) {
4835        SDOperand Base;
4836        bool AllSame = true;
4837        for (unsigned i = 0; i != NumElems; ++i) {
4838          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
4839            Base = V->getOperand(i);
4840            break;
4841          }
4842        }
4843        // Splat of <u, u, u, u>, return <u, u, u, u>
4844        if (!Base.Val)
4845          return N0;
4846        for (unsigned i = 0; i != NumElems; ++i) {
4847          if (V->getOperand(i) != Base) {
4848            AllSame = false;
4849            break;
4850          }
4851        }
4852        // Splat of <x, x, x, x>, return <x, x, x, x>
4853        if (AllSame)
4854          return N0;
4855      }
4856    }
4857  }
4858
4859  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
4860  // into an undef.
4861  if (isUnary || N0 == N1) {
4862    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
4863    // first operand.
4864    SmallVector<SDOperand, 8> MappedOps;
4865    for (unsigned i = 0; i != NumElts; ++i) {
4866      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
4867          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
4868        MappedOps.push_back(ShufMask.getOperand(i));
4869      } else {
4870        unsigned NewIdx =
4871          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
4872        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
4873      }
4874    }
4875    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
4876                           &MappedOps[0], MappedOps.size());
4877    AddToWorkList(ShufMask.Val);
4878    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
4879                       N0,
4880                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
4881                       ShufMask);
4882  }
4883
4884  return SDOperand();
4885}
4886
4887/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
4888/// an AND to a vector_shuffle with the destination vector and a zero vector.
4889/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
4890///      vector_shuffle V, Zero, <0, 4, 2, 4>
4891SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
4892  SDOperand LHS = N->getOperand(0);
4893  SDOperand RHS = N->getOperand(1);
4894  if (N->getOpcode() == ISD::AND) {
4895    if (RHS.getOpcode() == ISD::BIT_CONVERT)
4896      RHS = RHS.getOperand(0);
4897    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
4898      std::vector<SDOperand> IdxOps;
4899      unsigned NumOps = RHS.getNumOperands();
4900      unsigned NumElts = NumOps;
4901      MVT::ValueType EVT = MVT::getVectorElementType(RHS.getValueType());
4902      for (unsigned i = 0; i != NumElts; ++i) {
4903        SDOperand Elt = RHS.getOperand(i);
4904        if (!isa<ConstantSDNode>(Elt))
4905          return SDOperand();
4906        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
4907          IdxOps.push_back(DAG.getConstant(i, EVT));
4908        else if (cast<ConstantSDNode>(Elt)->isNullValue())
4909          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
4910        else
4911          return SDOperand();
4912      }
4913
4914      // Let's see if the target supports this vector_shuffle.
4915      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
4916        return SDOperand();
4917
4918      // Return the new VECTOR_SHUFFLE node.
4919      MVT::ValueType VT = MVT::getVectorType(EVT, NumElts);
4920      std::vector<SDOperand> Ops;
4921      LHS = DAG.getNode(ISD::BIT_CONVERT, VT, LHS);
4922      Ops.push_back(LHS);
4923      AddToWorkList(LHS.Val);
4924      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
4925      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4926                                &ZeroOps[0], ZeroOps.size()));
4927      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4928                                &IdxOps[0], IdxOps.size()));
4929      SDOperand Result = DAG.getNode(ISD::VECTOR_SHUFFLE, VT,
4930                                     &Ops[0], Ops.size());
4931      if (VT != LHS.getValueType()) {
4932        Result = DAG.getNode(ISD::BIT_CONVERT, LHS.getValueType(), Result);
4933      }
4934      return Result;
4935    }
4936  }
4937  return SDOperand();
4938}
4939
4940/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
4941SDOperand DAGCombiner::SimplifyVBinOp(SDNode *N) {
4942  // After legalize, the target may be depending on adds and other
4943  // binary ops to provide legal ways to construct constants or other
4944  // things. Simplifying them may result in a loss of legality.
4945  if (AfterLegalize) return SDOperand();
4946
4947  MVT::ValueType VT = N->getValueType(0);
4948  assert(MVT::isVector(VT) && "SimplifyVBinOp only works on vectors!");
4949
4950  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4951  SDOperand LHS = N->getOperand(0);
4952  SDOperand RHS = N->getOperand(1);
4953  SDOperand Shuffle = XformToShuffleWithZero(N);
4954  if (Shuffle.Val) return Shuffle;
4955
4956  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
4957  // this operation.
4958  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
4959      RHS.getOpcode() == ISD::BUILD_VECTOR) {
4960    SmallVector<SDOperand, 8> Ops;
4961    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
4962      SDOperand LHSOp = LHS.getOperand(i);
4963      SDOperand RHSOp = RHS.getOperand(i);
4964      // If these two elements can't be folded, bail out.
4965      if ((LHSOp.getOpcode() != ISD::UNDEF &&
4966           LHSOp.getOpcode() != ISD::Constant &&
4967           LHSOp.getOpcode() != ISD::ConstantFP) ||
4968          (RHSOp.getOpcode() != ISD::UNDEF &&
4969           RHSOp.getOpcode() != ISD::Constant &&
4970           RHSOp.getOpcode() != ISD::ConstantFP))
4971        break;
4972      // Can't fold divide by zero.
4973      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
4974          N->getOpcode() == ISD::FDIV) {
4975        if ((RHSOp.getOpcode() == ISD::Constant &&
4976             cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
4977            (RHSOp.getOpcode() == ISD::ConstantFP &&
4978             cast<ConstantFPSDNode>(RHSOp.Val)->getValueAPF().isZero()))
4979          break;
4980      }
4981      Ops.push_back(DAG.getNode(N->getOpcode(), EltType, LHSOp, RHSOp));
4982      AddToWorkList(Ops.back().Val);
4983      assert((Ops.back().getOpcode() == ISD::UNDEF ||
4984              Ops.back().getOpcode() == ISD::Constant ||
4985              Ops.back().getOpcode() == ISD::ConstantFP) &&
4986             "Scalar binop didn't fold!");
4987    }
4988
4989    if (Ops.size() == LHS.getNumOperands()) {
4990      MVT::ValueType VT = LHS.getValueType();
4991      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
4992    }
4993  }
4994
4995  return SDOperand();
4996}
4997
4998SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
4999  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
5000
5001  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
5002                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
5003  // If we got a simplified select_cc node back from SimplifySelectCC, then
5004  // break it down into a new SETCC node, and a new SELECT node, and then return
5005  // the SELECT node, since we were called with a SELECT node.
5006  if (SCC.Val) {
5007    // Check to see if we got a select_cc back (to turn into setcc/select).
5008    // Otherwise, just return whatever node we got back, like fabs.
5009    if (SCC.getOpcode() == ISD::SELECT_CC) {
5010      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
5011                                    SCC.getOperand(0), SCC.getOperand(1),
5012                                    SCC.getOperand(4));
5013      AddToWorkList(SETCC.Val);
5014      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
5015                         SCC.getOperand(3), SETCC);
5016    }
5017    return SCC;
5018  }
5019  return SDOperand();
5020}
5021
5022/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
5023/// are the two values being selected between, see if we can simplify the
5024/// select.  Callers of this should assume that TheSelect is deleted if this
5025/// returns true.  As such, they should return the appropriate thing (e.g. the
5026/// node) back to the top-level of the DAG combiner loop to avoid it being
5027/// looked at.
5028///
5029bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
5030                                    SDOperand RHS) {
5031
5032  // If this is a select from two identical things, try to pull the operation
5033  // through the select.
5034  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
5035    // If this is a load and the token chain is identical, replace the select
5036    // of two loads with a load through a select of the address to load from.
5037    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
5038    // constants have been dropped into the constant pool.
5039    if (LHS.getOpcode() == ISD::LOAD &&
5040        // Token chains must be identical.
5041        LHS.getOperand(0) == RHS.getOperand(0)) {
5042      LoadSDNode *LLD = cast<LoadSDNode>(LHS);
5043      LoadSDNode *RLD = cast<LoadSDNode>(RHS);
5044
5045      // If this is an EXTLOAD, the VT's must match.
5046      if (LLD->getMemoryVT() == RLD->getMemoryVT()) {
5047        // FIXME: this conflates two src values, discarding one.  This is not
5048        // the right thing to do, but nothing uses srcvalues now.  When they do,
5049        // turn SrcValue into a list of locations.
5050        SDOperand Addr;
5051        if (TheSelect->getOpcode() == ISD::SELECT) {
5052          // Check that the condition doesn't reach either load.  If so, folding
5053          // this will induce a cycle into the DAG.
5054          if (!LLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5055              !RLD->isPredecessorOf(TheSelect->getOperand(0).Val)) {
5056            Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
5057                               TheSelect->getOperand(0), LLD->getBasePtr(),
5058                               RLD->getBasePtr());
5059          }
5060        } else {
5061          // Check that the condition doesn't reach either load.  If so, folding
5062          // this will induce a cycle into the DAG.
5063          if (!LLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5064              !RLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5065              !LLD->isPredecessorOf(TheSelect->getOperand(1).Val) &&
5066              !RLD->isPredecessorOf(TheSelect->getOperand(1).Val)) {
5067            Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
5068                             TheSelect->getOperand(0),
5069                             TheSelect->getOperand(1),
5070                             LLD->getBasePtr(), RLD->getBasePtr(),
5071                             TheSelect->getOperand(4));
5072          }
5073        }
5074
5075        if (Addr.Val) {
5076          SDOperand Load;
5077          if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
5078            Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
5079                               Addr,LLD->getSrcValue(),
5080                               LLD->getSrcValueOffset(),
5081                               LLD->isVolatile(),
5082                               LLD->getAlignment());
5083          else {
5084            Load = DAG.getExtLoad(LLD->getExtensionType(),
5085                                  TheSelect->getValueType(0),
5086                                  LLD->getChain(), Addr, LLD->getSrcValue(),
5087                                  LLD->getSrcValueOffset(),
5088                                  LLD->getMemoryVT(),
5089                                  LLD->isVolatile(),
5090                                  LLD->getAlignment());
5091          }
5092          // Users of the select now use the result of the load.
5093          CombineTo(TheSelect, Load);
5094
5095          // Users of the old loads now use the new load's chain.  We know the
5096          // old-load value is dead now.
5097          CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
5098          CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
5099          return true;
5100        }
5101      }
5102    }
5103  }
5104
5105  return false;
5106}
5107
5108SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
5109                                        SDOperand N2, SDOperand N3,
5110                                        ISD::CondCode CC, bool NotExtCompare) {
5111
5112  MVT::ValueType VT = N2.getValueType();
5113  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
5114  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
5115  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
5116
5117  // Determine if the condition we're dealing with is constant
5118  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultType(N0), N0, N1, CC, false);
5119  if (SCC.Val) AddToWorkList(SCC.Val);
5120  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
5121
5122  // fold select_cc true, x, y -> x
5123  if (SCCC && !SCCC->isNullValue())
5124    return N2;
5125  // fold select_cc false, x, y -> y
5126  if (SCCC && SCCC->isNullValue())
5127    return N3;
5128
5129  // Check to see if we can simplify the select into an fabs node
5130  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
5131    // Allow either -0.0 or 0.0
5132    if (CFP->getValueAPF().isZero()) {
5133      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
5134      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
5135          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
5136          N2 == N3.getOperand(0))
5137        return DAG.getNode(ISD::FABS, VT, N0);
5138
5139      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
5140      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
5141          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
5142          N2.getOperand(0) == N3)
5143        return DAG.getNode(ISD::FABS, VT, N3);
5144    }
5145  }
5146
5147  // Check to see if we can perform the "gzip trick", transforming
5148  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
5149  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
5150      MVT::isInteger(N0.getValueType()) &&
5151      MVT::isInteger(N2.getValueType()) &&
5152      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
5153       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
5154    MVT::ValueType XType = N0.getValueType();
5155    MVT::ValueType AType = N2.getValueType();
5156    if (XType >= AType) {
5157      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
5158      // single-bit constant.
5159      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
5160        unsigned ShCtV = N2C->getAPIntValue().logBase2();
5161        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
5162        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
5163        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
5164        AddToWorkList(Shift.Val);
5165        if (XType > AType) {
5166          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5167          AddToWorkList(Shift.Val);
5168        }
5169        return DAG.getNode(ISD::AND, AType, Shift, N2);
5170      }
5171      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5172                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5173                                                    TLI.getShiftAmountTy()));
5174      AddToWorkList(Shift.Val);
5175      if (XType > AType) {
5176        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5177        AddToWorkList(Shift.Val);
5178      }
5179      return DAG.getNode(ISD::AND, AType, Shift, N2);
5180    }
5181  }
5182
5183  // fold select C, 16, 0 -> shl C, 4
5184  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
5185      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
5186
5187    // If the caller doesn't want us to simplify this into a zext of a compare,
5188    // don't do it.
5189    if (NotExtCompare && N2C->getAPIntValue() == 1)
5190      return SDOperand();
5191
5192    // Get a SetCC of the condition
5193    // FIXME: Should probably make sure that setcc is legal if we ever have a
5194    // target where it isn't.
5195    SDOperand Temp, SCC;
5196    // cast from setcc result type to select result type
5197    if (AfterLegalize) {
5198      SCC  = DAG.getSetCC(TLI.getSetCCResultType(N0), N0, N1, CC);
5199      if (N2.getValueType() < SCC.getValueType())
5200        Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
5201      else
5202        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5203    } else {
5204      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
5205      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5206    }
5207    AddToWorkList(SCC.Val);
5208    AddToWorkList(Temp.Val);
5209
5210    if (N2C->getAPIntValue() == 1)
5211      return Temp;
5212    // shl setcc result by log2 n2c
5213    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
5214                       DAG.getConstant(N2C->getAPIntValue().logBase2(),
5215                                       TLI.getShiftAmountTy()));
5216  }
5217
5218  // Check to see if this is the equivalent of setcc
5219  // FIXME: Turn all of these into setcc if setcc if setcc is legal
5220  // otherwise, go ahead with the folds.
5221  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
5222    MVT::ValueType XType = N0.getValueType();
5223    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(N0))) {
5224      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultType(N0), N0, N1, CC);
5225      if (Res.getValueType() != VT)
5226        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
5227      return Res;
5228    }
5229
5230    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
5231    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
5232        TLI.isOperationLegal(ISD::CTLZ, XType)) {
5233      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
5234      return DAG.getNode(ISD::SRL, XType, Ctlz,
5235                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
5236                                         TLI.getShiftAmountTy()));
5237    }
5238    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
5239    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
5240      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
5241                                    N0);
5242      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
5243                                    DAG.getConstant(~0ULL, XType));
5244      return DAG.getNode(ISD::SRL, XType,
5245                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
5246                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
5247                                         TLI.getShiftAmountTy()));
5248    }
5249    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
5250    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
5251      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
5252                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
5253                                                   TLI.getShiftAmountTy()));
5254      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
5255    }
5256  }
5257
5258  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
5259  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5260  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
5261      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
5262      N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) {
5263    MVT::ValueType XType = N0.getValueType();
5264    SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5265                                  DAG.getConstant(MVT::getSizeInBits(XType)-1,
5266                                                  TLI.getShiftAmountTy()));
5267    SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5268    AddToWorkList(Shift.Val);
5269    AddToWorkList(Add.Val);
5270    return DAG.getNode(ISD::XOR, XType, Add, Shift);
5271  }
5272  // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
5273  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5274  if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
5275      N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
5276    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
5277      MVT::ValueType XType = N0.getValueType();
5278      if (SubC->isNullValue() && MVT::isInteger(XType)) {
5279        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5280                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5281                                                      TLI.getShiftAmountTy()));
5282        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5283        AddToWorkList(Shift.Val);
5284        AddToWorkList(Add.Val);
5285        return DAG.getNode(ISD::XOR, XType, Add, Shift);
5286      }
5287    }
5288  }
5289
5290  return SDOperand();
5291}
5292
5293/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
5294SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
5295                                     SDOperand N1, ISD::CondCode Cond,
5296                                     bool foldBooleans) {
5297  TargetLowering::DAGCombinerInfo
5298    DagCombineInfo(DAG, !AfterLegalize, false, this);
5299  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
5300}
5301
5302/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
5303/// return a DAG expression to select that will generate the same value by
5304/// multiplying by a magic number.  See:
5305/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5306SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
5307  std::vector<SDNode*> Built;
5308  SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
5309
5310  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5311       ii != ee; ++ii)
5312    AddToWorkList(*ii);
5313  return S;
5314}
5315
5316/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
5317/// return a DAG expression to select that will generate the same value by
5318/// multiplying by a magic number.  See:
5319/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5320SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
5321  std::vector<SDNode*> Built;
5322  SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
5323
5324  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5325       ii != ee; ++ii)
5326    AddToWorkList(*ii);
5327  return S;
5328}
5329
5330/// FindBaseOffset - Return true if base is known not to alias with anything
5331/// but itself.  Provides base object and offset as results.
5332static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
5333  // Assume it is a primitive operation.
5334  Base = Ptr; Offset = 0;
5335
5336  // If it's an adding a simple constant then integrate the offset.
5337  if (Base.getOpcode() == ISD::ADD) {
5338    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
5339      Base = Base.getOperand(0);
5340      Offset += C->getValue();
5341    }
5342  }
5343
5344  // If it's any of the following then it can't alias with anything but itself.
5345  return isa<FrameIndexSDNode>(Base) ||
5346         isa<ConstantPoolSDNode>(Base) ||
5347         isa<GlobalAddressSDNode>(Base);
5348}
5349
5350/// isAlias - Return true if there is any possibility that the two addresses
5351/// overlap.
5352bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
5353                          const Value *SrcValue1, int SrcValueOffset1,
5354                          SDOperand Ptr2, int64_t Size2,
5355                          const Value *SrcValue2, int SrcValueOffset2)
5356{
5357  // If they are the same then they must be aliases.
5358  if (Ptr1 == Ptr2) return true;
5359
5360  // Gather base node and offset information.
5361  SDOperand Base1, Base2;
5362  int64_t Offset1, Offset2;
5363  bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
5364  bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
5365
5366  // If they have a same base address then...
5367  if (Base1 == Base2) {
5368    // Check to see if the addresses overlap.
5369    return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
5370  }
5371
5372  // If we know both bases then they can't alias.
5373  if (KnownBase1 && KnownBase2) return false;
5374
5375  if (CombinerGlobalAA) {
5376    // Use alias analysis information.
5377    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
5378    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
5379    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
5380    AliasAnalysis::AliasResult AAResult =
5381                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
5382    if (AAResult == AliasAnalysis::NoAlias)
5383      return false;
5384  }
5385
5386  // Otherwise we have to assume they alias.
5387  return true;
5388}
5389
5390/// FindAliasInfo - Extracts the relevant alias information from the memory
5391/// node.  Returns true if the operand was a load.
5392bool DAGCombiner::FindAliasInfo(SDNode *N,
5393                        SDOperand &Ptr, int64_t &Size,
5394                        const Value *&SrcValue, int &SrcValueOffset) {
5395  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5396    Ptr = LD->getBasePtr();
5397    Size = MVT::getSizeInBits(LD->getMemoryVT()) >> 3;
5398    SrcValue = LD->getSrcValue();
5399    SrcValueOffset = LD->getSrcValueOffset();
5400    return true;
5401  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5402    Ptr = ST->getBasePtr();
5403    Size = MVT::getSizeInBits(ST->getMemoryVT()) >> 3;
5404    SrcValue = ST->getSrcValue();
5405    SrcValueOffset = ST->getSrcValueOffset();
5406  } else {
5407    assert(0 && "FindAliasInfo expected a memory operand");
5408  }
5409
5410  return false;
5411}
5412
5413/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
5414/// looking for aliasing nodes and adding them to the Aliases vector.
5415void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
5416                                   SmallVector<SDOperand, 8> &Aliases) {
5417  SmallVector<SDOperand, 8> Chains;     // List of chains to visit.
5418  std::set<SDNode *> Visited;           // Visited node set.
5419
5420  // Get alias information for node.
5421  SDOperand Ptr;
5422  int64_t Size;
5423  const Value *SrcValue;
5424  int SrcValueOffset;
5425  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
5426
5427  // Starting off.
5428  Chains.push_back(OriginalChain);
5429
5430  // Look at each chain and determine if it is an alias.  If so, add it to the
5431  // aliases list.  If not, then continue up the chain looking for the next
5432  // candidate.
5433  while (!Chains.empty()) {
5434    SDOperand Chain = Chains.back();
5435    Chains.pop_back();
5436
5437     // Don't bother if we've been before.
5438    if (Visited.find(Chain.Val) != Visited.end()) continue;
5439    Visited.insert(Chain.Val);
5440
5441    switch (Chain.getOpcode()) {
5442    case ISD::EntryToken:
5443      // Entry token is ideal chain operand, but handled in FindBetterChain.
5444      break;
5445
5446    case ISD::LOAD:
5447    case ISD::STORE: {
5448      // Get alias information for Chain.
5449      SDOperand OpPtr;
5450      int64_t OpSize;
5451      const Value *OpSrcValue;
5452      int OpSrcValueOffset;
5453      bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
5454                                    OpSrcValue, OpSrcValueOffset);
5455
5456      // If chain is alias then stop here.
5457      if (!(IsLoad && IsOpLoad) &&
5458          isAlias(Ptr, Size, SrcValue, SrcValueOffset,
5459                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
5460        Aliases.push_back(Chain);
5461      } else {
5462        // Look further up the chain.
5463        Chains.push_back(Chain.getOperand(0));
5464        // Clean up old chain.
5465        AddToWorkList(Chain.Val);
5466      }
5467      break;
5468    }
5469
5470    case ISD::TokenFactor:
5471      // We have to check each of the operands of the token factor, so we queue
5472      // then up.  Adding the  operands to the queue (stack) in reverse order
5473      // maintains the original order and increases the likelihood that getNode
5474      // will find a matching token factor (CSE.)
5475      for (unsigned n = Chain.getNumOperands(); n;)
5476        Chains.push_back(Chain.getOperand(--n));
5477      // Eliminate the token factor if we can.
5478      AddToWorkList(Chain.Val);
5479      break;
5480
5481    default:
5482      // For all other instructions we will just have to take what we can get.
5483      Aliases.push_back(Chain);
5484      break;
5485    }
5486  }
5487}
5488
5489/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
5490/// for a better chain (aliasing node.)
5491SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
5492  SmallVector<SDOperand, 8> Aliases;  // Ops for replacing token factor.
5493
5494  // Accumulate all the aliases to this node.
5495  GatherAllAliases(N, OldChain, Aliases);
5496
5497  if (Aliases.size() == 0) {
5498    // If no operands then chain to entry token.
5499    return DAG.getEntryNode();
5500  } else if (Aliases.size() == 1) {
5501    // If a single operand then chain to it.  We don't need to revisit it.
5502    return Aliases[0];
5503  }
5504
5505  // Construct a custom tailored token factor.
5506  SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
5507                                   &Aliases[0], Aliases.size());
5508
5509  // Make sure the old chain gets cleaned up.
5510  if (NewChain != OldChain) AddToWorkList(OldChain.Val);
5511
5512  return NewChain;
5513}
5514
5515// SelectionDAG::Combine - This is the entry point for the file.
5516//
5517void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
5518  if (!RunningAfterLegalize && ViewDAGCombine1)
5519    viewGraph();
5520  if (RunningAfterLegalize && ViewDAGCombine2)
5521    viewGraph();
5522  /// run - This is the main entry point to this class.
5523  ///
5524  DAGCombiner(*this, AA).Run(RunningAfterLegalize);
5525}
5526