DAGCombiner.cpp revision 272ea0323999890d8bcf75b873a1c8ab2cdcba0d
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/DataLayout.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include <algorithm>
38using namespace llvm;
39
40STATISTIC(NodesCombined   , "Number of dag nodes combined");
41STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
42STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
43STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
44STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
45
46namespace {
47  static cl::opt<bool>
48    CombinerAA("combiner-alias-analysis", cl::Hidden,
49               cl::desc("Turn on alias analysis during testing"));
50
51  static cl::opt<bool>
52    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
53               cl::desc("Include global information in alias analysis"));
54
55//------------------------------ DAGCombiner ---------------------------------//
56
57  class DAGCombiner {
58    SelectionDAG &DAG;
59    const TargetLowering &TLI;
60    CombineLevel Level;
61    CodeGenOpt::Level OptLevel;
62    bool LegalOperations;
63    bool LegalTypes;
64
65    // Worklist of all of the nodes that need to be simplified.
66    //
67    // This has the semantics that when adding to the worklist,
68    // the item added must be next to be processed. It should
69    // also only appear once. The naive approach to this takes
70    // linear time.
71    //
72    // To reduce the insert/remove time to logarithmic, we use
73    // a set and a vector to maintain our worklist.
74    //
75    // The set contains the items on the worklist, but does not
76    // maintain the order they should be visited.
77    //
78    // The vector maintains the order nodes should be visited, but may
79    // contain duplicate or removed nodes. When choosing a node to
80    // visit, we pop off the order stack until we find an item that is
81    // also in the contents set. All operations are O(log N).
82    SmallPtrSet<SDNode*, 64> WorkListContents;
83    SmallVector<SDNode*, 64> WorkListOrder;
84
85    // AA - Used for DAG load/store alias analysis.
86    AliasAnalysis &AA;
87
88    /// AddUsersToWorkList - When an instruction is simplified, add all users of
89    /// the instruction to the work lists because they might get more simplified
90    /// now.
91    ///
92    void AddUsersToWorkList(SDNode *N) {
93      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
94           UI != UE; ++UI)
95        AddToWorkList(*UI);
96    }
97
98    /// visit - call the node-specific routine that knows how to fold each
99    /// particular type of node.
100    SDValue visit(SDNode *N);
101
102  public:
103    /// AddToWorkList - Add to the work list making sure its instance is at the
104    /// back (next to be processed.)
105    void AddToWorkList(SDNode *N) {
106      WorkListContents.insert(N);
107      WorkListOrder.push_back(N);
108    }
109
110    /// removeFromWorkList - remove all instances of N from the worklist.
111    ///
112    void removeFromWorkList(SDNode *N) {
113      WorkListContents.erase(N);
114    }
115
116    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
117                      bool AddTo = true);
118
119    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
120      return CombineTo(N, &Res, 1, AddTo);
121    }
122
123    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
124                      bool AddTo = true) {
125      SDValue To[] = { Res0, Res1 };
126      return CombineTo(N, To, 2, AddTo);
127    }
128
129    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
130
131  private:
132
133    /// SimplifyDemandedBits - Check the specified integer node value to see if
134    /// it can be simplified or if things it uses can be simplified by bit
135    /// propagation.  If so, return true.
136    bool SimplifyDemandedBits(SDValue Op) {
137      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
138      APInt Demanded = APInt::getAllOnesValue(BitWidth);
139      return SimplifyDemandedBits(Op, Demanded);
140    }
141
142    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
143
144    bool CombineToPreIndexedLoadStore(SDNode *N);
145    bool CombineToPostIndexedLoadStore(SDNode *N);
146
147    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
148    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
149    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
150    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
151    SDValue PromoteIntBinOp(SDValue Op);
152    SDValue PromoteIntShiftOp(SDValue Op);
153    SDValue PromoteExtend(SDValue Op);
154    bool PromoteLoad(SDValue Op);
155
156    void ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
157                         SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
158                         ISD::NodeType ExtType);
159
160    /// combine - call the node-specific routine that knows how to fold each
161    /// particular type of node. If that doesn't do anything, try the
162    /// target-specific DAG combines.
163    SDValue combine(SDNode *N);
164
165    // Visitation implementation - Implement dag node combining for different
166    // node types.  The semantics are as follows:
167    // Return Value:
168    //   SDValue.getNode() == 0 - No change was made
169    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
170    //   otherwise              - N should be replaced by the returned Operand.
171    //
172    SDValue visitTokenFactor(SDNode *N);
173    SDValue visitMERGE_VALUES(SDNode *N);
174    SDValue visitADD(SDNode *N);
175    SDValue visitSUB(SDNode *N);
176    SDValue visitADDC(SDNode *N);
177    SDValue visitSUBC(SDNode *N);
178    SDValue visitADDE(SDNode *N);
179    SDValue visitSUBE(SDNode *N);
180    SDValue visitMUL(SDNode *N);
181    SDValue visitSDIV(SDNode *N);
182    SDValue visitUDIV(SDNode *N);
183    SDValue visitSREM(SDNode *N);
184    SDValue visitUREM(SDNode *N);
185    SDValue visitMULHU(SDNode *N);
186    SDValue visitMULHS(SDNode *N);
187    SDValue visitSMUL_LOHI(SDNode *N);
188    SDValue visitUMUL_LOHI(SDNode *N);
189    SDValue visitSMULO(SDNode *N);
190    SDValue visitUMULO(SDNode *N);
191    SDValue visitSDIVREM(SDNode *N);
192    SDValue visitUDIVREM(SDNode *N);
193    SDValue visitAND(SDNode *N);
194    SDValue visitOR(SDNode *N);
195    SDValue visitXOR(SDNode *N);
196    SDValue SimplifyVBinOp(SDNode *N);
197    SDValue SimplifyVUnaryOp(SDNode *N);
198    SDValue visitSHL(SDNode *N);
199    SDValue visitSRA(SDNode *N);
200    SDValue visitSRL(SDNode *N);
201    SDValue visitCTLZ(SDNode *N);
202    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
203    SDValue visitCTTZ(SDNode *N);
204    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
205    SDValue visitCTPOP(SDNode *N);
206    SDValue visitSELECT(SDNode *N);
207    SDValue visitSELECT_CC(SDNode *N);
208    SDValue visitSETCC(SDNode *N);
209    SDValue visitSIGN_EXTEND(SDNode *N);
210    SDValue visitZERO_EXTEND(SDNode *N);
211    SDValue visitANY_EXTEND(SDNode *N);
212    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
213    SDValue visitTRUNCATE(SDNode *N);
214    SDValue visitBITCAST(SDNode *N);
215    SDValue visitBUILD_PAIR(SDNode *N);
216    SDValue visitFADD(SDNode *N);
217    SDValue visitFSUB(SDNode *N);
218    SDValue visitFMUL(SDNode *N);
219    SDValue visitFMA(SDNode *N);
220    SDValue visitFDIV(SDNode *N);
221    SDValue visitFREM(SDNode *N);
222    SDValue visitFCOPYSIGN(SDNode *N);
223    SDValue visitSINT_TO_FP(SDNode *N);
224    SDValue visitUINT_TO_FP(SDNode *N);
225    SDValue visitFP_TO_SINT(SDNode *N);
226    SDValue visitFP_TO_UINT(SDNode *N);
227    SDValue visitFP_ROUND(SDNode *N);
228    SDValue visitFP_ROUND_INREG(SDNode *N);
229    SDValue visitFP_EXTEND(SDNode *N);
230    SDValue visitFNEG(SDNode *N);
231    SDValue visitFABS(SDNode *N);
232    SDValue visitFCEIL(SDNode *N);
233    SDValue visitFTRUNC(SDNode *N);
234    SDValue visitFFLOOR(SDNode *N);
235    SDValue visitBRCOND(SDNode *N);
236    SDValue visitBR_CC(SDNode *N);
237    SDValue visitLOAD(SDNode *N);
238    SDValue visitSTORE(SDNode *N);
239    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
240    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
241    SDValue visitBUILD_VECTOR(SDNode *N);
242    SDValue visitCONCAT_VECTORS(SDNode *N);
243    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
244    SDValue visitVECTOR_SHUFFLE(SDNode *N);
245    SDValue visitMEMBARRIER(SDNode *N);
246
247    SDValue XformToShuffleWithZero(SDNode *N);
248    SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS);
249
250    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
251
252    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
253    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
254    SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2);
255    SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2,
256                             SDValue N3, ISD::CondCode CC,
257                             bool NotExtCompare = false);
258    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
259                          DebugLoc DL, bool foldBooleans = true);
260    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
261                                         unsigned HiOp);
262    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
263    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
264    SDValue BuildSDIV(SDNode *N);
265    SDValue BuildUDIV(SDNode *N);
266    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
267                               bool DemandHighBits = true);
268    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
269    SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
270    SDValue ReduceLoadWidth(SDNode *N);
271    SDValue ReduceLoadOpStoreWidth(SDNode *N);
272    SDValue TransformFPLoadStorePair(SDNode *N);
273
274    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
275
276    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
277    /// looking for aliasing nodes and adding them to the Aliases vector.
278    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
279                          SmallVector<SDValue, 8> &Aliases);
280
281    /// isAlias - Return true if there is any possibility that the two addresses
282    /// overlap.
283    bool isAlias(SDValue Ptr1, int64_t Size1,
284                 const Value *SrcValue1, int SrcValueOffset1,
285                 unsigned SrcValueAlign1,
286                 const MDNode *TBAAInfo1,
287                 SDValue Ptr2, int64_t Size2,
288                 const Value *SrcValue2, int SrcValueOffset2,
289                 unsigned SrcValueAlign2,
290                 const MDNode *TBAAInfo2) const;
291
292    /// FindAliasInfo - Extracts the relevant alias information from the memory
293    /// node.  Returns true if the operand was a load.
294    bool FindAliasInfo(SDNode *N,
295                       SDValue &Ptr, int64_t &Size,
296                       const Value *&SrcValue, int &SrcValueOffset,
297                       unsigned &SrcValueAlignment,
298                       const MDNode *&TBAAInfo) const;
299
300    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
301    /// looking for a better chain (aliasing node.)
302    SDValue FindBetterChain(SDNode *N, SDValue Chain);
303
304    /// Merge consecutive store operations into a wide store.
305    /// This optimization uses wide integers or vectors when possible.
306    /// \return True if some memory operations were changed.
307    bool MergeConsecutiveStores(StoreSDNode *N);
308
309  public:
310    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
311      : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
312        OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {}
313
314    /// Run - runs the dag combiner on all nodes in the work list
315    void Run(CombineLevel AtLevel);
316
317    SelectionDAG &getDAG() const { return DAG; }
318
319    /// getShiftAmountTy - Returns a type large enough to hold any valid
320    /// shift amount - before type legalization these can be huge.
321    EVT getShiftAmountTy(EVT LHSTy) {
322      return LegalTypes ? TLI.getShiftAmountTy(LHSTy) : TLI.getPointerTy();
323    }
324
325    /// isTypeLegal - This method returns true if we are running before type
326    /// legalization or if the specified VT is legal.
327    bool isTypeLegal(const EVT &VT) {
328      if (!LegalTypes) return true;
329      return TLI.isTypeLegal(VT);
330    }
331  };
332}
333
334
335namespace {
336/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
337/// nodes from the worklist.
338class WorkListRemover : public SelectionDAG::DAGUpdateListener {
339  DAGCombiner &DC;
340public:
341  explicit WorkListRemover(DAGCombiner &dc)
342    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
343
344  virtual void NodeDeleted(SDNode *N, SDNode *E) {
345    DC.removeFromWorkList(N);
346  }
347};
348}
349
350//===----------------------------------------------------------------------===//
351//  TargetLowering::DAGCombinerInfo implementation
352//===----------------------------------------------------------------------===//
353
354void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
355  ((DAGCombiner*)DC)->AddToWorkList(N);
356}
357
358void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
359  ((DAGCombiner*)DC)->removeFromWorkList(N);
360}
361
362SDValue TargetLowering::DAGCombinerInfo::
363CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
364  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
365}
366
367SDValue TargetLowering::DAGCombinerInfo::
368CombineTo(SDNode *N, SDValue Res, bool AddTo) {
369  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
370}
371
372
373SDValue TargetLowering::DAGCombinerInfo::
374CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
375  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
376}
377
378void TargetLowering::DAGCombinerInfo::
379CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
380  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
381}
382
383//===----------------------------------------------------------------------===//
384// Helper Functions
385//===----------------------------------------------------------------------===//
386
387/// isNegatibleForFree - Return 1 if we can compute the negated form of the
388/// specified expression for the same cost as the expression itself, or 2 if we
389/// can compute the negated form more cheaply than the expression itself.
390static char isNegatibleForFree(SDValue Op, bool LegalOperations,
391                               const TargetLowering &TLI,
392                               const TargetOptions *Options,
393                               unsigned Depth = 0) {
394  // No compile time optimizations on this type.
395  if (Op.getValueType() == MVT::ppcf128)
396    return 0;
397
398  // fneg is removable even if it has multiple uses.
399  if (Op.getOpcode() == ISD::FNEG) return 2;
400
401  // Don't allow anything with multiple uses.
402  if (!Op.hasOneUse()) return 0;
403
404  // Don't recurse exponentially.
405  if (Depth > 6) return 0;
406
407  switch (Op.getOpcode()) {
408  default: return false;
409  case ISD::ConstantFP:
410    // Don't invert constant FP values after legalize.  The negated constant
411    // isn't necessarily legal.
412    return LegalOperations ? 0 : 1;
413  case ISD::FADD:
414    // FIXME: determine better conditions for this xform.
415    if (!Options->UnsafeFPMath) return 0;
416
417    // After operation legalization, it might not be legal to create new FSUBs.
418    if (LegalOperations &&
419        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
420      return 0;
421
422    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
423    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
424                                    Options, Depth + 1))
425      return V;
426    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
427    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
428                              Depth + 1);
429  case ISD::FSUB:
430    // We can't turn -(A-B) into B-A when we honor signed zeros.
431    if (!Options->UnsafeFPMath) return 0;
432
433    // fold (fneg (fsub A, B)) -> (fsub B, A)
434    return 1;
435
436  case ISD::FMUL:
437  case ISD::FDIV:
438    if (Options->HonorSignDependentRoundingFPMath()) return 0;
439
440    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
441    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
442                                    Options, Depth + 1))
443      return V;
444
445    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
446                              Depth + 1);
447
448  case ISD::FP_EXTEND:
449  case ISD::FP_ROUND:
450  case ISD::FSIN:
451    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
452                              Depth + 1);
453  }
454}
455
456/// GetNegatedExpression - If isNegatibleForFree returns true, this function
457/// returns the newly negated expression.
458static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
459                                    bool LegalOperations, unsigned Depth = 0) {
460  // fneg is removable even if it has multiple uses.
461  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
462
463  // Don't allow anything with multiple uses.
464  assert(Op.hasOneUse() && "Unknown reuse!");
465
466  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
467  switch (Op.getOpcode()) {
468  default: llvm_unreachable("Unknown code");
469  case ISD::ConstantFP: {
470    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
471    V.changeSign();
472    return DAG.getConstantFP(V, Op.getValueType());
473  }
474  case ISD::FADD:
475    // FIXME: determine better conditions for this xform.
476    assert(DAG.getTarget().Options.UnsafeFPMath);
477
478    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
479    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
480                           DAG.getTargetLoweringInfo(),
481                           &DAG.getTarget().Options, Depth+1))
482      return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
483                         GetNegatedExpression(Op.getOperand(0), DAG,
484                                              LegalOperations, Depth+1),
485                         Op.getOperand(1));
486    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
487    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
488                       GetNegatedExpression(Op.getOperand(1), DAG,
489                                            LegalOperations, Depth+1),
490                       Op.getOperand(0));
491  case ISD::FSUB:
492    // We can't turn -(A-B) into B-A when we honor signed zeros.
493    assert(DAG.getTarget().Options.UnsafeFPMath);
494
495    // fold (fneg (fsub 0, B)) -> B
496    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
497      if (N0CFP->getValueAPF().isZero())
498        return Op.getOperand(1);
499
500    // fold (fneg (fsub A, B)) -> (fsub B, A)
501    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
502                       Op.getOperand(1), Op.getOperand(0));
503
504  case ISD::FMUL:
505  case ISD::FDIV:
506    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
507
508    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
509    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
510                           DAG.getTargetLoweringInfo(),
511                           &DAG.getTarget().Options, Depth+1))
512      return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
513                         GetNegatedExpression(Op.getOperand(0), DAG,
514                                              LegalOperations, Depth+1),
515                         Op.getOperand(1));
516
517    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
518    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
519                       Op.getOperand(0),
520                       GetNegatedExpression(Op.getOperand(1), DAG,
521                                            LegalOperations, Depth+1));
522
523  case ISD::FP_EXTEND:
524  case ISD::FSIN:
525    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
526                       GetNegatedExpression(Op.getOperand(0), DAG,
527                                            LegalOperations, Depth+1));
528  case ISD::FP_ROUND:
529      return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(),
530                         GetNegatedExpression(Op.getOperand(0), DAG,
531                                              LegalOperations, Depth+1),
532                         Op.getOperand(1));
533  }
534}
535
536
537// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
538// that selects between the values 1 and 0, making it equivalent to a setcc.
539// Also, set the incoming LHS, RHS, and CC references to the appropriate
540// nodes based on the type of node we are checking.  This simplifies life a
541// bit for the callers.
542static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
543                              SDValue &CC) {
544  if (N.getOpcode() == ISD::SETCC) {
545    LHS = N.getOperand(0);
546    RHS = N.getOperand(1);
547    CC  = N.getOperand(2);
548    return true;
549  }
550  if (N.getOpcode() == ISD::SELECT_CC &&
551      N.getOperand(2).getOpcode() == ISD::Constant &&
552      N.getOperand(3).getOpcode() == ISD::Constant &&
553      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
554      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
555    LHS = N.getOperand(0);
556    RHS = N.getOperand(1);
557    CC  = N.getOperand(4);
558    return true;
559  }
560  return false;
561}
562
563// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
564// one use.  If this is true, it allows the users to invert the operation for
565// free when it is profitable to do so.
566static bool isOneUseSetCC(SDValue N) {
567  SDValue N0, N1, N2;
568  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
569    return true;
570  return false;
571}
572
573SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL,
574                                    SDValue N0, SDValue N1) {
575  EVT VT = N0.getValueType();
576  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
577    if (isa<ConstantSDNode>(N1)) {
578      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
579      SDValue OpNode =
580        DAG.FoldConstantArithmetic(Opc, VT,
581                                   cast<ConstantSDNode>(N0.getOperand(1)),
582                                   cast<ConstantSDNode>(N1));
583      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
584    }
585    if (N0.hasOneUse()) {
586      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
587      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
588                                   N0.getOperand(0), N1);
589      AddToWorkList(OpNode.getNode());
590      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
591    }
592  }
593
594  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
595    if (isa<ConstantSDNode>(N0)) {
596      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
597      SDValue OpNode =
598        DAG.FoldConstantArithmetic(Opc, VT,
599                                   cast<ConstantSDNode>(N1.getOperand(1)),
600                                   cast<ConstantSDNode>(N0));
601      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
602    }
603    if (N1.hasOneUse()) {
604      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
605      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
606                                   N1.getOperand(0), N0);
607      AddToWorkList(OpNode.getNode());
608      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
609    }
610  }
611
612  return SDValue();
613}
614
615SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
616                               bool AddTo) {
617  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
618  ++NodesCombined;
619  DEBUG(dbgs() << "\nReplacing.1 ";
620        N->dump(&DAG);
621        dbgs() << "\nWith: ";
622        To[0].getNode()->dump(&DAG);
623        dbgs() << " and " << NumTo-1 << " other values\n";
624        for (unsigned i = 0, e = NumTo; i != e; ++i)
625          assert((!To[i].getNode() ||
626                  N->getValueType(i) == To[i].getValueType()) &&
627                 "Cannot combine value to value of different type!"));
628  WorkListRemover DeadNodes(*this);
629  DAG.ReplaceAllUsesWith(N, To);
630  if (AddTo) {
631    // Push the new nodes and any users onto the worklist
632    for (unsigned i = 0, e = NumTo; i != e; ++i) {
633      if (To[i].getNode()) {
634        AddToWorkList(To[i].getNode());
635        AddUsersToWorkList(To[i].getNode());
636      }
637    }
638  }
639
640  // Finally, if the node is now dead, remove it from the graph.  The node
641  // may not be dead if the replacement process recursively simplified to
642  // something else needing this node.
643  if (N->use_empty()) {
644    // Nodes can be reintroduced into the worklist.  Make sure we do not
645    // process a node that has been replaced.
646    removeFromWorkList(N);
647
648    // Finally, since the node is now dead, remove it from the graph.
649    DAG.DeleteNode(N);
650  }
651  return SDValue(N, 0);
652}
653
654void DAGCombiner::
655CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
656  // Replace all uses.  If any nodes become isomorphic to other nodes and
657  // are deleted, make sure to remove them from our worklist.
658  WorkListRemover DeadNodes(*this);
659  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
660
661  // Push the new node and any (possibly new) users onto the worklist.
662  AddToWorkList(TLO.New.getNode());
663  AddUsersToWorkList(TLO.New.getNode());
664
665  // Finally, if the node is now dead, remove it from the graph.  The node
666  // may not be dead if the replacement process recursively simplified to
667  // something else needing this node.
668  if (TLO.Old.getNode()->use_empty()) {
669    removeFromWorkList(TLO.Old.getNode());
670
671    // If the operands of this node are only used by the node, they will now
672    // be dead.  Make sure to visit them first to delete dead nodes early.
673    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
674      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
675        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
676
677    DAG.DeleteNode(TLO.Old.getNode());
678  }
679}
680
681/// SimplifyDemandedBits - Check the specified integer node value to see if
682/// it can be simplified or if things it uses can be simplified by bit
683/// propagation.  If so, return true.
684bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
685  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
686  APInt KnownZero, KnownOne;
687  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
688    return false;
689
690  // Revisit the node.
691  AddToWorkList(Op.getNode());
692
693  // Replace the old value with the new one.
694  ++NodesCombined;
695  DEBUG(dbgs() << "\nReplacing.2 ";
696        TLO.Old.getNode()->dump(&DAG);
697        dbgs() << "\nWith: ";
698        TLO.New.getNode()->dump(&DAG);
699        dbgs() << '\n');
700
701  CommitTargetLoweringOpt(TLO);
702  return true;
703}
704
705void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
706  DebugLoc dl = Load->getDebugLoc();
707  EVT VT = Load->getValueType(0);
708  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
709
710  DEBUG(dbgs() << "\nReplacing.9 ";
711        Load->dump(&DAG);
712        dbgs() << "\nWith: ";
713        Trunc.getNode()->dump(&DAG);
714        dbgs() << '\n');
715  WorkListRemover DeadNodes(*this);
716  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
717  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
718  removeFromWorkList(Load);
719  DAG.DeleteNode(Load);
720  AddToWorkList(Trunc.getNode());
721}
722
723SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
724  Replace = false;
725  DebugLoc dl = Op.getDebugLoc();
726  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
727    EVT MemVT = LD->getMemoryVT();
728    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
729      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
730                                                  : ISD::EXTLOAD)
731      : LD->getExtensionType();
732    Replace = true;
733    return DAG.getExtLoad(ExtType, dl, PVT,
734                          LD->getChain(), LD->getBasePtr(),
735                          LD->getPointerInfo(),
736                          MemVT, LD->isVolatile(),
737                          LD->isNonTemporal(), LD->getAlignment());
738  }
739
740  unsigned Opc = Op.getOpcode();
741  switch (Opc) {
742  default: break;
743  case ISD::AssertSext:
744    return DAG.getNode(ISD::AssertSext, dl, PVT,
745                       SExtPromoteOperand(Op.getOperand(0), PVT),
746                       Op.getOperand(1));
747  case ISD::AssertZext:
748    return DAG.getNode(ISD::AssertZext, dl, PVT,
749                       ZExtPromoteOperand(Op.getOperand(0), PVT),
750                       Op.getOperand(1));
751  case ISD::Constant: {
752    unsigned ExtOpc =
753      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
754    return DAG.getNode(ExtOpc, dl, PVT, Op);
755  }
756  }
757
758  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
759    return SDValue();
760  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
761}
762
763SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
764  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
765    return SDValue();
766  EVT OldVT = Op.getValueType();
767  DebugLoc dl = Op.getDebugLoc();
768  bool Replace = false;
769  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
770  if (NewOp.getNode() == 0)
771    return SDValue();
772  AddToWorkList(NewOp.getNode());
773
774  if (Replace)
775    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
776  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
777                     DAG.getValueType(OldVT));
778}
779
780SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
781  EVT OldVT = Op.getValueType();
782  DebugLoc dl = Op.getDebugLoc();
783  bool Replace = false;
784  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
785  if (NewOp.getNode() == 0)
786    return SDValue();
787  AddToWorkList(NewOp.getNode());
788
789  if (Replace)
790    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
791  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
792}
793
794/// PromoteIntBinOp - Promote the specified integer binary operation if the
795/// target indicates it is beneficial. e.g. On x86, it's usually better to
796/// promote i16 operations to i32 since i16 instructions are longer.
797SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
798  if (!LegalOperations)
799    return SDValue();
800
801  EVT VT = Op.getValueType();
802  if (VT.isVector() || !VT.isInteger())
803    return SDValue();
804
805  // If operation type is 'undesirable', e.g. i16 on x86, consider
806  // promoting it.
807  unsigned Opc = Op.getOpcode();
808  if (TLI.isTypeDesirableForOp(Opc, VT))
809    return SDValue();
810
811  EVT PVT = VT;
812  // Consult target whether it is a good idea to promote this operation and
813  // what's the right type to promote it to.
814  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
815    assert(PVT != VT && "Don't know what type to promote to!");
816
817    bool Replace0 = false;
818    SDValue N0 = Op.getOperand(0);
819    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
820    if (NN0.getNode() == 0)
821      return SDValue();
822
823    bool Replace1 = false;
824    SDValue N1 = Op.getOperand(1);
825    SDValue NN1;
826    if (N0 == N1)
827      NN1 = NN0;
828    else {
829      NN1 = PromoteOperand(N1, PVT, Replace1);
830      if (NN1.getNode() == 0)
831        return SDValue();
832    }
833
834    AddToWorkList(NN0.getNode());
835    if (NN1.getNode())
836      AddToWorkList(NN1.getNode());
837
838    if (Replace0)
839      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
840    if (Replace1)
841      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
842
843    DEBUG(dbgs() << "\nPromoting ";
844          Op.getNode()->dump(&DAG));
845    DebugLoc dl = Op.getDebugLoc();
846    return DAG.getNode(ISD::TRUNCATE, dl, VT,
847                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
848  }
849  return SDValue();
850}
851
852/// PromoteIntShiftOp - Promote the specified integer shift operation if the
853/// target indicates it is beneficial. e.g. On x86, it's usually better to
854/// promote i16 operations to i32 since i16 instructions are longer.
855SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
856  if (!LegalOperations)
857    return SDValue();
858
859  EVT VT = Op.getValueType();
860  if (VT.isVector() || !VT.isInteger())
861    return SDValue();
862
863  // If operation type is 'undesirable', e.g. i16 on x86, consider
864  // promoting it.
865  unsigned Opc = Op.getOpcode();
866  if (TLI.isTypeDesirableForOp(Opc, VT))
867    return SDValue();
868
869  EVT PVT = VT;
870  // Consult target whether it is a good idea to promote this operation and
871  // what's the right type to promote it to.
872  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
873    assert(PVT != VT && "Don't know what type to promote to!");
874
875    bool Replace = false;
876    SDValue N0 = Op.getOperand(0);
877    if (Opc == ISD::SRA)
878      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
879    else if (Opc == ISD::SRL)
880      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
881    else
882      N0 = PromoteOperand(N0, PVT, Replace);
883    if (N0.getNode() == 0)
884      return SDValue();
885
886    AddToWorkList(N0.getNode());
887    if (Replace)
888      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
889
890    DEBUG(dbgs() << "\nPromoting ";
891          Op.getNode()->dump(&DAG));
892    DebugLoc dl = Op.getDebugLoc();
893    return DAG.getNode(ISD::TRUNCATE, dl, VT,
894                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
895  }
896  return SDValue();
897}
898
899SDValue DAGCombiner::PromoteExtend(SDValue Op) {
900  if (!LegalOperations)
901    return SDValue();
902
903  EVT VT = Op.getValueType();
904  if (VT.isVector() || !VT.isInteger())
905    return SDValue();
906
907  // If operation type is 'undesirable', e.g. i16 on x86, consider
908  // promoting it.
909  unsigned Opc = Op.getOpcode();
910  if (TLI.isTypeDesirableForOp(Opc, VT))
911    return SDValue();
912
913  EVT PVT = VT;
914  // Consult target whether it is a good idea to promote this operation and
915  // what's the right type to promote it to.
916  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
917    assert(PVT != VT && "Don't know what type to promote to!");
918    // fold (aext (aext x)) -> (aext x)
919    // fold (aext (zext x)) -> (zext x)
920    // fold (aext (sext x)) -> (sext x)
921    DEBUG(dbgs() << "\nPromoting ";
922          Op.getNode()->dump(&DAG));
923    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), VT, Op.getOperand(0));
924  }
925  return SDValue();
926}
927
928bool DAGCombiner::PromoteLoad(SDValue Op) {
929  if (!LegalOperations)
930    return false;
931
932  EVT VT = Op.getValueType();
933  if (VT.isVector() || !VT.isInteger())
934    return false;
935
936  // If operation type is 'undesirable', e.g. i16 on x86, consider
937  // promoting it.
938  unsigned Opc = Op.getOpcode();
939  if (TLI.isTypeDesirableForOp(Opc, VT))
940    return false;
941
942  EVT PVT = VT;
943  // Consult target whether it is a good idea to promote this operation and
944  // what's the right type to promote it to.
945  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
946    assert(PVT != VT && "Don't know what type to promote to!");
947
948    DebugLoc dl = Op.getDebugLoc();
949    SDNode *N = Op.getNode();
950    LoadSDNode *LD = cast<LoadSDNode>(N);
951    EVT MemVT = LD->getMemoryVT();
952    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
953      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
954                                                  : ISD::EXTLOAD)
955      : LD->getExtensionType();
956    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
957                                   LD->getChain(), LD->getBasePtr(),
958                                   LD->getPointerInfo(),
959                                   MemVT, LD->isVolatile(),
960                                   LD->isNonTemporal(), LD->getAlignment());
961    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
962
963    DEBUG(dbgs() << "\nPromoting ";
964          N->dump(&DAG);
965          dbgs() << "\nTo: ";
966          Result.getNode()->dump(&DAG);
967          dbgs() << '\n');
968    WorkListRemover DeadNodes(*this);
969    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
970    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
971    removeFromWorkList(N);
972    DAG.DeleteNode(N);
973    AddToWorkList(Result.getNode());
974    return true;
975  }
976  return false;
977}
978
979
980//===----------------------------------------------------------------------===//
981//  Main DAG Combiner implementation
982//===----------------------------------------------------------------------===//
983
984void DAGCombiner::Run(CombineLevel AtLevel) {
985  // set the instance variables, so that the various visit routines may use it.
986  Level = AtLevel;
987  LegalOperations = Level >= AfterLegalizeVectorOps;
988  LegalTypes = Level >= AfterLegalizeTypes;
989
990  // Add all the dag nodes to the worklist.
991  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
992       E = DAG.allnodes_end(); I != E; ++I)
993    AddToWorkList(I);
994
995  // Create a dummy node (which is not added to allnodes), that adds a reference
996  // to the root node, preventing it from being deleted, and tracking any
997  // changes of the root.
998  HandleSDNode Dummy(DAG.getRoot());
999
1000  // The root of the dag may dangle to deleted nodes until the dag combiner is
1001  // done.  Set it to null to avoid confusion.
1002  DAG.setRoot(SDValue());
1003
1004  // while the worklist isn't empty, find a node and
1005  // try and combine it.
1006  while (!WorkListContents.empty()) {
1007    SDNode *N;
1008    // The WorkListOrder holds the SDNodes in order, but it may contain duplicates.
1009    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1010    // worklist *should* contain, and check the node we want to visit is should
1011    // actually be visited.
1012    do {
1013      N = WorkListOrder.pop_back_val();
1014    } while (!WorkListContents.erase(N));
1015
1016    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1017    // N is deleted from the DAG, since they too may now be dead or may have a
1018    // reduced number of uses, allowing other xforms.
1019    if (N->use_empty() && N != &Dummy) {
1020      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1021        AddToWorkList(N->getOperand(i).getNode());
1022
1023      DAG.DeleteNode(N);
1024      continue;
1025    }
1026
1027    SDValue RV = combine(N);
1028
1029    if (RV.getNode() == 0)
1030      continue;
1031
1032    ++NodesCombined;
1033
1034    // If we get back the same node we passed in, rather than a new node or
1035    // zero, we know that the node must have defined multiple values and
1036    // CombineTo was used.  Since CombineTo takes care of the worklist
1037    // mechanics for us, we have no work to do in this case.
1038    if (RV.getNode() == N)
1039      continue;
1040
1041    assert(N->getOpcode() != ISD::DELETED_NODE &&
1042           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1043           "Node was deleted but visit returned new node!");
1044
1045    DEBUG(dbgs() << "\nReplacing.3 ";
1046          N->dump(&DAG);
1047          dbgs() << "\nWith: ";
1048          RV.getNode()->dump(&DAG);
1049          dbgs() << '\n');
1050
1051    // Transfer debug value.
1052    DAG.TransferDbgValues(SDValue(N, 0), RV);
1053    WorkListRemover DeadNodes(*this);
1054    if (N->getNumValues() == RV.getNode()->getNumValues())
1055      DAG.ReplaceAllUsesWith(N, RV.getNode());
1056    else {
1057      assert(N->getValueType(0) == RV.getValueType() &&
1058             N->getNumValues() == 1 && "Type mismatch");
1059      SDValue OpV = RV;
1060      DAG.ReplaceAllUsesWith(N, &OpV);
1061    }
1062
1063    // Push the new node and any users onto the worklist
1064    AddToWorkList(RV.getNode());
1065    AddUsersToWorkList(RV.getNode());
1066
1067    // Add any uses of the old node to the worklist in case this node is the
1068    // last one that uses them.  They may become dead after this node is
1069    // deleted.
1070    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1071      AddToWorkList(N->getOperand(i).getNode());
1072
1073    // Finally, if the node is now dead, remove it from the graph.  The node
1074    // may not be dead if the replacement process recursively simplified to
1075    // something else needing this node.
1076    if (N->use_empty()) {
1077      // Nodes can be reintroduced into the worklist.  Make sure we do not
1078      // process a node that has been replaced.
1079      removeFromWorkList(N);
1080
1081      // Finally, since the node is now dead, remove it from the graph.
1082      DAG.DeleteNode(N);
1083    }
1084  }
1085
1086  // If the root changed (e.g. it was a dead load, update the root).
1087  DAG.setRoot(Dummy.getValue());
1088  DAG.RemoveDeadNodes();
1089}
1090
1091SDValue DAGCombiner::visit(SDNode *N) {
1092  switch (N->getOpcode()) {
1093  default: break;
1094  case ISD::TokenFactor:        return visitTokenFactor(N);
1095  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1096  case ISD::ADD:                return visitADD(N);
1097  case ISD::SUB:                return visitSUB(N);
1098  case ISD::ADDC:               return visitADDC(N);
1099  case ISD::SUBC:               return visitSUBC(N);
1100  case ISD::ADDE:               return visitADDE(N);
1101  case ISD::SUBE:               return visitSUBE(N);
1102  case ISD::MUL:                return visitMUL(N);
1103  case ISD::SDIV:               return visitSDIV(N);
1104  case ISD::UDIV:               return visitUDIV(N);
1105  case ISD::SREM:               return visitSREM(N);
1106  case ISD::UREM:               return visitUREM(N);
1107  case ISD::MULHU:              return visitMULHU(N);
1108  case ISD::MULHS:              return visitMULHS(N);
1109  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1110  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1111  case ISD::SMULO:              return visitSMULO(N);
1112  case ISD::UMULO:              return visitUMULO(N);
1113  case ISD::SDIVREM:            return visitSDIVREM(N);
1114  case ISD::UDIVREM:            return visitUDIVREM(N);
1115  case ISD::AND:                return visitAND(N);
1116  case ISD::OR:                 return visitOR(N);
1117  case ISD::XOR:                return visitXOR(N);
1118  case ISD::SHL:                return visitSHL(N);
1119  case ISD::SRA:                return visitSRA(N);
1120  case ISD::SRL:                return visitSRL(N);
1121  case ISD::CTLZ:               return visitCTLZ(N);
1122  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1123  case ISD::CTTZ:               return visitCTTZ(N);
1124  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1125  case ISD::CTPOP:              return visitCTPOP(N);
1126  case ISD::SELECT:             return visitSELECT(N);
1127  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1128  case ISD::SETCC:              return visitSETCC(N);
1129  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1130  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1131  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1132  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1133  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1134  case ISD::BITCAST:            return visitBITCAST(N);
1135  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1136  case ISD::FADD:               return visitFADD(N);
1137  case ISD::FSUB:               return visitFSUB(N);
1138  case ISD::FMUL:               return visitFMUL(N);
1139  case ISD::FMA:                return visitFMA(N);
1140  case ISD::FDIV:               return visitFDIV(N);
1141  case ISD::FREM:               return visitFREM(N);
1142  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1143  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1144  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1145  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1146  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1147  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1148  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1149  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1150  case ISD::FNEG:               return visitFNEG(N);
1151  case ISD::FABS:               return visitFABS(N);
1152  case ISD::FFLOOR:             return visitFFLOOR(N);
1153  case ISD::FCEIL:              return visitFCEIL(N);
1154  case ISD::FTRUNC:             return visitFTRUNC(N);
1155  case ISD::BRCOND:             return visitBRCOND(N);
1156  case ISD::BR_CC:              return visitBR_CC(N);
1157  case ISD::LOAD:               return visitLOAD(N);
1158  case ISD::STORE:              return visitSTORE(N);
1159  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1160  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1161  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1162  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1163  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1164  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1165  case ISD::MEMBARRIER:         return visitMEMBARRIER(N);
1166  }
1167  return SDValue();
1168}
1169
1170SDValue DAGCombiner::combine(SDNode *N) {
1171  SDValue RV = visit(N);
1172
1173  // If nothing happened, try a target-specific DAG combine.
1174  if (RV.getNode() == 0) {
1175    assert(N->getOpcode() != ISD::DELETED_NODE &&
1176           "Node was deleted but visit returned NULL!");
1177
1178    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1179        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1180
1181      // Expose the DAG combiner to the target combiner impls.
1182      TargetLowering::DAGCombinerInfo
1183        DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
1184
1185      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1186    }
1187  }
1188
1189  // If nothing happened still, try promoting the operation.
1190  if (RV.getNode() == 0) {
1191    switch (N->getOpcode()) {
1192    default: break;
1193    case ISD::ADD:
1194    case ISD::SUB:
1195    case ISD::MUL:
1196    case ISD::AND:
1197    case ISD::OR:
1198    case ISD::XOR:
1199      RV = PromoteIntBinOp(SDValue(N, 0));
1200      break;
1201    case ISD::SHL:
1202    case ISD::SRA:
1203    case ISD::SRL:
1204      RV = PromoteIntShiftOp(SDValue(N, 0));
1205      break;
1206    case ISD::SIGN_EXTEND:
1207    case ISD::ZERO_EXTEND:
1208    case ISD::ANY_EXTEND:
1209      RV = PromoteExtend(SDValue(N, 0));
1210      break;
1211    case ISD::LOAD:
1212      if (PromoteLoad(SDValue(N, 0)))
1213        RV = SDValue(N, 0);
1214      break;
1215    }
1216  }
1217
1218  // If N is a commutative binary node, try commuting it to enable more
1219  // sdisel CSE.
1220  if (RV.getNode() == 0 &&
1221      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1222      N->getNumValues() == 1) {
1223    SDValue N0 = N->getOperand(0);
1224    SDValue N1 = N->getOperand(1);
1225
1226    // Constant operands are canonicalized to RHS.
1227    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1228      SDValue Ops[] = { N1, N0 };
1229      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1230                                            Ops, 2);
1231      if (CSENode)
1232        return SDValue(CSENode, 0);
1233    }
1234  }
1235
1236  return RV;
1237}
1238
1239/// getInputChainForNode - Given a node, return its input chain if it has one,
1240/// otherwise return a null sd operand.
1241static SDValue getInputChainForNode(SDNode *N) {
1242  if (unsigned NumOps = N->getNumOperands()) {
1243    if (N->getOperand(0).getValueType() == MVT::Other)
1244      return N->getOperand(0);
1245    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1246      return N->getOperand(NumOps-1);
1247    for (unsigned i = 1; i < NumOps-1; ++i)
1248      if (N->getOperand(i).getValueType() == MVT::Other)
1249        return N->getOperand(i);
1250  }
1251  return SDValue();
1252}
1253
1254SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1255  // If N has two operands, where one has an input chain equal to the other,
1256  // the 'other' chain is redundant.
1257  if (N->getNumOperands() == 2) {
1258    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1259      return N->getOperand(0);
1260    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1261      return N->getOperand(1);
1262  }
1263
1264  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1265  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1266  SmallPtrSet<SDNode*, 16> SeenOps;
1267  bool Changed = false;             // If we should replace this token factor.
1268
1269  // Start out with this token factor.
1270  TFs.push_back(N);
1271
1272  // Iterate through token factors.  The TFs grows when new token factors are
1273  // encountered.
1274  for (unsigned i = 0; i < TFs.size(); ++i) {
1275    SDNode *TF = TFs[i];
1276
1277    // Check each of the operands.
1278    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1279      SDValue Op = TF->getOperand(i);
1280
1281      switch (Op.getOpcode()) {
1282      case ISD::EntryToken:
1283        // Entry tokens don't need to be added to the list. They are
1284        // rededundant.
1285        Changed = true;
1286        break;
1287
1288      case ISD::TokenFactor:
1289        if (Op.hasOneUse() &&
1290            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1291          // Queue up for processing.
1292          TFs.push_back(Op.getNode());
1293          // Clean up in case the token factor is removed.
1294          AddToWorkList(Op.getNode());
1295          Changed = true;
1296          break;
1297        }
1298        // Fall thru
1299
1300      default:
1301        // Only add if it isn't already in the list.
1302        if (SeenOps.insert(Op.getNode()))
1303          Ops.push_back(Op);
1304        else
1305          Changed = true;
1306        break;
1307      }
1308    }
1309  }
1310
1311  SDValue Result;
1312
1313  // If we've change things around then replace token factor.
1314  if (Changed) {
1315    if (Ops.empty()) {
1316      // The entry token is the only possible outcome.
1317      Result = DAG.getEntryNode();
1318    } else {
1319      // New and improved token factor.
1320      Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
1321                           MVT::Other, &Ops[0], Ops.size());
1322    }
1323
1324    // Don't add users to work list.
1325    return CombineTo(N, Result, false);
1326  }
1327
1328  return Result;
1329}
1330
1331/// MERGE_VALUES can always be eliminated.
1332SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1333  WorkListRemover DeadNodes(*this);
1334  // Replacing results may cause a different MERGE_VALUES to suddenly
1335  // be CSE'd with N, and carry its uses with it. Iterate until no
1336  // uses remain, to ensure that the node can be safely deleted.
1337  // First add the users of this node to the work list so that they
1338  // can be tried again once they have new operands.
1339  AddUsersToWorkList(N);
1340  do {
1341    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1342      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1343  } while (!N->use_empty());
1344  removeFromWorkList(N);
1345  DAG.DeleteNode(N);
1346  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1347}
1348
1349static
1350SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
1351                              SelectionDAG &DAG) {
1352  EVT VT = N0.getValueType();
1353  SDValue N00 = N0.getOperand(0);
1354  SDValue N01 = N0.getOperand(1);
1355  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1356
1357  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1358      isa<ConstantSDNode>(N00.getOperand(1))) {
1359    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1360    N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
1361                     DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT,
1362                                 N00.getOperand(0), N01),
1363                     DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT,
1364                                 N00.getOperand(1), N01));
1365    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1366  }
1367
1368  return SDValue();
1369}
1370
1371SDValue DAGCombiner::visitADD(SDNode *N) {
1372  SDValue N0 = N->getOperand(0);
1373  SDValue N1 = N->getOperand(1);
1374  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1375  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1376  EVT VT = N0.getValueType();
1377
1378  // fold vector ops
1379  if (VT.isVector()) {
1380    SDValue FoldedVOp = SimplifyVBinOp(N);
1381    if (FoldedVOp.getNode()) return FoldedVOp;
1382  }
1383
1384  // fold (add x, undef) -> undef
1385  if (N0.getOpcode() == ISD::UNDEF)
1386    return N0;
1387  if (N1.getOpcode() == ISD::UNDEF)
1388    return N1;
1389  // fold (add c1, c2) -> c1+c2
1390  if (N0C && N1C)
1391    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1392  // canonicalize constant to RHS
1393  if (N0C && !N1C)
1394    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0);
1395  // fold (add x, 0) -> x
1396  if (N1C && N1C->isNullValue())
1397    return N0;
1398  // fold (add Sym, c) -> Sym+c
1399  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1400    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1401        GA->getOpcode() == ISD::GlobalAddress)
1402      return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1403                                  GA->getOffset() +
1404                                    (uint64_t)N1C->getSExtValue());
1405  // fold ((c1-A)+c2) -> (c1+c2)-A
1406  if (N1C && N0.getOpcode() == ISD::SUB)
1407    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1408      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1409                         DAG.getConstant(N1C->getAPIntValue()+
1410                                         N0C->getAPIntValue(), VT),
1411                         N0.getOperand(1));
1412  // reassociate add
1413  SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1);
1414  if (RADD.getNode() != 0)
1415    return RADD;
1416  // fold ((0-A) + B) -> B-A
1417  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1418      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1419    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1));
1420  // fold (A + (0-B)) -> A-B
1421  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1422      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1423    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1));
1424  // fold (A+(B-A)) -> B
1425  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1426    return N1.getOperand(0);
1427  // fold ((B-A)+A) -> B
1428  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1429    return N0.getOperand(0);
1430  // fold (A+(B-(A+C))) to (B-C)
1431  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1432      N0 == N1.getOperand(1).getOperand(0))
1433    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1434                       N1.getOperand(1).getOperand(1));
1435  // fold (A+(B-(C+A))) to (B-C)
1436  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1437      N0 == N1.getOperand(1).getOperand(1))
1438    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1439                       N1.getOperand(1).getOperand(0));
1440  // fold (A+((B-A)+or-C)) to (B+or-C)
1441  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1442      N1.getOperand(0).getOpcode() == ISD::SUB &&
1443      N0 == N1.getOperand(0).getOperand(1))
1444    return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT,
1445                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1446
1447  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1448  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1449    SDValue N00 = N0.getOperand(0);
1450    SDValue N01 = N0.getOperand(1);
1451    SDValue N10 = N1.getOperand(0);
1452    SDValue N11 = N1.getOperand(1);
1453
1454    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1455      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1456                         DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10),
1457                         DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11));
1458  }
1459
1460  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1461    return SDValue(N, 0);
1462
1463  // fold (a+b) -> (a|b) iff a and b share no bits.
1464  if (VT.isInteger() && !VT.isVector()) {
1465    APInt LHSZero, LHSOne;
1466    APInt RHSZero, RHSOne;
1467    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1468
1469    if (LHSZero.getBoolValue()) {
1470      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1471
1472      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1473      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1474      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1475        return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1);
1476    }
1477  }
1478
1479  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1480  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1481    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG);
1482    if (Result.getNode()) return Result;
1483  }
1484  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1485    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG);
1486    if (Result.getNode()) return Result;
1487  }
1488
1489  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1490  if (N1.getOpcode() == ISD::SHL &&
1491      N1.getOperand(0).getOpcode() == ISD::SUB)
1492    if (ConstantSDNode *C =
1493          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1494      if (C->getAPIntValue() == 0)
1495        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0,
1496                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1497                                       N1.getOperand(0).getOperand(1),
1498                                       N1.getOperand(1)));
1499  if (N0.getOpcode() == ISD::SHL &&
1500      N0.getOperand(0).getOpcode() == ISD::SUB)
1501    if (ConstantSDNode *C =
1502          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1503      if (C->getAPIntValue() == 0)
1504        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1,
1505                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1506                                       N0.getOperand(0).getOperand(1),
1507                                       N0.getOperand(1)));
1508
1509  if (N1.getOpcode() == ISD::AND) {
1510    SDValue AndOp0 = N1.getOperand(0);
1511    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1512    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1513    unsigned DestBits = VT.getScalarType().getSizeInBits();
1514
1515    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1516    // and similar xforms where the inner op is either ~0 or 0.
1517    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1518      DebugLoc DL = N->getDebugLoc();
1519      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1520    }
1521  }
1522
1523  // add (sext i1), X -> sub X, (zext i1)
1524  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1525      N0.getOperand(0).getValueType() == MVT::i1 &&
1526      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1527    DebugLoc DL = N->getDebugLoc();
1528    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1529    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1530  }
1531
1532  return SDValue();
1533}
1534
1535SDValue DAGCombiner::visitADDC(SDNode *N) {
1536  SDValue N0 = N->getOperand(0);
1537  SDValue N1 = N->getOperand(1);
1538  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1539  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1540  EVT VT = N0.getValueType();
1541
1542  // If the flag result is dead, turn this into an ADD.
1543  if (!N->hasAnyUseOfValue(1))
1544    return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N1),
1545                     DAG.getNode(ISD::CARRY_FALSE,
1546                                 N->getDebugLoc(), MVT::Glue));
1547
1548  // canonicalize constant to RHS.
1549  if (N0C && !N1C)
1550    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
1551
1552  // fold (addc x, 0) -> x + no carry out
1553  if (N1C && N1C->isNullValue())
1554    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1555                                        N->getDebugLoc(), MVT::Glue));
1556
1557  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1558  APInt LHSZero, LHSOne;
1559  APInt RHSZero, RHSOne;
1560  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1561
1562  if (LHSZero.getBoolValue()) {
1563    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1564
1565    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1566    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1567    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1568      return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1),
1569                       DAG.getNode(ISD::CARRY_FALSE,
1570                                   N->getDebugLoc(), MVT::Glue));
1571  }
1572
1573  return SDValue();
1574}
1575
1576SDValue DAGCombiner::visitADDE(SDNode *N) {
1577  SDValue N0 = N->getOperand(0);
1578  SDValue N1 = N->getOperand(1);
1579  SDValue CarryIn = N->getOperand(2);
1580  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1581  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1582
1583  // canonicalize constant to RHS
1584  if (N0C && !N1C)
1585    return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(),
1586                       N1, N0, CarryIn);
1587
1588  // fold (adde x, y, false) -> (addc x, y)
1589  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1590    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N0, N1);
1591
1592  return SDValue();
1593}
1594
1595// Since it may not be valid to emit a fold to zero for vector initializers
1596// check if we can before folding.
1597static SDValue tryFoldToZero(DebugLoc DL, const TargetLowering &TLI, EVT VT,
1598                             SelectionDAG &DAG, bool LegalOperations) {
1599  if (!VT.isVector()) {
1600    return DAG.getConstant(0, VT);
1601  }
1602  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1603    // Produce a vector of zeros.
1604    SDValue El = DAG.getConstant(0, VT.getVectorElementType());
1605    std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1606    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1607      &Ops[0], Ops.size());
1608  }
1609  return SDValue();
1610}
1611
1612SDValue DAGCombiner::visitSUB(SDNode *N) {
1613  SDValue N0 = N->getOperand(0);
1614  SDValue N1 = N->getOperand(1);
1615  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1616  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1617  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1618    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1619  EVT VT = N0.getValueType();
1620
1621  // fold vector ops
1622  if (VT.isVector()) {
1623    SDValue FoldedVOp = SimplifyVBinOp(N);
1624    if (FoldedVOp.getNode()) return FoldedVOp;
1625  }
1626
1627  // fold (sub x, x) -> 0
1628  // FIXME: Refactor this and xor and other similar operations together.
1629  if (N0 == N1)
1630    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
1631  // fold (sub c1, c2) -> c1-c2
1632  if (N0C && N1C)
1633    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1634  // fold (sub x, c) -> (add x, -c)
1635  if (N1C)
1636    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0,
1637                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1638  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1639  if (N0C && N0C->isAllOnesValue())
1640    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
1641  // fold A-(A-B) -> B
1642  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1643    return N1.getOperand(1);
1644  // fold (A+B)-A -> B
1645  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1646    return N0.getOperand(1);
1647  // fold (A+B)-B -> A
1648  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1649    return N0.getOperand(0);
1650  // fold C2-(A+C1) -> (C2-C1)-A
1651  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1652    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1653                                   VT);
1654    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, NewC,
1655                       N1.getOperand(0));
1656  }
1657  // fold ((A+(B+or-C))-B) -> A+or-C
1658  if (N0.getOpcode() == ISD::ADD &&
1659      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1660       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1661      N0.getOperand(1).getOperand(0) == N1)
1662    return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT,
1663                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1664  // fold ((A+(C+B))-B) -> A+C
1665  if (N0.getOpcode() == ISD::ADD &&
1666      N0.getOperand(1).getOpcode() == ISD::ADD &&
1667      N0.getOperand(1).getOperand(1) == N1)
1668    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1669                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1670  // fold ((A-(B-C))-C) -> A-B
1671  if (N0.getOpcode() == ISD::SUB &&
1672      N0.getOperand(1).getOpcode() == ISD::SUB &&
1673      N0.getOperand(1).getOperand(1) == N1)
1674    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1675                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1676
1677  // If either operand of a sub is undef, the result is undef
1678  if (N0.getOpcode() == ISD::UNDEF)
1679    return N0;
1680  if (N1.getOpcode() == ISD::UNDEF)
1681    return N1;
1682
1683  // If the relocation model supports it, consider symbol offsets.
1684  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1685    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1686      // fold (sub Sym, c) -> Sym-c
1687      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1688        return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1689                                    GA->getOffset() -
1690                                      (uint64_t)N1C->getSExtValue());
1691      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1692      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1693        if (GA->getGlobal() == GB->getGlobal())
1694          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1695                                 VT);
1696    }
1697
1698  return SDValue();
1699}
1700
1701SDValue DAGCombiner::visitSUBC(SDNode *N) {
1702  SDValue N0 = N->getOperand(0);
1703  SDValue N1 = N->getOperand(1);
1704  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1705  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1706  EVT VT = N0.getValueType();
1707
1708  // If the flag result is dead, turn this into an SUB.
1709  if (!N->hasAnyUseOfValue(1))
1710    return CombineTo(N, DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1),
1711                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1712                                 MVT::Glue));
1713
1714  // fold (subc x, x) -> 0 + no borrow
1715  if (N0 == N1)
1716    return CombineTo(N, DAG.getConstant(0, VT),
1717                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1718                                 MVT::Glue));
1719
1720  // fold (subc x, 0) -> x + no borrow
1721  if (N1C && N1C->isNullValue())
1722    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1723                                        MVT::Glue));
1724
1725  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1726  if (N0C && N0C->isAllOnesValue())
1727    return CombineTo(N, DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0),
1728                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1729                                 MVT::Glue));
1730
1731  return SDValue();
1732}
1733
1734SDValue DAGCombiner::visitSUBE(SDNode *N) {
1735  SDValue N0 = N->getOperand(0);
1736  SDValue N1 = N->getOperand(1);
1737  SDValue CarryIn = N->getOperand(2);
1738
1739  // fold (sube x, y, false) -> (subc x, y)
1740  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1741    return DAG.getNode(ISD::SUBC, N->getDebugLoc(), N->getVTList(), N0, N1);
1742
1743  return SDValue();
1744}
1745
1746SDValue DAGCombiner::visitMUL(SDNode *N) {
1747  SDValue N0 = N->getOperand(0);
1748  SDValue N1 = N->getOperand(1);
1749  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1750  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1751  EVT VT = N0.getValueType();
1752
1753  // fold vector ops
1754  if (VT.isVector()) {
1755    SDValue FoldedVOp = SimplifyVBinOp(N);
1756    if (FoldedVOp.getNode()) return FoldedVOp;
1757  }
1758
1759  // fold (mul x, undef) -> 0
1760  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1761    return DAG.getConstant(0, VT);
1762  // fold (mul c1, c2) -> c1*c2
1763  if (N0C && N1C)
1764    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);
1765  // canonicalize constant to RHS
1766  if (N0C && !N1C)
1767    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);
1768  // fold (mul x, 0) -> 0
1769  if (N1C && N1C->isNullValue())
1770    return N1;
1771  // fold (mul x, -1) -> 0-x
1772  if (N1C && N1C->isAllOnesValue())
1773    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1774                       DAG.getConstant(0, VT), N0);
1775  // fold (mul x, (1 << c)) -> x << c
1776  if (N1C && N1C->getAPIntValue().isPowerOf2())
1777    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1778                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1779                                       getShiftAmountTy(N0.getValueType())));
1780  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1781  if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
1782    unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
1783    // FIXME: If the input is something that is easily negated (e.g. a
1784    // single-use add), we should put the negate there.
1785    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1786                       DAG.getConstant(0, VT),
1787                       DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1788                            DAG.getConstant(Log2Val,
1789                                      getShiftAmountTy(N0.getValueType()))));
1790  }
1791  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1792  if (N1C && N0.getOpcode() == ISD::SHL &&
1793      isa<ConstantSDNode>(N0.getOperand(1))) {
1794    SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1795                             N1, N0.getOperand(1));
1796    AddToWorkList(C3.getNode());
1797    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1798                       N0.getOperand(0), C3);
1799  }
1800
1801  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1802  // use.
1803  {
1804    SDValue Sh(0,0), Y(0,0);
1805    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1806    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1807        N0.getNode()->hasOneUse()) {
1808      Sh = N0; Y = N1;
1809    } else if (N1.getOpcode() == ISD::SHL &&
1810               isa<ConstantSDNode>(N1.getOperand(1)) &&
1811               N1.getNode()->hasOneUse()) {
1812      Sh = N1; Y = N0;
1813    }
1814
1815    if (Sh.getNode()) {
1816      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1817                                Sh.getOperand(0), Y);
1818      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1819                         Mul, Sh.getOperand(1));
1820    }
1821  }
1822
1823  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1824  if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1825      isa<ConstantSDNode>(N0.getOperand(1)))
1826    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1827                       DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT,
1828                                   N0.getOperand(0), N1),
1829                       DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT,
1830                                   N0.getOperand(1), N1));
1831
1832  // reassociate mul
1833  SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1);
1834  if (RMUL.getNode() != 0)
1835    return RMUL;
1836
1837  return SDValue();
1838}
1839
1840SDValue DAGCombiner::visitSDIV(SDNode *N) {
1841  SDValue N0 = N->getOperand(0);
1842  SDValue N1 = N->getOperand(1);
1843  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1844  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1845  EVT VT = N->getValueType(0);
1846
1847  // fold vector ops
1848  if (VT.isVector()) {
1849    SDValue FoldedVOp = SimplifyVBinOp(N);
1850    if (FoldedVOp.getNode()) return FoldedVOp;
1851  }
1852
1853  // fold (sdiv c1, c2) -> c1/c2
1854  if (N0C && N1C && !N1C->isNullValue())
1855    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1856  // fold (sdiv X, 1) -> X
1857  if (N1C && N1C->getAPIntValue() == 1LL)
1858    return N0;
1859  // fold (sdiv X, -1) -> 0-X
1860  if (N1C && N1C->isAllOnesValue())
1861    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1862                       DAG.getConstant(0, VT), N0);
1863  // If we know the sign bits of both operands are zero, strength reduce to a
1864  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1865  if (!VT.isVector()) {
1866    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1867      return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(),
1868                         N0, N1);
1869  }
1870  // fold (sdiv X, pow2) -> simple ops after legalize
1871  if (N1C && !N1C->isNullValue() &&
1872      (N1C->getAPIntValue().isPowerOf2() ||
1873       (-N1C->getAPIntValue()).isPowerOf2())) {
1874    // If dividing by powers of two is cheap, then don't perform the following
1875    // fold.
1876    if (TLI.isPow2DivCheap())
1877      return SDValue();
1878
1879    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1880
1881    // Splat the sign bit into the register
1882    SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
1883                              DAG.getConstant(VT.getSizeInBits()-1,
1884                                       getShiftAmountTy(N0.getValueType())));
1885    AddToWorkList(SGN.getNode());
1886
1887    // Add (N0 < 0) ? abs2 - 1 : 0;
1888    SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN,
1889                              DAG.getConstant(VT.getSizeInBits() - lg2,
1890                                       getShiftAmountTy(SGN.getValueType())));
1891    SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL);
1892    AddToWorkList(SRL.getNode());
1893    AddToWorkList(ADD.getNode());    // Divide by pow2
1894    SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD,
1895                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1896
1897    // If we're dividing by a positive value, we're done.  Otherwise, we must
1898    // negate the result.
1899    if (N1C->getAPIntValue().isNonNegative())
1900      return SRA;
1901
1902    AddToWorkList(SRA.getNode());
1903    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1904                       DAG.getConstant(0, VT), SRA);
1905  }
1906
1907  // if integer divide is expensive and we satisfy the requirements, emit an
1908  // alternate sequence.
1909  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1910    SDValue Op = BuildSDIV(N);
1911    if (Op.getNode()) return Op;
1912  }
1913
1914  // undef / X -> 0
1915  if (N0.getOpcode() == ISD::UNDEF)
1916    return DAG.getConstant(0, VT);
1917  // X / undef -> undef
1918  if (N1.getOpcode() == ISD::UNDEF)
1919    return N1;
1920
1921  return SDValue();
1922}
1923
1924SDValue DAGCombiner::visitUDIV(SDNode *N) {
1925  SDValue N0 = N->getOperand(0);
1926  SDValue N1 = N->getOperand(1);
1927  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1928  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1929  EVT VT = N->getValueType(0);
1930
1931  // fold vector ops
1932  if (VT.isVector()) {
1933    SDValue FoldedVOp = SimplifyVBinOp(N);
1934    if (FoldedVOp.getNode()) return FoldedVOp;
1935  }
1936
1937  // fold (udiv c1, c2) -> c1/c2
1938  if (N0C && N1C && !N1C->isNullValue())
1939    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
1940  // fold (udiv x, (1 << c)) -> x >>u c
1941  if (N1C && N1C->getAPIntValue().isPowerOf2())
1942    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
1943                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1944                                       getShiftAmountTy(N0.getValueType())));
1945  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1946  if (N1.getOpcode() == ISD::SHL) {
1947    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1948      if (SHC->getAPIntValue().isPowerOf2()) {
1949        EVT ADDVT = N1.getOperand(1).getValueType();
1950        SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT,
1951                                  N1.getOperand(1),
1952                                  DAG.getConstant(SHC->getAPIntValue()
1953                                                                  .logBase2(),
1954                                                  ADDVT));
1955        AddToWorkList(Add.getNode());
1956        return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add);
1957      }
1958    }
1959  }
1960  // fold (udiv x, c) -> alternate
1961  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1962    SDValue Op = BuildUDIV(N);
1963    if (Op.getNode()) return Op;
1964  }
1965
1966  // undef / X -> 0
1967  if (N0.getOpcode() == ISD::UNDEF)
1968    return DAG.getConstant(0, VT);
1969  // X / undef -> undef
1970  if (N1.getOpcode() == ISD::UNDEF)
1971    return N1;
1972
1973  return SDValue();
1974}
1975
1976SDValue DAGCombiner::visitSREM(SDNode *N) {
1977  SDValue N0 = N->getOperand(0);
1978  SDValue N1 = N->getOperand(1);
1979  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1980  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1981  EVT VT = N->getValueType(0);
1982
1983  // fold (srem c1, c2) -> c1%c2
1984  if (N0C && N1C && !N1C->isNullValue())
1985    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
1986  // If we know the sign bits of both operands are zero, strength reduce to a
1987  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1988  if (!VT.isVector()) {
1989    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1990      return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1);
1991  }
1992
1993  // If X/C can be simplified by the division-by-constant logic, lower
1994  // X%C to the equivalent of X-X/C*C.
1995  if (N1C && !N1C->isNullValue()) {
1996    SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1);
1997    AddToWorkList(Div.getNode());
1998    SDValue OptimizedDiv = combine(Div.getNode());
1999    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2000      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
2001                                OptimizedDiv, N1);
2002      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2003      AddToWorkList(Mul.getNode());
2004      return Sub;
2005    }
2006  }
2007
2008  // undef % X -> 0
2009  if (N0.getOpcode() == ISD::UNDEF)
2010    return DAG.getConstant(0, VT);
2011  // X % undef -> undef
2012  if (N1.getOpcode() == ISD::UNDEF)
2013    return N1;
2014
2015  return SDValue();
2016}
2017
2018SDValue DAGCombiner::visitUREM(SDNode *N) {
2019  SDValue N0 = N->getOperand(0);
2020  SDValue N1 = N->getOperand(1);
2021  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2022  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2023  EVT VT = N->getValueType(0);
2024
2025  // fold (urem c1, c2) -> c1%c2
2026  if (N0C && N1C && !N1C->isNullValue())
2027    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2028  // fold (urem x, pow2) -> (and x, pow2-1)
2029  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2030    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0,
2031                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2032  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2033  if (N1.getOpcode() == ISD::SHL) {
2034    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2035      if (SHC->getAPIntValue().isPowerOf2()) {
2036        SDValue Add =
2037          DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1,
2038                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2039                                 VT));
2040        AddToWorkList(Add.getNode());
2041        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add);
2042      }
2043    }
2044  }
2045
2046  // If X/C can be simplified by the division-by-constant logic, lower
2047  // X%C to the equivalent of X-X/C*C.
2048  if (N1C && !N1C->isNullValue()) {
2049    SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1);
2050    AddToWorkList(Div.getNode());
2051    SDValue OptimizedDiv = combine(Div.getNode());
2052    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2053      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
2054                                OptimizedDiv, N1);
2055      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2056      AddToWorkList(Mul.getNode());
2057      return Sub;
2058    }
2059  }
2060
2061  // undef % X -> 0
2062  if (N0.getOpcode() == ISD::UNDEF)
2063    return DAG.getConstant(0, VT);
2064  // X % undef -> undef
2065  if (N1.getOpcode() == ISD::UNDEF)
2066    return N1;
2067
2068  return SDValue();
2069}
2070
2071SDValue DAGCombiner::visitMULHS(SDNode *N) {
2072  SDValue N0 = N->getOperand(0);
2073  SDValue N1 = N->getOperand(1);
2074  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2075  EVT VT = N->getValueType(0);
2076  DebugLoc DL = N->getDebugLoc();
2077
2078  // fold (mulhs x, 0) -> 0
2079  if (N1C && N1C->isNullValue())
2080    return N1;
2081  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2082  if (N1C && N1C->getAPIntValue() == 1)
2083    return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0,
2084                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2085                                       getShiftAmountTy(N0.getValueType())));
2086  // fold (mulhs x, undef) -> 0
2087  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2088    return DAG.getConstant(0, VT);
2089
2090  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2091  // plus a shift.
2092  if (VT.isSimple() && !VT.isVector()) {
2093    MVT Simple = VT.getSimpleVT();
2094    unsigned SimpleSize = Simple.getSizeInBits();
2095    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2096    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2097      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2098      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2099      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2100      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2101            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2102      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2103    }
2104  }
2105
2106  return SDValue();
2107}
2108
2109SDValue DAGCombiner::visitMULHU(SDNode *N) {
2110  SDValue N0 = N->getOperand(0);
2111  SDValue N1 = N->getOperand(1);
2112  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2113  EVT VT = N->getValueType(0);
2114  DebugLoc DL = N->getDebugLoc();
2115
2116  // fold (mulhu x, 0) -> 0
2117  if (N1C && N1C->isNullValue())
2118    return N1;
2119  // fold (mulhu x, 1) -> 0
2120  if (N1C && N1C->getAPIntValue() == 1)
2121    return DAG.getConstant(0, N0.getValueType());
2122  // fold (mulhu x, undef) -> 0
2123  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2124    return DAG.getConstant(0, VT);
2125
2126  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2127  // plus a shift.
2128  if (VT.isSimple() && !VT.isVector()) {
2129    MVT Simple = VT.getSimpleVT();
2130    unsigned SimpleSize = Simple.getSizeInBits();
2131    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2132    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2133      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2134      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2135      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2136      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2137            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2138      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2139    }
2140  }
2141
2142  return SDValue();
2143}
2144
2145/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2146/// compute two values. LoOp and HiOp give the opcodes for the two computations
2147/// that are being performed. Return true if a simplification was made.
2148///
2149SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2150                                                unsigned HiOp) {
2151  // If the high half is not needed, just compute the low half.
2152  bool HiExists = N->hasAnyUseOfValue(1);
2153  if (!HiExists &&
2154      (!LegalOperations ||
2155       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2156    SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2157                              N->op_begin(), N->getNumOperands());
2158    return CombineTo(N, Res, Res);
2159  }
2160
2161  // If the low half is not needed, just compute the high half.
2162  bool LoExists = N->hasAnyUseOfValue(0);
2163  if (!LoExists &&
2164      (!LegalOperations ||
2165       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2166    SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2167                              N->op_begin(), N->getNumOperands());
2168    return CombineTo(N, Res, Res);
2169  }
2170
2171  // If both halves are used, return as it is.
2172  if (LoExists && HiExists)
2173    return SDValue();
2174
2175  // If the two computed results can be simplified separately, separate them.
2176  if (LoExists) {
2177    SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2178                             N->op_begin(), N->getNumOperands());
2179    AddToWorkList(Lo.getNode());
2180    SDValue LoOpt = combine(Lo.getNode());
2181    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2182        (!LegalOperations ||
2183         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2184      return CombineTo(N, LoOpt, LoOpt);
2185  }
2186
2187  if (HiExists) {
2188    SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2189                             N->op_begin(), N->getNumOperands());
2190    AddToWorkList(Hi.getNode());
2191    SDValue HiOpt = combine(Hi.getNode());
2192    if (HiOpt.getNode() && HiOpt != Hi &&
2193        (!LegalOperations ||
2194         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2195      return CombineTo(N, HiOpt, HiOpt);
2196  }
2197
2198  return SDValue();
2199}
2200
2201SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2202  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2203  if (Res.getNode()) return Res;
2204
2205  EVT VT = N->getValueType(0);
2206  DebugLoc DL = N->getDebugLoc();
2207
2208  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2209  // plus a shift.
2210  if (VT.isSimple() && !VT.isVector()) {
2211    MVT Simple = VT.getSimpleVT();
2212    unsigned SimpleSize = Simple.getSizeInBits();
2213    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2214    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2215      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2216      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2217      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2218      // Compute the high part as N1.
2219      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2220            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2221      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2222      // Compute the low part as N0.
2223      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2224      return CombineTo(N, Lo, Hi);
2225    }
2226  }
2227
2228  return SDValue();
2229}
2230
2231SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2232  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2233  if (Res.getNode()) return Res;
2234
2235  EVT VT = N->getValueType(0);
2236  DebugLoc DL = N->getDebugLoc();
2237
2238  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2239  // plus a shift.
2240  if (VT.isSimple() && !VT.isVector()) {
2241    MVT Simple = VT.getSimpleVT();
2242    unsigned SimpleSize = Simple.getSizeInBits();
2243    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2244    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2245      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2246      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2247      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2248      // Compute the high part as N1.
2249      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2250            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2251      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2252      // Compute the low part as N0.
2253      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2254      return CombineTo(N, Lo, Hi);
2255    }
2256  }
2257
2258  return SDValue();
2259}
2260
2261SDValue DAGCombiner::visitSMULO(SDNode *N) {
2262  // (smulo x, 2) -> (saddo x, x)
2263  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2264    if (C2->getAPIntValue() == 2)
2265      return DAG.getNode(ISD::SADDO, N->getDebugLoc(), N->getVTList(),
2266                         N->getOperand(0), N->getOperand(0));
2267
2268  return SDValue();
2269}
2270
2271SDValue DAGCombiner::visitUMULO(SDNode *N) {
2272  // (umulo x, 2) -> (uaddo x, x)
2273  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2274    if (C2->getAPIntValue() == 2)
2275      return DAG.getNode(ISD::UADDO, N->getDebugLoc(), N->getVTList(),
2276                         N->getOperand(0), N->getOperand(0));
2277
2278  return SDValue();
2279}
2280
2281SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2282  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2283  if (Res.getNode()) return Res;
2284
2285  return SDValue();
2286}
2287
2288SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2289  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2290  if (Res.getNode()) return Res;
2291
2292  return SDValue();
2293}
2294
2295/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2296/// two operands of the same opcode, try to simplify it.
2297SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2298  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2299  EVT VT = N0.getValueType();
2300  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2301
2302  // Bail early if none of these transforms apply.
2303  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2304
2305  // For each of OP in AND/OR/XOR:
2306  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2307  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2308  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2309  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2310  //
2311  // do not sink logical op inside of a vector extend, since it may combine
2312  // into a vsetcc.
2313  EVT Op0VT = N0.getOperand(0).getValueType();
2314  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2315       N0.getOpcode() == ISD::SIGN_EXTEND ||
2316       // Avoid infinite looping with PromoteIntBinOp.
2317       (N0.getOpcode() == ISD::ANY_EXTEND &&
2318        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2319       (N0.getOpcode() == ISD::TRUNCATE &&
2320        (!TLI.isZExtFree(VT, Op0VT) ||
2321         !TLI.isTruncateFree(Op0VT, VT)) &&
2322        TLI.isTypeLegal(Op0VT))) &&
2323      !VT.isVector() &&
2324      Op0VT == N1.getOperand(0).getValueType() &&
2325      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2326    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2327                                 N0.getOperand(0).getValueType(),
2328                                 N0.getOperand(0), N1.getOperand(0));
2329    AddToWorkList(ORNode.getNode());
2330    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode);
2331  }
2332
2333  // For each of OP in SHL/SRL/SRA/AND...
2334  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2335  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2336  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2337  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2338       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2339      N0.getOperand(1) == N1.getOperand(1)) {
2340    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2341                                 N0.getOperand(0).getValueType(),
2342                                 N0.getOperand(0), N1.getOperand(0));
2343    AddToWorkList(ORNode.getNode());
2344    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
2345                       ORNode, N0.getOperand(1));
2346  }
2347
2348  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2349  // Only perform this optimization after type legalization and before
2350  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2351  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2352  // we don't want to undo this promotion.
2353  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2354  // on scalars.
2355  if ((N0.getOpcode() == ISD::BITCAST ||
2356       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2357      Level == AfterLegalizeTypes) {
2358    SDValue In0 = N0.getOperand(0);
2359    SDValue In1 = N1.getOperand(0);
2360    EVT In0Ty = In0.getValueType();
2361    EVT In1Ty = In1.getValueType();
2362    DebugLoc DL = N->getDebugLoc();
2363    // If both incoming values are integers, and the original types are the
2364    // same.
2365    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2366      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2367      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2368      AddToWorkList(Op.getNode());
2369      return BC;
2370    }
2371  }
2372
2373  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2374  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2375  // If both shuffles use the same mask, and both shuffle within a single
2376  // vector, then it is worthwhile to move the swizzle after the operation.
2377  // The type-legalizer generates this pattern when loading illegal
2378  // vector types from memory. In many cases this allows additional shuffle
2379  // optimizations.
2380  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2381      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2382      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2383    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2384    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2385
2386    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2387           "Inputs to shuffles are not the same type");
2388
2389    unsigned NumElts = VT.getVectorNumElements();
2390
2391    // Check that both shuffles use the same mask. The masks are known to be of
2392    // the same length because the result vector type is the same.
2393    bool SameMask = true;
2394    for (unsigned i = 0; i != NumElts; ++i) {
2395      int Idx0 = SVN0->getMaskElt(i);
2396      int Idx1 = SVN1->getMaskElt(i);
2397      if (Idx0 != Idx1) {
2398        SameMask = false;
2399        break;
2400      }
2401    }
2402
2403    if (SameMask) {
2404      SDValue Op = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
2405                               N0.getOperand(0), N1.getOperand(0));
2406      AddToWorkList(Op.getNode());
2407      return DAG.getVectorShuffle(VT, N->getDebugLoc(), Op,
2408                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2409    }
2410  }
2411
2412  return SDValue();
2413}
2414
2415SDValue DAGCombiner::visitAND(SDNode *N) {
2416  SDValue N0 = N->getOperand(0);
2417  SDValue N1 = N->getOperand(1);
2418  SDValue LL, LR, RL, RR, CC0, CC1;
2419  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2420  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2421  EVT VT = N1.getValueType();
2422  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2423
2424  // fold vector ops
2425  if (VT.isVector()) {
2426    SDValue FoldedVOp = SimplifyVBinOp(N);
2427    if (FoldedVOp.getNode()) return FoldedVOp;
2428  }
2429
2430  // fold (and x, undef) -> 0
2431  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2432    return DAG.getConstant(0, VT);
2433  // fold (and c1, c2) -> c1&c2
2434  if (N0C && N1C)
2435    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2436  // canonicalize constant to RHS
2437  if (N0C && !N1C)
2438    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0);
2439  // fold (and x, -1) -> x
2440  if (N1C && N1C->isAllOnesValue())
2441    return N0;
2442  // if (and x, c) is known to be zero, return 0
2443  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2444                                   APInt::getAllOnesValue(BitWidth)))
2445    return DAG.getConstant(0, VT);
2446  // reassociate and
2447  SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1);
2448  if (RAND.getNode() != 0)
2449    return RAND;
2450  // fold (and (or x, C), D) -> D if (C & D) == D
2451  if (N1C && N0.getOpcode() == ISD::OR)
2452    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2453      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2454        return N1;
2455  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2456  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2457    SDValue N0Op0 = N0.getOperand(0);
2458    APInt Mask = ~N1C->getAPIntValue();
2459    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2460    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2461      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(),
2462                                 N0.getValueType(), N0Op0);
2463
2464      // Replace uses of the AND with uses of the Zero extend node.
2465      CombineTo(N, Zext);
2466
2467      // We actually want to replace all uses of the any_extend with the
2468      // zero_extend, to avoid duplicating things.  This will later cause this
2469      // AND to be folded.
2470      CombineTo(N0.getNode(), Zext);
2471      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2472    }
2473  }
2474  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2475  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2476  // already be zero by virtue of the width of the base type of the load.
2477  //
2478  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2479  // more cases.
2480  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2481       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2482      N0.getOpcode() == ISD::LOAD) {
2483    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2484                                         N0 : N0.getOperand(0) );
2485
2486    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2487    // This can be a pure constant or a vector splat, in which case we treat the
2488    // vector as a scalar and use the splat value.
2489    APInt Constant = APInt::getNullValue(1);
2490    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2491      Constant = C->getAPIntValue();
2492    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2493      APInt SplatValue, SplatUndef;
2494      unsigned SplatBitSize;
2495      bool HasAnyUndefs;
2496      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2497                                             SplatBitSize, HasAnyUndefs);
2498      if (IsSplat) {
2499        // Undef bits can contribute to a possible optimisation if set, so
2500        // set them.
2501        SplatValue |= SplatUndef;
2502
2503        // The splat value may be something like "0x00FFFFFF", which means 0 for
2504        // the first vector value and FF for the rest, repeating. We need a mask
2505        // that will apply equally to all members of the vector, so AND all the
2506        // lanes of the constant together.
2507        EVT VT = Vector->getValueType(0);
2508        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2509
2510        // If the splat value has been compressed to a bitlength lower
2511        // than the size of the vector lane, we need to re-expand it to
2512        // the lane size.
2513        if (BitWidth > SplatBitSize)
2514          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2515               SplatBitSize < BitWidth;
2516               SplatBitSize = SplatBitSize * 2)
2517            SplatValue |= SplatValue.shl(SplatBitSize);
2518
2519        Constant = APInt::getAllOnesValue(BitWidth);
2520        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2521          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2522      }
2523    }
2524
2525    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2526    // actually legal and isn't going to get expanded, else this is a false
2527    // optimisation.
2528    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2529                                                    Load->getMemoryVT());
2530
2531    // Resize the constant to the same size as the original memory access before
2532    // extension. If it is still the AllOnesValue then this AND is completely
2533    // unneeded.
2534    Constant =
2535      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2536
2537    bool B;
2538    switch (Load->getExtensionType()) {
2539    default: B = false; break;
2540    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2541    case ISD::ZEXTLOAD:
2542    case ISD::NON_EXTLOAD: B = true; break;
2543    }
2544
2545    if (B && Constant.isAllOnesValue()) {
2546      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2547      // preserve semantics once we get rid of the AND.
2548      SDValue NewLoad(Load, 0);
2549      if (Load->getExtensionType() == ISD::EXTLOAD) {
2550        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2551                              Load->getValueType(0), Load->getDebugLoc(),
2552                              Load->getChain(), Load->getBasePtr(),
2553                              Load->getOffset(), Load->getMemoryVT(),
2554                              Load->getMemOperand());
2555        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2556        if (Load->getNumValues() == 3) {
2557          // PRE/POST_INC loads have 3 values.
2558          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2559                           NewLoad.getValue(2) };
2560          CombineTo(Load, To, 3, true);
2561        } else {
2562          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2563        }
2564      }
2565
2566      // Fold the AND away, taking care not to fold to the old load node if we
2567      // replaced it.
2568      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2569
2570      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2571    }
2572  }
2573  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2574  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2575    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2576    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2577
2578    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2579        LL.getValueType().isInteger()) {
2580      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2581      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2582        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2583                                     LR.getValueType(), LL, RL);
2584        AddToWorkList(ORNode.getNode());
2585        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2586      }
2587      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2588      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2589        SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(),
2590                                      LR.getValueType(), LL, RL);
2591        AddToWorkList(ANDNode.getNode());
2592        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
2593      }
2594      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2595      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2596        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2597                                     LR.getValueType(), LL, RL);
2598        AddToWorkList(ORNode.getNode());
2599        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2600      }
2601    }
2602    // canonicalize equivalent to ll == rl
2603    if (LL == RR && LR == RL) {
2604      Op1 = ISD::getSetCCSwappedOperands(Op1);
2605      std::swap(RL, RR);
2606    }
2607    if (LL == RL && LR == RR) {
2608      bool isInteger = LL.getValueType().isInteger();
2609      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2610      if (Result != ISD::SETCC_INVALID &&
2611          (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
2612        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
2613                            LL, LR, Result);
2614    }
2615  }
2616
2617  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2618  if (N0.getOpcode() == N1.getOpcode()) {
2619    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2620    if (Tmp.getNode()) return Tmp;
2621  }
2622
2623  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2624  // fold (and (sra)) -> (and (srl)) when possible.
2625  if (!VT.isVector() &&
2626      SimplifyDemandedBits(SDValue(N, 0)))
2627    return SDValue(N, 0);
2628
2629  // fold (zext_inreg (extload x)) -> (zextload x)
2630  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2631    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2632    EVT MemVT = LN0->getMemoryVT();
2633    // If we zero all the possible extended bits, then we can turn this into
2634    // a zextload if we are running before legalize or the operation is legal.
2635    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2636    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2637                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2638        ((!LegalOperations && !LN0->isVolatile()) ||
2639         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2640      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2641                                       LN0->getChain(), LN0->getBasePtr(),
2642                                       LN0->getPointerInfo(), MemVT,
2643                                       LN0->isVolatile(), LN0->isNonTemporal(),
2644                                       LN0->getAlignment());
2645      AddToWorkList(N);
2646      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2647      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2648    }
2649  }
2650  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2651  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2652      N0.hasOneUse()) {
2653    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2654    EVT MemVT = LN0->getMemoryVT();
2655    // If we zero all the possible extended bits, then we can turn this into
2656    // a zextload if we are running before legalize or the operation is legal.
2657    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2658    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2659                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2660        ((!LegalOperations && !LN0->isVolatile()) ||
2661         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2662      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2663                                       LN0->getChain(),
2664                                       LN0->getBasePtr(), LN0->getPointerInfo(),
2665                                       MemVT,
2666                                       LN0->isVolatile(), LN0->isNonTemporal(),
2667                                       LN0->getAlignment());
2668      AddToWorkList(N);
2669      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2670      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2671    }
2672  }
2673
2674  // fold (and (load x), 255) -> (zextload x, i8)
2675  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2676  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2677  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2678              (N0.getOpcode() == ISD::ANY_EXTEND &&
2679               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2680    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2681    LoadSDNode *LN0 = HasAnyExt
2682      ? cast<LoadSDNode>(N0.getOperand(0))
2683      : cast<LoadSDNode>(N0);
2684    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2685        LN0->isUnindexed() && N0.hasOneUse() && LN0->hasOneUse()) {
2686      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2687      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2688        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2689        EVT LoadedVT = LN0->getMemoryVT();
2690
2691        if (ExtVT == LoadedVT &&
2692            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2693          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2694
2695          SDValue NewLoad =
2696            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2697                           LN0->getChain(), LN0->getBasePtr(),
2698                           LN0->getPointerInfo(),
2699                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2700                           LN0->getAlignment());
2701          AddToWorkList(N);
2702          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2703          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2704        }
2705
2706        // Do not change the width of a volatile load.
2707        // Do not generate loads of non-round integer types since these can
2708        // be expensive (and would be wrong if the type is not byte sized).
2709        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2710            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2711          EVT PtrType = LN0->getOperand(1).getValueType();
2712
2713          unsigned Alignment = LN0->getAlignment();
2714          SDValue NewPtr = LN0->getBasePtr();
2715
2716          // For big endian targets, we need to add an offset to the pointer
2717          // to load the correct bytes.  For little endian systems, we merely
2718          // need to read fewer bytes from the same pointer.
2719          if (TLI.isBigEndian()) {
2720            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2721            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2722            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2723            NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
2724                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2725            Alignment = MinAlign(Alignment, PtrOff);
2726          }
2727
2728          AddToWorkList(NewPtr.getNode());
2729
2730          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2731          SDValue Load =
2732            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2733                           LN0->getChain(), NewPtr,
2734                           LN0->getPointerInfo(),
2735                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2736                           Alignment);
2737          AddToWorkList(N);
2738          CombineTo(LN0, Load, Load.getValue(1));
2739          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2740        }
2741      }
2742    }
2743  }
2744
2745  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2746      VT.getSizeInBits() <= 64) {
2747    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2748      APInt ADDC = ADDI->getAPIntValue();
2749      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2750        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2751        // immediate for an add, but it is legal if its top c2 bits are set,
2752        // transform the ADD so the immediate doesn't need to be materialized
2753        // in a register.
2754        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2755          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2756                                             SRLI->getZExtValue());
2757          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2758            ADDC |= Mask;
2759            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2760              SDValue NewAdd =
2761                DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
2762                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2763              CombineTo(N0.getNode(), NewAdd);
2764              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2765            }
2766          }
2767        }
2768      }
2769    }
2770  }
2771
2772
2773  return SDValue();
2774}
2775
2776/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2777///
2778SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2779                                        bool DemandHighBits) {
2780  if (!LegalOperations)
2781    return SDValue();
2782
2783  EVT VT = N->getValueType(0);
2784  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2785    return SDValue();
2786  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2787    return SDValue();
2788
2789  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2790  bool LookPassAnd0 = false;
2791  bool LookPassAnd1 = false;
2792  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2793      std::swap(N0, N1);
2794  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2795      std::swap(N0, N1);
2796  if (N0.getOpcode() == ISD::AND) {
2797    if (!N0.getNode()->hasOneUse())
2798      return SDValue();
2799    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2800    if (!N01C || N01C->getZExtValue() != 0xFF00)
2801      return SDValue();
2802    N0 = N0.getOperand(0);
2803    LookPassAnd0 = true;
2804  }
2805
2806  if (N1.getOpcode() == ISD::AND) {
2807    if (!N1.getNode()->hasOneUse())
2808      return SDValue();
2809    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2810    if (!N11C || N11C->getZExtValue() != 0xFF)
2811      return SDValue();
2812    N1 = N1.getOperand(0);
2813    LookPassAnd1 = true;
2814  }
2815
2816  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2817    std::swap(N0, N1);
2818  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2819    return SDValue();
2820  if (!N0.getNode()->hasOneUse() ||
2821      !N1.getNode()->hasOneUse())
2822    return SDValue();
2823
2824  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2825  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2826  if (!N01C || !N11C)
2827    return SDValue();
2828  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2829    return SDValue();
2830
2831  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2832  SDValue N00 = N0->getOperand(0);
2833  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2834    if (!N00.getNode()->hasOneUse())
2835      return SDValue();
2836    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2837    if (!N001C || N001C->getZExtValue() != 0xFF)
2838      return SDValue();
2839    N00 = N00.getOperand(0);
2840    LookPassAnd0 = true;
2841  }
2842
2843  SDValue N10 = N1->getOperand(0);
2844  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2845    if (!N10.getNode()->hasOneUse())
2846      return SDValue();
2847    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2848    if (!N101C || N101C->getZExtValue() != 0xFF00)
2849      return SDValue();
2850    N10 = N10.getOperand(0);
2851    LookPassAnd1 = true;
2852  }
2853
2854  if (N00 != N10)
2855    return SDValue();
2856
2857  // Make sure everything beyond the low halfword is zero since the SRL 16
2858  // will clear the top bits.
2859  unsigned OpSizeInBits = VT.getSizeInBits();
2860  if (DemandHighBits && OpSizeInBits > 16 &&
2861      (!LookPassAnd0 || !LookPassAnd1) &&
2862      !DAG.MaskedValueIsZero(N10, APInt::getHighBitsSet(OpSizeInBits, 16)))
2863    return SDValue();
2864
2865  SDValue Res = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT, N00);
2866  if (OpSizeInBits > 16)
2867    Res = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Res,
2868                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2869  return Res;
2870}
2871
2872/// isBSwapHWordElement - Return true if the specified node is an element
2873/// that makes up a 32-bit packed halfword byteswap. i.e.
2874/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2875static bool isBSwapHWordElement(SDValue N, SmallVector<SDNode*,4> &Parts) {
2876  if (!N.getNode()->hasOneUse())
2877    return false;
2878
2879  unsigned Opc = N.getOpcode();
2880  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
2881    return false;
2882
2883  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2884  if (!N1C)
2885    return false;
2886
2887  unsigned Num;
2888  switch (N1C->getZExtValue()) {
2889  default:
2890    return false;
2891  case 0xFF:       Num = 0; break;
2892  case 0xFF00:     Num = 1; break;
2893  case 0xFF0000:   Num = 2; break;
2894  case 0xFF000000: Num = 3; break;
2895  }
2896
2897  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
2898  SDValue N0 = N.getOperand(0);
2899  if (Opc == ISD::AND) {
2900    if (Num == 0 || Num == 2) {
2901      // (x >> 8) & 0xff
2902      // (x >> 8) & 0xff0000
2903      if (N0.getOpcode() != ISD::SRL)
2904        return false;
2905      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2906      if (!C || C->getZExtValue() != 8)
2907        return false;
2908    } else {
2909      // (x << 8) & 0xff00
2910      // (x << 8) & 0xff000000
2911      if (N0.getOpcode() != ISD::SHL)
2912        return false;
2913      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2914      if (!C || C->getZExtValue() != 8)
2915        return false;
2916    }
2917  } else if (Opc == ISD::SHL) {
2918    // (x & 0xff) << 8
2919    // (x & 0xff0000) << 8
2920    if (Num != 0 && Num != 2)
2921      return false;
2922    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2923    if (!C || C->getZExtValue() != 8)
2924      return false;
2925  } else { // Opc == ISD::SRL
2926    // (x & 0xff00) >> 8
2927    // (x & 0xff000000) >> 8
2928    if (Num != 1 && Num != 3)
2929      return false;
2930    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2931    if (!C || C->getZExtValue() != 8)
2932      return false;
2933  }
2934
2935  if (Parts[Num])
2936    return false;
2937
2938  Parts[Num] = N0.getOperand(0).getNode();
2939  return true;
2940}
2941
2942/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
2943/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2944/// => (rotl (bswap x), 16)
2945SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
2946  if (!LegalOperations)
2947    return SDValue();
2948
2949  EVT VT = N->getValueType(0);
2950  if (VT != MVT::i32)
2951    return SDValue();
2952  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2953    return SDValue();
2954
2955  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
2956  // Look for either
2957  // (or (or (and), (and)), (or (and), (and)))
2958  // (or (or (or (and), (and)), (and)), (and))
2959  if (N0.getOpcode() != ISD::OR)
2960    return SDValue();
2961  SDValue N00 = N0.getOperand(0);
2962  SDValue N01 = N0.getOperand(1);
2963
2964  if (N1.getOpcode() == ISD::OR) {
2965    // (or (or (and), (and)), (or (and), (and)))
2966    SDValue N000 = N00.getOperand(0);
2967    if (!isBSwapHWordElement(N000, Parts))
2968      return SDValue();
2969
2970    SDValue N001 = N00.getOperand(1);
2971    if (!isBSwapHWordElement(N001, Parts))
2972      return SDValue();
2973    SDValue N010 = N01.getOperand(0);
2974    if (!isBSwapHWordElement(N010, Parts))
2975      return SDValue();
2976    SDValue N011 = N01.getOperand(1);
2977    if (!isBSwapHWordElement(N011, Parts))
2978      return SDValue();
2979  } else {
2980    // (or (or (or (and), (and)), (and)), (and))
2981    if (!isBSwapHWordElement(N1, Parts))
2982      return SDValue();
2983    if (!isBSwapHWordElement(N01, Parts))
2984      return SDValue();
2985    if (N00.getOpcode() != ISD::OR)
2986      return SDValue();
2987    SDValue N000 = N00.getOperand(0);
2988    if (!isBSwapHWordElement(N000, Parts))
2989      return SDValue();
2990    SDValue N001 = N00.getOperand(1);
2991    if (!isBSwapHWordElement(N001, Parts))
2992      return SDValue();
2993  }
2994
2995  // Make sure the parts are all coming from the same node.
2996  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
2997    return SDValue();
2998
2999  SDValue BSwap = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT,
3000                              SDValue(Parts[0],0));
3001
3002  // Result of the bswap should be rotated by 16. If it's not legal, than
3003  // do  (x << 16) | (x >> 16).
3004  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3005  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3006    return DAG.getNode(ISD::ROTL, N->getDebugLoc(), VT, BSwap, ShAmt);
3007  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3008    return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, BSwap, ShAmt);
3009  return DAG.getNode(ISD::OR, N->getDebugLoc(), VT,
3010                     DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, BSwap, ShAmt),
3011                     DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, BSwap, ShAmt));
3012}
3013
3014SDValue DAGCombiner::visitOR(SDNode *N) {
3015  SDValue N0 = N->getOperand(0);
3016  SDValue N1 = N->getOperand(1);
3017  SDValue LL, LR, RL, RR, CC0, CC1;
3018  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3019  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3020  EVT VT = N1.getValueType();
3021
3022  // fold vector ops
3023  if (VT.isVector()) {
3024    SDValue FoldedVOp = SimplifyVBinOp(N);
3025    if (FoldedVOp.getNode()) return FoldedVOp;
3026  }
3027
3028  // fold (or x, undef) -> -1
3029  if (!LegalOperations &&
3030      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3031    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3032    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3033  }
3034  // fold (or c1, c2) -> c1|c2
3035  if (N0C && N1C)
3036    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3037  // canonicalize constant to RHS
3038  if (N0C && !N1C)
3039    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0);
3040  // fold (or x, 0) -> x
3041  if (N1C && N1C->isNullValue())
3042    return N0;
3043  // fold (or x, -1) -> -1
3044  if (N1C && N1C->isAllOnesValue())
3045    return N1;
3046  // fold (or x, c) -> c iff (x & ~c) == 0
3047  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3048    return N1;
3049
3050  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3051  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3052  if (BSwap.getNode() != 0)
3053    return BSwap;
3054  BSwap = MatchBSwapHWordLow(N, N0, N1);
3055  if (BSwap.getNode() != 0)
3056    return BSwap;
3057
3058  // reassociate or
3059  SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1);
3060  if (ROR.getNode() != 0)
3061    return ROR;
3062  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3063  // iff (c1 & c2) == 0.
3064  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3065             isa<ConstantSDNode>(N0.getOperand(1))) {
3066    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3067    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3068      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3069                         DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3070                                     N0.getOperand(0), N1),
3071                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3072  }
3073  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3074  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3075    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3076    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3077
3078    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3079        LL.getValueType().isInteger()) {
3080      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3081      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3082      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3083          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3084        SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(),
3085                                     LR.getValueType(), LL, RL);
3086        AddToWorkList(ORNode.getNode());
3087        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
3088      }
3089      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3090      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3091      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3092          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3093        SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(),
3094                                      LR.getValueType(), LL, RL);
3095        AddToWorkList(ANDNode.getNode());
3096        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
3097      }
3098    }
3099    // canonicalize equivalent to ll == rl
3100    if (LL == RR && LR == RL) {
3101      Op1 = ISD::getSetCCSwappedOperands(Op1);
3102      std::swap(RL, RR);
3103    }
3104    if (LL == RL && LR == RR) {
3105      bool isInteger = LL.getValueType().isInteger();
3106      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3107      if (Result != ISD::SETCC_INVALID &&
3108          (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
3109        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
3110                            LL, LR, Result);
3111    }
3112  }
3113
3114  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3115  if (N0.getOpcode() == N1.getOpcode()) {
3116    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3117    if (Tmp.getNode()) return Tmp;
3118  }
3119
3120  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3121  if (N0.getOpcode() == ISD::AND &&
3122      N1.getOpcode() == ISD::AND &&
3123      N0.getOperand(1).getOpcode() == ISD::Constant &&
3124      N1.getOperand(1).getOpcode() == ISD::Constant &&
3125      // Don't increase # computations.
3126      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3127    // We can only do this xform if we know that bits from X that are set in C2
3128    // but not in C1 are already zero.  Likewise for Y.
3129    const APInt &LHSMask =
3130      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3131    const APInt &RHSMask =
3132      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3133
3134    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3135        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3136      SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3137                              N0.getOperand(0), N1.getOperand(0));
3138      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X,
3139                         DAG.getConstant(LHSMask | RHSMask, VT));
3140    }
3141  }
3142
3143  // See if this is some rotate idiom.
3144  if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc()))
3145    return SDValue(Rot, 0);
3146
3147  // Simplify the operands using demanded-bits information.
3148  if (!VT.isVector() &&
3149      SimplifyDemandedBits(SDValue(N, 0)))
3150    return SDValue(N, 0);
3151
3152  return SDValue();
3153}
3154
3155/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3156static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3157  if (Op.getOpcode() == ISD::AND) {
3158    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3159      Mask = Op.getOperand(1);
3160      Op = Op.getOperand(0);
3161    } else {
3162      return false;
3163    }
3164  }
3165
3166  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3167    Shift = Op;
3168    return true;
3169  }
3170
3171  return false;
3172}
3173
3174// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3175// idioms for rotate, and if the target supports rotation instructions, generate
3176// a rot[lr].
3177SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) {
3178  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3179  EVT VT = LHS.getValueType();
3180  if (!TLI.isTypeLegal(VT)) return 0;
3181
3182  // The target must have at least one rotate flavor.
3183  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3184  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3185  if (!HasROTL && !HasROTR) return 0;
3186
3187  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3188  SDValue LHSShift;   // The shift.
3189  SDValue LHSMask;    // AND value if any.
3190  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3191    return 0; // Not part of a rotate.
3192
3193  SDValue RHSShift;   // The shift.
3194  SDValue RHSMask;    // AND value if any.
3195  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3196    return 0; // Not part of a rotate.
3197
3198  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3199    return 0;   // Not shifting the same value.
3200
3201  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3202    return 0;   // Shifts must disagree.
3203
3204  // Canonicalize shl to left side in a shl/srl pair.
3205  if (RHSShift.getOpcode() == ISD::SHL) {
3206    std::swap(LHS, RHS);
3207    std::swap(LHSShift, RHSShift);
3208    std::swap(LHSMask , RHSMask );
3209  }
3210
3211  unsigned OpSizeInBits = VT.getSizeInBits();
3212  SDValue LHSShiftArg = LHSShift.getOperand(0);
3213  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3214  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3215
3216  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3217  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3218  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3219      RHSShiftAmt.getOpcode() == ISD::Constant) {
3220    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3221    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3222    if ((LShVal + RShVal) != OpSizeInBits)
3223      return 0;
3224
3225    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3226                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3227
3228    // If there is an AND of either shifted operand, apply it to the result.
3229    if (LHSMask.getNode() || RHSMask.getNode()) {
3230      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3231
3232      if (LHSMask.getNode()) {
3233        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3234        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3235      }
3236      if (RHSMask.getNode()) {
3237        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3238        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3239      }
3240
3241      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3242    }
3243
3244    return Rot.getNode();
3245  }
3246
3247  // If there is a mask here, and we have a variable shift, we can't be sure
3248  // that we're masking out the right stuff.
3249  if (LHSMask.getNode() || RHSMask.getNode())
3250    return 0;
3251
3252  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
3253  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
3254  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
3255      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
3256    if (ConstantSDNode *SUBC =
3257          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
3258      if (SUBC->getAPIntValue() == OpSizeInBits) {
3259        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3260                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3261      }
3262    }
3263  }
3264
3265  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
3266  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
3267  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
3268      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
3269    if (ConstantSDNode *SUBC =
3270          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
3271      if (SUBC->getAPIntValue() == OpSizeInBits) {
3272        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3273                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3274      }
3275    }
3276  }
3277
3278  // Look for sign/zext/any-extended or truncate cases:
3279  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3280       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3281       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3282       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3283      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3284       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3285       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3286       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3287    SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
3288    SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
3289    if (RExtOp0.getOpcode() == ISD::SUB &&
3290        RExtOp0.getOperand(1) == LExtOp0) {
3291      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3292      //   (rotl x, y)
3293      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3294      //   (rotr x, (sub 32, y))
3295      if (ConstantSDNode *SUBC =
3296            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
3297        if (SUBC->getAPIntValue() == OpSizeInBits) {
3298          return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3299                             LHSShiftArg,
3300                             HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3301        }
3302      }
3303    } else if (LExtOp0.getOpcode() == ISD::SUB &&
3304               RExtOp0 == LExtOp0.getOperand(1)) {
3305      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3306      //   (rotr x, y)
3307      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3308      //   (rotl x, (sub 32, y))
3309      if (ConstantSDNode *SUBC =
3310            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
3311        if (SUBC->getAPIntValue() == OpSizeInBits) {
3312          return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
3313                             LHSShiftArg,
3314                             HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3315        }
3316      }
3317    }
3318  }
3319
3320  return 0;
3321}
3322
3323SDValue DAGCombiner::visitXOR(SDNode *N) {
3324  SDValue N0 = N->getOperand(0);
3325  SDValue N1 = N->getOperand(1);
3326  SDValue LHS, RHS, CC;
3327  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3328  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3329  EVT VT = N0.getValueType();
3330
3331  // fold vector ops
3332  if (VT.isVector()) {
3333    SDValue FoldedVOp = SimplifyVBinOp(N);
3334    if (FoldedVOp.getNode()) return FoldedVOp;
3335  }
3336
3337  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3338  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3339    return DAG.getConstant(0, VT);
3340  // fold (xor x, undef) -> undef
3341  if (N0.getOpcode() == ISD::UNDEF)
3342    return N0;
3343  if (N1.getOpcode() == ISD::UNDEF)
3344    return N1;
3345  // fold (xor c1, c2) -> c1^c2
3346  if (N0C && N1C)
3347    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3348  // canonicalize constant to RHS
3349  if (N0C && !N1C)
3350    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
3351  // fold (xor x, 0) -> x
3352  if (N1C && N1C->isNullValue())
3353    return N0;
3354  // reassociate xor
3355  SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1);
3356  if (RXOR.getNode() != 0)
3357    return RXOR;
3358
3359  // fold !(x cc y) -> (x !cc y)
3360  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3361    bool isInt = LHS.getValueType().isInteger();
3362    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3363                                               isInt);
3364
3365    if (!LegalOperations || TLI.isCondCodeLegal(NotCC, LHS.getValueType())) {
3366      switch (N0.getOpcode()) {
3367      default:
3368        llvm_unreachable("Unhandled SetCC Equivalent!");
3369      case ISD::SETCC:
3370        return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC);
3371      case ISD::SELECT_CC:
3372        return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2),
3373                               N0.getOperand(3), NotCC);
3374      }
3375    }
3376  }
3377
3378  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3379  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3380      N0.getNode()->hasOneUse() &&
3381      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3382    SDValue V = N0.getOperand(0);
3383    V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V,
3384                    DAG.getConstant(1, V.getValueType()));
3385    AddToWorkList(V.getNode());
3386    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V);
3387  }
3388
3389  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3390  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3391      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3392    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3393    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3394      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3395      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3396      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3397      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3398      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3399    }
3400  }
3401  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3402  if (N1C && N1C->isAllOnesValue() &&
3403      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3404    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3405    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3406      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3407      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3408      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3409      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3410      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3411    }
3412  }
3413  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3414  if (N1C && N0.getOpcode() == ISD::XOR) {
3415    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3416    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3417    if (N00C)
3418      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1),
3419                         DAG.getConstant(N1C->getAPIntValue() ^
3420                                         N00C->getAPIntValue(), VT));
3421    if (N01C)
3422      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0),
3423                         DAG.getConstant(N1C->getAPIntValue() ^
3424                                         N01C->getAPIntValue(), VT));
3425  }
3426  // fold (xor x, x) -> 0
3427  if (N0 == N1)
3428    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
3429
3430  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3431  if (N0.getOpcode() == N1.getOpcode()) {
3432    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3433    if (Tmp.getNode()) return Tmp;
3434  }
3435
3436  // Simplify the expression using non-local knowledge.
3437  if (!VT.isVector() &&
3438      SimplifyDemandedBits(SDValue(N, 0)))
3439    return SDValue(N, 0);
3440
3441  return SDValue();
3442}
3443
3444/// visitShiftByConstant - Handle transforms common to the three shifts, when
3445/// the shift amount is a constant.
3446SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3447  SDNode *LHS = N->getOperand(0).getNode();
3448  if (!LHS->hasOneUse()) return SDValue();
3449
3450  // We want to pull some binops through shifts, so that we have (and (shift))
3451  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3452  // thing happens with address calculations, so it's important to canonicalize
3453  // it.
3454  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3455
3456  switch (LHS->getOpcode()) {
3457  default: return SDValue();
3458  case ISD::OR:
3459  case ISD::XOR:
3460    HighBitSet = false; // We can only transform sra if the high bit is clear.
3461    break;
3462  case ISD::AND:
3463    HighBitSet = true;  // We can only transform sra if the high bit is set.
3464    break;
3465  case ISD::ADD:
3466    if (N->getOpcode() != ISD::SHL)
3467      return SDValue(); // only shl(add) not sr[al](add).
3468    HighBitSet = false; // We can only transform sra if the high bit is clear.
3469    break;
3470  }
3471
3472  // We require the RHS of the binop to be a constant as well.
3473  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3474  if (!BinOpCst) return SDValue();
3475
3476  // FIXME: disable this unless the input to the binop is a shift by a constant.
3477  // If it is not a shift, it pessimizes some common cases like:
3478  //
3479  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3480  //    int bar(int *X, int i) { return X[i & 255]; }
3481  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3482  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3483       BinOpLHSVal->getOpcode() != ISD::SRA &&
3484       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3485      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3486    return SDValue();
3487
3488  EVT VT = N->getValueType(0);
3489
3490  // If this is a signed shift right, and the high bit is modified by the
3491  // logical operation, do not perform the transformation. The highBitSet
3492  // boolean indicates the value of the high bit of the constant which would
3493  // cause it to be modified for this operation.
3494  if (N->getOpcode() == ISD::SRA) {
3495    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3496    if (BinOpRHSSignSet != HighBitSet)
3497      return SDValue();
3498  }
3499
3500  // Fold the constants, shifting the binop RHS by the shift amount.
3501  SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(),
3502                               N->getValueType(0),
3503                               LHS->getOperand(1), N->getOperand(1));
3504
3505  // Create the new shift.
3506  SDValue NewShift = DAG.getNode(N->getOpcode(),
3507                                 LHS->getOperand(0).getDebugLoc(),
3508                                 VT, LHS->getOperand(0), N->getOperand(1));
3509
3510  // Create the new binop.
3511  return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS);
3512}
3513
3514SDValue DAGCombiner::visitSHL(SDNode *N) {
3515  SDValue N0 = N->getOperand(0);
3516  SDValue N1 = N->getOperand(1);
3517  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3518  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3519  EVT VT = N0.getValueType();
3520  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3521
3522  // fold (shl c1, c2) -> c1<<c2
3523  if (N0C && N1C)
3524    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3525  // fold (shl 0, x) -> 0
3526  if (N0C && N0C->isNullValue())
3527    return N0;
3528  // fold (shl x, c >= size(x)) -> undef
3529  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3530    return DAG.getUNDEF(VT);
3531  // fold (shl x, 0) -> x
3532  if (N1C && N1C->isNullValue())
3533    return N0;
3534  // fold (shl undef, x) -> 0
3535  if (N0.getOpcode() == ISD::UNDEF)
3536    return DAG.getConstant(0, VT);
3537  // if (shl x, c) is known to be zero, return 0
3538  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3539                            APInt::getAllOnesValue(OpSizeInBits)))
3540    return DAG.getConstant(0, VT);
3541  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3542  if (N1.getOpcode() == ISD::TRUNCATE &&
3543      N1.getOperand(0).getOpcode() == ISD::AND &&
3544      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3545    SDValue N101 = N1.getOperand(0).getOperand(1);
3546    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3547      EVT TruncVT = N1.getValueType();
3548      SDValue N100 = N1.getOperand(0).getOperand(0);
3549      APInt TruncC = N101C->getAPIntValue();
3550      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3551      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
3552                         DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT,
3553                                     DAG.getNode(ISD::TRUNCATE,
3554                                                 N->getDebugLoc(),
3555                                                 TruncVT, N100),
3556                                     DAG.getConstant(TruncC, TruncVT)));
3557    }
3558  }
3559
3560  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3561    return SDValue(N, 0);
3562
3563  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3564  if (N1C && N0.getOpcode() == ISD::SHL &&
3565      N0.getOperand(1).getOpcode() == ISD::Constant) {
3566    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3567    uint64_t c2 = N1C->getZExtValue();
3568    if (c1 + c2 >= OpSizeInBits)
3569      return DAG.getConstant(0, VT);
3570    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3571                       DAG.getConstant(c1 + c2, N1.getValueType()));
3572  }
3573
3574  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3575  // For this to be valid, the second form must not preserve any of the bits
3576  // that are shifted out by the inner shift in the first form.  This means
3577  // the outer shift size must be >= the number of bits added by the ext.
3578  // As a corollary, we don't care what kind of ext it is.
3579  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3580              N0.getOpcode() == ISD::ANY_EXTEND ||
3581              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3582      N0.getOperand(0).getOpcode() == ISD::SHL &&
3583      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3584    uint64_t c1 =
3585      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3586    uint64_t c2 = N1C->getZExtValue();
3587    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3588    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3589    if (c2 >= OpSizeInBits - InnerShiftSize) {
3590      if (c1 + c2 >= OpSizeInBits)
3591        return DAG.getConstant(0, VT);
3592      return DAG.getNode(ISD::SHL, N0->getDebugLoc(), VT,
3593                         DAG.getNode(N0.getOpcode(), N0->getDebugLoc(), VT,
3594                                     N0.getOperand(0)->getOperand(0)),
3595                         DAG.getConstant(c1 + c2, N1.getValueType()));
3596    }
3597  }
3598
3599  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3600  //                               (and (srl x, (sub c1, c2), MASK)
3601  // Only fold this if the inner shift has no other uses -- if it does, folding
3602  // this will increase the total number of instructions.
3603  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3604      N0.getOperand(1).getOpcode() == ISD::Constant) {
3605    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3606    if (c1 < VT.getSizeInBits()) {
3607      uint64_t c2 = N1C->getZExtValue();
3608      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3609                                         VT.getSizeInBits() - c1);
3610      SDValue Shift;
3611      if (c2 > c1) {
3612        Mask = Mask.shl(c2-c1);
3613        Shift = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3614                            DAG.getConstant(c2-c1, N1.getValueType()));
3615      } else {
3616        Mask = Mask.lshr(c1-c2);
3617        Shift = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3618                            DAG.getConstant(c1-c2, N1.getValueType()));
3619      }
3620      return DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, Shift,
3621                         DAG.getConstant(Mask, VT));
3622    }
3623  }
3624  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3625  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3626    SDValue HiBitsMask =
3627      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3628                                            VT.getSizeInBits() -
3629                                              N1C->getZExtValue()),
3630                      VT);
3631    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3632                       HiBitsMask);
3633  }
3634
3635  if (N1C) {
3636    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3637    if (NewSHL.getNode())
3638      return NewSHL;
3639  }
3640
3641  return SDValue();
3642}
3643
3644SDValue DAGCombiner::visitSRA(SDNode *N) {
3645  SDValue N0 = N->getOperand(0);
3646  SDValue N1 = N->getOperand(1);
3647  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3648  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3649  EVT VT = N0.getValueType();
3650  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3651
3652  // fold (sra c1, c2) -> (sra c1, c2)
3653  if (N0C && N1C)
3654    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3655  // fold (sra 0, x) -> 0
3656  if (N0C && N0C->isNullValue())
3657    return N0;
3658  // fold (sra -1, x) -> -1
3659  if (N0C && N0C->isAllOnesValue())
3660    return N0;
3661  // fold (sra x, (setge c, size(x))) -> undef
3662  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3663    return DAG.getUNDEF(VT);
3664  // fold (sra x, 0) -> x
3665  if (N1C && N1C->isNullValue())
3666    return N0;
3667  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3668  // sext_inreg.
3669  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3670    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3671    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3672    if (VT.isVector())
3673      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3674                               ExtVT, VT.getVectorNumElements());
3675    if ((!LegalOperations ||
3676         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3677      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
3678                         N0.getOperand(0), DAG.getValueType(ExtVT));
3679  }
3680
3681  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3682  if (N1C && N0.getOpcode() == ISD::SRA) {
3683    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3684      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3685      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3686      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0),
3687                         DAG.getConstant(Sum, N1C->getValueType(0)));
3688    }
3689  }
3690
3691  // fold (sra (shl X, m), (sub result_size, n))
3692  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3693  // result_size - n != m.
3694  // If truncate is free for the target sext(shl) is likely to result in better
3695  // code.
3696  if (N0.getOpcode() == ISD::SHL) {
3697    // Get the two constanst of the shifts, CN0 = m, CN = n.
3698    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3699    if (N01C && N1C) {
3700      // Determine what the truncate's result bitsize and type would be.
3701      EVT TruncVT =
3702        EVT::getIntegerVT(*DAG.getContext(),
3703                          OpSizeInBits - N1C->getZExtValue());
3704      // Determine the residual right-shift amount.
3705      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3706
3707      // If the shift is not a no-op (in which case this should be just a sign
3708      // extend already), the truncated to type is legal, sign_extend is legal
3709      // on that type, and the truncate to that type is both legal and free,
3710      // perform the transform.
3711      if ((ShiftAmt > 0) &&
3712          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3713          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3714          TLI.isTruncateFree(VT, TruncVT)) {
3715
3716          SDValue Amt = DAG.getConstant(ShiftAmt,
3717              getShiftAmountTy(N0.getOperand(0).getValueType()));
3718          SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT,
3719                                      N0.getOperand(0), Amt);
3720          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT,
3721                                      Shift);
3722          return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(),
3723                             N->getValueType(0), Trunc);
3724      }
3725    }
3726  }
3727
3728  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3729  if (N1.getOpcode() == ISD::TRUNCATE &&
3730      N1.getOperand(0).getOpcode() == ISD::AND &&
3731      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3732    SDValue N101 = N1.getOperand(0).getOperand(1);
3733    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3734      EVT TruncVT = N1.getValueType();
3735      SDValue N100 = N1.getOperand(0).getOperand(0);
3736      APInt TruncC = N101C->getAPIntValue();
3737      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3738      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
3739                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3740                                     TruncVT,
3741                                     DAG.getNode(ISD::TRUNCATE,
3742                                                 N->getDebugLoc(),
3743                                                 TruncVT, N100),
3744                                     DAG.getConstant(TruncC, TruncVT)));
3745    }
3746  }
3747
3748  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3749  //      if c1 is equal to the number of bits the trunc removes
3750  if (N0.getOpcode() == ISD::TRUNCATE &&
3751      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3752       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3753      N0.getOperand(0).hasOneUse() &&
3754      N0.getOperand(0).getOperand(1).hasOneUse() &&
3755      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3756    EVT LargeVT = N0.getOperand(0).getValueType();
3757    ConstantSDNode *LargeShiftAmt =
3758      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3759
3760    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3761        LargeShiftAmt->getZExtValue()) {
3762      SDValue Amt =
3763        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3764              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3765      SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), LargeVT,
3766                                N0.getOperand(0).getOperand(0), Amt);
3767      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, SRA);
3768    }
3769  }
3770
3771  // Simplify, based on bits shifted out of the LHS.
3772  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3773    return SDValue(N, 0);
3774
3775
3776  // If the sign bit is known to be zero, switch this to a SRL.
3777  if (DAG.SignBitIsZero(N0))
3778    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1);
3779
3780  if (N1C) {
3781    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3782    if (NewSRA.getNode())
3783      return NewSRA;
3784  }
3785
3786  return SDValue();
3787}
3788
3789SDValue DAGCombiner::visitSRL(SDNode *N) {
3790  SDValue N0 = N->getOperand(0);
3791  SDValue N1 = N->getOperand(1);
3792  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3793  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3794  EVT VT = N0.getValueType();
3795  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3796
3797  // fold (srl c1, c2) -> c1 >>u c2
3798  if (N0C && N1C)
3799    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3800  // fold (srl 0, x) -> 0
3801  if (N0C && N0C->isNullValue())
3802    return N0;
3803  // fold (srl x, c >= size(x)) -> undef
3804  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3805    return DAG.getUNDEF(VT);
3806  // fold (srl x, 0) -> x
3807  if (N1C && N1C->isNullValue())
3808    return N0;
3809  // if (srl x, c) is known to be zero, return 0
3810  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3811                                   APInt::getAllOnesValue(OpSizeInBits)))
3812    return DAG.getConstant(0, VT);
3813
3814  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
3815  if (N1C && N0.getOpcode() == ISD::SRL &&
3816      N0.getOperand(1).getOpcode() == ISD::Constant) {
3817    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3818    uint64_t c2 = N1C->getZExtValue();
3819    if (c1 + c2 >= OpSizeInBits)
3820      return DAG.getConstant(0, VT);
3821    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3822                       DAG.getConstant(c1 + c2, N1.getValueType()));
3823  }
3824
3825  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
3826  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
3827      N0.getOperand(0).getOpcode() == ISD::SRL &&
3828      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3829    uint64_t c1 =
3830      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3831    uint64_t c2 = N1C->getZExtValue();
3832    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3833    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
3834    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3835    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
3836    if (c1 + OpSizeInBits == InnerShiftSize) {
3837      if (c1 + c2 >= InnerShiftSize)
3838        return DAG.getConstant(0, VT);
3839      return DAG.getNode(ISD::TRUNCATE, N0->getDebugLoc(), VT,
3840                         DAG.getNode(ISD::SRL, N0->getDebugLoc(), InnerShiftVT,
3841                                     N0.getOperand(0)->getOperand(0),
3842                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
3843    }
3844  }
3845
3846  // fold (srl (shl x, c), c) -> (and x, cst2)
3847  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
3848      N0.getValueSizeInBits() <= 64) {
3849    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
3850    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3851                       DAG.getConstant(~0ULL >> ShAmt, VT));
3852  }
3853
3854
3855  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
3856  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
3857    // Shifting in all undef bits?
3858    EVT SmallVT = N0.getOperand(0).getValueType();
3859    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
3860      return DAG.getUNDEF(VT);
3861
3862    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
3863      uint64_t ShiftAmt = N1C->getZExtValue();
3864      SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT,
3865                                       N0.getOperand(0),
3866                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
3867      AddToWorkList(SmallShift.getNode());
3868      return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift);
3869    }
3870  }
3871
3872  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
3873  // bit, which is unmodified by sra.
3874  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
3875    if (N0.getOpcode() == ISD::SRA)
3876      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1);
3877  }
3878
3879  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
3880  if (N1C && N0.getOpcode() == ISD::CTLZ &&
3881      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
3882    APInt KnownZero, KnownOne;
3883    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
3884
3885    // If any of the input bits are KnownOne, then the input couldn't be all
3886    // zeros, thus the result of the srl will always be zero.
3887    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
3888
3889    // If all of the bits input the to ctlz node are known to be zero, then
3890    // the result of the ctlz is "32" and the result of the shift is one.
3891    APInt UnknownBits = ~KnownZero;
3892    if (UnknownBits == 0) return DAG.getConstant(1, VT);
3893
3894    // Otherwise, check to see if there is exactly one bit input to the ctlz.
3895    if ((UnknownBits & (UnknownBits - 1)) == 0) {
3896      // Okay, we know that only that the single bit specified by UnknownBits
3897      // could be set on input to the CTLZ node. If this bit is set, the SRL
3898      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
3899      // to an SRL/XOR pair, which is likely to simplify more.
3900      unsigned ShAmt = UnknownBits.countTrailingZeros();
3901      SDValue Op = N0.getOperand(0);
3902
3903      if (ShAmt) {
3904        Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op,
3905                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
3906        AddToWorkList(Op.getNode());
3907      }
3908
3909      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
3910                         Op, DAG.getConstant(1, VT));
3911    }
3912  }
3913
3914  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
3915  if (N1.getOpcode() == ISD::TRUNCATE &&
3916      N1.getOperand(0).getOpcode() == ISD::AND &&
3917      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3918    SDValue N101 = N1.getOperand(0).getOperand(1);
3919    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3920      EVT TruncVT = N1.getValueType();
3921      SDValue N100 = N1.getOperand(0).getOperand(0);
3922      APInt TruncC = N101C->getAPIntValue();
3923      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3924      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
3925                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3926                                     TruncVT,
3927                                     DAG.getNode(ISD::TRUNCATE,
3928                                                 N->getDebugLoc(),
3929                                                 TruncVT, N100),
3930                                     DAG.getConstant(TruncC, TruncVT)));
3931    }
3932  }
3933
3934  // fold operands of srl based on knowledge that the low bits are not
3935  // demanded.
3936  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3937    return SDValue(N, 0);
3938
3939  if (N1C) {
3940    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
3941    if (NewSRL.getNode())
3942      return NewSRL;
3943  }
3944
3945  // Attempt to convert a srl of a load into a narrower zero-extending load.
3946  SDValue NarrowLoad = ReduceLoadWidth(N);
3947  if (NarrowLoad.getNode())
3948    return NarrowLoad;
3949
3950  // Here is a common situation. We want to optimize:
3951  //
3952  //   %a = ...
3953  //   %b = and i32 %a, 2
3954  //   %c = srl i32 %b, 1
3955  //   brcond i32 %c ...
3956  //
3957  // into
3958  //
3959  //   %a = ...
3960  //   %b = and %a, 2
3961  //   %c = setcc eq %b, 0
3962  //   brcond %c ...
3963  //
3964  // However when after the source operand of SRL is optimized into AND, the SRL
3965  // itself may not be optimized further. Look for it and add the BRCOND into
3966  // the worklist.
3967  if (N->hasOneUse()) {
3968    SDNode *Use = *N->use_begin();
3969    if (Use->getOpcode() == ISD::BRCOND)
3970      AddToWorkList(Use);
3971    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
3972      // Also look pass the truncate.
3973      Use = *Use->use_begin();
3974      if (Use->getOpcode() == ISD::BRCOND)
3975        AddToWorkList(Use);
3976    }
3977  }
3978
3979  return SDValue();
3980}
3981
3982SDValue DAGCombiner::visitCTLZ(SDNode *N) {
3983  SDValue N0 = N->getOperand(0);
3984  EVT VT = N->getValueType(0);
3985
3986  // fold (ctlz c1) -> c2
3987  if (isa<ConstantSDNode>(N0))
3988    return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0);
3989  return SDValue();
3990}
3991
3992SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
3993  SDValue N0 = N->getOperand(0);
3994  EVT VT = N->getValueType(0);
3995
3996  // fold (ctlz_zero_undef c1) -> c2
3997  if (isa<ConstantSDNode>(N0))
3998    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
3999  return SDValue();
4000}
4001
4002SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4003  SDValue N0 = N->getOperand(0);
4004  EVT VT = N->getValueType(0);
4005
4006  // fold (cttz c1) -> c2
4007  if (isa<ConstantSDNode>(N0))
4008    return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0);
4009  return SDValue();
4010}
4011
4012SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4013  SDValue N0 = N->getOperand(0);
4014  EVT VT = N->getValueType(0);
4015
4016  // fold (cttz_zero_undef c1) -> c2
4017  if (isa<ConstantSDNode>(N0))
4018    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
4019  return SDValue();
4020}
4021
4022SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4023  SDValue N0 = N->getOperand(0);
4024  EVT VT = N->getValueType(0);
4025
4026  // fold (ctpop c1) -> c2
4027  if (isa<ConstantSDNode>(N0))
4028    return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0);
4029  return SDValue();
4030}
4031
4032SDValue DAGCombiner::visitSELECT(SDNode *N) {
4033  SDValue N0 = N->getOperand(0);
4034  SDValue N1 = N->getOperand(1);
4035  SDValue N2 = N->getOperand(2);
4036  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4037  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4038  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4039  EVT VT = N->getValueType(0);
4040  EVT VT0 = N0.getValueType();
4041
4042  // fold (select C, X, X) -> X
4043  if (N1 == N2)
4044    return N1;
4045  // fold (select true, X, Y) -> X
4046  if (N0C && !N0C->isNullValue())
4047    return N1;
4048  // fold (select false, X, Y) -> Y
4049  if (N0C && N0C->isNullValue())
4050    return N2;
4051  // fold (select C, 1, X) -> (or C, X)
4052  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4053    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4054  // fold (select C, 0, 1) -> (xor C, 1)
4055  if (VT.isInteger() &&
4056      (VT0 == MVT::i1 ||
4057       (VT0.isInteger() &&
4058        TLI.getBooleanContents(false) ==
4059        TargetLowering::ZeroOrOneBooleanContent)) &&
4060      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4061    SDValue XORNode;
4062    if (VT == VT0)
4063      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0,
4064                         N0, DAG.getConstant(1, VT0));
4065    XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0,
4066                          N0, DAG.getConstant(1, VT0));
4067    AddToWorkList(XORNode.getNode());
4068    if (VT.bitsGT(VT0))
4069      return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode);
4070    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode);
4071  }
4072  // fold (select C, 0, X) -> (and (not C), X)
4073  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4074    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4075    AddToWorkList(NOTNode.getNode());
4076    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2);
4077  }
4078  // fold (select C, X, 1) -> (or (not C), X)
4079  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4080    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4081    AddToWorkList(NOTNode.getNode());
4082    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1);
4083  }
4084  // fold (select C, X, 0) -> (and C, X)
4085  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4086    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4087  // fold (select X, X, Y) -> (or X, Y)
4088  // fold (select X, 1, Y) -> (or X, Y)
4089  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4090    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4091  // fold (select X, Y, X) -> (and X, Y)
4092  // fold (select X, Y, 0) -> (and X, Y)
4093  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4094    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4095
4096  // If we can fold this based on the true/false value, do so.
4097  if (SimplifySelectOps(N, N1, N2))
4098    return SDValue(N, 0);  // Don't revisit N.
4099
4100  // fold selects based on a setcc into other things, such as min/max/abs
4101  if (N0.getOpcode() == ISD::SETCC) {
4102    // FIXME:
4103    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4104    // having to say they don't support SELECT_CC on every type the DAG knows
4105    // about, since there is no way to mark an opcode illegal at all value types
4106    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4107        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4108      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT,
4109                         N0.getOperand(0), N0.getOperand(1),
4110                         N1, N2, N0.getOperand(2));
4111    return SimplifySelect(N->getDebugLoc(), N0, N1, N2);
4112  }
4113
4114  return SDValue();
4115}
4116
4117SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4118  SDValue N0 = N->getOperand(0);
4119  SDValue N1 = N->getOperand(1);
4120  SDValue N2 = N->getOperand(2);
4121  SDValue N3 = N->getOperand(3);
4122  SDValue N4 = N->getOperand(4);
4123  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4124
4125  // fold select_cc lhs, rhs, x, x, cc -> x
4126  if (N2 == N3)
4127    return N2;
4128
4129  // Determine if the condition we're dealing with is constant
4130  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
4131                              N0, N1, CC, N->getDebugLoc(), false);
4132  if (SCC.getNode()) AddToWorkList(SCC.getNode());
4133
4134  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
4135    if (!SCCC->isNullValue())
4136      return N2;    // cond always true -> true val
4137    else
4138      return N3;    // cond always false -> false val
4139  }
4140
4141  // Fold to a simpler select_cc
4142  if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC)
4143    return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(),
4144                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4145                       SCC.getOperand(2));
4146
4147  // If we can fold this based on the true/false value, do so.
4148  if (SimplifySelectOps(N, N2, N3))
4149    return SDValue(N, 0);  // Don't revisit N.
4150
4151  // fold select_cc into other things, such as min/max/abs
4152  return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC);
4153}
4154
4155SDValue DAGCombiner::visitSETCC(SDNode *N) {
4156  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4157                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4158                       N->getDebugLoc());
4159}
4160
4161// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4162// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4163// transformation. Returns true if extension are possible and the above
4164// mentioned transformation is profitable.
4165static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4166                                    unsigned ExtOpc,
4167                                    SmallVector<SDNode*, 4> &ExtendNodes,
4168                                    const TargetLowering &TLI) {
4169  bool HasCopyToRegUses = false;
4170  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4171  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4172                            UE = N0.getNode()->use_end();
4173       UI != UE; ++UI) {
4174    SDNode *User = *UI;
4175    if (User == N)
4176      continue;
4177    if (UI.getUse().getResNo() != N0.getResNo())
4178      continue;
4179    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4180    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4181      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4182      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4183        // Sign bits will be lost after a zext.
4184        return false;
4185      bool Add = false;
4186      for (unsigned i = 0; i != 2; ++i) {
4187        SDValue UseOp = User->getOperand(i);
4188        if (UseOp == N0)
4189          continue;
4190        if (!isa<ConstantSDNode>(UseOp))
4191          return false;
4192        Add = true;
4193      }
4194      if (Add)
4195        ExtendNodes.push_back(User);
4196      continue;
4197    }
4198    // If truncates aren't free and there are users we can't
4199    // extend, it isn't worthwhile.
4200    if (!isTruncFree)
4201      return false;
4202    // Remember if this value is live-out.
4203    if (User->getOpcode() == ISD::CopyToReg)
4204      HasCopyToRegUses = true;
4205  }
4206
4207  if (HasCopyToRegUses) {
4208    bool BothLiveOut = false;
4209    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4210         UI != UE; ++UI) {
4211      SDUse &Use = UI.getUse();
4212      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4213        BothLiveOut = true;
4214        break;
4215      }
4216    }
4217    if (BothLiveOut)
4218      // Both unextended and extended values are live out. There had better be
4219      // a good reason for the transformation.
4220      return ExtendNodes.size();
4221  }
4222  return true;
4223}
4224
4225void DAGCombiner::ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
4226                                  SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
4227                                  ISD::NodeType ExtType) {
4228  // Extend SetCC uses if necessary.
4229  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4230    SDNode *SetCC = SetCCs[i];
4231    SmallVector<SDValue, 4> Ops;
4232
4233    for (unsigned j = 0; j != 2; ++j) {
4234      SDValue SOp = SetCC->getOperand(j);
4235      if (SOp == Trunc)
4236        Ops.push_back(ExtLoad);
4237      else
4238        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4239    }
4240
4241    Ops.push_back(SetCC->getOperand(2));
4242    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4243                                 &Ops[0], Ops.size()));
4244  }
4245}
4246
4247SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4248  SDValue N0 = N->getOperand(0);
4249  EVT VT = N->getValueType(0);
4250
4251  // fold (sext c1) -> c1
4252  if (isa<ConstantSDNode>(N0))
4253    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0);
4254
4255  // fold (sext (sext x)) -> (sext x)
4256  // fold (sext (aext x)) -> (sext x)
4257  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4258    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT,
4259                       N0.getOperand(0));
4260
4261  if (N0.getOpcode() == ISD::TRUNCATE) {
4262    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4263    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4264    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4265    if (NarrowLoad.getNode()) {
4266      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4267      if (NarrowLoad.getNode() != N0.getNode()) {
4268        CombineTo(N0.getNode(), NarrowLoad);
4269        // CombineTo deleted the truncate, if needed, but not what's under it.
4270        AddToWorkList(oye);
4271      }
4272      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4273    }
4274
4275    // See if the value being truncated is already sign extended.  If so, just
4276    // eliminate the trunc/sext pair.
4277    SDValue Op = N0.getOperand(0);
4278    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4279    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4280    unsigned DestBits = VT.getScalarType().getSizeInBits();
4281    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4282
4283    if (OpBits == DestBits) {
4284      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4285      // bits, it is already ready.
4286      if (NumSignBits > DestBits-MidBits)
4287        return Op;
4288    } else if (OpBits < DestBits) {
4289      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4290      // bits, just sext from i32.
4291      if (NumSignBits > OpBits-MidBits)
4292        return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op);
4293    } else {
4294      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4295      // bits, just truncate to i32.
4296      if (NumSignBits > OpBits-MidBits)
4297        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4298    }
4299
4300    // fold (sext (truncate x)) -> (sextinreg x).
4301    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4302                                                 N0.getValueType())) {
4303      if (OpBits < DestBits)
4304        Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op);
4305      else if (OpBits > DestBits)
4306        Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op);
4307      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op,
4308                         DAG.getValueType(N0.getValueType()));
4309    }
4310  }
4311
4312  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4313  // None of the supported targets knows how to perform load and sign extend
4314  // on vectors in one instruction.  We only perform this transformation on
4315  // scalars.
4316  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4317      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4318       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4319    bool DoXform = true;
4320    SmallVector<SDNode*, 4> SetCCs;
4321    if (!N0.hasOneUse())
4322      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4323    if (DoXform) {
4324      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4325      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4326                                       LN0->getChain(),
4327                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4328                                       N0.getValueType(),
4329                                       LN0->isVolatile(), LN0->isNonTemporal(),
4330                                       LN0->getAlignment());
4331      CombineTo(N, ExtLoad);
4332      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4333                                  N0.getValueType(), ExtLoad);
4334      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4335      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4336                      ISD::SIGN_EXTEND);
4337      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4338    }
4339  }
4340
4341  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4342  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4343  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4344      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4345    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4346    EVT MemVT = LN0->getMemoryVT();
4347    if ((!LegalOperations && !LN0->isVolatile()) ||
4348        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4349      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4350                                       LN0->getChain(),
4351                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4352                                       MemVT,
4353                                       LN0->isVolatile(), LN0->isNonTemporal(),
4354                                       LN0->getAlignment());
4355      CombineTo(N, ExtLoad);
4356      CombineTo(N0.getNode(),
4357                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4358                            N0.getValueType(), ExtLoad),
4359                ExtLoad.getValue(1));
4360      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4361    }
4362  }
4363
4364  // fold (sext (and/or/xor (load x), cst)) ->
4365  //      (and/or/xor (sextload x), (sext cst))
4366  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4367       N0.getOpcode() == ISD::XOR) &&
4368      isa<LoadSDNode>(N0.getOperand(0)) &&
4369      N0.getOperand(1).getOpcode() == ISD::Constant &&
4370      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4371      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4372    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4373    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4374      bool DoXform = true;
4375      SmallVector<SDNode*, 4> SetCCs;
4376      if (!N0.hasOneUse())
4377        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4378                                          SetCCs, TLI);
4379      if (DoXform) {
4380        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, LN0->getDebugLoc(), VT,
4381                                         LN0->getChain(), LN0->getBasePtr(),
4382                                         LN0->getPointerInfo(),
4383                                         LN0->getMemoryVT(),
4384                                         LN0->isVolatile(),
4385                                         LN0->isNonTemporal(),
4386                                         LN0->getAlignment());
4387        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4388        Mask = Mask.sext(VT.getSizeInBits());
4389        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4390                                  ExtLoad, DAG.getConstant(Mask, VT));
4391        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4392                                    N0.getOperand(0).getDebugLoc(),
4393                                    N0.getOperand(0).getValueType(), ExtLoad);
4394        CombineTo(N, And);
4395        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4396        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4397                        ISD::SIGN_EXTEND);
4398        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4399      }
4400    }
4401  }
4402
4403  if (N0.getOpcode() == ISD::SETCC) {
4404    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4405    // Only do this before legalize for now.
4406    if (VT.isVector() && !LegalOperations) {
4407      EVT N0VT = N0.getOperand(0).getValueType();
4408      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4409      // of the same size as the compared operands. Only optimize sext(setcc())
4410      // if this is the case.
4411      EVT SVT = TLI.getSetCCResultType(N0VT);
4412
4413      // We know that the # elements of the results is the same as the
4414      // # elements of the compare (and the # elements of the compare result
4415      // for that matter).  Check to see that they are the same size.  If so,
4416      // we know that the element size of the sext'd result matches the
4417      // element size of the compare operands.
4418      if (VT.getSizeInBits() == SVT.getSizeInBits())
4419        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4420                             N0.getOperand(1),
4421                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4422      // If the desired elements are smaller or larger than the source
4423      // elements we can use a matching integer vector type and then
4424      // truncate/sign extend
4425      EVT MatchingElementType =
4426        EVT::getIntegerVT(*DAG.getContext(),
4427                          N0VT.getScalarType().getSizeInBits());
4428      EVT MatchingVectorType =
4429        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4430                         N0VT.getVectorNumElements());
4431
4432      if (SVT == MatchingVectorType) {
4433        SDValue VsetCC = DAG.getSetCC(N->getDebugLoc(), MatchingVectorType,
4434                               N0.getOperand(0), N0.getOperand(1),
4435                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4436        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4437      }
4438    }
4439
4440    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4441    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4442    SDValue NegOne =
4443      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4444    SDValue SCC =
4445      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4446                       NegOne, DAG.getConstant(0, VT),
4447                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4448    if (SCC.getNode()) return SCC;
4449    if (!LegalOperations ||
4450        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(VT)))
4451      return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4452                         DAG.getSetCC(N->getDebugLoc(),
4453                                      TLI.getSetCCResultType(VT),
4454                                      N0.getOperand(0), N0.getOperand(1),
4455                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4456                         NegOne, DAG.getConstant(0, VT));
4457  }
4458
4459  // fold (sext x) -> (zext x) if the sign bit is known zero.
4460  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4461      DAG.SignBitIsZero(N0))
4462    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4463
4464  return SDValue();
4465}
4466
4467// isTruncateOf - If N is a truncate of some other value, return true, record
4468// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4469// This function computes KnownZero to avoid a duplicated call to
4470// ComputeMaskedBits in the caller.
4471static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4472                         APInt &KnownZero) {
4473  APInt KnownOne;
4474  if (N->getOpcode() == ISD::TRUNCATE) {
4475    Op = N->getOperand(0);
4476    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4477    return true;
4478  }
4479
4480  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4481      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4482    return false;
4483
4484  SDValue Op0 = N->getOperand(0);
4485  SDValue Op1 = N->getOperand(1);
4486  assert(Op0.getValueType() == Op1.getValueType());
4487
4488  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4489  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4490  if (COp0 && COp0->isNullValue())
4491    Op = Op1;
4492  else if (COp1 && COp1->isNullValue())
4493    Op = Op0;
4494  else
4495    return false;
4496
4497  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4498
4499  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4500    return false;
4501
4502  return true;
4503}
4504
4505SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4506  SDValue N0 = N->getOperand(0);
4507  EVT VT = N->getValueType(0);
4508
4509  // fold (zext c1) -> c1
4510  if (isa<ConstantSDNode>(N0))
4511    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4512  // fold (zext (zext x)) -> (zext x)
4513  // fold (zext (aext x)) -> (zext x)
4514  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4515    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT,
4516                       N0.getOperand(0));
4517
4518  // fold (zext (truncate x)) -> (zext x) or
4519  //      (zext (truncate x)) -> (truncate x)
4520  // This is valid when the truncated bits of x are already zero.
4521  // FIXME: We should extend this to work for vectors too.
4522  SDValue Op;
4523  APInt KnownZero;
4524  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4525    APInt TruncatedBits =
4526      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4527      APInt(Op.getValueSizeInBits(), 0) :
4528      APInt::getBitsSet(Op.getValueSizeInBits(),
4529                        N0.getValueSizeInBits(),
4530                        std::min(Op.getValueSizeInBits(),
4531                                 VT.getSizeInBits()));
4532    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4533      if (VT.bitsGT(Op.getValueType()))
4534        return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, Op);
4535      if (VT.bitsLT(Op.getValueType()))
4536        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4537
4538      return Op;
4539    }
4540  }
4541
4542  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4543  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4544  if (N0.getOpcode() == ISD::TRUNCATE) {
4545    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4546    if (NarrowLoad.getNode()) {
4547      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4548      if (NarrowLoad.getNode() != N0.getNode()) {
4549        CombineTo(N0.getNode(), NarrowLoad);
4550        // CombineTo deleted the truncate, if needed, but not what's under it.
4551        AddToWorkList(oye);
4552      }
4553      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4554    }
4555  }
4556
4557  // fold (zext (truncate x)) -> (and x, mask)
4558  if (N0.getOpcode() == ISD::TRUNCATE &&
4559      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4560
4561    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4562    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4563    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4564    if (NarrowLoad.getNode()) {
4565      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4566      if (NarrowLoad.getNode() != N0.getNode()) {
4567        CombineTo(N0.getNode(), NarrowLoad);
4568        // CombineTo deleted the truncate, if needed, but not what's under it.
4569        AddToWorkList(oye);
4570      }
4571      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4572    }
4573
4574    SDValue Op = N0.getOperand(0);
4575    if (Op.getValueType().bitsLT(VT)) {
4576      Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op);
4577      AddToWorkList(Op.getNode());
4578    } else if (Op.getValueType().bitsGT(VT)) {
4579      Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4580      AddToWorkList(Op.getNode());
4581    }
4582    return DAG.getZeroExtendInReg(Op, N->getDebugLoc(),
4583                                  N0.getValueType().getScalarType());
4584  }
4585
4586  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4587  // if either of the casts is not free.
4588  if (N0.getOpcode() == ISD::AND &&
4589      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4590      N0.getOperand(1).getOpcode() == ISD::Constant &&
4591      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4592                           N0.getValueType()) ||
4593       !TLI.isZExtFree(N0.getValueType(), VT))) {
4594    SDValue X = N0.getOperand(0).getOperand(0);
4595    if (X.getValueType().bitsLT(VT)) {
4596      X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X);
4597    } else if (X.getValueType().bitsGT(VT)) {
4598      X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
4599    }
4600    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4601    Mask = Mask.zext(VT.getSizeInBits());
4602    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4603                       X, DAG.getConstant(Mask, VT));
4604  }
4605
4606  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4607  // None of the supported targets knows how to perform load and vector_zext
4608  // on vectors in one instruction.  We only perform this transformation on
4609  // scalars.
4610  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4611      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4612       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4613    bool DoXform = true;
4614    SmallVector<SDNode*, 4> SetCCs;
4615    if (!N0.hasOneUse())
4616      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4617    if (DoXform) {
4618      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4619      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4620                                       LN0->getChain(),
4621                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4622                                       N0.getValueType(),
4623                                       LN0->isVolatile(), LN0->isNonTemporal(),
4624                                       LN0->getAlignment());
4625      CombineTo(N, ExtLoad);
4626      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4627                                  N0.getValueType(), ExtLoad);
4628      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4629
4630      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4631                      ISD::ZERO_EXTEND);
4632      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4633    }
4634  }
4635
4636  // fold (zext (and/or/xor (load x), cst)) ->
4637  //      (and/or/xor (zextload x), (zext cst))
4638  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4639       N0.getOpcode() == ISD::XOR) &&
4640      isa<LoadSDNode>(N0.getOperand(0)) &&
4641      N0.getOperand(1).getOpcode() == ISD::Constant &&
4642      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4643      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4644    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4645    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4646      bool DoXform = true;
4647      SmallVector<SDNode*, 4> SetCCs;
4648      if (!N0.hasOneUse())
4649        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4650                                          SetCCs, TLI);
4651      if (DoXform) {
4652        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT,
4653                                         LN0->getChain(), LN0->getBasePtr(),
4654                                         LN0->getPointerInfo(),
4655                                         LN0->getMemoryVT(),
4656                                         LN0->isVolatile(),
4657                                         LN0->isNonTemporal(),
4658                                         LN0->getAlignment());
4659        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4660        Mask = Mask.zext(VT.getSizeInBits());
4661        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4662                                  ExtLoad, DAG.getConstant(Mask, VT));
4663        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4664                                    N0.getOperand(0).getDebugLoc(),
4665                                    N0.getOperand(0).getValueType(), ExtLoad);
4666        CombineTo(N, And);
4667        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4668        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4669                        ISD::ZERO_EXTEND);
4670        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4671      }
4672    }
4673  }
4674
4675  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4676  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4677  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4678      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4679    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4680    EVT MemVT = LN0->getMemoryVT();
4681    if ((!LegalOperations && !LN0->isVolatile()) ||
4682        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4683      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4684                                       LN0->getChain(),
4685                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4686                                       MemVT,
4687                                       LN0->isVolatile(), LN0->isNonTemporal(),
4688                                       LN0->getAlignment());
4689      CombineTo(N, ExtLoad);
4690      CombineTo(N0.getNode(),
4691                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(),
4692                            ExtLoad),
4693                ExtLoad.getValue(1));
4694      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4695    }
4696  }
4697
4698  if (N0.getOpcode() == ISD::SETCC) {
4699    if (!LegalOperations && VT.isVector()) {
4700      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4701      // Only do this before legalize for now.
4702      EVT N0VT = N0.getOperand(0).getValueType();
4703      EVT EltVT = VT.getVectorElementType();
4704      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4705                                    DAG.getConstant(1, EltVT));
4706      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4707        // We know that the # elements of the results is the same as the
4708        // # elements of the compare (and the # elements of the compare result
4709        // for that matter).  Check to see that they are the same size.  If so,
4710        // we know that the element size of the sext'd result matches the
4711        // element size of the compare operands.
4712        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4713                           DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4714                                         N0.getOperand(1),
4715                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4716                           DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4717                                       &OneOps[0], OneOps.size()));
4718
4719      // If the desired elements are smaller or larger than the source
4720      // elements we can use a matching integer vector type and then
4721      // truncate/sign extend
4722      EVT MatchingElementType =
4723        EVT::getIntegerVT(*DAG.getContext(),
4724                          N0VT.getScalarType().getSizeInBits());
4725      EVT MatchingVectorType =
4726        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4727                         N0VT.getVectorNumElements());
4728      SDValue VsetCC =
4729        DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4730                      N0.getOperand(1),
4731                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
4732      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4733                         DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT),
4734                         DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4735                                     &OneOps[0], OneOps.size()));
4736    }
4737
4738    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4739    SDValue SCC =
4740      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4741                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4742                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4743    if (SCC.getNode()) return SCC;
4744  }
4745
4746  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4747  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4748      isa<ConstantSDNode>(N0.getOperand(1)) &&
4749      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4750      N0.hasOneUse()) {
4751    SDValue ShAmt = N0.getOperand(1);
4752    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4753    if (N0.getOpcode() == ISD::SHL) {
4754      SDValue InnerZExt = N0.getOperand(0);
4755      // If the original shl may be shifting out bits, do not perform this
4756      // transformation.
4757      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
4758        InnerZExt.getOperand(0).getValueType().getSizeInBits();
4759      if (ShAmtVal > KnownZeroBits)
4760        return SDValue();
4761    }
4762
4763    DebugLoc DL = N->getDebugLoc();
4764
4765    // Ensure that the shift amount is wide enough for the shifted value.
4766    if (VT.getSizeInBits() >= 256)
4767      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
4768
4769    return DAG.getNode(N0.getOpcode(), DL, VT,
4770                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
4771                       ShAmt);
4772  }
4773
4774  return SDValue();
4775}
4776
4777SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
4778  SDValue N0 = N->getOperand(0);
4779  EVT VT = N->getValueType(0);
4780
4781  // fold (aext c1) -> c1
4782  if (isa<ConstantSDNode>(N0))
4783    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0);
4784  // fold (aext (aext x)) -> (aext x)
4785  // fold (aext (zext x)) -> (zext x)
4786  // fold (aext (sext x)) -> (sext x)
4787  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
4788      N0.getOpcode() == ISD::ZERO_EXTEND ||
4789      N0.getOpcode() == ISD::SIGN_EXTEND)
4790    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0));
4791
4792  // fold (aext (truncate (load x))) -> (aext (smaller load x))
4793  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
4794  if (N0.getOpcode() == ISD::TRUNCATE) {
4795    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4796    if (NarrowLoad.getNode()) {
4797      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4798      if (NarrowLoad.getNode() != N0.getNode()) {
4799        CombineTo(N0.getNode(), NarrowLoad);
4800        // CombineTo deleted the truncate, if needed, but not what's under it.
4801        AddToWorkList(oye);
4802      }
4803      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4804    }
4805  }
4806
4807  // fold (aext (truncate x))
4808  if (N0.getOpcode() == ISD::TRUNCATE) {
4809    SDValue TruncOp = N0.getOperand(0);
4810    if (TruncOp.getValueType() == VT)
4811      return TruncOp; // x iff x size == zext size.
4812    if (TruncOp.getValueType().bitsGT(VT))
4813      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp);
4814    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp);
4815  }
4816
4817  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
4818  // if the trunc is not free.
4819  if (N0.getOpcode() == ISD::AND &&
4820      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4821      N0.getOperand(1).getOpcode() == ISD::Constant &&
4822      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4823                          N0.getValueType())) {
4824    SDValue X = N0.getOperand(0).getOperand(0);
4825    if (X.getValueType().bitsLT(VT)) {
4826      X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X);
4827    } else if (X.getValueType().bitsGT(VT)) {
4828      X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X);
4829    }
4830    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4831    Mask = Mask.zext(VT.getSizeInBits());
4832    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4833                       X, DAG.getConstant(Mask, VT));
4834  }
4835
4836  // fold (aext (load x)) -> (aext (truncate (extload x)))
4837  // None of the supported targets knows how to perform load and any_ext
4838  // on vectors in one instruction.  We only perform this transformation on
4839  // scalars.
4840  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4841      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4842       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
4843    bool DoXform = true;
4844    SmallVector<SDNode*, 4> SetCCs;
4845    if (!N0.hasOneUse())
4846      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
4847    if (DoXform) {
4848      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4849      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
4850                                       LN0->getChain(),
4851                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4852                                       N0.getValueType(),
4853                                       LN0->isVolatile(), LN0->isNonTemporal(),
4854                                       LN0->getAlignment());
4855      CombineTo(N, ExtLoad);
4856      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4857                                  N0.getValueType(), ExtLoad);
4858      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4859      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4860                      ISD::ANY_EXTEND);
4861      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4862    }
4863  }
4864
4865  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
4866  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
4867  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
4868  if (N0.getOpcode() == ISD::LOAD &&
4869      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
4870      N0.hasOneUse()) {
4871    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4872    EVT MemVT = LN0->getMemoryVT();
4873    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(),
4874                                     VT, LN0->getChain(), LN0->getBasePtr(),
4875                                     LN0->getPointerInfo(), MemVT,
4876                                     LN0->isVolatile(), LN0->isNonTemporal(),
4877                                     LN0->getAlignment());
4878    CombineTo(N, ExtLoad);
4879    CombineTo(N0.getNode(),
4880              DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4881                          N0.getValueType(), ExtLoad),
4882              ExtLoad.getValue(1));
4883    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4884  }
4885
4886  if (N0.getOpcode() == ISD::SETCC) {
4887    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
4888    // Only do this before legalize for now.
4889    if (VT.isVector() && !LegalOperations) {
4890      EVT N0VT = N0.getOperand(0).getValueType();
4891        // We know that the # elements of the results is the same as the
4892        // # elements of the compare (and the # elements of the compare result
4893        // for that matter).  Check to see that they are the same size.  If so,
4894        // we know that the element size of the sext'd result matches the
4895        // element size of the compare operands.
4896      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4897        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4898                             N0.getOperand(1),
4899                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4900      // If the desired elements are smaller or larger than the source
4901      // elements we can use a matching integer vector type and then
4902      // truncate/sign extend
4903      else {
4904        EVT MatchingElementType =
4905          EVT::getIntegerVT(*DAG.getContext(),
4906                            N0VT.getScalarType().getSizeInBits());
4907        EVT MatchingVectorType =
4908          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4909                           N0VT.getVectorNumElements());
4910        SDValue VsetCC =
4911          DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4912                        N0.getOperand(1),
4913                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
4914        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4915      }
4916    }
4917
4918    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4919    SDValue SCC =
4920      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4921                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4922                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4923    if (SCC.getNode())
4924      return SCC;
4925  }
4926
4927  return SDValue();
4928}
4929
4930/// GetDemandedBits - See if the specified operand can be simplified with the
4931/// knowledge that only the bits specified by Mask are used.  If so, return the
4932/// simpler operand, otherwise return a null SDValue.
4933SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
4934  switch (V.getOpcode()) {
4935  default: break;
4936  case ISD::Constant: {
4937    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
4938    assert(CV != 0 && "Const value should be ConstSDNode.");
4939    const APInt &CVal = CV->getAPIntValue();
4940    APInt NewVal = CVal & Mask;
4941    if (NewVal != CVal) {
4942      return DAG.getConstant(NewVal, V.getValueType());
4943    }
4944    break;
4945  }
4946  case ISD::OR:
4947  case ISD::XOR:
4948    // If the LHS or RHS don't contribute bits to the or, drop them.
4949    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
4950      return V.getOperand(1);
4951    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
4952      return V.getOperand(0);
4953    break;
4954  case ISD::SRL:
4955    // Only look at single-use SRLs.
4956    if (!V.getNode()->hasOneUse())
4957      break;
4958    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
4959      // See if we can recursively simplify the LHS.
4960      unsigned Amt = RHSC->getZExtValue();
4961
4962      // Watch out for shift count overflow though.
4963      if (Amt >= Mask.getBitWidth()) break;
4964      APInt NewMask = Mask << Amt;
4965      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
4966      if (SimplifyLHS.getNode())
4967        return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(),
4968                           SimplifyLHS, V.getOperand(1));
4969    }
4970  }
4971  return SDValue();
4972}
4973
4974/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
4975/// bits and then truncated to a narrower type and where N is a multiple
4976/// of number of bits of the narrower type, transform it to a narrower load
4977/// from address + N / num of bits of new type. If the result is to be
4978/// extended, also fold the extension to form a extending load.
4979SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
4980  unsigned Opc = N->getOpcode();
4981
4982  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
4983  SDValue N0 = N->getOperand(0);
4984  EVT VT = N->getValueType(0);
4985  EVT ExtVT = VT;
4986
4987  // This transformation isn't valid for vector loads.
4988  if (VT.isVector())
4989    return SDValue();
4990
4991  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
4992  // extended to VT.
4993  if (Opc == ISD::SIGN_EXTEND_INREG) {
4994    ExtType = ISD::SEXTLOAD;
4995    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
4996  } else if (Opc == ISD::SRL) {
4997    // Another special-case: SRL is basically zero-extending a narrower value.
4998    ExtType = ISD::ZEXTLOAD;
4999    N0 = SDValue(N, 0);
5000    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5001    if (!N01) return SDValue();
5002    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5003                              VT.getSizeInBits() - N01->getZExtValue());
5004  }
5005  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5006    return SDValue();
5007
5008  unsigned EVTBits = ExtVT.getSizeInBits();
5009
5010  // Do not generate loads of non-round integer types since these can
5011  // be expensive (and would be wrong if the type is not byte sized).
5012  if (!ExtVT.isRound())
5013    return SDValue();
5014
5015  unsigned ShAmt = 0;
5016  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5017    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5018      ShAmt = N01->getZExtValue();
5019      // Is the shift amount a multiple of size of VT?
5020      if ((ShAmt & (EVTBits-1)) == 0) {
5021        N0 = N0.getOperand(0);
5022        // Is the load width a multiple of size of VT?
5023        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5024          return SDValue();
5025      }
5026
5027      // At this point, we must have a load or else we can't do the transform.
5028      if (!isa<LoadSDNode>(N0)) return SDValue();
5029
5030      // If the shift amount is larger than the input type then we're not
5031      // accessing any of the loaded bytes.  If the load was a zextload/extload
5032      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5033      // If the load was a sextload then the result is a splat of the sign bit
5034      // of the extended byte.  This is not worth optimizing for.
5035      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5036        return SDValue();
5037    }
5038  }
5039
5040  // If the load is shifted left (and the result isn't shifted back right),
5041  // we can fold the truncate through the shift.
5042  unsigned ShLeftAmt = 0;
5043  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5044      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5045    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5046      ShLeftAmt = N01->getZExtValue();
5047      N0 = N0.getOperand(0);
5048    }
5049  }
5050
5051  // If we haven't found a load, we can't narrow it.  Don't transform one with
5052  // multiple uses, this would require adding a new load.
5053  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse() ||
5054      // Don't change the width of a volatile load.
5055      cast<LoadSDNode>(N0)->isVolatile())
5056    return SDValue();
5057
5058  // Verify that we are actually reducing a load width here.
5059  if (cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits() < EVTBits)
5060    return SDValue();
5061
5062  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5063  EVT PtrType = N0.getOperand(1).getValueType();
5064
5065  if (PtrType == MVT::Untyped || PtrType.isExtended())
5066    // It's not possible to generate a constant of extended or untyped type.
5067    return SDValue();
5068
5069  // For big endian targets, we need to adjust the offset to the pointer to
5070  // load the correct bytes.
5071  if (TLI.isBigEndian()) {
5072    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5073    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5074    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5075  }
5076
5077  uint64_t PtrOff = ShAmt / 8;
5078  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5079  SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(),
5080                               PtrType, LN0->getBasePtr(),
5081                               DAG.getConstant(PtrOff, PtrType));
5082  AddToWorkList(NewPtr.getNode());
5083
5084  SDValue Load;
5085  if (ExtType == ISD::NON_EXTLOAD)
5086    Load =  DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr,
5087                        LN0->getPointerInfo().getWithOffset(PtrOff),
5088                        LN0->isVolatile(), LN0->isNonTemporal(),
5089                        LN0->isInvariant(), NewAlign);
5090  else
5091    Load = DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(),NewPtr,
5092                          LN0->getPointerInfo().getWithOffset(PtrOff),
5093                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5094                          NewAlign);
5095
5096  // Replace the old load's chain with the new load's chain.
5097  WorkListRemover DeadNodes(*this);
5098  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5099
5100  // Shift the result left, if we've swallowed a left shift.
5101  SDValue Result = Load;
5102  if (ShLeftAmt != 0) {
5103    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5104    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5105      ShImmTy = VT;
5106    Result = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT,
5107                         Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5108  }
5109
5110  // Return the new loaded value.
5111  return Result;
5112}
5113
5114SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5115  SDValue N0 = N->getOperand(0);
5116  SDValue N1 = N->getOperand(1);
5117  EVT VT = N->getValueType(0);
5118  EVT EVT = cast<VTSDNode>(N1)->getVT();
5119  unsigned VTBits = VT.getScalarType().getSizeInBits();
5120  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5121
5122  // fold (sext_in_reg c1) -> c1
5123  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5124    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1);
5125
5126  // If the input is already sign extended, just drop the extension.
5127  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5128    return N0;
5129
5130  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5131  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5132      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) {
5133    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5134                       N0.getOperand(0), N1);
5135  }
5136
5137  // fold (sext_in_reg (sext x)) -> (sext x)
5138  // fold (sext_in_reg (aext x)) -> (sext x)
5139  // if x is small enough.
5140  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5141    SDValue N00 = N0.getOperand(0);
5142    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5143        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5144      return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1);
5145  }
5146
5147  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5148  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5149    return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT);
5150
5151  // fold operands of sext_in_reg based on knowledge that the top bits are not
5152  // demanded.
5153  if (SimplifyDemandedBits(SDValue(N, 0)))
5154    return SDValue(N, 0);
5155
5156  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5157  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5158  SDValue NarrowLoad = ReduceLoadWidth(N);
5159  if (NarrowLoad.getNode())
5160    return NarrowLoad;
5161
5162  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5163  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5164  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5165  if (N0.getOpcode() == ISD::SRL) {
5166    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5167      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5168        // We can turn this into an SRA iff the input to the SRL is already sign
5169        // extended enough.
5170        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5171        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5172          return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT,
5173                             N0.getOperand(0), N0.getOperand(1));
5174      }
5175  }
5176
5177  // fold (sext_inreg (extload x)) -> (sextload x)
5178  if (ISD::isEXTLoad(N0.getNode()) &&
5179      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5180      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5181      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5182       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5183    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5184    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5185                                     LN0->getChain(),
5186                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5187                                     EVT,
5188                                     LN0->isVolatile(), LN0->isNonTemporal(),
5189                                     LN0->getAlignment());
5190    CombineTo(N, ExtLoad);
5191    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5192    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5193  }
5194  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5195  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5196      N0.hasOneUse() &&
5197      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5198      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5199       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5200    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5201    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5202                                     LN0->getChain(),
5203                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5204                                     EVT,
5205                                     LN0->isVolatile(), LN0->isNonTemporal(),
5206                                     LN0->getAlignment());
5207    CombineTo(N, ExtLoad);
5208    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5209    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5210  }
5211
5212  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5213  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5214    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5215                                       N0.getOperand(1), false);
5216    if (BSwap.getNode() != 0)
5217      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5218                         BSwap, N1);
5219  }
5220
5221  return SDValue();
5222}
5223
5224SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5225  SDValue N0 = N->getOperand(0);
5226  EVT VT = N->getValueType(0);
5227  bool isLE = TLI.isLittleEndian();
5228
5229  // noop truncate
5230  if (N0.getValueType() == N->getValueType(0))
5231    return N0;
5232  // fold (truncate c1) -> c1
5233  if (isa<ConstantSDNode>(N0))
5234    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0);
5235  // fold (truncate (truncate x)) -> (truncate x)
5236  if (N0.getOpcode() == ISD::TRUNCATE)
5237    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5238  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5239  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5240      N0.getOpcode() == ISD::SIGN_EXTEND ||
5241      N0.getOpcode() == ISD::ANY_EXTEND) {
5242    if (N0.getOperand(0).getValueType().bitsLT(VT))
5243      // if the source is smaller than the dest, we still need an extend
5244      return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
5245                         N0.getOperand(0));
5246    if (N0.getOperand(0).getValueType().bitsGT(VT))
5247      // if the source is larger than the dest, than we just need the truncate
5248      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5249    // if the source and dest are the same type, we can drop both the extend
5250    // and the truncate.
5251    return N0.getOperand(0);
5252  }
5253
5254  // Fold extract-and-trunc into a narrow extract. For example:
5255  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5256  //   i32 y = TRUNCATE(i64 x)
5257  //        -- becomes --
5258  //   v16i8 b = BITCAST (v2i64 val)
5259  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5260  //
5261  // Note: We only run this optimization after type legalization (which often
5262  // creates this pattern) and before operation legalization after which
5263  // we need to be more careful about the vector instructions that we generate.
5264  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5265      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5266
5267    EVT VecTy = N0.getOperand(0).getValueType();
5268    EVT ExTy = N0.getValueType();
5269    EVT TrTy = N->getValueType(0);
5270
5271    unsigned NumElem = VecTy.getVectorNumElements();
5272    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5273
5274    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5275    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5276
5277    SDValue EltNo = N0->getOperand(1);
5278    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5279      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5280      EVT IndexTy = N0->getOperand(1).getValueType();
5281      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5282
5283      SDValue V = DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
5284                              NVT, N0.getOperand(0));
5285
5286      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5287                         N->getDebugLoc(), TrTy, V,
5288                         DAG.getConstant(Index, IndexTy));
5289    }
5290  }
5291
5292  // See if we can simplify the input to this truncate through knowledge that
5293  // only the low bits are being used.
5294  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5295  // Currently we only perform this optimization on scalars because vectors
5296  // may have different active low bits.
5297  if (!VT.isVector()) {
5298    SDValue Shorter =
5299      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5300                                               VT.getSizeInBits()));
5301    if (Shorter.getNode())
5302      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter);
5303  }
5304  // fold (truncate (load x)) -> (smaller load x)
5305  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5306  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5307    SDValue Reduced = ReduceLoadWidth(N);
5308    if (Reduced.getNode())
5309      return Reduced;
5310  }
5311  // fold (trunc (fptoXi x)) -> (smaller fptoXi x)
5312  if ((N0.getOpcode() == ISD::FP_TO_UINT ||
5313       N0.getOpcode() == ISD::FP_TO_SINT) && !LegalTypes)
5314    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0));
5315  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5316  // where ... are all 'undef'.
5317  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5318    SmallVector<EVT, 8> VTs;
5319    SDValue V;
5320    unsigned Idx = 0;
5321    unsigned NumDefs = 0;
5322
5323    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5324      SDValue X = N0.getOperand(i);
5325      if (X.getOpcode() != ISD::UNDEF) {
5326        V = X;
5327        Idx = i;
5328        NumDefs++;
5329      }
5330      // Stop if more than one members are non-undef.
5331      if (NumDefs > 1)
5332        break;
5333      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5334                                     VT.getVectorElementType(),
5335                                     X.getValueType().getVectorNumElements()));
5336    }
5337
5338    if (NumDefs == 0)
5339      return DAG.getUNDEF(VT);
5340
5341    if (NumDefs == 1) {
5342      assert(V.getNode() && "The single defined operand is empty!");
5343      SmallVector<SDValue, 8> Opnds;
5344      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5345        if (i != Idx) {
5346          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5347          continue;
5348        }
5349        SDValue NV = DAG.getNode(ISD::TRUNCATE, V.getDebugLoc(), VTs[i], V);
5350        AddToWorkList(NV.getNode());
5351        Opnds.push_back(NV);
5352      }
5353      return DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
5354                         &Opnds[0], Opnds.size());
5355    }
5356  }
5357
5358  // Simplify the operands using demanded-bits information.
5359  if (!VT.isVector() &&
5360      SimplifyDemandedBits(SDValue(N, 0)))
5361    return SDValue(N, 0);
5362
5363  return SDValue();
5364}
5365
5366static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5367  SDValue Elt = N->getOperand(i);
5368  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5369    return Elt.getNode();
5370  return Elt.getOperand(Elt.getResNo()).getNode();
5371}
5372
5373/// CombineConsecutiveLoads - build_pair (load, load) -> load
5374/// if load locations are consecutive.
5375SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5376  assert(N->getOpcode() == ISD::BUILD_PAIR);
5377
5378  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5379  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5380  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5381      LD1->getPointerInfo().getAddrSpace() !=
5382         LD2->getPointerInfo().getAddrSpace())
5383    return SDValue();
5384  EVT LD1VT = LD1->getValueType(0);
5385
5386  if (ISD::isNON_EXTLoad(LD2) &&
5387      LD2->hasOneUse() &&
5388      // If both are volatile this would reduce the number of volatile loads.
5389      // If one is volatile it might be ok, but play conservative and bail out.
5390      !LD1->isVolatile() &&
5391      !LD2->isVolatile() &&
5392      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5393    unsigned Align = LD1->getAlignment();
5394    unsigned NewAlign = TLI.getDataLayout()->
5395      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5396
5397    if (NewAlign <= Align &&
5398        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5399      return DAG.getLoad(VT, N->getDebugLoc(), LD1->getChain(),
5400                         LD1->getBasePtr(), LD1->getPointerInfo(),
5401                         false, false, false, Align);
5402  }
5403
5404  return SDValue();
5405}
5406
5407SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5408  SDValue N0 = N->getOperand(0);
5409  EVT VT = N->getValueType(0);
5410
5411  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5412  // Only do this before legalize, since afterward the target may be depending
5413  // on the bitconvert.
5414  // First check to see if this is all constant.
5415  if (!LegalTypes &&
5416      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5417      VT.isVector()) {
5418    bool isSimple = true;
5419    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5420      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5421          N0.getOperand(i).getOpcode() != ISD::Constant &&
5422          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5423        isSimple = false;
5424        break;
5425      }
5426
5427    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5428    assert(!DestEltVT.isVector() &&
5429           "Element type of vector ValueType must not be vector!");
5430    if (isSimple)
5431      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5432  }
5433
5434  // If the input is a constant, let getNode fold it.
5435  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5436    SDValue Res = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, N0);
5437    if (Res.getNode() != N) {
5438      if (!LegalOperations ||
5439          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5440        return Res;
5441
5442      // Folding it resulted in an illegal node, and it's too late to
5443      // do that. Clean up the old node and forego the transformation.
5444      // Ideally this won't happen very often, because instcombine
5445      // and the earlier dagcombine runs (where illegal nodes are
5446      // permitted) should have folded most of them already.
5447      DAG.DeleteNode(Res.getNode());
5448    }
5449  }
5450
5451  // (conv (conv x, t1), t2) -> (conv x, t2)
5452  if (N0.getOpcode() == ISD::BITCAST)
5453    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT,
5454                       N0.getOperand(0));
5455
5456  // fold (conv (load x)) -> (load (conv*)x)
5457  // If the resultant load doesn't need a higher alignment than the original!
5458  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5459      // Do not change the width of a volatile load.
5460      !cast<LoadSDNode>(N0)->isVolatile() &&
5461      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
5462    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5463    unsigned Align = TLI.getDataLayout()->
5464      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5465    unsigned OrigAlign = LN0->getAlignment();
5466
5467    if (Align <= OrigAlign) {
5468      SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(),
5469                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5470                                 LN0->isVolatile(), LN0->isNonTemporal(),
5471                                 LN0->isInvariant(), OrigAlign);
5472      AddToWorkList(N);
5473      CombineTo(N0.getNode(),
5474                DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5475                            N0.getValueType(), Load),
5476                Load.getValue(1));
5477      return Load;
5478    }
5479  }
5480
5481  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5482  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5483  // This often reduces constant pool loads.
5484  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(VT)) ||
5485       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(VT))) &&
5486      N0.getNode()->hasOneUse() && VT.isInteger() &&
5487      !VT.isVector() && !N0.getValueType().isVector()) {
5488    SDValue NewConv = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), VT,
5489                                  N0.getOperand(0));
5490    AddToWorkList(NewConv.getNode());
5491
5492    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5493    if (N0.getOpcode() == ISD::FNEG)
5494      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
5495                         NewConv, DAG.getConstant(SignBit, VT));
5496    assert(N0.getOpcode() == ISD::FABS);
5497    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
5498                       NewConv, DAG.getConstant(~SignBit, VT));
5499  }
5500
5501  // fold (bitconvert (fcopysign cst, x)) ->
5502  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5503  // Note that we don't handle (copysign x, cst) because this can always be
5504  // folded to an fneg or fabs.
5505  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5506      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5507      VT.isInteger() && !VT.isVector()) {
5508    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5509    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5510    if (isTypeLegal(IntXVT)) {
5511      SDValue X = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5512                              IntXVT, N0.getOperand(1));
5513      AddToWorkList(X.getNode());
5514
5515      // If X has a different width than the result/lhs, sext it or truncate it.
5516      unsigned VTWidth = VT.getSizeInBits();
5517      if (OrigXWidth < VTWidth) {
5518        X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X);
5519        AddToWorkList(X.getNode());
5520      } else if (OrigXWidth > VTWidth) {
5521        // To get the sign bit in the right place, we have to shift it right
5522        // before truncating.
5523        X = DAG.getNode(ISD::SRL, X.getDebugLoc(),
5524                        X.getValueType(), X,
5525                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5526        AddToWorkList(X.getNode());
5527        X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
5528        AddToWorkList(X.getNode());
5529      }
5530
5531      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5532      X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT,
5533                      X, DAG.getConstant(SignBit, VT));
5534      AddToWorkList(X.getNode());
5535
5536      SDValue Cst = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5537                                VT, N0.getOperand(0));
5538      Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT,
5539                        Cst, DAG.getConstant(~SignBit, VT));
5540      AddToWorkList(Cst.getNode());
5541
5542      return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst);
5543    }
5544  }
5545
5546  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5547  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5548    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5549    if (CombineLD.getNode())
5550      return CombineLD;
5551  }
5552
5553  return SDValue();
5554}
5555
5556SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5557  EVT VT = N->getValueType(0);
5558  return CombineConsecutiveLoads(N, VT);
5559}
5560
5561/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5562/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5563/// destination element value type.
5564SDValue DAGCombiner::
5565ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5566  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5567
5568  // If this is already the right type, we're done.
5569  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5570
5571  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5572  unsigned DstBitSize = DstEltVT.getSizeInBits();
5573
5574  // If this is a conversion of N elements of one type to N elements of another
5575  // type, convert each element.  This handles FP<->INT cases.
5576  if (SrcBitSize == DstBitSize) {
5577    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5578                              BV->getValueType(0).getVectorNumElements());
5579
5580    // Due to the FP element handling below calling this routine recursively,
5581    // we can end up with a scalar-to-vector node here.
5582    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5583      return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5584                         DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5585                                     DstEltVT, BV->getOperand(0)));
5586
5587    SmallVector<SDValue, 8> Ops;
5588    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5589      SDValue Op = BV->getOperand(i);
5590      // If the vector element type is not legal, the BUILD_VECTOR operands
5591      // are promoted and implicitly truncated.  Make that explicit here.
5592      if (Op.getValueType() != SrcEltVT)
5593        Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op);
5594      Ops.push_back(DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5595                                DstEltVT, Op));
5596      AddToWorkList(Ops.back().getNode());
5597    }
5598    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5599                       &Ops[0], Ops.size());
5600  }
5601
5602  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5603  // handle annoying details of growing/shrinking FP values, we convert them to
5604  // int first.
5605  if (SrcEltVT.isFloatingPoint()) {
5606    // Convert the input float vector to a int vector where the elements are the
5607    // same sizes.
5608    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5609    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5610    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5611    SrcEltVT = IntVT;
5612  }
5613
5614  // Now we know the input is an integer vector.  If the output is a FP type,
5615  // convert to integer first, then to FP of the right size.
5616  if (DstEltVT.isFloatingPoint()) {
5617    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5618    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5619    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5620
5621    // Next, convert to FP elements of the same size.
5622    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5623  }
5624
5625  // Okay, we know the src/dst types are both integers of differing types.
5626  // Handling growing first.
5627  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5628  if (SrcBitSize < DstBitSize) {
5629    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5630
5631    SmallVector<SDValue, 8> Ops;
5632    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5633         i += NumInputsPerOutput) {
5634      bool isLE = TLI.isLittleEndian();
5635      APInt NewBits = APInt(DstBitSize, 0);
5636      bool EltIsUndef = true;
5637      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5638        // Shift the previously computed bits over.
5639        NewBits <<= SrcBitSize;
5640        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5641        if (Op.getOpcode() == ISD::UNDEF) continue;
5642        EltIsUndef = false;
5643
5644        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5645                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5646      }
5647
5648      if (EltIsUndef)
5649        Ops.push_back(DAG.getUNDEF(DstEltVT));
5650      else
5651        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5652    }
5653
5654    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5655    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5656                       &Ops[0], Ops.size());
5657  }
5658
5659  // Finally, this must be the case where we are shrinking elements: each input
5660  // turns into multiple outputs.
5661  bool isS2V = ISD::isScalarToVector(BV);
5662  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5663  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5664                            NumOutputsPerInput*BV->getNumOperands());
5665  SmallVector<SDValue, 8> Ops;
5666
5667  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5668    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5669      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5670        Ops.push_back(DAG.getUNDEF(DstEltVT));
5671      continue;
5672    }
5673
5674    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5675                  getAPIntValue().zextOrTrunc(SrcBitSize);
5676
5677    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5678      APInt ThisVal = OpVal.trunc(DstBitSize);
5679      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5680      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5681        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5682        return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5683                           Ops[0]);
5684      OpVal = OpVal.lshr(DstBitSize);
5685    }
5686
5687    // For big endian targets, swap the order of the pieces of each element.
5688    if (TLI.isBigEndian())
5689      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5690  }
5691
5692  return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5693                     &Ops[0], Ops.size());
5694}
5695
5696SDValue DAGCombiner::visitFADD(SDNode *N) {
5697  SDValue N0 = N->getOperand(0);
5698  SDValue N1 = N->getOperand(1);
5699  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5700  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5701  EVT VT = N->getValueType(0);
5702
5703  // fold vector ops
5704  if (VT.isVector()) {
5705    SDValue FoldedVOp = SimplifyVBinOp(N);
5706    if (FoldedVOp.getNode()) return FoldedVOp;
5707  }
5708
5709  // fold (fadd c1, c2) -> c1 + c2
5710  if (N0CFP && N1CFP && VT != MVT::ppcf128)
5711    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1);
5712  // canonicalize constant to RHS
5713  if (N0CFP && !N1CFP)
5714    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0);
5715  // fold (fadd A, 0) -> A
5716  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5717      N1CFP->getValueAPF().isZero())
5718    return N0;
5719  // fold (fadd A, (fneg B)) -> (fsub A, B)
5720  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5721    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5722    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0,
5723                       GetNegatedExpression(N1, DAG, LegalOperations));
5724  // fold (fadd (fneg A), B) -> (fsub B, A)
5725  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5726    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5727    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1,
5728                       GetNegatedExpression(N0, DAG, LegalOperations));
5729
5730  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
5731  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5732      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
5733      isa<ConstantFPSDNode>(N0.getOperand(1)))
5734    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0),
5735                       DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5736                                   N0.getOperand(1), N1));
5737
5738  // In unsafe math mode, we can fold chains of FADD's of the same value
5739  // into multiplications.  This transform is not safe in general because
5740  // we are reducing the number of rounding steps.
5741  if (DAG.getTarget().Options.UnsafeFPMath &&
5742      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
5743      !N0CFP && !N1CFP) {
5744    if (N0.getOpcode() == ISD::FMUL) {
5745      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
5746      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
5747
5748      // (fadd (fmul c, x), x) -> (fmul c+1, x)
5749      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
5750        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5751                                     SDValue(CFP00, 0),
5752                                     DAG.getConstantFP(1.0, VT));
5753        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5754                           N1, NewCFP);
5755      }
5756
5757      // (fadd (fmul x, c), x) -> (fmul c+1, x)
5758      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
5759        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5760                                     SDValue(CFP01, 0),
5761                                     DAG.getConstantFP(1.0, VT));
5762        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5763                           N1, NewCFP);
5764      }
5765
5766      // (fadd (fadd x, x), x) -> (fmul 3.0, x)
5767      if (!CFP00 && !CFP01 && N0.getOperand(0) == N0.getOperand(1) &&
5768          N0.getOperand(0) == N1) {
5769        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5770                           N1, DAG.getConstantFP(3.0, VT));
5771      }
5772
5773      // (fadd (fmul c, x), (fadd x, x)) -> (fmul c+2, x)
5774      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
5775          N1.getOperand(0) == N1.getOperand(1) &&
5776          N0.getOperand(1) == N1.getOperand(0)) {
5777        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5778                                     SDValue(CFP00, 0),
5779                                     DAG.getConstantFP(2.0, VT));
5780        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5781                           N0.getOperand(1), NewCFP);
5782      }
5783
5784      // (fadd (fmul x, c), (fadd x, x)) -> (fmul c+2, x)
5785      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
5786          N1.getOperand(0) == N1.getOperand(1) &&
5787          N0.getOperand(0) == N1.getOperand(0)) {
5788        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5789                                     SDValue(CFP01, 0),
5790                                     DAG.getConstantFP(2.0, VT));
5791        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5792                           N0.getOperand(0), NewCFP);
5793      }
5794    }
5795
5796    if (N1.getOpcode() == ISD::FMUL) {
5797      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
5798      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
5799
5800      // (fadd x, (fmul c, x)) -> (fmul c+1, x)
5801      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
5802        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5803                                     SDValue(CFP10, 0),
5804                                     DAG.getConstantFP(1.0, VT));
5805        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5806                           N0, NewCFP);
5807      }
5808
5809      // (fadd x, (fmul x, c)) -> (fmul c+1, x)
5810      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
5811        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5812                                     SDValue(CFP11, 0),
5813                                     DAG.getConstantFP(1.0, VT));
5814        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5815                           N0, NewCFP);
5816      }
5817
5818      // (fadd x, (fadd x, x)) -> (fmul 3.0, x)
5819      if (!CFP10 && !CFP11 && N1.getOperand(0) == N1.getOperand(1) &&
5820          N1.getOperand(0) == N0) {
5821        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5822                           N0, DAG.getConstantFP(3.0, VT));
5823      }
5824
5825      // (fadd (fadd x, x), (fmul c, x)) -> (fmul c+2, x)
5826      if (CFP10 && !CFP11 && N1.getOpcode() == ISD::FADD &&
5827          N1.getOperand(0) == N1.getOperand(1) &&
5828          N0.getOperand(1) == N1.getOperand(0)) {
5829        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5830                                     SDValue(CFP10, 0),
5831                                     DAG.getConstantFP(2.0, VT));
5832        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5833                           N0.getOperand(1), NewCFP);
5834      }
5835
5836      // (fadd (fadd x, x), (fmul x, c)) -> (fmul c+2, x)
5837      if (CFP11 && !CFP10 && N1.getOpcode() == ISD::FADD &&
5838          N1.getOperand(0) == N1.getOperand(1) &&
5839          N0.getOperand(0) == N1.getOperand(0)) {
5840        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5841                                     SDValue(CFP11, 0),
5842                                     DAG.getConstantFP(2.0, VT));
5843        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5844                           N0.getOperand(0), NewCFP);
5845      }
5846    }
5847
5848    // (fadd (fadd x, x), (fadd x, x)) -> (fmul 4.0, x)
5849    if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
5850        N0.getOperand(0) == N0.getOperand(1) &&
5851        N1.getOperand(0) == N1.getOperand(1) &&
5852        N0.getOperand(0) == N1.getOperand(0)) {
5853      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5854                         N0.getOperand(0),
5855                         DAG.getConstantFP(4.0, VT));
5856    }
5857  }
5858
5859  // FADD -> FMA combines:
5860  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
5861       DAG.getTarget().Options.UnsafeFPMath) &&
5862      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
5863      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
5864
5865    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
5866    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
5867      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
5868                         N0.getOperand(0), N0.getOperand(1), N1);
5869    }
5870
5871    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
5872    // Note: Commutes FADD operands.
5873    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
5874      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
5875                         N1.getOperand(0), N1.getOperand(1), N0);
5876    }
5877  }
5878
5879  return SDValue();
5880}
5881
5882SDValue DAGCombiner::visitFSUB(SDNode *N) {
5883  SDValue N0 = N->getOperand(0);
5884  SDValue N1 = N->getOperand(1);
5885  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5886  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5887  EVT VT = N->getValueType(0);
5888  DebugLoc dl = N->getDebugLoc();
5889
5890  // fold vector ops
5891  if (VT.isVector()) {
5892    SDValue FoldedVOp = SimplifyVBinOp(N);
5893    if (FoldedVOp.getNode()) return FoldedVOp;
5894  }
5895
5896  // fold (fsub c1, c2) -> c1-c2
5897  if (N0CFP && N1CFP && VT != MVT::ppcf128)
5898    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1);
5899  // fold (fsub A, 0) -> A
5900  if (DAG.getTarget().Options.UnsafeFPMath &&
5901      N1CFP && N1CFP->getValueAPF().isZero())
5902    return N0;
5903  // fold (fsub 0, B) -> -B
5904  if (DAG.getTarget().Options.UnsafeFPMath &&
5905      N0CFP && N0CFP->getValueAPF().isZero()) {
5906    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
5907      return GetNegatedExpression(N1, DAG, LegalOperations);
5908    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
5909      return DAG.getNode(ISD::FNEG, dl, VT, N1);
5910  }
5911  // fold (fsub A, (fneg B)) -> (fadd A, B)
5912  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
5913    return DAG.getNode(ISD::FADD, dl, VT, N0,
5914                       GetNegatedExpression(N1, DAG, LegalOperations));
5915
5916  // If 'unsafe math' is enabled, fold
5917  //    (fsub x, x) -> 0.0 &
5918  //    (fsub x, (fadd x, y)) -> (fneg y) &
5919  //    (fsub x, (fadd y, x)) -> (fneg y)
5920  if (DAG.getTarget().Options.UnsafeFPMath) {
5921    if (N0 == N1)
5922      return DAG.getConstantFP(0.0f, VT);
5923
5924    if (N1.getOpcode() == ISD::FADD) {
5925      SDValue N10 = N1->getOperand(0);
5926      SDValue N11 = N1->getOperand(1);
5927
5928      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
5929                                          &DAG.getTarget().Options))
5930        return GetNegatedExpression(N11, DAG, LegalOperations);
5931      else if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
5932                                               &DAG.getTarget().Options))
5933        return GetNegatedExpression(N10, DAG, LegalOperations);
5934    }
5935  }
5936
5937  // FSUB -> FMA combines:
5938  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
5939       DAG.getTarget().Options.UnsafeFPMath) &&
5940      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
5941      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
5942
5943    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
5944    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
5945      return DAG.getNode(ISD::FMA, dl, VT,
5946                         N0.getOperand(0), N0.getOperand(1),
5947                         DAG.getNode(ISD::FNEG, dl, VT, N1));
5948    }
5949
5950    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
5951    // Note: Commutes FSUB operands.
5952    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
5953      return DAG.getNode(ISD::FMA, dl, VT,
5954                         DAG.getNode(ISD::FNEG, dl, VT,
5955                         N1.getOperand(0)),
5956                         N1.getOperand(1), N0);
5957    }
5958
5959    // fold (fsub (-(fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
5960    if (N0.getOpcode() == ISD::FNEG &&
5961        N0.getOperand(0).getOpcode() == ISD::FMUL &&
5962        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
5963      SDValue N00 = N0.getOperand(0).getOperand(0);
5964      SDValue N01 = N0.getOperand(0).getOperand(1);
5965      return DAG.getNode(ISD::FMA, dl, VT,
5966                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
5967                         DAG.getNode(ISD::FNEG, dl, VT, N1));
5968    }
5969  }
5970
5971  return SDValue();
5972}
5973
5974SDValue DAGCombiner::visitFMUL(SDNode *N) {
5975  SDValue N0 = N->getOperand(0);
5976  SDValue N1 = N->getOperand(1);
5977  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5978  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5979  EVT VT = N->getValueType(0);
5980  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5981
5982  // fold vector ops
5983  if (VT.isVector()) {
5984    SDValue FoldedVOp = SimplifyVBinOp(N);
5985    if (FoldedVOp.getNode()) return FoldedVOp;
5986  }
5987
5988  // fold (fmul c1, c2) -> c1*c2
5989  if (N0CFP && N1CFP && VT != MVT::ppcf128)
5990    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1);
5991  // canonicalize constant to RHS
5992  if (N0CFP && !N1CFP)
5993    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0);
5994  // fold (fmul A, 0) -> 0
5995  if (DAG.getTarget().Options.UnsafeFPMath &&
5996      N1CFP && N1CFP->getValueAPF().isZero())
5997    return N1;
5998  // fold (fmul A, 0) -> 0, vector edition.
5999  if (DAG.getTarget().Options.UnsafeFPMath &&
6000      ISD::isBuildVectorAllZeros(N1.getNode()))
6001    return N1;
6002  // fold (fmul A, 1.0) -> A
6003  if (N1CFP && N1CFP->isExactlyValue(1.0))
6004    return N0;
6005  // fold (fmul X, 2.0) -> (fadd X, X)
6006  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6007    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0);
6008  // fold (fmul X, -1.0) -> (fneg X)
6009  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6010    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6011      return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0);
6012
6013  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6014  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6015                                       &DAG.getTarget().Options)) {
6016    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6017                                         &DAG.getTarget().Options)) {
6018      // Both can be negated for free, check to see if at least one is cheaper
6019      // negated.
6020      if (LHSNeg == 2 || RHSNeg == 2)
6021        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6022                           GetNegatedExpression(N0, DAG, LegalOperations),
6023                           GetNegatedExpression(N1, DAG, LegalOperations));
6024    }
6025  }
6026
6027  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6028  if (DAG.getTarget().Options.UnsafeFPMath &&
6029      N1CFP && N0.getOpcode() == ISD::FMUL &&
6030      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6031    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0),
6032                       DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6033                                   N0.getOperand(1), N1));
6034
6035  return SDValue();
6036}
6037
6038SDValue DAGCombiner::visitFMA(SDNode *N) {
6039  SDValue N0 = N->getOperand(0);
6040  SDValue N1 = N->getOperand(1);
6041  SDValue N2 = N->getOperand(2);
6042  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6043  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6044  EVT VT = N->getValueType(0);
6045  DebugLoc dl = N->getDebugLoc();
6046
6047  if (N0CFP && N0CFP->isExactlyValue(1.0))
6048    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N2);
6049  if (N1CFP && N1CFP->isExactlyValue(1.0))
6050    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N2);
6051
6052  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6053  if (N0CFP && !N1CFP)
6054    return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT, N1, N0, N2);
6055
6056  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6057  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6058      N2.getOpcode() == ISD::FMUL &&
6059      N0 == N2.getOperand(0) &&
6060      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6061    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6062                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6063  }
6064
6065
6066  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6067  if (DAG.getTarget().Options.UnsafeFPMath &&
6068      N0.getOpcode() == ISD::FMUL && N1CFP &&
6069      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6070    return DAG.getNode(ISD::FMA, dl, VT,
6071                       N0.getOperand(0),
6072                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6073                       N2);
6074  }
6075
6076  // (fma x, 1, y) -> (fadd x, y)
6077  // (fma x, -1, y) -> (fadd (fneg x), y)
6078  if (N1CFP) {
6079    if (N1CFP->isExactlyValue(1.0))
6080      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6081
6082    if (N1CFP->isExactlyValue(-1.0) &&
6083        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6084      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6085      AddToWorkList(RHSNeg.getNode());
6086      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6087    }
6088  }
6089
6090  // (fma x, c, x) -> (fmul x, (c+1))
6091  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2) {
6092    return DAG.getNode(ISD::FMUL, dl, VT,
6093                       N0,
6094                       DAG.getNode(ISD::FADD, dl, VT,
6095                                   N1, DAG.getConstantFP(1.0, VT)));
6096  }
6097
6098  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6099  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6100      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
6101    return DAG.getNode(ISD::FMUL, dl, VT,
6102                       N0,
6103                       DAG.getNode(ISD::FADD, dl, VT,
6104                                   N1, DAG.getConstantFP(-1.0, VT)));
6105  }
6106
6107
6108  return SDValue();
6109}
6110
6111SDValue DAGCombiner::visitFDIV(SDNode *N) {
6112  SDValue N0 = N->getOperand(0);
6113  SDValue N1 = N->getOperand(1);
6114  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6115  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6116  EVT VT = N->getValueType(0);
6117  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6118
6119  // fold vector ops
6120  if (VT.isVector()) {
6121    SDValue FoldedVOp = SimplifyVBinOp(N);
6122    if (FoldedVOp.getNode()) return FoldedVOp;
6123  }
6124
6125  // fold (fdiv c1, c2) -> c1/c2
6126  if (N0CFP && N1CFP && VT != MVT::ppcf128)
6127    return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1);
6128
6129  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6130  if (N1CFP && VT != MVT::ppcf128 && DAG.getTarget().Options.UnsafeFPMath) {
6131    // Compute the reciprocal 1.0 / c2.
6132    APFloat N1APF = N1CFP->getValueAPF();
6133    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6134    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6135    // Only do the transform if the reciprocal is a legal fp immediate that
6136    // isn't too nasty (eg NaN, denormal, ...).
6137    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6138        (!LegalOperations ||
6139         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6140         // backend)... we should handle this gracefully after Legalize.
6141         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6142         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6143         TLI.isFPImmLegal(Recip, VT)))
6144      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0,
6145                         DAG.getConstantFP(Recip, VT));
6146  }
6147
6148  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6149  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6150                                       &DAG.getTarget().Options)) {
6151    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6152                                         &DAG.getTarget().Options)) {
6153      // Both can be negated for free, check to see if at least one is cheaper
6154      // negated.
6155      if (LHSNeg == 2 || RHSNeg == 2)
6156        return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT,
6157                           GetNegatedExpression(N0, DAG, LegalOperations),
6158                           GetNegatedExpression(N1, DAG, LegalOperations));
6159    }
6160  }
6161
6162  return SDValue();
6163}
6164
6165SDValue DAGCombiner::visitFREM(SDNode *N) {
6166  SDValue N0 = N->getOperand(0);
6167  SDValue N1 = N->getOperand(1);
6168  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6169  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6170  EVT VT = N->getValueType(0);
6171
6172  // fold (frem c1, c2) -> fmod(c1,c2)
6173  if (N0CFP && N1CFP && VT != MVT::ppcf128)
6174    return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1);
6175
6176  return SDValue();
6177}
6178
6179SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6180  SDValue N0 = N->getOperand(0);
6181  SDValue N1 = N->getOperand(1);
6182  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6183  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6184  EVT VT = N->getValueType(0);
6185
6186  if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold
6187    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1);
6188
6189  if (N1CFP) {
6190    const APFloat& V = N1CFP->getValueAPF();
6191    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6192    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6193    if (!V.isNegative()) {
6194      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6195        return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6196    } else {
6197      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6198        return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6199                           DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0));
6200    }
6201  }
6202
6203  // copysign(fabs(x), y) -> copysign(x, y)
6204  // copysign(fneg(x), y) -> copysign(x, y)
6205  // copysign(copysign(x,z), y) -> copysign(x, y)
6206  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6207      N0.getOpcode() == ISD::FCOPYSIGN)
6208    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6209                       N0.getOperand(0), N1);
6210
6211  // copysign(x, abs(y)) -> abs(x)
6212  if (N1.getOpcode() == ISD::FABS)
6213    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6214
6215  // copysign(x, copysign(y,z)) -> copysign(x, z)
6216  if (N1.getOpcode() == ISD::FCOPYSIGN)
6217    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6218                       N0, N1.getOperand(1));
6219
6220  // copysign(x, fp_extend(y)) -> copysign(x, y)
6221  // copysign(x, fp_round(y)) -> copysign(x, y)
6222  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6223    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6224                       N0, N1.getOperand(0));
6225
6226  return SDValue();
6227}
6228
6229SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6230  SDValue N0 = N->getOperand(0);
6231  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6232  EVT VT = N->getValueType(0);
6233  EVT OpVT = N0.getValueType();
6234
6235  // fold (sint_to_fp c1) -> c1fp
6236  if (N0C && OpVT != MVT::ppcf128 &&
6237      // ...but only if the target supports immediate floating-point values
6238      (!LegalOperations ||
6239       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6240    return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6241
6242  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6243  // but UINT_TO_FP is legal on this target, try to convert.
6244  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6245      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6246    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6247    if (DAG.SignBitIsZero(N0))
6248      return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6249  }
6250
6251  // The next optimizations are desireable only if SELECT_CC can be lowered.
6252  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6253  // having to say they don't support SELECT_CC on every type the DAG knows
6254  // about, since there is no way to mark an opcode illegal at all value types
6255  // (See also visitSELECT)
6256  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6257    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6258    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6259        !VT.isVector() &&
6260        (!LegalOperations ||
6261         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6262      SDValue Ops[] =
6263        { N0.getOperand(0), N0.getOperand(1),
6264          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6265          N0.getOperand(2) };
6266      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6267    }
6268
6269    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6270    //      (select_cc x, y, 1.0, 0.0,, cc)
6271    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6272        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6273        (!LegalOperations ||
6274         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6275      SDValue Ops[] =
6276        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6277          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6278          N0.getOperand(0).getOperand(2) };
6279      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6280    }
6281  }
6282
6283  return SDValue();
6284}
6285
6286SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6287  SDValue N0 = N->getOperand(0);
6288  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6289  EVT VT = N->getValueType(0);
6290  EVT OpVT = N0.getValueType();
6291
6292  // fold (uint_to_fp c1) -> c1fp
6293  if (N0C && OpVT != MVT::ppcf128 &&
6294      // ...but only if the target supports immediate floating-point values
6295      (!LegalOperations ||
6296       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6297    return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6298
6299  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6300  // but SINT_TO_FP is legal on this target, try to convert.
6301  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6302      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6303    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6304    if (DAG.SignBitIsZero(N0))
6305      return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6306  }
6307
6308  // The next optimizations are desireable only if SELECT_CC can be lowered.
6309  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6310  // having to say they don't support SELECT_CC on every type the DAG knows
6311  // about, since there is no way to mark an opcode illegal at all value types
6312  // (See also visitSELECT)
6313  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6314    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6315
6316    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6317        (!LegalOperations ||
6318         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6319      SDValue Ops[] =
6320        { N0.getOperand(0), N0.getOperand(1),
6321          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6322          N0.getOperand(2) };
6323      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6324    }
6325  }
6326
6327  return SDValue();
6328}
6329
6330SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6331  SDValue N0 = N->getOperand(0);
6332  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6333  EVT VT = N->getValueType(0);
6334
6335  // fold (fp_to_sint c1fp) -> c1
6336  if (N0CFP)
6337    return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0);
6338
6339  return SDValue();
6340}
6341
6342SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6343  SDValue N0 = N->getOperand(0);
6344  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6345  EVT VT = N->getValueType(0);
6346
6347  // fold (fp_to_uint c1fp) -> c1
6348  if (N0CFP && VT != MVT::ppcf128)
6349    return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0);
6350
6351  return SDValue();
6352}
6353
6354SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6355  SDValue N0 = N->getOperand(0);
6356  SDValue N1 = N->getOperand(1);
6357  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6358  EVT VT = N->getValueType(0);
6359
6360  // fold (fp_round c1fp) -> c1fp
6361  if (N0CFP && N0.getValueType() != MVT::ppcf128)
6362    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1);
6363
6364  // fold (fp_round (fp_extend x)) -> x
6365  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6366    return N0.getOperand(0);
6367
6368  // fold (fp_round (fp_round x)) -> (fp_round x)
6369  if (N0.getOpcode() == ISD::FP_ROUND) {
6370    // This is a value preserving truncation if both round's are.
6371    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6372                   N0.getNode()->getConstantOperandVal(1) == 1;
6373    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0),
6374                       DAG.getIntPtrConstant(IsTrunc));
6375  }
6376
6377  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6378  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6379    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT,
6380                              N0.getOperand(0), N1);
6381    AddToWorkList(Tmp.getNode());
6382    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6383                       Tmp, N0.getOperand(1));
6384  }
6385
6386  return SDValue();
6387}
6388
6389SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6390  SDValue N0 = N->getOperand(0);
6391  EVT VT = N->getValueType(0);
6392  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6393  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6394
6395  // fold (fp_round_inreg c1fp) -> c1fp
6396  if (N0CFP && isTypeLegal(EVT)) {
6397    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6398    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round);
6399  }
6400
6401  return SDValue();
6402}
6403
6404SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6405  SDValue N0 = N->getOperand(0);
6406  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6407  EVT VT = N->getValueType(0);
6408
6409  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6410  if (N->hasOneUse() &&
6411      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6412    return SDValue();
6413
6414  // fold (fp_extend c1fp) -> c1fp
6415  if (N0CFP && VT != MVT::ppcf128)
6416    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0);
6417
6418  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6419  // value of X.
6420  if (N0.getOpcode() == ISD::FP_ROUND
6421      && N0.getNode()->getConstantOperandVal(1) == 1) {
6422    SDValue In = N0.getOperand(0);
6423    if (In.getValueType() == VT) return In;
6424    if (VT.bitsLT(In.getValueType()))
6425      return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT,
6426                         In, N0.getOperand(1));
6427    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In);
6428  }
6429
6430  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6431  if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
6432      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6433       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6434    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6435    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
6436                                     LN0->getChain(),
6437                                     LN0->getBasePtr(), LN0->getPointerInfo(),
6438                                     N0.getValueType(),
6439                                     LN0->isVolatile(), LN0->isNonTemporal(),
6440                                     LN0->getAlignment());
6441    CombineTo(N, ExtLoad);
6442    CombineTo(N0.getNode(),
6443              DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(),
6444                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6445              ExtLoad.getValue(1));
6446    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6447  }
6448
6449  return SDValue();
6450}
6451
6452SDValue DAGCombiner::visitFNEG(SDNode *N) {
6453  SDValue N0 = N->getOperand(0);
6454  EVT VT = N->getValueType(0);
6455
6456  if (VT.isVector()) {
6457    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6458    if (FoldedVOp.getNode()) return FoldedVOp;
6459  }
6460
6461  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6462                         &DAG.getTarget().Options))
6463    return GetNegatedExpression(N0, DAG, LegalOperations);
6464
6465  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6466  // constant pool values.
6467  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6468      !VT.isVector() &&
6469      N0.getNode()->hasOneUse() &&
6470      N0.getOperand(0).getValueType().isInteger()) {
6471    SDValue Int = N0.getOperand(0);
6472    EVT IntVT = Int.getValueType();
6473    if (IntVT.isInteger() && !IntVT.isVector()) {
6474      Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
6475              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6476      AddToWorkList(Int.getNode());
6477      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6478                         VT, Int);
6479    }
6480  }
6481
6482  // (fneg (fmul c, x)) -> (fmul -c, x)
6483  if (N0.getOpcode() == ISD::FMUL) {
6484    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6485    if (CFP1) {
6486      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6487                         N0.getOperand(0),
6488                         DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6489                                     N0.getOperand(1)));
6490    }
6491  }
6492
6493  return SDValue();
6494}
6495
6496SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6497  SDValue N0 = N->getOperand(0);
6498  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6499  EVT VT = N->getValueType(0);
6500
6501  // fold (fceil c1) -> fceil(c1)
6502  if (N0CFP && VT != MVT::ppcf128)
6503    return DAG.getNode(ISD::FCEIL, N->getDebugLoc(), VT, N0);
6504
6505  return SDValue();
6506}
6507
6508SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6509  SDValue N0 = N->getOperand(0);
6510  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6511  EVT VT = N->getValueType(0);
6512
6513  // fold (ftrunc c1) -> ftrunc(c1)
6514  if (N0CFP && VT != MVT::ppcf128)
6515    return DAG.getNode(ISD::FTRUNC, N->getDebugLoc(), VT, N0);
6516
6517  return SDValue();
6518}
6519
6520SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6521  SDValue N0 = N->getOperand(0);
6522  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6523  EVT VT = N->getValueType(0);
6524
6525  // fold (ffloor c1) -> ffloor(c1)
6526  if (N0CFP && VT != MVT::ppcf128)
6527    return DAG.getNode(ISD::FFLOOR, N->getDebugLoc(), VT, N0);
6528
6529  return SDValue();
6530}
6531
6532SDValue DAGCombiner::visitFABS(SDNode *N) {
6533  SDValue N0 = N->getOperand(0);
6534  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6535  EVT VT = N->getValueType(0);
6536
6537  if (VT.isVector()) {
6538    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6539    if (FoldedVOp.getNode()) return FoldedVOp;
6540  }
6541
6542  // fold (fabs c1) -> fabs(c1)
6543  if (N0CFP && VT != MVT::ppcf128)
6544    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6545  // fold (fabs (fabs x)) -> (fabs x)
6546  if (N0.getOpcode() == ISD::FABS)
6547    return N->getOperand(0);
6548  // fold (fabs (fneg x)) -> (fabs x)
6549  // fold (fabs (fcopysign x, y)) -> (fabs x)
6550  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6551    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0));
6552
6553  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6554  // constant pool values.
6555  if (!TLI.isFAbsFree(VT) &&
6556      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6557      N0.getOperand(0).getValueType().isInteger() &&
6558      !N0.getOperand(0).getValueType().isVector()) {
6559    SDValue Int = N0.getOperand(0);
6560    EVT IntVT = Int.getValueType();
6561    if (IntVT.isInteger() && !IntVT.isVector()) {
6562      Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
6563             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6564      AddToWorkList(Int.getNode());
6565      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6566                         N->getValueType(0), Int);
6567    }
6568  }
6569
6570  return SDValue();
6571}
6572
6573SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6574  SDValue Chain = N->getOperand(0);
6575  SDValue N1 = N->getOperand(1);
6576  SDValue N2 = N->getOperand(2);
6577
6578  // If N is a constant we could fold this into a fallthrough or unconditional
6579  // branch. However that doesn't happen very often in normal code, because
6580  // Instcombine/SimplifyCFG should have handled the available opportunities.
6581  // If we did this folding here, it would be necessary to update the
6582  // MachineBasicBlock CFG, which is awkward.
6583
6584  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6585  // on the target.
6586  if (N1.getOpcode() == ISD::SETCC &&
6587      TLI.isOperationLegalOrCustom(ISD::BR_CC, MVT::Other)) {
6588    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6589                       Chain, N1.getOperand(2),
6590                       N1.getOperand(0), N1.getOperand(1), N2);
6591  }
6592
6593  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6594      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6595       (N1.getOperand(0).hasOneUse() &&
6596        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6597    SDNode *Trunc = 0;
6598    if (N1.getOpcode() == ISD::TRUNCATE) {
6599      // Look pass the truncate.
6600      Trunc = N1.getNode();
6601      N1 = N1.getOperand(0);
6602    }
6603
6604    // Match this pattern so that we can generate simpler code:
6605    //
6606    //   %a = ...
6607    //   %b = and i32 %a, 2
6608    //   %c = srl i32 %b, 1
6609    //   brcond i32 %c ...
6610    //
6611    // into
6612    //
6613    //   %a = ...
6614    //   %b = and i32 %a, 2
6615    //   %c = setcc eq %b, 0
6616    //   brcond %c ...
6617    //
6618    // This applies only when the AND constant value has one bit set and the
6619    // SRL constant is equal to the log2 of the AND constant. The back-end is
6620    // smart enough to convert the result into a TEST/JMP sequence.
6621    SDValue Op0 = N1.getOperand(0);
6622    SDValue Op1 = N1.getOperand(1);
6623
6624    if (Op0.getOpcode() == ISD::AND &&
6625        Op1.getOpcode() == ISD::Constant) {
6626      SDValue AndOp1 = Op0.getOperand(1);
6627
6628      if (AndOp1.getOpcode() == ISD::Constant) {
6629        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6630
6631        if (AndConst.isPowerOf2() &&
6632            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6633          SDValue SetCC =
6634            DAG.getSetCC(N->getDebugLoc(),
6635                         TLI.getSetCCResultType(Op0.getValueType()),
6636                         Op0, DAG.getConstant(0, Op0.getValueType()),
6637                         ISD::SETNE);
6638
6639          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6640                                          MVT::Other, Chain, SetCC, N2);
6641          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6642          // will convert it back to (X & C1) >> C2.
6643          CombineTo(N, NewBRCond, false);
6644          // Truncate is dead.
6645          if (Trunc) {
6646            removeFromWorkList(Trunc);
6647            DAG.DeleteNode(Trunc);
6648          }
6649          // Replace the uses of SRL with SETCC
6650          WorkListRemover DeadNodes(*this);
6651          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6652          removeFromWorkList(N1.getNode());
6653          DAG.DeleteNode(N1.getNode());
6654          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6655        }
6656      }
6657    }
6658
6659    if (Trunc)
6660      // Restore N1 if the above transformation doesn't match.
6661      N1 = N->getOperand(1);
6662  }
6663
6664  // Transform br(xor(x, y)) -> br(x != y)
6665  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6666  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6667    SDNode *TheXor = N1.getNode();
6668    SDValue Op0 = TheXor->getOperand(0);
6669    SDValue Op1 = TheXor->getOperand(1);
6670    if (Op0.getOpcode() == Op1.getOpcode()) {
6671      // Avoid missing important xor optimizations.
6672      SDValue Tmp = visitXOR(TheXor);
6673      if (Tmp.getNode() && Tmp.getNode() != TheXor) {
6674        DEBUG(dbgs() << "\nReplacing.8 ";
6675              TheXor->dump(&DAG);
6676              dbgs() << "\nWith: ";
6677              Tmp.getNode()->dump(&DAG);
6678              dbgs() << '\n');
6679        WorkListRemover DeadNodes(*this);
6680        DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
6681        removeFromWorkList(TheXor);
6682        DAG.DeleteNode(TheXor);
6683        return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6684                           MVT::Other, Chain, Tmp, N2);
6685      }
6686    }
6687
6688    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
6689      bool Equal = false;
6690      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
6691        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
6692            Op0.getOpcode() == ISD::XOR) {
6693          TheXor = Op0.getNode();
6694          Equal = true;
6695        }
6696
6697      EVT SetCCVT = N1.getValueType();
6698      if (LegalTypes)
6699        SetCCVT = TLI.getSetCCResultType(SetCCVT);
6700      SDValue SetCC = DAG.getSetCC(TheXor->getDebugLoc(),
6701                                   SetCCVT,
6702                                   Op0, Op1,
6703                                   Equal ? ISD::SETEQ : ISD::SETNE);
6704      // Replace the uses of XOR with SETCC
6705      WorkListRemover DeadNodes(*this);
6706      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6707      removeFromWorkList(N1.getNode());
6708      DAG.DeleteNode(N1.getNode());
6709      return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6710                         MVT::Other, Chain, SetCC, N2);
6711    }
6712  }
6713
6714  return SDValue();
6715}
6716
6717// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
6718//
6719SDValue DAGCombiner::visitBR_CC(SDNode *N) {
6720  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
6721  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
6722
6723  // If N is a constant we could fold this into a fallthrough or unconditional
6724  // branch. However that doesn't happen very often in normal code, because
6725  // Instcombine/SimplifyCFG should have handled the available opportunities.
6726  // If we did this folding here, it would be necessary to update the
6727  // MachineBasicBlock CFG, which is awkward.
6728
6729  // Use SimplifySetCC to simplify SETCC's.
6730  SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()),
6731                               CondLHS, CondRHS, CC->get(), N->getDebugLoc(),
6732                               false);
6733  if (Simp.getNode()) AddToWorkList(Simp.getNode());
6734
6735  // fold to a simpler setcc
6736  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
6737    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6738                       N->getOperand(0), Simp.getOperand(2),
6739                       Simp.getOperand(0), Simp.getOperand(1),
6740                       N->getOperand(4));
6741
6742  return SDValue();
6743}
6744
6745/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
6746/// uses N as its base pointer and that N may be folded in the load / store
6747/// addressing mode.
6748static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
6749                                    SelectionDAG &DAG,
6750                                    const TargetLowering &TLI) {
6751  EVT VT;
6752  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
6753    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
6754      return false;
6755    VT = Use->getValueType(0);
6756  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
6757    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
6758      return false;
6759    VT = ST->getValue().getValueType();
6760  } else
6761    return false;
6762
6763  AddrMode AM;
6764  if (N->getOpcode() == ISD::ADD) {
6765    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6766    if (Offset)
6767      // [reg +/- imm]
6768      AM.BaseOffs = Offset->getSExtValue();
6769    else
6770      // [reg +/- reg]
6771      AM.Scale = 1;
6772  } else if (N->getOpcode() == ISD::SUB) {
6773    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6774    if (Offset)
6775      // [reg +/- imm]
6776      AM.BaseOffs = -Offset->getSExtValue();
6777    else
6778      // [reg +/- reg]
6779      AM.Scale = 1;
6780  } else
6781    return false;
6782
6783  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
6784}
6785
6786/// CombineToPreIndexedLoadStore - Try turning a load / store into a
6787/// pre-indexed load / store when the base pointer is an add or subtract
6788/// and it has other uses besides the load / store. After the
6789/// transformation, the new indexed load / store has effectively folded
6790/// the add / subtract in and all of its other uses are redirected to the
6791/// new load / store.
6792bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
6793  if (Level < AfterLegalizeDAG)
6794    return false;
6795
6796  bool isLoad = true;
6797  SDValue Ptr;
6798  EVT VT;
6799  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
6800    if (LD->isIndexed())
6801      return false;
6802    VT = LD->getMemoryVT();
6803    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
6804        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
6805      return false;
6806    Ptr = LD->getBasePtr();
6807  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
6808    if (ST->isIndexed())
6809      return false;
6810    VT = ST->getMemoryVT();
6811    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
6812        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
6813      return false;
6814    Ptr = ST->getBasePtr();
6815    isLoad = false;
6816  } else {
6817    return false;
6818  }
6819
6820  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
6821  // out.  There is no reason to make this a preinc/predec.
6822  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
6823      Ptr.getNode()->hasOneUse())
6824    return false;
6825
6826  // Ask the target to do addressing mode selection.
6827  SDValue BasePtr;
6828  SDValue Offset;
6829  ISD::MemIndexedMode AM = ISD::UNINDEXED;
6830  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
6831    return false;
6832  // Don't create a indexed load / store with zero offset.
6833  if (isa<ConstantSDNode>(Offset) &&
6834      cast<ConstantSDNode>(Offset)->isNullValue())
6835    return false;
6836
6837  // Try turning it into a pre-indexed load / store except when:
6838  // 1) The new base ptr is a frame index.
6839  // 2) If N is a store and the new base ptr is either the same as or is a
6840  //    predecessor of the value being stored.
6841  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
6842  //    that would create a cycle.
6843  // 4) All uses are load / store ops that use it as old base ptr.
6844
6845  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
6846  // (plus the implicit offset) to a register to preinc anyway.
6847  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
6848    return false;
6849
6850  // Check #2.
6851  if (!isLoad) {
6852    SDValue Val = cast<StoreSDNode>(N)->getValue();
6853    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
6854      return false;
6855  }
6856
6857  // Now check for #3 and #4.
6858  bool RealUse = false;
6859
6860  // Caches for hasPredecessorHelper
6861  SmallPtrSet<const SDNode *, 32> Visited;
6862  SmallVector<const SDNode *, 16> Worklist;
6863
6864  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
6865         E = Ptr.getNode()->use_end(); I != E; ++I) {
6866    SDNode *Use = *I;
6867    if (Use == N)
6868      continue;
6869    if (N->hasPredecessorHelper(Use, Visited, Worklist))
6870      return false;
6871
6872    // If Ptr may be folded in addressing mode of other use, then it's
6873    // not profitable to do this transformation.
6874    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
6875      RealUse = true;
6876  }
6877
6878  if (!RealUse)
6879    return false;
6880
6881  SDValue Result;
6882  if (isLoad)
6883    Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
6884                                BasePtr, Offset, AM);
6885  else
6886    Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
6887                                 BasePtr, Offset, AM);
6888  ++PreIndexedNodes;
6889  ++NodesCombined;
6890  DEBUG(dbgs() << "\nReplacing.4 ";
6891        N->dump(&DAG);
6892        dbgs() << "\nWith: ";
6893        Result.getNode()->dump(&DAG);
6894        dbgs() << '\n');
6895  WorkListRemover DeadNodes(*this);
6896  if (isLoad) {
6897    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
6898    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
6899  } else {
6900    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
6901  }
6902
6903  // Finally, since the node is now dead, remove it from the graph.
6904  DAG.DeleteNode(N);
6905
6906  // Replace the uses of Ptr with uses of the updated base value.
6907  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
6908  removeFromWorkList(Ptr.getNode());
6909  DAG.DeleteNode(Ptr.getNode());
6910
6911  return true;
6912}
6913
6914/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
6915/// add / sub of the base pointer node into a post-indexed load / store.
6916/// The transformation folded the add / subtract into the new indexed
6917/// load / store effectively and all of its uses are redirected to the
6918/// new load / store.
6919bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
6920  if (Level < AfterLegalizeDAG)
6921    return false;
6922
6923  bool isLoad = true;
6924  SDValue Ptr;
6925  EVT VT;
6926  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
6927    if (LD->isIndexed())
6928      return false;
6929    VT = LD->getMemoryVT();
6930    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
6931        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
6932      return false;
6933    Ptr = LD->getBasePtr();
6934  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
6935    if (ST->isIndexed())
6936      return false;
6937    VT = ST->getMemoryVT();
6938    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
6939        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
6940      return false;
6941    Ptr = ST->getBasePtr();
6942    isLoad = false;
6943  } else {
6944    return false;
6945  }
6946
6947  if (Ptr.getNode()->hasOneUse())
6948    return false;
6949
6950  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
6951         E = Ptr.getNode()->use_end(); I != E; ++I) {
6952    SDNode *Op = *I;
6953    if (Op == N ||
6954        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
6955      continue;
6956
6957    SDValue BasePtr;
6958    SDValue Offset;
6959    ISD::MemIndexedMode AM = ISD::UNINDEXED;
6960    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
6961      // Don't create a indexed load / store with zero offset.
6962      if (isa<ConstantSDNode>(Offset) &&
6963          cast<ConstantSDNode>(Offset)->isNullValue())
6964        continue;
6965
6966      // Try turning it into a post-indexed load / store except when
6967      // 1) All uses are load / store ops that use it as base ptr (and
6968      //    it may be folded as addressing mmode).
6969      // 2) Op must be independent of N, i.e. Op is neither a predecessor
6970      //    nor a successor of N. Otherwise, if Op is folded that would
6971      //    create a cycle.
6972
6973      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
6974        continue;
6975
6976      // Check for #1.
6977      bool TryNext = false;
6978      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
6979             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
6980        SDNode *Use = *II;
6981        if (Use == Ptr.getNode())
6982          continue;
6983
6984        // If all the uses are load / store addresses, then don't do the
6985        // transformation.
6986        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
6987          bool RealUse = false;
6988          for (SDNode::use_iterator III = Use->use_begin(),
6989                 EEE = Use->use_end(); III != EEE; ++III) {
6990            SDNode *UseUse = *III;
6991            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
6992              RealUse = true;
6993          }
6994
6995          if (!RealUse) {
6996            TryNext = true;
6997            break;
6998          }
6999        }
7000      }
7001
7002      if (TryNext)
7003        continue;
7004
7005      // Check for #2
7006      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7007        SDValue Result = isLoad
7008          ? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
7009                               BasePtr, Offset, AM)
7010          : DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
7011                                BasePtr, Offset, AM);
7012        ++PostIndexedNodes;
7013        ++NodesCombined;
7014        DEBUG(dbgs() << "\nReplacing.5 ";
7015              N->dump(&DAG);
7016              dbgs() << "\nWith: ";
7017              Result.getNode()->dump(&DAG);
7018              dbgs() << '\n');
7019        WorkListRemover DeadNodes(*this);
7020        if (isLoad) {
7021          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7022          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7023        } else {
7024          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7025        }
7026
7027        // Finally, since the node is now dead, remove it from the graph.
7028        DAG.DeleteNode(N);
7029
7030        // Replace the uses of Use with uses of the updated base value.
7031        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7032                                      Result.getValue(isLoad ? 1 : 0));
7033        removeFromWorkList(Op);
7034        DAG.DeleteNode(Op);
7035        return true;
7036      }
7037    }
7038  }
7039
7040  return false;
7041}
7042
7043SDValue DAGCombiner::visitLOAD(SDNode *N) {
7044  LoadSDNode *LD  = cast<LoadSDNode>(N);
7045  SDValue Chain = LD->getChain();
7046  SDValue Ptr   = LD->getBasePtr();
7047
7048  // If load is not volatile and there are no uses of the loaded value (and
7049  // the updated indexed value in case of indexed loads), change uses of the
7050  // chain value into uses of the chain input (i.e. delete the dead load).
7051  if (!LD->isVolatile()) {
7052    if (N->getValueType(1) == MVT::Other) {
7053      // Unindexed loads.
7054      if (!N->hasAnyUseOfValue(0)) {
7055        // It's not safe to use the two value CombineTo variant here. e.g.
7056        // v1, chain2 = load chain1, loc
7057        // v2, chain3 = load chain2, loc
7058        // v3         = add v2, c
7059        // Now we replace use of chain2 with chain1.  This makes the second load
7060        // isomorphic to the one we are deleting, and thus makes this load live.
7061        DEBUG(dbgs() << "\nReplacing.6 ";
7062              N->dump(&DAG);
7063              dbgs() << "\nWith chain: ";
7064              Chain.getNode()->dump(&DAG);
7065              dbgs() << "\n");
7066        WorkListRemover DeadNodes(*this);
7067        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7068
7069        if (N->use_empty()) {
7070          removeFromWorkList(N);
7071          DAG.DeleteNode(N);
7072        }
7073
7074        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7075      }
7076    } else {
7077      // Indexed loads.
7078      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7079      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7080        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7081        DEBUG(dbgs() << "\nReplacing.7 ";
7082              N->dump(&DAG);
7083              dbgs() << "\nWith: ";
7084              Undef.getNode()->dump(&DAG);
7085              dbgs() << " and 2 other values\n");
7086        WorkListRemover DeadNodes(*this);
7087        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7088        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7089                                      DAG.getUNDEF(N->getValueType(1)));
7090        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7091        removeFromWorkList(N);
7092        DAG.DeleteNode(N);
7093        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7094      }
7095    }
7096  }
7097
7098  // If this load is directly stored, replace the load value with the stored
7099  // value.
7100  // TODO: Handle store large -> read small portion.
7101  // TODO: Handle TRUNCSTORE/LOADEXT
7102  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7103    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7104      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7105      if (PrevST->getBasePtr() == Ptr &&
7106          PrevST->getValue().getValueType() == N->getValueType(0))
7107      return CombineTo(N, Chain.getOperand(1), Chain);
7108    }
7109  }
7110
7111  // Try to infer better alignment information than the load already has.
7112  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7113    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7114      if (Align > LD->getAlignment())
7115        return DAG.getExtLoad(LD->getExtensionType(), N->getDebugLoc(),
7116                              LD->getValueType(0),
7117                              Chain, Ptr, LD->getPointerInfo(),
7118                              LD->getMemoryVT(),
7119                              LD->isVolatile(), LD->isNonTemporal(), Align);
7120    }
7121  }
7122
7123  if (CombinerAA) {
7124    // Walk up chain skipping non-aliasing memory nodes.
7125    SDValue BetterChain = FindBetterChain(N, Chain);
7126
7127    // If there is a better chain.
7128    if (Chain != BetterChain) {
7129      SDValue ReplLoad;
7130
7131      // Replace the chain to void dependency.
7132      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7133        ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(),
7134                               BetterChain, Ptr, LD->getPointerInfo(),
7135                               LD->isVolatile(), LD->isNonTemporal(),
7136                               LD->isInvariant(), LD->getAlignment());
7137      } else {
7138        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getDebugLoc(),
7139                                  LD->getValueType(0),
7140                                  BetterChain, Ptr, LD->getPointerInfo(),
7141                                  LD->getMemoryVT(),
7142                                  LD->isVolatile(),
7143                                  LD->isNonTemporal(),
7144                                  LD->getAlignment());
7145      }
7146
7147      // Create token factor to keep old chain connected.
7148      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
7149                                  MVT::Other, Chain, ReplLoad.getValue(1));
7150
7151      // Make sure the new and old chains are cleaned up.
7152      AddToWorkList(Token.getNode());
7153
7154      // Replace uses with load result and token factor. Don't add users
7155      // to work list.
7156      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7157    }
7158  }
7159
7160  // Try transforming N to an indexed load.
7161  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7162    return SDValue(N, 0);
7163
7164  return SDValue();
7165}
7166
7167/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
7168/// load is having specific bytes cleared out.  If so, return the byte size
7169/// being masked out and the shift amount.
7170static std::pair<unsigned, unsigned>
7171CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
7172  std::pair<unsigned, unsigned> Result(0, 0);
7173
7174  // Check for the structure we're looking for.
7175  if (V->getOpcode() != ISD::AND ||
7176      !isa<ConstantSDNode>(V->getOperand(1)) ||
7177      !ISD::isNormalLoad(V->getOperand(0).getNode()))
7178    return Result;
7179
7180  // Check the chain and pointer.
7181  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
7182  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
7183
7184  // The store should be chained directly to the load or be an operand of a
7185  // tokenfactor.
7186  if (LD == Chain.getNode())
7187    ; // ok.
7188  else if (Chain->getOpcode() != ISD::TokenFactor)
7189    return Result; // Fail.
7190  else {
7191    bool isOk = false;
7192    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
7193      if (Chain->getOperand(i).getNode() == LD) {
7194        isOk = true;
7195        break;
7196      }
7197    if (!isOk) return Result;
7198  }
7199
7200  // This only handles simple types.
7201  if (V.getValueType() != MVT::i16 &&
7202      V.getValueType() != MVT::i32 &&
7203      V.getValueType() != MVT::i64)
7204    return Result;
7205
7206  // Check the constant mask.  Invert it so that the bits being masked out are
7207  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
7208  // follow the sign bit for uniformity.
7209  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
7210  unsigned NotMaskLZ = CountLeadingZeros_64(NotMask);
7211  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
7212  unsigned NotMaskTZ = CountTrailingZeros_64(NotMask);
7213  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
7214  if (NotMaskLZ == 64) return Result;  // All zero mask.
7215
7216  // See if we have a continuous run of bits.  If so, we have 0*1+0*
7217  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
7218    return Result;
7219
7220  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
7221  if (V.getValueType() != MVT::i64 && NotMaskLZ)
7222    NotMaskLZ -= 64-V.getValueSizeInBits();
7223
7224  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
7225  switch (MaskedBytes) {
7226  case 1:
7227  case 2:
7228  case 4: break;
7229  default: return Result; // All one mask, or 5-byte mask.
7230  }
7231
7232  // Verify that the first bit starts at a multiple of mask so that the access
7233  // is aligned the same as the access width.
7234  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
7235
7236  Result.first = MaskedBytes;
7237  Result.second = NotMaskTZ/8;
7238  return Result;
7239}
7240
7241
7242/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
7243/// provides a value as specified by MaskInfo.  If so, replace the specified
7244/// store with a narrower store of truncated IVal.
7245static SDNode *
7246ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
7247                                SDValue IVal, StoreSDNode *St,
7248                                DAGCombiner *DC) {
7249  unsigned NumBytes = MaskInfo.first;
7250  unsigned ByteShift = MaskInfo.second;
7251  SelectionDAG &DAG = DC->getDAG();
7252
7253  // Check to see if IVal is all zeros in the part being masked in by the 'or'
7254  // that uses this.  If not, this is not a replacement.
7255  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
7256                                  ByteShift*8, (ByteShift+NumBytes)*8);
7257  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
7258
7259  // Check that it is legal on the target to do this.  It is legal if the new
7260  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
7261  // legalization.
7262  MVT VT = MVT::getIntegerVT(NumBytes*8);
7263  if (!DC->isTypeLegal(VT))
7264    return 0;
7265
7266  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
7267  // shifted by ByteShift and truncated down to NumBytes.
7268  if (ByteShift)
7269    IVal = DAG.getNode(ISD::SRL, IVal->getDebugLoc(), IVal.getValueType(), IVal,
7270                       DAG.getConstant(ByteShift*8,
7271                                    DC->getShiftAmountTy(IVal.getValueType())));
7272
7273  // Figure out the offset for the store and the alignment of the access.
7274  unsigned StOffset;
7275  unsigned NewAlign = St->getAlignment();
7276
7277  if (DAG.getTargetLoweringInfo().isLittleEndian())
7278    StOffset = ByteShift;
7279  else
7280    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
7281
7282  SDValue Ptr = St->getBasePtr();
7283  if (StOffset) {
7284    Ptr = DAG.getNode(ISD::ADD, IVal->getDebugLoc(), Ptr.getValueType(),
7285                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
7286    NewAlign = MinAlign(NewAlign, StOffset);
7287  }
7288
7289  // Truncate down to the new size.
7290  IVal = DAG.getNode(ISD::TRUNCATE, IVal->getDebugLoc(), VT, IVal);
7291
7292  ++OpsNarrowed;
7293  return DAG.getStore(St->getChain(), St->getDebugLoc(), IVal, Ptr,
7294                      St->getPointerInfo().getWithOffset(StOffset),
7295                      false, false, NewAlign).getNode();
7296}
7297
7298
7299/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
7300/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
7301/// of the loaded bits, try narrowing the load and store if it would end up
7302/// being a win for performance or code size.
7303SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
7304  StoreSDNode *ST  = cast<StoreSDNode>(N);
7305  if (ST->isVolatile())
7306    return SDValue();
7307
7308  SDValue Chain = ST->getChain();
7309  SDValue Value = ST->getValue();
7310  SDValue Ptr   = ST->getBasePtr();
7311  EVT VT = Value.getValueType();
7312
7313  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
7314    return SDValue();
7315
7316  unsigned Opc = Value.getOpcode();
7317
7318  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
7319  // is a byte mask indicating a consecutive number of bytes, check to see if
7320  // Y is known to provide just those bytes.  If so, we try to replace the
7321  // load + replace + store sequence with a single (narrower) store, which makes
7322  // the load dead.
7323  if (Opc == ISD::OR) {
7324    std::pair<unsigned, unsigned> MaskedLoad;
7325    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
7326    if (MaskedLoad.first)
7327      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7328                                                  Value.getOperand(1), ST,this))
7329        return SDValue(NewST, 0);
7330
7331    // Or is commutative, so try swapping X and Y.
7332    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
7333    if (MaskedLoad.first)
7334      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7335                                                  Value.getOperand(0), ST,this))
7336        return SDValue(NewST, 0);
7337  }
7338
7339  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
7340      Value.getOperand(1).getOpcode() != ISD::Constant)
7341    return SDValue();
7342
7343  SDValue N0 = Value.getOperand(0);
7344  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7345      Chain == SDValue(N0.getNode(), 1)) {
7346    LoadSDNode *LD = cast<LoadSDNode>(N0);
7347    if (LD->getBasePtr() != Ptr ||
7348        LD->getPointerInfo().getAddrSpace() !=
7349        ST->getPointerInfo().getAddrSpace())
7350      return SDValue();
7351
7352    // Find the type to narrow it the load / op / store to.
7353    SDValue N1 = Value.getOperand(1);
7354    unsigned BitWidth = N1.getValueSizeInBits();
7355    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
7356    if (Opc == ISD::AND)
7357      Imm ^= APInt::getAllOnesValue(BitWidth);
7358    if (Imm == 0 || Imm.isAllOnesValue())
7359      return SDValue();
7360    unsigned ShAmt = Imm.countTrailingZeros();
7361    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
7362    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
7363    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7364    while (NewBW < BitWidth &&
7365           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
7366             TLI.isNarrowingProfitable(VT, NewVT))) {
7367      NewBW = NextPowerOf2(NewBW);
7368      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7369    }
7370    if (NewBW >= BitWidth)
7371      return SDValue();
7372
7373    // If the lsb changed does not start at the type bitwidth boundary,
7374    // start at the previous one.
7375    if (ShAmt % NewBW)
7376      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
7377    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, ShAmt + NewBW);
7378    if ((Imm & Mask) == Imm) {
7379      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
7380      if (Opc == ISD::AND)
7381        NewImm ^= APInt::getAllOnesValue(NewBW);
7382      uint64_t PtrOff = ShAmt / 8;
7383      // For big endian targets, we need to adjust the offset to the pointer to
7384      // load the correct bytes.
7385      if (TLI.isBigEndian())
7386        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
7387
7388      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
7389      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
7390      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
7391        return SDValue();
7392
7393      SDValue NewPtr = DAG.getNode(ISD::ADD, LD->getDebugLoc(),
7394                                   Ptr.getValueType(), Ptr,
7395                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
7396      SDValue NewLD = DAG.getLoad(NewVT, N0.getDebugLoc(),
7397                                  LD->getChain(), NewPtr,
7398                                  LD->getPointerInfo().getWithOffset(PtrOff),
7399                                  LD->isVolatile(), LD->isNonTemporal(),
7400                                  LD->isInvariant(), NewAlign);
7401      SDValue NewVal = DAG.getNode(Opc, Value.getDebugLoc(), NewVT, NewLD,
7402                                   DAG.getConstant(NewImm, NewVT));
7403      SDValue NewST = DAG.getStore(Chain, N->getDebugLoc(),
7404                                   NewVal, NewPtr,
7405                                   ST->getPointerInfo().getWithOffset(PtrOff),
7406                                   false, false, NewAlign);
7407
7408      AddToWorkList(NewPtr.getNode());
7409      AddToWorkList(NewLD.getNode());
7410      AddToWorkList(NewVal.getNode());
7411      WorkListRemover DeadNodes(*this);
7412      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
7413      ++OpsNarrowed;
7414      return NewST;
7415    }
7416  }
7417
7418  return SDValue();
7419}
7420
7421/// TransformFPLoadStorePair - For a given floating point load / store pair,
7422/// if the load value isn't used by any other operations, then consider
7423/// transforming the pair to integer load / store operations if the target
7424/// deems the transformation profitable.
7425SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
7426  StoreSDNode *ST  = cast<StoreSDNode>(N);
7427  SDValue Chain = ST->getChain();
7428  SDValue Value = ST->getValue();
7429  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
7430      Value.hasOneUse() &&
7431      Chain == SDValue(Value.getNode(), 1)) {
7432    LoadSDNode *LD = cast<LoadSDNode>(Value);
7433    EVT VT = LD->getMemoryVT();
7434    if (!VT.isFloatingPoint() ||
7435        VT != ST->getMemoryVT() ||
7436        LD->isNonTemporal() ||
7437        ST->isNonTemporal() ||
7438        LD->getPointerInfo().getAddrSpace() != 0 ||
7439        ST->getPointerInfo().getAddrSpace() != 0)
7440      return SDValue();
7441
7442    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7443    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
7444        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
7445        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
7446        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
7447      return SDValue();
7448
7449    unsigned LDAlign = LD->getAlignment();
7450    unsigned STAlign = ST->getAlignment();
7451    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
7452    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
7453    if (LDAlign < ABIAlign || STAlign < ABIAlign)
7454      return SDValue();
7455
7456    SDValue NewLD = DAG.getLoad(IntVT, Value.getDebugLoc(),
7457                                LD->getChain(), LD->getBasePtr(),
7458                                LD->getPointerInfo(),
7459                                false, false, false, LDAlign);
7460
7461    SDValue NewST = DAG.getStore(NewLD.getValue(1), N->getDebugLoc(),
7462                                 NewLD, ST->getBasePtr(),
7463                                 ST->getPointerInfo(),
7464                                 false, false, STAlign);
7465
7466    AddToWorkList(NewLD.getNode());
7467    AddToWorkList(NewST.getNode());
7468    WorkListRemover DeadNodes(*this);
7469    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
7470    ++LdStFP2Int;
7471    return NewST;
7472  }
7473
7474  return SDValue();
7475}
7476
7477/// Returns the base pointer and an integer offset from that object.
7478static std::pair<SDValue, int64_t> GetPointerBaseAndOffset(SDValue Ptr) {
7479  if (Ptr->getOpcode() == ISD::ADD && isa<ConstantSDNode>(Ptr->getOperand(1))) {
7480    int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
7481    SDValue Base = Ptr->getOperand(0);
7482    return std::make_pair(Base, Offset);
7483  }
7484
7485  return std::make_pair(Ptr, 0);
7486}
7487
7488/// Holds a pointer to an LSBaseSDNode as well as information on where it
7489/// is located in a sequence of memory operations connected by a chain.
7490struct MemOpLink {
7491  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
7492    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
7493  // Ptr to the mem node.
7494  LSBaseSDNode *MemNode;
7495  // Offset from the base ptr.
7496  int64_t OffsetFromBase;
7497  // What is the sequence number of this mem node.
7498  // Lowest mem operand in the DAG starts at zero.
7499  unsigned SequenceNum;
7500};
7501
7502/// Sorts store nodes in a link according to their offset from a shared
7503// base ptr.
7504struct ConsecutiveMemoryChainSorter {
7505  bool operator()(MemOpLink LHS, MemOpLink RHS) {
7506    return LHS.OffsetFromBase < RHS.OffsetFromBase;
7507  }
7508};
7509
7510bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
7511  EVT MemVT = St->getMemoryVT();
7512  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
7513
7514  // Don't merge vectors into wider inputs.
7515  if (MemVT.isVector() || !MemVT.isSimple())
7516    return false;
7517
7518  // Perform an early exit check. Do not bother looking at stored values that
7519  // are not constants or loads.
7520  SDValue StoredVal = St->getValue();
7521  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
7522  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
7523      !IsLoadSrc)
7524    return false;
7525
7526  // Only look at ends of store sequences.
7527  SDValue Chain = SDValue(St, 1);
7528  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
7529    return false;
7530
7531  // This holds the base pointer and the offset in bytes from the base pointer.
7532  std::pair<SDValue, int64_t> BasePtr =
7533      GetPointerBaseAndOffset(St->getBasePtr());
7534
7535  // We must have a base and an offset.
7536  if (!BasePtr.first.getNode())
7537    return false;
7538
7539  // Do not handle stores to undef base pointers.
7540  if (BasePtr.first.getOpcode() == ISD::UNDEF)
7541    return false;
7542
7543  SmallVector<MemOpLink, 8> StoreNodes;
7544  // Walk up the chain and look for nodes with offsets from the same
7545  // base pointer. Stop when reaching an instruction with a different kind
7546  // or instruction which has a different base pointer.
7547  unsigned Seq = 0;
7548  StoreSDNode *Index = St;
7549  while (Index) {
7550    // If the chain has more than one use, then we can't reorder the mem ops.
7551    if (Index != St && !SDValue(Index, 1)->hasOneUse())
7552      break;
7553
7554    // Find the base pointer and offset for this memory node.
7555    std::pair<SDValue, int64_t> Ptr =
7556      GetPointerBaseAndOffset(Index->getBasePtr());
7557
7558    // Check that the base pointer is the same as the original one.
7559    if (Ptr.first.getNode() != BasePtr.first.getNode())
7560      break;
7561
7562    // Check that the alignment is the same.
7563    if (Index->getAlignment() != St->getAlignment())
7564      break;
7565
7566    // The memory operands must not be volatile.
7567    if (Index->isVolatile() || Index->isIndexed())
7568      break;
7569
7570    // No truncation.
7571    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
7572      if (St->isTruncatingStore())
7573        break;
7574
7575    // The stored memory type must be the same.
7576    if (Index->getMemoryVT() != MemVT)
7577      break;
7578
7579    // We do not allow unaligned stores because we want to prevent overriding
7580    // stores.
7581    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
7582      break;
7583
7584    // We found a potential memory operand to merge.
7585    StoreNodes.push_back(MemOpLink(Index, Ptr.second, Seq++));
7586
7587    // Move up the chain to the next memory operation.
7588    Index = dyn_cast<StoreSDNode>(Index->getChain().getNode());
7589  }
7590
7591  // Check if there is anything to merge.
7592  if (StoreNodes.size() < 2)
7593    return false;
7594
7595  // Sort the memory operands according to their distance from the base pointer.
7596  std::sort(StoreNodes.begin(), StoreNodes.end(),
7597            ConsecutiveMemoryChainSorter());
7598
7599  // Scan the memory operations on the chain and find the first non-consecutive
7600  // store memory address.
7601  unsigned LastConsecutiveStore = 0;
7602  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
7603  for (unsigned i=1; i<StoreNodes.size(); ++i) {
7604    int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
7605    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
7606      break;
7607
7608    // Mark this node as useful.
7609    LastConsecutiveStore = i;
7610  }
7611
7612  // The node with the lowest store address.
7613  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
7614
7615  // Store the constants into memory as one consecutive store.
7616  if (!IsLoadSrc) {
7617    unsigned LastLegalType = 0;
7618    unsigned LastLegalVectorType = 0;
7619    bool NonZero = false;
7620    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
7621      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
7622      SDValue StoredVal = St->getValue();
7623
7624      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
7625        NonZero |= !C->isNullValue();
7626      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
7627        NonZero |= !C->getConstantFPValue()->isNullValue();
7628      } else {
7629        // Non constant.
7630        break;
7631      }
7632
7633      // Find a legal type for the constant store.
7634      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
7635      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7636      if (TLI.isTypeLegal(StoreTy))
7637        LastLegalType = i+1;
7638
7639      // Find a legal type for the vector store.
7640      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
7641      if (TLI.isTypeLegal(Ty))
7642        LastLegalVectorType = i + 1;
7643    }
7644
7645    // We only use vectors if the constant is known to be zero.
7646    if (NonZero)
7647      LastLegalVectorType = 0;
7648
7649    // Check if we found a legal integer type to store.
7650    if (LastLegalType == 0 && LastLegalVectorType == 0)
7651      return false;
7652
7653    bool UseVector = LastLegalVectorType > LastLegalType;
7654    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
7655
7656    // Make sure we have something to merge.
7657    if (NumElem < 2)
7658      return false;
7659
7660    unsigned EarliestNodeUsed = 0;
7661    for (unsigned i=0; i < NumElem; ++i) {
7662      // Find a chain for the new wide-store operand. Notice that some
7663      // of the store nodes that we found may not be selected for inclusion
7664      // in the wide store. The chain we use needs to be the chain of the
7665      // earliest store node which is *used* and replaced by the wide store.
7666      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
7667        EarliestNodeUsed = i;
7668    }
7669
7670    // The earliest Node in the DAG.
7671    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
7672    DebugLoc DL = StoreNodes[0].MemNode->getDebugLoc();
7673
7674    SDValue StoredVal;
7675    if (UseVector) {
7676      // Find a legal type for the vector store.
7677      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
7678      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
7679      StoredVal = DAG.getConstant(0, Ty);
7680    } else {
7681      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
7682      APInt StoreInt(StoreBW, 0);
7683
7684      // Construct a single integer constant which is made of the smaller
7685      // constant inputs.
7686      bool IsLE = TLI.isLittleEndian();
7687      for (unsigned i = 0; i < NumElem ; ++i) {
7688        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
7689        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
7690        SDValue Val = St->getValue();
7691        StoreInt<<=ElementSizeBytes*8;
7692        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
7693          StoreInt|=C->getAPIntValue().zext(StoreBW);
7694        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
7695          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
7696        } else {
7697          assert(false && "Invalid constant element type");
7698        }
7699      }
7700
7701      // Create the new Load and Store operations.
7702      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7703      StoredVal = DAG.getConstant(StoreInt, StoreTy);
7704    }
7705
7706    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
7707                                    FirstInChain->getBasePtr(),
7708                                    FirstInChain->getPointerInfo(),
7709                                    false, false,
7710                                    FirstInChain->getAlignment());
7711
7712    // Replace the first store with the new store
7713    CombineTo(EarliestOp, NewStore);
7714    // Erase all other stores.
7715    for (unsigned i = 0; i < NumElem ; ++i) {
7716      if (StoreNodes[i].MemNode == EarliestOp)
7717        continue;
7718      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
7719      DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
7720      removeFromWorkList(St);
7721      DAG.DeleteNode(St);
7722    }
7723
7724    return true;
7725  }
7726
7727  // Below we handle the case of multiple consecutive stores that
7728  // come from multiple consecutive loads. We merge them into a single
7729  // wide load and a single wide store.
7730
7731  // Look for load nodes which are used by the stored values.
7732  SmallVector<MemOpLink, 8> LoadNodes;
7733
7734  // Find acceptable loads. Loads need to have the same chain (token factor),
7735  // must not be zext, volatile, indexed, and they must be consecutive.
7736  SDValue LdBasePtr;
7737  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
7738    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
7739    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
7740    if (!Ld) break;
7741
7742    // Loads must only have one use.
7743    if (!Ld->hasNUsesOfValue(1, 0))
7744      break;
7745
7746    // Check that the alignment is the same as the stores.
7747    if (Ld->getAlignment() != St->getAlignment())
7748      break;
7749
7750    // The memory operands must not be volatile.
7751    if (Ld->isVolatile() || Ld->isIndexed())
7752      break;
7753
7754    // We do not accept ext loads.
7755    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
7756      break;
7757
7758    // The stored memory type must be the same.
7759    if (Ld->getMemoryVT() != MemVT)
7760      break;
7761
7762    std::pair<SDValue, int64_t> LdPtr =
7763    GetPointerBaseAndOffset(Ld->getBasePtr());
7764
7765    // If this is not the first ptr that we check.
7766    if (LdBasePtr.getNode()) {
7767      // The base ptr must be the same.
7768      if (LdPtr.first != LdBasePtr)
7769        break;
7770    } else {
7771      // Check that all other base pointers are the same as this one.
7772      LdBasePtr = LdPtr.first;
7773    }
7774
7775    // We found a potential memory operand to merge.
7776    LoadNodes.push_back(MemOpLink(Ld, LdPtr.second, 0));
7777  }
7778
7779  if (LoadNodes.size() < 2)
7780    return false;
7781
7782  // Scan the memory operations on the chain and find the first non-consecutive
7783  // load memory address. These variables hold the index in the store node
7784  // array.
7785  unsigned LastConsecutiveLoad = 0;
7786  // This variable refers to the size and not index in the array.
7787  unsigned LastLegalVectorType = 0;
7788  unsigned LastLegalIntegerType = 0;
7789  StartAddress = LoadNodes[0].OffsetFromBase;
7790  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
7791  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
7792    // All loads much share the same chain.
7793    if (LoadNodes[i].MemNode->getChain() != FirstChain)
7794      break;
7795
7796    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
7797    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
7798      break;
7799    LastConsecutiveLoad = i;
7800
7801    // Find a legal type for the vector store.
7802    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
7803    if (TLI.isTypeLegal(StoreTy))
7804      LastLegalVectorType = i + 1;
7805
7806    // Find a legal type for the integer store.
7807    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
7808    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7809    if (TLI.isTypeLegal(StoreTy))
7810      LastLegalIntegerType = i + 1;
7811  }
7812
7813  // Only use vector types if the vector type is larger than the integer type.
7814  // If they are the same, use integers.
7815  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType;
7816  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
7817
7818  // We add +1 here because the LastXXX variables refer to location while
7819  // the NumElem refers to array/index size.
7820  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
7821  NumElem = std::min(LastLegalType, NumElem);
7822
7823  if (NumElem < 2)
7824    return false;
7825
7826  // The earliest Node in the DAG.
7827  unsigned EarliestNodeUsed = 0;
7828  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
7829  for (unsigned i=1; i<NumElem; ++i) {
7830    // Find a chain for the new wide-store operand. Notice that some
7831    // of the store nodes that we found may not be selected for inclusion
7832    // in the wide store. The chain we use needs to be the chain of the
7833    // earliest store node which is *used* and replaced by the wide store.
7834    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
7835      EarliestNodeUsed = i;
7836  }
7837
7838  // Find if it is better to use vectors or integers to load and store
7839  // to memory.
7840  EVT JointMemOpVT;
7841  if (UseVectorTy) {
7842    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
7843  } else {
7844    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
7845    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7846  }
7847
7848  DebugLoc LoadDL = LoadNodes[0].MemNode->getDebugLoc();
7849  DebugLoc StoreDL = StoreNodes[0].MemNode->getDebugLoc();
7850
7851  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
7852  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
7853                                FirstLoad->getChain(),
7854                                FirstLoad->getBasePtr(),
7855                                FirstLoad->getPointerInfo(),
7856                                false, false, false,
7857                                FirstLoad->getAlignment());
7858
7859  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
7860                                  FirstInChain->getBasePtr(),
7861                                  FirstInChain->getPointerInfo(), false, false,
7862                                  FirstInChain->getAlignment());
7863
7864  // Replace one of the loads with the new load.
7865  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
7866  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
7867                                SDValue(NewLoad.getNode(), 1));
7868
7869  // Remove the rest of the load chains.
7870  for (unsigned i = 1; i < NumElem ; ++i) {
7871    // Replace all chain users of the old load nodes with the chain of the new
7872    // load node.
7873    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
7874    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
7875  }
7876
7877  // Replace the first store with the new store.
7878  CombineTo(EarliestOp, NewStore);
7879  // Erase all other stores.
7880  for (unsigned i = 0; i < NumElem ; ++i) {
7881    // Remove all Store nodes.
7882    if (StoreNodes[i].MemNode == EarliestOp)
7883      continue;
7884    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
7885    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
7886    removeFromWorkList(St);
7887    DAG.DeleteNode(St);
7888  }
7889
7890  return true;
7891}
7892
7893SDValue DAGCombiner::visitSTORE(SDNode *N) {
7894  StoreSDNode *ST  = cast<StoreSDNode>(N);
7895  SDValue Chain = ST->getChain();
7896  SDValue Value = ST->getValue();
7897  SDValue Ptr   = ST->getBasePtr();
7898
7899  // If this is a store of a bit convert, store the input value if the
7900  // resultant store does not need a higher alignment than the original.
7901  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
7902      ST->isUnindexed()) {
7903    unsigned OrigAlign = ST->getAlignment();
7904    EVT SVT = Value.getOperand(0).getValueType();
7905    unsigned Align = TLI.getDataLayout()->
7906      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
7907    if (Align <= OrigAlign &&
7908        ((!LegalOperations && !ST->isVolatile()) ||
7909         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
7910      return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0),
7911                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
7912                          ST->isNonTemporal(), OrigAlign);
7913  }
7914
7915  // Turn 'store undef, Ptr' -> nothing.
7916  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
7917    return Chain;
7918
7919  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
7920  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
7921    // NOTE: If the original store is volatile, this transform must not increase
7922    // the number of stores.  For example, on x86-32 an f64 can be stored in one
7923    // processor operation but an i64 (which is not legal) requires two.  So the
7924    // transform should not be done in this case.
7925    if (Value.getOpcode() != ISD::TargetConstantFP) {
7926      SDValue Tmp;
7927      switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
7928      default: llvm_unreachable("Unknown FP type");
7929      case MVT::f16:    // We don't do this for these yet.
7930      case MVT::f80:
7931      case MVT::f128:
7932      case MVT::ppcf128:
7933        break;
7934      case MVT::f32:
7935        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
7936            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
7937          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
7938                              bitcastToAPInt().getZExtValue(), MVT::i32);
7939          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
7940                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
7941                              ST->isNonTemporal(), ST->getAlignment());
7942        }
7943        break;
7944      case MVT::f64:
7945        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
7946             !ST->isVolatile()) ||
7947            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
7948          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
7949                                getZExtValue(), MVT::i64);
7950          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
7951                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
7952                              ST->isNonTemporal(), ST->getAlignment());
7953        }
7954
7955        if (!ST->isVolatile() &&
7956            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
7957          // Many FP stores are not made apparent until after legalize, e.g. for
7958          // argument passing.  Since this is so common, custom legalize the
7959          // 64-bit integer store into two 32-bit stores.
7960          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
7961          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
7962          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
7963          if (TLI.isBigEndian()) std::swap(Lo, Hi);
7964
7965          unsigned Alignment = ST->getAlignment();
7966          bool isVolatile = ST->isVolatile();
7967          bool isNonTemporal = ST->isNonTemporal();
7968
7969          SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo,
7970                                     Ptr, ST->getPointerInfo(),
7971                                     isVolatile, isNonTemporal,
7972                                     ST->getAlignment());
7973          Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr,
7974                            DAG.getConstant(4, Ptr.getValueType()));
7975          Alignment = MinAlign(Alignment, 4U);
7976          SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi,
7977                                     Ptr, ST->getPointerInfo().getWithOffset(4),
7978                                     isVolatile, isNonTemporal,
7979                                     Alignment);
7980          return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
7981                             St0, St1);
7982        }
7983
7984        break;
7985      }
7986    }
7987  }
7988
7989  // Try to infer better alignment information than the store already has.
7990  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
7991    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7992      if (Align > ST->getAlignment())
7993        return DAG.getTruncStore(Chain, N->getDebugLoc(), Value,
7994                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
7995                                 ST->isVolatile(), ST->isNonTemporal(), Align);
7996    }
7997  }
7998
7999  // Try transforming a pair floating point load / store ops to integer
8000  // load / store ops.
8001  SDValue NewST = TransformFPLoadStorePair(N);
8002  if (NewST.getNode())
8003    return NewST;
8004
8005  if (CombinerAA) {
8006    // Walk up chain skipping non-aliasing memory nodes.
8007    SDValue BetterChain = FindBetterChain(N, Chain);
8008
8009    // If there is a better chain.
8010    if (Chain != BetterChain) {
8011      SDValue ReplStore;
8012
8013      // Replace the chain to avoid dependency.
8014      if (ST->isTruncatingStore()) {
8015        ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8016                                      ST->getPointerInfo(),
8017                                      ST->getMemoryVT(), ST->isVolatile(),
8018                                      ST->isNonTemporal(), ST->getAlignment());
8019      } else {
8020        ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8021                                 ST->getPointerInfo(),
8022                                 ST->isVolatile(), ST->isNonTemporal(),
8023                                 ST->getAlignment());
8024      }
8025
8026      // Create token to keep both nodes around.
8027      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
8028                                  MVT::Other, Chain, ReplStore);
8029
8030      // Make sure the new and old chains are cleaned up.
8031      AddToWorkList(Token.getNode());
8032
8033      // Don't add users to work list.
8034      return CombineTo(N, Token, false);
8035    }
8036  }
8037
8038  // Try transforming N to an indexed store.
8039  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
8040    return SDValue(N, 0);
8041
8042  // FIXME: is there such a thing as a truncating indexed store?
8043  if (ST->isTruncatingStore() && ST->isUnindexed() &&
8044      Value.getValueType().isInteger()) {
8045    // See if we can simplify the input to this truncstore with knowledge that
8046    // only the low bits are being used.  For example:
8047    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
8048    SDValue Shorter =
8049      GetDemandedBits(Value,
8050                      APInt::getLowBitsSet(
8051                        Value.getValueType().getScalarType().getSizeInBits(),
8052                        ST->getMemoryVT().getScalarType().getSizeInBits()));
8053    AddToWorkList(Value.getNode());
8054    if (Shorter.getNode())
8055      return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter,
8056                               Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8057                               ST->isVolatile(), ST->isNonTemporal(),
8058                               ST->getAlignment());
8059
8060    // Otherwise, see if we can simplify the operation with
8061    // SimplifyDemandedBits, which only works if the value has a single use.
8062    if (SimplifyDemandedBits(Value,
8063                        APInt::getLowBitsSet(
8064                          Value.getValueType().getScalarType().getSizeInBits(),
8065                          ST->getMemoryVT().getScalarType().getSizeInBits())))
8066      return SDValue(N, 0);
8067  }
8068
8069  // If this is a load followed by a store to the same location, then the store
8070  // is dead/noop.
8071  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
8072    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
8073        ST->isUnindexed() && !ST->isVolatile() &&
8074        // There can't be any side effects between the load and store, such as
8075        // a call or store.
8076        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
8077      // The store is dead, remove it.
8078      return Chain;
8079    }
8080  }
8081
8082  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
8083  // truncating store.  We can do this even if this is already a truncstore.
8084  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
8085      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
8086      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
8087                            ST->getMemoryVT())) {
8088    return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0),
8089                             Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8090                             ST->isVolatile(), ST->isNonTemporal(),
8091                             ST->getAlignment());
8092  }
8093
8094  // Only perform this optimization before the types are legal, because we
8095  // don't want to perform this optimization on every DAGCombine invocation.
8096  if (!LegalTypes && MergeConsecutiveStores(ST))
8097    return SDValue(N, 0);
8098
8099  return ReduceLoadOpStoreWidth(N);
8100}
8101
8102SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
8103  SDValue InVec = N->getOperand(0);
8104  SDValue InVal = N->getOperand(1);
8105  SDValue EltNo = N->getOperand(2);
8106  DebugLoc dl = N->getDebugLoc();
8107
8108  // If the inserted element is an UNDEF, just use the input vector.
8109  if (InVal.getOpcode() == ISD::UNDEF)
8110    return InVec;
8111
8112  EVT VT = InVec.getValueType();
8113
8114  // If we can't generate a legal BUILD_VECTOR, exit
8115  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
8116    return SDValue();
8117
8118  // Check that we know which element is being inserted
8119  if (!isa<ConstantSDNode>(EltNo))
8120    return SDValue();
8121  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8122
8123  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
8124  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
8125  // vector elements.
8126  SmallVector<SDValue, 8> Ops;
8127  if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
8128    Ops.append(InVec.getNode()->op_begin(),
8129               InVec.getNode()->op_end());
8130  } else if (InVec.getOpcode() == ISD::UNDEF) {
8131    unsigned NElts = VT.getVectorNumElements();
8132    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
8133  } else {
8134    return SDValue();
8135  }
8136
8137  // Insert the element
8138  if (Elt < Ops.size()) {
8139    // All the operands of BUILD_VECTOR must have the same type;
8140    // we enforce that here.
8141    EVT OpVT = Ops[0].getValueType();
8142    if (InVal.getValueType() != OpVT)
8143      InVal = OpVT.bitsGT(InVal.getValueType()) ?
8144                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
8145                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
8146    Ops[Elt] = InVal;
8147  }
8148
8149  // Return the new vector
8150  return DAG.getNode(ISD::BUILD_VECTOR, dl,
8151                     VT, &Ops[0], Ops.size());
8152}
8153
8154SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
8155  // (vextract (scalar_to_vector val, 0) -> val
8156  SDValue InVec = N->getOperand(0);
8157  EVT VT = InVec.getValueType();
8158  EVT NVT = N->getValueType(0);
8159
8160  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8161    // Check if the result type doesn't match the inserted element type. A
8162    // SCALAR_TO_VECTOR may truncate the inserted element and the
8163    // EXTRACT_VECTOR_ELT may widen the extracted vector.
8164    SDValue InOp = InVec.getOperand(0);
8165    if (InOp.getValueType() != NVT) {
8166      assert(InOp.getValueType().isInteger() && NVT.isInteger());
8167      return DAG.getSExtOrTrunc(InOp, InVec.getDebugLoc(), NVT);
8168    }
8169    return InOp;
8170  }
8171
8172  SDValue EltNo = N->getOperand(1);
8173  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
8174
8175  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
8176  // We only perform this optimization before the op legalization phase because
8177  // we may introduce new vector instructions which are not backed by TD
8178  // patterns. For example on AVX, extracting elements from a wide vector
8179  // without using extract_subvector.
8180  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
8181      && ConstEltNo && !LegalOperations) {
8182    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8183    int NumElem = VT.getVectorNumElements();
8184    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
8185    // Find the new index to extract from.
8186    int OrigElt = SVOp->getMaskElt(Elt);
8187
8188    // Extracting an undef index is undef.
8189    if (OrigElt == -1)
8190      return DAG.getUNDEF(NVT);
8191
8192    // Select the right vector half to extract from.
8193    if (OrigElt < NumElem) {
8194      InVec = InVec->getOperand(0);
8195    } else {
8196      InVec = InVec->getOperand(1);
8197      OrigElt -= NumElem;
8198    }
8199
8200    EVT IndexTy = N->getOperand(1).getValueType();
8201    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(), NVT,
8202                       InVec, DAG.getConstant(OrigElt, IndexTy));
8203  }
8204
8205  // Perform only after legalization to ensure build_vector / vector_shuffle
8206  // optimizations have already been done.
8207  if (!LegalOperations) return SDValue();
8208
8209  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
8210  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
8211  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
8212
8213  if (ConstEltNo) {
8214    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8215    bool NewLoad = false;
8216    bool BCNumEltsChanged = false;
8217    EVT ExtVT = VT.getVectorElementType();
8218    EVT LVT = ExtVT;
8219
8220    // If the result of load has to be truncated, then it's not necessarily
8221    // profitable.
8222    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
8223      return SDValue();
8224
8225    if (InVec.getOpcode() == ISD::BITCAST) {
8226      // Don't duplicate a load with other uses.
8227      if (!InVec.hasOneUse())
8228        return SDValue();
8229
8230      EVT BCVT = InVec.getOperand(0).getValueType();
8231      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
8232        return SDValue();
8233      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
8234        BCNumEltsChanged = true;
8235      InVec = InVec.getOperand(0);
8236      ExtVT = BCVT.getVectorElementType();
8237      NewLoad = true;
8238    }
8239
8240    LoadSDNode *LN0 = NULL;
8241    const ShuffleVectorSDNode *SVN = NULL;
8242    if (ISD::isNormalLoad(InVec.getNode())) {
8243      LN0 = cast<LoadSDNode>(InVec);
8244    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8245               InVec.getOperand(0).getValueType() == ExtVT &&
8246               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
8247      // Don't duplicate a load with other uses.
8248      if (!InVec.hasOneUse())
8249        return SDValue();
8250
8251      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
8252    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
8253      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
8254      // =>
8255      // (load $addr+1*size)
8256
8257      // Don't duplicate a load with other uses.
8258      if (!InVec.hasOneUse())
8259        return SDValue();
8260
8261      // If the bit convert changed the number of elements, it is unsafe
8262      // to examine the mask.
8263      if (BCNumEltsChanged)
8264        return SDValue();
8265
8266      // Select the input vector, guarding against out of range extract vector.
8267      unsigned NumElems = VT.getVectorNumElements();
8268      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
8269      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
8270
8271      if (InVec.getOpcode() == ISD::BITCAST) {
8272        // Don't duplicate a load with other uses.
8273        if (!InVec.hasOneUse())
8274          return SDValue();
8275
8276        InVec = InVec.getOperand(0);
8277      }
8278      if (ISD::isNormalLoad(InVec.getNode())) {
8279        LN0 = cast<LoadSDNode>(InVec);
8280        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
8281      }
8282    }
8283
8284    // Make sure we found a non-volatile load and the extractelement is
8285    // the only use.
8286    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
8287      return SDValue();
8288
8289    // If Idx was -1 above, Elt is going to be -1, so just return undef.
8290    if (Elt == -1)
8291      return DAG.getUNDEF(LVT);
8292
8293    unsigned Align = LN0->getAlignment();
8294    if (NewLoad) {
8295      // Check the resultant load doesn't need a higher alignment than the
8296      // original load.
8297      unsigned NewAlign =
8298        TLI.getDataLayout()
8299            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
8300
8301      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
8302        return SDValue();
8303
8304      Align = NewAlign;
8305    }
8306
8307    SDValue NewPtr = LN0->getBasePtr();
8308    unsigned PtrOff = 0;
8309
8310    if (Elt) {
8311      PtrOff = LVT.getSizeInBits() * Elt / 8;
8312      EVT PtrType = NewPtr.getValueType();
8313      if (TLI.isBigEndian())
8314        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
8315      NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr,
8316                           DAG.getConstant(PtrOff, PtrType));
8317    }
8318
8319    // The replacement we need to do here is a little tricky: we need to
8320    // replace an extractelement of a load with a load.
8321    // Use ReplaceAllUsesOfValuesWith to do the replacement.
8322    // Note that this replacement assumes that the extractvalue is the only
8323    // use of the load; that's okay because we don't want to perform this
8324    // transformation in other cases anyway.
8325    SDValue Load;
8326    SDValue Chain;
8327    if (NVT.bitsGT(LVT)) {
8328      // If the result type of vextract is wider than the load, then issue an
8329      // extending load instead.
8330      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
8331        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
8332      Load = DAG.getExtLoad(ExtType, N->getDebugLoc(), NVT, LN0->getChain(),
8333                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
8334                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),Align);
8335      Chain = Load.getValue(1);
8336    } else {
8337      Load = DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr,
8338                         LN0->getPointerInfo().getWithOffset(PtrOff),
8339                         LN0->isVolatile(), LN0->isNonTemporal(),
8340                         LN0->isInvariant(), Align);
8341      Chain = Load.getValue(1);
8342      if (NVT.bitsLT(LVT))
8343        Load = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), NVT, Load);
8344      else
8345        Load = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), NVT, Load);
8346    }
8347    WorkListRemover DeadNodes(*this);
8348    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
8349    SDValue To[] = { Load, Chain };
8350    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8351    // Since we're explcitly calling ReplaceAllUses, add the new node to the
8352    // worklist explicitly as well.
8353    AddToWorkList(Load.getNode());
8354    AddUsersToWorkList(Load.getNode()); // Add users too
8355    // Make sure to revisit this node to clean it up; it will usually be dead.
8356    AddToWorkList(N);
8357    return SDValue(N, 0);
8358  }
8359
8360  return SDValue();
8361}
8362
8363SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
8364  unsigned NumInScalars = N->getNumOperands();
8365  DebugLoc dl = N->getDebugLoc();
8366  EVT VT = N->getValueType(0);
8367
8368  // A vector built entirely of undefs is undef.
8369  if (ISD::allOperandsUndef(N))
8370    return DAG.getUNDEF(VT);
8371
8372  // Check to see if this is a BUILD_VECTOR of a bunch of values
8373  // which come from any_extend or zero_extend nodes. If so, we can create
8374  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
8375  // optimizations. We do not handle sign-extend because we can't fill the sign
8376  // using shuffles.
8377  EVT SourceType = MVT::Other;
8378  bool AllAnyExt = true;
8379
8380  for (unsigned i = 0; i != NumInScalars; ++i) {
8381    SDValue In = N->getOperand(i);
8382    // Ignore undef inputs.
8383    if (In.getOpcode() == ISD::UNDEF) continue;
8384
8385    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
8386    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
8387
8388    // Abort if the element is not an extension.
8389    if (!ZeroExt && !AnyExt) {
8390      SourceType = MVT::Other;
8391      break;
8392    }
8393
8394    // The input is a ZeroExt or AnyExt. Check the original type.
8395    EVT InTy = In.getOperand(0).getValueType();
8396
8397    // Check that all of the widened source types are the same.
8398    if (SourceType == MVT::Other)
8399      // First time.
8400      SourceType = InTy;
8401    else if (InTy != SourceType) {
8402      // Multiple income types. Abort.
8403      SourceType = MVT::Other;
8404      break;
8405    }
8406
8407    // Check if all of the extends are ANY_EXTENDs.
8408    AllAnyExt &= AnyExt;
8409  }
8410
8411  // In order to have valid types, all of the inputs must be extended from the
8412  // same source type and all of the inputs must be any or zero extend.
8413  // Scalar sizes must be a power of two.
8414  EVT OutScalarTy = N->getValueType(0).getScalarType();
8415  bool ValidTypes = SourceType != MVT::Other &&
8416                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
8417                 isPowerOf2_32(SourceType.getSizeInBits());
8418
8419  // We perform this optimization post type-legalization because
8420  // the type-legalizer often scalarizes integer-promoted vectors.
8421  // Performing this optimization before may create bit-casts which
8422  // will be type-legalized to complex code sequences.
8423  // We perform this optimization only before the operation legalizer because we
8424  // may introduce illegal operations.
8425  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
8426  // turn into a single shuffle instruction.
8427  if ((Level == AfterLegalizeVectorOps || Level == AfterLegalizeTypes) &&
8428      ValidTypes) {
8429    bool isLE = TLI.isLittleEndian();
8430    unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
8431    assert(ElemRatio > 1 && "Invalid element size ratio");
8432    SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
8433                                 DAG.getConstant(0, SourceType);
8434
8435    unsigned NewBVElems = ElemRatio * N->getValueType(0).getVectorNumElements();
8436    SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
8437
8438    // Populate the new build_vector
8439    for (unsigned i=0; i < N->getNumOperands(); ++i) {
8440      SDValue Cast = N->getOperand(i);
8441      assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
8442              Cast.getOpcode() == ISD::ZERO_EXTEND ||
8443              Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
8444      SDValue In;
8445      if (Cast.getOpcode() == ISD::UNDEF)
8446        In = DAG.getUNDEF(SourceType);
8447      else
8448        In = Cast->getOperand(0);
8449      unsigned Index = isLE ? (i * ElemRatio) :
8450                              (i * ElemRatio + (ElemRatio - 1));
8451
8452      assert(Index < Ops.size() && "Invalid index");
8453      Ops[Index] = In;
8454    }
8455
8456    // The type of the new BUILD_VECTOR node.
8457    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
8458    assert(VecVT.getSizeInBits() == N->getValueType(0).getSizeInBits() &&
8459           "Invalid vector size");
8460    // Check if the new vector type is legal.
8461    if (!isTypeLegal(VecVT)) return SDValue();
8462
8463    // Make the new BUILD_VECTOR.
8464    SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
8465                                 VecVT, &Ops[0], Ops.size());
8466
8467    // The new BUILD_VECTOR node has the potential to be further optimized.
8468    AddToWorkList(BV.getNode());
8469    // Bitcast to the desired type.
8470    return DAG.getNode(ISD::BITCAST, dl, N->getValueType(0), BV);
8471  }
8472
8473  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
8474  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
8475  // at most two distinct vectors, turn this into a shuffle node.
8476
8477  // May only combine to shuffle after legalize if shuffle is legal.
8478  if (LegalOperations &&
8479      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
8480    return SDValue();
8481
8482  SDValue VecIn1, VecIn2;
8483  for (unsigned i = 0; i != NumInScalars; ++i) {
8484    // Ignore undef inputs.
8485    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
8486
8487    // If this input is something other than a EXTRACT_VECTOR_ELT with a
8488    // constant index, bail out.
8489    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8490        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
8491      VecIn1 = VecIn2 = SDValue(0, 0);
8492      break;
8493    }
8494
8495    // We allow up to two distinct input vectors.
8496    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
8497    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
8498      continue;
8499
8500    if (VecIn1.getNode() == 0) {
8501      VecIn1 = ExtractedFromVec;
8502    } else if (VecIn2.getNode() == 0) {
8503      VecIn2 = ExtractedFromVec;
8504    } else {
8505      // Too many inputs.
8506      VecIn1 = VecIn2 = SDValue(0, 0);
8507      break;
8508    }
8509  }
8510
8511    // If everything is good, we can make a shuffle operation.
8512  if (VecIn1.getNode()) {
8513    SmallVector<int, 8> Mask;
8514    for (unsigned i = 0; i != NumInScalars; ++i) {
8515      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
8516        Mask.push_back(-1);
8517        continue;
8518      }
8519
8520      // If extracting from the first vector, just use the index directly.
8521      SDValue Extract = N->getOperand(i);
8522      SDValue ExtVal = Extract.getOperand(1);
8523      if (Extract.getOperand(0) == VecIn1) {
8524        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
8525        if (ExtIndex > VT.getVectorNumElements())
8526          return SDValue();
8527
8528        Mask.push_back(ExtIndex);
8529        continue;
8530      }
8531
8532      // Otherwise, use InIdx + VecSize
8533      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
8534      Mask.push_back(Idx+NumInScalars);
8535    }
8536
8537    // We can't generate a shuffle node with mismatched input and output types.
8538    // Attempt to transform a single input vector to the correct type.
8539    if ((VT != VecIn1.getValueType())) {
8540      // We don't support shuffeling between TWO values of different types.
8541      if (VecIn2.getNode() != 0)
8542        return SDValue();
8543
8544      // We only support widening of vectors which are half the size of the
8545      // output registers. For example XMM->YMM widening on X86 with AVX.
8546      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
8547        return SDValue();
8548
8549      // If the input vector type has a different base type to the output
8550      // vector type, bail out.
8551      if (VecIn1.getValueType().getVectorElementType() !=
8552          VT.getVectorElementType())
8553        return SDValue();
8554
8555      // Widen the input vector by adding undef values.
8556      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
8557                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
8558    }
8559
8560    // If VecIn2 is unused then change it to undef.
8561    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
8562
8563    // Check that we were able to transform all incoming values to the same
8564    // type.
8565    if (VecIn2.getValueType() != VecIn1.getValueType() ||
8566        VecIn1.getValueType() != VT)
8567          return SDValue();
8568
8569    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
8570    if (!isTypeLegal(VT))
8571      return SDValue();
8572
8573    // Return the new VECTOR_SHUFFLE node.
8574    SDValue Ops[2];
8575    Ops[0] = VecIn1;
8576    Ops[1] = VecIn2;
8577    return DAG.getVectorShuffle(VT, N->getDebugLoc(), Ops[0], Ops[1], &Mask[0]);
8578  }
8579
8580  return SDValue();
8581}
8582
8583SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
8584  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
8585  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
8586  // inputs come from at most two distinct vectors, turn this into a shuffle
8587  // node.
8588
8589  // If we only have one input vector, we don't need to do any concatenation.
8590  if (N->getNumOperands() == 1)
8591    return N->getOperand(0);
8592
8593  // Check if all of the operands are undefs.
8594  if (ISD::allOperandsUndef(N))
8595    return DAG.getUNDEF(N->getValueType(0));
8596
8597  return SDValue();
8598}
8599
8600SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
8601  EVT NVT = N->getValueType(0);
8602  SDValue V = N->getOperand(0);
8603
8604  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
8605    // Handle only simple case where vector being inserted and vector
8606    // being extracted are of same type, and are half size of larger vectors.
8607    EVT BigVT = V->getOperand(0).getValueType();
8608    EVT SmallVT = V->getOperand(1).getValueType();
8609    if (NVT != SmallVT || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
8610      return SDValue();
8611
8612    // Only handle cases where both indexes are constants with the same type.
8613    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
8614    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
8615
8616    if (InsIdx && ExtIdx &&
8617        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
8618        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
8619      // Combine:
8620      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
8621      // Into:
8622      //    indices are equal => V1
8623      //    otherwise => (extract_subvec V1, ExtIdx)
8624      if (InsIdx->getZExtValue() == ExtIdx->getZExtValue())
8625        return V->getOperand(1);
8626      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, N->getDebugLoc(), NVT,
8627                         V->getOperand(0), N->getOperand(1));
8628    }
8629  }
8630
8631  return SDValue();
8632}
8633
8634SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
8635  EVT VT = N->getValueType(0);
8636  unsigned NumElts = VT.getVectorNumElements();
8637
8638  SDValue N0 = N->getOperand(0);
8639  SDValue N1 = N->getOperand(1);
8640
8641  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
8642
8643  // Canonicalize shuffle undef, undef -> undef
8644  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
8645    return DAG.getUNDEF(VT);
8646
8647  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8648
8649  // Canonicalize shuffle v, v -> v, undef
8650  if (N0 == N1) {
8651    SmallVector<int, 8> NewMask;
8652    for (unsigned i = 0; i != NumElts; ++i) {
8653      int Idx = SVN->getMaskElt(i);
8654      if (Idx >= (int)NumElts) Idx -= NumElts;
8655      NewMask.push_back(Idx);
8656    }
8657    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, DAG.getUNDEF(VT),
8658                                &NewMask[0]);
8659  }
8660
8661  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
8662  if (N0.getOpcode() == ISD::UNDEF) {
8663    SmallVector<int, 8> NewMask;
8664    for (unsigned i = 0; i != NumElts; ++i) {
8665      int Idx = SVN->getMaskElt(i);
8666      if (Idx >= 0) {
8667        if (Idx < (int)NumElts)
8668          Idx += NumElts;
8669        else
8670          Idx -= NumElts;
8671      }
8672      NewMask.push_back(Idx);
8673    }
8674    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N1, DAG.getUNDEF(VT),
8675                                &NewMask[0]);
8676  }
8677
8678  // Remove references to rhs if it is undef
8679  if (N1.getOpcode() == ISD::UNDEF) {
8680    bool Changed = false;
8681    SmallVector<int, 8> NewMask;
8682    for (unsigned i = 0; i != NumElts; ++i) {
8683      int Idx = SVN->getMaskElt(i);
8684      if (Idx >= (int)NumElts) {
8685        Idx = -1;
8686        Changed = true;
8687      }
8688      NewMask.push_back(Idx);
8689    }
8690    if (Changed)
8691      return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, N1, &NewMask[0]);
8692  }
8693
8694  // If it is a splat, check if the argument vector is another splat or a
8695  // build_vector with all scalar elements the same.
8696  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
8697    SDNode *V = N0.getNode();
8698
8699    // If this is a bit convert that changes the element type of the vector but
8700    // not the number of vector elements, look through it.  Be careful not to
8701    // look though conversions that change things like v4f32 to v2f64.
8702    if (V->getOpcode() == ISD::BITCAST) {
8703      SDValue ConvInput = V->getOperand(0);
8704      if (ConvInput.getValueType().isVector() &&
8705          ConvInput.getValueType().getVectorNumElements() == NumElts)
8706        V = ConvInput.getNode();
8707    }
8708
8709    if (V->getOpcode() == ISD::BUILD_VECTOR) {
8710      assert(V->getNumOperands() == NumElts &&
8711             "BUILD_VECTOR has wrong number of operands");
8712      SDValue Base;
8713      bool AllSame = true;
8714      for (unsigned i = 0; i != NumElts; ++i) {
8715        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
8716          Base = V->getOperand(i);
8717          break;
8718        }
8719      }
8720      // Splat of <u, u, u, u>, return <u, u, u, u>
8721      if (!Base.getNode())
8722        return N0;
8723      for (unsigned i = 0; i != NumElts; ++i) {
8724        if (V->getOperand(i) != Base) {
8725          AllSame = false;
8726          break;
8727        }
8728      }
8729      // Splat of <x, x, x, x>, return <x, x, x, x>
8730      if (AllSame)
8731        return N0;
8732    }
8733  }
8734
8735  // If this shuffle node is simply a swizzle of another shuffle node,
8736  // and it reverses the swizzle of the previous shuffle then we can
8737  // optimize shuffle(shuffle(x, undef), undef) -> x.
8738  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
8739      N1.getOpcode() == ISD::UNDEF) {
8740
8741    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
8742
8743    // Shuffle nodes can only reverse shuffles with a single non-undef value.
8744    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
8745      return SDValue();
8746
8747    // The incoming shuffle must be of the same type as the result of the
8748    // current shuffle.
8749    assert(OtherSV->getOperand(0).getValueType() == VT &&
8750           "Shuffle types don't match");
8751
8752    for (unsigned i = 0; i != NumElts; ++i) {
8753      int Idx = SVN->getMaskElt(i);
8754      assert(Idx < (int)NumElts && "Index references undef operand");
8755      // Next, this index comes from the first value, which is the incoming
8756      // shuffle. Adopt the incoming index.
8757      if (Idx >= 0)
8758        Idx = OtherSV->getMaskElt(Idx);
8759
8760      // The combined shuffle must map each index to itself.
8761      if (Idx >= 0 && (unsigned)Idx != i)
8762        return SDValue();
8763    }
8764
8765    return OtherSV->getOperand(0);
8766  }
8767
8768  return SDValue();
8769}
8770
8771SDValue DAGCombiner::visitMEMBARRIER(SDNode* N) {
8772  if (!TLI.getShouldFoldAtomicFences())
8773    return SDValue();
8774
8775  SDValue atomic = N->getOperand(0);
8776  switch (atomic.getOpcode()) {
8777    case ISD::ATOMIC_CMP_SWAP:
8778    case ISD::ATOMIC_SWAP:
8779    case ISD::ATOMIC_LOAD_ADD:
8780    case ISD::ATOMIC_LOAD_SUB:
8781    case ISD::ATOMIC_LOAD_AND:
8782    case ISD::ATOMIC_LOAD_OR:
8783    case ISD::ATOMIC_LOAD_XOR:
8784    case ISD::ATOMIC_LOAD_NAND:
8785    case ISD::ATOMIC_LOAD_MIN:
8786    case ISD::ATOMIC_LOAD_MAX:
8787    case ISD::ATOMIC_LOAD_UMIN:
8788    case ISD::ATOMIC_LOAD_UMAX:
8789      break;
8790    default:
8791      return SDValue();
8792  }
8793
8794  SDValue fence = atomic.getOperand(0);
8795  if (fence.getOpcode() != ISD::MEMBARRIER)
8796    return SDValue();
8797
8798  switch (atomic.getOpcode()) {
8799    case ISD::ATOMIC_CMP_SWAP:
8800      return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
8801                                    fence.getOperand(0),
8802                                    atomic.getOperand(1), atomic.getOperand(2),
8803                                    atomic.getOperand(3)), atomic.getResNo());
8804    case ISD::ATOMIC_SWAP:
8805    case ISD::ATOMIC_LOAD_ADD:
8806    case ISD::ATOMIC_LOAD_SUB:
8807    case ISD::ATOMIC_LOAD_AND:
8808    case ISD::ATOMIC_LOAD_OR:
8809    case ISD::ATOMIC_LOAD_XOR:
8810    case ISD::ATOMIC_LOAD_NAND:
8811    case ISD::ATOMIC_LOAD_MIN:
8812    case ISD::ATOMIC_LOAD_MAX:
8813    case ISD::ATOMIC_LOAD_UMIN:
8814    case ISD::ATOMIC_LOAD_UMAX:
8815      return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
8816                                    fence.getOperand(0),
8817                                    atomic.getOperand(1), atomic.getOperand(2)),
8818                     atomic.getResNo());
8819    default:
8820      return SDValue();
8821  }
8822}
8823
8824/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
8825/// an AND to a vector_shuffle with the destination vector and a zero vector.
8826/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
8827///      vector_shuffle V, Zero, <0, 4, 2, 4>
8828SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
8829  EVT VT = N->getValueType(0);
8830  DebugLoc dl = N->getDebugLoc();
8831  SDValue LHS = N->getOperand(0);
8832  SDValue RHS = N->getOperand(1);
8833  if (N->getOpcode() == ISD::AND) {
8834    if (RHS.getOpcode() == ISD::BITCAST)
8835      RHS = RHS.getOperand(0);
8836    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
8837      SmallVector<int, 8> Indices;
8838      unsigned NumElts = RHS.getNumOperands();
8839      for (unsigned i = 0; i != NumElts; ++i) {
8840        SDValue Elt = RHS.getOperand(i);
8841        if (!isa<ConstantSDNode>(Elt))
8842          return SDValue();
8843
8844        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
8845          Indices.push_back(i);
8846        else if (cast<ConstantSDNode>(Elt)->isNullValue())
8847          Indices.push_back(NumElts);
8848        else
8849          return SDValue();
8850      }
8851
8852      // Let's see if the target supports this vector_shuffle.
8853      EVT RVT = RHS.getValueType();
8854      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
8855        return SDValue();
8856
8857      // Return the new VECTOR_SHUFFLE node.
8858      EVT EltVT = RVT.getVectorElementType();
8859      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
8860                                     DAG.getConstant(0, EltVT));
8861      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
8862                                 RVT, &ZeroOps[0], ZeroOps.size());
8863      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
8864      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
8865      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
8866    }
8867  }
8868
8869  return SDValue();
8870}
8871
8872/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
8873SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
8874  // After legalize, the target may be depending on adds and other
8875  // binary ops to provide legal ways to construct constants or other
8876  // things. Simplifying them may result in a loss of legality.
8877  if (LegalOperations) return SDValue();
8878
8879  assert(N->getValueType(0).isVector() &&
8880         "SimplifyVBinOp only works on vectors!");
8881
8882  SDValue LHS = N->getOperand(0);
8883  SDValue RHS = N->getOperand(1);
8884  SDValue Shuffle = XformToShuffleWithZero(N);
8885  if (Shuffle.getNode()) return Shuffle;
8886
8887  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
8888  // this operation.
8889  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
8890      RHS.getOpcode() == ISD::BUILD_VECTOR) {
8891    SmallVector<SDValue, 8> Ops;
8892    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
8893      SDValue LHSOp = LHS.getOperand(i);
8894      SDValue RHSOp = RHS.getOperand(i);
8895      // If these two elements can't be folded, bail out.
8896      if ((LHSOp.getOpcode() != ISD::UNDEF &&
8897           LHSOp.getOpcode() != ISD::Constant &&
8898           LHSOp.getOpcode() != ISD::ConstantFP) ||
8899          (RHSOp.getOpcode() != ISD::UNDEF &&
8900           RHSOp.getOpcode() != ISD::Constant &&
8901           RHSOp.getOpcode() != ISD::ConstantFP))
8902        break;
8903
8904      // Can't fold divide by zero.
8905      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
8906          N->getOpcode() == ISD::FDIV) {
8907        if ((RHSOp.getOpcode() == ISD::Constant &&
8908             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
8909            (RHSOp.getOpcode() == ISD::ConstantFP &&
8910             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
8911          break;
8912      }
8913
8914      EVT VT = LHSOp.getValueType();
8915      EVT RVT = RHSOp.getValueType();
8916      if (RVT != VT) {
8917        // Integer BUILD_VECTOR operands may have types larger than the element
8918        // size (e.g., when the element type is not legal).  Prior to type
8919        // legalization, the types may not match between the two BUILD_VECTORS.
8920        // Truncate one of the operands to make them match.
8921        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
8922          RHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, RHSOp);
8923        } else {
8924          LHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), RVT, LHSOp);
8925          VT = RVT;
8926        }
8927      }
8928      SDValue FoldOp = DAG.getNode(N->getOpcode(), LHS.getDebugLoc(), VT,
8929                                   LHSOp, RHSOp);
8930      if (FoldOp.getOpcode() != ISD::UNDEF &&
8931          FoldOp.getOpcode() != ISD::Constant &&
8932          FoldOp.getOpcode() != ISD::ConstantFP)
8933        break;
8934      Ops.push_back(FoldOp);
8935      AddToWorkList(FoldOp.getNode());
8936    }
8937
8938    if (Ops.size() == LHS.getNumOperands())
8939      return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
8940                         LHS.getValueType(), &Ops[0], Ops.size());
8941  }
8942
8943  return SDValue();
8944}
8945
8946/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
8947SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
8948  // After legalize, the target may be depending on adds and other
8949  // binary ops to provide legal ways to construct constants or other
8950  // things. Simplifying them may result in a loss of legality.
8951  if (LegalOperations) return SDValue();
8952
8953  assert(N->getValueType(0).isVector() &&
8954         "SimplifyVUnaryOp only works on vectors!");
8955
8956  SDValue N0 = N->getOperand(0);
8957
8958  if (N0.getOpcode() != ISD::BUILD_VECTOR)
8959    return SDValue();
8960
8961  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
8962  SmallVector<SDValue, 8> Ops;
8963  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
8964    SDValue Op = N0.getOperand(i);
8965    if (Op.getOpcode() != ISD::UNDEF &&
8966        Op.getOpcode() != ISD::ConstantFP)
8967      break;
8968    EVT EltVT = Op.getValueType();
8969    SDValue FoldOp = DAG.getNode(N->getOpcode(), N0.getDebugLoc(), EltVT, Op);
8970    if (FoldOp.getOpcode() != ISD::UNDEF &&
8971        FoldOp.getOpcode() != ISD::ConstantFP)
8972      break;
8973    Ops.push_back(FoldOp);
8974    AddToWorkList(FoldOp.getNode());
8975  }
8976
8977  if (Ops.size() != N0.getNumOperands())
8978    return SDValue();
8979
8980  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
8981                     N0.getValueType(), &Ops[0], Ops.size());
8982}
8983
8984SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0,
8985                                    SDValue N1, SDValue N2){
8986  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
8987
8988  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
8989                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
8990
8991  // If we got a simplified select_cc node back from SimplifySelectCC, then
8992  // break it down into a new SETCC node, and a new SELECT node, and then return
8993  // the SELECT node, since we were called with a SELECT node.
8994  if (SCC.getNode()) {
8995    // Check to see if we got a select_cc back (to turn into setcc/select).
8996    // Otherwise, just return whatever node we got back, like fabs.
8997    if (SCC.getOpcode() == ISD::SELECT_CC) {
8998      SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(),
8999                                  N0.getValueType(),
9000                                  SCC.getOperand(0), SCC.getOperand(1),
9001                                  SCC.getOperand(4));
9002      AddToWorkList(SETCC.getNode());
9003      return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(),
9004                         SCC.getOperand(2), SCC.getOperand(3), SETCC);
9005    }
9006
9007    return SCC;
9008  }
9009  return SDValue();
9010}
9011
9012/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
9013/// are the two values being selected between, see if we can simplify the
9014/// select.  Callers of this should assume that TheSelect is deleted if this
9015/// returns true.  As such, they should return the appropriate thing (e.g. the
9016/// node) back to the top-level of the DAG combiner loop to avoid it being
9017/// looked at.
9018bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
9019                                    SDValue RHS) {
9020
9021  // Cannot simplify select with vector condition
9022  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
9023
9024  // If this is a select from two identical things, try to pull the operation
9025  // through the select.
9026  if (LHS.getOpcode() != RHS.getOpcode() ||
9027      !LHS.hasOneUse() || !RHS.hasOneUse())
9028    return false;
9029
9030  // If this is a load and the token chain is identical, replace the select
9031  // of two loads with a load through a select of the address to load from.
9032  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
9033  // constants have been dropped into the constant pool.
9034  if (LHS.getOpcode() == ISD::LOAD) {
9035    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
9036    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
9037
9038    // Token chains must be identical.
9039    if (LHS.getOperand(0) != RHS.getOperand(0) ||
9040        // Do not let this transformation reduce the number of volatile loads.
9041        LLD->isVolatile() || RLD->isVolatile() ||
9042        // If this is an EXTLOAD, the VT's must match.
9043        LLD->getMemoryVT() != RLD->getMemoryVT() ||
9044        // If this is an EXTLOAD, the kind of extension must match.
9045        (LLD->getExtensionType() != RLD->getExtensionType() &&
9046         // The only exception is if one of the extensions is anyext.
9047         LLD->getExtensionType() != ISD::EXTLOAD &&
9048         RLD->getExtensionType() != ISD::EXTLOAD) ||
9049        // FIXME: this discards src value information.  This is
9050        // over-conservative. It would be beneficial to be able to remember
9051        // both potential memory locations.  Since we are discarding
9052        // src value info, don't do the transformation if the memory
9053        // locations are not in the default address space.
9054        LLD->getPointerInfo().getAddrSpace() != 0 ||
9055        RLD->getPointerInfo().getAddrSpace() != 0)
9056      return false;
9057
9058    // Check that the select condition doesn't reach either load.  If so,
9059    // folding this will induce a cycle into the DAG.  If not, this is safe to
9060    // xform, so create a select of the addresses.
9061    SDValue Addr;
9062    if (TheSelect->getOpcode() == ISD::SELECT) {
9063      SDNode *CondNode = TheSelect->getOperand(0).getNode();
9064      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
9065          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
9066        return false;
9067      Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
9068                         LLD->getBasePtr().getValueType(),
9069                         TheSelect->getOperand(0), LLD->getBasePtr(),
9070                         RLD->getBasePtr());
9071    } else {  // Otherwise SELECT_CC
9072      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
9073      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
9074
9075      if ((LLD->hasAnyUseOfValue(1) &&
9076           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
9077          (RLD->hasAnyUseOfValue(1) &&
9078           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
9079        return false;
9080
9081      Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
9082                         LLD->getBasePtr().getValueType(),
9083                         TheSelect->getOperand(0),
9084                         TheSelect->getOperand(1),
9085                         LLD->getBasePtr(), RLD->getBasePtr(),
9086                         TheSelect->getOperand(4));
9087    }
9088
9089    SDValue Load;
9090    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
9091      Load = DAG.getLoad(TheSelect->getValueType(0),
9092                         TheSelect->getDebugLoc(),
9093                         // FIXME: Discards pointer info.
9094                         LLD->getChain(), Addr, MachinePointerInfo(),
9095                         LLD->isVolatile(), LLD->isNonTemporal(),
9096                         LLD->isInvariant(), LLD->getAlignment());
9097    } else {
9098      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
9099                            RLD->getExtensionType() : LLD->getExtensionType(),
9100                            TheSelect->getDebugLoc(),
9101                            TheSelect->getValueType(0),
9102                            // FIXME: Discards pointer info.
9103                            LLD->getChain(), Addr, MachinePointerInfo(),
9104                            LLD->getMemoryVT(), LLD->isVolatile(),
9105                            LLD->isNonTemporal(), LLD->getAlignment());
9106    }
9107
9108    // Users of the select now use the result of the load.
9109    CombineTo(TheSelect, Load);
9110
9111    // Users of the old loads now use the new load's chain.  We know the
9112    // old-load value is dead now.
9113    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
9114    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
9115    return true;
9116  }
9117
9118  return false;
9119}
9120
9121/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
9122/// where 'cond' is the comparison specified by CC.
9123SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
9124                                      SDValue N2, SDValue N3,
9125                                      ISD::CondCode CC, bool NotExtCompare) {
9126  // (x ? y : y) -> y.
9127  if (N2 == N3) return N2;
9128
9129  EVT VT = N2.getValueType();
9130  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
9131  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
9132  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
9133
9134  // Determine if the condition we're dealing with is constant
9135  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
9136                              N0, N1, CC, DL, false);
9137  if (SCC.getNode()) AddToWorkList(SCC.getNode());
9138  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
9139
9140  // fold select_cc true, x, y -> x
9141  if (SCCC && !SCCC->isNullValue())
9142    return N2;
9143  // fold select_cc false, x, y -> y
9144  if (SCCC && SCCC->isNullValue())
9145    return N3;
9146
9147  // Check to see if we can simplify the select into an fabs node
9148  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
9149    // Allow either -0.0 or 0.0
9150    if (CFP->getValueAPF().isZero()) {
9151      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
9152      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
9153          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
9154          N2 == N3.getOperand(0))
9155        return DAG.getNode(ISD::FABS, DL, VT, N0);
9156
9157      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
9158      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
9159          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
9160          N2.getOperand(0) == N3)
9161        return DAG.getNode(ISD::FABS, DL, VT, N3);
9162    }
9163  }
9164
9165  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
9166  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
9167  // in it.  This is a win when the constant is not otherwise available because
9168  // it replaces two constant pool loads with one.  We only do this if the FP
9169  // type is known to be legal, because if it isn't, then we are before legalize
9170  // types an we want the other legalization to happen first (e.g. to avoid
9171  // messing with soft float) and if the ConstantFP is not legal, because if
9172  // it is legal, we may not need to store the FP constant in a constant pool.
9173  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
9174    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
9175      if (TLI.isTypeLegal(N2.getValueType()) &&
9176          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
9177           TargetLowering::Legal) &&
9178          // If both constants have multiple uses, then we won't need to do an
9179          // extra load, they are likely around in registers for other users.
9180          (TV->hasOneUse() || FV->hasOneUse())) {
9181        Constant *Elts[] = {
9182          const_cast<ConstantFP*>(FV->getConstantFPValue()),
9183          const_cast<ConstantFP*>(TV->getConstantFPValue())
9184        };
9185        Type *FPTy = Elts[0]->getType();
9186        const DataLayout &TD = *TLI.getDataLayout();
9187
9188        // Create a ConstantArray of the two constants.
9189        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
9190        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
9191                                            TD.getPrefTypeAlignment(FPTy));
9192        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9193
9194        // Get the offsets to the 0 and 1 element of the array so that we can
9195        // select between them.
9196        SDValue Zero = DAG.getIntPtrConstant(0);
9197        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
9198        SDValue One = DAG.getIntPtrConstant(EltSize);
9199
9200        SDValue Cond = DAG.getSetCC(DL,
9201                                    TLI.getSetCCResultType(N0.getValueType()),
9202                                    N0, N1, CC);
9203        AddToWorkList(Cond.getNode());
9204        SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(),
9205                                        Cond, One, Zero);
9206        AddToWorkList(CstOffset.getNode());
9207        CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
9208                            CstOffset);
9209        AddToWorkList(CPIdx.getNode());
9210        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
9211                           MachinePointerInfo::getConstantPool(), false,
9212                           false, false, Alignment);
9213
9214      }
9215    }
9216
9217  // Check to see if we can perform the "gzip trick", transforming
9218  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
9219  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
9220      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
9221       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
9222    EVT XType = N0.getValueType();
9223    EVT AType = N2.getValueType();
9224    if (XType.bitsGE(AType)) {
9225      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
9226      // single-bit constant.
9227      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
9228        unsigned ShCtV = N2C->getAPIntValue().logBase2();
9229        ShCtV = XType.getSizeInBits()-ShCtV-1;
9230        SDValue ShCt = DAG.getConstant(ShCtV,
9231                                       getShiftAmountTy(N0.getValueType()));
9232        SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(),
9233                                    XType, N0, ShCt);
9234        AddToWorkList(Shift.getNode());
9235
9236        if (XType.bitsGT(AType)) {
9237          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9238          AddToWorkList(Shift.getNode());
9239        }
9240
9241        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9242      }
9243
9244      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(),
9245                                  XType, N0,
9246                                  DAG.getConstant(XType.getSizeInBits()-1,
9247                                         getShiftAmountTy(N0.getValueType())));
9248      AddToWorkList(Shift.getNode());
9249
9250      if (XType.bitsGT(AType)) {
9251        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9252        AddToWorkList(Shift.getNode());
9253      }
9254
9255      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9256    }
9257  }
9258
9259  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
9260  // where y is has a single bit set.
9261  // A plaintext description would be, we can turn the SELECT_CC into an AND
9262  // when the condition can be materialized as an all-ones register.  Any
9263  // single bit-test can be materialized as an all-ones register with
9264  // shift-left and shift-right-arith.
9265  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
9266      N0->getValueType(0) == VT &&
9267      N1C && N1C->isNullValue() &&
9268      N2C && N2C->isNullValue()) {
9269    SDValue AndLHS = N0->getOperand(0);
9270    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9271    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
9272      // Shift the tested bit over the sign bit.
9273      APInt AndMask = ConstAndRHS->getAPIntValue();
9274      SDValue ShlAmt =
9275        DAG.getConstant(AndMask.countLeadingZeros(),
9276                        getShiftAmountTy(AndLHS.getValueType()));
9277      SDValue Shl = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT, AndLHS, ShlAmt);
9278
9279      // Now arithmetic right shift it all the way over, so the result is either
9280      // all-ones, or zero.
9281      SDValue ShrAmt =
9282        DAG.getConstant(AndMask.getBitWidth()-1,
9283                        getShiftAmountTy(Shl.getValueType()));
9284      SDValue Shr = DAG.getNode(ISD::SRA, N0.getDebugLoc(), VT, Shl, ShrAmt);
9285
9286      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
9287    }
9288  }
9289
9290  // fold select C, 16, 0 -> shl C, 4
9291  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
9292    TLI.getBooleanContents(N0.getValueType().isVector()) ==
9293      TargetLowering::ZeroOrOneBooleanContent) {
9294
9295    // If the caller doesn't want us to simplify this into a zext of a compare,
9296    // don't do it.
9297    if (NotExtCompare && N2C->getAPIntValue() == 1)
9298      return SDValue();
9299
9300    // Get a SetCC of the condition
9301    // FIXME: Should probably make sure that setcc is legal if we ever have a
9302    // target where it isn't.
9303    SDValue Temp, SCC;
9304    // cast from setcc result type to select result type
9305    if (LegalTypes) {
9306      SCC  = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()),
9307                          N0, N1, CC);
9308      if (N2.getValueType().bitsLT(SCC.getValueType()))
9309        Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(), N2.getValueType());
9310      else
9311        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9312                           N2.getValueType(), SCC);
9313    } else {
9314      SCC  = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC);
9315      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9316                         N2.getValueType(), SCC);
9317    }
9318
9319    AddToWorkList(SCC.getNode());
9320    AddToWorkList(Temp.getNode());
9321
9322    if (N2C->getAPIntValue() == 1)
9323      return Temp;
9324
9325    // shl setcc result by log2 n2c
9326    return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
9327                       DAG.getConstant(N2C->getAPIntValue().logBase2(),
9328                                       getShiftAmountTy(Temp.getValueType())));
9329  }
9330
9331  // Check to see if this is the equivalent of setcc
9332  // FIXME: Turn all of these into setcc if setcc if setcc is legal
9333  // otherwise, go ahead with the folds.
9334  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
9335    EVT XType = N0.getValueType();
9336    if (!LegalOperations ||
9337        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) {
9338      SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC);
9339      if (Res.getValueType() != VT)
9340        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
9341      return Res;
9342    }
9343
9344    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
9345    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
9346        (!LegalOperations ||
9347         TLI.isOperationLegal(ISD::CTLZ, XType))) {
9348      SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0);
9349      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
9350                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
9351                                       getShiftAmountTy(Ctlz.getValueType())));
9352    }
9353    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
9354    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
9355      SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(),
9356                                  XType, DAG.getConstant(0, XType), N0);
9357      SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType);
9358      return DAG.getNode(ISD::SRL, DL, XType,
9359                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
9360                         DAG.getConstant(XType.getSizeInBits()-1,
9361                                         getShiftAmountTy(XType)));
9362    }
9363    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
9364    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
9365      SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0,
9366                                 DAG.getConstant(XType.getSizeInBits()-1,
9367                                         getShiftAmountTy(N0.getValueType())));
9368      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
9369    }
9370  }
9371
9372  // Check to see if this is an integer abs.
9373  // select_cc setg[te] X,  0,  X, -X ->
9374  // select_cc setgt    X, -1,  X, -X ->
9375  // select_cc setl[te] X,  0, -X,  X ->
9376  // select_cc setlt    X,  1, -X,  X ->
9377  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
9378  if (N1C) {
9379    ConstantSDNode *SubC = NULL;
9380    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
9381         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
9382        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
9383      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
9384    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
9385              (N1C->isOne() && CC == ISD::SETLT)) &&
9386             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
9387      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
9388
9389    EVT XType = N0.getValueType();
9390    if (SubC && SubC->isNullValue() && XType.isInteger()) {
9391      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType,
9392                                  N0,
9393                                  DAG.getConstant(XType.getSizeInBits()-1,
9394                                         getShiftAmountTy(N0.getValueType())));
9395      SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(),
9396                                XType, N0, Shift);
9397      AddToWorkList(Shift.getNode());
9398      AddToWorkList(Add.getNode());
9399      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
9400    }
9401  }
9402
9403  return SDValue();
9404}
9405
9406/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
9407SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
9408                                   SDValue N1, ISD::CondCode Cond,
9409                                   DebugLoc DL, bool foldBooleans) {
9410  TargetLowering::DAGCombinerInfo
9411    DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
9412  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
9413}
9414
9415/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
9416/// return a DAG expression to select that will generate the same value by
9417/// multiplying by a magic number.  See:
9418/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
9419SDValue DAGCombiner::BuildSDIV(SDNode *N) {
9420  std::vector<SDNode*> Built;
9421  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
9422
9423  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
9424       ii != ee; ++ii)
9425    AddToWorkList(*ii);
9426  return S;
9427}
9428
9429/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
9430/// return a DAG expression to select that will generate the same value by
9431/// multiplying by a magic number.  See:
9432/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
9433SDValue DAGCombiner::BuildUDIV(SDNode *N) {
9434  std::vector<SDNode*> Built;
9435  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
9436
9437  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
9438       ii != ee; ++ii)
9439    AddToWorkList(*ii);
9440  return S;
9441}
9442
9443/// FindBaseOffset - Return true if base is a frame index, which is known not
9444// to alias with anything but itself.  Provides base object and offset as
9445// results.
9446static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
9447                           const GlobalValue *&GV, const void *&CV) {
9448  // Assume it is a primitive operation.
9449  Base = Ptr; Offset = 0; GV = 0; CV = 0;
9450
9451  // If it's an adding a simple constant then integrate the offset.
9452  if (Base.getOpcode() == ISD::ADD) {
9453    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
9454      Base = Base.getOperand(0);
9455      Offset += C->getZExtValue();
9456    }
9457  }
9458
9459  // Return the underlying GlobalValue, and update the Offset.  Return false
9460  // for GlobalAddressSDNode since the same GlobalAddress may be represented
9461  // by multiple nodes with different offsets.
9462  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
9463    GV = G->getGlobal();
9464    Offset += G->getOffset();
9465    return false;
9466  }
9467
9468  // Return the underlying Constant value, and update the Offset.  Return false
9469  // for ConstantSDNodes since the same constant pool entry may be represented
9470  // by multiple nodes with different offsets.
9471  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
9472    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
9473                                         : (const void *)C->getConstVal();
9474    Offset += C->getOffset();
9475    return false;
9476  }
9477  // If it's any of the following then it can't alias with anything but itself.
9478  return isa<FrameIndexSDNode>(Base);
9479}
9480
9481/// isAlias - Return true if there is any possibility that the two addresses
9482/// overlap.
9483bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
9484                          const Value *SrcValue1, int SrcValueOffset1,
9485                          unsigned SrcValueAlign1,
9486                          const MDNode *TBAAInfo1,
9487                          SDValue Ptr2, int64_t Size2,
9488                          const Value *SrcValue2, int SrcValueOffset2,
9489                          unsigned SrcValueAlign2,
9490                          const MDNode *TBAAInfo2) const {
9491  // If they are the same then they must be aliases.
9492  if (Ptr1 == Ptr2) return true;
9493
9494  // Gather base node and offset information.
9495  SDValue Base1, Base2;
9496  int64_t Offset1, Offset2;
9497  const GlobalValue *GV1, *GV2;
9498  const void *CV1, *CV2;
9499  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
9500  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
9501
9502  // If they have a same base address then check to see if they overlap.
9503  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
9504    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
9505
9506  // It is possible for different frame indices to alias each other, mostly
9507  // when tail call optimization reuses return address slots for arguments.
9508  // To catch this case, look up the actual index of frame indices to compute
9509  // the real alias relationship.
9510  if (isFrameIndex1 && isFrameIndex2) {
9511    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9512    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
9513    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
9514    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
9515  }
9516
9517  // Otherwise, if we know what the bases are, and they aren't identical, then
9518  // we know they cannot alias.
9519  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
9520    return false;
9521
9522  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
9523  // compared to the size and offset of the access, we may be able to prove they
9524  // do not alias.  This check is conservative for now to catch cases created by
9525  // splitting vector types.
9526  if ((SrcValueAlign1 == SrcValueAlign2) &&
9527      (SrcValueOffset1 != SrcValueOffset2) &&
9528      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
9529    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
9530    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
9531
9532    // There is no overlap between these relatively aligned accesses of similar
9533    // size, return no alias.
9534    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
9535      return false;
9536  }
9537
9538  if (CombinerGlobalAA) {
9539    // Use alias analysis information.
9540    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
9541    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
9542    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
9543    AliasAnalysis::AliasResult AAResult =
9544      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
9545               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
9546    if (AAResult == AliasAnalysis::NoAlias)
9547      return false;
9548  }
9549
9550  // Otherwise we have to assume they alias.
9551  return true;
9552}
9553
9554/// FindAliasInfo - Extracts the relevant alias information from the memory
9555/// node.  Returns true if the operand was a load.
9556bool DAGCombiner::FindAliasInfo(SDNode *N,
9557                                SDValue &Ptr, int64_t &Size,
9558                                const Value *&SrcValue,
9559                                int &SrcValueOffset,
9560                                unsigned &SrcValueAlign,
9561                                const MDNode *&TBAAInfo) const {
9562  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
9563
9564  Ptr = LS->getBasePtr();
9565  Size = LS->getMemoryVT().getSizeInBits() >> 3;
9566  SrcValue = LS->getSrcValue();
9567  SrcValueOffset = LS->getSrcValueOffset();
9568  SrcValueAlign = LS->getOriginalAlignment();
9569  TBAAInfo = LS->getTBAAInfo();
9570  return isa<LoadSDNode>(LS);
9571}
9572
9573/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
9574/// looking for aliasing nodes and adding them to the Aliases vector.
9575void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
9576                                   SmallVector<SDValue, 8> &Aliases) {
9577  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
9578  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
9579
9580  // Get alias information for node.
9581  SDValue Ptr;
9582  int64_t Size;
9583  const Value *SrcValue;
9584  int SrcValueOffset;
9585  unsigned SrcValueAlign;
9586  const MDNode *SrcTBAAInfo;
9587  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
9588                              SrcValueAlign, SrcTBAAInfo);
9589
9590  // Starting off.
9591  Chains.push_back(OriginalChain);
9592  unsigned Depth = 0;
9593
9594  // Look at each chain and determine if it is an alias.  If so, add it to the
9595  // aliases list.  If not, then continue up the chain looking for the next
9596  // candidate.
9597  while (!Chains.empty()) {
9598    SDValue Chain = Chains.back();
9599    Chains.pop_back();
9600
9601    // For TokenFactor nodes, look at each operand and only continue up the
9602    // chain until we find two aliases.  If we've seen two aliases, assume we'll
9603    // find more and revert to original chain since the xform is unlikely to be
9604    // profitable.
9605    //
9606    // FIXME: The depth check could be made to return the last non-aliasing
9607    // chain we found before we hit a tokenfactor rather than the original
9608    // chain.
9609    if (Depth > 6 || Aliases.size() == 2) {
9610      Aliases.clear();
9611      Aliases.push_back(OriginalChain);
9612      break;
9613    }
9614
9615    // Don't bother if we've been before.
9616    if (!Visited.insert(Chain.getNode()))
9617      continue;
9618
9619    switch (Chain.getOpcode()) {
9620    case ISD::EntryToken:
9621      // Entry token is ideal chain operand, but handled in FindBetterChain.
9622      break;
9623
9624    case ISD::LOAD:
9625    case ISD::STORE: {
9626      // Get alias information for Chain.
9627      SDValue OpPtr;
9628      int64_t OpSize;
9629      const Value *OpSrcValue;
9630      int OpSrcValueOffset;
9631      unsigned OpSrcValueAlign;
9632      const MDNode *OpSrcTBAAInfo;
9633      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
9634                                    OpSrcValue, OpSrcValueOffset,
9635                                    OpSrcValueAlign,
9636                                    OpSrcTBAAInfo);
9637
9638      // If chain is alias then stop here.
9639      if (!(IsLoad && IsOpLoad) &&
9640          isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
9641                  SrcTBAAInfo,
9642                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
9643                  OpSrcValueAlign, OpSrcTBAAInfo)) {
9644        Aliases.push_back(Chain);
9645      } else {
9646        // Look further up the chain.
9647        Chains.push_back(Chain.getOperand(0));
9648        ++Depth;
9649      }
9650      break;
9651    }
9652
9653    case ISD::TokenFactor:
9654      // We have to check each of the operands of the token factor for "small"
9655      // token factors, so we queue them up.  Adding the operands to the queue
9656      // (stack) in reverse order maintains the original order and increases the
9657      // likelihood that getNode will find a matching token factor (CSE.)
9658      if (Chain.getNumOperands() > 16) {
9659        Aliases.push_back(Chain);
9660        break;
9661      }
9662      for (unsigned n = Chain.getNumOperands(); n;)
9663        Chains.push_back(Chain.getOperand(--n));
9664      ++Depth;
9665      break;
9666
9667    default:
9668      // For all other instructions we will just have to take what we can get.
9669      Aliases.push_back(Chain);
9670      break;
9671    }
9672  }
9673}
9674
9675/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
9676/// for a better chain (aliasing node.)
9677SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
9678  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
9679
9680  // Accumulate all the aliases to this node.
9681  GatherAllAliases(N, OldChain, Aliases);
9682
9683  // If no operands then chain to entry token.
9684  if (Aliases.size() == 0)
9685    return DAG.getEntryNode();
9686
9687  // If a single operand then chain to it.  We don't need to revisit it.
9688  if (Aliases.size() == 1)
9689    return Aliases[0];
9690
9691  // Construct a custom tailored token factor.
9692  return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
9693                     &Aliases[0], Aliases.size());
9694}
9695
9696// SelectionDAG::Combine - This is the entry point for the file.
9697//
9698void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
9699                           CodeGenOpt::Level OptLevel) {
9700  /// run - This is the main entry point to this class.
9701  ///
9702  DAGCombiner(*this, AA, OptLevel).Run(Level);
9703}
9704