DAGCombiner.cpp revision 2550e3aa67fc6b5192976b0a6ad5c8cd7829cf32
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Nate Begeman and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// FIXME: Missing folds
14// sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into
15//  a sequence of multiplies, shifts, and adds.  This should be controlled by
16//  some kind of hint from the target that int div is expensive.
17// various folds of mulh[s,u] by constants such as -1, powers of 2, etc.
18//
19// FIXME: select C, pow2, pow2 -> something smart
20// FIXME: trunc(select X, Y, Z) -> select X, trunc(Y), trunc(Z)
21// FIXME: Dead stores -> nuke
22// FIXME: shr X, (and Y,31) -> shr X, Y   (TRICKY!)
23// FIXME: mul (x, const) -> shifts + adds
24// FIXME: undef values
25// FIXME: divide by zero is currently left unfolded.  do we want to turn this
26//        into an undef?
27// FIXME: select ne (select cc, 1, 0), 0, true, false -> select cc, true, false
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "dagcombine"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/Analysis/AliasAnalysis.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/Support/Compiler.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/MathExtras.h"
44#include <algorithm>
45using namespace llvm;
46
47STATISTIC(NodesCombined   , "Number of dag nodes combined");
48STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
49STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
50
51namespace {
52#ifndef NDEBUG
53  static cl::opt<bool>
54    ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
55                    cl::desc("Pop up a window to show dags before the first "
56                             "dag combine pass"));
57  static cl::opt<bool>
58    ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
59                    cl::desc("Pop up a window to show dags before the second "
60                             "dag combine pass"));
61#else
62  static const bool ViewDAGCombine1 = false;
63  static const bool ViewDAGCombine2 = false;
64#endif
65
66  static cl::opt<bool>
67    CombinerAA("combiner-alias-analysis", cl::Hidden,
68               cl::desc("Turn on alias analysis during testing"));
69
70  static cl::opt<bool>
71    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
72               cl::desc("Include global information in alias analysis"));
73
74//------------------------------ DAGCombiner ---------------------------------//
75
76  class VISIBILITY_HIDDEN DAGCombiner {
77    SelectionDAG &DAG;
78    TargetLowering &TLI;
79    bool AfterLegalize;
80
81    // Worklist of all of the nodes that need to be simplified.
82    std::vector<SDNode*> WorkList;
83
84    // AA - Used for DAG load/store alias analysis.
85    AliasAnalysis &AA;
86
87    /// AddUsersToWorkList - When an instruction is simplified, add all users of
88    /// the instruction to the work lists because they might get more simplified
89    /// now.
90    ///
91    void AddUsersToWorkList(SDNode *N) {
92      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
93           UI != UE; ++UI)
94        AddToWorkList(*UI);
95    }
96
97    /// removeFromWorkList - remove all instances of N from the worklist.
98    ///
99    void removeFromWorkList(SDNode *N) {
100      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
101                     WorkList.end());
102    }
103
104    /// visit - call the node-specific routine that knows how to fold each
105    /// particular type of node.
106    SDOperand visit(SDNode *N);
107
108  public:
109    /// AddToWorkList - Add to the work list making sure it's instance is at the
110    /// the back (next to be processed.)
111    void AddToWorkList(SDNode *N) {
112      removeFromWorkList(N);
113      WorkList.push_back(N);
114    }
115
116    SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
117                        bool AddTo = true) {
118      assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
119      ++NodesCombined;
120      DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
121      DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
122      DOUT << " and " << NumTo-1 << " other values\n";
123      std::vector<SDNode*> NowDead;
124      DAG.ReplaceAllUsesWith(N, To, &NowDead);
125
126      if (AddTo) {
127        // Push the new nodes and any users onto the worklist
128        for (unsigned i = 0, e = NumTo; i != e; ++i) {
129          AddToWorkList(To[i].Val);
130          AddUsersToWorkList(To[i].Val);
131        }
132      }
133
134      // Nodes can be reintroduced into the worklist.  Make sure we do not
135      // process a node that has been replaced.
136      removeFromWorkList(N);
137      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
138        removeFromWorkList(NowDead[i]);
139
140      // Finally, since the node is now dead, remove it from the graph.
141      DAG.DeleteNode(N);
142      return SDOperand(N, 0);
143    }
144
145    SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
146      return CombineTo(N, &Res, 1, AddTo);
147    }
148
149    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
150                        bool AddTo = true) {
151      SDOperand To[] = { Res0, Res1 };
152      return CombineTo(N, To, 2, AddTo);
153    }
154  private:
155
156    /// SimplifyDemandedBits - Check the specified integer node value to see if
157    /// it can be simplified or if things it uses can be simplified by bit
158    /// propagation.  If so, return true.
159    bool SimplifyDemandedBits(SDOperand Op, uint64_t Demanded = ~0ULL) {
160      TargetLowering::TargetLoweringOpt TLO(DAG);
161      uint64_t KnownZero, KnownOne;
162      Demanded &= MVT::getIntVTBitMask(Op.getValueType());
163      if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
164        return false;
165
166      // Revisit the node.
167      AddToWorkList(Op.Val);
168
169      // Replace the old value with the new one.
170      ++NodesCombined;
171      DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump(&DAG));
172      DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
173      DOUT << '\n';
174
175      std::vector<SDNode*> NowDead;
176      DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &NowDead);
177
178      // Push the new node and any (possibly new) users onto the worklist.
179      AddToWorkList(TLO.New.Val);
180      AddUsersToWorkList(TLO.New.Val);
181
182      // Nodes can end up on the worklist more than once.  Make sure we do
183      // not process a node that has been replaced.
184      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
185        removeFromWorkList(NowDead[i]);
186
187      // Finally, if the node is now dead, remove it from the graph.  The node
188      // may not be dead if the replacement process recursively simplified to
189      // something else needing this node.
190      if (TLO.Old.Val->use_empty()) {
191        removeFromWorkList(TLO.Old.Val);
192
193        // If the operands of this node are only used by the node, they will now
194        // be dead.  Make sure to visit them first to delete dead nodes early.
195        for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i)
196          if (TLO.Old.Val->getOperand(i).Val->hasOneUse())
197            AddToWorkList(TLO.Old.Val->getOperand(i).Val);
198
199        DAG.DeleteNode(TLO.Old.Val);
200      }
201      return true;
202    }
203
204    bool CombineToPreIndexedLoadStore(SDNode *N);
205    bool CombineToPostIndexedLoadStore(SDNode *N);
206
207
208    /// combine - call the node-specific routine that knows how to fold each
209    /// particular type of node. If that doesn't do anything, try the
210    /// target-specific DAG combines.
211    SDOperand combine(SDNode *N);
212
213    // Visitation implementation - Implement dag node combining for different
214    // node types.  The semantics are as follows:
215    // Return Value:
216    //   SDOperand.Val == 0   - No change was made
217    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
218    //   otherwise            - N should be replaced by the returned Operand.
219    //
220    SDOperand visitTokenFactor(SDNode *N);
221    SDOperand visitADD(SDNode *N);
222    SDOperand visitSUB(SDNode *N);
223    SDOperand visitADDC(SDNode *N);
224    SDOperand visitADDE(SDNode *N);
225    SDOperand visitMUL(SDNode *N);
226    SDOperand visitSDIV(SDNode *N);
227    SDOperand visitUDIV(SDNode *N);
228    SDOperand visitSREM(SDNode *N);
229    SDOperand visitUREM(SDNode *N);
230    SDOperand visitMULHU(SDNode *N);
231    SDOperand visitMULHS(SDNode *N);
232    SDOperand visitSMUL_LOHI(SDNode *N);
233    SDOperand visitUMUL_LOHI(SDNode *N);
234    SDOperand visitSDIVREM(SDNode *N);
235    SDOperand visitUDIVREM(SDNode *N);
236    SDOperand visitAND(SDNode *N);
237    SDOperand visitOR(SDNode *N);
238    SDOperand visitXOR(SDNode *N);
239    SDOperand SimplifyVBinOp(SDNode *N);
240    SDOperand visitSHL(SDNode *N);
241    SDOperand visitSRA(SDNode *N);
242    SDOperand visitSRL(SDNode *N);
243    SDOperand visitCTLZ(SDNode *N);
244    SDOperand visitCTTZ(SDNode *N);
245    SDOperand visitCTPOP(SDNode *N);
246    SDOperand visitSELECT(SDNode *N);
247    SDOperand visitSELECT_CC(SDNode *N);
248    SDOperand visitSETCC(SDNode *N);
249    SDOperand visitSIGN_EXTEND(SDNode *N);
250    SDOperand visitZERO_EXTEND(SDNode *N);
251    SDOperand visitANY_EXTEND(SDNode *N);
252    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
253    SDOperand visitTRUNCATE(SDNode *N);
254    SDOperand visitBIT_CONVERT(SDNode *N);
255    SDOperand visitFADD(SDNode *N);
256    SDOperand visitFSUB(SDNode *N);
257    SDOperand visitFMUL(SDNode *N);
258    SDOperand visitFDIV(SDNode *N);
259    SDOperand visitFREM(SDNode *N);
260    SDOperand visitFCOPYSIGN(SDNode *N);
261    SDOperand visitSINT_TO_FP(SDNode *N);
262    SDOperand visitUINT_TO_FP(SDNode *N);
263    SDOperand visitFP_TO_SINT(SDNode *N);
264    SDOperand visitFP_TO_UINT(SDNode *N);
265    SDOperand visitFP_ROUND(SDNode *N);
266    SDOperand visitFP_ROUND_INREG(SDNode *N);
267    SDOperand visitFP_EXTEND(SDNode *N);
268    SDOperand visitFNEG(SDNode *N);
269    SDOperand visitFABS(SDNode *N);
270    SDOperand visitBRCOND(SDNode *N);
271    SDOperand visitBR_CC(SDNode *N);
272    SDOperand visitLOAD(SDNode *N);
273    SDOperand visitSTORE(SDNode *N);
274    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
275    SDOperand visitEXTRACT_VECTOR_ELT(SDNode *N);
276    SDOperand visitBUILD_VECTOR(SDNode *N);
277    SDOperand visitCONCAT_VECTORS(SDNode *N);
278    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
279
280    SDOperand XformToShuffleWithZero(SDNode *N);
281    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
282
283    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
284    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
285    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
286    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
287                               SDOperand N3, ISD::CondCode CC,
288                               bool NotExtCompare = false);
289    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
290                            ISD::CondCode Cond, bool foldBooleans = true);
291    bool SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, unsigned HiOp);
292    SDOperand ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT::ValueType);
293    SDOperand BuildSDIV(SDNode *N);
294    SDOperand BuildUDIV(SDNode *N);
295    SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
296    SDOperand ReduceLoadWidth(SDNode *N);
297
298    SDOperand GetDemandedBits(SDOperand V, uint64_t Mask);
299
300    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
301    /// looking for aliasing nodes and adding them to the Aliases vector.
302    void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
303                          SmallVector<SDOperand, 8> &Aliases);
304
305    /// isAlias - Return true if there is any possibility that the two addresses
306    /// overlap.
307    bool isAlias(SDOperand Ptr1, int64_t Size1,
308                 const Value *SrcValue1, int SrcValueOffset1,
309                 SDOperand Ptr2, int64_t Size2,
310                 const Value *SrcValue2, int SrcValueOffset2);
311
312    /// FindAliasInfo - Extracts the relevant alias information from the memory
313    /// node.  Returns true if the operand was a load.
314    bool FindAliasInfo(SDNode *N,
315                       SDOperand &Ptr, int64_t &Size,
316                       const Value *&SrcValue, int &SrcValueOffset);
317
318    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
319    /// looking for a better chain (aliasing node.)
320    SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
321
322public:
323    DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
324      : DAG(D),
325        TLI(D.getTargetLoweringInfo()),
326        AfterLegalize(false),
327        AA(A) {}
328
329    /// Run - runs the dag combiner on all nodes in the work list
330    void Run(bool RunningAfterLegalize);
331  };
332}
333
334//===----------------------------------------------------------------------===//
335//  TargetLowering::DAGCombinerInfo implementation
336//===----------------------------------------------------------------------===//
337
338void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
339  ((DAGCombiner*)DC)->AddToWorkList(N);
340}
341
342SDOperand TargetLowering::DAGCombinerInfo::
343CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
344  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
345}
346
347SDOperand TargetLowering::DAGCombinerInfo::
348CombineTo(SDNode *N, SDOperand Res) {
349  return ((DAGCombiner*)DC)->CombineTo(N, Res);
350}
351
352
353SDOperand TargetLowering::DAGCombinerInfo::
354CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
355  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
356}
357
358
359//===----------------------------------------------------------------------===//
360// Helper Functions
361//===----------------------------------------------------------------------===//
362
363/// isNegatibleForFree - Return 1 if we can compute the negated form of the
364/// specified expression for the same cost as the expression itself, or 2 if we
365/// can compute the negated form more cheaply than the expression itself.
366static char isNegatibleForFree(SDOperand Op, unsigned Depth = 0) {
367  // No compile time optimizations on this type.
368  if (Op.getValueType() == MVT::ppcf128)
369    return 0;
370
371  // fneg is removable even if it has multiple uses.
372  if (Op.getOpcode() == ISD::FNEG) return 2;
373
374  // Don't allow anything with multiple uses.
375  if (!Op.hasOneUse()) return 0;
376
377  // Don't recurse exponentially.
378  if (Depth > 6) return 0;
379
380  switch (Op.getOpcode()) {
381  default: return false;
382  case ISD::ConstantFP:
383    return 1;
384  case ISD::FADD:
385    // FIXME: determine better conditions for this xform.
386    if (!UnsafeFPMath) return 0;
387
388    // -(A+B) -> -A - B
389    if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1))
390      return V;
391    // -(A+B) -> -B - A
392    return isNegatibleForFree(Op.getOperand(1), Depth+1);
393  case ISD::FSUB:
394    // We can't turn -(A-B) into B-A when we honor signed zeros.
395    if (!UnsafeFPMath) return 0;
396
397    // -(A-B) -> B-A
398    return 1;
399
400  case ISD::FMUL:
401  case ISD::FDIV:
402    if (HonorSignDependentRoundingFPMath()) return 0;
403
404    // -(X*Y) -> (-X * Y) or (X*-Y)
405    if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1))
406      return V;
407
408    return isNegatibleForFree(Op.getOperand(1), Depth+1);
409
410  case ISD::FP_EXTEND:
411  case ISD::FP_ROUND:
412  case ISD::FSIN:
413    return isNegatibleForFree(Op.getOperand(0), Depth+1);
414  }
415}
416
417/// GetNegatedExpression - If isNegatibleForFree returns true, this function
418/// returns the newly negated expression.
419static SDOperand GetNegatedExpression(SDOperand Op, SelectionDAG &DAG,
420                                      unsigned Depth = 0) {
421  // fneg is removable even if it has multiple uses.
422  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
423
424  // Don't allow anything with multiple uses.
425  assert(Op.hasOneUse() && "Unknown reuse!");
426
427  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
428  switch (Op.getOpcode()) {
429  default: assert(0 && "Unknown code");
430  case ISD::ConstantFP: {
431    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
432    V.changeSign();
433    return DAG.getConstantFP(V, Op.getValueType());
434  }
435  case ISD::FADD:
436    // FIXME: determine better conditions for this xform.
437    assert(UnsafeFPMath);
438
439    // -(A+B) -> -A - B
440    if (isNegatibleForFree(Op.getOperand(0), Depth+1))
441      return DAG.getNode(ISD::FSUB, Op.getValueType(),
442                         GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
443                         Op.getOperand(1));
444    // -(A+B) -> -B - A
445    return DAG.getNode(ISD::FSUB, Op.getValueType(),
446                       GetNegatedExpression(Op.getOperand(1), DAG, Depth+1),
447                       Op.getOperand(0));
448  case ISD::FSUB:
449    // We can't turn -(A-B) into B-A when we honor signed zeros.
450    assert(UnsafeFPMath);
451
452    // -(0-B) -> B
453    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
454      if (N0CFP->getValueAPF().isZero())
455        return Op.getOperand(1);
456
457    // -(A-B) -> B-A
458    return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1),
459                       Op.getOperand(0));
460
461  case ISD::FMUL:
462  case ISD::FDIV:
463    assert(!HonorSignDependentRoundingFPMath());
464
465    // -(X*Y) -> -X * Y
466    if (isNegatibleForFree(Op.getOperand(0), Depth+1))
467      return DAG.getNode(Op.getOpcode(), Op.getValueType(),
468                         GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
469                         Op.getOperand(1));
470
471    // -(X*Y) -> X * -Y
472    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
473                       Op.getOperand(0),
474                       GetNegatedExpression(Op.getOperand(1), DAG, Depth+1));
475
476  case ISD::FP_EXTEND:
477  case ISD::FP_ROUND:
478  case ISD::FSIN:
479    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
480                       GetNegatedExpression(Op.getOperand(0), DAG, Depth+1));
481  }
482}
483
484
485// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
486// that selects between the values 1 and 0, making it equivalent to a setcc.
487// Also, set the incoming LHS, RHS, and CC references to the appropriate
488// nodes based on the type of node we are checking.  This simplifies life a
489// bit for the callers.
490static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
491                              SDOperand &CC) {
492  if (N.getOpcode() == ISD::SETCC) {
493    LHS = N.getOperand(0);
494    RHS = N.getOperand(1);
495    CC  = N.getOperand(2);
496    return true;
497  }
498  if (N.getOpcode() == ISD::SELECT_CC &&
499      N.getOperand(2).getOpcode() == ISD::Constant &&
500      N.getOperand(3).getOpcode() == ISD::Constant &&
501      cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
502      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
503    LHS = N.getOperand(0);
504    RHS = N.getOperand(1);
505    CC  = N.getOperand(4);
506    return true;
507  }
508  return false;
509}
510
511// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
512// one use.  If this is true, it allows the users to invert the operation for
513// free when it is profitable to do so.
514static bool isOneUseSetCC(SDOperand N) {
515  SDOperand N0, N1, N2;
516  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
517    return true;
518  return false;
519}
520
521SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
522  MVT::ValueType VT = N0.getValueType();
523  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
524  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
525  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
526    if (isa<ConstantSDNode>(N1)) {
527      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
528      AddToWorkList(OpNode.Val);
529      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
530    } else if (N0.hasOneUse()) {
531      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
532      AddToWorkList(OpNode.Val);
533      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
534    }
535  }
536  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
537  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
538  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
539    if (isa<ConstantSDNode>(N0)) {
540      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
541      AddToWorkList(OpNode.Val);
542      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
543    } else if (N1.hasOneUse()) {
544      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
545      AddToWorkList(OpNode.Val);
546      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
547    }
548  }
549  return SDOperand();
550}
551
552//===----------------------------------------------------------------------===//
553//  Main DAG Combiner implementation
554//===----------------------------------------------------------------------===//
555
556void DAGCombiner::Run(bool RunningAfterLegalize) {
557  // set the instance variable, so that the various visit routines may use it.
558  AfterLegalize = RunningAfterLegalize;
559
560  // Add all the dag nodes to the worklist.
561  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
562       E = DAG.allnodes_end(); I != E; ++I)
563    WorkList.push_back(I);
564
565  // Create a dummy node (which is not added to allnodes), that adds a reference
566  // to the root node, preventing it from being deleted, and tracking any
567  // changes of the root.
568  HandleSDNode Dummy(DAG.getRoot());
569
570  // The root of the dag may dangle to deleted nodes until the dag combiner is
571  // done.  Set it to null to avoid confusion.
572  DAG.setRoot(SDOperand());
573
574  // while the worklist isn't empty, inspect the node on the end of it and
575  // try and combine it.
576  while (!WorkList.empty()) {
577    SDNode *N = WorkList.back();
578    WorkList.pop_back();
579
580    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
581    // N is deleted from the DAG, since they too may now be dead or may have a
582    // reduced number of uses, allowing other xforms.
583    if (N->use_empty() && N != &Dummy) {
584      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
585        AddToWorkList(N->getOperand(i).Val);
586
587      DAG.DeleteNode(N);
588      continue;
589    }
590
591    SDOperand RV = combine(N);
592
593    if (RV.Val) {
594      ++NodesCombined;
595      // If we get back the same node we passed in, rather than a new node or
596      // zero, we know that the node must have defined multiple values and
597      // CombineTo was used.  Since CombineTo takes care of the worklist
598      // mechanics for us, we have no work to do in this case.
599      if (RV.Val != N) {
600        assert(N->getOpcode() != ISD::DELETED_NODE &&
601               RV.Val->getOpcode() != ISD::DELETED_NODE &&
602               "Node was deleted but visit returned new node!");
603
604        DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
605        DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
606        DOUT << '\n';
607        std::vector<SDNode*> NowDead;
608        if (N->getNumValues() == RV.Val->getNumValues())
609          DAG.ReplaceAllUsesWith(N, RV.Val, &NowDead);
610        else {
611          assert(N->getValueType(0) == RV.getValueType() && "Type mismatch");
612          SDOperand OpV = RV;
613          DAG.ReplaceAllUsesWith(N, &OpV, &NowDead);
614        }
615
616        // Push the new node and any users onto the worklist
617        AddToWorkList(RV.Val);
618        AddUsersToWorkList(RV.Val);
619
620        // Nodes can be reintroduced into the worklist.  Make sure we do not
621        // process a node that has been replaced.
622        removeFromWorkList(N);
623        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
624          removeFromWorkList(NowDead[i]);
625
626        // Finally, since the node is now dead, remove it from the graph.
627        DAG.DeleteNode(N);
628      }
629    }
630  }
631
632  // If the root changed (e.g. it was a dead load, update the root).
633  DAG.setRoot(Dummy.getValue());
634}
635
636SDOperand DAGCombiner::visit(SDNode *N) {
637  switch(N->getOpcode()) {
638  default: break;
639  case ISD::TokenFactor:        return visitTokenFactor(N);
640  case ISD::ADD:                return visitADD(N);
641  case ISD::SUB:                return visitSUB(N);
642  case ISD::ADDC:               return visitADDC(N);
643  case ISD::ADDE:               return visitADDE(N);
644  case ISD::MUL:                return visitMUL(N);
645  case ISD::SDIV:               return visitSDIV(N);
646  case ISD::UDIV:               return visitUDIV(N);
647  case ISD::SREM:               return visitSREM(N);
648  case ISD::UREM:               return visitUREM(N);
649  case ISD::MULHU:              return visitMULHU(N);
650  case ISD::MULHS:              return visitMULHS(N);
651  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
652  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
653  case ISD::SDIVREM:            return visitSDIVREM(N);
654  case ISD::UDIVREM:            return visitUDIVREM(N);
655  case ISD::AND:                return visitAND(N);
656  case ISD::OR:                 return visitOR(N);
657  case ISD::XOR:                return visitXOR(N);
658  case ISD::SHL:                return visitSHL(N);
659  case ISD::SRA:                return visitSRA(N);
660  case ISD::SRL:                return visitSRL(N);
661  case ISD::CTLZ:               return visitCTLZ(N);
662  case ISD::CTTZ:               return visitCTTZ(N);
663  case ISD::CTPOP:              return visitCTPOP(N);
664  case ISD::SELECT:             return visitSELECT(N);
665  case ISD::SELECT_CC:          return visitSELECT_CC(N);
666  case ISD::SETCC:              return visitSETCC(N);
667  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
668  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
669  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
670  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
671  case ISD::TRUNCATE:           return visitTRUNCATE(N);
672  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
673  case ISD::FADD:               return visitFADD(N);
674  case ISD::FSUB:               return visitFSUB(N);
675  case ISD::FMUL:               return visitFMUL(N);
676  case ISD::FDIV:               return visitFDIV(N);
677  case ISD::FREM:               return visitFREM(N);
678  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
679  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
680  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
681  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
682  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
683  case ISD::FP_ROUND:           return visitFP_ROUND(N);
684  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
685  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
686  case ISD::FNEG:               return visitFNEG(N);
687  case ISD::FABS:               return visitFABS(N);
688  case ISD::BRCOND:             return visitBRCOND(N);
689  case ISD::BR_CC:              return visitBR_CC(N);
690  case ISD::LOAD:               return visitLOAD(N);
691  case ISD::STORE:              return visitSTORE(N);
692  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
693  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
694  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
695  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
696  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
697  }
698  return SDOperand();
699}
700
701SDOperand DAGCombiner::combine(SDNode *N) {
702
703  SDOperand RV = visit(N);
704
705  // If nothing happened, try a target-specific DAG combine.
706  if (RV.Val == 0) {
707    assert(N->getOpcode() != ISD::DELETED_NODE &&
708           "Node was deleted but visit returned NULL!");
709
710    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
711        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
712
713      // Expose the DAG combiner to the target combiner impls.
714      TargetLowering::DAGCombinerInfo
715        DagCombineInfo(DAG, !AfterLegalize, false, this);
716
717      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
718    }
719  }
720
721  return RV;
722}
723
724/// getInputChainForNode - Given a node, return its input chain if it has one,
725/// otherwise return a null sd operand.
726static SDOperand getInputChainForNode(SDNode *N) {
727  if (unsigned NumOps = N->getNumOperands()) {
728    if (N->getOperand(0).getValueType() == MVT::Other)
729      return N->getOperand(0);
730    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
731      return N->getOperand(NumOps-1);
732    for (unsigned i = 1; i < NumOps-1; ++i)
733      if (N->getOperand(i).getValueType() == MVT::Other)
734        return N->getOperand(i);
735  }
736  return SDOperand(0, 0);
737}
738
739SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
740  // If N has two operands, where one has an input chain equal to the other,
741  // the 'other' chain is redundant.
742  if (N->getNumOperands() == 2) {
743    if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
744      return N->getOperand(0);
745    if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
746      return N->getOperand(1);
747  }
748
749  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
750  SmallVector<SDOperand, 8> Ops;    // Ops for replacing token factor.
751  SmallPtrSet<SDNode*, 16> SeenOps;
752  bool Changed = false;             // If we should replace this token factor.
753
754  // Start out with this token factor.
755  TFs.push_back(N);
756
757  // Iterate through token factors.  The TFs grows when new token factors are
758  // encountered.
759  for (unsigned i = 0; i < TFs.size(); ++i) {
760    SDNode *TF = TFs[i];
761
762    // Check each of the operands.
763    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
764      SDOperand Op = TF->getOperand(i);
765
766      switch (Op.getOpcode()) {
767      case ISD::EntryToken:
768        // Entry tokens don't need to be added to the list. They are
769        // rededundant.
770        Changed = true;
771        break;
772
773      case ISD::TokenFactor:
774        if ((CombinerAA || Op.hasOneUse()) &&
775            std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
776          // Queue up for processing.
777          TFs.push_back(Op.Val);
778          // Clean up in case the token factor is removed.
779          AddToWorkList(Op.Val);
780          Changed = true;
781          break;
782        }
783        // Fall thru
784
785      default:
786        // Only add if it isn't already in the list.
787        if (SeenOps.insert(Op.Val))
788          Ops.push_back(Op);
789        else
790          Changed = true;
791        break;
792      }
793    }
794  }
795
796  SDOperand Result;
797
798  // If we've change things around then replace token factor.
799  if (Changed) {
800    if (Ops.size() == 0) {
801      // The entry token is the only possible outcome.
802      Result = DAG.getEntryNode();
803    } else {
804      // New and improved token factor.
805      Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
806    }
807
808    // Don't add users to work list.
809    return CombineTo(N, Result, false);
810  }
811
812  return Result;
813}
814
815static
816SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
817  MVT::ValueType VT = N0.getValueType();
818  SDOperand N00 = N0.getOperand(0);
819  SDOperand N01 = N0.getOperand(1);
820  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
821  if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
822      isa<ConstantSDNode>(N00.getOperand(1))) {
823    N0 = DAG.getNode(ISD::ADD, VT,
824                     DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
825                     DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
826    return DAG.getNode(ISD::ADD, VT, N0, N1);
827  }
828  return SDOperand();
829}
830
831static
832SDOperand combineSelectAndUse(SDNode *N, SDOperand Slct, SDOperand OtherOp,
833                              SelectionDAG &DAG) {
834  MVT::ValueType VT = N->getValueType(0);
835  unsigned Opc = N->getOpcode();
836  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
837  SDOperand LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
838  SDOperand RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
839  ISD::CondCode CC = ISD::SETCC_INVALID;
840  if (isSlctCC)
841    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
842  else {
843    SDOperand CCOp = Slct.getOperand(0);
844    if (CCOp.getOpcode() == ISD::SETCC)
845      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
846  }
847
848  bool DoXform = false;
849  bool InvCC = false;
850  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
851          "Bad input!");
852  if (LHS.getOpcode() == ISD::Constant &&
853      cast<ConstantSDNode>(LHS)->isNullValue())
854    DoXform = true;
855  else if (CC != ISD::SETCC_INVALID &&
856           RHS.getOpcode() == ISD::Constant &&
857           cast<ConstantSDNode>(RHS)->isNullValue()) {
858    std::swap(LHS, RHS);
859    bool isInt = MVT::isInteger(isSlctCC ? Slct.getOperand(0).getValueType()
860                                : Slct.getOperand(0).getOperand(0).getValueType());
861    CC = ISD::getSetCCInverse(CC, isInt);
862    DoXform = true;
863    InvCC = true;
864  }
865
866  if (DoXform) {
867    SDOperand Result = DAG.getNode(Opc, VT, OtherOp, RHS);
868    if (isSlctCC)
869      return DAG.getSelectCC(OtherOp, Result,
870                             Slct.getOperand(0), Slct.getOperand(1), CC);
871    SDOperand CCOp = Slct.getOperand(0);
872    if (InvCC)
873      CCOp = DAG.getSetCC(CCOp.getValueType(), CCOp.getOperand(0),
874                          CCOp.getOperand(1), CC);
875    return DAG.getNode(ISD::SELECT, VT, CCOp, OtherOp, Result);
876  }
877  return SDOperand();
878}
879
880SDOperand DAGCombiner::visitADD(SDNode *N) {
881  SDOperand N0 = N->getOperand(0);
882  SDOperand N1 = N->getOperand(1);
883  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
884  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
885  MVT::ValueType VT = N0.getValueType();
886
887  // fold vector ops
888  if (MVT::isVector(VT)) {
889    SDOperand FoldedVOp = SimplifyVBinOp(N);
890    if (FoldedVOp.Val) return FoldedVOp;
891  }
892
893  // fold (add x, undef) -> undef
894  if (N0.getOpcode() == ISD::UNDEF)
895    return N0;
896  if (N1.getOpcode() == ISD::UNDEF)
897    return N1;
898  // fold (add c1, c2) -> c1+c2
899  if (N0C && N1C)
900    return DAG.getNode(ISD::ADD, VT, N0, N1);
901  // canonicalize constant to RHS
902  if (N0C && !N1C)
903    return DAG.getNode(ISD::ADD, VT, N1, N0);
904  // fold (add x, 0) -> x
905  if (N1C && N1C->isNullValue())
906    return N0;
907  // fold ((c1-A)+c2) -> (c1+c2)-A
908  if (N1C && N0.getOpcode() == ISD::SUB)
909    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
910      return DAG.getNode(ISD::SUB, VT,
911                         DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
912                         N0.getOperand(1));
913  // reassociate add
914  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
915  if (RADD.Val != 0)
916    return RADD;
917  // fold ((0-A) + B) -> B-A
918  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
919      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
920    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
921  // fold (A + (0-B)) -> A-B
922  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
923      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
924    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
925  // fold (A+(B-A)) -> B
926  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
927    return N1.getOperand(0);
928
929  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
930    return SDOperand(N, 0);
931
932  // fold (a+b) -> (a|b) iff a and b share no bits.
933  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
934    uint64_t LHSZero, LHSOne;
935    uint64_t RHSZero, RHSOne;
936    uint64_t Mask = MVT::getIntVTBitMask(VT);
937    DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
938    if (LHSZero) {
939      DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
940
941      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
942      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
943      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
944          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
945        return DAG.getNode(ISD::OR, VT, N0, N1);
946    }
947  }
948
949  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
950  if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
951    SDOperand Result = combineShlAddConstant(N0, N1, DAG);
952    if (Result.Val) return Result;
953  }
954  if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
955    SDOperand Result = combineShlAddConstant(N1, N0, DAG);
956    if (Result.Val) return Result;
957  }
958
959  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
960  if (N0.getOpcode() == ISD::SELECT && N0.Val->hasOneUse()) {
961    SDOperand Result = combineSelectAndUse(N, N0, N1, DAG);
962    if (Result.Val) return Result;
963  }
964  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
965    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
966    if (Result.Val) return Result;
967  }
968
969  return SDOperand();
970}
971
972SDOperand DAGCombiner::visitADDC(SDNode *N) {
973  SDOperand N0 = N->getOperand(0);
974  SDOperand N1 = N->getOperand(1);
975  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
976  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
977  MVT::ValueType VT = N0.getValueType();
978
979  // If the flag result is dead, turn this into an ADD.
980  if (N->hasNUsesOfValue(0, 1))
981    return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
982                     DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
983
984  // canonicalize constant to RHS.
985  if (N0C && !N1C) {
986    SDOperand Ops[] = { N1, N0 };
987    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
988  }
989
990  // fold (addc x, 0) -> x + no carry out
991  if (N1C && N1C->isNullValue())
992    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
993
994  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
995  uint64_t LHSZero, LHSOne;
996  uint64_t RHSZero, RHSOne;
997  uint64_t Mask = MVT::getIntVTBitMask(VT);
998  DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
999  if (LHSZero) {
1000    DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1001
1002    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1003    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1004    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1005        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1006      return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
1007                       DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1008  }
1009
1010  return SDOperand();
1011}
1012
1013SDOperand DAGCombiner::visitADDE(SDNode *N) {
1014  SDOperand N0 = N->getOperand(0);
1015  SDOperand N1 = N->getOperand(1);
1016  SDOperand CarryIn = N->getOperand(2);
1017  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1018  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1019  //MVT::ValueType VT = N0.getValueType();
1020
1021  // canonicalize constant to RHS
1022  if (N0C && !N1C) {
1023    SDOperand Ops[] = { N1, N0, CarryIn };
1024    return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
1025  }
1026
1027  // fold (adde x, y, false) -> (addc x, y)
1028  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
1029    SDOperand Ops[] = { N1, N0 };
1030    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1031  }
1032
1033  return SDOperand();
1034}
1035
1036
1037
1038SDOperand DAGCombiner::visitSUB(SDNode *N) {
1039  SDOperand N0 = N->getOperand(0);
1040  SDOperand N1 = N->getOperand(1);
1041  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1042  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1043  MVT::ValueType VT = N0.getValueType();
1044
1045  // fold vector ops
1046  if (MVT::isVector(VT)) {
1047    SDOperand FoldedVOp = SimplifyVBinOp(N);
1048    if (FoldedVOp.Val) return FoldedVOp;
1049  }
1050
1051  // fold (sub x, x) -> 0
1052  if (N0 == N1)
1053    return DAG.getConstant(0, N->getValueType(0));
1054  // fold (sub c1, c2) -> c1-c2
1055  if (N0C && N1C)
1056    return DAG.getNode(ISD::SUB, VT, N0, N1);
1057  // fold (sub x, c) -> (add x, -c)
1058  if (N1C)
1059    return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
1060  // fold (A+B)-A -> B
1061  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1062    return N0.getOperand(1);
1063  // fold (A+B)-B -> A
1064  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1065    return N0.getOperand(0);
1066  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1067  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1068    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1069    if (Result.Val) return Result;
1070  }
1071  // If either operand of a sub is undef, the result is undef
1072  if (N0.getOpcode() == ISD::UNDEF)
1073    return N0;
1074  if (N1.getOpcode() == ISD::UNDEF)
1075    return N1;
1076
1077  return SDOperand();
1078}
1079
1080SDOperand DAGCombiner::visitMUL(SDNode *N) {
1081  SDOperand N0 = N->getOperand(0);
1082  SDOperand N1 = N->getOperand(1);
1083  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1084  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1085  MVT::ValueType VT = N0.getValueType();
1086
1087  // fold vector ops
1088  if (MVT::isVector(VT)) {
1089    SDOperand FoldedVOp = SimplifyVBinOp(N);
1090    if (FoldedVOp.Val) return FoldedVOp;
1091  }
1092
1093  // fold (mul x, undef) -> 0
1094  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1095    return DAG.getConstant(0, VT);
1096  // fold (mul c1, c2) -> c1*c2
1097  if (N0C && N1C)
1098    return DAG.getNode(ISD::MUL, VT, N0, N1);
1099  // canonicalize constant to RHS
1100  if (N0C && !N1C)
1101    return DAG.getNode(ISD::MUL, VT, N1, N0);
1102  // fold (mul x, 0) -> 0
1103  if (N1C && N1C->isNullValue())
1104    return N1;
1105  // fold (mul x, -1) -> 0-x
1106  if (N1C && N1C->isAllOnesValue())
1107    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1108  // fold (mul x, (1 << c)) -> x << c
1109  if (N1C && isPowerOf2_64(N1C->getValue()))
1110    return DAG.getNode(ISD::SHL, VT, N0,
1111                       DAG.getConstant(Log2_64(N1C->getValue()),
1112                                       TLI.getShiftAmountTy()));
1113  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1114  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
1115    // FIXME: If the input is something that is easily negated (e.g. a
1116    // single-use add), we should put the negate there.
1117    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
1118                       DAG.getNode(ISD::SHL, VT, N0,
1119                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
1120                                            TLI.getShiftAmountTy())));
1121  }
1122
1123  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1124  if (N1C && N0.getOpcode() == ISD::SHL &&
1125      isa<ConstantSDNode>(N0.getOperand(1))) {
1126    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
1127    AddToWorkList(C3.Val);
1128    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
1129  }
1130
1131  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1132  // use.
1133  {
1134    SDOperand Sh(0,0), Y(0,0);
1135    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1136    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1137        N0.Val->hasOneUse()) {
1138      Sh = N0; Y = N1;
1139    } else if (N1.getOpcode() == ISD::SHL &&
1140               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
1141      Sh = N1; Y = N0;
1142    }
1143    if (Sh.Val) {
1144      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
1145      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
1146    }
1147  }
1148  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1149  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
1150      isa<ConstantSDNode>(N0.getOperand(1))) {
1151    return DAG.getNode(ISD::ADD, VT,
1152                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
1153                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
1154  }
1155
1156  // reassociate mul
1157  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
1158  if (RMUL.Val != 0)
1159    return RMUL;
1160
1161  return SDOperand();
1162}
1163
1164SDOperand DAGCombiner::visitSDIV(SDNode *N) {
1165  SDOperand N0 = N->getOperand(0);
1166  SDOperand N1 = N->getOperand(1);
1167  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1168  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1169  MVT::ValueType VT = N->getValueType(0);
1170
1171  // fold vector ops
1172  if (MVT::isVector(VT)) {
1173    SDOperand FoldedVOp = SimplifyVBinOp(N);
1174    if (FoldedVOp.Val) return FoldedVOp;
1175  }
1176
1177  // fold (sdiv c1, c2) -> c1/c2
1178  if (N0C && N1C && !N1C->isNullValue())
1179    return DAG.getNode(ISD::SDIV, VT, N0, N1);
1180  // fold (sdiv X, 1) -> X
1181  if (N1C && N1C->getSignExtended() == 1LL)
1182    return N0;
1183  // fold (sdiv X, -1) -> 0-X
1184  if (N1C && N1C->isAllOnesValue())
1185    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1186  // If we know the sign bits of both operands are zero, strength reduce to a
1187  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1188  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
1189  if (DAG.MaskedValueIsZero(N1, SignBit) &&
1190      DAG.MaskedValueIsZero(N0, SignBit))
1191    return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
1192  // fold (sdiv X, pow2) -> simple ops after legalize
1193  if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
1194      (isPowerOf2_64(N1C->getSignExtended()) ||
1195       isPowerOf2_64(-N1C->getSignExtended()))) {
1196    // If dividing by powers of two is cheap, then don't perform the following
1197    // fold.
1198    if (TLI.isPow2DivCheap())
1199      return SDOperand();
1200    int64_t pow2 = N1C->getSignExtended();
1201    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1202    unsigned lg2 = Log2_64(abs2);
1203    // Splat the sign bit into the register
1204    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
1205                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
1206                                                TLI.getShiftAmountTy()));
1207    AddToWorkList(SGN.Val);
1208    // Add (N0 < 0) ? abs2 - 1 : 0;
1209    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
1210                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
1211                                                TLI.getShiftAmountTy()));
1212    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
1213    AddToWorkList(SRL.Val);
1214    AddToWorkList(ADD.Val);    // Divide by pow2
1215    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
1216                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
1217    // If we're dividing by a positive value, we're done.  Otherwise, we must
1218    // negate the result.
1219    if (pow2 > 0)
1220      return SRA;
1221    AddToWorkList(SRA.Val);
1222    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
1223  }
1224  // if integer divide is expensive and we satisfy the requirements, emit an
1225  // alternate sequence.
1226  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
1227      !TLI.isIntDivCheap()) {
1228    SDOperand Op = BuildSDIV(N);
1229    if (Op.Val) return Op;
1230  }
1231
1232  // undef / X -> 0
1233  if (N0.getOpcode() == ISD::UNDEF)
1234    return DAG.getConstant(0, VT);
1235  // X / undef -> undef
1236  if (N1.getOpcode() == ISD::UNDEF)
1237    return N1;
1238
1239  return SDOperand();
1240}
1241
1242SDOperand DAGCombiner::visitUDIV(SDNode *N) {
1243  SDOperand N0 = N->getOperand(0);
1244  SDOperand N1 = N->getOperand(1);
1245  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1246  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1247  MVT::ValueType VT = N->getValueType(0);
1248
1249  // fold vector ops
1250  if (MVT::isVector(VT)) {
1251    SDOperand FoldedVOp = SimplifyVBinOp(N);
1252    if (FoldedVOp.Val) return FoldedVOp;
1253  }
1254
1255  // fold (udiv c1, c2) -> c1/c2
1256  if (N0C && N1C && !N1C->isNullValue())
1257    return DAG.getNode(ISD::UDIV, VT, N0, N1);
1258  // fold (udiv x, (1 << c)) -> x >>u c
1259  if (N1C && isPowerOf2_64(N1C->getValue()))
1260    return DAG.getNode(ISD::SRL, VT, N0,
1261                       DAG.getConstant(Log2_64(N1C->getValue()),
1262                                       TLI.getShiftAmountTy()));
1263  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1264  if (N1.getOpcode() == ISD::SHL) {
1265    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1266      if (isPowerOf2_64(SHC->getValue())) {
1267        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
1268        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
1269                                    DAG.getConstant(Log2_64(SHC->getValue()),
1270                                                    ADDVT));
1271        AddToWorkList(Add.Val);
1272        return DAG.getNode(ISD::SRL, VT, N0, Add);
1273      }
1274    }
1275  }
1276  // fold (udiv x, c) -> alternate
1277  if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
1278    SDOperand Op = BuildUDIV(N);
1279    if (Op.Val) return Op;
1280  }
1281
1282  // undef / X -> 0
1283  if (N0.getOpcode() == ISD::UNDEF)
1284    return DAG.getConstant(0, VT);
1285  // X / undef -> undef
1286  if (N1.getOpcode() == ISD::UNDEF)
1287    return N1;
1288
1289  return SDOperand();
1290}
1291
1292SDOperand DAGCombiner::visitSREM(SDNode *N) {
1293  SDOperand N0 = N->getOperand(0);
1294  SDOperand N1 = N->getOperand(1);
1295  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1296  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1297  MVT::ValueType VT = N->getValueType(0);
1298
1299  // fold (srem c1, c2) -> c1%c2
1300  if (N0C && N1C && !N1C->isNullValue())
1301    return DAG.getNode(ISD::SREM, VT, N0, N1);
1302  // If we know the sign bits of both operands are zero, strength reduce to a
1303  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1304  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
1305  if (DAG.MaskedValueIsZero(N1, SignBit) &&
1306      DAG.MaskedValueIsZero(N0, SignBit))
1307    return DAG.getNode(ISD::UREM, VT, N0, N1);
1308
1309  // Unconditionally lower X%C -> X-X/C*C.  This allows the X/C logic to hack on
1310  // the remainder operation.
1311  if (N1C && !N1C->isNullValue()) {
1312    SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
1313    SDOperand Mul = DAG.getNode(ISD::MUL, VT, Div, N1);
1314    SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1315    AddToWorkList(Div.Val);
1316    AddToWorkList(Mul.Val);
1317    return Sub;
1318  }
1319
1320  // undef % X -> 0
1321  if (N0.getOpcode() == ISD::UNDEF)
1322    return DAG.getConstant(0, VT);
1323  // X % undef -> undef
1324  if (N1.getOpcode() == ISD::UNDEF)
1325    return N1;
1326
1327  return SDOperand();
1328}
1329
1330SDOperand DAGCombiner::visitUREM(SDNode *N) {
1331  SDOperand N0 = N->getOperand(0);
1332  SDOperand N1 = N->getOperand(1);
1333  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1334  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1335  MVT::ValueType VT = N->getValueType(0);
1336
1337  // fold (urem c1, c2) -> c1%c2
1338  if (N0C && N1C && !N1C->isNullValue())
1339    return DAG.getNode(ISD::UREM, VT, N0, N1);
1340  // fold (urem x, pow2) -> (and x, pow2-1)
1341  if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
1342    return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
1343  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1344  if (N1.getOpcode() == ISD::SHL) {
1345    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1346      if (isPowerOf2_64(SHC->getValue())) {
1347        SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
1348        AddToWorkList(Add.Val);
1349        return DAG.getNode(ISD::AND, VT, N0, Add);
1350      }
1351    }
1352  }
1353
1354  // Unconditionally lower X%C -> X-X/C*C.  This allows the X/C logic to hack on
1355  // the remainder operation.
1356  if (N1C && !N1C->isNullValue()) {
1357    SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
1358    SDOperand Mul = DAG.getNode(ISD::MUL, VT, Div, N1);
1359    SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1360    AddToWorkList(Div.Val);
1361    AddToWorkList(Mul.Val);
1362    return Sub;
1363  }
1364
1365  // undef % X -> 0
1366  if (N0.getOpcode() == ISD::UNDEF)
1367    return DAG.getConstant(0, VT);
1368  // X % undef -> undef
1369  if (N1.getOpcode() == ISD::UNDEF)
1370    return N1;
1371
1372  return SDOperand();
1373}
1374
1375SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1376  SDOperand N0 = N->getOperand(0);
1377  SDOperand N1 = N->getOperand(1);
1378  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1379  MVT::ValueType VT = N->getValueType(0);
1380
1381  // fold (mulhs x, 0) -> 0
1382  if (N1C && N1C->isNullValue())
1383    return N1;
1384  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1385  if (N1C && N1C->getValue() == 1)
1386    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1387                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1388                                       TLI.getShiftAmountTy()));
1389  // fold (mulhs x, undef) -> 0
1390  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1391    return DAG.getConstant(0, VT);
1392
1393  return SDOperand();
1394}
1395
1396SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1397  SDOperand N0 = N->getOperand(0);
1398  SDOperand N1 = N->getOperand(1);
1399  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1400  MVT::ValueType VT = N->getValueType(0);
1401
1402  // fold (mulhu x, 0) -> 0
1403  if (N1C && N1C->isNullValue())
1404    return N1;
1405  // fold (mulhu x, 1) -> 0
1406  if (N1C && N1C->getValue() == 1)
1407    return DAG.getConstant(0, N0.getValueType());
1408  // fold (mulhu x, undef) -> 0
1409  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1410    return DAG.getConstant(0, VT);
1411
1412  return SDOperand();
1413}
1414
1415/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1416/// compute two values. LoOp and HiOp give the opcodes for the two computations
1417/// that are being performed. Return true if a simplification was made.
1418///
1419bool DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N,
1420                                             unsigned LoOp, unsigned HiOp) {
1421  // If the high half is not needed, just compute the low half.
1422  if (!N->hasAnyUseOfValue(1) &&
1423      (!AfterLegalize ||
1424       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
1425    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0),
1426                                  DAG.getNode(LoOp, N->getValueType(0),
1427                                              N->op_begin(),
1428                                              N->getNumOperands()));
1429    return true;
1430  }
1431
1432  // If the low half is not needed, just compute the high half.
1433  if (!N->hasAnyUseOfValue(0) &&
1434      (!AfterLegalize ||
1435       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
1436    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1),
1437                                  DAG.getNode(HiOp, N->getValueType(1),
1438                                              N->op_begin(),
1439                                              N->getNumOperands()));
1440    return true;
1441  }
1442
1443  // If the two computed results can be siplified separately, separate them.
1444  SDOperand Lo = DAG.getNode(LoOp, N->getValueType(0),
1445                             N->op_begin(), N->getNumOperands());
1446  SDOperand Hi = DAG.getNode(HiOp, N->getValueType(1),
1447                             N->op_begin(), N->getNumOperands());
1448  unsigned LoExists = !Lo.use_empty();
1449  unsigned HiExists = !Hi.use_empty();
1450  SDOperand LoOpt = Lo;
1451  SDOperand HiOpt = Hi;
1452  if (!LoExists || !HiExists) {
1453    SDOperand Pair = DAG.getNode(ISD::BUILD_PAIR, MVT::Other, Lo, Hi);
1454    assert(Pair.use_empty() && "Pair with type MVT::Other already exists!");
1455    LoOpt = combine(Lo.Val);
1456    HiOpt = combine(Hi.Val);
1457    if (!LoOpt.Val)
1458      LoOpt = Pair.getOperand(0);
1459    if (!HiOpt.Val)
1460      HiOpt = Pair.getOperand(1);
1461    DAG.DeleteNode(Pair.Val);
1462  }
1463  if ((LoExists || LoOpt != Lo) &&
1464      (HiExists || HiOpt != Hi) &&
1465      TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()) &&
1466      TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())) {
1467    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), LoOpt);
1468    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), HiOpt);
1469    return true;
1470  }
1471
1472  return false;
1473}
1474
1475SDOperand DAGCombiner::visitSMUL_LOHI(SDNode *N) {
1476
1477  if (SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
1478    return SDOperand();
1479
1480  return SDOperand();
1481}
1482
1483SDOperand DAGCombiner::visitUMUL_LOHI(SDNode *N) {
1484
1485  if (SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
1486    return SDOperand();
1487
1488  return SDOperand();
1489}
1490
1491SDOperand DAGCombiner::visitSDIVREM(SDNode *N) {
1492
1493  if (SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM))
1494    return SDOperand();
1495
1496  return SDOperand();
1497}
1498
1499SDOperand DAGCombiner::visitUDIVREM(SDNode *N) {
1500
1501  if (SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM))
1502    return SDOperand();
1503
1504  return SDOperand();
1505}
1506
1507/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1508/// two operands of the same opcode, try to simplify it.
1509SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1510  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1511  MVT::ValueType VT = N0.getValueType();
1512  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1513
1514  // For each of OP in AND/OR/XOR:
1515  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1516  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1517  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1518  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1519  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1520       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1521      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1522    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1523                                   N0.getOperand(0).getValueType(),
1524                                   N0.getOperand(0), N1.getOperand(0));
1525    AddToWorkList(ORNode.Val);
1526    return DAG.getNode(N0.getOpcode(), VT, ORNode);
1527  }
1528
1529  // For each of OP in SHL/SRL/SRA/AND...
1530  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1531  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
1532  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1533  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1534       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1535      N0.getOperand(1) == N1.getOperand(1)) {
1536    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1537                                   N0.getOperand(0).getValueType(),
1538                                   N0.getOperand(0), N1.getOperand(0));
1539    AddToWorkList(ORNode.Val);
1540    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1541  }
1542
1543  return SDOperand();
1544}
1545
1546SDOperand DAGCombiner::visitAND(SDNode *N) {
1547  SDOperand N0 = N->getOperand(0);
1548  SDOperand N1 = N->getOperand(1);
1549  SDOperand LL, LR, RL, RR, CC0, CC1;
1550  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1551  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1552  MVT::ValueType VT = N1.getValueType();
1553
1554  // fold vector ops
1555  if (MVT::isVector(VT)) {
1556    SDOperand FoldedVOp = SimplifyVBinOp(N);
1557    if (FoldedVOp.Val) return FoldedVOp;
1558  }
1559
1560  // fold (and x, undef) -> 0
1561  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1562    return DAG.getConstant(0, VT);
1563  // fold (and c1, c2) -> c1&c2
1564  if (N0C && N1C)
1565    return DAG.getNode(ISD::AND, VT, N0, N1);
1566  // canonicalize constant to RHS
1567  if (N0C && !N1C)
1568    return DAG.getNode(ISD::AND, VT, N1, N0);
1569  // fold (and x, -1) -> x
1570  if (N1C && N1C->isAllOnesValue())
1571    return N0;
1572  // if (and x, c) is known to be zero, return 0
1573  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1574    return DAG.getConstant(0, VT);
1575  // reassociate and
1576  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1577  if (RAND.Val != 0)
1578    return RAND;
1579  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1580  if (N1C && N0.getOpcode() == ISD::OR)
1581    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1582      if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
1583        return N1;
1584  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1585  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1586    unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType());
1587    if (DAG.MaskedValueIsZero(N0.getOperand(0),
1588                              ~N1C->getValue() & InMask)) {
1589      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1590                                   N0.getOperand(0));
1591
1592      // Replace uses of the AND with uses of the Zero extend node.
1593      CombineTo(N, Zext);
1594
1595      // We actually want to replace all uses of the any_extend with the
1596      // zero_extend, to avoid duplicating things.  This will later cause this
1597      // AND to be folded.
1598      CombineTo(N0.Val, Zext);
1599      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1600    }
1601  }
1602  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1603  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1604    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1605    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1606
1607    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1608        MVT::isInteger(LL.getValueType())) {
1609      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1610      if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
1611        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1612        AddToWorkList(ORNode.Val);
1613        return DAG.getSetCC(VT, ORNode, LR, Op1);
1614      }
1615      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1616      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1617        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1618        AddToWorkList(ANDNode.Val);
1619        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1620      }
1621      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1622      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1623        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1624        AddToWorkList(ORNode.Val);
1625        return DAG.getSetCC(VT, ORNode, LR, Op1);
1626      }
1627    }
1628    // canonicalize equivalent to ll == rl
1629    if (LL == RR && LR == RL) {
1630      Op1 = ISD::getSetCCSwappedOperands(Op1);
1631      std::swap(RL, RR);
1632    }
1633    if (LL == RL && LR == RR) {
1634      bool isInteger = MVT::isInteger(LL.getValueType());
1635      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1636      if (Result != ISD::SETCC_INVALID)
1637        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1638    }
1639  }
1640
1641  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
1642  if (N0.getOpcode() == N1.getOpcode()) {
1643    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1644    if (Tmp.Val) return Tmp;
1645  }
1646
1647  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1648  // fold (and (sra)) -> (and (srl)) when possible.
1649  if (!MVT::isVector(VT) &&
1650      SimplifyDemandedBits(SDOperand(N, 0)))
1651    return SDOperand(N, 0);
1652  // fold (zext_inreg (extload x)) -> (zextload x)
1653  if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
1654    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1655    MVT::ValueType EVT = LN0->getLoadedVT();
1656    // If we zero all the possible extended bits, then we can turn this into
1657    // a zextload if we are running before legalize or the operation is legal.
1658    if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1659        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1660      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1661                                         LN0->getBasePtr(), LN0->getSrcValue(),
1662                                         LN0->getSrcValueOffset(), EVT,
1663                                         LN0->isVolatile(),
1664                                         LN0->getAlignment());
1665      AddToWorkList(N);
1666      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1667      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1668    }
1669  }
1670  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1671  if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
1672      N0.hasOneUse()) {
1673    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1674    MVT::ValueType EVT = LN0->getLoadedVT();
1675    // If we zero all the possible extended bits, then we can turn this into
1676    // a zextload if we are running before legalize or the operation is legal.
1677    if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1678        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1679      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1680                                         LN0->getBasePtr(), LN0->getSrcValue(),
1681                                         LN0->getSrcValueOffset(), EVT,
1682                                         LN0->isVolatile(),
1683                                         LN0->getAlignment());
1684      AddToWorkList(N);
1685      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1686      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1687    }
1688  }
1689
1690  // fold (and (load x), 255) -> (zextload x, i8)
1691  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1692  if (N1C && N0.getOpcode() == ISD::LOAD) {
1693    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1694    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1695        LN0->getAddressingMode() == ISD::UNINDEXED &&
1696        N0.hasOneUse()) {
1697      MVT::ValueType EVT, LoadedVT;
1698      if (N1C->getValue() == 255)
1699        EVT = MVT::i8;
1700      else if (N1C->getValue() == 65535)
1701        EVT = MVT::i16;
1702      else if (N1C->getValue() == ~0U)
1703        EVT = MVT::i32;
1704      else
1705        EVT = MVT::Other;
1706
1707      LoadedVT = LN0->getLoadedVT();
1708      if (EVT != MVT::Other && LoadedVT > EVT &&
1709          (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1710        MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1711        // For big endian targets, we need to add an offset to the pointer to
1712        // load the correct bytes.  For little endian systems, we merely need to
1713        // read fewer bytes from the same pointer.
1714        unsigned PtrOff =
1715          (MVT::getSizeInBits(LoadedVT) - MVT::getSizeInBits(EVT)) / 8;
1716        SDOperand NewPtr = LN0->getBasePtr();
1717        if (!TLI.isLittleEndian())
1718          NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1719                               DAG.getConstant(PtrOff, PtrType));
1720        AddToWorkList(NewPtr.Val);
1721        SDOperand Load =
1722          DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
1723                         LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
1724                         LN0->isVolatile(), LN0->getAlignment());
1725        AddToWorkList(N);
1726        CombineTo(N0.Val, Load, Load.getValue(1));
1727        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1728      }
1729    }
1730  }
1731
1732  return SDOperand();
1733}
1734
1735SDOperand DAGCombiner::visitOR(SDNode *N) {
1736  SDOperand N0 = N->getOperand(0);
1737  SDOperand N1 = N->getOperand(1);
1738  SDOperand LL, LR, RL, RR, CC0, CC1;
1739  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1740  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1741  MVT::ValueType VT = N1.getValueType();
1742  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1743
1744  // fold vector ops
1745  if (MVT::isVector(VT)) {
1746    SDOperand FoldedVOp = SimplifyVBinOp(N);
1747    if (FoldedVOp.Val) return FoldedVOp;
1748  }
1749
1750  // fold (or x, undef) -> -1
1751  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1752    return DAG.getConstant(~0ULL, VT);
1753  // fold (or c1, c2) -> c1|c2
1754  if (N0C && N1C)
1755    return DAG.getNode(ISD::OR, VT, N0, N1);
1756  // canonicalize constant to RHS
1757  if (N0C && !N1C)
1758    return DAG.getNode(ISD::OR, VT, N1, N0);
1759  // fold (or x, 0) -> x
1760  if (N1C && N1C->isNullValue())
1761    return N0;
1762  // fold (or x, -1) -> -1
1763  if (N1C && N1C->isAllOnesValue())
1764    return N1;
1765  // fold (or x, c) -> c iff (x & ~c) == 0
1766  if (N1C &&
1767      DAG.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
1768    return N1;
1769  // reassociate or
1770  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1771  if (ROR.Val != 0)
1772    return ROR;
1773  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1774  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1775             isa<ConstantSDNode>(N0.getOperand(1))) {
1776    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1777    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1778                                                 N1),
1779                       DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
1780  }
1781  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1782  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1783    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1784    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1785
1786    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1787        MVT::isInteger(LL.getValueType())) {
1788      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1789      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1790      if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1791          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1792        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1793        AddToWorkList(ORNode.Val);
1794        return DAG.getSetCC(VT, ORNode, LR, Op1);
1795      }
1796      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1797      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1798      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1799          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1800        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1801        AddToWorkList(ANDNode.Val);
1802        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1803      }
1804    }
1805    // canonicalize equivalent to ll == rl
1806    if (LL == RR && LR == RL) {
1807      Op1 = ISD::getSetCCSwappedOperands(Op1);
1808      std::swap(RL, RR);
1809    }
1810    if (LL == RL && LR == RR) {
1811      bool isInteger = MVT::isInteger(LL.getValueType());
1812      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1813      if (Result != ISD::SETCC_INVALID)
1814        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1815    }
1816  }
1817
1818  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
1819  if (N0.getOpcode() == N1.getOpcode()) {
1820    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1821    if (Tmp.Val) return Tmp;
1822  }
1823
1824  // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible.
1825  if (N0.getOpcode() == ISD::AND &&
1826      N1.getOpcode() == ISD::AND &&
1827      N0.getOperand(1).getOpcode() == ISD::Constant &&
1828      N1.getOperand(1).getOpcode() == ISD::Constant &&
1829      // Don't increase # computations.
1830      (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
1831    // We can only do this xform if we know that bits from X that are set in C2
1832    // but not in C1 are already zero.  Likewise for Y.
1833    uint64_t LHSMask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1834    uint64_t RHSMask = cast<ConstantSDNode>(N1.getOperand(1))->getValue();
1835
1836    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
1837        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
1838      SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
1839      return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
1840    }
1841  }
1842
1843
1844  // See if this is some rotate idiom.
1845  if (SDNode *Rot = MatchRotate(N0, N1))
1846    return SDOperand(Rot, 0);
1847
1848  return SDOperand();
1849}
1850
1851
1852/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
1853static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
1854  if (Op.getOpcode() == ISD::AND) {
1855    if (isa<ConstantSDNode>(Op.getOperand(1))) {
1856      Mask = Op.getOperand(1);
1857      Op = Op.getOperand(0);
1858    } else {
1859      return false;
1860    }
1861  }
1862
1863  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
1864    Shift = Op;
1865    return true;
1866  }
1867  return false;
1868}
1869
1870
1871// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
1872// idioms for rotate, and if the target supports rotation instructions, generate
1873// a rot[lr].
1874SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
1875  // Must be a legal type.  Expanded an promoted things won't work with rotates.
1876  MVT::ValueType VT = LHS.getValueType();
1877  if (!TLI.isTypeLegal(VT)) return 0;
1878
1879  // The target must have at least one rotate flavor.
1880  bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
1881  bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
1882  if (!HasROTL && !HasROTR) return 0;
1883
1884  // Match "(X shl/srl V1) & V2" where V2 may not be present.
1885  SDOperand LHSShift;   // The shift.
1886  SDOperand LHSMask;    // AND value if any.
1887  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
1888    return 0; // Not part of a rotate.
1889
1890  SDOperand RHSShift;   // The shift.
1891  SDOperand RHSMask;    // AND value if any.
1892  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
1893    return 0; // Not part of a rotate.
1894
1895  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
1896    return 0;   // Not shifting the same value.
1897
1898  if (LHSShift.getOpcode() == RHSShift.getOpcode())
1899    return 0;   // Shifts must disagree.
1900
1901  // Canonicalize shl to left side in a shl/srl pair.
1902  if (RHSShift.getOpcode() == ISD::SHL) {
1903    std::swap(LHS, RHS);
1904    std::swap(LHSShift, RHSShift);
1905    std::swap(LHSMask , RHSMask );
1906  }
1907
1908  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1909  SDOperand LHSShiftArg = LHSShift.getOperand(0);
1910  SDOperand LHSShiftAmt = LHSShift.getOperand(1);
1911  SDOperand RHSShiftAmt = RHSShift.getOperand(1);
1912
1913  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1914  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
1915  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
1916      RHSShiftAmt.getOpcode() == ISD::Constant) {
1917    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue();
1918    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue();
1919    if ((LShVal + RShVal) != OpSizeInBits)
1920      return 0;
1921
1922    SDOperand Rot;
1923    if (HasROTL)
1924      Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt);
1925    else
1926      Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt);
1927
1928    // If there is an AND of either shifted operand, apply it to the result.
1929    if (LHSMask.Val || RHSMask.Val) {
1930      uint64_t Mask = MVT::getIntVTBitMask(VT);
1931
1932      if (LHSMask.Val) {
1933        uint64_t RHSBits = (1ULL << LShVal)-1;
1934        Mask &= cast<ConstantSDNode>(LHSMask)->getValue() | RHSBits;
1935      }
1936      if (RHSMask.Val) {
1937        uint64_t LHSBits = ~((1ULL << (OpSizeInBits-RShVal))-1);
1938        Mask &= cast<ConstantSDNode>(RHSMask)->getValue() | LHSBits;
1939      }
1940
1941      Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
1942    }
1943
1944    return Rot.Val;
1945  }
1946
1947  // If there is a mask here, and we have a variable shift, we can't be sure
1948  // that we're masking out the right stuff.
1949  if (LHSMask.Val || RHSMask.Val)
1950    return 0;
1951
1952  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
1953  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
1954  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
1955      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
1956    if (ConstantSDNode *SUBC =
1957          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
1958      if (SUBC->getValue() == OpSizeInBits)
1959        if (HasROTL)
1960          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1961        else
1962          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
1963    }
1964  }
1965
1966  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
1967  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
1968  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
1969      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
1970    if (ConstantSDNode *SUBC =
1971          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
1972      if (SUBC->getValue() == OpSizeInBits)
1973        if (HasROTL)
1974          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1975        else
1976          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
1977    }
1978  }
1979
1980  // Look for sign/zext/any-extended cases:
1981  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
1982       || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
1983       || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) &&
1984      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
1985       || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
1986       || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) {
1987    SDOperand LExtOp0 = LHSShiftAmt.getOperand(0);
1988    SDOperand RExtOp0 = RHSShiftAmt.getOperand(0);
1989    if (RExtOp0.getOpcode() == ISD::SUB &&
1990        RExtOp0.getOperand(1) == LExtOp0) {
1991      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
1992      //   (rotr x, y)
1993      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
1994      //   (rotl x, (sub 32, y))
1995      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
1996        if (SUBC->getValue() == OpSizeInBits) {
1997          if (HasROTL)
1998            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1999          else
2000            return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2001        }
2002      }
2003    } else if (LExtOp0.getOpcode() == ISD::SUB &&
2004               RExtOp0 == LExtOp0.getOperand(1)) {
2005      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2006      //   (rotl x, y)
2007      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2008      //   (rotr x, (sub 32, y))
2009      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
2010        if (SUBC->getValue() == OpSizeInBits) {
2011          if (HasROTL)
2012            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val;
2013          else
2014            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2015        }
2016      }
2017    }
2018  }
2019
2020  return 0;
2021}
2022
2023
2024SDOperand DAGCombiner::visitXOR(SDNode *N) {
2025  SDOperand N0 = N->getOperand(0);
2026  SDOperand N1 = N->getOperand(1);
2027  SDOperand LHS, RHS, CC;
2028  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2029  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2030  MVT::ValueType VT = N0.getValueType();
2031
2032  // fold vector ops
2033  if (MVT::isVector(VT)) {
2034    SDOperand FoldedVOp = SimplifyVBinOp(N);
2035    if (FoldedVOp.Val) return FoldedVOp;
2036  }
2037
2038  // fold (xor x, undef) -> undef
2039  if (N0.getOpcode() == ISD::UNDEF)
2040    return N0;
2041  if (N1.getOpcode() == ISD::UNDEF)
2042    return N1;
2043  // fold (xor c1, c2) -> c1^c2
2044  if (N0C && N1C)
2045    return DAG.getNode(ISD::XOR, VT, N0, N1);
2046  // canonicalize constant to RHS
2047  if (N0C && !N1C)
2048    return DAG.getNode(ISD::XOR, VT, N1, N0);
2049  // fold (xor x, 0) -> x
2050  if (N1C && N1C->isNullValue())
2051    return N0;
2052  // reassociate xor
2053  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
2054  if (RXOR.Val != 0)
2055    return RXOR;
2056  // fold !(x cc y) -> (x !cc y)
2057  if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
2058    bool isInt = MVT::isInteger(LHS.getValueType());
2059    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2060                                               isInt);
2061    if (N0.getOpcode() == ISD::SETCC)
2062      return DAG.getSetCC(VT, LHS, RHS, NotCC);
2063    if (N0.getOpcode() == ISD::SELECT_CC)
2064      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
2065    assert(0 && "Unhandled SetCC Equivalent!");
2066    abort();
2067  }
2068  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2069  if (N1C && N1C->getValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
2070      N0.Val->hasOneUse() && isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
2071    SDOperand V = N0.getOperand(0);
2072    V = DAG.getNode(ISD::XOR, V.getValueType(), V,
2073                    DAG.getConstant(1, V.getValueType()));
2074    AddToWorkList(V.Val);
2075    return DAG.getNode(ISD::ZERO_EXTEND, VT, V);
2076  }
2077
2078  // fold !(x or y) -> (!x and !y) iff x or y are setcc
2079  if (N1C && N1C->getValue() == 1 && VT == MVT::i1 &&
2080      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2081    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2082    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
2083      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2084      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2085      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2086      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2087      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2088    }
2089  }
2090  // fold !(x or y) -> (!x and !y) iff x or y are constants
2091  if (N1C && N1C->isAllOnesValue() &&
2092      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2093    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2094    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
2095      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2096      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2097      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2098      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2099      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2100    }
2101  }
2102  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
2103  if (N1C && N0.getOpcode() == ISD::XOR) {
2104    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
2105    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2106    if (N00C)
2107      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
2108                         DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
2109    if (N01C)
2110      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
2111                         DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
2112  }
2113  // fold (xor x, x) -> 0
2114  if (N0 == N1) {
2115    if (!MVT::isVector(VT)) {
2116      return DAG.getConstant(0, VT);
2117    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
2118      // Produce a vector of zeros.
2119      SDOperand El = DAG.getConstant(0, MVT::getVectorElementType(VT));
2120      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
2121      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
2122    }
2123  }
2124
2125  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
2126  if (N0.getOpcode() == N1.getOpcode()) {
2127    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2128    if (Tmp.Val) return Tmp;
2129  }
2130
2131  // Simplify the expression using non-local knowledge.
2132  if (!MVT::isVector(VT) &&
2133      SimplifyDemandedBits(SDOperand(N, 0)))
2134    return SDOperand(N, 0);
2135
2136  return SDOperand();
2137}
2138
2139SDOperand DAGCombiner::visitSHL(SDNode *N) {
2140  SDOperand N0 = N->getOperand(0);
2141  SDOperand N1 = N->getOperand(1);
2142  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2143  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2144  MVT::ValueType VT = N0.getValueType();
2145  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2146
2147  // fold (shl c1, c2) -> c1<<c2
2148  if (N0C && N1C)
2149    return DAG.getNode(ISD::SHL, VT, N0, N1);
2150  // fold (shl 0, x) -> 0
2151  if (N0C && N0C->isNullValue())
2152    return N0;
2153  // fold (shl x, c >= size(x)) -> undef
2154  if (N1C && N1C->getValue() >= OpSizeInBits)
2155    return DAG.getNode(ISD::UNDEF, VT);
2156  // fold (shl x, 0) -> x
2157  if (N1C && N1C->isNullValue())
2158    return N0;
2159  // if (shl x, c) is known to be zero, return 0
2160  if (DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
2161    return DAG.getConstant(0, VT);
2162  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2163    return SDOperand(N, 0);
2164  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
2165  if (N1C && N0.getOpcode() == ISD::SHL &&
2166      N0.getOperand(1).getOpcode() == ISD::Constant) {
2167    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2168    uint64_t c2 = N1C->getValue();
2169    if (c1 + c2 > OpSizeInBits)
2170      return DAG.getConstant(0, VT);
2171    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
2172                       DAG.getConstant(c1 + c2, N1.getValueType()));
2173  }
2174  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
2175  //                               (srl (and x, -1 << c1), c1-c2)
2176  if (N1C && N0.getOpcode() == ISD::SRL &&
2177      N0.getOperand(1).getOpcode() == ISD::Constant) {
2178    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2179    uint64_t c2 = N1C->getValue();
2180    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2181                                 DAG.getConstant(~0ULL << c1, VT));
2182    if (c2 > c1)
2183      return DAG.getNode(ISD::SHL, VT, Mask,
2184                         DAG.getConstant(c2-c1, N1.getValueType()));
2185    else
2186      return DAG.getNode(ISD::SRL, VT, Mask,
2187                         DAG.getConstant(c1-c2, N1.getValueType()));
2188  }
2189  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
2190  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
2191    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2192                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
2193  return SDOperand();
2194}
2195
2196SDOperand DAGCombiner::visitSRA(SDNode *N) {
2197  SDOperand N0 = N->getOperand(0);
2198  SDOperand N1 = N->getOperand(1);
2199  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2200  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2201  MVT::ValueType VT = N0.getValueType();
2202
2203  // fold (sra c1, c2) -> c1>>c2
2204  if (N0C && N1C)
2205    return DAG.getNode(ISD::SRA, VT, N0, N1);
2206  // fold (sra 0, x) -> 0
2207  if (N0C && N0C->isNullValue())
2208    return N0;
2209  // fold (sra -1, x) -> -1
2210  if (N0C && N0C->isAllOnesValue())
2211    return N0;
2212  // fold (sra x, c >= size(x)) -> undef
2213  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
2214    return DAG.getNode(ISD::UNDEF, VT);
2215  // fold (sra x, 0) -> x
2216  if (N1C && N1C->isNullValue())
2217    return N0;
2218  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2219  // sext_inreg.
2220  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
2221    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
2222    MVT::ValueType EVT;
2223    switch (LowBits) {
2224    default: EVT = MVT::Other; break;
2225    case  1: EVT = MVT::i1;    break;
2226    case  8: EVT = MVT::i8;    break;
2227    case 16: EVT = MVT::i16;   break;
2228    case 32: EVT = MVT::i32;   break;
2229    }
2230    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
2231      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
2232                         DAG.getValueType(EVT));
2233  }
2234
2235  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
2236  if (N1C && N0.getOpcode() == ISD::SRA) {
2237    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2238      unsigned Sum = N1C->getValue() + C1->getValue();
2239      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
2240      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
2241                         DAG.getConstant(Sum, N1C->getValueType(0)));
2242    }
2243  }
2244
2245  // Simplify, based on bits shifted out of the LHS.
2246  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2247    return SDOperand(N, 0);
2248
2249
2250  // If the sign bit is known to be zero, switch this to a SRL.
2251  if (DAG.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT)))
2252    return DAG.getNode(ISD::SRL, VT, N0, N1);
2253  return SDOperand();
2254}
2255
2256SDOperand DAGCombiner::visitSRL(SDNode *N) {
2257  SDOperand N0 = N->getOperand(0);
2258  SDOperand N1 = N->getOperand(1);
2259  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2260  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2261  MVT::ValueType VT = N0.getValueType();
2262  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2263
2264  // fold (srl c1, c2) -> c1 >>u c2
2265  if (N0C && N1C)
2266    return DAG.getNode(ISD::SRL, VT, N0, N1);
2267  // fold (srl 0, x) -> 0
2268  if (N0C && N0C->isNullValue())
2269    return N0;
2270  // fold (srl x, c >= size(x)) -> undef
2271  if (N1C && N1C->getValue() >= OpSizeInBits)
2272    return DAG.getNode(ISD::UNDEF, VT);
2273  // fold (srl x, 0) -> x
2274  if (N1C && N1C->isNullValue())
2275    return N0;
2276  // if (srl x, c) is known to be zero, return 0
2277  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
2278    return DAG.getConstant(0, VT);
2279
2280  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
2281  if (N1C && N0.getOpcode() == ISD::SRL &&
2282      N0.getOperand(1).getOpcode() == ISD::Constant) {
2283    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2284    uint64_t c2 = N1C->getValue();
2285    if (c1 + c2 > OpSizeInBits)
2286      return DAG.getConstant(0, VT);
2287    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
2288                       DAG.getConstant(c1 + c2, N1.getValueType()));
2289  }
2290
2291  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2292  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2293    // Shifting in all undef bits?
2294    MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
2295    if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
2296      return DAG.getNode(ISD::UNDEF, VT);
2297
2298    SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
2299    AddToWorkList(SmallShift.Val);
2300    return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
2301  }
2302
2303  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
2304  // bit, which is unmodified by sra.
2305  if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
2306    if (N0.getOpcode() == ISD::SRA)
2307      return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
2308  }
2309
2310  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
2311  if (N1C && N0.getOpcode() == ISD::CTLZ &&
2312      N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
2313    uint64_t KnownZero, KnownOne, Mask = MVT::getIntVTBitMask(VT);
2314    DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
2315
2316    // If any of the input bits are KnownOne, then the input couldn't be all
2317    // zeros, thus the result of the srl will always be zero.
2318    if (KnownOne) return DAG.getConstant(0, VT);
2319
2320    // If all of the bits input the to ctlz node are known to be zero, then
2321    // the result of the ctlz is "32" and the result of the shift is one.
2322    uint64_t UnknownBits = ~KnownZero & Mask;
2323    if (UnknownBits == 0) return DAG.getConstant(1, VT);
2324
2325    // Otherwise, check to see if there is exactly one bit input to the ctlz.
2326    if ((UnknownBits & (UnknownBits-1)) == 0) {
2327      // Okay, we know that only that the single bit specified by UnknownBits
2328      // could be set on input to the CTLZ node.  If this bit is set, the SRL
2329      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
2330      // to an SRL,XOR pair, which is likely to simplify more.
2331      unsigned ShAmt = CountTrailingZeros_64(UnknownBits);
2332      SDOperand Op = N0.getOperand(0);
2333      if (ShAmt) {
2334        Op = DAG.getNode(ISD::SRL, VT, Op,
2335                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
2336        AddToWorkList(Op.Val);
2337      }
2338      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
2339    }
2340  }
2341
2342  // fold operands of srl based on knowledge that the low bits are not
2343  // demanded.
2344  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2345    return SDOperand(N, 0);
2346
2347  return SDOperand();
2348}
2349
2350SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
2351  SDOperand N0 = N->getOperand(0);
2352  MVT::ValueType VT = N->getValueType(0);
2353
2354  // fold (ctlz c1) -> c2
2355  if (isa<ConstantSDNode>(N0))
2356    return DAG.getNode(ISD::CTLZ, VT, N0);
2357  return SDOperand();
2358}
2359
2360SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
2361  SDOperand N0 = N->getOperand(0);
2362  MVT::ValueType VT = N->getValueType(0);
2363
2364  // fold (cttz c1) -> c2
2365  if (isa<ConstantSDNode>(N0))
2366    return DAG.getNode(ISD::CTTZ, VT, N0);
2367  return SDOperand();
2368}
2369
2370SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
2371  SDOperand N0 = N->getOperand(0);
2372  MVT::ValueType VT = N->getValueType(0);
2373
2374  // fold (ctpop c1) -> c2
2375  if (isa<ConstantSDNode>(N0))
2376    return DAG.getNode(ISD::CTPOP, VT, N0);
2377  return SDOperand();
2378}
2379
2380SDOperand DAGCombiner::visitSELECT(SDNode *N) {
2381  SDOperand N0 = N->getOperand(0);
2382  SDOperand N1 = N->getOperand(1);
2383  SDOperand N2 = N->getOperand(2);
2384  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2385  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2386  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2387  MVT::ValueType VT = N->getValueType(0);
2388  MVT::ValueType VT0 = N0.getValueType();
2389
2390  // fold select C, X, X -> X
2391  if (N1 == N2)
2392    return N1;
2393  // fold select true, X, Y -> X
2394  if (N0C && !N0C->isNullValue())
2395    return N1;
2396  // fold select false, X, Y -> Y
2397  if (N0C && N0C->isNullValue())
2398    return N2;
2399  // fold select C, 1, X -> C | X
2400  if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
2401    return DAG.getNode(ISD::OR, VT, N0, N2);
2402  // fold select C, 0, 1 -> ~C
2403  if (MVT::isInteger(VT) && MVT::isInteger(VT0) &&
2404      N1C && N2C && N1C->isNullValue() && N2C->getValue() == 1) {
2405    SDOperand XORNode = DAG.getNode(ISD::XOR, VT0, N0, DAG.getConstant(1, VT0));
2406    if (VT == VT0)
2407      return XORNode;
2408    AddToWorkList(XORNode.Val);
2409    if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(VT0))
2410      return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode);
2411    return DAG.getNode(ISD::TRUNCATE, VT, XORNode);
2412  }
2413  // fold select C, 0, X -> ~C & X
2414  if (VT == VT0 && N1C && N1C->isNullValue()) {
2415    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2416    AddToWorkList(XORNode.Val);
2417    return DAG.getNode(ISD::AND, VT, XORNode, N2);
2418  }
2419  // fold select C, X, 1 -> ~C | X
2420  if (VT == VT0 && N2C && N2C->getValue() == 1) {
2421    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2422    AddToWorkList(XORNode.Val);
2423    return DAG.getNode(ISD::OR, VT, XORNode, N1);
2424  }
2425  // fold select C, X, 0 -> C & X
2426  // FIXME: this should check for C type == X type, not i1?
2427  if (MVT::i1 == VT && N2C && N2C->isNullValue())
2428    return DAG.getNode(ISD::AND, VT, N0, N1);
2429  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
2430  if (MVT::i1 == VT && N0 == N1)
2431    return DAG.getNode(ISD::OR, VT, N0, N2);
2432  // fold X ? Y : X --> X ? Y : 0 --> X & Y
2433  if (MVT::i1 == VT && N0 == N2)
2434    return DAG.getNode(ISD::AND, VT, N0, N1);
2435
2436  // If we can fold this based on the true/false value, do so.
2437  if (SimplifySelectOps(N, N1, N2))
2438    return SDOperand(N, 0);  // Don't revisit N.
2439
2440  // fold selects based on a setcc into other things, such as min/max/abs
2441  if (N0.getOpcode() == ISD::SETCC)
2442    // FIXME:
2443    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2444    // having to say they don't support SELECT_CC on every type the DAG knows
2445    // about, since there is no way to mark an opcode illegal at all value types
2446    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
2447      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
2448                         N1, N2, N0.getOperand(2));
2449    else
2450      return SimplifySelect(N0, N1, N2);
2451  return SDOperand();
2452}
2453
2454SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
2455  SDOperand N0 = N->getOperand(0);
2456  SDOperand N1 = N->getOperand(1);
2457  SDOperand N2 = N->getOperand(2);
2458  SDOperand N3 = N->getOperand(3);
2459  SDOperand N4 = N->getOperand(4);
2460  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2461
2462  // fold select_cc lhs, rhs, x, x, cc -> x
2463  if (N2 == N3)
2464    return N2;
2465
2466  // Determine if the condition we're dealing with is constant
2467  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
2468  if (SCC.Val) AddToWorkList(SCC.Val);
2469
2470  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
2471    if (SCCC->getValue())
2472      return N2;    // cond always true -> true val
2473    else
2474      return N3;    // cond always false -> false val
2475  }
2476
2477  // Fold to a simpler select_cc
2478  if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
2479    return DAG.getNode(ISD::SELECT_CC, N2.getValueType(),
2480                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2481                       SCC.getOperand(2));
2482
2483  // If we can fold this based on the true/false value, do so.
2484  if (SimplifySelectOps(N, N2, N3))
2485    return SDOperand(N, 0);  // Don't revisit N.
2486
2487  // fold select_cc into other things, such as min/max/abs
2488  return SimplifySelectCC(N0, N1, N2, N3, CC);
2489}
2490
2491SDOperand DAGCombiner::visitSETCC(SDNode *N) {
2492  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2493                       cast<CondCodeSDNode>(N->getOperand(2))->get());
2494}
2495
2496SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2497  SDOperand N0 = N->getOperand(0);
2498  MVT::ValueType VT = N->getValueType(0);
2499
2500  // fold (sext c1) -> c1
2501  if (isa<ConstantSDNode>(N0))
2502    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
2503
2504  // fold (sext (sext x)) -> (sext x)
2505  // fold (sext (aext x)) -> (sext x)
2506  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2507    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
2508
2509  // fold (sext (truncate (load x))) -> (sext (smaller load x))
2510  // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2511  if (N0.getOpcode() == ISD::TRUNCATE) {
2512    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2513    if (NarrowLoad.Val) {
2514      if (NarrowLoad.Val != N0.Val)
2515        CombineTo(N0.Val, NarrowLoad);
2516      return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad);
2517    }
2518  }
2519
2520  // See if the value being truncated is already sign extended.  If so, just
2521  // eliminate the trunc/sext pair.
2522  if (N0.getOpcode() == ISD::TRUNCATE) {
2523    SDOperand Op = N0.getOperand(0);
2524    unsigned OpBits   = MVT::getSizeInBits(Op.getValueType());
2525    unsigned MidBits  = MVT::getSizeInBits(N0.getValueType());
2526    unsigned DestBits = MVT::getSizeInBits(VT);
2527    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
2528
2529    if (OpBits == DestBits) {
2530      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
2531      // bits, it is already ready.
2532      if (NumSignBits > DestBits-MidBits)
2533        return Op;
2534    } else if (OpBits < DestBits) {
2535      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
2536      // bits, just sext from i32.
2537      if (NumSignBits > OpBits-MidBits)
2538        return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
2539    } else {
2540      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
2541      // bits, just truncate to i32.
2542      if (NumSignBits > OpBits-MidBits)
2543        return DAG.getNode(ISD::TRUNCATE, VT, Op);
2544    }
2545
2546    // fold (sext (truncate x)) -> (sextinreg x).
2547    if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2548                                               N0.getValueType())) {
2549      if (Op.getValueType() < VT)
2550        Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2551      else if (Op.getValueType() > VT)
2552        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2553      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
2554                         DAG.getValueType(N0.getValueType()));
2555    }
2556  }
2557
2558  // fold (sext (load x)) -> (sext (truncate (sextload x)))
2559  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2560      (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
2561    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2562    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2563                                       LN0->getBasePtr(), LN0->getSrcValue(),
2564                                       LN0->getSrcValueOffset(),
2565                                       N0.getValueType(),
2566                                       LN0->isVolatile(),
2567                                       LN0->getAlignment());
2568    CombineTo(N, ExtLoad);
2569    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2570              ExtLoad.getValue(1));
2571    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2572  }
2573
2574  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
2575  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
2576  if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2577      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2578    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2579    MVT::ValueType EVT = LN0->getLoadedVT();
2580    if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
2581      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2582                                         LN0->getBasePtr(), LN0->getSrcValue(),
2583                                         LN0->getSrcValueOffset(), EVT,
2584                                         LN0->isVolatile(),
2585                                         LN0->getAlignment());
2586      CombineTo(N, ExtLoad);
2587      CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2588                ExtLoad.getValue(1));
2589      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2590    }
2591  }
2592
2593  // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
2594  if (N0.getOpcode() == ISD::SETCC) {
2595    SDOperand SCC =
2596      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2597                       DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
2598                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2599    if (SCC.Val) return SCC;
2600  }
2601
2602  return SDOperand();
2603}
2604
2605SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
2606  SDOperand N0 = N->getOperand(0);
2607  MVT::ValueType VT = N->getValueType(0);
2608
2609  // fold (zext c1) -> c1
2610  if (isa<ConstantSDNode>(N0))
2611    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
2612  // fold (zext (zext x)) -> (zext x)
2613  // fold (zext (aext x)) -> (zext x)
2614  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2615    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
2616
2617  // fold (zext (truncate (load x))) -> (zext (smaller load x))
2618  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
2619  if (N0.getOpcode() == ISD::TRUNCATE) {
2620    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2621    if (NarrowLoad.Val) {
2622      if (NarrowLoad.Val != N0.Val)
2623        CombineTo(N0.Val, NarrowLoad);
2624      return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad);
2625    }
2626  }
2627
2628  // fold (zext (truncate x)) -> (and x, mask)
2629  if (N0.getOpcode() == ISD::TRUNCATE &&
2630      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
2631    SDOperand Op = N0.getOperand(0);
2632    if (Op.getValueType() < VT) {
2633      Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2634    } else if (Op.getValueType() > VT) {
2635      Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2636    }
2637    return DAG.getZeroExtendInReg(Op, N0.getValueType());
2638  }
2639
2640  // fold (zext (and (trunc x), cst)) -> (and x, cst).
2641  if (N0.getOpcode() == ISD::AND &&
2642      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2643      N0.getOperand(1).getOpcode() == ISD::Constant) {
2644    SDOperand X = N0.getOperand(0).getOperand(0);
2645    if (X.getValueType() < VT) {
2646      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2647    } else if (X.getValueType() > VT) {
2648      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2649    }
2650    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2651    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2652  }
2653
2654  // fold (zext (load x)) -> (zext (truncate (zextload x)))
2655  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2656      (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
2657    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2658    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2659                                       LN0->getBasePtr(), LN0->getSrcValue(),
2660                                       LN0->getSrcValueOffset(),
2661                                       N0.getValueType(),
2662                                       LN0->isVolatile(),
2663                                       LN0->getAlignment());
2664    CombineTo(N, ExtLoad);
2665    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2666              ExtLoad.getValue(1));
2667    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2668  }
2669
2670  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
2671  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
2672  if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2673      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2674    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2675    MVT::ValueType EVT = LN0->getLoadedVT();
2676    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2677                                       LN0->getBasePtr(), LN0->getSrcValue(),
2678                                       LN0->getSrcValueOffset(), EVT,
2679                                       LN0->isVolatile(),
2680                                       LN0->getAlignment());
2681    CombineTo(N, ExtLoad);
2682    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2683              ExtLoad.getValue(1));
2684    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2685  }
2686
2687  // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2688  if (N0.getOpcode() == ISD::SETCC) {
2689    SDOperand SCC =
2690      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2691                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2692                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2693    if (SCC.Val) return SCC;
2694  }
2695
2696  return SDOperand();
2697}
2698
2699SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
2700  SDOperand N0 = N->getOperand(0);
2701  MVT::ValueType VT = N->getValueType(0);
2702
2703  // fold (aext c1) -> c1
2704  if (isa<ConstantSDNode>(N0))
2705    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
2706  // fold (aext (aext x)) -> (aext x)
2707  // fold (aext (zext x)) -> (zext x)
2708  // fold (aext (sext x)) -> (sext x)
2709  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
2710      N0.getOpcode() == ISD::ZERO_EXTEND ||
2711      N0.getOpcode() == ISD::SIGN_EXTEND)
2712    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2713
2714  // fold (aext (truncate (load x))) -> (aext (smaller load x))
2715  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
2716  if (N0.getOpcode() == ISD::TRUNCATE) {
2717    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2718    if (NarrowLoad.Val) {
2719      if (NarrowLoad.Val != N0.Val)
2720        CombineTo(N0.Val, NarrowLoad);
2721      return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad);
2722    }
2723  }
2724
2725  // fold (aext (truncate x))
2726  if (N0.getOpcode() == ISD::TRUNCATE) {
2727    SDOperand TruncOp = N0.getOperand(0);
2728    if (TruncOp.getValueType() == VT)
2729      return TruncOp; // x iff x size == zext size.
2730    if (TruncOp.getValueType() > VT)
2731      return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
2732    return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
2733  }
2734
2735  // fold (aext (and (trunc x), cst)) -> (and x, cst).
2736  if (N0.getOpcode() == ISD::AND &&
2737      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2738      N0.getOperand(1).getOpcode() == ISD::Constant) {
2739    SDOperand X = N0.getOperand(0).getOperand(0);
2740    if (X.getValueType() < VT) {
2741      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2742    } else if (X.getValueType() > VT) {
2743      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2744    }
2745    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2746    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2747  }
2748
2749  // fold (aext (load x)) -> (aext (truncate (extload x)))
2750  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2751      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
2752    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2753    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
2754                                       LN0->getBasePtr(), LN0->getSrcValue(),
2755                                       LN0->getSrcValueOffset(),
2756                                       N0.getValueType(),
2757                                       LN0->isVolatile(),
2758                                       LN0->getAlignment());
2759    CombineTo(N, ExtLoad);
2760    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2761              ExtLoad.getValue(1));
2762    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2763  }
2764
2765  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
2766  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
2767  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
2768  if (N0.getOpcode() == ISD::LOAD &&
2769      !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
2770      N0.hasOneUse()) {
2771    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2772    MVT::ValueType EVT = LN0->getLoadedVT();
2773    SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
2774                                       LN0->getChain(), LN0->getBasePtr(),
2775                                       LN0->getSrcValue(),
2776                                       LN0->getSrcValueOffset(), EVT,
2777                                       LN0->isVolatile(),
2778                                       LN0->getAlignment());
2779    CombineTo(N, ExtLoad);
2780    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2781              ExtLoad.getValue(1));
2782    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2783  }
2784
2785  // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2786  if (N0.getOpcode() == ISD::SETCC) {
2787    SDOperand SCC =
2788      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2789                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2790                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2791    if (SCC.Val)
2792      return SCC;
2793  }
2794
2795  return SDOperand();
2796}
2797
2798/// GetDemandedBits - See if the specified operand can be simplified with the
2799/// knowledge that only the bits specified by Mask are used.  If so, return the
2800/// simpler operand, otherwise return a null SDOperand.
2801SDOperand DAGCombiner::GetDemandedBits(SDOperand V, uint64_t Mask) {
2802  switch (V.getOpcode()) {
2803  default: break;
2804  case ISD::OR:
2805  case ISD::XOR:
2806    // If the LHS or RHS don't contribute bits to the or, drop them.
2807    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
2808      return V.getOperand(1);
2809    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
2810      return V.getOperand(0);
2811    break;
2812  case ISD::SRL:
2813    // Only look at single-use SRLs.
2814    if (!V.Val->hasOneUse())
2815      break;
2816    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2817      // See if we can recursively simplify the LHS.
2818      unsigned Amt = RHSC->getValue();
2819      Mask = (Mask << Amt) & MVT::getIntVTBitMask(V.getValueType());
2820      SDOperand SimplifyLHS = GetDemandedBits(V.getOperand(0), Mask);
2821      if (SimplifyLHS.Val) {
2822        return DAG.getNode(ISD::SRL, V.getValueType(),
2823                           SimplifyLHS, V.getOperand(1));
2824      }
2825    }
2826  }
2827  return SDOperand();
2828}
2829
2830/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
2831/// bits and then truncated to a narrower type and where N is a multiple
2832/// of number of bits of the narrower type, transform it to a narrower load
2833/// from address + N / num of bits of new type. If the result is to be
2834/// extended, also fold the extension to form a extending load.
2835SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
2836  unsigned Opc = N->getOpcode();
2837  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
2838  SDOperand N0 = N->getOperand(0);
2839  MVT::ValueType VT = N->getValueType(0);
2840  MVT::ValueType EVT = N->getValueType(0);
2841
2842  // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
2843  // extended to VT.
2844  if (Opc == ISD::SIGN_EXTEND_INREG) {
2845    ExtType = ISD::SEXTLOAD;
2846    EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2847    if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))
2848      return SDOperand();
2849  }
2850
2851  unsigned EVTBits = MVT::getSizeInBits(EVT);
2852  unsigned ShAmt = 0;
2853  bool CombineSRL =  false;
2854  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
2855    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2856      ShAmt = N01->getValue();
2857      // Is the shift amount a multiple of size of VT?
2858      if ((ShAmt & (EVTBits-1)) == 0) {
2859        N0 = N0.getOperand(0);
2860        if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits)
2861          return SDOperand();
2862        CombineSRL = true;
2863      }
2864    }
2865  }
2866
2867  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2868      // Do not allow folding to i1 here.  i1 is implicitly stored in memory in
2869      // zero extended form: by shrinking the load, we lose track of the fact
2870      // that it is already zero extended.
2871      // FIXME: This should be reevaluated.
2872      VT != MVT::i1) {
2873    assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits &&
2874           "Cannot truncate to larger type!");
2875    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2876    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
2877    // For big endian targets, we need to adjust the offset to the pointer to
2878    // load the correct bytes.
2879    if (!TLI.isLittleEndian())
2880      ShAmt = MVT::getSizeInBits(N0.getValueType()) - ShAmt - EVTBits;
2881    uint64_t PtrOff =  ShAmt / 8;
2882    SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
2883                                   DAG.getConstant(PtrOff, PtrType));
2884    AddToWorkList(NewPtr.Val);
2885    SDOperand Load = (ExtType == ISD::NON_EXTLOAD)
2886      ? DAG.getLoad(VT, LN0->getChain(), NewPtr,
2887                    LN0->getSrcValue(), LN0->getSrcValueOffset(),
2888                    LN0->isVolatile(), LN0->getAlignment())
2889      : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr,
2890                       LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
2891                       LN0->isVolatile(), LN0->getAlignment());
2892    AddToWorkList(N);
2893    if (CombineSRL) {
2894      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
2895      CombineTo(N->getOperand(0).Val, Load);
2896    } else
2897      CombineTo(N0.Val, Load, Load.getValue(1));
2898    if (ShAmt) {
2899      if (Opc == ISD::SIGN_EXTEND_INREG)
2900        return DAG.getNode(Opc, VT, Load, N->getOperand(1));
2901      else
2902        return DAG.getNode(Opc, VT, Load);
2903    }
2904    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2905  }
2906
2907  return SDOperand();
2908}
2909
2910
2911SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
2912  SDOperand N0 = N->getOperand(0);
2913  SDOperand N1 = N->getOperand(1);
2914  MVT::ValueType VT = N->getValueType(0);
2915  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
2916  unsigned EVTBits = MVT::getSizeInBits(EVT);
2917
2918  // fold (sext_in_reg c1) -> c1
2919  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
2920    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
2921
2922  // If the input is already sign extended, just drop the extension.
2923  if (DAG.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
2924    return N0;
2925
2926  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
2927  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2928      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
2929    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
2930  }
2931
2932  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
2933  if (DAG.MaskedValueIsZero(N0, 1ULL << (EVTBits-1)))
2934    return DAG.getZeroExtendInReg(N0, EVT);
2935
2936  // fold operands of sext_in_reg based on knowledge that the top bits are not
2937  // demanded.
2938  if (SimplifyDemandedBits(SDOperand(N, 0)))
2939    return SDOperand(N, 0);
2940
2941  // fold (sext_in_reg (load x)) -> (smaller sextload x)
2942  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
2943  SDOperand NarrowLoad = ReduceLoadWidth(N);
2944  if (NarrowLoad.Val)
2945    return NarrowLoad;
2946
2947  // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
2948  // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
2949  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
2950  if (N0.getOpcode() == ISD::SRL) {
2951    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2952      if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
2953        // We can turn this into an SRA iff the input to the SRL is already sign
2954        // extended enough.
2955        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
2956        if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
2957          return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
2958      }
2959  }
2960
2961  // fold (sext_inreg (extload x)) -> (sextload x)
2962  if (ISD::isEXTLoad(N0.Val) &&
2963      ISD::isUNINDEXEDLoad(N0.Val) &&
2964      EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
2965      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
2966    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2967    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2968                                       LN0->getBasePtr(), LN0->getSrcValue(),
2969                                       LN0->getSrcValueOffset(), EVT,
2970                                       LN0->isVolatile(),
2971                                       LN0->getAlignment());
2972    CombineTo(N, ExtLoad);
2973    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
2974    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2975  }
2976  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
2977  if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
2978      N0.hasOneUse() &&
2979      EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
2980      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
2981    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2982    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2983                                       LN0->getBasePtr(), LN0->getSrcValue(),
2984                                       LN0->getSrcValueOffset(), EVT,
2985                                       LN0->isVolatile(),
2986                                       LN0->getAlignment());
2987    CombineTo(N, ExtLoad);
2988    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
2989    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2990  }
2991  return SDOperand();
2992}
2993
2994SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
2995  SDOperand N0 = N->getOperand(0);
2996  MVT::ValueType VT = N->getValueType(0);
2997
2998  // noop truncate
2999  if (N0.getValueType() == N->getValueType(0))
3000    return N0;
3001  // fold (truncate c1) -> c1
3002  if (isa<ConstantSDNode>(N0))
3003    return DAG.getNode(ISD::TRUNCATE, VT, N0);
3004  // fold (truncate (truncate x)) -> (truncate x)
3005  if (N0.getOpcode() == ISD::TRUNCATE)
3006    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3007  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3008  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
3009      N0.getOpcode() == ISD::ANY_EXTEND) {
3010    if (N0.getOperand(0).getValueType() < VT)
3011      // if the source is smaller than the dest, we still need an extend
3012      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
3013    else if (N0.getOperand(0).getValueType() > VT)
3014      // if the source is larger than the dest, than we just need the truncate
3015      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3016    else
3017      // if the source and dest are the same type, we can drop both the extend
3018      // and the truncate
3019      return N0.getOperand(0);
3020  }
3021
3022  // See if we can simplify the input to this truncate through knowledge that
3023  // only the low bits are being used.  For example "trunc (or (shl x, 8), y)"
3024  // -> trunc y
3025  SDOperand Shorter = GetDemandedBits(N0, MVT::getIntVTBitMask(VT));
3026  if (Shorter.Val)
3027    return DAG.getNode(ISD::TRUNCATE, VT, Shorter);
3028
3029  // fold (truncate (load x)) -> (smaller load x)
3030  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3031  return ReduceLoadWidth(N);
3032}
3033
3034SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
3035  SDOperand N0 = N->getOperand(0);
3036  MVT::ValueType VT = N->getValueType(0);
3037
3038  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3039  // Only do this before legalize, since afterward the target may be depending
3040  // on the bitconvert.
3041  // First check to see if this is all constant.
3042  if (!AfterLegalize &&
3043      N0.getOpcode() == ISD::BUILD_VECTOR && N0.Val->hasOneUse() &&
3044      MVT::isVector(VT)) {
3045    bool isSimple = true;
3046    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
3047      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
3048          N0.getOperand(i).getOpcode() != ISD::Constant &&
3049          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
3050        isSimple = false;
3051        break;
3052      }
3053
3054    MVT::ValueType DestEltVT = MVT::getVectorElementType(N->getValueType(0));
3055    assert(!MVT::isVector(DestEltVT) &&
3056           "Element type of vector ValueType must not be vector!");
3057    if (isSimple) {
3058      return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.Val, DestEltVT);
3059    }
3060  }
3061
3062  // If the input is a constant, let getNode() fold it.
3063  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
3064    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3065    if (Res.Val != N) return Res;
3066  }
3067
3068  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
3069    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3070
3071  // fold (conv (load x)) -> (load (conv*)x)
3072  // If the resultant load doesn't need a higher alignment than the original!
3073  if (ISD::isNormalLoad(N0.Val) && N0.hasOneUse() &&
3074      TLI.isOperationLegal(ISD::LOAD, VT)) {
3075    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3076    unsigned Align = TLI.getTargetMachine().getTargetData()->
3077      getABITypeAlignment(MVT::getTypeForValueType(VT));
3078    unsigned OrigAlign = LN0->getAlignment();
3079    if (Align <= OrigAlign) {
3080      SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
3081                                   LN0->getSrcValue(), LN0->getSrcValueOffset(),
3082                                   LN0->isVolatile(), Align);
3083      AddToWorkList(N);
3084      CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
3085                Load.getValue(1));
3086      return Load;
3087    }
3088  }
3089
3090  return SDOperand();
3091}
3092
3093/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3094/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
3095/// destination element value type.
3096SDOperand DAGCombiner::
3097ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
3098  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
3099
3100  // If this is already the right type, we're done.
3101  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
3102
3103  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
3104  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
3105
3106  // If this is a conversion of N elements of one type to N elements of another
3107  // type, convert each element.  This handles FP<->INT cases.
3108  if (SrcBitSize == DstBitSize) {
3109    SmallVector<SDOperand, 8> Ops;
3110    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3111      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
3112      AddToWorkList(Ops.back().Val);
3113    }
3114    MVT::ValueType VT =
3115      MVT::getVectorType(DstEltVT,
3116                         MVT::getVectorNumElements(BV->getValueType(0)));
3117    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3118  }
3119
3120  // Otherwise, we're growing or shrinking the elements.  To avoid having to
3121  // handle annoying details of growing/shrinking FP values, we convert them to
3122  // int first.
3123  if (MVT::isFloatingPoint(SrcEltVT)) {
3124    // Convert the input float vector to a int vector where the elements are the
3125    // same sizes.
3126    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
3127    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3128    BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).Val;
3129    SrcEltVT = IntVT;
3130  }
3131
3132  // Now we know the input is an integer vector.  If the output is a FP type,
3133  // convert to integer first, then to FP of the right size.
3134  if (MVT::isFloatingPoint(DstEltVT)) {
3135    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
3136    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3137    SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).Val;
3138
3139    // Next, convert to FP elements of the same size.
3140    return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
3141  }
3142
3143  // Okay, we know the src/dst types are both integers of differing types.
3144  // Handling growing first.
3145  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
3146  if (SrcBitSize < DstBitSize) {
3147    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
3148
3149    SmallVector<SDOperand, 8> Ops;
3150    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
3151         i += NumInputsPerOutput) {
3152      bool isLE = TLI.isLittleEndian();
3153      uint64_t NewBits = 0;
3154      bool EltIsUndef = true;
3155      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
3156        // Shift the previously computed bits over.
3157        NewBits <<= SrcBitSize;
3158        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
3159        if (Op.getOpcode() == ISD::UNDEF) continue;
3160        EltIsUndef = false;
3161
3162        NewBits |= cast<ConstantSDNode>(Op)->getValue();
3163      }
3164
3165      if (EltIsUndef)
3166        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3167      else
3168        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
3169    }
3170
3171    MVT::ValueType VT = MVT::getVectorType(DstEltVT,
3172                                           Ops.size());
3173    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3174  }
3175
3176  // Finally, this must be the case where we are shrinking elements: each input
3177  // turns into multiple outputs.
3178  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
3179  SmallVector<SDOperand, 8> Ops;
3180  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3181    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
3182      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
3183        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3184      continue;
3185    }
3186    uint64_t OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getValue();
3187
3188    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
3189      unsigned ThisVal = OpVal & ((1ULL << DstBitSize)-1);
3190      OpVal >>= DstBitSize;
3191      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
3192    }
3193
3194    // For big endian targets, swap the order of the pieces of each element.
3195    if (!TLI.isLittleEndian())
3196      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
3197  }
3198  MVT::ValueType VT = MVT::getVectorType(DstEltVT, Ops.size());
3199  return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3200}
3201
3202
3203
3204SDOperand DAGCombiner::visitFADD(SDNode *N) {
3205  SDOperand N0 = N->getOperand(0);
3206  SDOperand N1 = N->getOperand(1);
3207  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3208  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3209  MVT::ValueType VT = N->getValueType(0);
3210
3211  // fold vector ops
3212  if (MVT::isVector(VT)) {
3213    SDOperand FoldedVOp = SimplifyVBinOp(N);
3214    if (FoldedVOp.Val) return FoldedVOp;
3215  }
3216
3217  // fold (fadd c1, c2) -> c1+c2
3218  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3219    return DAG.getNode(ISD::FADD, VT, N0, N1);
3220  // canonicalize constant to RHS
3221  if (N0CFP && !N1CFP)
3222    return DAG.getNode(ISD::FADD, VT, N1, N0);
3223  // fold (A + (-B)) -> A-B
3224  if (isNegatibleForFree(N1) == 2)
3225    return DAG.getNode(ISD::FSUB, VT, N0, GetNegatedExpression(N1, DAG));
3226  // fold ((-A) + B) -> B-A
3227  if (isNegatibleForFree(N0) == 2)
3228    return DAG.getNode(ISD::FSUB, VT, N1, GetNegatedExpression(N0, DAG));
3229
3230  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3231  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
3232      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3233    return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
3234                       DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
3235
3236  return SDOperand();
3237}
3238
3239SDOperand DAGCombiner::visitFSUB(SDNode *N) {
3240  SDOperand N0 = N->getOperand(0);
3241  SDOperand N1 = N->getOperand(1);
3242  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3243  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3244  MVT::ValueType VT = N->getValueType(0);
3245
3246  // fold vector ops
3247  if (MVT::isVector(VT)) {
3248    SDOperand FoldedVOp = SimplifyVBinOp(N);
3249    if (FoldedVOp.Val) return FoldedVOp;
3250  }
3251
3252  // fold (fsub c1, c2) -> c1-c2
3253  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3254    return DAG.getNode(ISD::FSUB, VT, N0, N1);
3255  // fold (0-B) -> -B
3256  if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
3257    if (isNegatibleForFree(N1))
3258      return GetNegatedExpression(N1, DAG);
3259    return DAG.getNode(ISD::FNEG, VT, N1);
3260  }
3261  // fold (A-(-B)) -> A+B
3262  if (isNegatibleForFree(N1))
3263    return DAG.getNode(ISD::FADD, VT, N0, GetNegatedExpression(N1, DAG));
3264
3265  return SDOperand();
3266}
3267
3268SDOperand DAGCombiner::visitFMUL(SDNode *N) {
3269  SDOperand N0 = N->getOperand(0);
3270  SDOperand N1 = N->getOperand(1);
3271  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3272  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3273  MVT::ValueType VT = N->getValueType(0);
3274
3275  // fold vector ops
3276  if (MVT::isVector(VT)) {
3277    SDOperand FoldedVOp = SimplifyVBinOp(N);
3278    if (FoldedVOp.Val) return FoldedVOp;
3279  }
3280
3281  // fold (fmul c1, c2) -> c1*c2
3282  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3283    return DAG.getNode(ISD::FMUL, VT, N0, N1);
3284  // canonicalize constant to RHS
3285  if (N0CFP && !N1CFP)
3286    return DAG.getNode(ISD::FMUL, VT, N1, N0);
3287  // fold (fmul X, 2.0) -> (fadd X, X)
3288  if (N1CFP && N1CFP->isExactlyValue(+2.0))
3289    return DAG.getNode(ISD::FADD, VT, N0, N0);
3290  // fold (fmul X, -1.0) -> (fneg X)
3291  if (N1CFP && N1CFP->isExactlyValue(-1.0))
3292    return DAG.getNode(ISD::FNEG, VT, N0);
3293
3294  // -X * -Y -> X*Y
3295  if (char LHSNeg = isNegatibleForFree(N0)) {
3296    if (char RHSNeg = isNegatibleForFree(N1)) {
3297      // Both can be negated for free, check to see if at least one is cheaper
3298      // negated.
3299      if (LHSNeg == 2 || RHSNeg == 2)
3300        return DAG.getNode(ISD::FMUL, VT, GetNegatedExpression(N0, DAG),
3301                           GetNegatedExpression(N1, DAG));
3302    }
3303  }
3304
3305  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
3306  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
3307      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3308    return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
3309                       DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
3310
3311  return SDOperand();
3312}
3313
3314SDOperand DAGCombiner::visitFDIV(SDNode *N) {
3315  SDOperand N0 = N->getOperand(0);
3316  SDOperand N1 = N->getOperand(1);
3317  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3318  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3319  MVT::ValueType VT = N->getValueType(0);
3320
3321  // fold vector ops
3322  if (MVT::isVector(VT)) {
3323    SDOperand FoldedVOp = SimplifyVBinOp(N);
3324    if (FoldedVOp.Val) return FoldedVOp;
3325  }
3326
3327  // fold (fdiv c1, c2) -> c1/c2
3328  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3329    return DAG.getNode(ISD::FDIV, VT, N0, N1);
3330
3331
3332  // -X / -Y -> X*Y
3333  if (char LHSNeg = isNegatibleForFree(N0)) {
3334    if (char RHSNeg = isNegatibleForFree(N1)) {
3335      // Both can be negated for free, check to see if at least one is cheaper
3336      // negated.
3337      if (LHSNeg == 2 || RHSNeg == 2)
3338        return DAG.getNode(ISD::FDIV, VT, GetNegatedExpression(N0, DAG),
3339                           GetNegatedExpression(N1, DAG));
3340    }
3341  }
3342
3343  return SDOperand();
3344}
3345
3346SDOperand DAGCombiner::visitFREM(SDNode *N) {
3347  SDOperand N0 = N->getOperand(0);
3348  SDOperand N1 = N->getOperand(1);
3349  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3350  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3351  MVT::ValueType VT = N->getValueType(0);
3352
3353  // fold (frem c1, c2) -> fmod(c1,c2)
3354  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3355    return DAG.getNode(ISD::FREM, VT, N0, N1);
3356
3357  return SDOperand();
3358}
3359
3360SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
3361  SDOperand N0 = N->getOperand(0);
3362  SDOperand N1 = N->getOperand(1);
3363  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3364  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3365  MVT::ValueType VT = N->getValueType(0);
3366
3367  if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold
3368    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
3369
3370  if (N1CFP) {
3371    const APFloat& V = N1CFP->getValueAPF();
3372    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
3373    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
3374    if (!V.isNegative())
3375      return DAG.getNode(ISD::FABS, VT, N0);
3376    else
3377      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
3378  }
3379
3380  // copysign(fabs(x), y) -> copysign(x, y)
3381  // copysign(fneg(x), y) -> copysign(x, y)
3382  // copysign(copysign(x,z), y) -> copysign(x, y)
3383  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
3384      N0.getOpcode() == ISD::FCOPYSIGN)
3385    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
3386
3387  // copysign(x, abs(y)) -> abs(x)
3388  if (N1.getOpcode() == ISD::FABS)
3389    return DAG.getNode(ISD::FABS, VT, N0);
3390
3391  // copysign(x, copysign(y,z)) -> copysign(x, z)
3392  if (N1.getOpcode() == ISD::FCOPYSIGN)
3393    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
3394
3395  // copysign(x, fp_extend(y)) -> copysign(x, y)
3396  // copysign(x, fp_round(y)) -> copysign(x, y)
3397  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
3398    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
3399
3400  return SDOperand();
3401}
3402
3403
3404
3405SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
3406  SDOperand N0 = N->getOperand(0);
3407  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3408  MVT::ValueType VT = N->getValueType(0);
3409
3410  // fold (sint_to_fp c1) -> c1fp
3411  if (N0C && N0.getValueType() != MVT::ppcf128)
3412    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
3413  return SDOperand();
3414}
3415
3416SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
3417  SDOperand N0 = N->getOperand(0);
3418  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3419  MVT::ValueType VT = N->getValueType(0);
3420
3421  // fold (uint_to_fp c1) -> c1fp
3422  if (N0C && N0.getValueType() != MVT::ppcf128)
3423    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
3424  return SDOperand();
3425}
3426
3427SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
3428  SDOperand N0 = N->getOperand(0);
3429  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3430  MVT::ValueType VT = N->getValueType(0);
3431
3432  // fold (fp_to_sint c1fp) -> c1
3433  if (N0CFP)
3434    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
3435  return SDOperand();
3436}
3437
3438SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
3439  SDOperand N0 = N->getOperand(0);
3440  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3441  MVT::ValueType VT = N->getValueType(0);
3442
3443  // fold (fp_to_uint c1fp) -> c1
3444  if (N0CFP && VT != MVT::ppcf128)
3445    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
3446  return SDOperand();
3447}
3448
3449SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
3450  SDOperand N0 = N->getOperand(0);
3451  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3452  MVT::ValueType VT = N->getValueType(0);
3453
3454  // fold (fp_round c1fp) -> c1fp
3455  if (N0CFP && N0.getValueType() != MVT::ppcf128)
3456    return DAG.getNode(ISD::FP_ROUND, VT, N0);
3457
3458  // fold (fp_round (fp_extend x)) -> x
3459  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
3460    return N0.getOperand(0);
3461
3462  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
3463  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
3464    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0));
3465    AddToWorkList(Tmp.Val);
3466    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
3467  }
3468
3469  return SDOperand();
3470}
3471
3472SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
3473  SDOperand N0 = N->getOperand(0);
3474  MVT::ValueType VT = N->getValueType(0);
3475  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3476  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3477
3478  // fold (fp_round_inreg c1fp) -> c1fp
3479  if (N0CFP) {
3480    SDOperand Round = DAG.getConstantFP(N0CFP->getValueAPF(), EVT);
3481    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
3482  }
3483  return SDOperand();
3484}
3485
3486SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
3487  SDOperand N0 = N->getOperand(0);
3488  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3489  MVT::ValueType VT = N->getValueType(0);
3490
3491  // fold (fp_extend c1fp) -> c1fp
3492  if (N0CFP && VT != MVT::ppcf128)
3493    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
3494
3495  // fold (fpext (load x)) -> (fpext (fpround (extload x)))
3496  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3497      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3498    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3499    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3500                                       LN0->getBasePtr(), LN0->getSrcValue(),
3501                                       LN0->getSrcValueOffset(),
3502                                       N0.getValueType(),
3503                                       LN0->isVolatile(),
3504                                       LN0->getAlignment());
3505    CombineTo(N, ExtLoad);
3506    CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad),
3507              ExtLoad.getValue(1));
3508    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3509  }
3510
3511
3512  return SDOperand();
3513}
3514
3515SDOperand DAGCombiner::visitFNEG(SDNode *N) {
3516  SDOperand N0 = N->getOperand(0);
3517
3518  if (isNegatibleForFree(N0))
3519    return GetNegatedExpression(N0, DAG);
3520
3521  return SDOperand();
3522}
3523
3524SDOperand DAGCombiner::visitFABS(SDNode *N) {
3525  SDOperand N0 = N->getOperand(0);
3526  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3527  MVT::ValueType VT = N->getValueType(0);
3528
3529  // fold (fabs c1) -> fabs(c1)
3530  if (N0CFP && VT != MVT::ppcf128)
3531    return DAG.getNode(ISD::FABS, VT, N0);
3532  // fold (fabs (fabs x)) -> (fabs x)
3533  if (N0.getOpcode() == ISD::FABS)
3534    return N->getOperand(0);
3535  // fold (fabs (fneg x)) -> (fabs x)
3536  // fold (fabs (fcopysign x, y)) -> (fabs x)
3537  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
3538    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
3539
3540  return SDOperand();
3541}
3542
3543SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
3544  SDOperand Chain = N->getOperand(0);
3545  SDOperand N1 = N->getOperand(1);
3546  SDOperand N2 = N->getOperand(2);
3547  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3548
3549  // never taken branch, fold to chain
3550  if (N1C && N1C->isNullValue())
3551    return Chain;
3552  // unconditional branch
3553  if (N1C && N1C->getValue() == 1)
3554    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
3555  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
3556  // on the target.
3557  if (N1.getOpcode() == ISD::SETCC &&
3558      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
3559    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
3560                       N1.getOperand(0), N1.getOperand(1), N2);
3561  }
3562  return SDOperand();
3563}
3564
3565// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
3566//
3567SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
3568  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
3569  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
3570
3571  // Use SimplifySetCC  to simplify SETCC's.
3572  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
3573  if (Simp.Val) AddToWorkList(Simp.Val);
3574
3575  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
3576
3577  // fold br_cc true, dest -> br dest (unconditional branch)
3578  if (SCCC && SCCC->getValue())
3579    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
3580                       N->getOperand(4));
3581  // fold br_cc false, dest -> unconditional fall through
3582  if (SCCC && SCCC->isNullValue())
3583    return N->getOperand(0);
3584
3585  // fold to a simpler setcc
3586  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
3587    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
3588                       Simp.getOperand(2), Simp.getOperand(0),
3589                       Simp.getOperand(1), N->getOperand(4));
3590  return SDOperand();
3591}
3592
3593
3594/// CombineToPreIndexedLoadStore - Try turning a load / store and a
3595/// pre-indexed load / store when the base pointer is a add or subtract
3596/// and it has other uses besides the load / store. After the
3597/// transformation, the new indexed load / store has effectively folded
3598/// the add / subtract in and all of its other uses are redirected to the
3599/// new load / store.
3600bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
3601  if (!AfterLegalize)
3602    return false;
3603
3604  bool isLoad = true;
3605  SDOperand Ptr;
3606  MVT::ValueType VT;
3607  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
3608    if (LD->getAddressingMode() != ISD::UNINDEXED)
3609      return false;
3610    VT = LD->getLoadedVT();
3611    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
3612        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
3613      return false;
3614    Ptr = LD->getBasePtr();
3615  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
3616    if (ST->getAddressingMode() != ISD::UNINDEXED)
3617      return false;
3618    VT = ST->getStoredVT();
3619    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
3620        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
3621      return false;
3622    Ptr = ST->getBasePtr();
3623    isLoad = false;
3624  } else
3625    return false;
3626
3627  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
3628  // out.  There is no reason to make this a preinc/predec.
3629  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
3630      Ptr.Val->hasOneUse())
3631    return false;
3632
3633  // Ask the target to do addressing mode selection.
3634  SDOperand BasePtr;
3635  SDOperand Offset;
3636  ISD::MemIndexedMode AM = ISD::UNINDEXED;
3637  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
3638    return false;
3639  // Don't create a indexed load / store with zero offset.
3640  if (isa<ConstantSDNode>(Offset) &&
3641      cast<ConstantSDNode>(Offset)->getValue() == 0)
3642    return false;
3643
3644  // Try turning it into a pre-indexed load / store except when:
3645  // 1) The new base ptr is a frame index.
3646  // 2) If N is a store and the new base ptr is either the same as or is a
3647  //    predecessor of the value being stored.
3648  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
3649  //    that would create a cycle.
3650  // 4) All uses are load / store ops that use it as old base ptr.
3651
3652  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
3653  // (plus the implicit offset) to a register to preinc anyway.
3654  if (isa<FrameIndexSDNode>(BasePtr))
3655    return false;
3656
3657  // Check #2.
3658  if (!isLoad) {
3659    SDOperand Val = cast<StoreSDNode>(N)->getValue();
3660    if (Val == BasePtr || BasePtr.Val->isPredecessor(Val.Val))
3661      return false;
3662  }
3663
3664  // Now check for #3 and #4.
3665  bool RealUse = false;
3666  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
3667         E = Ptr.Val->use_end(); I != E; ++I) {
3668    SDNode *Use = *I;
3669    if (Use == N)
3670      continue;
3671    if (Use->isPredecessor(N))
3672      return false;
3673
3674    if (!((Use->getOpcode() == ISD::LOAD &&
3675           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
3676          (Use->getOpcode() == ISD::STORE) &&
3677          cast<StoreSDNode>(Use)->getBasePtr() == Ptr))
3678      RealUse = true;
3679  }
3680  if (!RealUse)
3681    return false;
3682
3683  SDOperand Result;
3684  if (isLoad)
3685    Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
3686  else
3687    Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
3688  ++PreIndexedNodes;
3689  ++NodesCombined;
3690  DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
3691  DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
3692  DOUT << '\n';
3693  std::vector<SDNode*> NowDead;
3694  if (isLoad) {
3695    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
3696                                  &NowDead);
3697    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
3698                                  &NowDead);
3699  } else {
3700    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
3701                                  &NowDead);
3702  }
3703
3704  // Nodes can end up on the worklist more than once.  Make sure we do
3705  // not process a node that has been replaced.
3706  for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3707    removeFromWorkList(NowDead[i]);
3708  // Finally, since the node is now dead, remove it from the graph.
3709  DAG.DeleteNode(N);
3710
3711  // Replace the uses of Ptr with uses of the updated base value.
3712  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
3713                                &NowDead);
3714  removeFromWorkList(Ptr.Val);
3715  for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3716    removeFromWorkList(NowDead[i]);
3717  DAG.DeleteNode(Ptr.Val);
3718
3719  return true;
3720}
3721
3722/// CombineToPostIndexedLoadStore - Try combine a load / store with a
3723/// add / sub of the base pointer node into a post-indexed load / store.
3724/// The transformation folded the add / subtract into the new indexed
3725/// load / store effectively and all of its uses are redirected to the
3726/// new load / store.
3727bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
3728  if (!AfterLegalize)
3729    return false;
3730
3731  bool isLoad = true;
3732  SDOperand Ptr;
3733  MVT::ValueType VT;
3734  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
3735    if (LD->getAddressingMode() != ISD::UNINDEXED)
3736      return false;
3737    VT = LD->getLoadedVT();
3738    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
3739        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
3740      return false;
3741    Ptr = LD->getBasePtr();
3742  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
3743    if (ST->getAddressingMode() != ISD::UNINDEXED)
3744      return false;
3745    VT = ST->getStoredVT();
3746    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
3747        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
3748      return false;
3749    Ptr = ST->getBasePtr();
3750    isLoad = false;
3751  } else
3752    return false;
3753
3754  if (Ptr.Val->hasOneUse())
3755    return false;
3756
3757  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
3758         E = Ptr.Val->use_end(); I != E; ++I) {
3759    SDNode *Op = *I;
3760    if (Op == N ||
3761        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
3762      continue;
3763
3764    SDOperand BasePtr;
3765    SDOperand Offset;
3766    ISD::MemIndexedMode AM = ISD::UNINDEXED;
3767    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
3768      if (Ptr == Offset)
3769        std::swap(BasePtr, Offset);
3770      if (Ptr != BasePtr)
3771        continue;
3772      // Don't create a indexed load / store with zero offset.
3773      if (isa<ConstantSDNode>(Offset) &&
3774          cast<ConstantSDNode>(Offset)->getValue() == 0)
3775        continue;
3776
3777      // Try turning it into a post-indexed load / store except when
3778      // 1) All uses are load / store ops that use it as base ptr.
3779      // 2) Op must be independent of N, i.e. Op is neither a predecessor
3780      //    nor a successor of N. Otherwise, if Op is folded that would
3781      //    create a cycle.
3782
3783      // Check for #1.
3784      bool TryNext = false;
3785      for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
3786             EE = BasePtr.Val->use_end(); II != EE; ++II) {
3787        SDNode *Use = *II;
3788        if (Use == Ptr.Val)
3789          continue;
3790
3791        // If all the uses are load / store addresses, then don't do the
3792        // transformation.
3793        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
3794          bool RealUse = false;
3795          for (SDNode::use_iterator III = Use->use_begin(),
3796                 EEE = Use->use_end(); III != EEE; ++III) {
3797            SDNode *UseUse = *III;
3798            if (!((UseUse->getOpcode() == ISD::LOAD &&
3799                   cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
3800                  (UseUse->getOpcode() == ISD::STORE) &&
3801                  cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use))
3802              RealUse = true;
3803          }
3804
3805          if (!RealUse) {
3806            TryNext = true;
3807            break;
3808          }
3809        }
3810      }
3811      if (TryNext)
3812        continue;
3813
3814      // Check for #2
3815      if (!Op->isPredecessor(N) && !N->isPredecessor(Op)) {
3816        SDOperand Result = isLoad
3817          ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
3818          : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
3819        ++PostIndexedNodes;
3820        ++NodesCombined;
3821        DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
3822        DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
3823        DOUT << '\n';
3824        std::vector<SDNode*> NowDead;
3825        if (isLoad) {
3826          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
3827                                        &NowDead);
3828          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
3829                                        &NowDead);
3830        } else {
3831          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
3832                                        &NowDead);
3833        }
3834
3835        // Nodes can end up on the worklist more than once.  Make sure we do
3836        // not process a node that has been replaced.
3837        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3838          removeFromWorkList(NowDead[i]);
3839        // Finally, since the node is now dead, remove it from the graph.
3840        DAG.DeleteNode(N);
3841
3842        // Replace the uses of Use with uses of the updated base value.
3843        DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
3844                                      Result.getValue(isLoad ? 1 : 0),
3845                                      &NowDead);
3846        removeFromWorkList(Op);
3847        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3848          removeFromWorkList(NowDead[i]);
3849        DAG.DeleteNode(Op);
3850
3851        return true;
3852      }
3853    }
3854  }
3855  return false;
3856}
3857
3858
3859SDOperand DAGCombiner::visitLOAD(SDNode *N) {
3860  LoadSDNode *LD  = cast<LoadSDNode>(N);
3861  SDOperand Chain = LD->getChain();
3862  SDOperand Ptr   = LD->getBasePtr();
3863
3864  // If load is not volatile and there are no uses of the loaded value (and
3865  // the updated indexed value in case of indexed loads), change uses of the
3866  // chain value into uses of the chain input (i.e. delete the dead load).
3867  if (!LD->isVolatile()) {
3868    if (N->getValueType(1) == MVT::Other) {
3869      // Unindexed loads.
3870      if (N->hasNUsesOfValue(0, 0))
3871        return CombineTo(N, DAG.getNode(ISD::UNDEF, N->getValueType(0)), Chain);
3872    } else {
3873      // Indexed loads.
3874      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
3875      if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
3876        SDOperand Undef0 = DAG.getNode(ISD::UNDEF, N->getValueType(0));
3877        SDOperand Undef1 = DAG.getNode(ISD::UNDEF, N->getValueType(1));
3878        SDOperand To[] = { Undef0, Undef1, Chain };
3879        return CombineTo(N, To, 3);
3880      }
3881    }
3882  }
3883
3884  // If this load is directly stored, replace the load value with the stored
3885  // value.
3886  // TODO: Handle store large -> read small portion.
3887  // TODO: Handle TRUNCSTORE/LOADEXT
3888  if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
3889    if (ISD::isNON_TRUNCStore(Chain.Val)) {
3890      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
3891      if (PrevST->getBasePtr() == Ptr &&
3892          PrevST->getValue().getValueType() == N->getValueType(0))
3893      return CombineTo(N, Chain.getOperand(1), Chain);
3894    }
3895  }
3896
3897  if (CombinerAA) {
3898    // Walk up chain skipping non-aliasing memory nodes.
3899    SDOperand BetterChain = FindBetterChain(N, Chain);
3900
3901    // If there is a better chain.
3902    if (Chain != BetterChain) {
3903      SDOperand ReplLoad;
3904
3905      // Replace the chain to void dependency.
3906      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
3907        ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
3908                              LD->getSrcValue(), LD->getSrcValueOffset(),
3909                              LD->isVolatile(), LD->getAlignment());
3910      } else {
3911        ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
3912                                  LD->getValueType(0),
3913                                  BetterChain, Ptr, LD->getSrcValue(),
3914                                  LD->getSrcValueOffset(),
3915                                  LD->getLoadedVT(),
3916                                  LD->isVolatile(),
3917                                  LD->getAlignment());
3918      }
3919
3920      // Create token factor to keep old chain connected.
3921      SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
3922                                    Chain, ReplLoad.getValue(1));
3923
3924      // Replace uses with load result and token factor. Don't add users
3925      // to work list.
3926      return CombineTo(N, ReplLoad.getValue(0), Token, false);
3927    }
3928  }
3929
3930  // Try transforming N to an indexed load.
3931  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
3932    return SDOperand(N, 0);
3933
3934  return SDOperand();
3935}
3936
3937SDOperand DAGCombiner::visitSTORE(SDNode *N) {
3938  StoreSDNode *ST  = cast<StoreSDNode>(N);
3939  SDOperand Chain = ST->getChain();
3940  SDOperand Value = ST->getValue();
3941  SDOperand Ptr   = ST->getBasePtr();
3942
3943  // If this is a store of a bit convert, store the input value if the
3944  // resultant store does not need a higher alignment than the original.
3945  if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
3946      ST->getAddressingMode() == ISD::UNINDEXED) {
3947    unsigned Align = ST->getAlignment();
3948    MVT::ValueType SVT = Value.getOperand(0).getValueType();
3949    unsigned OrigAlign = TLI.getTargetMachine().getTargetData()->
3950      getABITypeAlignment(MVT::getTypeForValueType(SVT));
3951    if (Align <= OrigAlign && TLI.isOperationLegal(ISD::STORE, SVT))
3952      return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
3953                          ST->getSrcValueOffset(), ST->isVolatile(), Align);
3954  }
3955
3956  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
3957  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
3958    if (Value.getOpcode() != ISD::TargetConstantFP) {
3959      SDOperand Tmp;
3960      switch (CFP->getValueType(0)) {
3961      default: assert(0 && "Unknown FP type");
3962      case MVT::f80:    // We don't do this for these yet.
3963      case MVT::f128:
3964      case MVT::ppcf128:
3965        break;
3966      case MVT::f32:
3967        if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
3968          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
3969                              convertToAPInt().getZExtValue(), MVT::i32);
3970          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
3971                              ST->getSrcValueOffset(), ST->isVolatile(),
3972                              ST->getAlignment());
3973        }
3974        break;
3975      case MVT::f64:
3976        if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
3977          Tmp = DAG.getConstant(CFP->getValueAPF().convertToAPInt().
3978                                  getZExtValue(), MVT::i64);
3979          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
3980                              ST->getSrcValueOffset(), ST->isVolatile(),
3981                              ST->getAlignment());
3982        } else if (TLI.isTypeLegal(MVT::i32)) {
3983          // Many FP stores are not make apparent until after legalize, e.g. for
3984          // argument passing.  Since this is so common, custom legalize the
3985          // 64-bit integer store into two 32-bit stores.
3986          uint64_t Val = CFP->getValueAPF().convertToAPInt().getZExtValue();
3987          SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
3988          SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
3989          if (!TLI.isLittleEndian()) std::swap(Lo, Hi);
3990
3991          int SVOffset = ST->getSrcValueOffset();
3992          unsigned Alignment = ST->getAlignment();
3993          bool isVolatile = ST->isVolatile();
3994
3995          SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
3996                                       ST->getSrcValueOffset(),
3997                                       isVolatile, ST->getAlignment());
3998          Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
3999                            DAG.getConstant(4, Ptr.getValueType()));
4000          SVOffset += 4;
4001          if (Alignment > 4)
4002            Alignment = 4;
4003          SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
4004                                       SVOffset, isVolatile, Alignment);
4005          return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
4006        }
4007        break;
4008      }
4009    }
4010  }
4011
4012  if (CombinerAA) {
4013    // Walk up chain skipping non-aliasing memory nodes.
4014    SDOperand BetterChain = FindBetterChain(N, Chain);
4015
4016    // If there is a better chain.
4017    if (Chain != BetterChain) {
4018      // Replace the chain to avoid dependency.
4019      SDOperand ReplStore;
4020      if (ST->isTruncatingStore()) {
4021        ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
4022          ST->getSrcValue(), ST->getSrcValueOffset(), ST->getStoredVT(),
4023          ST->isVolatile(), ST->getAlignment());
4024      } else {
4025        ReplStore = DAG.getStore(BetterChain, Value, Ptr,
4026          ST->getSrcValue(), ST->getSrcValueOffset(),
4027          ST->isVolatile(), ST->getAlignment());
4028      }
4029
4030      // Create token to keep both nodes around.
4031      SDOperand Token =
4032        DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
4033
4034      // Don't add users to work list.
4035      return CombineTo(N, Token, false);
4036    }
4037  }
4038
4039  // Try transforming N to an indexed store.
4040  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4041    return SDOperand(N, 0);
4042
4043  // FIXME: is there such a think as a truncating indexed store?
4044  if (ST->isTruncatingStore() && ST->getAddressingMode() == ISD::UNINDEXED &&
4045      MVT::isInteger(Value.getValueType())) {
4046    // See if we can simplify the input to this truncstore with knowledge that
4047    // only the low bits are being used.  For example:
4048    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
4049    SDOperand Shorter =
4050      GetDemandedBits(Value, MVT::getIntVTBitMask(ST->getStoredVT()));
4051    AddToWorkList(Value.Val);
4052    if (Shorter.Val)
4053      return DAG.getTruncStore(Chain, Shorter, Ptr, ST->getSrcValue(),
4054                               ST->getSrcValueOffset(), ST->getStoredVT(),
4055                               ST->isVolatile(), ST->getAlignment());
4056
4057    // Otherwise, see if we can simplify the operation with
4058    // SimplifyDemandedBits, which only works if the value has a single use.
4059    if (SimplifyDemandedBits(Value, MVT::getIntVTBitMask(ST->getStoredVT())))
4060      return SDOperand(N, 0);
4061  }
4062
4063  return SDOperand();
4064}
4065
4066SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
4067  SDOperand InVec = N->getOperand(0);
4068  SDOperand InVal = N->getOperand(1);
4069  SDOperand EltNo = N->getOperand(2);
4070
4071  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
4072  // vector with the inserted element.
4073  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
4074    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4075    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
4076    if (Elt < Ops.size())
4077      Ops[Elt] = InVal;
4078    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
4079                       &Ops[0], Ops.size());
4080  }
4081
4082  return SDOperand();
4083}
4084
4085SDOperand DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
4086  SDOperand InVec = N->getOperand(0);
4087  SDOperand EltNo = N->getOperand(1);
4088
4089  // (vextract (v4f32 s2v (f32 load $addr)), 0) -> (f32 load $addr)
4090  // (vextract (v4i32 bc (v4f32 s2v (f32 load $addr))), 0) -> (i32 load $addr)
4091  if (isa<ConstantSDNode>(EltNo)) {
4092    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4093    bool NewLoad = false;
4094    if (Elt == 0) {
4095      MVT::ValueType VT = InVec.getValueType();
4096      MVT::ValueType EVT = MVT::getVectorElementType(VT);
4097      MVT::ValueType LVT = EVT;
4098      unsigned NumElts = MVT::getVectorNumElements(VT);
4099      if (InVec.getOpcode() == ISD::BIT_CONVERT) {
4100        MVT::ValueType BCVT = InVec.getOperand(0).getValueType();
4101        if (NumElts != MVT::getVectorNumElements(BCVT))
4102          return SDOperand();
4103        InVec = InVec.getOperand(0);
4104        EVT = MVT::getVectorElementType(BCVT);
4105        NewLoad = true;
4106      }
4107      if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4108          InVec.getOperand(0).getValueType() == EVT &&
4109          ISD::isNormalLoad(InVec.getOperand(0).Val) &&
4110          InVec.getOperand(0).hasOneUse()) {
4111        LoadSDNode *LN0 = cast<LoadSDNode>(InVec.getOperand(0));
4112        unsigned Align = LN0->getAlignment();
4113        if (NewLoad) {
4114          // Check the resultant load doesn't need a higher alignment than the
4115          // original load.
4116          unsigned NewAlign = TLI.getTargetMachine().getTargetData()->
4117            getABITypeAlignment(MVT::getTypeForValueType(LVT));
4118          if (!TLI.isOperationLegal(ISD::LOAD, LVT) || NewAlign > Align)
4119            return SDOperand();
4120          Align = NewAlign;
4121        }
4122
4123        return DAG.getLoad(LVT, LN0->getChain(), LN0->getBasePtr(),
4124                           LN0->getSrcValue(), LN0->getSrcValueOffset(),
4125                           LN0->isVolatile(), Align);
4126      }
4127    }
4128  }
4129  return SDOperand();
4130}
4131
4132
4133SDOperand DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
4134  unsigned NumInScalars = N->getNumOperands();
4135  MVT::ValueType VT = N->getValueType(0);
4136  unsigned NumElts = MVT::getVectorNumElements(VT);
4137  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4138
4139  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
4140  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
4141  // at most two distinct vectors, turn this into a shuffle node.
4142  SDOperand VecIn1, VecIn2;
4143  for (unsigned i = 0; i != NumInScalars; ++i) {
4144    // Ignore undef inputs.
4145    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
4146
4147    // If this input is something other than a EXTRACT_VECTOR_ELT with a
4148    // constant index, bail out.
4149    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4150        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
4151      VecIn1 = VecIn2 = SDOperand(0, 0);
4152      break;
4153    }
4154
4155    // If the input vector type disagrees with the result of the build_vector,
4156    // we can't make a shuffle.
4157    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
4158    if (ExtractedFromVec.getValueType() != VT) {
4159      VecIn1 = VecIn2 = SDOperand(0, 0);
4160      break;
4161    }
4162
4163    // Otherwise, remember this.  We allow up to two distinct input vectors.
4164    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
4165      continue;
4166
4167    if (VecIn1.Val == 0) {
4168      VecIn1 = ExtractedFromVec;
4169    } else if (VecIn2.Val == 0) {
4170      VecIn2 = ExtractedFromVec;
4171    } else {
4172      // Too many inputs.
4173      VecIn1 = VecIn2 = SDOperand(0, 0);
4174      break;
4175    }
4176  }
4177
4178  // If everything is good, we can make a shuffle operation.
4179  if (VecIn1.Val) {
4180    SmallVector<SDOperand, 8> BuildVecIndices;
4181    for (unsigned i = 0; i != NumInScalars; ++i) {
4182      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
4183        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
4184        continue;
4185      }
4186
4187      SDOperand Extract = N->getOperand(i);
4188
4189      // If extracting from the first vector, just use the index directly.
4190      if (Extract.getOperand(0) == VecIn1) {
4191        BuildVecIndices.push_back(Extract.getOperand(1));
4192        continue;
4193      }
4194
4195      // Otherwise, use InIdx + VecSize
4196      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
4197      BuildVecIndices.push_back(DAG.getConstant(Idx+NumInScalars,
4198                                                TLI.getPointerTy()));
4199    }
4200
4201    // Add count and size info.
4202    MVT::ValueType BuildVecVT =
4203      MVT::getVectorType(TLI.getPointerTy(), NumElts);
4204
4205    // Return the new VECTOR_SHUFFLE node.
4206    SDOperand Ops[5];
4207    Ops[0] = VecIn1;
4208    if (VecIn2.Val) {
4209      Ops[1] = VecIn2;
4210    } else {
4211      // Use an undef build_vector as input for the second operand.
4212      std::vector<SDOperand> UnOps(NumInScalars,
4213                                   DAG.getNode(ISD::UNDEF,
4214                                               EltType));
4215      Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, VT,
4216                           &UnOps[0], UnOps.size());
4217      AddToWorkList(Ops[1].Val);
4218    }
4219    Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, BuildVecVT,
4220                         &BuildVecIndices[0], BuildVecIndices.size());
4221    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Ops, 3);
4222  }
4223
4224  return SDOperand();
4225}
4226
4227SDOperand DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
4228  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
4229  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
4230  // inputs come from at most two distinct vectors, turn this into a shuffle
4231  // node.
4232
4233  // If we only have one input vector, we don't need to do any concatenation.
4234  if (N->getNumOperands() == 1) {
4235    return N->getOperand(0);
4236  }
4237
4238  return SDOperand();
4239}
4240
4241SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
4242  SDOperand ShufMask = N->getOperand(2);
4243  unsigned NumElts = ShufMask.getNumOperands();
4244
4245  // If the shuffle mask is an identity operation on the LHS, return the LHS.
4246  bool isIdentity = true;
4247  for (unsigned i = 0; i != NumElts; ++i) {
4248    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4249        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
4250      isIdentity = false;
4251      break;
4252    }
4253  }
4254  if (isIdentity) return N->getOperand(0);
4255
4256  // If the shuffle mask is an identity operation on the RHS, return the RHS.
4257  isIdentity = true;
4258  for (unsigned i = 0; i != NumElts; ++i) {
4259    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4260        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
4261      isIdentity = false;
4262      break;
4263    }
4264  }
4265  if (isIdentity) return N->getOperand(1);
4266
4267  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
4268  // needed at all.
4269  bool isUnary = true;
4270  bool isSplat = true;
4271  int VecNum = -1;
4272  unsigned BaseIdx = 0;
4273  for (unsigned i = 0; i != NumElts; ++i)
4274    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
4275      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
4276      int V = (Idx < NumElts) ? 0 : 1;
4277      if (VecNum == -1) {
4278        VecNum = V;
4279        BaseIdx = Idx;
4280      } else {
4281        if (BaseIdx != Idx)
4282          isSplat = false;
4283        if (VecNum != V) {
4284          isUnary = false;
4285          break;
4286        }
4287      }
4288    }
4289
4290  SDOperand N0 = N->getOperand(0);
4291  SDOperand N1 = N->getOperand(1);
4292  // Normalize unary shuffle so the RHS is undef.
4293  if (isUnary && VecNum == 1)
4294    std::swap(N0, N1);
4295
4296  // If it is a splat, check if the argument vector is a build_vector with
4297  // all scalar elements the same.
4298  if (isSplat) {
4299    SDNode *V = N0.Val;
4300
4301    // If this is a bit convert that changes the element type of the vector but
4302    // not the number of vector elements, look through it.  Be careful not to
4303    // look though conversions that change things like v4f32 to v2f64.
4304    if (V->getOpcode() == ISD::BIT_CONVERT) {
4305      SDOperand ConvInput = V->getOperand(0);
4306      if (MVT::getVectorNumElements(ConvInput.getValueType()) == NumElts)
4307        V = ConvInput.Val;
4308    }
4309
4310    if (V->getOpcode() == ISD::BUILD_VECTOR) {
4311      unsigned NumElems = V->getNumOperands();
4312      if (NumElems > BaseIdx) {
4313        SDOperand Base;
4314        bool AllSame = true;
4315        for (unsigned i = 0; i != NumElems; ++i) {
4316          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
4317            Base = V->getOperand(i);
4318            break;
4319          }
4320        }
4321        // Splat of <u, u, u, u>, return <u, u, u, u>
4322        if (!Base.Val)
4323          return N0;
4324        for (unsigned i = 0; i != NumElems; ++i) {
4325          if (V->getOperand(i) != Base) {
4326            AllSame = false;
4327            break;
4328          }
4329        }
4330        // Splat of <x, x, x, x>, return <x, x, x, x>
4331        if (AllSame)
4332          return N0;
4333      }
4334    }
4335  }
4336
4337  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
4338  // into an undef.
4339  if (isUnary || N0 == N1) {
4340    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
4341    // first operand.
4342    SmallVector<SDOperand, 8> MappedOps;
4343    for (unsigned i = 0; i != NumElts; ++i) {
4344      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
4345          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
4346        MappedOps.push_back(ShufMask.getOperand(i));
4347      } else {
4348        unsigned NewIdx =
4349          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
4350        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
4351      }
4352    }
4353    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
4354                           &MappedOps[0], MappedOps.size());
4355    AddToWorkList(ShufMask.Val);
4356    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
4357                       N0,
4358                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
4359                       ShufMask);
4360  }
4361
4362  return SDOperand();
4363}
4364
4365/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
4366/// an AND to a vector_shuffle with the destination vector and a zero vector.
4367/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
4368///      vector_shuffle V, Zero, <0, 4, 2, 4>
4369SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
4370  SDOperand LHS = N->getOperand(0);
4371  SDOperand RHS = N->getOperand(1);
4372  if (N->getOpcode() == ISD::AND) {
4373    if (RHS.getOpcode() == ISD::BIT_CONVERT)
4374      RHS = RHS.getOperand(0);
4375    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
4376      std::vector<SDOperand> IdxOps;
4377      unsigned NumOps = RHS.getNumOperands();
4378      unsigned NumElts = NumOps;
4379      MVT::ValueType EVT = MVT::getVectorElementType(RHS.getValueType());
4380      for (unsigned i = 0; i != NumElts; ++i) {
4381        SDOperand Elt = RHS.getOperand(i);
4382        if (!isa<ConstantSDNode>(Elt))
4383          return SDOperand();
4384        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
4385          IdxOps.push_back(DAG.getConstant(i, EVT));
4386        else if (cast<ConstantSDNode>(Elt)->isNullValue())
4387          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
4388        else
4389          return SDOperand();
4390      }
4391
4392      // Let's see if the target supports this vector_shuffle.
4393      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
4394        return SDOperand();
4395
4396      // Return the new VECTOR_SHUFFLE node.
4397      MVT::ValueType VT = MVT::getVectorType(EVT, NumElts);
4398      std::vector<SDOperand> Ops;
4399      LHS = DAG.getNode(ISD::BIT_CONVERT, VT, LHS);
4400      Ops.push_back(LHS);
4401      AddToWorkList(LHS.Val);
4402      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
4403      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4404                                &ZeroOps[0], ZeroOps.size()));
4405      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4406                                &IdxOps[0], IdxOps.size()));
4407      SDOperand Result = DAG.getNode(ISD::VECTOR_SHUFFLE, VT,
4408                                     &Ops[0], Ops.size());
4409      if (VT != LHS.getValueType()) {
4410        Result = DAG.getNode(ISD::BIT_CONVERT, LHS.getValueType(), Result);
4411      }
4412      return Result;
4413    }
4414  }
4415  return SDOperand();
4416}
4417
4418/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
4419SDOperand DAGCombiner::SimplifyVBinOp(SDNode *N) {
4420  // After legalize, the target may be depending on adds and other
4421  // binary ops to provide legal ways to construct constants or other
4422  // things. Simplifying them may result in a loss of legality.
4423  if (AfterLegalize) return SDOperand();
4424
4425  MVT::ValueType VT = N->getValueType(0);
4426  assert(MVT::isVector(VT) && "SimplifyVBinOp only works on vectors!");
4427
4428  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4429  SDOperand LHS = N->getOperand(0);
4430  SDOperand RHS = N->getOperand(1);
4431  SDOperand Shuffle = XformToShuffleWithZero(N);
4432  if (Shuffle.Val) return Shuffle;
4433
4434  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
4435  // this operation.
4436  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
4437      RHS.getOpcode() == ISD::BUILD_VECTOR) {
4438    SmallVector<SDOperand, 8> Ops;
4439    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
4440      SDOperand LHSOp = LHS.getOperand(i);
4441      SDOperand RHSOp = RHS.getOperand(i);
4442      // If these two elements can't be folded, bail out.
4443      if ((LHSOp.getOpcode() != ISD::UNDEF &&
4444           LHSOp.getOpcode() != ISD::Constant &&
4445           LHSOp.getOpcode() != ISD::ConstantFP) ||
4446          (RHSOp.getOpcode() != ISD::UNDEF &&
4447           RHSOp.getOpcode() != ISD::Constant &&
4448           RHSOp.getOpcode() != ISD::ConstantFP))
4449        break;
4450      // Can't fold divide by zero.
4451      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
4452          N->getOpcode() == ISD::FDIV) {
4453        if ((RHSOp.getOpcode() == ISD::Constant &&
4454             cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
4455            (RHSOp.getOpcode() == ISD::ConstantFP &&
4456             cast<ConstantFPSDNode>(RHSOp.Val)->getValueAPF().isZero()))
4457          break;
4458      }
4459      Ops.push_back(DAG.getNode(N->getOpcode(), EltType, LHSOp, RHSOp));
4460      AddToWorkList(Ops.back().Val);
4461      assert((Ops.back().getOpcode() == ISD::UNDEF ||
4462              Ops.back().getOpcode() == ISD::Constant ||
4463              Ops.back().getOpcode() == ISD::ConstantFP) &&
4464             "Scalar binop didn't fold!");
4465    }
4466
4467    if (Ops.size() == LHS.getNumOperands()) {
4468      MVT::ValueType VT = LHS.getValueType();
4469      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
4470    }
4471  }
4472
4473  return SDOperand();
4474}
4475
4476SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
4477  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
4478
4479  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
4480                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4481  // If we got a simplified select_cc node back from SimplifySelectCC, then
4482  // break it down into a new SETCC node, and a new SELECT node, and then return
4483  // the SELECT node, since we were called with a SELECT node.
4484  if (SCC.Val) {
4485    // Check to see if we got a select_cc back (to turn into setcc/select).
4486    // Otherwise, just return whatever node we got back, like fabs.
4487    if (SCC.getOpcode() == ISD::SELECT_CC) {
4488      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
4489                                    SCC.getOperand(0), SCC.getOperand(1),
4490                                    SCC.getOperand(4));
4491      AddToWorkList(SETCC.Val);
4492      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
4493                         SCC.getOperand(3), SETCC);
4494    }
4495    return SCC;
4496  }
4497  return SDOperand();
4498}
4499
4500/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
4501/// are the two values being selected between, see if we can simplify the
4502/// select.  Callers of this should assume that TheSelect is deleted if this
4503/// returns true.  As such, they should return the appropriate thing (e.g. the
4504/// node) back to the top-level of the DAG combiner loop to avoid it being
4505/// looked at.
4506///
4507bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
4508                                    SDOperand RHS) {
4509
4510  // If this is a select from two identical things, try to pull the operation
4511  // through the select.
4512  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
4513    // If this is a load and the token chain is identical, replace the select
4514    // of two loads with a load through a select of the address to load from.
4515    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
4516    // constants have been dropped into the constant pool.
4517    if (LHS.getOpcode() == ISD::LOAD &&
4518        // Token chains must be identical.
4519        LHS.getOperand(0) == RHS.getOperand(0)) {
4520      LoadSDNode *LLD = cast<LoadSDNode>(LHS);
4521      LoadSDNode *RLD = cast<LoadSDNode>(RHS);
4522
4523      // If this is an EXTLOAD, the VT's must match.
4524      if (LLD->getLoadedVT() == RLD->getLoadedVT()) {
4525        // FIXME: this conflates two src values, discarding one.  This is not
4526        // the right thing to do, but nothing uses srcvalues now.  When they do,
4527        // turn SrcValue into a list of locations.
4528        SDOperand Addr;
4529        if (TheSelect->getOpcode() == ISD::SELECT) {
4530          // Check that the condition doesn't reach either load.  If so, folding
4531          // this will induce a cycle into the DAG.
4532          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4533              !RLD->isPredecessor(TheSelect->getOperand(0).Val)) {
4534            Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
4535                               TheSelect->getOperand(0), LLD->getBasePtr(),
4536                               RLD->getBasePtr());
4537          }
4538        } else {
4539          // Check that the condition doesn't reach either load.  If so, folding
4540          // this will induce a cycle into the DAG.
4541          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4542              !RLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4543              !LLD->isPredecessor(TheSelect->getOperand(1).Val) &&
4544              !RLD->isPredecessor(TheSelect->getOperand(1).Val)) {
4545            Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
4546                             TheSelect->getOperand(0),
4547                             TheSelect->getOperand(1),
4548                             LLD->getBasePtr(), RLD->getBasePtr(),
4549                             TheSelect->getOperand(4));
4550          }
4551        }
4552
4553        if (Addr.Val) {
4554          SDOperand Load;
4555          if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
4556            Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
4557                               Addr,LLD->getSrcValue(),
4558                               LLD->getSrcValueOffset(),
4559                               LLD->isVolatile(),
4560                               LLD->getAlignment());
4561          else {
4562            Load = DAG.getExtLoad(LLD->getExtensionType(),
4563                                  TheSelect->getValueType(0),
4564                                  LLD->getChain(), Addr, LLD->getSrcValue(),
4565                                  LLD->getSrcValueOffset(),
4566                                  LLD->getLoadedVT(),
4567                                  LLD->isVolatile(),
4568                                  LLD->getAlignment());
4569          }
4570          // Users of the select now use the result of the load.
4571          CombineTo(TheSelect, Load);
4572
4573          // Users of the old loads now use the new load's chain.  We know the
4574          // old-load value is dead now.
4575          CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
4576          CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
4577          return true;
4578        }
4579      }
4580    }
4581  }
4582
4583  return false;
4584}
4585
4586SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
4587                                        SDOperand N2, SDOperand N3,
4588                                        ISD::CondCode CC, bool NotExtCompare) {
4589
4590  MVT::ValueType VT = N2.getValueType();
4591  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
4592  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
4593  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
4594
4595  // Determine if the condition we're dealing with is constant
4596  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
4597  if (SCC.Val) AddToWorkList(SCC.Val);
4598  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
4599
4600  // fold select_cc true, x, y -> x
4601  if (SCCC && SCCC->getValue())
4602    return N2;
4603  // fold select_cc false, x, y -> y
4604  if (SCCC && SCCC->getValue() == 0)
4605    return N3;
4606
4607  // Check to see if we can simplify the select into an fabs node
4608  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
4609    // Allow either -0.0 or 0.0
4610    if (CFP->getValueAPF().isZero()) {
4611      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
4612      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
4613          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
4614          N2 == N3.getOperand(0))
4615        return DAG.getNode(ISD::FABS, VT, N0);
4616
4617      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
4618      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
4619          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
4620          N2.getOperand(0) == N3)
4621        return DAG.getNode(ISD::FABS, VT, N3);
4622    }
4623  }
4624
4625  // Check to see if we can perform the "gzip trick", transforming
4626  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
4627  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
4628      MVT::isInteger(N0.getValueType()) &&
4629      MVT::isInteger(N2.getValueType()) &&
4630      (N1C->isNullValue() ||                    // (a < 0) ? b : 0
4631       (N1C->getValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
4632    MVT::ValueType XType = N0.getValueType();
4633    MVT::ValueType AType = N2.getValueType();
4634    if (XType >= AType) {
4635      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
4636      // single-bit constant.
4637      if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
4638        unsigned ShCtV = Log2_64(N2C->getValue());
4639        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
4640        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
4641        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
4642        AddToWorkList(Shift.Val);
4643        if (XType > AType) {
4644          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
4645          AddToWorkList(Shift.Val);
4646        }
4647        return DAG.getNode(ISD::AND, AType, Shift, N2);
4648      }
4649      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
4650                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
4651                                                    TLI.getShiftAmountTy()));
4652      AddToWorkList(Shift.Val);
4653      if (XType > AType) {
4654        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
4655        AddToWorkList(Shift.Val);
4656      }
4657      return DAG.getNode(ISD::AND, AType, Shift, N2);
4658    }
4659  }
4660
4661  // fold select C, 16, 0 -> shl C, 4
4662  if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
4663      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
4664
4665    // If the caller doesn't want us to simplify this into a zext of a compare,
4666    // don't do it.
4667    if (NotExtCompare && N2C->getValue() == 1)
4668      return SDOperand();
4669
4670    // Get a SetCC of the condition
4671    // FIXME: Should probably make sure that setcc is legal if we ever have a
4672    // target where it isn't.
4673    SDOperand Temp, SCC;
4674    // cast from setcc result type to select result type
4675    if (AfterLegalize) {
4676      SCC  = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
4677      if (N2.getValueType() < SCC.getValueType())
4678        Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
4679      else
4680        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
4681    } else {
4682      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
4683      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
4684    }
4685    AddToWorkList(SCC.Val);
4686    AddToWorkList(Temp.Val);
4687
4688    if (N2C->getValue() == 1)
4689      return Temp;
4690    // shl setcc result by log2 n2c
4691    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
4692                       DAG.getConstant(Log2_64(N2C->getValue()),
4693                                       TLI.getShiftAmountTy()));
4694  }
4695
4696  // Check to see if this is the equivalent of setcc
4697  // FIXME: Turn all of these into setcc if setcc if setcc is legal
4698  // otherwise, go ahead with the folds.
4699  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
4700    MVT::ValueType XType = N0.getValueType();
4701    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
4702      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
4703      if (Res.getValueType() != VT)
4704        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
4705      return Res;
4706    }
4707
4708    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
4709    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
4710        TLI.isOperationLegal(ISD::CTLZ, XType)) {
4711      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
4712      return DAG.getNode(ISD::SRL, XType, Ctlz,
4713                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
4714                                         TLI.getShiftAmountTy()));
4715    }
4716    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
4717    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
4718      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
4719                                    N0);
4720      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
4721                                    DAG.getConstant(~0ULL, XType));
4722      return DAG.getNode(ISD::SRL, XType,
4723                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
4724                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
4725                                         TLI.getShiftAmountTy()));
4726    }
4727    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
4728    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
4729      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
4730                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
4731                                                   TLI.getShiftAmountTy()));
4732      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
4733    }
4734  }
4735
4736  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
4737  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4738  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
4739      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
4740      N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) {
4741    MVT::ValueType XType = N0.getValueType();
4742    SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
4743                                  DAG.getConstant(MVT::getSizeInBits(XType)-1,
4744                                                  TLI.getShiftAmountTy()));
4745    SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
4746    AddToWorkList(Shift.Val);
4747    AddToWorkList(Add.Val);
4748    return DAG.getNode(ISD::XOR, XType, Add, Shift);
4749  }
4750  // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
4751  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4752  if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
4753      N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
4754    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
4755      MVT::ValueType XType = N0.getValueType();
4756      if (SubC->isNullValue() && MVT::isInteger(XType)) {
4757        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
4758                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
4759                                                      TLI.getShiftAmountTy()));
4760        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
4761        AddToWorkList(Shift.Val);
4762        AddToWorkList(Add.Val);
4763        return DAG.getNode(ISD::XOR, XType, Add, Shift);
4764      }
4765    }
4766  }
4767
4768  return SDOperand();
4769}
4770
4771/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
4772SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
4773                                     SDOperand N1, ISD::CondCode Cond,
4774                                     bool foldBooleans) {
4775  TargetLowering::DAGCombinerInfo
4776    DagCombineInfo(DAG, !AfterLegalize, false, this);
4777  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
4778}
4779
4780/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
4781/// return a DAG expression to select that will generate the same value by
4782/// multiplying by a magic number.  See:
4783/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
4784SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
4785  std::vector<SDNode*> Built;
4786  SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
4787
4788  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
4789       ii != ee; ++ii)
4790    AddToWorkList(*ii);
4791  return S;
4792}
4793
4794/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
4795/// return a DAG expression to select that will generate the same value by
4796/// multiplying by a magic number.  See:
4797/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
4798SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
4799  std::vector<SDNode*> Built;
4800  SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
4801
4802  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
4803       ii != ee; ++ii)
4804    AddToWorkList(*ii);
4805  return S;
4806}
4807
4808/// FindBaseOffset - Return true if base is known not to alias with anything
4809/// but itself.  Provides base object and offset as results.
4810static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
4811  // Assume it is a primitive operation.
4812  Base = Ptr; Offset = 0;
4813
4814  // If it's an adding a simple constant then integrate the offset.
4815  if (Base.getOpcode() == ISD::ADD) {
4816    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
4817      Base = Base.getOperand(0);
4818      Offset += C->getValue();
4819    }
4820  }
4821
4822  // If it's any of the following then it can't alias with anything but itself.
4823  return isa<FrameIndexSDNode>(Base) ||
4824         isa<ConstantPoolSDNode>(Base) ||
4825         isa<GlobalAddressSDNode>(Base);
4826}
4827
4828/// isAlias - Return true if there is any possibility that the two addresses
4829/// overlap.
4830bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
4831                          const Value *SrcValue1, int SrcValueOffset1,
4832                          SDOperand Ptr2, int64_t Size2,
4833                          const Value *SrcValue2, int SrcValueOffset2)
4834{
4835  // If they are the same then they must be aliases.
4836  if (Ptr1 == Ptr2) return true;
4837
4838  // Gather base node and offset information.
4839  SDOperand Base1, Base2;
4840  int64_t Offset1, Offset2;
4841  bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
4842  bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
4843
4844  // If they have a same base address then...
4845  if (Base1 == Base2) {
4846    // Check to see if the addresses overlap.
4847    return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
4848  }
4849
4850  // If we know both bases then they can't alias.
4851  if (KnownBase1 && KnownBase2) return false;
4852
4853  if (CombinerGlobalAA) {
4854    // Use alias analysis information.
4855    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
4856    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
4857    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
4858    AliasAnalysis::AliasResult AAResult =
4859                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
4860    if (AAResult == AliasAnalysis::NoAlias)
4861      return false;
4862  }
4863
4864  // Otherwise we have to assume they alias.
4865  return true;
4866}
4867
4868/// FindAliasInfo - Extracts the relevant alias information from the memory
4869/// node.  Returns true if the operand was a load.
4870bool DAGCombiner::FindAliasInfo(SDNode *N,
4871                        SDOperand &Ptr, int64_t &Size,
4872                        const Value *&SrcValue, int &SrcValueOffset) {
4873  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4874    Ptr = LD->getBasePtr();
4875    Size = MVT::getSizeInBits(LD->getLoadedVT()) >> 3;
4876    SrcValue = LD->getSrcValue();
4877    SrcValueOffset = LD->getSrcValueOffset();
4878    return true;
4879  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4880    Ptr = ST->getBasePtr();
4881    Size = MVT::getSizeInBits(ST->getStoredVT()) >> 3;
4882    SrcValue = ST->getSrcValue();
4883    SrcValueOffset = ST->getSrcValueOffset();
4884  } else {
4885    assert(0 && "FindAliasInfo expected a memory operand");
4886  }
4887
4888  return false;
4889}
4890
4891/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
4892/// looking for aliasing nodes and adding them to the Aliases vector.
4893void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
4894                                   SmallVector<SDOperand, 8> &Aliases) {
4895  SmallVector<SDOperand, 8> Chains;     // List of chains to visit.
4896  std::set<SDNode *> Visited;           // Visited node set.
4897
4898  // Get alias information for node.
4899  SDOperand Ptr;
4900  int64_t Size;
4901  const Value *SrcValue;
4902  int SrcValueOffset;
4903  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
4904
4905  // Starting off.
4906  Chains.push_back(OriginalChain);
4907
4908  // Look at each chain and determine if it is an alias.  If so, add it to the
4909  // aliases list.  If not, then continue up the chain looking for the next
4910  // candidate.
4911  while (!Chains.empty()) {
4912    SDOperand Chain = Chains.back();
4913    Chains.pop_back();
4914
4915     // Don't bother if we've been before.
4916    if (Visited.find(Chain.Val) != Visited.end()) continue;
4917    Visited.insert(Chain.Val);
4918
4919    switch (Chain.getOpcode()) {
4920    case ISD::EntryToken:
4921      // Entry token is ideal chain operand, but handled in FindBetterChain.
4922      break;
4923
4924    case ISD::LOAD:
4925    case ISD::STORE: {
4926      // Get alias information for Chain.
4927      SDOperand OpPtr;
4928      int64_t OpSize;
4929      const Value *OpSrcValue;
4930      int OpSrcValueOffset;
4931      bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
4932                                    OpSrcValue, OpSrcValueOffset);
4933
4934      // If chain is alias then stop here.
4935      if (!(IsLoad && IsOpLoad) &&
4936          isAlias(Ptr, Size, SrcValue, SrcValueOffset,
4937                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
4938        Aliases.push_back(Chain);
4939      } else {
4940        // Look further up the chain.
4941        Chains.push_back(Chain.getOperand(0));
4942        // Clean up old chain.
4943        AddToWorkList(Chain.Val);
4944      }
4945      break;
4946    }
4947
4948    case ISD::TokenFactor:
4949      // We have to check each of the operands of the token factor, so we queue
4950      // then up.  Adding the  operands to the queue (stack) in reverse order
4951      // maintains the original order and increases the likelihood that getNode
4952      // will find a matching token factor (CSE.)
4953      for (unsigned n = Chain.getNumOperands(); n;)
4954        Chains.push_back(Chain.getOperand(--n));
4955      // Eliminate the token factor if we can.
4956      AddToWorkList(Chain.Val);
4957      break;
4958
4959    default:
4960      // For all other instructions we will just have to take what we can get.
4961      Aliases.push_back(Chain);
4962      break;
4963    }
4964  }
4965}
4966
4967/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
4968/// for a better chain (aliasing node.)
4969SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
4970  SmallVector<SDOperand, 8> Aliases;  // Ops for replacing token factor.
4971
4972  // Accumulate all the aliases to this node.
4973  GatherAllAliases(N, OldChain, Aliases);
4974
4975  if (Aliases.size() == 0) {
4976    // If no operands then chain to entry token.
4977    return DAG.getEntryNode();
4978  } else if (Aliases.size() == 1) {
4979    // If a single operand then chain to it.  We don't need to revisit it.
4980    return Aliases[0];
4981  }
4982
4983  // Construct a custom tailored token factor.
4984  SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4985                                   &Aliases[0], Aliases.size());
4986
4987  // Make sure the old chain gets cleaned up.
4988  if (NewChain != OldChain) AddToWorkList(OldChain.Val);
4989
4990  return NewChain;
4991}
4992
4993// SelectionDAG::Combine - This is the entry point for the file.
4994//
4995void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
4996  if (!RunningAfterLegalize && ViewDAGCombine1)
4997    viewGraph();
4998  if (RunningAfterLegalize && ViewDAGCombine2)
4999    viewGraph();
5000  /// run - This is the main entry point to this class.
5001  ///
5002  DAGCombiner(*this, AA).Run(RunningAfterLegalize);
5003}
5004